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Abstract 

 

Surface integral equations (SIEs) are promising candidates for modeling circuits because they 

reduce degrees of freedom by restricting physical unknowns on the surface, which simplifies 

complex structures. However, there are still challenges related to achieving stability over a broad 

frequency band. Specifically, the low frequency breakdown of electrical field integral equation 

(EFIE) operator is discussed in this work. In order to solve or alleviate this problem, the 

separation of irrotational and solenoidal current must be accomplished. A proposed method, the 

Augmented Electrical Field Integral Equation (AEFIE), is intended to separate the current 

element by introducing charge as another variable and relate irrotational current and the charge 

vector. Finally, the method of moments (MoM) is applied to solve the integral equation by 

projecting the current onto RWG basis and performing subspace projections to fill out the 

integral equation operator matrix. For complicated circuit structure, MoM can be accelerated 

using the fast multipole algorithm (FMA). 
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1. Introduction 

 

The design of microelectronic devices is faced with many challenges, such as signal integrity, 

power integrity, electromagnetic interference, and so on. It is also not practical to put design into 

production before investigating the potential problems of such design. In order to know the flaws 

of a design beforehand, computational electromagnetics is the research area that provides 

accurate simulation result. Unlike traditional quasi-static methods, which neglects displacement 

current and focus on the problem in low frequency. Surface Integral Equation (SIE) method is 

going to give full wave electromagnetic analysis [3]. This project is going to focus on the 

challenges associated with this method and potential solutions. 
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2. Introduction to Electric Field Integral Equation (EFIE) 

2.1 Electrical Field Wave Equation 

It will be most intuitive to introduce Maxwell’s equations before studying electromagnetic 

problems. The differential form of Maxwell’s equations can be written as 

 ∇× E = iωµH  (2.1) 

 ∇× H = −iωεE + J  (2.2) 

 ∇⋅εE = ρe  (2.3) 

 ∇⋅µH = 0  (2.4) 

In homogeneous media, the wave equation for the electrical field can be derived by taking the 

curl of Faraday’s Law, 

 ∇×∇× E = iωµ∇× H  (2.5) 

  

and substituting with Ampere’s Law, 

 

 ∇×∇× E = iωµ(−iωεE + J) =ω 2µεE + iωµJ  (2.6) 

 k2 =ω 2µε  (2.7) 

As for homogeneous medium, the wave number is a constant. The wave equation of an electrical 

field with spatial dependence r is  

 ∇×∇× E(r)− k2E(r) = iωµJ(r)  (2.8) 
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2.2 The Dyadic Green’s Function 

The dyadic Green’s function is the point source response to the vector wave equation [1]. The 

electric field can be formulized alternatively with the dyadic Green’s function 

 E(r) = iωµ dr '
V
∫ J(r ' ) ⋅G

_
(r ' , r)  (2.9) 

Applying equation (2.9) to the wave equation derived in the last section, the following equation 

is achieved: 

 ∇×∇×G
_
(r)− k2G

_
(r) = I

_
δ (r - r ' )  (2.10) 

The right-hand side of this equation represents the point source. Mathematically, the solution [1] 

is given by 

 G
_
(r) = (I

_
+ ∇∇
k2
) eik r−r '

4π r − r '  (2.11) 

Once the point source is known, the solution to the corresponding dyadic Green’s function can be 

achieved by equation (2.11) [1]. Theoretically, the resulting electrical field distribution can be 

calculated when the current distribution and the point source response are given. In the next 

section, the equivalence principle is introduced to come up with the surface integral, and thus the 

electrical field integral equation (EFIE). 

 

 

 



	
   4	
  

2.3 Equivalence Principle an Extinction Theorem 

The setup for illustrating the Equivalence Principle and Extinction Theorem, according to [1], is 

shown in Figure 2-1 

   

Figure 2-1 Equivalence Principle 

J(r) represents the current J1(r) and J2(r), where J1(r) is in V1 and J2(r) is in V2. Premultiplying 

equation (2.10) by E(r) and postmultiplying (2.8) by�G(r,r’), and then subtracting the resultant 

equations, the following equation is achieved: 

 E(r) ⋅∇ ×∇×G
_
(r)−∇×∇× E(r) ⋅G

_
(r) = δ (r - r ' )E(r)− iωµJ(r) ⋅G

_
(r)  (2.12) 

and integrating the difference over the volume V1  

 

dV[E(r) ⋅∇ ×∇×G
_
(r)−∇×∇× E(r) ⋅G

_
(r)

V1
∫ ]

= dr δ (r - r ' )E(r)
V1
∫

E(r')
||

− iωµ dr J1(r) ⋅G
_
(r)

V1
∫

E1(r')
||

 (2.13) 

S +

( ),
0
incωE

( ),
1
scaωE
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totωE
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ωJ
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ωM
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The second term on the right-hand side of the equation shows that the field produced in V1 comes 

from J1 only.  

Using the identity that 

 
−∇⋅[E(r)×∇×G

_
(r, r')+∇× E(r)×G

_
(r, r')]

= E(r) ⋅∇ ×∇×G
_
(r, r')−∇×∇× E(r) ⋅G

_
(r, r')

 (2.14) 

After applying Gauss’s divergence theorem, the left hand side of the equation can be transformed 

into a surface integral. 

 

 

E(r')− E1(r')

= dS n̂ ⋅[E(r)×∇×G
_
(r, r')+∇× E(r)×G

_
(r, r')

S+Sinf
!∫ ]

= dS [n̂ × E(r) ⋅∇ ×G
_
(r, r')+ iωµn̂ × H (r) ⋅G

_
(r, r')

S+Sinf
!∫ ]

 (2.15) 

The second step applied is to make use of Faraday’s law. It can be argued that when the 

observation point r’ is not within V1, due to the sifting property of delta function involved in E1, 

the above equation is formularized as 

 
 
E(r') = E1(r')+ dS [n̂ × E(r) ⋅∇ ×G

_
(r, r')+ iωµn̂ × H (r) ⋅G

_
(r, r')

S+Sinf
!∫ ]  (2.16) 

when the observation point is inside V1, 0 otherwise. 

Sinf refers to the infinite surface. The integrand in equation (2.16) decays as 1/r as r goes to 

infinity [1]. The surface area grows at rate of r2. When integrated over, it seems it will result in 

some constant. However, the reality does not work as such. The leading terms of two operands 

cancel each other and leave us with higher order terms. Thus, the integration over Sinf will vanish. 

We use the reciprocity Theorem, which states that the dyadic Green’s function is the same as its 
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transpose. The following can be shown with substitutions of the definitions of surface magnetic 

and electric currents, Ms and Js. 

 Ms (r) = −n̂ × E(r), Js (r) = −n̂ × H (r)  (2.17) 

 
 
E(r') = E1(r')− dS [∇×G

_
(r', r) ⋅Ms (r)− iωµG

_
(r', r) ⋅ Js (r)]

S
!∫  (2.18) 

Switching r and r’, the formula becomes 

 
 
E(r) = E1(r)− dS [∇×G

_
(r, r') ⋅Ms (r')− iωµG

_
(r, r')

S
!∫ ⋅ Js (r ')]  (2.19) 

The physical picture above is as follows: The total E field consists of two parts. The first 

contribution is the current density J1 inside V1. The second contribution is current J2 and any 

other source inside V2, which is equivalently the magnetic current and electric current on the 

surface S.  

Furthermore, when the observation point is in V2, the electric field will be zero. Fields from the 

source in region 1 cancel those in region 2. This is known as the extinction theorem. 

The core idea of the equivalence principle is to create a free space, in which there is a surface 

containing magnetic and electric current. These equivalent current sources act as source to the 

scattering field in the region [1]. The region where the original dielectric is positioned has zero 

fields. 

To extract the EFIE from the above equation, a simple example of a perfect electric conductor 

(PEC) is introduced. 
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2.4 EFIE-Perfect Electric Conductor 

 
 

Figure 2-2 Scattering by a PEC object 

For a PEC object, as demonstrated in [1], no field will be produced inside. The electric field from 

outside towards the surface will be perpendicular to the surface, leading to  

 Meq = E × n̂ = 0  (2.20) 

Then equation (2.19) becomes 

 
 
E(r) = Einc(r)+ dS iωµG

_
(r, r') ⋅ Js (r ')

S+
!∫  (2.21) 

where E1 represents the incident wave and the integral captures the scattered field in region V1. 

If taking the cross product between normal vector and the above equation, the focused region is 

the surface separating V1 and V2. For modes on surface S, it must be satisfied that the tangential 

component is 0 by continuity across the PEC boundary. Thus, the electric field integral equation 

(EFIE) is finally formularized as 

( ),
0
incωE

( ),
1
scaωE

	
  

S +

1V

2V

n

Jinc 

PEC 
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 E(r) = 0 = n̂ × Einc(r)+ iωµn̂ × dS ' G
_
(r, r')Jeq (r ')S∫  (2.22) 
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3. Low Frequency Breakdown of EFIE 

3.1 Example of Low Frequency Breakdown 

The electrical field integral equation is used to solve problems computationally, which results in 

problems from the limited precision of computer.  

The following results are from a typical computer program that utilizes EFIE to calculate RCS of 

a unit sphere with changes in theta. They are compared with results from calculation of the MIE 

series. The following two figures, figure 3-1 and 3-2, are simulated using existing code written 

by Hui Gan. 

 

Figure 3-1 RCS vs. Theta at high frequency ƒ=300MHz 
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Figure 3-2 RCS vs. Theta at low frequency ƒ=30Hz 

The red curve represents the RCS value that is calculated from the MIE series while the blue dots 

are samples calculated using the electrical field integral equation. A match between the two 

methods can be identified when the frequency is high. However, significant differences are 

shown at low frequency. Three illustrations of the low frequency breakdown are discussed below. 

 

3.2 Electromagnetic Equation when ω goes to 0 

The current source is first decomposed into two parts: 

 J = Jsol + Jirr  (3.1) 

Jsol is the solenoidal part, which is divergence free. Jirr is the irrotational part, which is curl free. 

This is known as the Helmholtz decomposition. According to the current continuity equation in 

frequency domain, 
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 ∇⋅ J = iωρe  (3.2) 

When frequency ω approaches 0, the equation for Gauss’s law, equation (2.3), becomes 

 ∇⋅εE = ρe = limω −>0
∇⋅ J
iω

 (3.3) 

The divergence of current source here must be approaching 0 or the term to the right hand side is 

unbounded. This current source corresponds to the Jirr because Jsol is divergence free. Hence, for 

extreme low frequency, it is safe to conclude that 

 Jsol << Jirr  (3.4) 

Although the solenoidal component of the current density is much less than the irrotational 

component, the former cannot be neglected during computation. As noted from equation (3.3), 

the irrotational component of current contributes to the charge and electrical field, which is 

important for characterizing capacitor models. Meanwhile, the solenoidal component contributes 

to the magnetic field, which in turn describes the behavior of inductor models. When performing 

numerical calculation at low frequency, the solenoidal component might not be captured due to 

the limitation of computer precision [2]. 

 

3.3 Low Frequency Behavior of EFIE Operator 

The dyadic Green’s function can be written as  

 G
_
(r,r ') = (I

_
+ ∇∇
k2
)g(r,r ')  (3.5) 

Substituting into equation (2.22), after doing integration by parts once, the EFIE operator can be 
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identified as 

 
    
LEJs = iωµ dr 'g(r,r ')Js (r ')

S∫ −
(1)

1
iωε
∇ dr 'g(r,r ')∇ '⋅J(r ')

S∫
(2)

 (3.6) 

The current density itself will produce a magnetic field from Ampere’s law. In order words, the 

first integration corresponds to the electrical field generated by the oscillation of magnetic field. 

Meanwhile, the divergence of current density, from the continuity equation, corresponds to the 

idea of moving charges. Thus, the second integration describes the electrical field created by 

changes in the system.  

 

As ω approaches 0, term (2) is going to dominate the equation. Such that 

   

 
     
LEJs !

1
iωε
∇ dr 'g(r,r ')∇ '⋅J(r ')

S∫  (3.7) 

In a real circuit, the surface current can be irrotational, solenoidal or a mixture. Thus there exists 

a surface current Js such that its divergence is zero, namely Js=Jsol. In this case, the eigenvalue for 

the EFIE operator will be extremely small. The approximated equation (3.7) is at a null space. On 

the other hand, there exists a surface current involving irrotational current such that the 

corresponding eigenvalue will be extremely large. Such physical response will make the matrix 

representation of EFIE operator ill-conditioned when frequency is low [2]. 
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3.4 Low Frequency Behavior of wave equation 

Solving Maxwell’s equations to get the wave equation with current source, 

   ∇×µ−1∇×E−ω2εE= iωJ  (3.8) 

At low frequency, the second term vanishes, and the equation left is in the form of  

    ∇×µ−1∇×E! iωJ  (3.9) 

 

This is equivalent to  

  ∇×A= b  (3.10) 

Equation (3.10) does not have a unique solution because adding a curl-free component to A will 

still satisfy the equation [2] 

   ∇×(A+∇φ)= b  (3.11) 

Mathematically, the matrix system is badly conditioned and involves infinite number of correct 

solutions while the real system should only have one valid answer. 

 

3.5 Low Frequency Limit 

It is necessary to study the low frequency limit, beyond which the breakdown of EFIE does not 

occur. Intuitively, the low frequency limit should be related to the size of the basis function. 

When the frequency is low and wavelength is large, the wave transmits as if the basis patch is 

invisible [3]. The reason for this is that the wavelength is much larger than the size of the basis, 
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so that the information of the basis function is hardly seen by the wave. Due to the finite 

computational precision, only large values can be collected and the smooth part of the EFIE 

matrix is hard to obtain. 
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4. Formulation of Augmented Electric Field Integral 

Equation (AEFIE) 

4.1 Motivation 

Full-wave electromagnetic modeling of microelectronic structure is an important method to 

predict the functionality of a design. It is better than the quasi-static method as the latter is not 

accurate at high frequencies. EFIE is one of the full-wave modeling techniques that covers a 

wide frequency band. However, a problem arises due to the low frequency breakdown described 

in the previous section. The main reason for the occurrence of low frequency breakdown is the 

limitation of computer memory, which cannot distinguish vector and scalar potentials at low 

frequency. In order to eliminate the low frequency problem, many techniques are implemented to 

separate the calculation involving vector and scalar potentials. The loop-tree method is one of 

them. However, the implementation of this method consumes a lot of memory to search for 

specific loops and trees, which is not practical for large-scale structures [3]. The augmented 

electric field integral equation includes charges as an extra parameter, which separates the 

contributions of the vector and scalar potential. In addition to that, an appropriate scaling method 

should be applied to account for precision limitation of computations in order to prevent from 

low frequency breakdown [2]. 
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4.2 Rao-Wilton-Glisson Basis 

RWG basis is widely used as the basis function to calculate full-wave scattering problems in 

microwave circuit simulations. The setup for the basis function is illustrated in the figure 4-1 as 

demonstrated in [1]. 

 
Figure 4-1 RWG basis function/element. 

The basis function is defined as  

 
   
Λn (r)=

ln
2A±

n

ρ±
n (r), r∈Tn

±  (3.12) 

The superscripts + and – indicate the positive triangle and negative triangle. An defines the area 

of the nth triangle. The term ρn , accordingly, is the vector inside the nth RWG basis connecting 

the location r and the left or right tip of the triangle, depending on the choice of patch in the 

RWG basis [3]. 

For simplicity, for computing large scale problems, the basis function is normalized and 

simplified as 
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Λn (r)=

r−r+

2An
+ , r∈T +

n

r−r−

2An
− , r∈T −n

0, , elsewhere

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (3.13) 

4.3 Formulation of RWG-based Integral Equation with Current Continuity 

We define vector potential to be V, scalar potential to be S and pulse response to be P. These are 

all MoM matrix, which will be discussed in the next chapter. Then the matrix representations of 

these three parameters, using the method of moments (MoM), are written as  

 
  
V⎡⎣⎢
⎤
⎦⎥m,n = µr Λm (r)⋅ g(r,r ')Λn (r ')dS 'dS

Sn
∫Sm

∫  (3.14) 

 
  
S⎡⎣⎢
⎤
⎦⎥m,n = εr

−1 ∇⋅Λm (r)⋅ g(r,r ')∇ '⋅Λn (r ')dS 'dS
Sn
∫Sm

∫  (3.15) 

 
  
P⎡⎣⎢
⎤
⎦⎥m,n = εr

−1 hm (r)⋅ g(r,r ')hn (r ')dS 'dS
Tn
∫Tm

∫  (3.16) 

These matrices can be interpreted as an operator that operates on the induced current on the 

surface, and the result is the excitations given. Revisiting equation (2.22), the matrix form for 

EFIE can be written as  

 
  
(ik0η0V+

η0
ik0
S)⋅J= b  (3.17) 

J is a vector that contains the current coefficient when projected on the RWG basis and b is the 

coefficient of the excitation given on the RWG basis. The definition of incidence matrix is 

further introduced as 
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D⎡⎣⎢
⎤
⎦⎥m,n

=
0,Patch m does not belong to RWG n
1,Patch m is the positive part of RWG n
-1,Patch m is the negative part of RWG n

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 (3.18) 

The	
  incidence	
  matrix	
  is	
  ideally	
  a	
  divergence	
  operator.	
  Using	
  the	
  incidence	
  matrix,	
  by	
  which	
  

the	
  positive	
  flow	
  of	
  RWG	
  basis	
  is	
  defined,	
  the	
  scalar	
  potential	
  can	
  be	
  further	
  factorized	
  as	
   	
   	
  

  S=D
T
⋅P ⋅D  (3.19) 

The P matrix discretizes the charge. Through basis transformation, the scalar potential is found. 

For A-EFIE, the current continuity condition yields 

    D⋅J = ik0c0ρ  (3.20) 

c0 is the speed of light in the medium. Combining equation (4.4), (4.6) and (4.7), the matrix form 

of A-EFIE using continuity of current is written as 

 

    

V D
T
⋅P

D k20 I

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
⋅
ik0J
c0ρ
⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟=
η0
−1b
0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  (3.21) 

	
  

4.4 A-EFIE Formulation with Charge Neutrality 

The above equation (4.8) still has low frequency deficiency. The physical reason for this is that 

the current continuity still contains the dynamic charge flow. Irrotational and solenoidal currents 

are not distinguished. In order to fully separate these two terms and ensure full rank down to DC, 

charge neutrality is introduced. 

The first argument is made that the objects are composed of disconnected objects. Each object is 

isolated from the others. Thus the total charge within the object must be 0 to satisfy the charge 
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neutrality condition. ρr is introduced to represent the vector of charges in reduced form. The 

forward matrix and backward matrix are defined to map the transformation between ρr and ρ. 

 
   

ρr = F ⋅ρ

ρ= B⋅ρr
 (3.22) 

Then in the equation (4.8), the total charge is replaced with changes inside each spanning tree. 

The Augmented EFIE formulation is modified as 

 

    

V D
T
⋅P⋅B

F ⋅D k20 Ir

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
⋅
ik0J
c0ρr

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟=
η0
−1b
0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  (3.23) 
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5. Method of Moments (MoM) in A-EFIE 

 

MoM solves integral form of Maxwell’s equations. The unknowns of MoM are the equivalent 

electric current elements projected on the RWG basis.  

For large-scale problems, usually it is hard to directly solve the scattering field and equivalent 

current on the surface. The method of moment introduces the idea of subspace projection, which 

results in another name for MoM, the subspace projection method. For example, if the 

formularized equation in matrix form is given by 

 

  

a11 … a1n
! " !
am1 # amn

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
=

b11 … b1n
! " !
bm1 # bmn

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
 (4.1) 

then the fundamental idea of MoM is to solve the following: 

 

  

a11 … a1n
! " !
am1 # amn

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

v1
.
.
vn

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
b11 … b1n
! " !
bm1 # bmn

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

v1
.
.
vn

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 (4.2) 

Equation (5.2) does not directly imply equation (5.1), while using equation (5.2) will help filling 

in the matrix elements of the unknowns. 

In the previous section, we mentioned the usage of MoM in these three equations: 

                  
V⎡⎣⎢
⎤
⎦⎥m,n = µr Λm (r)⋅ g(r,r ')Λn (r ')dS 'dS

Sn
∫Sm

∫  (4.3) 

 
  
S⎡⎣⎢
⎤
⎦⎥m,n = εr

−1 ∇⋅Λm (r)⋅ g(r,r ')∇ '⋅Λn (r ')dS 'dS
Sn
∫Sm

∫  (4.4) 

 
  
P⎡⎣⎢
⎤
⎦⎥m,n = εr

−1 hm (r)⋅ g(r,r ')hn (r ')dS 'dS
Tn
∫Tm

∫  (4.5) 
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Equations (5.3)~(5.4) utilize the method of moments to calculate vector potential and Scalar 

potential by projecting the EFIE operator onto the RWG basis [1]. Equation (5.5) uses the 

projection of the capacitive term in the EFIE operator onto the pulse function basis in order to 

separate the irrotational and solenoidal terms. 
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6. Design of Graphical User Interface 

6.1 Specification of Graphical User Interface 

A graphical user interface (GUI) is designed to implement the functionality of computing 

electromagnetic problems. Problems are described in the form of Augmented electric field 

integral equation (AEFIE) and solved using method of moments (MoM). 

 

The GUI is proposed to have the following functionality: 

1) Creating project folder in the directory specified by the user 

2) Creating three-dimensional view of the input mesh file 

3) Generating parameter file according to user’s input to the interface 

4) Compiling and running the program with input files in the project folder automatically 

5) Showing results in plots from the output data according to the output files 

 

The GUI is developed using C++ language under Linux environment. It can be executable cross 

platform with minor modifications. Qwt and Qt packages are used to functionalize the GUI. 

Source codes are included in Appendix A. 

Screenshots of the interface window are shown in Figure 6-1 and 6-2. 
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Figure 6-1 Function to locate the project directory 

 

Figure 6-2 Function to plot out the output results 
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Creating the parameter file is accomplished and the Qwt package used to show outcome results. 

Linking the GUI and existing code is the next step. Creating three-dimensional view of the mesh 

file will be the final task. 

 

6.2 Instructions for using the GUI 

1. Choose the location of program folder and naming it according to the input project name 

2. Select the mesh file for process and click “Input mesh file” button 

3. Fill in all the required blanks 

4. Click on the “Save” button 

5. Click on the “Run” button upon success 

6. Click on the “Show Results” button, and a new window will appear with output plots 
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7. Conclusion 

 

Surface integral equations are useful to model full wave electromagnetic problems. Augmented 

SIEs can generally solve low frequency breakdown problems associated with EFIE operator. 

However, it is suggested from simulation results that at low frequency, there are still low 

frequency inaccuracies because of not being able to capture inductive behaviors of the circuit 

elements. 

In future work, in order to increase the accuracy of modeling a certain geometry, smaller mesh 

size is required. Meanwhile, it might not be practical for the computer to handle the data with the 

same algorithm. A potential area of interest is a fast algorithm to accelerate the computation and 

maintain reasonable accuracy. 
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Appendix A: Source Code of GUI 
1. Mainwindow.h 
#Ifndef MAINWINDOW_H 
#define MAINWINDOW_H 
#include <QMainWindow> 
#include<QFileDialog> 
#include<QTextStream> 
#include<QMessageBox> 
#include<QDir> 
#include<QString> 
 
#include<QDebug> 
#include<QTextStream> 
#include<QApplication> 
#include<QFileDialog> 
#include<QTextStream> 
#include<QMessageBox> 
#include<QDir> 
#include<QString> 
#include<QFile> 
#include<QDebug> 
#include<QTextStream> 
#include <QApplication> 
#include <qmath.h> 
#include <QVector> 
#include <qwt_plot.h> 
#include <qwt_plot_curve.h> 
#include <qwt_plot_magnifier.h> 
#include <qwt_plot_panner.h> 
#include <qwt_legend.h> 
#include "parameter.h" 
 
 
namespace Ui { 
class MainWindow; 
} 
 
class MainWindow : public QMainWindow 
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{ 
    Q_OBJECT 
 
public: 
    explicit MainWindow(QWidget *parent = 0); 
    ~MainWindow(); 
    void writefile(); 
 
private slots: 
 
    void on_SaveButton_clicked(); 
 
    void on_RunButton_clicked(); 
 
    void on_ExitButton_clicked(); 
 
    void on_pushButton_clicked(); 
 
    void on_pushButton_2_clicked(); 
 
    void on_lineEdit_3_textChanged(); 
 
 
    void on_lineEdit_textEdited(const QString &arg1); 
 
    void on_pushButton_3_clicked(); 
 
    void on_lineEdit_11_textEdited(const QString &arg1); 
 
    void on_lineEdit_19_textEdited(const QString &arg1); 
 
    void on_lineEdit_20_textEdited(const QString &arg1); 
 
    void on_checkBox_clicked(); 
 
    void on_checkBox_2_clicked(); 
 
    void on_checkBox_3_clicked(); 
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    void on_checkBox_4_clicked(); 
 
    void on_checkBox_5_clicked(); 
 
    void on_checkBox_8_clicked(); 
 
    void on_checkBox_6_clicked(); 
 
    void on_checkBox_7_clicked(); 
 
    void on_checkBox_9_clicked(); 
 
    void on_checkBox_11_clicked(); 
 
    void on_checkBox_13_clicked(); 
 
    void on_checkBox_10_clicked(); 
 
    void on_checkBox_12_clicked(); 
 
    void on_checkBox_14_clicked(); 
 
    void on_checkBox_15_clicked(); 
 
    void on_checkBox_16_clicked(); 
 
    void on_checkBox_17_clicked(); 
 
    void on_checkBox_18_clicked(); 
 
private: 
    Ui::MainWindow *ui; 
    parameter myparameter; 
}; 
 
#endif // MAINWINDOW_H 
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2. Mainwindow.cpp 
#include "mainwindow.h" 
#include "ui_mainwindow.h" 
#include "mainwindow_2.h" 
 
MainWindow::MainWindow(QWidget *parent) : 
    QMainWindow(parent), 
    ui(new Ui::MainWindow) 
{ 
    ui->setupUi(this); 
} 
 
MainWindow::~MainWindow() 
{ 
    delete ui; 
} 
 
void MainWindow::writefile() 
{ 
    QFile mFile(myparameter.mesh_project_name+".para"); 
 
    if(!mFile.open(QFile::WriteOnly | QFile::Text)) 
    { 
        qDebug() <<"Could not open file for writing"; 
        return; 
    } 
    QTextStream out(&mFile); 
    //out<<"Hello world"; 
    out<<"PROJECTNAME:        "; 
    out<<myparameter.mesh_project_name<<'\n'; 
    out<<"MESHUNIT:           "; 
    out<<myparameter.mesh_unit<<'\n'; 
    out<<"#FREQUENCYSWEEP:     "; 
    out<<myparameter.frequency_lower_bound<<"         
"<<myparameter.frequency_higher_bound<<"         "<<myparameter.number_of_frequency<<'\n'; 
 
    out<<"BACKGROUND:         \n"; 
    out<<QString::number(myparameter.background_medium_eps_r.toFloat(),'f',6) 
           <<"   "<<QString::number(myparameter.background_medium_eps_i.toFloat(),'f',6) 



	
   31	
  

         <<"   "<<QString::number(myparameter.background_medium_mu_r.toFloat(),'f',6)<<"   
"<<QString::number(myparameter.background_medium_mu_i.toFloat(),'f',6) 
           <<"   "<<QString::number(myparameter.background_medium_sigma.toFloat(),'e',6)<<'\n'; 
    out<<"EMPARAS:            1\n"; 
    out<<"                    "<<QString::number(myparameter.medium_eps_r.toFloat(),'f',6) 
      <<"   "<<QString::number(myparameter.medium_eps_i.toFloat(),'f',6) 
    <<"   "<<QString::number(myparameter.medium_mu_r.toFloat(),'f',6) 
    <<"   "<<QString::number(myparameter.medium_mu_i.toFloat(),'f',6) 
      <<"   "<<QString::number(myparameter.medium_sigma.toFloat(),'f',1) 
        <<"   "<<QString::number(myparameter.medium_thickness.toFloat(),'g',2)<<'\n'; 
 
    out<<"SOLVER:             "; 
    out<<myparameter.solver<<'\n'; 
    out<<"SOLVERMETHOD:       "; 
    out<<myparameter.solver_method<<'\n'; 
    out<<"ACCURACYLEVEL:      "; 
    out<<myparameter.accuracy_level; 
    out<<"EXCITATIONTYPE:     "; 
    out<<myparameter.excitation_type; 
    out<<"PLANEWAVE:          "; 
    out<<ui->lineEdit_16->text()<<"      "<<ui->lineEdit_18->text()<<"      
"<<ui->lineEdit_21->text()<<'\n'; 
    out<<"PLANEWAVEOBS:       "; 
    out<<ui->lineEdit_25->text()<<"         "<<ui->lineEdit_24->text()<<'\n'; 
    out<<"                    "<<ui->lineEdit_23->text()<<"         
"<<ui->lineEdit_22->text()<<'\n'; 
    out<<"                    "<<ui->lineEdit_12->text()<<"         
"<<ui->lineEdit_17->text()<<'\n'; 
    out<<"POINTSOURCE:        "; 
    out<<"                    "<<ui->lineEdit_26->text()<<"         
"<<ui->lineEdit_29->text()<<"         "<<ui->lineEdit_30->text()<<'\n'; 
    out<<"                    "<<ui->lineEdit_27->text()<<"         
"<<ui->lineEdit_32->text()<<"         "<<ui->lineEdit_31->text()<<'\n'; 
 
 
    out<<"NEARFIELDOBS:     3"; 
    out<<"                    "<<ui->lineEdit_40->text()<<"         
"<<ui->lineEdit_34->text()<<"         "<<ui->lineEdit_28->text()<<'\n'; 
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    out<<"                    "<<ui->lineEdit_39->text()<<"         
"<<ui->lineEdit_38->text()<<'\n'; 
    out<<"                    "<<ui->lineEdit_36->text()<<"         
"<<ui->lineEdit_35->text()<<'\n'; 
    out<<"                    "<<ui->lineEdit_37->text()<<"         
"<<ui->lineEdit_33->text()<<'\n'; 
 
    out<<"GMRESPARAS:         "; 
    out<<"                    "<<ui->lineEdit_42->text()<<"         
"<<ui->lineEdit_45->text()<<"         "<<ui->lineEdit_41->text()<<'\n'; 
 
    out<<"FMAPARAS:           -1      "; 
    out<<ui->lineEdit_44->text()<<"      "<<ui->lineEdit_46->text()<<"      
"<<ui->lineEdit_43->text()<<'\n'; 
 
    out<<"NUMBEROBJECTS:      "; 
    out<<ui->lineEdit_47->text()<<'\n'; 
 
    out<<"FMAOBJECTS:         "<<ui->lineEdit_49->text()<<'\n'<<"         0"; 
 
    mFile.flush(); 
    mFile.close(); 
} 
 
 
void MainWindow::on_SaveButton_clicked() 
{ 
    myparameter.mesh_unit=ui->lineEdit->text().toDouble(); 
    //Medium Page 
    myparameter.background_medium_eps_r=ui->lineEdit_4->text(); 
    myparameter.background_medium_eps_i=ui->lineEdit_6->text(); 
    myparameter.background_medium_mu_r=ui->lineEdit_8->text(); 
    myparameter.background_medium_mu_i=ui->lineEdit_9->text(); 
    myparameter.background_medium_sigma=ui->lineEdit_15->text(); 
    myparameter.medium_eps_r=ui->lineEdit_5->text(); 
    myparameter.medium_eps_i=ui->lineEdit_7->text(); 
    myparameter.medium_mu_r=ui->lineEdit_10->text(); 
    myparameter.medium_mu_i=ui->lineEdit_13->text(); 
    myparameter.medium_sigma=ui->lineEdit_14->text(); 
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    //Excitation page 
    myparameter.frequency_lower_bound=ui->lineEdit_11->text(); 
    myparameter.frequency_higher_bound=ui->lineEdit_19->text(); 
    myparameter.number_of_frequency=ui->lineEdit_20->text(); 
    //Solver page 
    myparameter.accuracy_level=ui->spinBox->value(); 
 
 
 
 
    //Solver II page 
    ui->lineEdit->setText("load"); 
    //save to parameter file 
    if (1==QDir::setCurrent(myparameter.home_directory+'/'+myparameter.mesh_project_name)) 
    { 
        writefile(); 
    } 
} 
 
void MainWindow::on_RunButton_clicked() 
{ 
    ui->lineEdit_2->setText("run"); 
 
} 
 
void MainWindow::on_ExitButton_clicked() 
{ 
    MainWindow_2 * result_current = new MainWindow_2; 
    result_current->show(); 
} 
 
 
void MainWindow::on_pushButton_clicked() 
{ 
    QString filename=QFileDialog::getOpenFileName( 
                this, 
                tr("Open File"), 
                "/Users/QQ" 
                "All files (*.*);;Text File (*.txt);;Music file (*.mp3);;" 
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                ); 
 
} 
 
void MainWindow::on_pushButton_2_clicked() 
{ 
    if (1==QDir::setCurrent(myparameter.home_directory)){ 
    QDir().mkdir(ui->lineEdit_3->text()); 
    //ui->lineEdit_2->setText("/Users/QQ"); 
    QMessageBox::information(0,"FYI","successfully created"); 
    } 
} 
 
void MainWindow::on_lineEdit_3_textChanged() 
{ 
    myparameter.mesh_project_name=ui->lineEdit_3->text(); 
} 
 
 
 
void MainWindow::on_pushButton_3_clicked() 
{ 
    QString dir = QFileDialog::getExistingDirectory(this,tr("open directory"),"/Users/QQ", 
                                                    QFileDialog::ShowDirsOnly 
                                                    |QFileDialog::DontResolveSymlinks); 
    ui->lineEdit_2->setText(dir); 
    myparameter.home_directory=dir; 
} 
 
 
 
 
 
void MainWindow::on_checkBox_clicked() 
{ 
    if(ui->checkBox->isChecked()) 
        myparameter.solver_method=1; 
} 
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void MainWindow::on_checkBox_2_clicked() 
{ 
    if(ui->checkBox_2->isChecked()) 
        myparameter.solver_method=2; 
} 
 
void MainWindow::on_checkBox_9_clicked() 
{ 
    if(ui->checkBox_9->isChecked()) 
        myparameter.solver_method=3; 
} 
 
void MainWindow::on_checkBox_3_clicked() 
{ 
   if(ui->checkBox_3->isChecked()) 
       myparameter.solver_method=4; 
} 
 
void MainWindow::on_checkBox_4_clicked() 
{ 
    if(ui->checkBox_4->isChecked()) 
        myparameter.solver=1; 
} 
 
void MainWindow::on_checkBox_5_clicked() 
{ 
    if(ui->checkBox_5->isChecked()) 
        myparameter.solver=2; 
} 
 
void MainWindow::on_checkBox_11_clicked() 
{ 
    if(ui->checkBox_11->isChecked()) 
        myparameter.solver=3; 
} 
 
void MainWindow::on_checkBox_13_clicked() 
{ 
    if(ui->checkBox_13->isChecked()) 
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        myparameter.solver=4; 
} 
 
void MainWindow::on_checkBox_7_clicked() 
{ 
    if(ui->checkBox_7->isChecked()) 
        myparameter.solver=5; 
} 
 
void MainWindow::on_checkBox_10_clicked() 
{ 
    if(ui->checkBox_10->isChecked()) 
        myparameter.solver=6; 
} 
 
void MainWindow::on_checkBox_12_clicked() 
{ 
    if(ui->checkBox_12->isChecked()) 
        myparameter.solver=7; 
} 
 
void MainWindow::on_checkBox_14_clicked() 
{ 
    if(ui->checkBox_14->isChecked()) 
        myparameter.excitation_type=1; 
} 
 
void MainWindow::on_checkBox_15_clicked() 
{ 
    if(ui->checkBox_15->isChecked()) 
        myparameter.excitation_type=2; 
} 
 
void MainWindow::on_checkBox_16_clicked() 
{ 
    if(ui->checkBox_16->isChecked()) 
        myparameter.observation_coordinate=1; 
} 
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void MainWindow::on_checkBox_17_clicked() 
{ 
    if(ui->checkBox_17->isChecked()) 
        myparameter.observation_coordinate=2; 
} 
 
void MainWindow::on_checkBox_18_clicked() 
{ 
    if(ui->checkBox_18->isChecked()) 
        myparameter.observation_coordinate=3; 
} 
 

 


