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FT-based NICE-OFCS Principle
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NICE-OHMS 
Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy

(Alternative name: Cavity-Enhanced Frequency Modulation Spectroscopy)

Cavity +
Analyte

Pound-Drever-Hall
laser to cavity lock  

cw Laser EOM

J. Ye, et al., J. Opt. Soc. Am. B 15, 6 (1998)
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General case

Filter solution

• Impractically long linear cavity for 

typical OFC sources 

(e.g. 1.8 m for frep 250 MHz)

• Instability/cross-talk from sideband-

sideband beatings

• Shorter linear cavity (80 cm) 

• Lower transmitted power

• No sideband-sideband beatings –

higher stability
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Experimental Setup 

• Er:fiber femtosecond laser:
1.5-1.6 µm, 250 MHz repetition rate, 120 mW

• Cavities:
finesse ~1100 / ~9000, length 80 cm, FSR 187 MHz

• Two-point Pound-Drever-Hall lock

OFC – optical frequency comb 
EOM – electro-optic modulator 
FC – fiber collimator
PBS – polarizing beam splitter
FTS – Fourier transform spectrometer
BPF – band-pass filter
LPF – low-pass filter
FFT – fast Fourier transform
Ph – phase shifter
DDS – direct digital synthesizer
PDH – Pound-Drever-Hall locking 

electronics
fPDH – PDH modulation frequency
fm – NICE-OFCS modulation frequency.

A. Khodabakhsh et al., Appl. Phys. B 119, 87 (2015)
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Spectra and Noise Immunity 

A. Khodabakhsh et al., Opt. Lett. 39, 5034 (2014)

fm = FSR

fm = FSR

fm – FSR = 20 kHz

• 1% CO2 in 500 Torr N2

• Cavity finesse: ~1100 

• Spectral Bandwidth: 40 nm

• Spectral resolution: 750 MHz 

• Acquisition time: 0.5 s

• Absorption features clearly visible in the interferogram
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Spectra and Noise Immunity 

A. Khodabakhsh et al., Opt. Lett. 39, 5034 (2014)

fm = FSR

fm = FSR

fm – FSR = 20 kHz

• 1% CO2 in 500 Torr N2

• Cavity finesse: ~1100 

• Spectral Bandwidth: 40 nm

• Spectral resolution: 750 MHz 

• Acquisition time: 0.5 s

• Absorption features clearly visible in the interferogram

• Mismatch of fm and FSR declines the noise immunity 

and decreases the SNR
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After FFT
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• Direct cavity-enhanced absorption like signal 
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• Interferogram intensity ponderated by the 
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Absorption lineshape model

Transmitted intensity
Molecular absorption

Molecular phase shift Round trip intracavity phase shift

T – mirror transmission
R – mirror reflection
L – cavity length1/3 linewidth

2/3 linewidth



A. Foltynowicz et al., Appl. Phys. B 110, 163 (2013)

𝑇𝑛,𝑘(𝜈) =
𝑇2(𝜈)𝑒−𝛼 𝜈 𝐿

1 + 𝑅2 𝜈 𝑒−2𝛼 𝜈 𝐿 − 2𝑅(𝜈)𝑒−𝛼 𝜈 𝐿𝑐𝑜𝑠 𝜙 𝜈 𝐿 + 𝜑 𝜈

𝜑 𝜈 = 4𝜋 𝜈
𝐿

𝑐
=
2𝜋𝜈

𝐹𝑆𝑅

𝜑 Δ𝜈 = 2𝑛𝜋 + 2𝜋
Δ𝜈

𝐹𝑆𝑅



Sensitivity and Detection Limit

A. Khodabakhsh et al., Appl. Phys. B 119, 87 (2015)
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• 500 ppm CO2 in 500 Torr N2

• Cavity finesse: ~ 9000

• Spectral Bandwidth: 40 nm

• Spectral resolution: 750 MHz 

• Acquisition time: 0.5 s

• Noise equivalent absorption sensitivity: 

6.4 × 10−11 cm−1 Hz−1∕2 per spectral element

• CO2 detection limit (multiline fitting):

450 ppb Hz-1/2

25 ppb after 330 s
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Conclusions

• FT-based NICE-OFCS : broadband, highly sensitive, high resolution 

technique with a short acquisition time

• Calibration-free technique due to the existence of signal 

background (for a known cavity finesse)

• Stable, long term noise immune operation achieved with a simple 

passive lock

• Compatible with commercial FTIR instruments using a high 

bandwidth detector

• Standard and commercially available components

• Outlook: Improved model of the spectrum to decrease the 

concentration discrepancy
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