PROGRESS TOWARDS A HIGH-PRECISION INFRARED SPECTROSCOPIC SURVEY OF THE H_3^+ ION

<u>ADAM J. PERRY</u>, JAMES N. HODGES, CHARLES R. MARKUS, G. STEPHEN KOCHERIL, PAUL A. JENKINS II, *Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA*; BEN-JAMIN J. McCALL, *Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL, USA*.

The trihydrogen cation, H_3^+ , represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate^{*abcd*}. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods.

By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision ($\sim 1 \text{ MHz}$)^{*e*}. Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels.

^dL. Lodi, et al., Phys. Rev. A (2014), 89, 032505.

^aO. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014.

^bM. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303.

^cL. Diniz, et al., Phys. Rev. A (2013), 88, 032506.

^eJ. Hodges, et al., J. Chem. Phys (2013), 139, 164201.