The SOLEIL view on sulfur rich oxides The S₂O bending mode ν_2 at 380 cm⁻¹ and its analysis using an Automated Spectral Assignment Procedure (ASAP)

<u>M. A. Martin-Drumel</u>¹, C. P. Endres², O. Zingsheim³, T Salomon³, J. van Wijngaarden⁴, O. Pirali⁵, S. Gruet⁵, F. Lewen³, S. Schlemmer³, M. C. McCarthy¹, & S. Thorwirth³

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
²Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
³I. Physikalisches Institut, Universität zu Köln, Germany
⁴Department of Chemistry, University of Manitoba, Winnipeg, Canada
⁵SOLEIL Synchrotron, L'orme des Merisiers, Saint-Aubin, France

24 h with synchrotron radiation are months using classic sources

But the analysis of dense spectra is still time consuming

The ν_2 band of S₂O has been investigated

High resolution FIR spectrum¹ SOLEIL $R=0.001 \text{ cm}^{-1}$ post-RF discharge

Semi-automatic analysis

¹see talk RB08 by S. Thorwirth

A semi-automatic assignment procedure has enable a fast analysis of the spectrum

- Automated Spectral Assignment Procedure
 - largely automated approach
 - analysis of the ν_2 band of S_2O in only a few hours

The S₂O bending mode ν_2 at 380 cm⁻¹ and its analysis using ASAP

Principle of the ASAP

Study of the ν_2 mode of S_2O

Discussion on the procedure

ASAP: straightforward analysis of ro-vibrational spectra

One of the two vibrational state has to be well characterized Reference state Target state

Determination of the energy levels in the target state

The ν_2 band of S₂O is a good test case

Dense spectrum *a*- and *b*-type transitions hot band(s)

The ν_2 band of S_2O is a good test case

Dense spectrum *a*- and *b*-type transitions hot band(s)

Fully resolved

The ν_2 band of S₂O is a good test case

Dense spectrum *a*- and *b*-type transitions hot band(s)

Fully resolved

Previous investigations in the MW and sub-mm¹ ground state vibrational satellites

¹Tiemann, 1974; Thorwirth, 2006

The ν_2 band of S₂O is a good test case

Dense spectrum *a*- and *b*-type transitions hot band(s)

Fully resolved

Previous investigations in the MW and sub-mm¹ ground state \rightarrow Reference vibrational satellites

¹Tiemann, 1974; Thorwirth, 2006

Transitions sharing a target energy level are shifted by the same amount

The cross-correlation plot features a strong peak

$$J'_{Ka',Kc'} = 30_{15,15} \qquad J''_{Ka',Kc'} = 30_{15,15} \qquad 31_{14,18} \qquad 31_{14,18} \qquad 31_{14,18} \qquad 31_{14,18} \qquad 30_{14,16} \qquad 31_{14,18} \qquad 30_{14,16} \qquad 31_{16,16} \qquad 31_{16,16} \qquad 31_{16,16} \qquad 31_{16,16} \qquad 30_{16,14} \qquad 30_{16,16}$$

0.5 cm⁻¹

2 cm⁻¹

The cross-correlation plot features a strong peak

A trend with J is visible for the cross-correlation plots

$$K_a = 15, \ K_a + K_c = J$$

A trend with *J* is visible for the cross-correlation plots

 $K_a = 15, \ K_a + K_c = J$

The ν_2 band of S_2O has been analyzed using ASAP

 \sim 2000 energy levels $J \leq 84, \ K_a \leq 24$ $(J \leq 5, \ K_a \leq 1)^1$

¹Thorwirth, 2006

The ν_2 band of S₂O has been analyzed using ASAP

¹Thorwirth, 2006

The ν_2 band of S₂O has been analyzed using ASAP

¹Thorwirth, 2006

Vibrational satellites have been measured

¹see talk RB08 by S. Thorwirth

Accurate molecular parameters have been derived

Least-squares fit SPFIT/SPCAT¹ pure rotation, ro-vibration² (0,0,0), (0,1,0), (0,2,0) $\sigma = 1.02$

Accurate constants CD up to the octic terms $\tilde{\nu}_2 = 380.310367(3) \text{ cm}^{-1}$ $2\tilde{\nu}_2 - \tilde{\nu}_2 = 380.07577(1) \text{ cm}^{-1}$

¹Pickett, 1991

²Meschi, 1959; Cook, 1973; Tiemann, 1974; Lindenmayer, 1985, 1986; Thorwirth, 2006

ASAP allows a rapid determination of the energy levels of a vibrational state

ASAP allows a rapid determination of the energy levels of a vibrational state

Experimental spectrum absorbance calibrated post-zero filled no peak-finder required

redictions transitions (.cat) energy levels (.egy)

The S₂O bending mode ν_2 at 380 cm⁻¹ and its analysis using ASAP

> A new semi-automatic assignment method has been developed successfully applied to the analysis of the ν_2 band of S₂O

An improved list of molecular parameters has been derived for S_2O

Up to which spectral density would the procedure work?

Up to which spectral density would the procedure work?

What if only few spectral portions can be cross-correlated?

Up to which spectral density would the procedure work?

What if only few spectral portions can be cross-correlated?

Energy levels or ro-vibrational transitions?

Up to which spectral density would the procedure work?

What if only few spectral portions can be cross-correlated?

Energy levels or ro-vibrational transitions?

What about the uncertainties?

Up to which spectral density would the procedure work?

What if only few spectral portions can be cross-correlated?

Energy levels or ro-vibrational transitions?

What about the uncertainties?

Towards full automation?

The ν_2 band of S₂O has been analyzed using ASAP in only a few hours

The SOLEIL view on sulfur rich oxides The S₂O bending mode ν_2 at 380 cm⁻¹ and its analysis using an Automated Spectral Assignment Procedure (ASAP)

<u>M. A. Martin-Drumel</u>¹, C. P. Endres², O. Zingsheim³, T Salomon³, J. van Wijngaarden⁴, O. Pirali⁵, S. Gruet⁵, F. Lewen³, S. Schlemmer³, M. C. McCarthy¹, & S. Thorwirth³

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
²Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
³I. Physikalisches Institut, Universität zu Köln, Germany
⁴Department of Chemistry, University of Manitoba, Winnipeg, Canada
⁵SOLEIL Synchrotron, L'orme des Merisiers, Saint-Aubin, France

