Anomalous Centrigugal Distorsion in HDO and Spectroscopic Data Bases

L. H. Coudert

Laboratoire Interuniveristaire des Systèmes Atmosphériques CNRS - Universits Paris Est et Paris Diderot Créteil, France

June 25, 2015

69th ISMS

Overview

¹Rothman *et al.*, *J.Q.S.R.T.* **130** (2013) 4

¹Rothman *et al.*, *J.Q.S.R.T.* **130** (2013) 4

- **IDO** used to study the earth atmosphere
- **②** The main features of the HDO spectroscopy

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

- **IDO** used to study the earth atmosphere
- ② The main features of the HDO spectroscopy
- **③** Line position analysis

¹Rothman *et al.*, *J.Q.S.R.T.* **130** (2013) 4

- **IDO** used to study the earth atmosphere
- **②** The main features of the HDO spectroscopy
- **3** Line position analysis
- Line strength analysis

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

- **IDO** used to study the earth atmosphere
- ② The main features of the HDO spectroscopy
- **3** Line position analysis
- Line strength analysis
- Comparison with Hitran 2012¹

69th ISMS

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

¹Herbin *et al.*, Atmos. Chem. Phys. **9** (2009) 9433 ² δD = 1000% × ($\frac{[HDO]/[H_2O]}{SMOW}$ - 1) ³Schneider & Hase, Atmos. Chem. Phys. **11** (2011) 11207

L. H. Coudert (LISA - CNRS)

1 HDO allows us to study the water cycle in the earth atmosphere.¹

¹Herbin *et al.*, Atmos. Chem. Phys. **9** (2009) 9433 ² δD = 1000‰ × ($\frac{[HDO]/[H_2O]}{SMOW}$ - 1) ³Schneider & Hase, Atmos. Chem. Phys. **11** (2011) 11207

L. H. Coudert (LISA - CNRS)

- **1** HDO allows us to study the water cycle in the earth atmosphere.¹
- **2** It is used to derive tropospheric δD^2 IASI.³

¹Herbin *et al.*, Atmos. Chem. Phys. **9** (2009) 9433 ² δD = 1000‰ × ($\frac{[HDO]/[H_2O]}{SMOW}$ - 1) ³Schneider & Hase, Atmos. Chem. Phys. **11** (2011) 11207

L. H. Coudert (LISA - CNRS)

- **1** HDO allows us to study the water cycle in the earth atmosphere.¹
- **2** It is used to derive tropospheric δD^2 IASI.³
- ⁽³⁾ HDO is much more convenient than the more abundant isotopic species $H_2^{18}O$ or $H_2^{17}O$ because the ν_2 bands of HDO and H_2O do not quite overlap.

¹Herbin *et al.*, Atmos. Chem. Phys. **9** (2009) 9433 ² δD = 1000‰ × ($\frac{[HDO]/[H_2O]}{SMOW}$ - 1) ³Schneider & Hase, Atmos. Chem. Phys. **11** (2011) 11207

L. H. Coudert (LISA - CNRS)

ν_2 band of HDO and H₂O

L. H. Coudert (LISA - CNRS)

 69^{th} ISMS 4 / 19

¹De Lucia, Cook, & Gordy, J. Chem. Phys. 55 (1971) 5344
 ²Coudert, Martin-Drumel, & Pirali, J. Mol. Spec. 303 (2014) 36

L. H. Coudert (LISA - CNRS)

 Anomalous centrifugal distortion effects in HDO were evidenced a long time ago.¹

¹De Lucia, Cook, & Gordy, J. Chem. Phys. **55** (1971) 5344 ²Coudert, Martin-Drumel, & Pirali, J. Mol. Spec. **303** (2014) 36

L. H. Coudert (LISA - CNRS)

- Anomalous centrifugal distortion effects in HDO were evidenced a long time ago.¹
- ② Distortion parameters in \mathbf{J}^{10} had to be used to fit the microwave spectrum¹ in the ground state up to J = 12.

¹De Lucia, Cook, & Gordy, J. Chem. Phys. **55** (1971) 5344 ²Coudert, Martin-Drumel, & Pirali, J. Mol. Spec. **303** (2014) 36

L. H. Coudert (LISA - CNRS)

HDO

69th ISMS

- Anomalous centrifugal distortion effects in HDO were evidenced a long time ago.¹
- ② Distortion parameters in \mathbf{J}^{10} had to be used to fit the microwave spectrum¹ in the ground state up to J = 12.
- A modified version of the Bending-Rotation approach² will be used in the present analyses.

¹De Lucia, Cook, & Gordy, J. Chem. Phys. 55 (1971) 5344
 ²Coudert, Martin-Drumel, & Pirali, J. Mol. Spec. 303 (2014) 36

The modified Bending-Rotation approach

Effective 4-dimensional Hamiltonian written using Radau¹ coordinates:

$$H_{\text{Bend-Rot}} = BP_t(1-t^2)P_t + B\left[\frac{J_x^2}{2(1-t)} + \frac{J_y^2}{4} + \frac{J_z^2}{2(1+t)}\right] + A\left[J_y\{\sqrt{1-t^2}, P_t\} + \frac{\{J_x, J_z\}}{\sqrt{1-t^2}}\right] + V(t)$$

¹Radau, Ann. Sci. Ecole Normale Supérieure **5** (1868) 311

69th ISMS

The modified Bending-Rotation approach

Effective 4-dimensional Hamiltonian written using Radau¹ coordinates:

$$\begin{aligned} H_{\text{Bend-Rot}} &= BP_t(1-t^2)P_t + B\left[\frac{J_x^2}{2(1-t)} + \frac{J_y^2}{4} + \frac{J_z^2}{2(1+t)}\right] \\ &+ A\left[J_y\{\sqrt{1-t^2}, P_t\} + \frac{\{J_x, J_z\}}{\sqrt{1-t^2}}\right] + V(t) \end{aligned}$$

where

¹Radau, Ann. Sci. Ecole Normale Supérieure **5** (1868) 311

L. H. Coudert (LISA - CNRS)

HDO

69th ISMS

$$B = \frac{m_1 + m_2}{2m_1 m_2 {r_e}^2} = 28.153 \text{ cm}^{-1}$$

$$B = \frac{m_1 + m_2}{2m_1 m_2 r_e^2} = 28.153 \text{ cm}^{-1} \qquad A = \frac{m_1 - m_2}{4m_1 m_2 r_e^2} = 4.071 \text{ cm}^{-1}$$

$$B = \frac{m_1 + m_2}{2m_1 m_2 r_e^2} = 28.153 \text{ cm}^{-1} \qquad A = \frac{m_1 - m_2}{4m_1 m_2 r_e^2} = 4.071 \text{ cm}^{-1}$$

Line position analysis: data set

Data type	Reference
Microwave data	De Lucia, ¹ Messer, ² & Baskakov ³
Experimental levels	Toth^4
IR transitions	$\mathrm{Toth}^{4,5}$
FIR transitions	Johns, ⁶ Paso, ⁷ & Parekunnel ⁸

¹De Lucia, Cook, Helminger, & Gordy, J. Chem. Phys. 55 (1971) 5334
²Messer, De Lucia, & Helminger, J. Mol. Spec. 105 (1984) 139
³Baskakov, Alekseev, Alekseev, & Pelevoi, Opt. Spec. 63 (1987) 1016
⁴Toth, J. Mol. Spec. 195 (1999) 73
⁵Toth, J. Mol. Spec. 162 (1993) 20
⁶Johns, J. Opt. Soc. Am. B 2 (1985) 1340
⁷Paso & Horneman, J. Opt. Soc. Am. B 12 (1995) 1813
⁸Parekunnel, Bernath, Zobov, Shirin, Polyansky, & Tennyson, J. Mol. Spec. 210 (2001)

69th ISMS

Line position analysis: spectroscopic parameters

Parameter	Fitted	Calculated			
B/cm^{-1}	27.8703229(2)	28.153			
$A/{ m cm}^{-1}$	3.80593096(3)	4.071			
59 distortion parameters					

¹Partridge & Schwenke, J. Chem. Phys. **106** (1997) 4618

L. H. Coudert (LISA - CNRS)

HDO

69th ISMS

Line position analysis: results

Data type	Reference	N	K_a	RMS	χ^2
Levels (000)	Ref. [4]	218	10	$0.3 \mathrm{mK}$	0.5
Levels (010)	Ref. [4]	203	10	$0.4 \mathrm{mK}$	0.7
Microwave (000)	Ref. $\begin{bmatrix} 1 \end{bmatrix}$	84	7	$0.2 \mathrm{MHz}$	1.5
Microwave (010)	Ref. [2,3]	11	3	$0.2 \mathrm{~MHz}$	2.1
Rotational (000)	Refs. $[4,6]$	946	20	$3.5 \mathrm{mK}$	1.1
Rotational (010)	Ref. [8]	252	20	$9.7 \mathrm{mK}$	1.9
ν_2	Refs. $[4, 5, 8]$	2777	17	$4.6 \mathrm{mK}$	1.1
All	Refs. [1–8]	4491	20	-	1.1

¹De Lucia, Cook, Helminger, & Gordy, J. Chem. Phys. 55 (1971) 5334
²Messer, De Lucia, & Helminger, J. Mol. Spec. 105 (1984) 139
³Baskakov, Alekseev, Alekseev, & Pelevoi, Opt. Spec. 63 (1987) 1016
⁴Toth, J. Mol. Spec. 195 (1999) 73
⁵Toth, J. Mol. Spec. 162 (1993) 20
⁶Johns, J. Opt. Soc. Am. B 2 (1985) 1340
⁷Paso & Horneman, J. Opt. Soc. Am. B 12 (1995) 1813
⁸Parekunnel, Bernath, Zobov, Shirin, Polyansky, & Tennyson, J. Mol. Spec. 210 (2001)

Line position analysis: O - C plot microwave transitions

This work RMS = 0.16 MHz

¹Tennyson *et al.*, *J.Q.S.R.T.* **111** (2010) 2160

Line position analysis: O - C plot microwave transitions

¹Tennyson *et al.*, J.Q.S.R.T. **111** (2010) 2160

L. H. Coudert (LISA - CNRS)

Line strength analysis: data set

Data typeReferenceFIR & IR transitionsToth^{1,2}

¹Toth, J. Mol. Spec. **162** (1993) 20 ²Toth, J. Mol. Spec. **195** (1999) 73

L. H. Coudert (LISA - CNRS)

69th ISMS 12 / 19

Line strength analysis: results

Data type	Reference	N	K_a	RMS	χ^2
Rot. (000), <i>b</i> -type	Ref. [2]	83	10	8.3%	1.6
ν_2, b -type	Ref. [1]	761	9	5.0%	1.0
ν_2, a -type	Refs. $[1,2]$	561	9	6.9%	1.0
All	Refs. $[1,2]$	1405	10	6.1%	1.1

¹Toth, J. Mol. Spec. **162** (1993) 20 ²Toth, J. Mol. Spec. **195** (1999) 73 ³Coudert, Wagner, Birk, Baranov, Lafferty, & Flaud, J. Mol. Spec. **251** (2008) 339 L. H. Coudert (LISA - CNRS) HDO 69th ISMS 13 / 19

Data type	Reference	N	K_a	RMS	χ^2
Rot. (000), <i>b</i> -type	Ref. [2]	83	10	8.3%	1.6
ν_2, b -type	Ref. [1]	761	9	5.0%	1.0
ν_2, a -type	Refs. $[1,2]$	561	9	6.9%	1.0
All	Refs. $[1,2]$	1405	10	6.1%	1.1

Expansion of $\mu_x(t)$ and $\mu_z(t)$ were determined³

¹Toth, J. Mol. Spec. **162** (1993) 20 ²Toth, J. Mol. Spec. **195** (1999) 73 ³Coudert, Wagner, Birk, Baranov, Lafferty, & Flaud, J. Mol. Spec. **251** (2008) 339 L. H. Coudert (LISA - CNRS) HDO 69th ISMS 13 / 19

Line strength analysis: ΔS plots

Line strength analysis: ΔS plots

 $\log_{10}(S)$

¹https://www.cfa.harvard.edu/hitran/molecules.html
²Rothman et al., J.Q.S.R.T. 130 (2013) 4

• Transitions up to (010) and J = 22 were calculated in the $0-2000 \text{ cm}^{-1}$ range.

¹https://www.cfa.harvard.edu/hitran/molecules.html
²Rothman et al., J.Q.S.R.T. 130 (2013) 4

- Transitions up to (010) and J = 22 were calculated in the $0-2000 \text{ cm}^{-1}$ range.
- ⁽²⁾ An intensity cutoff of 10^{-28} cm⁻¹/(molecule \cdot cm⁻²) at 296 K was taken assuming assuming an isotopic abundance¹ of 3.107×10^{-4} .

¹https://www.cfa.harvard.edu/hitran/molecules.html
²Rothman et al., J.Q.S.R.T. 130 (2013) 4

- Transitions up to (010) and J = 22 were calculated in the $0-2000 \text{ cm}^{-1}$ range.
- ⁽²⁾ An intensity cutoff of 10^{-28} cm⁻¹/(molecule \cdot cm⁻²) at 296 K was taken assuming assuming an isotopic abundance¹ of 3.107×10^{-4} .
- The new database contains 6142 transitions and was compared to Hitran 2012.²

¹https://www.cfa.harvard.edu/hitran/molecules.html
²Rothman et al., J.Q.S.R.T. **130** (2013) 4

3063 lines out of 6142 found in Hitran $2012.^{1}$

¹Rothman *et al.*, *J.Q.S.R.T.* **130** (2013) 4

3063 lines out of 6142 found in Hitran $2012.^{1}$

¹Rothman *et al.*, *J.Q.S.R.T.* **130** (2013) 4

L. H. Coudert (LISA - CNRS)

69th ISMS

3063 lines out of 6142 found in Hitran $2012.^{1}$

¹Rothman *et al.*, *J.Q.S.R.T.* **130** (2013) 4

L. H. Coudert (LISA - CNRS)

69th ISMS

3063 lines out of 6142 found in Hitran $2012.^{1}$

262 outliers with $10^{-28} \le S \le 10^{-21} \text{ cm}^{-1}/(\text{molecule} \cdot \text{cm}^{-2})$.

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

3063 lines out of 6142 found in Hitran $2012.^{1}$

262 outliers with $10^{-28} \le S \le 10^{-21} \text{ cm}^{-1}/(\text{molecule} \cdot \text{cm}^{-2})$.

 $12_{12,0} \leftarrow 11_{11,1} (000)$ at 488.8022 cm^{-1} with $\Delta \sigma = 1.5 \text{ cm}^{-1}$ $S = 1.8 \times 10^{-26} \text{ cm}^{-1} / (\text{molecule} \cdot \text{cm}^{-2})$

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

525 outliers with $10^{-28} \le S \le 10^{-21} \text{ cm}^{-1}/(\text{molecule} \cdot \text{cm}^{-2})$.

69th ISMS

525 outliers with $10^{-28} \le S \le 10^{-21} \text{ cm}^{-1}/(\text{molecule} \cdot \text{cm}^{-2})$.

 $10_{4,7} \leftarrow 9_{2,8} (000)$ at 363.1669 cm⁻¹ with $\Delta S = 190\%$ $S = 6.3 \times 10^{-24} \text{ cm}^{-1} / (\text{molecule} \cdot \text{cm}^{-2})$

Conclusion

¹Rothman et al., J.Q.S.R.T. **130** (2013) 4

For the ground and (010) vibrational states, there are large discrepancies between data base built in this work and Hitran 2012¹ for line positions as well as for line strengths.

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

- For the ground and (010) vibrational states, there are large discrepancies between data base built in this work and Hitran 2012¹ for line positions as well as for line strengths.
- One results of this work should allow us to improve the Hitran database.

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

- For the ground and (010) vibrational states, there are large discrepancies between data base built in this work and Hitran 2012¹ for line positions as well as for line strengths.
- On the results of this work should allow us to improve the Hitran database.
- **§** Future work: including higher lying states in the data set.

¹Rothman *et al.*, J.Q.S.R.T. **130** (2013) 4

