Forbidden transitions in the VUV spectrum of N₂

Alan N. Heays,¹ Mingli Niu,² Nelson de Oliveira,³ Edcel J. Salumbides,² Brenton R. Lewis,⁴ Wim Ubachs,² Ewine van Dishoeck¹

¹Leiden Observatory, The Netherlands
 ²VU University Amsterdam, The Netherlands
 ³Synchrotron SOLEIL, France
 ⁴Australian National University, Australia

- N₂ photodissociation is interesting and astrochemically important
- This is predissociative controlled by S = 1 triplet states which are not easily observable from the S = 0 ground state
- Objective: Quantify these states in absorption at high column density or through their perturbative effects

N₂ electron energy-loss spectrum

Geiger and Schröder (1969)

- Photoabsorption threshold: 100 nm
- Photoionisation threshold: 15.58 eV / 80 nm
- All states predissociate ~ 30–100%

N₂ $b^{1}\Pi_{u}(v') \leftarrow X^{1}\Sigma_{g}^{+}(v'')$ photoabsorption

Mostly sharp rotational structure
In some cases predissociation broadened

N₂ astronomical self-shielding

- Sharply peaked ¹⁴N₂ lines quickly saturate
- ¹⁴N¹⁵N is unaffected by a saturated ¹⁴N₂ column
- Comparable or more important effect than shielding by H₂ and dust

N_2 experimental linewidths of ${}^1\Pi_u$ states

Heays et al. (2011)

Predissociation linewidth, Γ, varies with:

- Electronic state: b, c₃, o₃
- Vibrational level
- Isotopologue

Electron-excited emission spectrum

Emission seen from:

 $b^{1}\Pi_{u}(v = 1, 4, 5, 6, 7)$ $b^{\prime 1}\Sigma_{u}^{+}(v = 1, 4, 7 - 19)$ $c_{3}^{1}\Pi_{u}(v = 0, 1, 2)$ $c_{4}^{1}\Pi_{u}(v = 0)$ $c'_{4} {}^{1}\Sigma^{+}_{u}(v = 0, 1, 2, 3, 4, 6)$ $c'_{5} {}^{1}\Sigma^{+}_{u}(v = 0)$ $o_{3} {}^{1}\Pi_{u}(v = 0, 1, 2, 3, 4)$

N₂ potential-energy curves

- ¹Π_u and ¹Σ⁺_u states absorb and emit photons
- ³Π_u and ³Σ⁺_u states have an open dissociation channel
- Spin-orbit coupling leads to predissociation of ¹Π_u and ¹Σ⁺_u states

Known ${}^{3}\Pi_{u}$ potential-energy curves

Lewis et al. (2008a)

 Levels known from optical spectroscopy, electron-energy loss, or induced perturbations

The SOLEIL/DESIRS experiment

- Interferometric spectrometer
- Maximum path difference: 10 cm
- Maximum resolution: ~0.07 cm⁻¹ / 10⁻⁴ nm
- Beam bandwidth: 5 nm
- Sample temperature: 90 1000 K

de Oliveira et al. (2011)

New photoabsorption spectra

- Weak lines become visible
- Highly-excited rotational lines are suppressed

¹⁴N¹⁵N $D^{3}\Sigma_{u}^{+}(v=0)$

Known in ¹⁴N₂ and ¹⁵N₂ (Lewis et al. 2008b)

$^{14}N^{15}N b^{1}\Pi_{u}(v = 4)$ and perturber

Heays et al. (2011)

•
$$N = 1.2 \times 10^{15} \,\mathrm{cm}^{-2}$$
 and $T = 300 \,\mathrm{K}$

Two extra lines

$^{14}N^{15}N b^{1}\Pi_{u}(v = 4)$ and perturber

¹⁴N¹⁵N $b^{1}\Pi_{u}(v=4)$ and $G^{3}\Pi_{u}(v=0)$

- $N = 3.3 \times 10^{17} \,\mathrm{cm}^{-2}$ and $T = 300 \pm 20 \,\mathrm{K}$
- Previously observed extra line
- Now lines from 9 rotational branches: $\Delta J = -1, 0, 1$ and " Ω " = 0, 1, 2

$^{14}N^{15}N \ b$ $^{1}\Pi_{u}(v=4)$ and $G^{3}\Pi_{u}(v=0)$

Information from the observed G(0) levels and the perturbed b(4) levels

Other bands in ¹⁴N¹⁵N

Other preliminary identifications in ¹⁴N¹⁵N:

- $\square D^{3}\Sigma_{u}^{+}(v=0)$
- $\square D^3\Sigma_u^+(v=1)$
- $G^{3}\Pi_{u}(v=1)$
- $C^{3}\Pi_{u}(v=8)$
- $C^{3}\Pi_{u}(v = 14)$ ~ $F^{3}\Pi_{u}(v = 1)$

$$C^{3}\Pi_{u}(v=15)$$

• $C^{3}\Pi_{u}(v = 16)$

Other identifications in ${}^{14}N_2$ with T = 1000 K (Niu et al. 2015):

• $C^{3}\Pi_{u}(v = 16)$ ~ $G^{3}\Pi_{u}(v = 2)$

High temperature photoabsorption

(Niu et al. 2015)

- 900 K ground-state excitation
- Observed lines as high as J = 40, v = 1

High temperature photoabsorption – Linewidths

- Rotational effects due to particular spin-orbit interacting levels
- *b*¹Π_{*u*}(2) ~ *C*³Π_{*u*}(8)

$$b^{1}\Pi_{u}(10) \sim G^{3}\Pi_{u}(2) \sim C^{3}\Pi_{u}(16)$$

Fitted perturber parameters intermediate to what is predicted for G(2) and C(16):

$$B\simeq 1.5\,\mathrm{cm}^{-1}$$

- $A \simeq 30 \, \mathrm{cm}^{-1}$
- Predissoc. width \simeq 20 \rightarrow 80 cm⁻¹

 Main saturated band: b¹Π_u(v = 2) ← X(0)

 Broad feature: C³Π_u(v = 8) ← X(0)

 Confirms an existing CSE model (Lewis et al. 2008a; Heays et al. 2011)

Summary

- This information will be used to refine the potential-energy curves of
 - S = 1 states, and spin-orbit interaction with S = 0 states
- Leading to an improved CSE model of N₂ photodissociation for astrophysical / atmospheric purposes