d by Illinois Digital Environment for Ad

MICROWAVE SPECTRA AND GEOMETRIES OF $\mathrm{C}_2\mathrm{H}_2\cdots\mathrm{AgI}$ and $\mathrm{C}_2\mathrm{H}_4\cdots\mathrm{AgI}$

SUSANNA L. STEPHENS, Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada; DAVID PETER TEW, School of Chemistry, University of Bristol, Bristol, United Kingdom; NICK WALKER, School of Chemistry, Newcastle University, Newcastle-upon-Tyne, United Kingdom; ANTHONY LEGON, School of Chemistry, University of Bristol, Bristol, United Kingdom.

A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both $C_2H_2\cdots AgI$ and $C_2H_4\cdots AgI$. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF_3I and either C_2H_2 or C_2H_4 and argon and are stabilized by a supersonic expansion. Rotational (A_0, B_0, C_0) and centrifugal distortion constants $(\Delta_J \text{ and } \Delta_{JK})$ of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom $(\chi_{aa} (I) \text{ and } \chi_{bb} - \chi_{cc} (I))$. The spectrum of each molecule is consistent with a C_{2v} structure in which the metal atom interacts with the π -orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C_2H_2 or C_2H_4 subunits are in progress and in conjunction with high level *ab initio* calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied $H_2S\cdots AgI_a^n OC\cdots AgI_b^h$, $H_3N\cdots AgI$ and $(CH_3)_3N\cdots AgI_c^n$

^aS.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012)

^bS.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., **136**(6), 064306 (2012)

^cD.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.