COLLISION-DEPENDENT LINE AREAS IN THE $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ BAND OF MOLECULAR OXYGEN

VINCENT SIRONNEAU, <u>ADAM J. FLEISHER</u>, JOSEPH HODGES, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.

We report precise line areas for individual rotationally resolved transitions within the $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ electronic band of molecular oxygen recorded as a function of pressure for both neat samples of O₂ as well as samples of O₂ dilute with a variety of collisional partners. Using optical frequency comb referenced frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) near 1.27 μ m we measure line areas with a quality-of-fit QF \leq 50,000 using a partially correlated quadratic-speed-dependent Nelkin-Ghatak profile. This spectrometer has achieved this high QF by both suppressing coupled cavity effects and by preserving a high-fidelity frequency axis with absolute frequency accuracy approaching 1 part in 10^9 . With this instrument we are also currently exploring collision-induced absorption (CIA) and perturbative line mixing effects in O₂ over the entire 7800-7940 cm⁻¹ spectral range.