
Parameterized Unit Testing

in the Open Source Wild

Wing Lam1, Siwakorn Srisakaokul1, Blake Bassett1, Peyman Mahdian1,
Tao Xie1, Nikolai Tillmann2, Jonathan de Halleux2

1 University of Illinois at Urbana-Champaign, USA
2 Microsoft Research, USA

{winglam2,srisaka2,rbasset2,mahdian2,taoxie}@illinois.edu

{nikolait,jhalleux}@microsoft.com

Abstract. With recent advances in test generation research, powerful
test generation tools are now at the �ngertips of developers in soft-
ware industry. For example, Microsoft Research Pex, a state-of-the-art
tool based on dynamic symbolic execution, has been shipped as Intel-
liTest in Visual Studio 2015. For test inputs automatically generated
by such tool, to supply test oracles (beyond just uncaught runtime ex-
ceptions or crashes), developers can write formal speci�cations such as
code contracts in the form of preconditions, postconditions, and class in-
variants. However, just like writing other types of formal speci�cations,
writing code contracts, especially postconditions, is challenging. In the
past decade, parameterized unit testing has emerged as a promising al-
ternative to specify program behaviors under test in the form of unit
tests. Developers can write parameterized unit tests (PUTs), unit-test
methods with parameters, in contrast to conventional unit tests, with-
out parameters. PUTs have been popularly supported by various unit
testing frameworks for .NET along with the recent JUnit framework.
However, there exists no study to o�er insights on how PUTs are written
by developers in either proprietary or open source development prac-
tices, posing barriers for various stakeholders to bring PUTs to widely
adopted practices in software industry. To �ll this gap, in this paper, we
present the �rst empirical study of parameterized unit testing conducted
on open source projects. We study hundreds of parameterized unit tests
that open source developers wrote for these open source projects. Our
study �ndings provide valuable insights for various stakeholders such as
current or prospective PUT writers (e.g., developers), PUT framework
designers, test-generation tool vendors, testing researchers, and testing
educators.

1 Introduction

With recent advances in test generation research such as dynamic symbolic ex-
ecution [15, 23], powerful test generation tools are now at the �ngertips of de-
velopers in software industry. For example, Microsoft Research Pex [25, 27], a
state-of-the-art tool based on dynamic symbolic execution, has been shipped as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158311415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

IntelliTest [20] in Visual Studio 2015, bene�ting numerous developers in software
industry. Such test generation tools allow developers to automatically generate
test inputs for the code under test, comprehensively covering various program
behaviors to achieve high code coverage. These tools help alleviate the burden
of extensive manual software testing, especially on test generation.

Although such tools provide powerful support for automatic test generation,
by default only a prede�ned limited set of properties can be checked, serving
as test oracles for these automatically generated test inputs. Violating these
prede�ned properties leads to various runtime failures, such as null dereferencing
or division by zero. Despite being valuable, these prede�ned properties are weak

test oracles, which do not aim for checking functional correctness but focus on
robustness of the code under test.

To supply strong test oracles for automatically generated test inputs, devel-
opers can write formal speci�cations such as code contracts [10, 17, 19] in the
form of preconditions, postconditions, and class invariants. However, just like
writing other types of formal speci�cations, writing code contracts, especially
postconditions, is challenging. Consider an example method under test from the
open source NUnit project in Figure 1. It is relatively easy to specify precondi-
tions for the method as (sn != null) && (sv != null) but it is quite challenging
to specify comprehensive postconditions for this method to capture its intended
behaviors.

Fig. 1: SaveSetting method under test from the
SettingsGroup class of NUnit

In the past decade, param-
eterized unit testing [26, 28]
has emerged as a practical al-
ternative to specify program
behaviors under test in the
form of unit tests. Develop-
ers can write parameterized
unit tests (PUTs), unit-test
methods with parameters, in
contrast to conventional unit
tests (CUTs), without param-
eters. Then developers can
apply an automatic test gen-
eration tool such as Pex to
generate input values for the
PUT parameters. Note that
algebraic speci�cations [16]
can be naturally written in the form of PUTs but PUTs are not limited to
being used to specify algebraic speci�cations.

For the method under test in Figure 1, a real-world CUT written by the
NUnit developers is shown in Figure 2. Despite seemingly comprehensive, the
CUT is insu�cient, not being able to cover Lines 9-13 of the method in Fig-
ure 1. The CUT's corresponding, and more powerful, PUT is shown in Figure 3.
A PUT is annotated with [PexMethod], sometimes attached with optional at-

3

//st is of type MemorySettingsStorage and
//instantiated in the init() method of the test class
01:public void SaveAndLoadSettings() {
02: Assert.IsNull(st.GetSetting("X"));
03: Assert.IsNull(st.GetSetting("NAME"));
04: st.SaveSetting("X", 5);
05: st.SaveSetting("NAME", "Charlie");
06: Assert.AreEqual(5, st.GetSetting("X"));
07: Assert.AreEqual("Charlie", st.GetSetting("NAME"));
08:}

Fig. 2: A real-world CUT for the method in Figure 1.
00:[PexMethod(MaxRuns = 200)]
01:public void TestSave1(MemorySettingsStorage st, string sn, object sv) {
02: PexAssume.IsTrue(st != null);
03: PexAssume.IsTrue(sn != null && sv != null);
04: st.SaveSetting(sn, sv);
05: PexAssert.AreEqual(sv, st.GetSetting(sn));
06:}

Fig. 3: The PUT corresponding to the CUT in Figure 2.
00:[PexFactoryMethod(typeof(MemorySettingsStorage))]
01:public static MemorySettingsStorage Create(string[] sn, object[] sv) {
02: PexAssume.IsTrue(sn != null && sv != null);
03: PexAssume.IsTrue(sn.Length == sv.Length);
04: PexAssume.IsTrue(sn.Length > 0);
05: MemorySettingsStorage mss = new MemorySettingsStorage();
06: for (int count = 0; count < sn.Length; count++) {
07: PexAssume.IsTrue(sv[count] is string || sv[count] is int
08: || sv[count] is bool || sv[count] is Enum);
09: mss.SaveSetting(sn[count], sv[count]);
10: }
11: return mss;
12:}

Fig. 4: A factory method written to assist Pex to generate desirable objects for
a non-primitive parameter of the PUT in Figure 3.

tributes to provide con�gurations for Pex's test generation. An example attribute
is in [PexMethod(MaxRuns = 200)] shown in Figure 3. The MaxRuns attribute along
with the attribute value 200 indicates the maximum number of runs/iterations
allocated during Pex's path exploration for test generation. In the beginning
of the PUT (Lines 2-3), the PexAssume statements are used as assumptions im-
posed on the three PUT parameters. During test generation, Pex �lters out all
the generated input values (for the PUT parameters) that violate the speci�ed
assumptions. The PexAssert statement in Line 5 is used as the assertion to be
veri�ed when running the generated input values.

For test generation, Pex can e�ectively handle primitive-type parameters
such as string and integer. However, like any other state-of-the-art test gen-
eration tools, Pex faces challenges in generating input values for non-primitive
parameters such as MemorySettingsStorage in the example PUT. These non-
primitive parameters require desirable object states to be generated to verify
di�erent behaviors. However, a main challenge in constructing desirable ob-
ject states for non-primitive parameters is to construct an e�ective sequence
of method calls that create and mutate objects. Thus, for a non-primitive PUT
parameter, developers typically need to write a factory method to supply to Pex
an e�ective method-call sequence. Figure 4 shows an example factory method
to assist Pex in generating desirable objects for MemorySettingsStorage, a non-

4

primitive parameter of the example PUT. The factory method accepts two arrays
of setting names and values, and adds those entries to the storage.

Since parameterized unit testing was �rst proposed in 2005 [28], PUTs have
been popularly supported by various unit testing frameworks for .NET along
with the recent JUnit framework (as parameterized test [5] and theories [9,21]).
However, there exists no study to o�er insights on how PUTs are written by
developers in either proprietary or open source development practices, posing
barriers for various stakeholders to bring PUTs to widely adopted practices in
software industry. Example stakeholders are current or prospective PUT writ-
ers (e.g., developers), PUT framework designers, test-generation tool vendors,
testing researchers, and testing educators.

To �ll this gap of lacking studies of PUTs, in this paper, we present the �rst
empirical study of parameterized unit testing conducted on open source projects.
In particular, this paper makes the following major contributions:

� The �rst empirical study of parameterized unit testing in the open source
wild, with focus on hundreds of real-world PUTs, producing study �ndings
that provide valuable insights for various stakeholders.

� A collection of real-world open source projects equipped with developer-
written parameterized tests (released on our project website [7]). These sub-
jects can be used by the research community to conduct future empirical
studies or to evaluate enhancements to automated test generation tools.

� A suite of analysis tools (released on our project website [7]) for the analysis
of PUTs and associated code under test. These tools are based on the .NET
Compiler Platform, and enable the collection of a variety of information and
statistics from PUTs in a subject project.

The remainder of this paper is organized as follow. Section 2 discusses the
setup of our study. Section 3 presents our study �ndings and discuss the im-
plications to stakeholders. Section 4 discusses threats to validity of our study.
Section 5 presents related work, and Section 6 concludes the paper.

2 Study Setup

This section describes our process for collecting subjects (i.e., open source projects
including PUTs) and the tools that we developed to collect and process data
from the subjects. The details of these subjects and our tools are released on
our project website [7].
Subject-Collection Procedure. The subject-collection procedure (including
subject sanitization) was a multi-stage process. At a coarse granularity, this pro-
cess involved (1) comprehensive and extensive subject collection from searchable
online source code repositories, (2) deduplication of subjects obtained multiple
times from di�erent repositories, (3) condensing multi-project subjects, (4) se-
lecting developer-written parameterized tests (�ltering out automatically gener-
ated parameterized test stubs), and (5) categorization of subjects into levels of
parameterized test usage.

5

Table 1: Subjects collected for study.

Subject Name #PUTs #CUTs #LOC
Main purposes
of PUTs

Subjects with high number of PUTs

PexFaultLocalization 168 1221 92144 Experimental subjects

QuickGraph 133 344 79922 Functional tests

linqtoroot 112 1212 55142 Functional tests

concolic-walk 87 1 2724 Experimental subjects

stringextensions 67 446 7382 Functional tests

isuka 54 300 18171 Functional tests

utilities-net 44 299 7446 Functional tests

henoch 27 170 18573 Functional tests

bbcode 26 16 1780 Functional tests

ConcurrentList 21 27 2171 Functional tests

HighTotal 739 4036 285455

HighTotal(Noises) 484 2814 190587

Subjects with low number of PUTs

Scutex 13 206 33654

PexMolesAndFakes 12 25 1472

PurelyFunctionalDataStructures 10 40 2649

binary-heap-pex 9 67 1341

Moq 8 0 14729

Pex-and-Moles-Overview 8 59 1496

symb2 6 1 3332

talks-pex-and-moles 6 35 765

ReactiveUI 5 0 10177

UnitTesting 5 47 597

functionextensions 4 18 570

tcrucon 4 33 2595

PortableDeviceLib 2 4 4919

raop 2 3 997

robust 2 53 3035

rss_insurcompaccountsystem 2 189 12328

ScotAlt.Net-Pex-QuickCheck 2 0 347

cardgameslib 1 3 3651

daemaged.compression 1 1 2329

AllTotal 841 4820 386438

AllTotal(Noises) 586 3598 291570

For comprehensive subject collection, we queried a set of widely known code
search services. The used query was �PexMethod�, which matched �les containing
parameterized unit tests speci�ed with the Pex framework. The three code search
services that returned results are Github [4], Black Duck Open Hub [2], and
SearchCode [8]. For each code search service, we parsed the search results to
extract the source code repository where each �le in the search results was stored.

Analysis Tools.We developed a set of tools to collect metrics from the subjects.
We used Roslyn, the .NET Compiler Platform, to build our tools. These tools

6

parsed C# source �les to produce an abstract syntax tree, which was traversed
to collect information and statistics of interest.

Subject Misusing PUT Annotations and Assertions. After initial inspec-
tion of the metric values measured for the collected subjects, we showed high
suspicion on one open source project named as AutomaTones [1]. For example,
the project includes many PUTs (i.e., methods annotated with [PexMethod]);
these PUTs typically are very long, including a lot of branch logics but no as-
sumptions. After careful inspection of the project's source code, we found that
the developers of this project misunderstood and misused PUT annotations (i.e.,
[PexMethod]) and PexAssert assertions (i.e., methods de�ned on the PexAssert

class): adding them to the production code instead of test code by treating Pex-
Assert assertions as code contract assertions. We excluded this subject out of
our collected subjects.

Collected Subjects. The information on the collected subjects is shown in
Table 1. Column 1 shows the name of each subject, and Columns 2 and 3 show
the number of PUTs and the number of CUTs in each subject, respectively. In
total, we identi�ed 29 subjects and these subjects contain a total of 841 PUTs.

Based on the number of PUTs in a subject, we split the subjects into two
categories: subjects with a high number of PUTs (i.e., >= 20) and subjects with
a low number of PUTs (i.e., < 20). Our detailed study for research questions
focus on the �rst category (including 10 subjects) because a subject in the second
category often includes occasional tryouts of PUTs instead of serious use of PUTs
for testing the functionalities of the open source project under test.

For the subjects in the �rst category, we also describe the main purposes of
PUTs in each subject in the last column of Table 1. After inspection, we found
that two subjects in the �rst category: PexFaultLocalization [6] and concolic-
walk [3] use PUTs as experimental subjects (e.g., creating PUTs without asser-
tions to experiment with Pex's capability of achieving high code coverage). We
considered these two subjects as noises for our detailed study because the PUTs
in these two subjects do not represent usage of PUTs for testing functionalities
of the code under test. However, in our detailed study, we still include the statis-
tics for these two subjects in order to shed light on how these noises could have
negatively a�ected study observations and conclusions if they were not carefully
identi�ed and separated. To make it clear that these two subjects are noises,
we put strike-through lines in the rows for these two subjects and calculate ad-
ditional total or average statistics excluding these two subjects, post�xed with
�(Noises)�.

Implications. For testing researchers who conduct studies on open source projects,
careful data sanitization and inspection are needed. Otherwise, duplicated data
or noisy data (e.g., PUTs in the three subjects AutomaTones [1], PexFaultLocal-
ization [6], and concolic-walk [3]) would have led the study to produce misleading
observations or conclusions.

7

3 Study Results

Our study is primarily concerned with the characteristics of PUTs appearing in
our subjects. Our study �ndings aim to bene�t various stakeholders such as cur-
rent or prospective PUT writers (e.g., developers), PUT framework designers,
test-generation tool vendors, testing researchers, and testing educators. In par-
ticular, our study intends to address the following �ve main research questions:

� RQ1: What is the extent of PUTs being written in our subjects?

� We address RQ1 because addressing it can help understand the current
extent of PUTs being written and better inform stakeholders future direc-
tions on providing e�ective tool support or training to guide where (in the
code base under test) to write PUTs for.

� RQ2: What are the relative complexity levels of assumptions vs. assertions
written in PUTs? What are the types of these assumptions and assertions
written in PUTs?

� We address RQ2 because addressing it can help understand developers'
current practice of writing assumptions vs. assertions in PUTs, and better
inform stakeholders future directions on providing e�ective tool support or
training on writing assumptions and assertions in PUTs.

� RQ3: What is the extent of having non-primitive parameters in PUTs? What
is the extent of writing factory methods for those non-primitive parameter
types?

� We address RQ3 because addressing it can help understand the extent
of writing su�ciently general PUTs (e.g., promoting an object produced by
a method sequence hard-coded in a PUT to a non-primitive parameter of
the PUT), and writing factory methods for those non-primitive parameter
types to assist automatic test generation tools; in addition, addressing RQ3
helps better inform stakeholders future directions on providing e�ective tool
support or training for addressing challenges related to non-primitive PUT
parameters in terms of both PUT speci�cation and test generation.

� RQ4: What is the extent of annotating a PUT with attributes to provide
con�gurations for automatic test generation, and what types of attributes
are written and how often?

� We address RQ4 because addressing it can help understand the current
extent of writing attributes to guide automatic test generation, and better
inform stakeholders future directions on providing e�ective tool support or
training for enabling developers to guide automatic test generation.

� RQ5: What are the characteristics of PUTs compared to CUTs written for
the same subject?

� We address RQ5 because addressing it can help understand the charac-
teristics of PUTs compared to CUTs, and better inform stakeholders future
directions on studies to compare PUTs and CUTs along with e�ective tool
support and training for converting CUTs to PUTs and converting CUT
writers to PUT writers.

8

Table 2: The number and percentage of public methods invoked by PUTs.

Subject Name
#Public #Invoked in

%
Methods PUTs

PexFaultLocalization 160 128 80.0

QuickGraph 118 23 19.5

linqtoroot 503 176 35.0

concolic-walk 21 5 23.8

stringextensions 68 63 92.7

isuka 450 61 13.6

utilities-net 207 102 49.3

henoch 175 66 37.7

bbcode 35 19 54.3

ConcurrentList 15 13 86.7

Average 172.2 65.6 49.2

Average(Noises) 196.4 65.4 48.6

3.1 RQ1. Usage of PUTs

We explored how highly used PUTs are in testing public methods from the
project under test. Table 2 shows the number and percentage of public methods
invoked by PUTs. Column �# Public Methods� shows the number of public
methods that were declared in all projects except those that are in PUT projects.
Column �# Invoked in PUTs� shows the number of unique public methods that
are invoked directly inside at least one PUT. Column �%� shows the percentage of
unique public methods invoked in PUTs over the total number of public methods
in all projects.

As shown in Table 2, on average, 49.2% of all public methods are directly
called inside PUTs. We expect this number to be even higher if we use dynamic
analysis (e.g., running the generated input values for the PUTs) to additionally
count the public methods that are indirectly called by PUTs during runtime.
Nevertheless, according to the current results, developers rely on PUTs to test
for approximately half of the public methods in their projects under test.

It is observed that the public methods that are not tested by PUTs fall into
two main categories. The �rst category includes methods that are overloaded.
Method overloading allows the method's argument list to di�er in the following
three ways: the number of arguments, data type of arguments, and sequence of
the arguments' data types. Not testing these public methods can be due to the
di�erence in the number of arguments. For example, developers may write PUTs
to invoke only an overloaded method variant f1 with fewer parameters, and f1
can further invoke another overloaded method variant f2 with more parameters
(with additional out parameters, which the caller of f1 may not care about).
The opposite case can happen too: developers may write PUTs to invoke only an
overloaded method variant f1 with more parameters, and f1 can further invoke
another method overloaded variant f2 with fewer parameters besides including
some additional computations done in f1 related to those additional parameters
of f1. For both cases, it is reasonable that developers write PUTs to test only

9

one overloaded variant f1 but not the other variant f2 invoked by f1 because
the PUTs already indirectly test f2.

The second category of public methods not tested with PUTs includes meth-
ods already equipped with code contracts. In this case, it is reasonable that
developers do not write PUTs because writing PUTs may duplicate the checking
power already accomplished by the equipped code contracts, and developers can
apply Pex directly against the code under test equipped with the code contracts.
Implications.Knowing that a variant of an overloaded method can be indirectly
tested by a PUT written for another variant, developers who are writing PUTs
can avoid writing duplicate PUTs for multiple variants. In addition, knowing that
the use of PUTs and the use of code contracts can complement with each other,
developers can give priority to write PUTs for those code portions not equipped
with PUTs or write code contracts for those code portions not equipped with
PUTs. More future research is needed to investigate where to better use code
contracts and where to better use PUTs.

3.2 RQ2. Assumptions and Assertions

Table 3: Di�erent types of assump-
tions in subjects.
PexAssume Type #

PexAssumeUnderTest 426

PexAssumeNotNull 216

IsTrue 203

IsNotNull 98

IsNotNullOrEmpty 24

TrueForAll 20

IsFalse 12

EnumIsDe�ned 9

InRange 7

TrueForAny 6

Fail 5

AreElementsNotNull 5

AreDistinctValues 1

AreEqual 1

Total 1033

Total w/o Null Check 269

Null Check Percentage 73.97%

Table 4: Di�erent types of assertions
in subjects.
PexAssert Type #

AreEqual 110

IsTrue 88

IsNotNull 62

TrueForAll 16

Implies 16

Throws<> 15

AreElementsEqual 14

AreEqual<int> 10

IsFalse 9

AreBehaviorsEqual 6

Run 4

ImpliesIsTrue 4

Fail 3

AreEqual<bool> 1

TrueForAll<double[]> 1

ExpectExactlyOne 1

Inconclusive 1

Total 361

Total w/o Null Check 299

Null Check Percentage 17.17%

To understand developers' practices of writing assumptions and assertions
in PUTs, we studied our subjects' common types of assumptions and asser-
tions and compared the writing of assumptions and assertions to the writing
of preconditions and postconditions in code contracts, respectively. As shown
in Table 3, PexAssumeUnderTest is the most common type of assumption, used

10

Table 5: Number of PexAssumes and PexAsserts with Number of Clauses

Subject Name #Assumes
#Assume

/ #Asserts
#Assert

/
Clauses Clauses

PexFaultLocalization 483 336 0.70 21 22 1.05

QuickGraph 237 15 0.06 21 21 1.00

linqtoroot 123 0 0.00 0 0 N/A

concolic-walk 0 0 N/A 0 0 N/A

stringextensions 11 8 0.73 110 118 1.07

isuka 69 27 0.39 113 146 1.29

utilities-net 9 10 1.11 70 76 1.09

henoch 49 0 0.00 1 1 1.00

bbcode 30 21 0.70 5 5 1.00

ConcurrentList 22 11 0.50 20 20 1.00

Average 0.45 1.04

Average(Noises) 0.44 1.06

426 times, in our subjects. PexAssumeUnderTest is used to mark parameters as
non-null and to be that precise type. The second most common type of as-
sumption, PexAssumeNotNull, is used 216 times. Similar to PexAssumeUnderTest,
PexAssumeNotNull is used to mark parameters as non-null except that it does
not require the type to be precise. Since PUTs are commonly written to test
the behavior of non-null objects as the class under test or use non-null objects
as arguments to a method under test, it is reasonable that the most common
assumption types used by PUT developers are ones that mark parameters as
non-null. Furthermore, according to the last row for Tables 3 and 4, develop-
ers perform null checks much more frequently for assumptions than assertions.
Since assertions are validated at the end of a PUT and it is less often that code
before the assertions manipulates or produces a null object, it is reasonable that
assumptions check for null more frequently than assertions do. For assumptions
and assertions such as TrueForAll, we suspected that developers' low number
of use may be due to the unawareness of such attribute's existence. TrueForAll
checks whether a predicate holds over a collection of elements. In our subjects,
we found cases where a collection was iterated over to check whether a predi-
cate was true for all of the elements; instead, developers should have used the
TrueForAll assumption or assertion.

Previous research on code contracts [22] shows that only 26% of code-contract
clauses were postconditions implying that programmers tend to write precondi-
tions more often than postconditions. As it is shown in Table 5, if we compare
the ratio of #assumption clauses over #assumptions with the ratio of #assertion
clauses over #assertions, 6 out of 7 of our subjects (excluding the two noise

subjects and subjects with 0 assertion), have a higher number of clauses for as-
sertions than assumptions. Based on previous research on Code Contracts and
our �ndings, we hypothesize that developers refrain from writing postconditions
because similar to assertions requiring a high number of clauses than assump-
tions, postconditions also require a high number of clauses than preconditions.

11

Implications. Knowing that certain types of assumptions and assertions are
more (or less) common than others and how assumptions and assertions com-
pare to preconditions and postconditions, respectively, researchers can be better
informed about developers' current practices and thus can better focus their re-
search e�orts on addressing possible weaknesses in the practices. With the wide
range of usage of assumption types and assertion types in Table 3 and 4, tool
developers can incorporate this data with their tools to better infer assumptions
and assertions to assist developers.

3.3 RQ3. Non-primitive Parameters

Table 6: Factory Methods for Non-primitive Parameters

Subject Name
Prim + Non-prim Non-prim w/ Factory

Non-prim Non-prim / (Prim + Paras /
Paras Paras Non-prim) w/ Factory Paras

PexFaultLocalization 190 313 60.70% 49 25.79%

QuickGraph 168 190 88.42% 36 21.43%

linqtoroot 183 248 73.79% 47 25.68%

concolic-walk 0 403 0.00% 0 N/A

stringextensions 35 187 18.72% 0 0.00%

isuka 4 88 4.55% 0 0.00%

utilities-net 15 66 22.73% 0 0.00%

henoch 48 54 88.89% 0 0.00%

bbcode 9 57 15.79% 0 0.00%

ConcurrentList 0 16 0.00% 0 N/A

Average 37.36% 9.11%

Average(Noises) 39.11% 6.73%

Typically developers are expected to avoid hard-coding a method sequence
in a PUT to produce an object to be used for testing the method under test.
Instead, the developers are expected to promote such object as a non-primitive
parameter of the PUT. In this way, the PUT can be made more general, to
capture the intended behavior and enable an automatic test generation tool such
as Pex to generate objects of various states for the non-primitive parameter. To
determine the extent of writing such su�ciently general PUTs, we studied how
frequently developers write PUTs with non-primitive parameters. On the other
hand, having non-primitive parameters for PUTs can pose challenges for an
automatic test generation tool. Thus, developers are typically expected to write
factory methods for those non-primitive parameter types to assist automatic test
generation tools. We also studied how often developers provide factory methods
for non-primitive parameter types of PUTs.

As shown in Table 6, developers, on average, write non-primitive parameters
39.11% of the time for our subjects excluding the two noise subjects. In other
words, for every 10 parameters used by developers, 4 of those parameters are
non-primitive. Yet developers, on average, write factory methods for their non-
primitive parameters only 6.73% of the time for our subjects excluding the two

12

noise subjects. Ideally, developers should be writing factory methods close to
100% of the time when they use non-primitive parameters in their PUTs.
Implications. Knowing that the number of non-primitive parameters written
by developers is nontrivial and how infrequent developers write factory methods
for these parameters, educators can strongly communicate the importance of
writing factory methods to developers and train developers with skills of writing
factory methods. In addition, tool researchers and vendors can invest future
research e�orts for exploring e�ective tool support to assist developers to write
factory methods.

3.4 RQ4. Attributes

Table 7: PUT Counts

Subject Name Attrs
#PUTs with %non-prim

Attrs /
Assume Assert Params

non-prim param
PUTs param methods

PexFaultLocalization 50 0.30 101 67 167 118 70.24%

QuickGraph 33 0.25 7 107 118 114 85.71%

linqtoroot 3 0.03 0 74 109 97 86.61%

concolic-walk 174 2.00 0 0 87 0 0.00%

stringextensions 0 0.00 4 57 67 33 49.25%

isuka 1 0.02 17 51 54 3 5.56%

utilities-net 0 0.00 3 42 44 11 25.00%

henoch 13 0.48 0 3 27 24 88.89%

bbcode 1 0.04 9 23 17 8 30.77%

ConcurrentList 6 0.29 11 21 14 0 0.00%

Average 28.10 0.34 15.20 44.50 70.40 40.80 44.20%

Average(Noises) 7.13 0.14 6.38 47.25 56.25 36.25 46.47%

To investigate developers' practices of con�guring Pex via PUT attributes,
we studied the number of attribute, as con�guration options for running Pex,
written by developers in PUTs. The third column of Table 7 shows the average
number of attributes added per PUT. With the exception of one noise subject
concolic-walk, which repeated the same two attributes for all 87 of its PUTs,
the average number of attributes that developers added to PUTs is minimal.
Including the two noise subjects, our data indicates that a developer added 3
attributes for every 10 PUTs; however, if we calculate this estimation exluding
the two noise subjects, developers added only 1 attribute for every 10 PUTs.

Common attributes that developers added are MaxRunsWithoutNewTests and
MaxConstraintSolverTime. MaxRunsWithoutNewTests is the maximum number of
consecutive runs that do not generate a new test input before Pex terminates.
Developers commonly set this attribute to be a maximum of 5 runs. We hy-
pothesize that because most of these tests contain only one or two conditionals,
developers felt that it was unlikely for Pex to require more than 5 runs and yet
still be able to output any new test input. MaxConstraintSolverTime is the time
limit restricting Pex as it explores the execution paths of a program for each test
input that it tries to generate. Developers commonly set this attribute to be 5000

13

(a) PUT method length (b) CUT method length

Fig. 5: Method length (#LOC) of PUTs and CUTs

seconds. Similar to why developers set the attribute for MaxRunsWithoutNewTests,
tests with attribute MaxConstraintSolverTime contains few conditionals and de-
velopers felt that it is unlikely for Pex to require more time than 5000 seconds
to generate a new test input.
Implications. Knowing that developers rarely add attributes to their PUTs,
framework developers should be more motivated than before to enhance their fea-
ture set to contextually suggest or introduce attributes such as MaxRunsWithoutNewTests
and MaxConstraintSolverTime to developers.

3.5 RQ5. Characteristics of PUTs compared to CUTs

To understand PUT developer's motivation for writing PUTs instead of CUTs,
we studied the number of lines that PUTs and CUTs contain on average, re-
spectively, the compatibility of these two types of tests with automatic test
generation tools, and previous research related to this topic. According to the
outliers in the plots from Figure 5, the length of PUTs is usually less than the
length of CUTs (the length is measured by the number of lines of code in the
test method). The average method length of PUTs is 12.9 lines while the one of
CUTs is 13.9. One reason for why CUTs are longer is because developers usually
write CUTs when they want to test with a speci�c input value. For example, a
speci�c input value that we observed is a string value in the XML format. By
hardcoding such a string value, developers might miss triggering failures due to
non-XML format string values. Instead, what the developers should do is to use
PUTs and specify the speci�c input value as one of the input values that Pex
should generate.

Not only would writing PUTs assist developers in writing less code, doing
so may also help the developers trigger failures by allowing tools such as Pex

14

to generate input values that developers did not think of. Previous research [24]
on retro�tting CUTs into PUTs showed that by retro�tting 407 CUTs into 224
PUTs, developers detected 19 new faults that were not detected by existing
CUTs and increased branch coverage by 4% on average.
Implications. Knowing that PUTs are shorter to write, are easier to generate
input values for, detect more faults, and achieve higher branch coverage than
CUTs, developers who have not started writing PUTs should consider writing
PUTs in their future testing practices. Our �ndings on why developers chose to
write CUTs can also provide insight to tool developers so that their tool can
assist developers to convert CUTs to PUTs.

4 Threats to Validity

There are various threats to validity of the study, being broadly divided into
threats to construct, internal, and external validity.
Construct Validity. Threats to construct validity are concerned with the va-
lidity of the use of our chosen metrics to model properties of interest. For exam-
ple, we used the number of clauses contained in an assertion or assumption to
model its strength. The metric, the number of clauses contained in an assertion
or assumption, is an approximation to the actual strength of the assertion or
assumption, and was primarily used for ease of comparison to related work [13].
Internal Validity. Threats to internal validity are concerned with the validity
of our experimental procedure. Due to the complexity of software, faults in our
analysis tools could have a�ected our results. However, our analysis tools were
written with an associated suite of unit tests, and samples of the results were
manually veri�ed. Results from our manual analyses were con�rmed by at least
two of the authors.
External Validity. Threats to external validity are concerned with the validity
of our conclusions when applied to subjects other than those that were studied.
In other words, how well do our results generalize? We primarily focused on
projects using PUTs in the context of automated test generation, so we may not
generalize to situations outside of this setting (e.g., general usage of Theories [21]
in Java). In addition, our analysis focused speci�cally on those subject programs
equipped with PUTs written using the Pex framework, and the API di�erences or
idiosyncrasies of other frameworks may impact their usage relative to Pex. All of
our subjects are written in C#, but vary widely in their application domains and
project sizes. Finally, all of our subjects are open source software, and therefore
our conclusions may not generalize to proprietary software systems.

5 Related Work

To the best of our knowledge, our empirical study is the �rst on parameterized
unit testing in the open source wild. In contrast, without studying practices of
parameterized unit testing, previous work propose new techniques for parame-
terized unit testing. For example, Xie et al. [29] propose a technique for assessing

15

the quality of PUTs using mutation testing. Thummalapenta et al. [24] propose
the manual retro�tting of CUTs to PUTs, and show that new faults are detected
and coverage is increased after such manual retro�tting was conducted. Fraser
et al. [14] propose a technique for generating PUTs starting from concrete test
inputs and results.

Our work is related to previous work on studying developer-written formal
speci�cations such as code contracts. Schiller et al. [22] conduct case studies
on the use of code contracts in open source projects in C#. They analyzed 90
projects using Code Contracts [10] and categorized their use of various types of
speci�cations, such as null-checks, bounds checks, and emptiness checks. They
�nd that checking for nullity and emptiness are the most common types of
speci�cations. Estler et al. [13] study code contract usage in 21 open source
projects using JML [18] in Java, Design By Contract in Ei�el [19], and Code
Contracts [10] in C#. Their study also includes an analysis of the change in
code contracts over time, relative to the change in the speci�ed source. Their
�ndings agree with Schiller's on the majority use of nullness code contracts.
Furthermore, Chalin [12] study code contract usage in over 80 Ei�el projects.

Casalnuovo et al. [11] study the use of assertions in open-source projects
hosted on Github. They �nd that 69 of the top 100 most popular C and C++
projects on Github have signi�cant assertion use, and that methods containing
assertions are less likely, on average, to contain faults.

6 Conclusion

To fully leverage the power of automatic test generation tools available to devel-
opers in software industry, developers can write parameterized unit tests (PUTs),
which are unit-test methods with parameters, in contrast to conventional unit
tests, without parameters. Then developers can apply an automatic test gen-
eration tool such as Pex to generate input values for the PUT parameters. In
this way, separation of two main testing duties is well accomplished: developers
focus on specifying comprehensive program behaviors under test in PUTs while
automatic test generation tools focus on generating high-quality input values for
the PUT parameters.

To �ll the gap of lacking studies of PUTs in either proprietary or open source
development practices, we have conducted the �rst empirical study of param-
eterized unit testing in open source development practices. We have studied
hundreds of parameterized unit tests that open source developers wrote for vari-
ous open source projects. Our study �ndings provide valuable insights for various
stakeholders such as current or prospective PUT writers (e.g., developers), PUT
framework designers, test-generation tool vendors, testing researchers, and test-
ing educators.

References

1. Automatones. http://automatones.codeplex.com/.

16

2. Black Duck Open Hub code search. http://code.openhub.net.

3. concolic-walk. https://github.com/osl/concolic-walk.

4. Github code search. https://github.com/search.

5. Parameterized tests in JUnit. https://github.com/junit-team/junit/wiki/

Parameterized-tests.

6. Pexfaultlocalization. https://github.com/lukesandberg/

PexFaultLocalization.

7. Put study project web. https://sites.google.com/site/putstudy/.

8. SearchCode code search. https://searchcode.com.

9. Theories in JUnit. hhttps://github.com/junit-team/junit/wiki/Theories.

10. M. Barnett, M. Fähndrich, P. de Halleux, F. Logozzo, and N. Tillmann. Exploiting
the synergy between automated-test-generation and programming-by-contract. In
Proc. 31st International Conference on Software Engineering, pages 401�402, 2009.

11. C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert use in
github projects. In Proceedings of the 37th International Conference on Software
Engineering. ACM, 2015.

12. P. Chalin. Are practitioners writing contracts? In Rigorous Development of Com-
plex Fault-Tolerant Systems, pages 100�113. Springer, 2006.

13. H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts in
practice. In FM 2014: Formal Methods, pages 230�246. Springer, 2014.

14. G. Fraser and A. Zeller. Generating parameterized unit tests. In Proc. 2011
International Symposium on Software Testing and Analysis, pages 364�374, 2011.

15. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In Proc. ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, 2005.

16. J. V. Guttag and J. J. Horning. The algebraic speci�cation of abstract data types.
Acta Informatica, 10:27�52, 1978.

17. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576�580, Oct. 1969.

18. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface speci�cation language for Java. Technical Report TR 98-06i, Department
of Computer Science, Iowa State University, June 1998.

19. B. Meyer. Applying "design by contract". Computer, 25(10):40�51, Oct. 1992.

20. Microsoft. Generate smart unit tests for your code. Online. https://msdn.

microsoft.com/library/dn823749, 2015.

21. D. Sa�. Theory-infected: or how i learned to stop worrying and love universal
quanti�cation. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, pages 846�847. ACM,
2007.

22. T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. Case studies and tools
for contract speci�cations. In Proceedings of the 36th International Conference on
Software Engineering, pages 596�607. ACM, 2014.

23. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
Proc. 5th joint meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 263�272, 2005.

24. S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann, and J. de Halleux.
Retro�tting unit tests for parameterized unit testing. In Fundamental Approaches
to Software Engineering, pages 294�309. Springer, 2011.

17

25. N. Tillmann and J. De Halleux. Pex: White box test generation for .net. In
Proceedings of the 2Nd International Conference on Tests and Proofs, TAP'08,
pages 134�153, Berlin, Heidelberg, 2008. Springer-Verlag.

26. N. Tillmann, J. de Halleux, and T. Xie. Parameterized unit testing: Theory and
practice. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE '10, pages 483�484, New York, NY, USA,
2010. ACM.

27. N. Tillmann, J. de Halleux, and T. Xie. Transferring an automated test generation
tool to practice: From Pex to Fakes and Code Digger. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE
'14, pages 385�396, 2014.

28. N. Tillmann and W. Schulte. Parameterized unit tests. In Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-13,
pages 253�262, New York, NY, USA, 2005. ACM.

29. T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Mutation analysis of param-
eterized unit tests. In Software Testing, Veri�cation and Validation Workshops,
2009. ICSTW'09. International Conference on, pages 177�181. IEEE, 2009.

