Detection of HSNO, a crucial intermediate linking NO and H_2S chemistries

<u>Marie-Aline Martin-Drumel</u>¹, Christopher A. Lopez², Kyle N. Crabtree³, Caroline C. Womack⁴, Thanh L. Nguyen², Sven Thorwirth⁵, John F. Stanton², & Michael C. McCarthy¹

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
² Institute for Theoretical Chemistry, University of Texas, Austin, TX, USA
³ Department of Chemistry, University of California-Davis, CA, USA
⁴ Department of Chemistry, MIT, Cambridge, MA, USA
⁵ I. Physikalisches Institut, Universität zu Köln, Germany

Little is known on sulfur analogs of nitrous acid

Thionitrous acid, HSNO, is a metastable isomer of *cis*-HNSO

HSNO is an elusive molecule

Biologically relevant species

- S-nitrosothiol (RSNO)
- potential NO carrier
- potential product of the in vivo 'cross-talk' between H₂S and NO

Inconclusive theoretical studies

Experimental investigation limited to argon matrices

Detection of HSNO, a crucial intermediate linking NO and H₂S chemistries

Investigation of the microwave spectrum of HSNO

Accurate determination of its geometry

HSNO is a product of the reaction between H_2S and NO

Formed from H_2S and NO high concentration no discharge

The gas phase reaction: $H_2S + NO \rightarrow \cdots \rightarrow HSNO$ is endothermic $\sim + 60 \text{ kcal/mol}$ Detection of HSNO, a crucial intermediate linking NO and H₂S chemistries

FT-MW and DR measurements Pure rotational transitions 4 isotopologues

Semi-experimental geometrical determination Elongated S–N bond

Insights into HSNO formation N_2O_3 reaction partner

HSNO is readily formed from H_2S and NO in our gas experiment

DSNO, H³⁴SNO, HS¹⁵NO

Accurate frequencies have been measured using FT-MW spectroscopy up to 40 GHz

Observations have been extended up to 90 GHz using double-resonance

Observations have been extended up to 90 GHz using double-resonance

Observations have been extended up to 90 GHz using double-resonance

The derived semi-experimental structure reveals an elongated S-N bond

Quantum-chemical calculations: CCSD(T)/cc-pV(Q+d)Z

The derived semi-experimental structure reveals an elongated S-N bond

Quantum-chemical calculations: CCSD(T)/cc-pV(Q+d)Z

N_2O_3 is a key reaction partner

N_2O_3 is a key reaction partner

N_2O_3 is a key reaction partner

The production of HSNO via N_2O_3 is exothermic

trans-HSNO is 5 times more abundant than the *cis* form

The *cis* – *trans* isomerization faces a high barrier

Detection of HSNO, a crucial intermediate linking NO and H₂S chemistries

> Pure rotational transitions up to 90 GHz

Accurate structure elongated S-N bond

Formed via surface reactions involving N_2O_3

Detection of HSNO, a crucial intermediate linking NO and H₂S chemistries

 $\begin{array}{l} \mbox{Candidate for} \\ \mbox{astronomical detection} \\ \mbox{[H, S, N, O]} \\ \mbox{dipole} \sim 1 \mbox{ D} \end{array}$

Theoretical benchmark

Detection of HSNO, a crucial intermediate linking NO and H₂S chemistries

Candidate for astronomical detection [H, S, N, O] dipole ~ 1 D

Theoretical benchmark

Are larger RSNOs formed from RSH in a similar way?

Preliminary investigations of the $CH_3SH + NO$ reaction reveal CH_3SNO

Detection of HSNO, a crucial intermediate linking NO and H_2S chemistries

<u>Marie-Aline Martin-Drumel</u>¹, Christopher A. Lopez², Kyle N. Crabtree³, Caroline C. Womack⁴, Thanh L. Nguyen², Sven Thorwirth⁵, John F. Stanton², & Michael C. McCarthy¹

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
² Institute for Theoretical Chemistry, University of Texas, Austin, TX, USA
³ Department of Chemistry, University of California-Davis, CA, USA
⁴ Department of Chemistry, MIT, Cambridge, MA, USA
⁵ I. Physikalisches Institut, Universität zu Köln, Germany

