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Abstract. Recently, several composition results have been established,
showing that two cryptographic protocols proven secure against a Dolev-
Yao adversary continue to afford the same security guarantees when com-
posed together, provided the protocol messages are tagged with the in-
formation of which protocol they belong to. The key technical tool used
to establish this guarantee is a separation result which shows that any
attack on the composition can be mapped to an attack on one of the
composed protocols running in isolation. We consider the composition of
protocols which, in addition to using cryptographic primitives, also em-
ploy randomization within the protocol to achieve their goals. We show
that if the protocols never reveal a secret with a probability greater than
a given threshold, then neither does their composition, given that pro-
tocol messages are tagged with the information of which protocol they
belong to.

1 Introduction

The design of correct cryptographic protocols is a highly non-trivial task, and
security flaws are often subtle. Attacks on many protocols that were previously
“proved” secure by hand, have been discovered. One approach that improves the
confidence in the correctness of security protocols is formal analysis. In order to
make the analysis amenable to automation, usually the assumption of perfect
cryptography is made. In this “Dolev-Yao” framework, protocol messages are
symbolic terms identified modulo an equational theory (and not bit-strings)
that model cryptographic operations. Security is then proven in the presence
of an omnipotent attacker that can read all messages sent on public channels
by protocol participants, remember the (potentially unbounded) communication
history, and (nondeterministically) inject new messages in the network addressed
to particular participants while remaining anonymous. This Dolev-Yao model
has shown to be very successful in identifying security flaws.

Cryptographic protocols are often proven secure in isolation. In practice,
however, they may be executing concurrently or sequentially, in a modular fash-
ion, with other protocols. For example, a number of security protocols involve
a sub-protocol in which short-term secret keys are exchanged. While analyz-
ing such protocols, often the sub-protocol is abstracted away by assuming that
the protocol participants have successfully shared secrets. However, two cryp-
tographic protocols proven secure independently may not remain secure if they
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are executed compositionally. The central problem is that these protocols may
share some secret data, as in the key exchange situation described above.

Hence, a number of recent papers have identified sufficient conditions under
which such protocol compositions can be proven secure — safety properties are
considered in [19, 29, 27, 28, 2, 16, 17, 5, 21, 15, 18, 30, 3] and indistinguishability
properties in [4, 3], while [19, 29, 27] provide a general framework for proving that
protocols compose securely. Other papers [2, 28] essentially show that protocol
compositions are secure if messages from one protocol cannot be confused with
messages from another protocol. [10] shows that this continues to be the case
even when dishonest participants do not tag their messages properly. This can
be ensured if certain protocol transformations are made (see for example [16,
17, 21, 4]). Essentially, these protocol transformations require that all protocol
messages are tagged with the protocol name and protocol instance to which they
belong. The exact choice of tagging scheme depends on the desired security
property; incorrect tagging can actually make a secure protocol insecure [21]. In
the computational model, the problem of composing protocols securely has been
studied in [8, 9].

The focus of this paper is to extend this work on secure protocol composition
to protocols that employ randomization. Randomization plays a key role in the
design of algorithmic solutions to problems arising in distributed computing and
security. For example, randomization is essential in implementing cryptographic
primitives such as encryption and key generation. Randomization is also used
in cryptographic protocols to achieve security guarantees such as fair exchange
(see [31, 6, 22]), anonymity (see [13, 32, 24]), voter privacy in electronic voting
(see [33]) and denial of service prevention (see [26]).

We study the problem of when the composition of a (randomized) sub-
protocol P followed by (randomized) sub-protocolQ is secure. For non-randomized
protocols, this problem was studied in [18]. Our composition framework general-
izes that of [18] to handle sequential, parallel and a form of vertical composition
while extending to randomized protocols. They show that if one can prove that
P and Q do not reveal shared secrets when run in isolation (in that case Q is
assumed to generate fresh secret keys), then the sequential composition of P
and Q does not reveal any secret of Q if the protocol messages are tagged with
the information of which protocol they belong to. The key technical tool used to
establish this guarantee is a separation result which shows that any attack on
the composition can be mapped to an attack on one of P or Q. This is achieved
by first showing that, as the protocol messages are tagged, messages from one
protocol cannot be confused with the messages of the other protocol. Then an
attack trace can be simply separated into traces of P and Q. We study the same
problem for the case when P and Q are randomized protocols. The protocols
themselves are expressed in a variant of the probabilistic applied-pi calculus [25]
which is an extension of applied pi-calculus [1]. The Probabilistic applied-pi cal-
culus is a convenient formalism to describe and analyze randomized security
protocols in the Dolev-Yao model.
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Contributions: Our first composition result is for the composition of one session
of P and one session of Q. We show that if P (in isolation) is secure with
probability at least p (i.e., the shared secrets are not leaked) and Q is secure
with probability at least q, then the composed protocol is secure with probability
at least pq, provided the protocol messages are tagged with the information
of protocol to which they belong. Although we exploit some techniques used
in [18] to establish this result, there are important differences. This is due
to the fact that their separation result does not carry over to the randomized
setting. Essentially, this is because an attack on the composition of P and Q
is no longer a trace, but is instead a tree, as the protocol itself makes random
choices. As a consequence, in different branches representing different resolutions
of the randomized coin tosses, it is possible that the attacker may choose to send
different messages (See Example 4 on Page XXIV). In such a case, an attack on
the composition of P and Q cannot be separated into an attack on P and an
attack on Q.

Another challenge manifested in the context of randomized protocols is that
one must consider adversaries whose actions do not depend on the result of pri-
vate coin tosses made by protocol participants, as observed in [20, 14, 7, 23, 12,
11]. For example, consider the process that outputs two nonces n1 and n2 and
then flips a fair coin. With 1

2 probability, the process takes an input and tests if
the input was n1 (resp. n2). If either test passes, the process outputs a secret.
When this process in analyzed with respect to the class of all schedulers, the se-
cret can be derived with probability 1. The adversary simply chooses the input
based on the result of the protocol’s coin toss. For the majority of cryptographic
protocols employing randomness, such attacks are not considered, as their secu-
rity is predicated on the privacy of the protocols coin tosses. To accommodate
this, we restrict the class of attackers by developing a notion of an attackers view
of a protocol execution, and mandate that whenever an attacker has an identical
view for two different branches (executions) of a protocol, its input must be the
same. This notion is adopted from [20, 14, 7, 23, 12, 11], and is the first formaliza-
tion of this concept within the applied-pi calculus. Considering a more restricted
class of adversaries imposes additional challenges in our setting, as membership
is this sub-class of adversaries must be maintained when mapping attack traces
on composed protocols to attack traces on the individual protocols constitut-
ing the composition. As demonstrated in Example 1 on Page XI, this class of
adversaries allows privacy guarantees, typically modeled as indistinguishability
properties, to instead be modeled as reachablility properties.

Our second composition result concerns multiple sessions of the composed
protocol. Here, we would like to show that if n sessions of P are secure with
probability at least p and n sessions of Q are secure with probability at least q
then n sessions of the composed protocol are secure with probability at least pq,
provided the protocol messages are tagged with the information of which protocol
they belong to. Indeed, a similar result is claimed in [18] for the non-randomized
protocols. Unfortunately, this result is not valid even for nonrandomized proto-
cols and we exhibit a simple example which contradicts this desired result (See



IV

Example 5 in Appendix A). Essentially, the reason for this failure is that, in the
claimed result, the n sessions of Q are assumed to generate fresh shared secrets
in every session; but P may not be guaranteeing this freshness. Thus, messages
of one session can get confused with messages of other sessions. We establish a
weaker composition result in which we assume that the messages of each ses-
sion of Q are tagged with a unique session identifier in addition to the protocol
identifier. The use of session identifiers ensures that the messages of one session
cannot be confused with other sessions.

Finally, we also consider the case for protocols containing an unbounded
number of sessions. For this case, we observe that a composition result is only
possible when P and Q are secure with probability with exactly 1. This is because
if m sessions of a protocol leak a secret with probability r > 0 then by running
mk sessions we can amplify the probability of leaking the secret. This probability
approaches 1 as we increase k. We show that if an unbounded number of sessions
of P are secure with probability 1 and an unbounded number of sessions of Q are
secure with probability 1 then an unbounded number of sessions of the composed
protocol are secure with probability 1, if the protocol messages are tagged with
the information of which protocol they belong to and the messages of each session
of Q are tagged with a unique session identifier.

The paper is organized as follows. In Section 2 we give relevant background
information. Section 3 presents our processes algebra for randomized protocols
and Section 4 gives our main composition result. In Section 5 we extend our
results to tagged protocols and in Section 6 we show how to safely compose
protocols with multiple sessions.

2 Preliminaries

We will start by discussing some standard notions from probability theory,
Markov Chains and Markov Decision Processes. A process algebra for modeling
security protocols with coin tosses will then be presented in Section 3. This pro-
cess algebra closely resembles that of [25], which extends the applied π-calculus
by the inclusion of a new operator for probabilistic choice. Following [18], our
process calculus will also include several limitations necessary to achieve our re-
sults. In particular, conditionals no longer include else branches and we consider
only a single public channel.

2.1 Probability spaces

We will assume the reader is familiar with probability spaces and give only the
necessary definitions. A (sub)-probability space on S is a tuple Ω = (X,Σ, µ)
where Σ is a σ-algebra on X and µ : Σ → [0, 1] is a countably additive function
such that µ(∅) = 0 and µ(X) ≤ 1. The set Σ is said to be the set of events
and µ the (sub)-probability measure of Ω. For F ∈ Σ, the quantity µ(F ) is said
to be the probability of the event F . If µ(X) = 1 then we call µ a probability
measure. Given two (sub)-probability measures µ1 and µ2 on a measure space
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(S,Σ) as well as a real number p ∈ [0, 1], the convex combination µ1 +p µ2 is
the (sub)-probability measure µ such that for each set F ∈ Σ we have µ(F ) =
p ·µ1(F ) + (1− p) ·µ2(F ). The set of all discrete probability distributions over S
will be denoted by Dist(S). Given any x ∈ S, the Dirac measure on S, denoted
δx, is the discrete probability measure µ such that µ(x) = 1.

2.2 Discrete-time Markov Chains (DTMCs)

A DTMC is used to model systems which exhibit probabilistic behavior. For-
mally, a DTMC is a tupleM = (Z, zs, ∆) where Z is a countable set of states, zs
the initial state and ∆ : Z ↪→ Dist(Z) is the (partial) transition function which
maps Z to a (discrete) probability distribution over Z. Informally, the process
modeled by M evolves as follows. The process starts in the state zs. After i
execution steps, if the process is in the state z, the process moves to state z′ at
execution step (i+ 1) with probability ∆(z)(z′).

An execution ofM is a (finite or infinite) sequence z0 −→ z1 −→ z2 · · · such that
z0 = zs and for each i ≥ 0, ∆(zi)(zi+1) > 0. The set of all executions of M will
be denoted by Exec(M). The measure of finite sequence z0 −→ z1 −→ z2 · · · −→ zm
is defined to be (∆(z0)(z1)) · (∆(z1)(z2)) · . . . · (∆(zm−1)(zm)). This extends to
a unique (sub)-probability measure on the σ-algebra generated by Exec(M).

An execution ρ1 is said to be a one-step extension of the execution ρ = z0 −→
z1 −→ z2 · · · −→ zm if there exists zm+1 such that ρ1 = z0 −→ z1 −→ z2 · · · −→ zm −→
zm+1. In this case, we say that ρ1 extends ρ by zm+1. For a finite execution ρ,
as given above, we say last(ρ) = zm. Notice that the set of all executions of M
closed under one step extension forms a tree whose root node is zs. Each node
in this tree is an execution of M.

We will often need to reason about a set of finite executions of M. When
interpreting the set of all executions ofM as a rooted tree, this can be thought of
as pruning each branch of the tree at a certain depth. We formalize this through
the notion of a restriction. Given a prefix closed set of executions R for M, M
restricted to R, denotedM|R, is the tree whose nodes are the intersection of R
and original nodes of the tree.

2.3 Partially Observable Markov Decision Processes (POMDP)s

POMDPs are used to model processes which exhibit both probabilistic and non-
deterministic behavior, where the states of the system are only partially ob-
servable. Formally, an POMDP is a tuple M = (Z, zs, Act,∆,≡) where Z is a
countable set of states, zs ∈ Z is the initial state, Act is a (countable) set of
actions, ∆ : Z × Act ↪→ Dist(Z) is a partial function called the probabilistic
transition relation and ≡ is an equivalence relation on Z. As a matter of nota-
tion, we shall write z

α−→ µ whenever ∆(z, α) = µ. A POMDP is like a Markov
Chain except that at each state z, there is a choice amongst several possible
probabilistic transitions. The choice of which probabilistic transition to trigger
is resolved by an adversary. Informally, the process modeled by M evolves as
follows. The process starts in the state zs. After i execution steps, if the process
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is in the state z, then the adversary chooses an action α such that z
α−→ µ and

the process moves to state z′ at the (i + 1)-st execution step with probability
µ(z′).

An execution ρ in the POMDP M is a (finite or infinite) sequence z0
α1−→

z1
α2−→ z2 · · · such that z0 = zs and for each i ≥ 0, zi

αi+1−−−→ µi+1 and µi+1(zi+1) >
0. The set of all finite executions of M will be denoted by Exec(M) and the set

of all infinite executions will be denoted by Exec∞(M). If ρ = z0
α1−→ z1

α2−→
z2 · · ·

αm−−→ zm is a finite execution then we write last(ρ) = zm and say the
length of ρ, denoted |ρ| is m. An execution ρ1 is said to be a one-step extension

of the execution ρ = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm if there exists αm+1 and

zm+1 such that ρ1 = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm

αm+1−−−−→ zm+1. In this case,
we say that ρ1 extends ρ by (αm+1, zm+1). An execution is called maximal if
it is infinite or if it is finite and has no one-step extension. For an execution
ρ = z0

α1−→ z1
α2−→ z2 · · ·

αm−−→ zm we write tr(ρ) to represent the trace of ρ,

defined as the sequence z0/≡
α1−→ z1/≡

α2−→ z2/≡ · · ·
αm−−→ zm/≡. The set of all

traces is denoted Trace(M).
As discussed above, the choice of which transition to take in an execution

is resolved by an adversary. Formally, an adversary A : Trace(M) → Act is a
partial function. For t1, t2 ∈ Trace(M), if t1 = t2 and A(t1) is defined then
A(t2) is defined. An adversary A resolves all non-determinism and the resulting
behavior can be described by a DTMCMA = (Exec(M), zs, ∆

A) where for each
ρ ∈ Exec(M), ∆A(ρ) is the discrete probability distribution on Exec(M) such
that ∆A(ρ)(ρ1) = ∆(z, α) if there exists a state z and action α such that ρ1
extends ρ by (α, z) and is 0 otherwise.

POMDPs and State-Based Safety properties Given a POMDP M =
(Z, zs, Act,∆,≡), a set Ψ ⊆ Z is said to be a state-based safety property. We say
M satisfies Ψ with probability ≥ p against the adversary A (writtenMA |=p Ψ)
if the probability of the event {κ ∈ (Exec(MA)) | κ |= Ψ and κ is maximal} in

the DTMC MA is ≥ p. Here, κ |= Ψ if κ = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm is such

that zj ∈ Ψ for all 0 ≤ j ≤ m. We say that M satisfies Ψ with probability ≥ p
(written M |=p Ψ) if for all adversaries A, MA |=p Ψ .

Proposition 1. Given a POMDP M = (Z, zs, Act,∆,Z0, obs,≡) and a state-
based safety property Ψ , if M 6|=p Ψ then there exists an adversary A and a
prefix closed finite set of executions R ∈ Exec(MA) such that MA|R 6|=p Ψ .

2.4 Equational theories and frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume a countably infinite set of special constant symbols N , which
we call names and use to represent data generated freshly during a protocol
execution. Variable symbols are the union of two disjoint sets X and Xw which
will be used as protocol and frame variables, respectively. It is required that
variable symbols are disjoint from F .
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Terms are built by the application of function symbols to variables and terms
in the standard way. Given a signature F , we use T (F ,X ) to denote the set of
terms built over F and X . The set of variables occurring in a term is denoted by
vars(t). A ground term is one that contains no free variables and substitution of
variables by terms σ is denoted by {x1 7→ t1, ..., xk 7→ tk}. Given σ, its domain,
denoted dom(σ), is the set of variables {x1, ..., xk} and its range, denoted ran(σ),
is the set of terms {t1, .., tk}. A substitution is said to be ground if every term
in its range is ground.

Our process algebra is parameterized by a non-trivial equational theory
(F , E), where E is a set of F-Equations. By a F-Equation, we mean a pair
l = r where l, r ∈ T (F \N ,X ) are terms that do not contain names. Two terms
s and t are said to be equal with respect to an equational theory (F , E), denoted
s =E t, if E ` s = t in the first order theory of equality. For equational theories
defined in the preceding manner, if two terms containing names are equivalent,
they will remain equivalent when the names are replaced by arbitrary terms.
We often identify an equational theory (F , E) by E when the signature is clear
from the context. Processes are executed in an environment that consists of a
frame ϕ and a binding substitution σ. Formally, σ : X → T (F) is a binding
substitution and ϕ : (Xw × E) → T (F), where E is a set of equivalence classes,
is called a frame. Two frames ϕ1 and ϕ2 are said to be statically equivalent if
dom(ϕ1) = dom(ϕ2) and for all r1, r2 ∈ T (F \ N ,Xw) we have r1ϕ1 =E r2ϕ1

iff r1ϕ2 =E r2ϕ2. Intuitively, two frames are statically equivalent if an attacker
cannot distinguish between the information they contain.

Definition 1. A term t ∈ T (F) is deducible from a frame ϕ with recipe r ∈
T (F \N , dom(ϕ)) in equational theory E, denoted ϕ `rE t, if rϕ =E t. We often
omit r and E and write ϕ ` t if they are clear from the context.

For the rest of the paper, Fb and Fc are signatures with disjoint sets of func-
tion symbols and (Fb, Eb) and (Fc, Ec) are non-trivial equational theories. The
combination of these two theories will be (F , E) = (Fb ∪ Fc, Eb ∪ Ec).

3 Process Syntax and semantics

Our process syntax and semantics is similar to that of [18] with the addition of
an operator for probabilistic choice. It can also been seen as a variant of [25].

Process Syntax: For technical reasons, we assume a countably infinite set
of labels L and an equivalence relation ∼ on L that induces a countably infinite
set of equivalence classes. For l ∈ L, [l] denotes the equivalence class of l. We
use Lb and Lc to range over subsets of L such that Lb ∩ Lc = ∅. If l ∈ Lb and
l′ ∈ Lc then [l] 6= [l′] and both Lb and Lc are closed under ∼. We assume each
equivalence class contains a countably infinite number of labels. Each connec-
tive in our grammar will come with a label from L, which will later be used to
identify the process performing a protocol step after a composition takes place.
The equivalence relation will be used to mask the information an adversary can
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obtain from the internal actions of a process, in the sense that, when an action
with label l is executed, the adversary will only be able to infer [l].

The syntax of processes is introduced in Figure 1. It begins by introducing
what we call basic processes, which we will denote by B,B1, B2, ...Bn . In the
definition of basic processes, p ∈ [0, 1], l ∈ L, x ∈ X and ci ∈ {>, s = t}∀i ∈
{1, ..., k} where s, t ∈ T (F \ N ,X ). In the case of the assignment rule (x := t)l,
we additionally require that x 6∈ vars(t). Intuitively, basic processes will be used
to represent the actions of a particular protocol participant. 0l is a process that
does nothing and νxl is the process that creates a fresh name and binds it to
x. The process (x := t)l assigns the term t to the variable x. The test process
[c1 ∧ ...∧ ck]l terminates if ci is > or ci is s = t where s =E t for all i ∈ {1, ..., k}
and otherwise, if some ci is s = t and s 6=E t, the process deadlocks. The process
in(x)l reads a term t from the public channel and binds it to x and the process
out(t)l outputs a term on the public channel. The processes P ·l Q sequentially
executes P followed by Q whereas the process P ⊕lp Q behaves like P with
probability p and like Q with probability 1− p.

Basic Processes
B ::= 0l νxl (x := t)l [c1 ∧ ... ∧ ck]l in(x)l out(t)l (B ·l B) (B ⊕lp B)

Basic Contexts
D[�] ::= � B D[�] ·l B B ·l D[�] D[�]⊕lp D[�]

Contexts [ai ∈ {νx, (x := t)}]
C[�1, ...,�m] ::= al11 · ... · alnn · (D1[�1]|ln+1D2[�2]|ln+2 ...|ln+m−1Dm[�m])

Fig. 1: Process Syntax

In Figure 1, basic processes are extended to include a special process variable
� and �1, ...,�m are used to represent distinct processes variables. The resulting
object is a basic context, which we will denote by D[�], D1[�], D2[�], ..., Dn[�].
Notice that only a single process variable can appear in a basic context. D1[B1]
denotes the process that results from replacing every occurrence of � in D1

by B1. A context is then a sequential composition of fresh variable creations
and variable assignments followed by the parallel composition of a set of basic
contexts. The prefix of variable creations and assignments is used to instantiate
data common to one or more basic contexts. In the definition of contexts, a ∈
{νx, (x := t)}. A process is nothing but a context that does not contain any
process variables. We will use C,C1, C2, ..., Cn to denote contexts and P , Q or R
to denote processes. For a context C[�1, ...,�m] and basic processes B1, ..., Bm,
C[B1, ..., Bm] denotes the process that results from replacing the each process
variable �i by Bi. In what follows, we define functions fv and bv that map
basic processes to the set of variables that occur free and bound in the process,
respectively.
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bv(B), fv(B) =



∅, vars(t) ∪ vars(s) if B is [s = t]
∅, vars(t) if B is out(t)
{x}, vars(t) if B is (x := t)
{x}, ∅ if B ∈ {in(x), ν(x)}
bv(B1) ∪ bv(B2), fv(B1) ∪ (fv(B2) \ bv(B1)) if B = B1 ·B2

bv(B1) ∩ bv(B2), fv(B1) ∪ fv(B2) if B = B1 ⊕p B2

As usual, a process containing no free variables is called ground.

Definition 2. A context C[�1, ...,�m] = a1 · ... ·an ·(D1[�1]|...|Dm[�m]) is said
to be well-formed if every operator has a unique label and for any labels l1 and
l2 occurring in Di and Dj for i, j ∈ {1, 2, ...,m}, if i 6= j then [l1] 6= [l2].

For the remainder of this paper, contexts are assumed to be well-formed.
A process that results from replacing process variables in a context by basic
processes is also assumed to be well-formed.

Convention 1 For readability, we will omit process labels when they are not
relevant in a particular setting. Whenever new actions are added to a process,
their labels are assumed to be fresh and not equivalent to any existing labels of
that process.

Process Semantics: Given a process P , an extended process is a 3-tuple
(P,ϕ, σ) where ϕ is a frame and σ is a binding substitution. Semantically, a
ground process P is a POMDP [[P ]] = (Z, zs, Act,∆,≡), where Z is the set of all
extended processes, zs is (P, ∅, ∅), Act = (T (F \ N ,Xw) ∪ {τ},L/ ∼) and ∆ is
a partial function from extended processes to Act. We now give some additional
notation preceding our formal definitions of ∆ and ≡. Specifically, µ ·l Q is the
distribution µ1 such that

µ1(P ′, ϕ, σ) =

{
µ(P,ϕ, σ) if P ′ = P ·l Q
0 otherwise

The distributions µ|lQ and Q|lµ are defined similarly. We can now define

∆((P,ϕ, σ), α) = µ if (P,ϕ, σ)
α−→ µ, as defined in Figure 2. Note that ∆ is indeed

well defined, as basic processes are deterministic and each equivalence class on L
identifies a unique basic process. Given an extended process η, let η denote the

set of all (§, [l]) such that (P,ϕ, σ)
(§,[l])−−−→ µ, § ∈ T (F \N ,Xw)∪ {τ} and l is the

label of an input or output action. Using this, we lift our notion of equivalence on
frames from Section 2.4 to an equivalence ≡ on extended processes by requiring
that two extended processes η = (P,ϕ, σ) and η′ = (P ′, ϕ′, σ′) are equivalent if
η = η′ and ϕ =E ϕ′.
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INPUT

r ∈ T (F \ N ,X ) ϕ `r t x 6∈ dom(σ)

(in(x)l, ϕ, σ)
(r,[l])−−−−→ δ(0,ϕ,σ∪{x 7→t})

NEW

x 6∈ dom(σ) n is a fresh name

(νxl, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x7→n})

OUTPUT

vars(t) ⊆ dom(σ)

(out(t)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ∪{w(|dom(ϕ)|+1,[l]) 7→tσ},σ)

TEST

∀i ∈ {1, ..., n}, ci is > or ci is s = t where vars(s, t) ⊆ dom(σ) and sσ =E tσ

([c1 ∧ ... ∧ cn]l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ)

ASSIGN

vars(t) ⊆ dom(σ) x 6∈ dom(σ)

((x := t)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x7→tσ})

NULL

(Q0, ϕ, σ)
α−→ µ

(0 ·l Q0, ϕ, σ)
α−→ µ

SEQUENCE

Q0 6= 0 (Q0, ϕ, σ)
α−→ µ

(Q0 ·l Q1, ϕ, σ)
α−→ µ ·l Q1

PBRANCH (Q1 ⊕lp Q2, ϕ, σ)
(τ,[l])−−−−→ δ(Q1,ϕ,σ)

+p δ(Q2,ϕ,σ)

PARALLELL

(Q0, ϕ, σ)
α−→ µ

(Q0|lQ1, ϕ, σ)
α−→ µ|lQ1

PARALLELR

((Q1, ϕ, σ)
α−→ µ

(Q0|lQ1, ϕ, σ)
α−→ Q0|lµ

Fig. 2: Process semantics

Definition 3. An extended process (Q,ϕ, σ) preserves the secrecy of x ∈ vars(Q)
in the equational theory (F , E), denoted (Q,ϕ, σ) |=E x, if there is no r ∈
T (F \ N , dom(ϕ)) such that ϕ `rE xσ. We write Secret(x), for x ∈ vars(Q), to
represent the set of states of [[Q]] that preserve the secrecy of x. We also write
Secret({x1, ..., xn}) to denote Secret(x1)∩ ...∩Secret(xn). We will often omit the
braces {, } for ease of notation.

Notation 1 Note that for process P and variables x1, ..., xn ∈ vars(P ),
Secret({x1, ..., xn}) is a safety property of [[P ]]. We shall write
P |=E,p Secret({x1, ..., xn}) whenever [[P ]] |=p Secret({x1, ..., xn}).
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4 Composition result for the finite disjoint case

We are now ready to present our first composition result. Our focus here will be
on the scenario where two principals run a key establishment protocol over the
signature Fc after which each principal uses the established secret to communi-
cate in a protocol over the signature Fb. Before formalizing this result, we show
how a simple DC-net protocol using Diffie-Hellman (DH) for key exchange can
be modeled in our composition framework. Using the results from Theorem 1,
the security guarantees of each sub-protocol are achieved for the full protocol.

Example 1. In a simple DC-net protocol, two parties Alice and Bob want to
anonymously publish two bits mA and mB , respectively. To achieve this, Alice
and Bob agree on three private random bits k0, k1 and b and output a pair of
messages according to the following scheme.

If b = 0 Alice: MA,0 = k0 ⊕mA, MA,1 = k1
Bob: MB,0 = k0, MB,1 = k1 ⊕mB

If b = 1 Alice: MA,0 = k0, MA,1 = k1 ⊕mA

Bob: MB,0 = k0 ⊕mB , MB,1 = k1

From the protocol output, the messages mA and mB can be retrieved as
MA,0⊕MB,0 and MA,1⊕MB,1. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.
This protocol can be modeled using the following equational theory.

Fb = {0, 1,⊕, enc, dec,<:>, fst, snd}
Eb = {dec(enc(m, k), k) = m, x⊕ 0 = x x⊕ x = 0

x⊕ y = y ⊕ x (x⊕ y)⊕ z = x⊕ (y ⊕ z)
fst(< x : y >) = x snd(< x : y >) = y}

The role of Alice in this protocol is defined in our process syntax as

A = A0 · (mA = 0⊕ 1
2
mA = 1)·

(out(enc(0, k)) · out(< k0 ⊕mA : k1 >) ·A1⊕ 1
2

out(enc(1, k)) · out(< k0 : k1 ⊕mA >) ·A2)
A0 = (k0 = 0⊕ 1

2
k0 = 1) · (k1 = 0⊕ 1

2
k1 = 1) · out(enc(< k0 : k1 >, k))

where Ai = in(z) · [s = i] · νs · out(s), for i ∈ {1, 2}. The inclusion of A1 and
A2 in Alice’s specification are test the security of the protocol. The probability
that an attacker can derive the secret s is exactly the probability an attacker
can guess the message belonging to Alice after the protocol completes. We now
give the specification of Bob’s protocol B1 |B2 below.

B0 = in(z0) · in(z1) · (k0 = fst(dec(z0, k)))·
(k1 = snd(dec(z1, k))) · (b = dec(z1, k))

B1 = B0 · (mB = 0⊕ 1
2
mB = 1) · out(enc(mB), k) · [b = 0] · out(< k0 : k1 ⊕mB >)

B2 = B0 · in(z2) · (mB = dec(z2, k)) · [b = 1] · out(< k0 ⊕mB : k1 >)
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Notice that the output of Bob depends on the value of Alice’s coin flip.
Because our process calculus does not contain else branches, the required func-
tionality is simulated using the parallel and test operators. Our specification of
the DC-net protocol requires Alice and Bob to have established a shared sym-
metric key k. A specification of the DH key exchange protocol to establish this
key is given below. This process is parameterized by the signature Fc = {g} and
equations Ec = {(gx)y = (gy)x}.

C[�0,�1,�2] = νy · in(a) · (Ak ·�0|(k := ay) ·�1|(k := ay) ·�2|out(gy))
Ak = νx · out(gx) · in(b) · (k := bx)

Now if C[[>], [>], [>]] preserves the secrecy of the shared key k and νk ·
(A|B1|B2) preserves the secrecy of k and s with probability at least 1

2 , then
the composed protocol C[A,B1, B2] preserves the secrecy of s with probability
at least 1

2 . That is, if the DC-net specification does not reveal which message
belongs to Alice, then neither does the DC-net protocol using DH key exchange
to establish a secret communication channel between Alice and Bob.

The proof of Theorem 1 will utilize an extension of the seperation result
from [18], which intuitively says that for a context C and a basic process B,
if the composition C[B], where C and B are over disjoint signatures and de-
rive a set of variables with probability q, can be transformed into the compo-
sition C ′[B′], where C ′ and B′ represent α-renamings of C and B, such that
vars(C ′)∩vars(B′) = ∅ and the same secret derivation guarantees are achieved.
Our formulation of this result utilizes the following notation. Given a context C
and a set of labels L, CdL is the context that results from replacing, in C, every
variable x ∈ vars(C) by xd if the atomic process containing x has a label from
L. Additionally, given a set of variables S, Sd := {xd|x ∈ S}.

Lemma 1. Let C[�1, ...,�n] be a context over Fc with labels from Lc and
B1, ..., Bn be basic processes over Fb with labels from Lb. Further assume that
C[B1, ..., Bn] is ground, xs ∈

⋃n
i=1 vars(Bi)\ vars(C) and fv(Bi) ⊆ {xi} for all

i ∈ {1, ..., n}. For q ∈ [0, 1] and l0, l1, ..., ln ∈ Lb, if C[B1, ..., Bn] 6|=E,q Secret(xs)
then Q 6|=E,q Secret(S ∪ Sb ∪ xs) where S = {x1, ...xn} and

Q := νkl0 · (xb1 := k)l1 · ... · (xbn := k)ln · C[B1, ..., Bn]bLb .

As a result of Lemma 1, an adversary for a composition of C[B] can be
transformed into an adversary for a composition of two protocols C ′ and B′

over disjoint variables. From this adversary A, we need to construct and an
adversary A′ for one of the sub-protocols C ′ or B′. Because C ′ and B′ are simply
α-renamings of C and B, A′ is sufficient for contradicting a secrecy guarantee
about one of the sub-protocols C or B. One of the challenges in constructing A′
is that the adversary A may use terms over Fb ∪ Fc. That is, it may construct
inputs using terms output by both of the sub-protocols C ′ and B′. Our technique
is to transform A into what we call a “pure” adversary, that constructs its inputs
for actions of C ′ (resp B′) using only terms output by actions of C ′ (resp B′).
We define this concept formally. Given a set of labels L closed under ∼, let
XLw = {wi,[l] | wi,[l] ∈ Xw ∧ l ∈ L ∧ i ∈ N}



XIII

Definition 4. Let L be a set of labels closed under ∼ and F be a signature. An
adversary A for a process P is said to be pure with respect to (L,F) if whenever
A chooses the action (r, [l]) we have r ∈ T (F ,XLw ).

In the following proposition, we prove formally that an adversary A for a
composition of C ′[B′] can be transformed into an adversary that is pure with
respect to both sub-protocols.

Lemma 2. Let C[�1, ...,�n] be a context over Fc with variables from Xc and
labels from Lc. Likewise let B0, ..., Bn be basic processes over Fb with variables
from Xb and labels from Lb where Xb and Xc are disjoint and B0 · C[B1, ..., Bn]
is ground. If there exists an adversary A such that [[B0 · C[B1, ..., Bn]]]A 6|=E,q

Secret(S) for S ⊆ (vars(B) ∪ vars(C)) then there exists an adversary A′ such
that [[B0 ·C[B1, ..., Bn]]]A

′ 6|=E,q Secret(S) and A′ is pure with respect to (Fb, Lb)
and (Fc,Lc).

We are now ready to give our main composition theorem. The fundamental
technical challenge of this result is to show that, for some context C[�], process B
and set of secrets S, if C[[>]] |=p Secret(S) and B |=q Secret(S), then C[B] |=pq

Secret(S). In light of the preceding two results, this boils down to transforming
a pure adversary for a composed protocol C[B] that reveals some secret values
with probability ≥ 1 − pq into an adversary for one of the sub-protocols C
or B that derives the secret values with probability at least 1 − p or 1 − q,
respectively. Our technique is to first transform the adversary for C[B] into an
adversary for C|B. This adversary is then further transformed into one that
runs C to completion before running the same (sub)-adversary for B in each
execution path. The resulting adversary, in which the secret values are derived
with probability ≥ 1 − pq, allows one to extract an adversary for C or B that
derives the secret values with the desired probability. To further understand
these challenges, the interested reader should consult Example 4 in Appendix A.

Theorem 1. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1] | D2[�2] | ... | Dn[�n])
be a context over Fc with labels from Lc, B1, B2, ..., Bn be basic processes over
Fb with labels from Lb, q1, q2 ∈ [0, 1] and xs ∈

⋃n
i=1 vars(Bi) \ vars(C) such

that:

1. fv(C) = ∅ and fv(Bi) ⊆ {xi}
2. vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
3. C[B1, ..., Bn] is ground
4. C[[>]l0 , ..., [>]lu ] |=Ec,q1 Secret(x1, ..., xn) where l0, ..., lu ∈ Lb
5. νk · (x1 := k) · ... · (xn := k) · (B1|...|Bn) |=Eb,q2 Secret(x1, ..., xn, xs)

Then C[B1, ..., Bn] |=E,q1q2 Secret(xs).

As a result of Theorem 1, one can reason about protocols composed sequen-
tially by taking a context with a single basic context where a single hole appears
at the end. The same is true for protocols composed in parallel, as given by the
following Corollary. In this setting, one considers a context built over two basic
contexts. One basic context contains only a hole, while the other contains no
holes.
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Corollary 1. Let C be a basic process over Fc with labels from Lc and B be a
basic processes over Fb with labels from Lb and q1, q2 ∈ [0, 1] such that:

1. vars(C) ∩ vars(B) = ∅
2. C |=Ec,q1 Secret(xc) for xc ∈ vars(C)
3. B |=Eb,q2 Secret(xb) for xb ∈ vars(B)

Then (C|B) |=E,q1q2 Secret(xb, xc).

It is important to point out that the security guarantees of the composed
process may in fact be stronger than what we can prove utilizing Theorem 1.
This is because we always assume the worst case in that context assigns the
same secret values to each basic process. As a result, our composition result will
in some cases lead to only an under-approximation on the probability that a set
of variables is kept secret, as shown by the following example:

Example 2. Consider the signatures Fb = {h} and Fc = {} with empty equa-
tional theories and the context defined as follows:

C[�1,�2] = νk1 · νk2 · (([x1 := k1]⊕ 1
2

[x1 := k2]) ·�1 | [x2 := k2] ·�2)

Essentially, the context generates shared secrets x1 and x2 for two sub-
protocols �1 and �2 to be run in parallel. For the sub-protocol �1, it sets the
secret x1 to k1 with probability 1

2 and to k2 with probability 1
2 . In the second

sub-protocol, the shared secret x2 is set to k2. Now consider the sub-protocols
B1 and B2 defined as follows:

B1 = out(h(x1))⊕ 1
2

0

B2 = in(z) · [z = h(x2)] · νxs · out(xs)

B1 outputs h(x1) with probability 1
2 and with probability 1

2 does nothing. B2

checks if the adversary can construct h(x2) before revealing xs. It is easy to see
that C[B1, B2] reveals xs with probability 1

4 . This is because the adversary can
construct h(x2) when x1 and x2 are equal (which happens with probability 1

2 )
and when B1 reveals h(x1) (which also happens with probability 1

2 ). In-fact,
we can easily show that C[B1, B2] keeps xs secret with probability exactly 3

4 .
However, Theorem 1 can only show C[B1, B2] keeps xs secret with probability 1

4 ,
since in our composition results, we assume that x1 and x2 get the same secret
name.

5 Achieving Disjointness Through Tagging

It is often necessary for protocols to share basic cryptographic primitives, such
as functions for encryption, decryption and hashing. We extend our composi-
tion result to such kind of protocols. The key ingredient for composition in this
context is tagging, a syntactic transformation of a protocol and its signature,
designed to ensure secure composition. Essentially, tagging a protocol appends
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a special identifier to each of the messages that it outputs. When the protocol
performs an input, it will recursively test all subterms in the input message to
verify their tags are consistent with the protocol’s tag. In the context of com-
position, tagging two protocols with different identifiers effectively achieves our
disjointness condition from section 4. One limitation with tagging is that its
correctness largely depends on the signature in question. As in [18], we will limit
the class of cryptographic primitives we consider to symmetric encryption and
a hash function, with the understanding that our results can be extended to
primitives for asymmetric encryption. We now give the definition of tagging, as
defined in [18], but repeated here for completeness.

Let C be a context and B be a basic process, both over the equational theory
(Fenc, Eenc) where Fenc = {enc, dec, h} and Eenc = {dec(enc(m, rn, k), k) =
m}. To securely compose C and B, the terms occurring in each protocol must
be tagged by function symbols from disjoint equational theories. In our setting,
the tagging of two protocols will be done in two steps. To begin, the signature
renaming function d from definition 5 will be applied to each of C and B with
distinct values of d ∈ {b, c}.

Definition 5. The signature renaming function d transforms a context C over
the signature (Fenc, Eenc) to a context Cd by replacing every occurrence of the
function symbols enc, dec and h in C by encd, decd and hd, respectively. The re-
sulting context Cd is over the signature (Fdenc, Edenc), for Fdenc = {encd, decd, hd}
and Edenc = {decd(encd(m, rn, k), k) = m}.

Given Cc and Bb over the disjoint signatures Fcenc and Fbenc, the function d e
is then applied to Cc and Bb, generating the the tagged versions of C and B.
We now give some prerequisite definitions for the definition of d e. Let Fdtag =

{tagd, untagd} and Edtag = {untagd(tagd(x)) = x}. Further, Ftag = Fbtag ∪ Fctag
and Etag = Ebtag ∪ Ectag.

Definition 6. Let t ∈ Fdenc for d ∈ {b, c}. The function H : T (Fdenc,X ) →
T (Fenc ∪ Fdtag,X ) is defined below.

H(encd(t1, t2, t3)) = enc(tagd(H(t1)),H(t2),H(t3)
H(decd(t1, t2)) = untagd(dec(H(t1),H(t2)))
H(hd(t1)) = h(tagd(H(t1)))
H(u) = u if u is a name or variable

The function testsd below maps terms from T (Fenc ∪ Fdtag,X ) to a conjunc-
tion of equalities, as defined below.

testsd(enc(t1, t2, t3)) = testsd(t1) ∧ testsd(t2) ∧ testsd(t3)
testsd(dec(t1, t2)) = testsd(t1) ∧ testsd(t2)
testsd(h(t1)) = testsd(t1)
testsd(tagd(t1)) = testsd(t1)
testsd(untagd(t1)) = tagd(untagd(t1)) = t1∧ testsd(t1)
testsd(u) = > if u is a name or variable
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We can now define d e as follows.

Definition 7. Let Cd be a context over Fdenc for d ∈ {b, c}. The context dCde
is defined as follows.
d�e = �
dνxe = [>] · νx
din(x)e = [>] · in(x)
dout(t)e = [testsd(H(t))] · out(H(t))
d(x := t)e = [testsd(H(t))] · (x := H(t))
d[s = t]e = [testsd(H(s)) ∧ testsd(H(t))] · [H(s) = H(t)]
dC1 · C2e = dC1e · dC2e
dC1 ⊕p C2e = dC1e ⊕p dC2e
dC1|C2e = dC1e|dC2e

The following Proposition asserts the correctness of our tagging scheme. That
is, whenever a protocol manipulates a term, that term should be tagged with
the identifier of the protocol. To enforce this, every atomic action in a tagged
protocol is prefixed with a conjunction of tests. If the terms manipulated by
the atomic action meets the aforementioned requirement, the tests will pass.
Otherwise, the tests will fail, and further protocol actions will be blocked. This
is stated precisely as follows.

Proposition 2. Let t be a ground term over Fenc ∪ Ftag and d ∈ {a, b}. Every
s ∈ st(t) of the form untagd(tagd′(s)) is such that d = d′ iff testsd(t) = c1 ∧
... ∧ cn where ci is > or s1 = s2 for ground terms s1, s2 ∈ Fenc ∪ Ftag such that
s1 =Eenc∪Etag s2.

We have introduced tagging as a way to enforce the disjointness condition
of section 4. In Proposition 3, we show that an attack on a composition of
two tagged protocols originating from the same signature can be mapped to an
attack on the composition of the protocols when the signatures are explicitly
made disjoint. As a matter of notation, given a context C[�1, ...,�n] and basic
processes B1, ..., Bn we write dC[B1, ..., Bn]e to denote the process that results
from plugging in the processes dB1e, ..., dBne into the context dC[�1, ...,�n]e.

Proposition 3. Let C[�1, ...,�n] be a context over Fenc and B1, B2, ..., Bn
be basic processes over Fenc. If dCc[Bb1, ..., Bbn]e 6|=Eenc∪Etag,q Secret(S) then
Cc[Bb1, ..., B

b
n] 6|=Ebenc∪Ecenc,q Secret(S) for S ⊆ vars(C[B1, ..., Bn]) and q ∈ [0, 1].

Using Proposition 3 and Theorem 1, we can achieve the following result for
tagged protocols.

Theorem 2. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1] | D2[�2] | ... | Dn[�n])
be a context over Fenc with labels from Lc, B1, B2, ..., Bn be basic processes over
Fenc with labels from Lb, q1, q2 ∈ [0, 1] and xs ∈

⋃n
i=1 vars(Bi) \ vars(C) such

that:

– fv(C) = ∅ and fv(Bi) ⊆ {xi}
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– vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
– C[B1, ..., Bn] is ground
– C[0, ..., 0] |=Eenc,q1 Secret(x1, ..., xn)
– νk · (x1 := k) · ... · (xn := k) · (B1|...|Bn) |=Eenc,q2 Secret(x1, ..., xn, xs)

Then dCc[Bb1, ..., Bbn]e |=Eenc∪Etag,q1q2 Secret(xs).

6 Replication

In this section, we extend our composition result to protocols that can run
multiple sessions.3 We will begin by considering processes that contain only a
bounded version of the replication operator. The bounded replication operator
has an explicit bound that limits the number of times a process can replicate.
As will be seen later, there are some challenges in dealing with replication in its
full generality. We will also limit ourselves to processes that contain only a single
occurrence of this replication operator. This restriction is not limiting for the
applications we consider and it will simplify the proofs. It is, however, possible
to extends our results to a more general setting in which a process can contain
multiple occurrences of the replication operator.

We will start by showing showing that if the protocols C = νk1 · ... · νkm ·
!n(C[�1]|...|C[�l]) and !n(B1|...|Bl) are proven secure with probability at least
p and q, respectively, then the composition νk1 · ... · νkm·!n(C[B1]|...|C[Bl]) is
secure with probability at least pq, provided the protocol messages are tagged
with both a protocol identifier and a unique session identifier. A similar result
(with the absence of the session identifier), has been claimed in [18] for nonran-
domized protocols (with p and q both being 1). However, we discovered a simple
counterexample (Example 5 in Appendix A), which works for the case of two
sessions. Essentially the reason for this attack is that protocol messages from
one session of Q can be confused with messages from the other session.

6.1 Bounded Replication

Formally, a context containing bounded replication is defined as

C[�1, ...,�m] ::= al11 · ... · alnn ·!ln(D1[�1]|ln+1D2[�2]|ln+2 ...|ln+m−1Dm[�m])

where a ∈ {νx, (x := t)} and n ≥ 2 is a natural number. The semantics for
this bounded replication operator is given in Figure 3, where i, j ∈ N are used
to denoted the smallest previously unused indices. We will use P (i) to denote
that process that results from renaming each occurrence of x ∈ vars(P ) to xi

for i ∈ N. When P (i) or P (j) is relabeled freshly as in Figure 3, the new labels
must all belong to the same equivalence class (that contains only those labels).
The notation x∗ denotes the infinite set {x0, x1, x2, ...}.
3 n sessions of P will be denoted by !nP.
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B-REPLICATION

n > 2 l′ is a fresh label P (i) is relabeled freshly

(!lnP, ϕ, σ)
(τ,[l])−−−−→ δ

(P (i)|l′ !l
n−1

P,ϕ,σ)

B-REPLICATIONn=2

l′ is a fresh label P (i), P (j) are relabeled freshly

(!l2P, ϕ, σ)
(τ,[l])−−−−→ δ

(P (i)|l′P (j),ϕ,σ)

Fig. 3: Bounded Replication semantics

Our semantics imposes an explicit variable renaming with each application
of a replication rule. The reason for this best illustrated through an example.
Consider the process !min(x) · P and the execution

(!min(x) · P, ∅, ∅)→∗ (in(x) · P |!m−1in(x) · P,ϕ, {x 7→ t} ∪ σ)

where variable renaming does not occur. This execution corresponds to the ad-
versary replicating !min(x) ·P , running one instance of in(x) ·P and then repli-
cating !min(x) · P again. Note that, because x is bound at the end of the above
execution, the semantics of the input action cause the process to deadlock at
in(x). In other words, an adversary can only effective run one copy of !min(x) ·P
for any process of the form !min(x) · P . It is also convenient to consider this re-
stricted version of α-renaming in view of secrecy. In particular, if a variable
is α-named arbitrarily with each application of “B-REPLICATION”, then the
definition of !lnP keeping x ∈ vars(P ) secret becomes unclear, or at least more
complicated.

As mentioned in Example 5, our composition result must prevent messages
from one session of a process with bounded replication from being confused
with messages from another sessions. We achieve this in the following way. Our
composed processes will contain an occurrence of νλ directly following the oc-
currence of a bounded replication operator. This freshly generated “session tag”
will then be used to augment tags occurring in the composed processes. We have
the following result.

Theorem 3. Let C[�1, ...,�n] = νk1 · ... · νkm·!uνλ · (D1[�1] | D2[�2] | ...
| Dn[�n]) be a context over Fenc with labels from Lc, B1, B2, ..., Bn be basic
processes over Fenc with labels from Lb, q1, q2 ∈ [0, 1] and xs ∈

⋃n
i=1 vars(Bi) \

vars(C) such that:

– fv(C) = ∅ and fv(Bi) ⊆ {xi}
– vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
– λ 6∈ vars(P ) ∪ vars(Q)
– C[B1, ..., Bn] is ground
– C[0, ..., 0] |=Eenc,q1 Secret(x1, ..., xn)
– νk · (x1 := k) · ... · (xn := k)·!m(B1|...|Bn) |=Eenc,q2 Secret(x1, ..., xn, x

∗
s)

Then dνk1·...·νkm·!uνλ·(Dc
1[B

(b,λ)
1 ] | Dc

2[B
(b,λ)
2 ] | ... | Dc

n[B
(b,λ)
n ])e |=Eenc∪Etag,q1q2

Secret(x∗s).
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6.2 Unbounded Replication

As a final result, we will show how protocols containing unbounded replication
can be composed. That is, we will consider processes over the following grammar.

C[�1, ...,�m] ::= al11 · ... · alnn ·!l(D1[�1]|ln+1D2[�2]|ln+2 ...|ln+m−1Dm[�m])

where a ∈ {νx, (x := t)}. The semantics of this new replication operator are
given in Figure 4, where again, i ∈ N is the smallest previously unused index.
As before, when P (i) is relabeled freshly, the new labels must all belong to the
same equivalence class.

B-REPLICATIONN

l′ is a fresh label P (i) is relabeled freshly

(!lP,ϕ, σ)
(r,l)−−−→ δ(P (i)|l′ !lP,ϕ,σ)

Fig. 4: Replication semantics

As previously eluded to, it is difficult to state a result in the style of Theorem
3 with non-trivial probabilities.

(!P, ∅, σ)

(!P, ϕ1, ∅) (!P, ∅, ∅)

(!P, ϕ12, ∅) (!P, ϕ1, ∅) (!P, ϕ2, ∅) (!P, ∅, ∅)

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 5: Execution of !P .

Example 3. Consider the process P = νxs ·out(xs)⊕ 1
2

0 over the empty signature

and equational theory. We have that P |=E, 12
Secret(xs). However, there is no

q ∈ (0, 1] such that !P |=E,q Secret(x
∗
s). To see this, let

ϕ0 = {x0s 7→ n0, wl0 7→ x0s}
ϕ01 = {x0s 7→ n0, x

1
s 7→ n1, wl0 7→, x0s, wl1 7→ x1s}

ϕ1 = {x1s 7→ n1, wl1 7→ x1s}

and consider the execution in Figure 5. Each level n of the tree represents a
finite execution in which n replications have occurred. Notice that an adversary
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choosing to replicate !P a single time causes x∗s to be revealed with probability
1
2 and an adversary choosing to replication !P twice causes x∗s to be revealed
with probability 3

4 . In general, the probability of revealing x∗s tends towards 1 as
the number of replications increases.

In light of example 3, our composition result must require secrets to be
preserved with probability 1. Such a restriction makes the statement of our
Theorem almost identical to that of Theorem 6 from [18]. Our result, however,
has two main advantages. It elimiates the still applicable attack of Example 5
while considering a richer class of processes. We now have the following helper
result, which is a consequence of Proposition 1.

Proposition 4. If P is a process containing a single occurrence of ! such that
P 6|=E,1 Secret(x ∪ x∗), then there exists an n such that if P ′ is the result of
replacing ! in P by !n, then P ′ 6|=E,1 Secret(x ∪ x∗), where x ∈ vars(P ).

Using Proposition 4 and Theorem 2, we can prove the following.

Theorem 4. Let C[�1, ...,�n] = νk1 · ... · νkm·!νλ · (D1[�1] | D2[�2] | ... |
Dn[�n]) be a context over Fenc with labels from Lc, B1, B2, ..., Bn be basic pro-
cesses over Fenc with labels from Lb and xs ∈

⋃n
i=1 vars(Bi) \ vars(C) such

that:

– fv(C) = ∅ and fv(Bi) ⊆ {xi}
– vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
– λ 6∈ vars(P ) ∪ vars(Q)

– C[B1, ..., Bn] is ground

– C[0, ..., 0] |=Eenc,1 Secret(x1, ..., xn)

– νk · (x1 := k) · ... · (xn := k)·!m(B1|...|Bn) |=Eenc,1 Secret(x1, ..., xn, x
∗
s)

Then dνk1·...·νkm·!νλ·(Dc
1[B

(b,λ)
1 ] | Dc

2[B
(b,λ)
2 ] | ... | Dc

n[B
(b,λ)
n ])e |=Eenc∪Etag,1

Secret(x∗s).

7 Conclusions

We have studied the problem of securely composing two randomized security
protocols. For one session, we show that if P is secure with probability p and Q
is secure with probability q then the composed protocol is secure with probability
at least pq if the protocol messages are tagged with the information of which
protocol they belong to. The same result applies to multiple sessions except
that in addition the protocol messages of Q also need to be tagged with session
identifiers. The focus of this work has been secrecy properties. In terms of future
work, we plan to investigate when composition of randomized security protocols
preserve indistinguishability properties.
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18. Ştefan Ciobâcă and Véronique Cortier. Protocol composition for arbitrary primi-
tives. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium,
CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010, pages 322–336, 2010.

19. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

20. L. de Alfaro. The Verification of Probabilistic Systems under Memoryless Partial
Information Policies is Hard. In PROBMIV, 1999.
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A Examples

The examples here are intended to highlight the main challenges a) that arise in
the context of probabilistic protocols and b) that arise in the context of multiple
sessions. We start by giving an overview of the proof of the composition result
in [18] for one session. For this section, we shall consider the composition of
processes P and Q where P and Q are processes over disjoint signatures Fa and
Fb. When the signatures are not disjoint, we can tag the messages to achieve
a sufficient disjointness condition. In a typical scenario discussed in [18], P
represents a key establishment between two principals, where P is modeled as
a parallel composition of P1 and P2 which represent the two principals. At the
end of the protocol, the first principal has a shared key stored in the variable xk
and the second principal has a shared key shared in the variable yk (note that
these keys can be arbitrary terms and not just a secret name). The established
secret key(s) can then be used by the two principals in the protocol Q to achieve
some security goal. Q itself is a composition of Q1 and Q2 representing the two
principals, where xk and yk are free in Q1 and Q2, respectively. It is then shown
that the protocol W = P1 ·Q1|P2 ·Q2 preserves a secret xs of Q if (a) P keeps
the shared keys secret and (b) assuming that xk and yk are given the same secret
name at the beginning of the execution of Q, Q also keeps the shared keys secret.
The proof is carried as follows:

– Note the values of xk and yk given by P could be related arbitrarily. However,
since the process calculus does not contain inequality tests and the signatures
Fa and Fb are disjoint, we can show that Q also preserves secrecy of xs even
when xk and yk are given distinct values.

– The proof now proceeds by contradiction. Assuming W reveals xs, there
must be an execution ρ of W that reveals xs.

– ρ can then be viewed as an interleaving of one symbolic trace of P and
one symbolic trace of Q. This, combined with the fact that P are Q are
processes over disjoint signatures, allows ρ to be viewed as an interleaving
of one execution of P and one execution of Q in which the messages of the
alien processes are mapped to fresh names.

– Since P and Q execute independently of each other in the interleaving, it
then follows that either P reveals one of the shared secrets or Q reveals xs
or one of the shared secrets.

In the case where P and/or Q are randomized protocols, we want to claim
that if P is secure with probability at least p and Q is secure with probability
at least q, then the composition is secure with probability at least pq. We will
follow the same broad plan as in [18], but utilize different proof techniques to
handle the issues specific to randomized protocols. In our context, an execution
of a protocol is no longer a trace, but rather, a tree. This implies that when a
random choice is made, the protocols may evolve differently in different branches
of the tree. In particular, we will no longer be able to write an execution of W
as an interleaving of one execution of P and one execution of Q. Additionally,
recall that we are considering a weaker class of adversaries than [18], to account
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for protocols being able to make private coin tosses. In particular, we require
that when two execution paths of a protocol reveal the same information infor-
mation to the adversary, the adversary must take the same next action in both
executions. As such, when mapping an adversary for a composed process to one
of its sub-protocols, our techniques must preserve membership in this sub-class
of adversaries. We illustrate these issues with an example.

Note that when we write (P,ϕ, σ) in the following examples, we mean the
process P with the frame ϕ (which records the messages received by P thus far)
and binding substitution σ (which assigns ground terms to variables in P ). We
shall use often labels on the actions to identify the processes they belong to.

Example 4. Consider the signatures Fa = {c} and Fb = {h} where c is a constant
and h is a 1-ary function symbol. Let Ea = Eb = ∅ and P be the process defined
as follows:

P = P1|P2

P1 = νxk · (out1(xk)⊕ 1
2
out2(c))

P2 = νyk · (out3(yk)⊕ 1
2
out4(c))

Essentially P1 generates xk and with probability 1
2 decides to reveal it. P2

generates yk and with probability 1
2 decides to reveal it. In both cases, when

the fresh values is not revealed, a constant is output in its place. Consider the
process Q defined as follows

Q = Q1|Q2

Q1 = in5(x) · [x = xk] · νxs · out6(xs)
Q2 = in7(y) · [y = h(yk)] · νxs · out8(xs)

Consider the process W = P1 ·Q1|P2 ·Q2 and let P ′1, P
′
2, σ, , ϕ1, ϕ2, ϕ12, σ

f , ϕf1 , ϕ
f
2

and ϕf12 be defined as follows:

P ′1 = out1(xk)⊕ 1
2
out2(c)

P ′2 = out3(yk)⊕ 1
2
out4(c)

σ = {xk 7→ k1, yk 7→ k2}
ϕ0 = {w1 → c}
ϕ1 = {w1 → k1}
ϕ2 = {w1 → c, w2 → k2}
ϕ00 = {w1 → c, w2 → c}
ϕ10 = {w1 → k1, w2 → c}
ϕ12 = {w1 → k1, w2 → k2}
ϕ02 = {w1 → k1, w2 → c}
σf1 = {xk 7→ k1, yk 7→ k2, x 7→ k1, xs 7→ k3}
σf2 = {xk 7→ k1, yk 7→ k2, y 7→ h(k1), xs 7→ k3}
ϕf1 = {w1 → k1, w2 → c, w4 7→ k3}
ϕf2 = {w1 → c, w2 → k2, w6 7→ k3}
ϕf12 = {w1 → k1, w2 → k2, w4 7→ k3}

The the execution of W shown in Figure 6 reveals xs with probability 3
4 .

Observe that the transitions out of the states labeling (Q1|Q2, ϕ1, σ) involve
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transitions of Q1 while the transitions out of (Q1|Q2, ϕ2, σ) involve transitions of
Q2. If we try to fire the same transitions out of (Q1|Q2, ϕ2, σ) as in (Q1|Q2, ϕ1, σ)
the process will deadlock because the adversary cannot deduce xk in ϕ2. From
this, it is easy to see that the execution shown in Figure 6 cannot be written as
an interleaving of one execution of P and one execution of Q. Nevertheless, we
will be able to show that W keeps xs secret with probability at least 1

4 .

In the execution of W shown in Figure 6, the adversary performs different
actions depending of the result of coin toss made by P1. When P1 outputs
a nonce, Q1 is scheduled before Q2. When P1 outputs the constant c, Q2 is
executed first. Such an attack is valid, even when considering our restricted
class of adversaries. The reason is that the adversary can infer the result of the
coin toss in P1 by observing what is output. However, consider the following
alternate version of P given below.

P ′′ = P ′′1 |P ′′2
P ′′1 = νxk · νn1 · (out1(xk)⊕ 1

2
out2(n1))

P ′′2 = νyk · νn2 · (out3(yk)⊕ 1
2
out4(n2))

Now the process W ′ = P ′′1 · Q1|P ′′2 · Q2 keeps xs secret with probability at
least 1

2 . This is because the adversary can no longer infer the result of the coin
tosses from P , and is therefore required to act in a uniform way when scheduling
Q1 and Q2. Our composition result correctly proves that W keeps xs secret with
probability at least 1

4 and W ′ keeps xs secret with probability at least 1
2 .

(W, ∅, ∅)

(P ′1.Q1|P ′2.Q2, ∅, σ)

(Q1|P ′2.Q2, ϕ1, σ) (Q1|P ′2.Q2, ϕ0, σ)

(Q1|Q2, ϕ12, σ) (Q1|Q2, ϕ10, σ) (Q1|Q2, ϕ02, σ) (Q1|Q2, ϕ00, σ)

τ∗, 1

out1, 1
2

τ∗, 1
2

out3, 1
2

τ∗, 1
2 out3, 1

2
τ∗, 1

2

( , ϕf12, σ
f
1 )

in5.out6, 1

( , ϕf1 , σ
f
1 )

in5.out6, 1

( , ϕf2 , σ
f
2 )

in7.out8, 1

Fig. 6: Execution of W . The solid edges are transition in P and dotted edges
are transitions in Q. For convenience, the edges in the drawn execution tree may
compose of more than 1 action. The recipes used in in3 and in5 are w1 and
h(w2) respectively. The transition probabilities also label the edges.
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We would also like to extend the composition result to multiple sessions of
protocols.4 That is if the protocols P = νk1 · νk2·!n(P1|P2) and !nQ are proven
secure with probability at least p and q, respectively, then we would like to
guarantee W = νk1 ·νk2·!n(P1 ·Q1|P2 ·Q2) is secure with probability at least pq.
Such a result has been claimed in [18] for nonrandomized protocols (with p and
q being both 1). However, we discovered the following simple counterexample,
which works for the case of two sessions. Essentially the reason for this attack
is that protocol messages from one session of Q can be confused with messages
from the other session.

Example 5. Consider the signatures Fb = {h, c} and Fa = {} where c is a
constant, h is a 1-ary function symbol and E = Ea ∪ Eb = ∅. We will consider
two sessions of the composed protocol.

Let P be the process defined as:

P = νk1 · νk2·!2(P1 | P2)

where P1 = (xk := k1) and P2 = (yk := k2)). Let Q be the process defined as:

Q = !2(νk · ((xk := k) ·Q1 | [yk = k] ·Q2))
Q1 = (in(y) · ([y = c] · outl(h(xk)) |

[y = h(xk)] · νxs · outl
′
(xs))

Q2 = 0.

Clearly, P keeps xk and yk secret with probability 1 and Q keeps xk, yk and
xs secret with probability 1. Theorem 2 from [18] would imply that xs is kept
secret by W in both sessions of the protocol. However, we can show that this is
not the case. The reason is as follows. In both sessions of the composed protocol,
xk gets the same value. In the first session of the composed protocol, when y
is input by Q1, attacker sends the constant c. Thereafter, the attacker learns
h(xk) because Q1 outputs it. In the second session of the composed protocol,
the attacker sends h(xk) to Q1; the check [yk = k] succeeds and the attacker
learns xs in this session.

In process calculus terms, this attack can be realized by the execution:

(W, ∅, ∅)→∗ (W ′, ∅, σ′)→∗ (W ′′, ϕ′′, σ′′)

where
W ′ = (Q1

1|Q2
1)

σ′ = {k1 7→ n1, k2 7→ n2, x
1
k 7→ n1, y

1
k 7→ n2,

x2k 7→ n1, y
2
k 7→ n2}

W ′′ = 0
σ′′ = σ′ ∪ {y1 7→ c, y2 7→ h(n1), x2s 7→ n3}
ϕ′′ = {wl 7→ h(n1), wl′ 7→ n3}

Note above that we have used superscripts on variables xk, yk, y and xs in
the substitutions to indicate their values in different sessions. Essentially in this

4 n sessions of P will be denoted by !nP.
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execution in (W ′, ∅, σ′), P is finished in both sessions and assigned xk and yk
the same values in both sessions. The role Q2 is also finished in both sessions.
Q1

1 is the first session of Q1 and Q2
1 is the second session of Q1. Now in Q1

1, the
adversary inputs c for y resulting in Q1

1 leaking h(n1). In Q2
1, the adversary can

input h(n1) and learn the value of xs generated.

B Proof of Lemma 1

Before giving the proof of Lemma 1, we need the following pre-requisite notions.
A process is called atomic if it can derived from the grammar:

A ::= 0l νxl (x := t)l [c1 ∧ ... ∧ ck]l in(x)l out(t)l

where ci ∈ {>, s = t} for all i ∈ {1, ..., k}. A process is called linear if it can
be derived form the grammar L ::= A|(L ·l A). We will use a to denoted atomic
processes.

Definition 8. Let P be a process and A be an adversary for P . For any ρ ∈
Exec([[P ]]A), define the linear process L(ρ) inductively as follows. For the base

case L((P, ∅, ∅)) = ε. For the inductive case, let ρ = ρ0
(§,[l])−−−→ z′n. If l is the label

of an atomic action a, then L(ρ) = L(ρ0) · a. Otherwise, if l does not label an
atomic action, L(ρ) = L(ρ0).

Proposition 5. Let P be a process, A be an adversary for P and ρ ∈ Exec([[P ]]A)
such that last(ρ) = (Q,ϕ, σ). There exists an adversary A′ for L(ρ) and execu-
tion ρ′ ∈ Exec([[L(ρ)]]A

′
) where last(ρ′) = (Q′, ϕ′, σ′) is such that

1. dom(ϕ) = dom(ϕ′) and dom(σ) = dom(σ′).
2. For all x, y ∈ dom(σ), xσ =E yσ iff xσ′ =E yσ′

3. If ϕ `E xσ then ϕ′ `E xσ′

Proposition 6. For any equational theory E and q ∈ [0, 1] and label set L, if
R = νzl11 · νz

l2
2 · (x1 := z1)l3 · (x2 := z2)l4 ·Q 6|=E,q Secret(S) and l1, l2, l3, l4 ∈ L

then R′ = νzl1 · (x1 := z)l2 · (x2 := z)l3 · Q 6|=E,q Secret(S) where S ⊆ vars(Q)
and z, z1, z2 6∈ vars(Q).

We now give the proof of Lemma 1.

Proof. (Lemma 1) Let I = C[B1, ..., Bn] and

Q′′ := νkl01 · ...νklnn · (xb1 := k1)ln+1 · ... · (xbn := kn)lm · C[B1, ..., Bn]bLb .

By definition, there exists and adversary A such that [[I]]A 6|=E,q Secret(xs).
We transform A into an adversary A′ for Q′′ inductively as follows. If ρ ∈
Exec([[Q′′]]A

′
) where last(ρ) = (Qz, ϕz, σz) is such that Qz = alk · ... · alm ·

C[B1, ..., Bn]bLb then A′(tr(ρ)) = (τ, [lk]). Otherwise if ρ = (Q, ∅, ∅) (τ,[l0])−−−−→
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...
(τ,[lm])−−−−−→ ρ0 then A′(tr(ρ)) = A(tr(ρ0)). In the latter a case, we write proj(ρ) =

ρ0.

LetR ⊆ Exec([[Q′′]]A
′
) be such that ρ ∈ R iff either last(ρ) |=E Secret(S∪Sb∪

xs) or ρ = ρ0
α−→ z is such that last(ρ) 6|=E Secret(S ∪ Sb ∪ xs) and last(ρ0) |=E

Secret(S∪Sb∪xs). We claim that [[Q′′]]A
′ |R 6|=E,q Secret(S∪Sb∪xs). To see this,

it suffices to show that for any ρ ∈ Exec([[Q′′]]A
′ |R) such that last(ρ) 6|= Secret(S∪

Sb ∪xs), proj(ρ) ∈ Exec(IA) is such that proj(ρ) 6|= Secret(S ∪Sb ∪xs). Assume
for a contradiction that last(ρ) |=E Secret(S ∪ Sb ∪ xs) but last(proj(ρ)) 6|=E

Secret(S ∪ Sb ∪ xs). By Proposition 5, we have L(ρ) |=E Secret(S ∪ Sb ∪ xs)
and L(proj(ρ)) 6|=E Secret(S ∪ Sb ∪ xs). By the definitions of Q′′ and I, L(ρ)
and L(proj(ρ)) meet the conditions of Theorem 1 from [18]. That is, L(ρ) 6|=E

Secret(S ∪ Sb ∪ xs), contradiction. Therefore, Q′′ 6|=E,q Secret(S ∪ Sb ∪ xs). By
Proposition 6, we get Q 6|=E,q Secret(S ∪ Sb ∪ xs) as desired. ut

C Proof of Lemma 2

The main idea of the proof is to transform the recipes used in inputs from the
context (resp. basic processes) to contain only frame variables previously output
by the context (resp. basic processes). The formal definition of this transforma-
tion is given below.

Definition 9. Let NE,ñ : T (Fb ∪ Fc) → N be a function such that if t1 =E t2
then NE,ñ(t1) = NE,ñ(t2) = n where n 6∈ ñ. For d ∈ {b, c}, define the function

Purϕ,ñE,d : T (Fb ∪ Fc,Xw)→ T (Fd,X dw) as follows.

Purϕ,ñE,d(r) =


wl if r = wi,[l] and l ∈ Ld
n if r = wi,[l], l 6∈ Ld and NE,ñ(wi,[l]ϕ) = n

f(Purϕ,ñE,d(r1), ..., Purϕ,ñE,d(rn)) if r = f(r1, ..., rn) and f ∈ Fd
n if r = f(r1, ..., rn), f 6∈ Fd and NE,ñ(rϕ) = n

Before applying the function from Definition 9 to transform recipes into pure
recipes, we must first remove all self canceling function symbols from the recipe
using the function col given below. Since we are considering equational theories
that do not necessarily terminate, col will map terms to a kind of normal form.
Recall that (Fb, Eb) and (Fc, Ec) are disjoint equational theories and d ∈ {b, c}.
We will write d to denote {b, c} \ d. A ground term t ∈ T (Fb ∪ Fc) is said to
be pure if t ∈ T (Fd). Similarly a context r[y1, ..., yn] ∈ T (Fb ∪ Fc,Xw ∪ X ),
where y1, ..., yn are the variables occurring in r, is called a pure Fd-context if
r ∈ T (Fd,Xw ∪ X ). Given a term t, we use root(t) to denote the signature of
the root function symbol of t. Let t be a term such that t = r[s1, ..., sm] for
some a pure Fd-recipe r and root(s1), ..., root(sm) ∈ Fd. In such a case, we write
r[[s1, ..., sm]] and say that s1, ..., sm are the alien subterms of t.
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Definition 10. Let col(t) : T (F ,Xw) → T (F ,Xw) be the function defined be-
low.

col(t) =



t if t is a variable or a constant
si if t = f(t1, ..., tl), f(col(t1), ..., col(tl)) = r[[s1, ..., sk]],

r[n1, ..., nk] =Ed ni where ni, ..., nk are fresh names
such that ni = nj iff si =E sj for all 1 ≤ i, j ≤ l
and r is a pure Fd-recipe.)

f(col(t1), ..., col(tl))) if t = f(t1, ..., tl) but the above condition does not hold

Lemma 3 ([18]). (Fundamental Collapse Lemma) If s =E t , then col(s) =
ra[[s1, ..., sk]] and col(t) = rb[[sk+1, ..., sk+l]] are such that ra and rb are pure Fd-
terms, for d ∈ {b, c}, and ra[n1, ..., nk] =Ed rb[nk+1, ..., nk+l] where n1, ..., nk+l
are fresh names such that ni = nj iff si =E sj for all 1 ≤ i, j ≤ k + l.

Lemma 4 ([18]). For any term t we have that col(t) =E t.

Lemma 5. If E = Eb ∪ Ec and r ∈ T (Fb ∪ Fc, dom(ϕ)) is a recipe, then
col(r)ϕ =E rϕ.

Proof. Let fv(r) = {x1, ..., xn} and ϕc = {x1 7→ c1, ..., xn 7→ cn} where c1, ..., cn
are constants. By Lemma 4, rϕc =E col(rϕc). By the definition of ϕc, col(rϕc) =
col(r)ϕc and we have rϕc =E col(r)ϕc. It follows that rϕ = col(r)ϕ. ut

We now give the proof of Proposition 2.

Proof. (Proposition 2) Let R = B0 · C[B1, ..., Bn] and let ñ be the set of names
occurring in R. We define the adversary A′ as follows. For any execution

ρ = (R, ∅, ∅) (r1,[l1]),...,(rn,[ln])−−−−−−−−−−−−→∗ (Rn, ϕk, σk)

of R w.r.t A let

ρ′ = (R, ∅, ∅) (r′1,[l1]),...,(r
′
n,[ln])−−−−−−−−−−−−→∗ (Rn, ϕ

′
k, σ
′
k)

be the execution of R w.r.t. A′ where r′i = Purϕk,ñE,b (col(ri)) if recipe ri comes

from an action (ri, [li]) such that li ∈ Lb and r′i = Purϕk,ñE,c (col(ri)) otherwise. It
suffices to show that the following properties hold.

1. If ri for i ∈ {1, ..., n} is a recipe for in(x) where x ∈ Xd and the frame is ϕj
for j ∈ {1, ..., k} then r′i is a recipe from T (Fd,X dw). (Pure recipes)

2. If xσj =E yσj for x, y ∈ Xd then xσ′j =Ed yσ
′
j . (Tests work)

3. If there exists a recipe r such that rϕj =E xσj for x ∈ Xd then there exists
a recipe r′ such that r′ϕ′j =Ed xσ

′
j . (Revealing the same secrets)

4. For any ρ1, ρ2 ∈ Exec(RA
′
), if tr(ρ1) = tr(ρ2) then A′(tr(ρ1)) = A′(tr(ρ2)).

(Valid adversary)
ut
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Claim. If x ∈ Xd and col(xσj) = rx[[s1, ..., sn]] then xσ′j = rx[NE,ñ(s1), ..., NE,ñ(sn)]
where rx is a pure Fd-recipe.

Proof. The proof is by induction on j. The base case, when j = 0, follows
trivially as σ0 = σ′0 = ∅. For the induction step, if σj = σj−1 the the result
follows by the induction hypothesis. Otherwise the last action in the execution
was an assignment or an input for some variable z. In the case of input, σj =
σj−1 ∪ {z 7→ rz[[s1, ..., sn]]} and σ′j = σ′j−1 ∪ {z 7→ rz[NE,ñ(s1), ..., NE,ñ(sn)]}
and the result follows by the induction hypothesis. Otherwise, if the last action
was an assignment, then σj = σj−1 ∪ {z 7→ r[[s1, ..., sn]]} where si = riσj−1 for
all i ∈ {1, ..., n} and again the result follows from the induction hypothesis. ut

Claim. Property 2 holds.

Proof. Given x, y ∈ Xd such that xσj =E yσj , we want to show xσ′j =Ed yσ
′
j .

Let col(xσj) = rx[[s1, ..., sn]] and col(yσj) = ry[[sn+1, ..., sn+l]], where rx, ry
are pure Fd-recipes and s1, ..., sn+l are alien subterms. By Lemma 4, xσj =E

rx[[s1, ..., sn]] and yσj =E ry[[sn+1, ..., sn+l]]. By the preceding claim, xσ′j =
rx[NE,ñ(s1), ..., NE,ñ(sn)] and yσ′j = ry[NE,ñ(sn+1), ..., NE,ñ(sn+1)]. Applying
Lemma 3, we have rx[NE,ñ(s1), ..., NE,ñ(sn)] =Ed ry[NE,ñ(sn+1), ..., NE,ñ(sn+1)].
That is xσ′j =Ed yσ

′
j . ut

Claim. Property 3 holds

Proof. Given (Rj , ϕj , σj) and (R′j , ϕ
′
j , σ
′
j) we want to show that if rϕj =E xσj for

some x ∈ dom(σ)∩Xd then r′ϕ′j =Ed xσ
′
j where r′ = Purϕk,ñE,d (col(r)). By Lemma

5, we have col(r)ϕj =E rϕj where col(r)ϕj = rc[[s1, ..., sm]] and rc is a pure Fd-
context. By Lemma 4, xσj = col(xσj) where col(σj = rx[[sl+1, ..., sl+m]] and rx is
a pure Fd-context. Applying Lemma 3, we get that rc[NE,ñ(s1), ..., NE,ñ(sm)] =Ed

rx[NE,ñ(sm+1), ..., NE,ñ(sm+l)]. By the definition of r′, we have r′ϕ′j = rc[NE,ñ(s1), ..., NE,ñ(sm)].
Further, by our earlier claim, xσ′j = rx[NE,ñ(sm+1), ..., NE,ñ(sm+l)]. That is,
r′ϕ′j =Ed xσ

′
j . ut

Claim. Property 4 holds

Proof. Assume for a contradiction that there exists ρ1, ρ2 ∈ Exec(RA
′
) such

that tr(ρ1) = tr(ρ2) and A′(tr(ρ1)) 6= A′(tr(ρ2)). Because A is an adver-
sary, we have A(tr(ρ1)) = (§, [l]) = A(tr(ρ2)). If § = τ , then A′(tr(ρ1)) =
(τ, [l]) = A′(tr(ρ2)), contradiction. If § = r, for some recipe r, then A′(tr(ρ1)) =
(r1, [l]) and A′(tr(ρ1)) = (r2, [l]). Now l ∈ Ld for d ∈ {b, c} and hence r1 =

Purϕk,ñE,d (col(r)) and r2 = Pur
ϕ′k,ñ
E,d (col(r)) for frames ϕk, ϕk

′
. Because ϕk ≈ ϕk

′

we have r1 = r2, contradiction. ut

D Proof of Theorem 1

We first fix some notation that will be used throughout the remainder of this
section. Let Mi = (Zi, z

s
i , Acti, ∆i,≡i) be a POMDP for i ∈ {1, 2}. We will
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assume that Z1 ∩Z2 = ∅ and Act1 ∩Act2 = ∅. The asynchronous product of M1

and M2, denoted M1⊗M2 is the POMDP (Z, zs, Act,∆,≡) where Z = {(z1, z2) |
z1 ∈ Z1 ∧ z2 ∈ Z2}, zs = (zs1, z

s
2), Act = Act1 ∪Act2, ∆((z1, z2), α1) = ∆i(zi, αi)

and (z1, z2) ≡ (z′1, z
′
2) iff z1 ≡1 z′1 and z2 ≡2 z′2. Let A be an adversary for

M1 ⊗M2. We will assume that Exec((M1 ⊗M2)A) is finite and every execution
is of finite length. For ρ ∈ Exec((M1 ⊗M2)A), we define its projection onto Mi,
denoted proj(ρ,Mi) inductively as follows. When ρ = (zs1, z

s
2), proj(ρ,Mi) = zsi .

When ρ = ρ0
α−→ (z1, z2), proj(ρ,Mi) = proj(ρ0,Mi)

α−→ zi if α ∈ Act(Mi) and
otherwise proj(ρ,Mi) = proj(ρ0,Mi) if α 6∈ Act(Mi). Let S1 ⊆ Z1, S2 ⊆ Z2

and S = S1 ∪ S2. We write prob(S, (M1 ⊗ M2)A) to denote the maximal p
such that (M1 ⊗M2)A |=p S. Intuitively, S can be thought of the attack states
(states in which the attacker can derive some secret value) in M1 ⊗ M2 and
prob(S, (M1 ⊗M2)A) is the exact probability of reaching an attack state. An
execution ρ ∈ (M1 ⊗M2)A is said to be distinguishing if there exist one step
extensions ρ1 and ρ2 of ρ such that last(ρ1) 6≡ last(ρ2). An l ∈ N is said to be a
distinguishing level in (M1⊗M2)A if l = min(|ρ|) for all ρ ∈ Exec((M1⊗M2)A).
When (M1 ⊗ M2)A contains no distinguishing executions, the distinguishing
level is ∞. For ease of notation, we will write i to denote the only element of
{1, 2} \ {i}.

Definition 11. An attacker A for M1 ⊗M2 is said to be process determined
if, for any ρ, ρ′ ∈ Exec((M1 ⊗M2)A), if tr(proj(ρ,Mi)) = tr(proj(ρ′,Mi)) and
A(tr(ρ)) ∈ Act(Mi) then A(tr(ρ)) = A(tr(ρ′)).

Definition 12. An execution ρ ∈ Exec((M1 ⊗ M2)A) is said to be (Mi,Mi)-
sequential if there exists a k such that

ρ = z0
α1−→ ...

αk−−→ zk
αk+1−−−→ ...

αk+l−−−→ zk+m

where α1, ..., αk ∈ Acti and αk+1, ..., αk+m ∈ Acti. The attacker A is called
(Mi,Mi)-sequential if any execution in Exec((Mi⊗M)A) is (Mi,Mi)-sequential.

Lemma 6. For any (Mi,Mi)-sequential attacker A of M1 ⊗M2, there exists a
sequential and process determined attacker A′ such that prob(S, (M1⊗M2)A) ≤
prob(S, (M1 ⊗M2)A

′
).

Proof. Let ρ = z0
α1−→ ...

αk−−→ zk be an execution in Exec((M1 ⊗M2)A) such

that α1, ..., αk ∈ Act1 and for any one step extension ρ′ = ρ
α−→ z, α ∈ Act2. We

know that for any pair of one step extensions ρ1 and ρ2 of ρ, tr(proj(ρ1,M2)) =
tr(proj(ρ2,M2)). That is, we can define an attacker A′ on M2 with respect to the
execution ρ by induction on the number of transitions in the MDP (M1⊗M2)A

starting from the prefix ρ. For the base case, let z2 ∈ Exec((proj(ρ,M2))A
′
) where

last(ρ) = (z1, z2). For the inductive step, let ρ
α−→ ρ′

α′−→ z be an execution of
(M1 ⊗M2)A. Inductively, we have an execution ρ′′ ∈ Exec((M1 ⊗M2)A

′
) for

ρ
α−→ ρ′. Define A′(tr(ρ′′)) = α′.
Let Θ be the set of all executions in Exec((M1 ⊗M2)A) having the property

of execution ρ. For each ρj ∈ Θ, let Aj be the scheduler for M2 defined with
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respect to ρi. Let j ∈ {1, ..., n} and m be the index of some execution in Θ

such that prob(S,MAm2 ) ≥ prob(S,M
Aj
2 ) for all j. Define the attacker A′′ for

M1⊗M2 that behaves like A until reaching an execution of Θ and then behaves
like Am on the remaining M2 component. Clearly, A′′ is both sequential and
process determined. Furthermore, because M2 is executed with respect to the
maximal adversary Am of M2 for every execution in (M1 ⊗ M2)A

′′
, we have

prob(S, (M1 ⊗M2)A) ≤ prob(S, (M1 ⊗M2)A
′′
). ut

Proposition 7. Let l be the distinguishing level of (M1⊗M2)A and k ≤ l. There
exists an attacker A′ for M1 ⊗M2 such that for any ρ ∈ Exec(M1 ⊗M2) where
|ρ| = k, ρ is (Mi,Mi)-sequential and prob(S, (M1 ⊗ M2)A) = prob(S, (M1 ⊗
M2)A

′
).

Lemma 7. For any attacker A of M1⊗M2, there exists an (M1,M2)-sequential
and processes determined attacker A′ such that prob(S, (M1×M2)A) ≤ prob(S, (M1⊗
M2)A

′
).

Proof. The proof is by induction on the number of distinguishing executions
in the MDP (M1 ⊗ M2)A. The base case, when there are no distinguishing
executions, follows by Proposition 7 and Lemma 6. For the inductive step, let
the number of distinguishing executions in (M1 ⊗M2)A be d + 1 and let the
distinguishing level be l. For any ρ1, ρ2 ∈ (M1 ⊗M2)A where |ρ1| = |ρ2| = l,
A(tr(ρ1)) = A(tr(ρ2)). Fix A(tr(ρ1)) = α. We proceed by cases.

Case 1: α ∈ Act1. By Proposition 7, there exists an adversary A′ such that
for any ρ ∈ Exec((M1 ⊗ M2)A

′
) where |ρ| = l, ρ is (M1,M2)-sequential and

prob(S, (M1⊗M2)A) = prob(S, (M1⊗M2)A
′
). Let the distinguishing level of this

new DTMC (M1⊗M2)A
′

be l′ and let Θ = {ρ |ρ ∈ Exec((M1⊗M2)A
′
) and |ρ| =

l′}. Assume without loss of generality that Θ = Θe1 ]Θe1 where Θei = {ρ | ρ ∈
Θ and last(ρ) ∈ ei} for some ei in ≡. Let fi : {1, ..., |Θei |} 7→ Θe1 be a bijection.
For j ∈ {1, ..., |Θei |}, let κj be the probability of event fi(j) in (M1⊗M2)A

′
and

let κei be the sum of the probabilities of the events fi(1), ..., fi(j). Define the
POMDP Mei = (Zi, z

s
i , Acti ∪ {αnew}, ∆′i,≡i), where αnew 6∈ Act1 ∪ Act2 and

∆′i is the same as ∆i with addition of ∆′i(z
s
i , αnew) = µ where µ(last(fi(j))) =

κj/κei for all j. We define an attacker Aei on Mei ⊗M2 from A′ such that

zs
αnew−−−→ zl′

αl′+l−−−→ ...
αl′+m−−−−→ zl′+m (1)

is an execution of (Mei ⊗M2)Aei iff

z0
α1−→ ...

αl′−−→ zl′
αl′+l−−−→ ...

αl′+m−−−−→ zl′+m (2)

is an execution of (Mi⊗M2)A
′
i . Notice that the number of distinguishing states

in (Mei⊗M2)Aei is d. By our inductive assumption, there exists a process deter-
mined and (M1,M2)-sequential attacker A′ei for Mei ⊗M2 where prob(S, (Mei ⊗
M2)Aei ) ≤ prob(S, (Mei⊗M2)A

′
ei ). Using A′e1 and A′e2 , we construct a scheduler

Ae forM1⊗M2 inductively as follows. For any ρ ∈ (M1⊗M2)Ae such that |ρ| < l′,
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let Ae(tr(ρ)) = A′(tr(ρ)). For any ρ ∈ (M1 ⊗M2)Ae such that |ρ| ≥ l′, Ae be-
haves like A′ei if the initial prefix of ρ is in Θei . Clearly, prob(S, (M1⊗M2)A

′
) ≤

prob(S, (M1 ⊗M2)Ae). Observe that Ae is a sequential adversary for M1 ⊗M2.
Because prob(S, (M1 ⊗M2)A) = prob(S, (M ′1,M2)A

′
) ≤ prob(S, (M1 ⊗M2)Ae)

we can apply Lemma 6 to conclude that there exits a sequential and pro-
cess determined adversary A′e for M1 ⊗M2 such that prob(S, (M1 ⊗M2)A) ≤
prob(S, (M1,M2)A

′
e).

Case 2: α ∈ Act(M2). Follows by a similar argument as case 1. ut

Proposition 8. If M1 |=q1 S1 and M2 |=q2 S2 then for any (M1,M2)-sequential
and process determined scheduler A for M1 ⊗M2, (M1 ⊗M2)A |=q1q2 S.

Proposition 9. Let C[�1, ...,�n] be a context over Fc with labels from Lc and
B1, ..., Bn be basic processes over Fb with labels from Lb. For S ⊆ vars(C[B1, ..., Bn]),
let A be an adversary for C[B1, ..., Bn] that is pure with respect to (Lb,Fb) and
(Lc,Fc) such that [[C[B1, ..., Bn]]]A 6|=q Secret(S). For B = B1|...|Bn, there ex-
ists an adversary A′ for [[C[[>]l1 , ..., [>]ln ]]]⊗ [[B]], where l1, ..., ln are fresh labels
from Lb, such that ([[C[[>]l1 , ..., [>]ln ]]]⊗ [[B]])A

′ 6|=q Secret(S).

We now give the proof of Theorem 1.

Proof. (Theorem 1) Let S = {x1, ..., xn} and Q = νk · (x1 := k) · ... · (xn :=
k) · (B1|...|Bn). Assume for a contradiction that there exits an adversary A such
that [[C[B1, ..., Bn]]]A 6|=E,q1q2 Secret(xs). By Lemma 1, their exists an adversary
A′ for the process

R := νk · (xb1 := k) · ... · (xbn := k) · (C[B1, ..., Bn])bLb

such that [[R]]A
′ 6|=E,q1q2 Secret(S ∪ Sb ∪ xbs). By Proposition 2, the adversary

A′ can be transformed into an adversary Ap for R such that [[R]]Ap 6|=E,q1q2

Secret(S ∪ Sb ∪ xbs) where Ap is pure with respect to (Lb,Fb) and (Lc,Fc). By
Proposition 9, there exists an adversaryA′p for the POMDPsM1 = (C[[>]l1 , ..., [>]ln ])

and M2 = νk · (xb1 := k) · ... · (xbn := k) · ((B1)bLb |...|(Bn)bLb) such that (M1 ⊗
M2)A

′
p 6|=q1,q2 Secret(S). The result follows by Proposition 8. ut


