
Head-to-Head: Which is the Better Cloud Platform
for Early Stage Start-up?
Docker versus OpenStack

Yi-Zong Ou
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: ou9@illinois.edu

Jung-Chen Chen
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: jchen186@illinois.edu

Abstract—The cloud platform has been the top choice
when technology startup companies choose the best plat-
forms to deploy their systems. This paper presents a series
of decision procedures for choosing the Infrastructure as a
Service (IaaS) in cloud computing from the perspective of
technology startup companies. We target startup compa-
nies as potential users. We have developed a decision tree
for assisting entrepreneurs and developers to choose the
IaaS according to performance and usability of Docker
versus OpenStack. We use the Yahoo! Cloud Serving
Benchmark (YCSB) as a benchmark for key-value storage.
The target databases include MongoDB and Cassandra.
The decision assists the technology startup companies to
choose the cloud platform with the best fit while developing
and deploying the web services.

I. INTRODUCTION

The decision to choose a platform is hard. Choos-
ing from two popular and outstanding cloud plat-
forms is especially hard. Cloud computing tech-
nologies have been noticed since the year 2000.
Today, more and more cloud technologies are being
developed, ranging from container based virtual-
ization to distributed data streaming processing for
social network and big data. Legacy classification of
technologies falls into three categories, from bottom
to top they are: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Ser-
vice (SaaS). When a developer starts to develop and
deploy a service. A major question comes to mind is
where and what platform to deploy the service. The
decision is critical because the platform enables a
good service even batter in terms of good response
time from uses’ perspective and time, and budget

saving from companies’ perspective. On the hand,
choosing a wrong fit technology might potential lead
a catastrophe for the company including shortage
manpower for maintaining the service, over budget
for cloud service, etc.

Start-up companies have been a main thrust for
adopting the latest technologies. For most start-
up companies, they need to make decision about
the system implemented from the very beginning.
Choosing the platform for their service is essential
for providing a successful service. The reason is that
start-up companies are typically lack of resources,
especially for the early-stage start-up companies.
Developers would put more time on the service
itself instead of putting time on constructing, tuning
and maintaining the infrastructure. A variety of
cloud services provide attractive services to run the
service application in the cloud, such as Amazon
EC2, Microsoft Azure and Google Cloud Platform.
However, some developers would want to build their
private cloud to fine-grain customized configuration
for their demands. It can achieve by leveraging
private cloud technology, such as OpenStack.

This paper presents a decision tree for assisting
developers to choose the best fit cloud platform
technologies according to their needs. We select
two emerging platforms, OpenStack and Docker,
as rivals for comparison. We adopt Yahoo! Cloud
Serving Benchmark (YCSB) to evaluate the per-
formance on key-value store. In addition, we use
the metrics from software engineering perspective
to evaluate the usability of the two targets platform.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158311389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our contributions are:

• A decision tree for start-up companies to
select the cloud platform

• Performance evaluation on MongoDB and
Cassandra on OpenStack and in a Docker
container based on YCSB benchmark.

• Identify the potential needs for start-up com-
panies to develop web services.

The paper is organized as follows. Section II
examines the related work of cloud platform, bench-
mark and decision tree technologies. Section III pro-
vides our motivation scenario. Section IV presents
our research methodology of conducting experi-
ments. Section V presents experiments configuration
and experiment data. In Section VI, we present
the decision tree for choosing cloud platform, and
Section VIII shows our conclusion.

II. BACKGROUND AND RELATED WORK

How to utilize cloud infrastructure to run an
application has become an important decision for
building successful cloud application. Modern cloud
infrastructure uses virtualization to isolate applica-
tions and on-demand allocate the resources. With
system hypervisor, users can create virtual machines
and allocate the resource. However, it is expensive
for a hypervisor to run multiple OS on a single
physical machine to satisfy the isolation between
each applications [1]. By contrast, a container is
a light weight process level virtualization which
improves performance and reduces the start-up time
[2]. Many papers have studied the performance of
virtual machines compared with the Linux container
[1], [3]–[7]. Containers perform better than or equal
to virtual machine in almost all cases [4]. The issues
with virtual machines are the start-up speed and
running a whole system in order to get isolation
[6]. Docker is an open source platform and relies
on Linux containers (LXC) with high level APIs,
which provides a faster way for developers to deploy
applications inside containers [8]. Since Docker
images do not need a complete boot of a new
operating system, it provides a lightweight approach
to run application on shared compute resources [9].
The research [7] has shown a significant difference

between boot speed for a KVM hypervisor and
a Docker container. Furthermore, Docker Machine
can help developers to set up Docker on a variety
of cloud platforms quickly [10]. Docker SWARM
[11], a native clustering tool for Docker, is recently
released for gathering several Docker Engines into a
single, virtual host. It allows swapping in powerful
backends for scaling production deployments . Simi-
lar to Docker, OpenStack is an open source software
that allows developers to deploy cloud infrastructure
and provide tools for managing virtual machines. In
addition, OpenStack is scalable and equipped hy-
pervisors to support visualization [12]. This makes
OpenStack an important role as a cloud provider
[13], [14]. Since OpenStack is one of the most
popular open source projects as well as Docker,
it is hard to determine which platform is better
[15]. The decision can be done by the users’ pref-
erence of storage style and how the infrastructure
is to be deployed [16]. The performance evaluation
of OpenStack with Hadoop shows the results that
virtual network performance of the multi-host plan
has been greatly improved compared to the single-
host plan [17]. The performance between Eucalyptus
and OpenStack are compared by the BYTE UNIX
benchmark suit [18].

There are numerous benchmarks for examin-
ing the cloud platform from different perspectives.
Among of them, YCSB [19] is one of the well-
known benchmark of key-value data store. YCSB
supports most of key-value store databases. It pro-
vides multiple types of workload which represent
different scenarios of the key-value store. It also pro-
vides users to write script for customized workload.
We use YCSB as the benchmark in our experiments.

Choosing one among candidates is always hard.
Using decision tree is one method to support the
decision making process. Many research areas has
this common demand. For example, the paper [20] is
about whether to use P2P technology for the service.
The paper [21] uses the concept from decision
tree to construct a robust face detection. We use
a decision tree to support developers to select the
cloud platform for their developed services.

1) Docker: Docker is an open platform which
is designed to develop, ship, and run applications



faster by combining a lightweight container virtu-
alization platform with workflows. There are two
main components of Docker. The first one is Docker
which is the open source container virtualization
platform. The second one is Docker Hub which is
the Software-as-a-Serive Platform used for sharing
and managing Docker containers. Docker is written
in Go and the architecture of Docker consists of
a client and a server as shown in Figure 1. The
Docker client is the user interface to Docker and
user interact with the Docker daemon through the
Docker client. Docker client can run on the same
host with the Docker daemon, or connect a Docker
client to a remote Docker daemon via sockets or
a RESTful API. A Docker image is used to create
Docker containers and consists a series layers which
Docker uses union file system to combine these
layers into a single and coherent image. The union
file systems can building blocks for containers and
the variants used for this task including AUFS, btrfs,
vfs, and DeviceMapper. As a result, Docker can
be a lightweight container by adding or updating
the specific layers rather than replacing the whole
image. Docker registries are the distribution com-
ponent of Docker for holding images. A Docker
container is created from an image and includes an
operating system, user-added files, and meta-data.
In addition, it is an isolated and secure application
platform which can run an application.

Host

Docker Daemon

Container 1 Docker Registries 
Docker 
Client

Image N

Image 1

...

...

Application

Container N

Application

Fig. 1: The architecture of Docker

2) OpenStack: OpenStack is an open source
cloud computing platform. In the legacy classi-
fication of cloud computing technologies, Open-
Stack falls into the category of Platform as a Ser-
vice (PaaS). Openstack is currently managed by

OpenStack Foundation and developed by developers
world-wide. OpenStack is a collection of tools to
manage the cloud computing environment. In this
section, we introduce a few major components of
OpenStack. OpenStack is organized by nine key
component. Nova is also called computing node. It is
for hosting the virtual machines. Swift is dedicated
for objects and files storage. Cinder is for block
storage management. Neutron node is related to
network service. Horizon is the web interface for
managing the whole system, such as creating virtual
machine, configuring access group. Glance provides
the snapshot services of the virtual machine. Users
can use the snapshot of a machine to create another
virtual machine with same environment. This is
similar to the user of Docker which can ship and
run the container on other Docker system.

A. MongoDB

MongoDB is an open-source document-oriented
database with a data structure composed of field and
value pairs. A record in MongoDb is a document
which is similar to a JSON object with dynamic
schemas. MongoDB supports for embedded data
models so that it reduces I/O activity to reach high
performance. MongoDB uses sharding to deal with
large data sets and provide high throughput opera-
tions. Sharding is to scales horizontally that divides
the data sets and then distributes the data across
servers. Each server is an independent database and
all of the server gather together to be a single logical
database [22].

B. Cassandra

The Apache Cassandra database is a row-oriented
database [23]. Cassandra is designed to support large
data sets in an efficient way. Cassandra is capable of
running on multiple transparently. Cassandra stores
data as multidimensional hash table. It is useful to
add or change features without disrupting service.
This schema-free characteristic can support an Agile
development. Cassandra uses virtual nodes, which
enables to rebuild a dead faster and improves the
heterogeneous machines in a cluster. That is, users
can decide a a certain number of vnodes to smaller
or larger machines [24].



III. MOTIVATION AND PROBLEM STATEMENT

It is difficult for developers or technology start-
up entrepreneurs to choose the appropriate system
because of the large variety when they consider
virtualization technology platforms for hosting their
web services. Successful start-up companies such
as Facebook and Twitter have millions of users
and comprehensive cloud infrastructure to sustain
their growth. For those startups who do not have
sufficient human and financial resources, it is nec-
essary for them to select the most suitable cloud
infrastructure technology to create and deploy their
cloud services. Furthermore, those early-stage start-
ups may face shortage of manpower with relatively
stringent development time. In order to choose a
feasible cloud platform, it is important to consider
the performance, feasibility, usability, scalability
and maintainability. Application developers have to
match their workload requirements to the best suited
cloud data serving system. Besides, they needs to
examine the trade-off between various conditions.
These motivates us to evaluate the performance of
candidate cloud infrastructures: Docker and Open-
Stack. Moreover, a decision tree can help the users
to choose the most suitable cloud infrastructure. By
following the proposed decision tree, developers and
entrepreneurs can select the best-fit cloud infrastruc-
ture.

IV. METHODOLOGY

In this paper, we present the research method-
ology to construct the decision tree. We examine
the different architectural decisions that are made
by cloud system. Then, we decide the degree of
evaluation and focus on its effect on performance
and usability. After benchmarking the systems, we
explain the benchmark results. Finally, we choose
the metrics for evaluating the usability to make our
decision tree completely well organized.

A. Degrees of Evaluation

We choose two representative degrees for evalua-
tion: performance and usability. For start-up compa-
nies, they may not have sufficient traffic to sustain
a huge private infrastructure at the early stage.
Though, they can use the public cloud, companies

would have their own private cloud under the control
of the IT department. With private cloud, it can
maximize and optimize the utilization of existing
tools behind the firewall. In this case, they needs to
make decision to choose a cloud platform for their
services. For start-up companies that devote into the
social network and data processing, they also use
key-value store as their database to provide their
service. On the other hand, usability is essential for a
successful service. By classifying a series of metrics,
it can choose the candidates of the components
based software development [25]. We will give a
set of metrics to construct the decision tree in the
following section.

B. Performance Evaluation

We choose the YCSB benchmark for evaluating
the performance of OpenStack and Docker. The
YCSB is the open source benchmark tool that facili-
tates performance comparisons of the cloud systems
which provide online read and write access to data.
The YCSB Client, an extensible workload generator,
which can be used to load datasets and execute
workloads across a variety of systems. Besides,
YCSB offers a set of Core workloads that are basic
benchmarks for cloud systems and these workloads
can be executed by the YCSB Client. Table I shows
the configuration of YCSB Core workloads [19].

C. Usability

Usability can be divided into five categories
according to ISO 9126 including Understandability,
Learnability, Operability, Attractiveness, and Usabil-
ity Compliance. Each of them is defined in the ISO
9126. Based on the research work [25], we focus
more on the metrics especially for small scale start-
up companies. Fully understanding the demand of
software development for start-up companies that
are beyond the scope of this paper. We use heuristic
approach to decide the possible metrics to measure
cloud platform for the small companies. The chosen
metrics include:

• Quality of Documentation: The quality met-
rics include contents of manuals, effective-
ness of manuals, content of demos, contents
of help system, and effectiveness of help



TABLE I: Workloads of YCSB Benchmark

Workload Description Ratio Purpose
A Update heavy workload Read/update ratio: 50/50 Session store records recent actions

B Read mostly workload Read/update ratio: 95/5 Photo tagging; add a tag is an update, but most operations are to read tags

C Read only Read/update ratio: 100/0 User profile cache

F Read-modify-write Read/read-modify-write ratio: 50/50 User database

system. We will evaluate these metrics based
on the materials provided in the relative
websites, demos, and community forums.

• Complexity of the Design: The complexity
metrics include ease of building the plat-
form on the physical machine, requirement
of physical machine, and maintainability.

D. Decision Tree

Decision tree has been used in many decision
support system [26], [27]. For example, a factory
uses decision tree to decide the investment on as-
sets. Some decision trees use probability to decide
the favor branchesc̃iteyam2001intelligent. By using
the probability module, users measure the expecta-
tion values and makes the decision based on the
measured values. Rather than using the probability
model on the branches to create the decision tree,
we aim to develop the generic decision tree for
start-up companies to choose their suitable platform.
Besides, a leaf of the decision tree is a choice to
select one of the best cloud platforms. As a result,
users can simply follow the decision tree to decide
which cloud platform is suitable for their needs and
enable them to perform their service in the future.

As Figure 2 shown, the procedures for construct-
ing the decision tree are maded by analyzing a
variety of the software development requirement.
The requirements facilitate the metrics for both
performance and usability. In addition, we decide
the both performance and usability metrics in order
to construct the decision tree later. After we create
the metrics, we run a set of experiments based on the
selected benchmark on each platform. We examine
it whether the collected data is sufficient to construct
the decision tree. If it is insufficient to construct the
tree based on the experiment results. We examine

what the missing information is. Finally, we address
how to construct the decision tree in Section VI.

Analyze  the software  development  requirement  for  early  
stage  start-‐up  companies

Decide  usability  metrics

Decide  performance  evaluation  metrics

Run  the  experiment, collect  data  and  analyze  data

Investigate  the  usability  metrics  based  on  the  website,  demo,  
manual  and  our  experience  during  the  experiments

Is  the  collected  data  is  
sufficient  to  construct  the  

decision  tree?

Construct  the  decision  tree

Fig. 2: Decision Tree Construction Procedure

V. EXPERIMENTS

A. Configuration

We use YCSB to evaluate the performance run-
ning both Cassandra and MongoDB on OpenStack
and Docker. In order to fairly evaluate the perfor-
mance of both databases on both cloud platform,
we choose a physical server to fix the variations
of hardware device. During the duration of running
benchmark, we guarantee that there is only one
benchmark that runs on our system because disks are
usually the bottleneck in the system, especially for
disk measurement. We deploy our system on a single
machine to design a decision tree for an early-stage
startups. The hardware and software configurations
of the experiments are shown as follow:



• Server: Dell Precision Tower 7810

• Processors: Intel Xeon Processor E5-2630 v3
(8C, 2.4GHz, Turbo, HT, 20M, 85W, with
Intel-VT enable

• Memory: 32GB DDR4 at 2133MHz

• Hard Disk: 2TB 3.5” Serial-ATA (7,200
RPM)

• Operation System: Ubuntu Serever 14.04.0
64 bit

• Cloud platform: OpenStack Horizon

• VM OS: CentOS 7 64 bit

• Cloud platform: Docker version 1.5

• Container: CentOS 7 64 bit

• Key-Value Store: MongoDB, version 2.4.9

• Key-Value Store: Cassandra version 1.2.19

• Benchmark: YCSB version 0.1.4

B. Benchmark Workloads

We design six sets of experiments for the per-
formance evaluation. Table II shows the details
configurations of each experiment. The first four
sets of experiments are named group one and the
last two sets of experiments are named group two.
In group one experiments, we explore the perfor-
mance of each key-value store on each platform
under different workloads provided by YCSB. The
difference between the first four experiments is that
the workloads for benchmarking. For the group 2
experiments, we explore flavors of a virtual ma-
chine that affects performance of each key-value on
OpenStack. A flavor in OpenStack represents the
capabilities of the virtual machine. For example, for
VM with default large flavor, the VM is equipped
with four virtual processors, 8 GB RAM and 80 GB
disk. Since the overall hardware resource is limited,
the number of virtual machine on the OpenStack
will depend the rest of available resource. For each
experiments on group 1, we specify six throughput
values ranging from 5000, 10000, 15000, 20000,
25000 and 30000. For each experiment in group
2, we specify six throughput values ranging from
1000, 2000, 3000, 4000 and 5000 because of the
limited hardware resource assigned to the VM. We

TABLE II: Experiment Configurations

Experiment Workload Database Platform

1 A Both OpenStack & Docker
Large flavor.

2 B Both OpenStack & Docker
Large flavor.

3 C Both OpenStack & Docker
Large flavor.

4 F Both OpenStack & Docker
Large flavor.

5 A MongoDB OpenStack: Large,
medium and small flavor.

6 A Cassandra OpenStack: Large,
medium and small flavor.

mark each data point of each line sequentially based
on the given throughput. Finally, we use the overall
throughput field from the individual log file to mark
the actual throughput during the experiment. The
operation count and record count are both set at
1,000,000 to have longer testing time.

C. Experiment 1

In the experiment 1, we examined Workload
A with 50 percent reads and 50 percent updates.
We generate latency versus throughput curves by
trying different target throughput to measure the
resulting latency for each cloud serving system. As
the Figure 3 shows, MongoDB in a Docker container
achieved best throughput and the lowest latency for
reads. MongoDB on OpenStack has low latency for
reads and it reaches the second highest throughput.
The update operations show that MongoDB in a
Docker container provides the highest throughput
though the latency for updates is not the lowest one.
Cassandra in a Docker container achieved the lowest
latency for updates.

D. Experiment 2

We ran Workload B with 95 percent reads and 5
percent updates. As the results shown in Figure 4,
MongoDB on OpenStack peaked at 29835 opera-
tions/sec with lowest latency for reads. On the other
hand, MongoDB in a Docker container reached
23016 operations/sec. Both of them have stable
latency for reads. For update operations, MongoDB



0 5000 10000 15000 20000 25000
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

6000
R

e
a
d
 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(a) Read operations

0 5000 10000 15000 20000 25000
Throughput (ops/sec)

200

300

400

500

600

700

800

900

1000

U
p
d
a
te

 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(b) Update operations

Fig. 3: Experiment 1 on Workload A–update heavy

on OpenStack still reached best throughput and the
latency decreased as offered throughput increased.

E. Experiment 3

Workload C is 100 percent read. Either Mon-
goDB in a Docker container or on OpenStack out-
performed Cassandra in Docker and OpenStack. As
the Figure 5 shown, Cassandra’s latency for reads
with same configuration on both OpenStack and
Docker had different results. Cassandra in a Docker
container reached 12182 operations/sec but Cassan-
dra on OpenStack performed 4424 operations/sec.

0 5000 10000 15000 20000 25000 30000
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

6000

7000

R
e
a
d
 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(a) Read operations

0 5000 10000 15000 20000 25000 30000
Throughput (ops/sec)

200

400

600

800

1000

1200

1400

1600

U
p
d
a
te

 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(b) Update operations

Fig. 4: Experiment 2 on Workload B–read heavy

F. Experiment 4

We ran workload F which is the read-modify-
write workload with 50 percent reads, 50 percent
read-modify-write. In this workload, the YCSB
client reads a record, modify it, and write back to the
database. The results are shown in Figure 6. As the
offered throughput increased, the operation latency
of MongoDB on both Docker and OpenStack in-
creased. MongoDB on a Docker container achieved
the best throughput for reads, updates, and writes
and the lowest latency for reads and writes.



0 5000 10000 15000 20000
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

6000

7000

8000
R

e
a
d
 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(a) Read operations

0 5000 10000 15000 20000
Throughput (ops/sec)

200

400

600

800

1000

1200

U
p
d
a
te

 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(b) Update operations

0 5000 10000 15000 20000
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
e
a
d
-m

o
d
if
y
-w

ri
te

 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

(c) Write operations

Fig. 6: Experiment 4 on Workload F–read-modify-write

0 5000 10000 15000 20000 25000 30000
Throughput (ops/sec)

0

1000

2000

3000

4000

5000

R
e
a
d
 l
a
te

n
cy

 (
u
s)

Docker MongoDB
Docker Cassandra
OpenStack MongoDB
OpenStack Cassandra

Fig. 5: Experiment 3 on Workload C–read only

G. Experiment 5 and Experiment 6

For group two experiments, Figure 7 and Fig-
ure 8 depict the different operation latency ver-
sus throughput on different flavor virtual machines
on MongoDB and Cassandra respectively. In both
group two experiments we use the default number
of virtual processor and amount of RAM from the
default flavors including large, medium and small.
We change the disk amount of all flavors to 80 GB
in order to have consistent and enough size to store
the large record counts of the YCSB benchmark.

From both Figure 7 and Figure 8, we can see fla-
vors affect the read and update latency dramatically.
For VM with small flavor, given the throughput of
5000, YCSB can only run at less than 3000 oper-

ations per seconds. The VM with better hardware
resources can significant lower the Read and Write
latency. This is true on both Experiment 5 and
Experiment 6. Usually, flavors or also called size
of virtual machine affect the operation cost. Public
cloud providers such as Amazon EC2 or Microsoft
Azure provide higher price for a better equipped
virtual machine.

H. summary

Figure 3, Figure 4, Figure 5 and Figure 6 show
the results of experiment 1 to 4 respectively. For
MongoDB on group one experiment, MongoDB
performs better on the Dokcer than the OpenStack.
All the VM used in group one are large flavor. These
experiment results would be affect by the insufficient
hardware resources or the performance degradation
of the virtual machine. We observe the similar
results of Cassandra on the group 1 experiments.
Moreover, for Cassandra on OpenStack platform,
YCSB cannot achieve the assigned throughout on
most of the data points. To address this issue, we
decrease the assigned throughput range on the group
two experiments.

VI. DECISION TREE DEVELOPMENT

The proposed decision tree enables developers to
choose the suitable cloud technology. We follow the
criteria of performance and usability to construct
the decision tree. For example, on the performance
criteria, we use key-value store benchmark YCSB on



500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Throughput (ops/sec)

300

350

400

450

500

550
R

e
a
d
 l
a
te

n
cy

 (
u
s)

Small
Medium
Large

(a) Read

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Throughput (ops/sec)

500

520

540

560

580

600

620

640

660

680

U
p
d
a
te

 l
a
te

n
cy

 (
u
s)

Small
Medium
Large

(b) Update

Fig. 7: Experiment 5: Flavors of VM on MongoDB

both platforms. In addition, we will analyze what are
the demands of start-up companies for their cloud
services. Based on this demand, we analyze these
metrics of each criteria and derive the decision tree.
We present the usability analysis and decision tree
in the following sections.

A. Usability Analysis

We analyze on the the quality of documentation
and the complexity of operability of Docker and
OpenStack. We examine the online documentations
[28] [29] and official online forum [30]- [31] of both
Docker and OpenStack for investigation. According
to the [25], we choose the metrics listed in Table III.

0 1000 2000 3000 4000 5000
Throughput (ops/sec)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

R
e
a
d
 l
a
te

n
cy

 (
u
s)

Small
Medium
Large

(a) Read

0 1000 2000 3000 4000 5000
Throughput (ops/sec)

200

400

600

800

1000

1200

U
p
d
a
te

 l
a
te

n
cy

 (
u
s)

Small
Medium
Large

(b) Update

Fig. 8: Experiment 6: Flavors of VM on Cassandra

Each metrics is scored that ranges from one to three.
One represents the positive to arguments of the
metric. Table III presents the scores of both Docker
and OpenStack on each metric of our investigation.

We give Docker higher rank than OpenStack.
For the two metrics on manual, although Docker is
relatively young and simpler in terms of product and
design in comparison to OpenStack, the documenta-
tions of Docker are readable and effective. Consid-
ering the design complexity and development age,
OpenStack has completely official documentations
than Docker. However, it is harder for the first time
reader to decide what they need on OpenStack doc-
umentation than Docker. On the contents of demo,



TABLE III: Qualities of documentation

Metrics Docker OpenStack
Contents of manual 3 2

Effectiveness of manual 3 2

Contents of demo 3 1

Contents of help system 3 3

Effectiveness of help system 3 3

we rank Docker higher than OpenStack. Users can
simply follow the guides on Docker documentation
and have a workable Docker system. However, it is
difficult for developers to set up a workable multiple
or single node OpenStack system. It is the reason
why we rank OpenStack lower than Docker in terms
of contents of demo. Docker provides a series of
intuitive and understandable tutorials for developers
to get hands on quickly and painless. According to
our experience, documentation on Docker is more
self-contained and does not require user to spend
extra efforts on finding the relevant details.

For operability, we choose the ease of setup,
requirements of hardware resource and maintain-
ability. We ranks Docker higher than OpenStack
in terms of the installation process. It is easy to
get Docker run on a server or simply a laptop on
Linux system. It is difficult to install OpenStack
even for the single node installation. At first time,
we had issues on installing OpenStack on Google
cloud platform. We assume that it is not practical
to setup another cloud environment on the Google
cloud platform. Then, we switch to deploy on a
physical server. It is difficult to install OpenStack
based on the official manual. During the installation,
we also found an installation bug and then reported
to the official.

OpenStack is different from Docker on the level
of virtualization. OpenStack uses hardware level
virtualization in comparison to the process level
virtualization for Docker. For the hardware resource
part, OpenStack relies on decent hardware for in-
stallation. For single installation from the Ubuntu
Cloud Installer, it recommends the minimum instal-
lation should have 8 CPUs, 12 GB memory (hard
constraints) and 100GB capacity of disk. There is
no official minimum requirement on hardware for

TABLE IV: Operability

Metrics Docker OpenStack
Ease of setup 3 1

Level of hardware 1 3

Ease of Maintainability 2 3

Docker. In the experiment, we can deploy Docker
on a virtual machine with 512MB memory. On the
maintainability, both platforms provide command
line tools. OpenStack provides official web based
GUI dashboard for managements. It would be easier
for most of the management tasks. As a result, we
rank OpenStack higher on maintainability.

B. Decision Tree Construction

We have evaluated the usability based on qual-
ities of documentation and operability. Besides,
we use YCSB to benchmark the key-value store:
MongoDB and Cassandra on both Docker and
MongoDB. We use the above mentioned analysis
and experiments to design the seven questions for
construction the decision tree. Based on answering
these questions sequentially, developers have a clear
picture to make a decision between Docker or Open-
Stack.

As Figure 9 shown, the decision tree is to choose
the cloud platform between Docker or OpenStack.
We provide a skew tree because there are two
platforms to be chosen: Docker or OpenStack. The
question nodes are arranged by importance of the
decision. If the question is more important, then
the user gets the decision earlier. For example,
for the first question, users are asked whether the
application runs on Windows platform. If the answer
is yes, then the user chooses OpenStack. The reason
is that Docker is based on the LXC technologies
on Linux kernel. As a result, there is not easily to
run Docker on Windows operating system. Though
the Docker designers provide a helper application
called Boot2Docker which creates a Linux virtual
machine on Windows to run Docker, we got some
bugs during the experiments.

The answer of each question does not inherit
the decision characteristics from previous questions.
For example, the left most and right most leaf are



OpenStack. For the left most leaf on OpenSatck,
it does not contradict to the right most leaf on
OpenStack. For example, the left most leaf does not
necessary need to take the left branch of the first
question.

The second question is about hardware resource.
Based on the Table IV, Docker almost has no
hardware limitation. The third question is about the
performance, Docker has better performance due
to its design of light weight virtualization. For the
fourth question, Docker is easier to maintain. For the
sixth question, OpenStack is chosen since it has low
level virtualization technology. The final decision is
the uniqueness of Docker that the Docker container
can be shipped and runs where it is on another
Docker. Although OpenStack has functions to take
the snapshot of the VM and shares the snapshot with
others to replicate the service and environment, it
is more heavy weight than the Docker container.
Hence, we choose Docker when developers require
build-and-ship frequently.

Does  the  service  run  on  
Windows?

Does  the  company  has  
low  hardware  budget?

Does  the  IT  has  limited  server  
administration  resource?

Is  the  scalability  of  the  service  
a  major  concern?

Does  the  developers  require  
to  partition  the  HW  resources?

Is  the  performance  of  the  service  
a  major  concern?

Does  the  developers  require  to  ship  the  
service  and  environment  frequently?

OpenStack

Docker

Docker

OpenStack

Docker

DockerOpenStack

OpenStack

YesNo

YesNo

YesNo

YesNo

YesNo

YesNo

YesNo

Fig. 9: Decision Tree of Docker versus OpenStack

VII. DISCUSSION

We design the decision tree based on the anal-
ysis and experiments. In this section, We discuss a
few issues during the analysis and experiments and
potential improvement.

Docker and OpenStack use different level of
virtualization which process level virtualization and
hardware level virtulization respectively. In this pa-
per, we do not compare two technologies on differ-
ent levels. That is, we do not evaluate OpenStack
versus VMWare or QEMU versus Xen Hypervisor.
The reason we compare Docker versus OpenStack is
that both platforms are emerging and have potential
to dominate on each domain. Therefore, it is intu-
itive and interesting to compare both technologies.

We evaluate the performance on Docker and
OpenStack from the aspect of key-value store per-
formance. We choose YCSB benchmark for Mon-
goDB and Cassandra. MongoDB outperforms Cas-
sandra on the chosen four workloads based on
the experiments results. There are a variety of
benchmarks such as Google PerfKit; however, we
cannot investigate all the potential benchmarks due
to the limited time. As a result, the experiments are
sufficient to understand the performance difference
between Docker and OpenStack with the database
aspects. Future works include using other bench-
mark from different aspects and run all workloads
provided in YCSB. In addition, we can fully dis-
cover the potential on OpenStack and Docker on
a fully distributed environment. We can benchmark
Docker containers under different resource alloca-
tions as well.

For the usability analysis, we analyze each plat-
form based on the official website, user forum and
our user experiences. There are software engineer-
ing metrics which can be used for the potential
improvements. One difficulty during the experiment
is that having an objective score for each metrics.
For example, it is infeasible for us to count the
number of unanswered questions on the user forum.
However, this might be an index for evaluating how
active the forum. If the forum does not provide
sufficient statistics, it is hard to evaluate the system.

VIII. CONCLUSION

Start-up companies are important thrusts of in-
novation. To become a successful start-up company,
entrepreneurs and developers need to make tons
of important decisions. Among all the important
decisions, choosing the deployed platform is one of



the hardest and crucial decision when develop the
service. We present a decision tree for developers
to choose the cloud platform based on the exper-
iments to benchmark key-value store performance
and analysis on the usability. Based on the evalu-
ation and the analysis, we design the decision tree
with seven questions to assist developers to make a
right decision to meet their needs.

ACKNOWLEDGMENT

We appreciate Professor Indranil Gupta for dis-
cussion the theme and scope of the paper, Muntasir
Raihan Rahman for the discussion on virtualization
backup mechanisms and Faraz Faghri for discussion
on levels of virtualization and comparisons between
each virtualization technology. We thank all of the
reviewers and students at CS 525 Advanced Dis-
tributed System, and Professor Indranil Gupta for
their time and constructive suggestions.

REFERENCES

[1] M. J. Scheepers, “Virtualization and containerization of appli-
cation infrastructure: A comparison,” 2014.

[2] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs con-
tainerization to support paas,” in Cloud Engineering (IC2E),
2014 IEEE International Conference on. IEEE, 2014, pp.
610–614.

[3] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J.
Kim, “Performance comparison analysis of linux container and
virtual machine for building cloud,” 2014.

[4] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An up-
dated performance comparison of virtual machines and linux
containers,” technology, vol. 28, p. 32, 2014.

[5] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,”
in Parallel, Distributed and Network-Based Processing (PDP),
2013 21st Euromicro International Conference on. IEEE,
2013, pp. 233–240.

[6] D. Strauss, “The future cloud is container, not virtual ma-
chines,” Linux Journal, vol. 2013, no. 228, p. 5, 2013.

[7] Kvm and docker lxc benchmarking with openstack.
[Online]. Available: http://bodenr.blogspot.com/2014/05/
kvm-and-docker-lxc-benchmarking-with.html

[8] D. Bernstein, “Containers and cloud: From lxc to docker to
kubernetes,” IEEE Cloud Computing, no. 3, pp. 81–84, 2014.

[9] Do i need openstack if i use docker? [Online]. Available:
https://www.mirantis.com/blog/need-openstack-use-docker/

[10] Docker launches its container orchestration tools.
[Online]. Available: http://techcrunch.com/2015/02/26/
docker-launches-its-container-orchestration-tools/

[11] Docker swarm. [Online]. Available: https://docs.docker.com/
swarm/

[12] R. Nasim and A. J. Kassler, “Deploying openstack: Virtual
infrastructure or dedicated hardware,” in Computer Software
and Applications Conference Workshops (COMPSACW), 2014
IEEE 38th International. IEEE, 2014, pp. 84–89.

[13] Openstack. [Online]. Available: http://www.openstack.org/
[14] R. Kumar, N. Gupta, S. Charu, K. Jain, and S. K. Jangir,

“Open source solution for cloud computing platform using
openstack,” International Journal of Computer Science and
Mobile Computing, vol. 3, no. 5, pp. 89–98, 2014.

[15] The new stack and linux foundation survey: Openstack
and docker are the most popular open source
projects. [Online]. Available: http://thenewstack.io/
the-new-stack-and-linux-foundation-survey-openstack-and-docker\
penalty-\@M-are-the-most-popular-open-source-projects/

[16] A. Barkat, A. D. d. Santos, and T. T. N. Ho, “Open stack
and cloud stack: Open source solutions for building public
and private clouds,” in Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2014 16th International
Symposium on. IEEE, 2014, pp. 429–436.

[17] Q. Xu and J. Yuan, “A study on service performance evaluation
of openstack,” in Broadband and Wireless Computing, Commu-
nication and Applications (BWCCA), 2014 Ninth International
Conference on. IEEE, 2014, pp. 590–593.

[18] D. Steinmetz, B. W. Perrault, R. Nordeen, J. Wilson, and
X. Wang, “Cloud computing performance benchmarking and
virtual machine launch time,” in Proceedings of the 13th annual
conference on Information technology education. ACM, 2012,
pp. 89–90.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 2010, pp. 143–154.

[20] M. Roussopoulos, M. Baker, D. S. Rosenthal, T. J. Giuli,
P. Maniatis, and J. Mogul, “2 p2p or not 2 p2p?” in Peer-
to-Peer Systems III. Springer, 2005, pp. 33–43.

[21] P. Viola and M. J. Jones, “Robust real-time face detection,”
International journal of computer vision, vol. 57, no. 2, pp.
137–154, 2004.

[22] The mongodb 2.4 manual. [Online]. Available: http://docs.
mongodb.org/v2.4/

[23] Cassandra architecture in brief. [Online]. Avail-
able: http://docs.datastax.com/en/cassandra/1.2/cassandra/
architecture/architectureIntro c.html

[24] E. Hewitt, Cassandra: the definitive guide. ” O’Reilly Media,
Inc.”, 2010.

[25] M. Bertoa and A. Vallecillo, “Usability metrics for soft-
ware components,” in 8th International Workshop on Quan-
titative Approaches in Object-Oriented Software Engineering
(QAOOSE2004), Oslo, Norway, 2004.

[26] R. Sharda, S. H. Barr, and J. C. MCDonnell, “Decision
support system effectiveness: a review and an empirical test,”
Management science, vol. 34, no. 2, pp. 139–159, 1988.

[27] R. J. Kuo, C. Chen, and Y. Hwang, “An intelligent stock
trading decision support system through integration of genetic
algorithm based fuzzy neural network and artificial neural
network,” Fuzzy sets and systems, vol. 118, no. 1, pp. 21–45,
2001.

[28] Docker documentations. [Online]. Available: https://docs.
docker.com/

http://bodenr.blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html
http://bodenr.blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html
https://www.mirantis.com/blog/need-openstack-use-docker/
http://techcrunch.com/2015/02/26/docker-launches-its-container-orchestration-tools/
http://techcrunch.com/2015/02/26/docker-launches-its-container-orchestration-tools/
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
http://www.openstack.org/
http://thenewstack.io/the-new-stack-and-linux-foundation-survey-openstack-and-docker \penalty -\@M -are-the-most-popular-open-source-projects/
http://thenewstack.io/the-new-stack-and-linux-foundation-survey-openstack-and-docker \penalty -\@M -are-the-most-popular-open-source-projects/
http://thenewstack.io/the-new-stack-and-linux-foundation-survey-openstack-and-docker \penalty -\@M -are-the-most-popular-open-source-projects/
http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/v2.4/
http://docs.datastax.com/en/cassandra/1.2/cassandra/architecture/architectureIntro_c.html
http://docs.datastax.com/en/cassandra/1.2/cassandra/architecture/architectureIntro_c.html
https://docs.docker.com/
https://docs.docker.com/


[29] Openstack documentations. [Online]. Available: docs.
openstack.org/

[30] Docker forum. [Online]. Available: https://forums.docker.com/
[31] Openstack forum. [Online]. Available: https://ask.openstack.

org/zh/questions/

docs.openstack.org/
docs.openstack.org/
https://forums.docker.com/
https://ask.openstack.org/zh/questions/
https://ask.openstack.org/zh/questions/

	Introduction
	Background and Related Work
	Docker
	OpenStack

	MongoDB
	Cassandra

	Motivation and Problem Statement
	Methodology
	Degrees of Evaluation
	Performance Evaluation
	Usability
	Decision Tree

	Experiments
	Configuration
	Benchmark Workloads
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5 and Experiment 6
	summary

	Decision Tree Development
	Usability Analysis
	Decision Tree Construction

	Discussion
	Conclusion
	References

