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ABSTRACT

Protein domains are three-dimensional arrangements of atomic structure that

are recurrent in the proteomes of organisms. Since the three-dimensional

structure of a protein determines its function, it is the fold, much more than

the underlying protein sequence and underlying chemistry, that is evolution-

arily conserved. We are interested in probing the history of life with these

domain structures and glimpsing qualitative changes over time by studying

a dynamic model of protein evolution. Using standard phylogenetic methods

and a census of protein domain structure in hundreds of genomes, we have

reconstructed phylogenetic trees of protein domains, defined using the Struc-

tural Classification of Proteins (SCOP), where the nodes are folds or fold su-

perfamilies (FSFs), the character vector for each node is a list of abundances

of said fold or FSF across a range of species that spans all three superking-

doms of life, and the character states are linearly polarized by abundance;

higher abundance within and among species equates to older structures and

determines tree structure.

Here we explore at what rate fold or FSF variants and new folds or FSFs

appear in evolution. We also explore what collective model of proteome

evolution explains such rates. Briefly, what are the dynamics of change? A

set of birth-death differential equations was selected to capture the change of

interest, with one set for folds and another for FSFs. The models assume that

at any given moment there are a certain number of different folds or FSFs,

with various abundances, and as each fold or FSF diversifies there are slight

changes in the folds or FSFs, producing fold or FSF variants. Eventually as

the variants continue to diversify and change as well, a new fold or FSF is

born. Thus, there are two rate parameters in each model: the growth rate

of fold or FSF variants and the rate of appearance of new folds or FSFs.

The model governs the rate change of the average total abundance of a fold

or FSF with time. It is fit to the tree so only those fold or FSF transitions
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actually present in the tree are assumed possible in the equations. It assumes

a global perspective: the total abundance of a fold or FSF is that of the fold

or FSF across all species, not within one organism. This perspective is used

to properly discount terms of horizontal transfer in a birth-death model since

such a transfer contributes no new folds or FSFs to the net abundance across

all organisms.

Our model determines 1) that there is a tight connection between the his-

tory of folds and FSFs, 2) that the corresponding transition probabilities

to new variants of a fold experienced a sharp increase just as the transition

probabilities to new folds experienced a steep decline and 3) that this si-

multaneous sharp increase and decline is explainable by and consistent with

the combinatorial explosion of structural domains, referring to the period

of high combination and rearrangement of domains and distribution of these

new combinations in novel lineages, and the rise of organismal diversification.

Our simulations suggest a picture of the past in which exploration of protein

structure space proceeds much like that of a budding field of knowledge: first,

coarse grain discoveries are made, followed by fine-grain elaboration of each

once the coarse-grain discoveries have been exhausted.
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CHAPTER 1

BACKGROUND

1.1 The Hierarchy of Protein Structure

The basic biological machinery inside living things requires proteins. The ma-

chine’s three-dimensional structure determines the machine’s function. Since

structure does determine function it is also more likely to be conserved [1].

Thus, if we understand the evolutionary history of protein structure, we can

reconstruct some of the evolutionary history of life itself. This is the inspi-

ration for this research.

Proteins are linear polymers of amino acids. This sequence of amino acids

corresponds to a three-dimensional structure that determines the functions

a protein can perform. As [2] details, Linderstrøm-Lang and Schellman pro-

posed in the 1950’s that protein structure had a four-tiered hierarchy, which

they called primary, secondary, tertiary, and quaternary structure. These

corresponded, respectively, (i) to the amino acid sequence linked by peptide

bonds, (ii) the helices and sheet elements of a fold that arise as a result of

the hydrogen bonding patterns, (iii) the molecular fold itself, and (iv) the

aggregate of such chains into a larger biological construct from which func-

tion arises. Recognition of repeating motifs in protein structure led to the

advent of (v) supersecondary structure. The further observation that pro-

tein folds have modular components that act alone or with other modules in

multi-“domain” proteins forms the basis for (vi) protein domains.

It is with domains that this research begins. There are dozens of domain

classification systems, but [2] presents a solid argument for the use of SCOP

(Structural Classification of Proteins) which we adhere to. “SCOP domains

that are closely related at the sequence level (generally expressing > 30%

pairwise amino acid residue identities) are pooled into fold families (FFs),

FFs sharing functional and structural features suggestive of a common evo-
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lutionary origin are unified further into fold superfamilies (FSFs), and FSFs

that share similarly arranged and topologically connected secondary struc-

tures are grouped further into protein folds. Folds are then grouped into

protein classes according to organization of secondary structure in the fold,

defining the major α/β, α+β, all-α, all-β, small and multidomain groups” [2].

Note that each classification, beginning with fold families on up to classes,

is a subset of the next. This research specifically focuses on folds and FSFs

because all relevant pieces, but most significantly a “molecular clock,” de-

scribed below in section 2.5, has been discovered for these two classes.

As explained below, a number of studies, [3] and [4], have constructed phy-

logenetic trees that describe the evolution of folds and FSFs using parsimony

methods and genomic abundance of folds or FSFs respectively as phyloge-

netic characters, and that use the assumption that the character states are

linearly polarized by abundance. The rooting was performed using the Lund-

berg method which does not require the need of outgroups. The topology

of the trees provides a static characterization of the evolution of protein

structure, a word which we use throughout this paper to mean either folds or

FSFs. What is missing is a dynamic model detailing the essential parameters

relevant to describing the evolution of such a tree. Such a phenomenological

description of the dynamics of the process would specify parameters that later

could be interpreted in terms of mechanistic molecular processes. We have

provided such a description, building on previous models that attempted to

explain the evolution of protein structure.

The models of [5] and [6] aim to explain the existence of the power-law dis-

tribution of fold occurrence in genomes in which a few folds occur in many

copies per genome and many folds are rare. [5], however, take a “local”

perspective, i.e. the focus of their model is the distribution within a single

genome over time. This does not capture a given fold’s history as it devel-

ops in many organisms across the entire planet. Moreover their model also

assumes that the “rate of fold flow” or (fold acquisition − fold deletion) is

the same value for all folds within a given organism and that the initial rates

of fold duplications within an organism are also identical. Both assumptions

seem implausible as there are different selection pressures on different folds,

since different folds relate to different functions. We believe that a model

taking a global perspective, with the fold across all organisms as its subject,

and allowing the two rates discussed to change as they may, is more realistic.
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Similarly, in order for the model of [6] to be compatible with the power law

distributions they hope to explain they need to assume that domain families

are commonly in a state of equilibrium with respect to the total number of

domain families over time and the total number of domain families of a given

size in a given genome over time. This latter approach appears implausible

as there does not appear to be anything like environmental equilibrium at

many time scales throughout history, resulting in constantly changing se-

lection pressures on organisms and therefore on the genetics and proteins

they contain and encode. Again, we believe that a model relinquishing the

assumption of such an equilibrium can shed light on evolutionary history.

Another approach to explaining the power law distributions of protein

structures, in [7], takes an information-theoretic approach. They conclude

that the power laws of sequences have different origins than those of folds;

“protein sequences exhibit a power law distribution to achieve efficient cod-

ing of necessary folds” while that of folds “is based on the thermodynamic

stability of folds.” But here, too, the focus is on a local model, rather than

a global model, so insights and benefits of a global perspective are missed.

Yet another approach, found in a study by [8], attempts to reconstruct

protein evolutionary history via simulation. [8] demonstrates that, given sta-

bility as the selection mechanism in each iteration, random protein sequences

often converge on proteins with specific structures, so called “wonderfolds.”

The authors consider these emergent thermostable wonderfolds as poten-

tial pre-biotic precursors to the biotic protein structure hierarchy, ones that

likely arose in a hot environment and needed their thermostability. This

study, however, focuses only on the pre-biotic world. In contrast, our study

focuses on the rise of the biotic world.

Still another approach in [9] takes the organism, rather than the protein

structure, as its point of focus, with organisms evolving in a simulation under

the assumption that an organism’s fitness corresponds to its proteins’ abilities

to be in their native conformations. This model, too, successfully recovers

known power laws and structural hierarchy, but again does not take our

global structure model perspective, and the implications that arise from it.

To the best of our knowledge no other group has taken the global model

perspective.

Thus, we use the data from the phylogenetic tree reconstructions described

to build global, dynamical models for the evolution of folds and FSFs and
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evaluate their parameters. In contrast to the preceding models, our models

(one for folds and another for FSFs) predict the abundance of individual folds

or FSFs throughout the living world and generates a non-steady-state time

course for their evolution. This paper describes our models, their evaluation

using a large sample of real data from all three superkingdoms of life, and

the implications for the history of protein structure.

1.2 A Tree of Protein Structure

[10] and [11] built phylogenetic trees using protein structures as taxa and

the number of protein structures appearing in various genomes as charac-

ters. Note that there is one tree for FSFs and another for folds. The basic

assumption is that the structures which are present in greater numbers at

present are older than those present in lower numbers, as the more abun-

dant structures had more time to grow in number. The authors call this

abundance-based approach genomic demography. The tree was built using

the parsimony reconstruction. It was later expanded to include a greater

number of structures and organisms. This study uses and builds upon data

from those previous studies.

A given structure has potentially many different proteins that are classified

within this structure, and we call these the structure’s variants. In the tree

of protein structures each node corresponds to a structure with a vector of

character states, the abundance of variants of each type of structure in a

set of genomes. The structure originates at its node of origin, which is an

internal node of the tree.

1.3 The Parameters for the Model

We built dynamic models of evolution that correspond to our trees of protein

structures. We assume that structures evolved in a stochastic branching

process from a primordial structure. We consider the ensemble of possible

realizations of the branching process. We model the time course of changes

in the ensemble-averaged abundance of each structure. The parameters of

the model are transition probabilities per unit time, or rate constants, for
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transition to a new variant of a structure and for transition from one kind of

structure to another. An approximation technique is presented which allows

the calculations of these rates and their changes over time.
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CHAPTER 2

THE MODEL

2.1 The Global Model of Fold Evolution

In considering a possible model, one must take into account the ways in which

a structure can be lost, copied, or transformed into another structure. A new

structure can evolve through the mutation of an existing structure (structure

transitions), horizontal transfer from another genome, or de novo evolution

from a non-coding region. We describe structure transitions in the structure

transition matrix: It gives the probability per unit time, per domain, that

a structure will be transformed into any other structure. We assume that

de novo evolution is very improbable, as the probability of an open read-

ing frame (the portion of DNA which is transcribed and can eventually be

translated into a protein) evolving from a non-coding region is very low. We

ignore this.

However, it is worth noting that it has been demonstrated that, at least

in S. cerevisiae, de novo evolution may not be unlikely through translation

of transitory proto-genes in non-genic sequences [12]. Momentarily, it is dif-

ficult to account for this term in our model as there is not enough data on

how widespread this proto-gene mechanism is across the three superking-

doms, how much similarity can be detected among the proto-genes between

species, and whether these proto-genes fall into classifiable three dimensional

structures. However, if it turns out that the mechanism is important and data

can be collected on the three dimensional structures’ abundances among and

between species, it may then be possible to repeat our study by creating a

tree of structures and proto-structures (corresponding to proto-genes), and

proceeding as below.

In any case, a copy of a structure can be lost by domain deletion. There

is also a selection bias in the occurrence of structure: If a structure appears
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and is not soon useful, it will be lost. We opted to use a global model (which

deals with the distribution of structures in all organisms), as opposed to a

local model (which deals with the distribution of structures in individual

organisms). The global model allows us to avoid using separate terms for

horizontal transfer. Moreover, it focuses on the structures which have been

successful, thus including selection bias in the structure transition probabil-

ities. The global model is a deterministic model for the ensemble-average

global abundance of a structure, not a stochastic model.

2.2 The Governing Equations of the Global Model

We will consider a simple model, which will allow an evaluation of all the

parameters from the data. We call this model the irreversible tree-hugging

model (ITH). In ITH we assume that we only have ”forward” transitions.

That is, the only transition probabilities that are nonzero are those from

an ancestral structure to a neighboring descendant; thus transitions are ir-

reversible. We set the transition probabilities for all ”reverse” transitions

equal to 0. The model also assumes that the only possible transitions are the

ones seen in the tree, thus it is tree-hugging. The governing equations of a

complete global model would be:

dNj

dt
= (λj −

∑
i 6=j

aij)Nj +
∑
i 6=j

ajiNi (2.1)

where:

Nj(t) the global abundance of structures of type j at time t. t = 0 at

the origin of the primordial structure (j = 1). We assume N1(0) = 1 and

Nj(0) = 0 for j > 1. If structure j is ancestral to structure i, j < i.

λj is the net rate (birth minus death) per copy of structure j of generating

new variants of structure j.

aij = the rate of transition from structure j to structure i (forward transi-

tion). Note that aij 6= 0 only when structure i is the neighboring descendant

of structure j. In particular, this means that each of the two sums in equation
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2.1 only has one non-zero term, yielding:

dN1

dt
= λ1N1 − a2,1N1 (2.2)

dNj

dt
= (λj − aj+1,j)Nj + aj,j−1Nj−1 (2.3)

2.3 Structure Abundance and Funnels

Each internal node in the tree of protein structure has two child nodes, one of

them representing the continuation of the old structure, the other the creation

of a new structure. Starting from a particular parent node which represents

some structure j, we can follow the path through the branches on the tree,

which correspond to structure j up to the present (see Figure 2.1). The

number of copies of a particular structure is increasing in an approximately

exponential manner, and thus we say it corresponds to a funnel (see Figure

2.2). The number of copies of a particular structure at a certain time is

represented by the cross-section of the funnel. Each new branch coming off

this path corresponds to the initiation of a new structure j′ (see Figure 2.1),

and thus of a new funnel (see Figure 2.2). Each new funnel initially starts out

with one copy of a new structure. We thus note that all the internal nodes

represent present-day structures, even though the examples of the structures

may have changed over time due to mutations. It is thus possible to identify

each one uniquely using its global abundance: The structure with the greater

abundance will be the older branch.
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Figure 2.1: Identification of internal nodes

Figure 2.2: The funnels corresponding to folds j and j′. A horizontal
cross-section of a funnel measures that funnel’s total abundance with
respect to time, N(t).
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2.4 Estimating the Global Abundances of Structures

Our strategy is to estimate the global abundance of structures, and then to

use these estimates to estimate the λ’s and a’s from N ’s.

The phylogenetic tree was derived from data for the local abundance of

the J folds in K genomes. The relation between the global abundance of

structure j, Nj, and the vector of local popularities [sj1, sj2, ...sjK ] is

Nj =
∑
k

mksjk (2.4)

Here mk is the effective population size of species k. In words, to calculate

the total abundance of a structure, one multiplies the number of times that

structure is present in a given species by the number of breeding members

of that species, and repeats this operation for each species. The breeding

population size is the intuition behind the formal effective population size

which is defined as the size of the ideal population, which acts the same as

the actual population. The ideal population assumes no selection, random

mating, and a random chance for each offspring to have a particular parent

[13]. For ancestral nodes species k will not in fact be the present species

k, but rather the lineage leading to the present species k. Thus we are not

saying that species k existed in the remote past.

We have data for the present abundance vectors. We require a method of

estimating present effective population sizes, denoted by m∗k for species k.

Figure 1B in [14] offers the relationship logm∗kµ = −1.3− 0.55 logGk where

Gk is the genome size of species k in millions of bases, Mb. µk represents, for

species k, mutations/base/cell division. Cell division corresponds to genome

duplication for unicellular organisms such as prokaryotes and lower eukary-

otes. For multicellular organisms such as higher eukaryotes µk = µbs/c where

µbs = mutation rate/base/generation from Figure 3 in [15], and c = number

of germline cell divisions [14]. However, [14] also references an average µk,

which we call µ, and offers its value as µ = 2.3 ∗ 10−10. Using this value, we

can solve for m∗k:

m∗k = 2.2 ∗ 108 ∗G−0.55k (2.5)

10



2.5 The Issue of a Time Scale

We do not know how to directly assign times to the origins of most structures.

However, [16] graphs the geological times of known structures, determined

from independent archaeological evidence, against their normalized distance

in nodes (nd) from the hypothetical ancestral structure at the base of a

phylogenetic tree of structures. This relationship is linear, is presented in

equations 2.6 and 2.7, where t is in gigayears, and is assumed to hold for all

structures in the study.

Determining the number of bifurcations since the root to any structure

can be done by counting. For example, in Figure 2.1, there have been three

bifurcations that lead to the birth of leaf 1, but only two bifurcations that

lead to leaf 3. The maximum number of bifurcations that lead to a structure

on the tree is 3, and we call this the normalization. When one takes the

number of bifurcations leading to a particular structure and divides by the

normalization one arrives at the normalized node distance (nd) of a node.

The relation between t and nd for folds, as given in [16], was:

t = −3.8023nd+ 3.8137 (2.6)

While for FSFs it was:

t = −3.8314nd+ 3.6284 (2.7)

We assumed these relations hold for all nodes of the respective trees. Since

we can calculate λ’s, a’s, and nd’s for folds and FSFs, we can use the above

equations to relate our results to real time and make statements about the

history of protein structure.

2.6 Estimating λ’s

We assume that transitions to new structures are much rarer than transitions

to variants, so aj′j � λj. Applying this to equations 2.2 and 2.3 it follows

that, for a given node h, Nh = vh−1 ∗ eλh(tn−tn−1) where vh−1 = 1 if node

h represents a new structure originating from the structure at node h − 1,

and vh−1 = Nh−1 − 1 ≈ Nh−1 if the structure at node h is the same as the
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NJ,p
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Figure 2.3: A p-comb

structure at node h− 1. If the node represents a new structure, we call it a

novel structure, and if the node is the same we say it is a persistent structure.

This approximation is reasonable because Nh−1 � 1 for a persistent structure

if aj′j � λj, as our results show.

In any case, a novel structure requires knowledge of the present total abun-

dance and time to determine λ while a persistent structure requires, in ad-

dition, the total abundance one tree step back. As such, we are faced with

several difficulties: 1) determining which structures are novel and which are

persistent; 2) determining ancient abundances for persistent structures. Since

both of these tasks are difficult to do correctly in principle without making

unsavory assumptions, we instead resort to an approximation.

Note that every n-furcation on a tree contains exactly one persistent struc-

ture. The rest are novel. Thus, there are numerous labelings of novelty and

persistence on a tree to consider in search of the historically accurate one.

We consider two interesting extremes which we call a p-comb and an n-comb.

A p-comb, as illustrated in Figure 2.3, is a binary tree in which, at each bi-

furcation, the persistent structure becomes a leaf (as witnessed by the second

subscript p labels in the Figure and equations). An n-comb, as illustrated in

Figure 2.4, is a binary tree in which, at each bifurcation, the novel structure

becomes a leaf (as witnessed by the second subscript n labels in the Figure

and equations).
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N∗1,p

N0,pN1,n

λ0
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λ1
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NJ,n
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Figure 2.4: An n-comb

For the p-comb the following equations follow from the above discussion.

N0,n = eλ0t

N1,p = N∗1,ne
λ1t

N∗1,n = eλ1t

N1,p = e2λ1t

where the last equation follows from the previous two and the first equation

gives λ0,n directly. Similarly,

N2,p = N∗2,ne
λ2(2t)

N∗2,n = eλ2t

N2,p = e3λ2t

Note here that t has been replaced by 2t in the first equation since this

structure has been around for that length of time since its origin. It follows
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by a generalization of the above that:

Nj,p = e(j+1)λjt (2.8)

λj,p =
lnNj

(j + 1)t
(2.9)

λ0,n =
lnN0

t
(2.10)

For the n-comb, however, the calculation is different:

N0,p = N∗1,pe
λ0t N1,n = eλ1t

N∗1,p = N∗2,pe
λ0t N2,n = eλ2(2t)

N∗2,p = N∗3,pe
λ0t N3,n = eλ2(3t)

Clearly, the left-hand side of the above is a chain of equations that can be

easily solved while the right-hand side can be generalized to:

N∗0,p = N∗J,pe
λ0t Nj,n = eλj(jt)

This can be solved to yield:

λj,n =
lnNj

jt
(2.11)

λ0,n =
ln N0

Nj

jt
(2.12)

Notice that combining our analysis for p-comb and n-comb trees, we get

the ratio:

λj,n
λj,p

=
j + 1

j
, j = 1, ..., J (2.13)

This latter suggests that whether we are dealing with an n-comb or a p-

comb the calculations for λ’s will not differ by much. We say that these two

extremes bracket the space of real solutions, though we do not know whether

they bound the space.

If we imagine a random walk in sequence space, one interpretation for a p-

comb is that new structures arise at the boundary of a region for a previously
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new structure. An n-comb, on the other hand, implies that the first structure

is the stem line and its boundary contacts regions for all other structures.

Clearly, the real tree is neither a p-comb nor an n-comb nor, in fact, binary

(though it departs from binary-ness in only a handful of nodes). We will

discuss how comb-like our tree is and delve into easing these approximations

in 3.4.

2.7 Estimating a’s

To derive the a’s we use an approximation which we call the ”nuclear decay”

approximation for reasons that will become clear. Consider structure j during

the time interval between its origin and the time which a new structure, j′,

originates from j. For convenience of notation we take t = 0 as the time

at which j originated – that is, Nj(0) = 1. Suppose transitions to new

structure are rare, so aj′j � λj. Then approximately, Nj(t) = eλjt. Now,

imagine plotting t(Nj) as a logarithmic curve on a plot of Nj (abscissa) vs

time (ordinate). To each value of Nj corresponds a value of τ(Nj), the mean

time interval from t to the first transition of a copy of structure j to j′. τ

decreases as Nj increases because the more copies of structure j exist the

more likely it is that one of them will make the transition to j′. Below

we show that τ = 1
N2

j aj′j
. Imagine plotting this function τ(Nj) above the

function t(Nj) so the upper curve shows t(Nj) + τ(Nj). This curve has a

minimum value which is the mean time at which the first transition to j′ will

occur. These three curves are illustrated in Figure 2.5, with the minimum

value visible on the green curve representing t(Nj) + τ(Nj).

To find an analytic expression for this minimum value, note that the tran-

sition j → j′ is analogous to the radioactive decay of an atom, which is

described by a Poisson process. Let the probability that an atom decays in

the time interval dt be adt. The probability that one of N atoms will first

decay between t and t+ dt is

(prob that none decay before t)(prob that one decays in dt) = ([e−at]N)(adt)
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Figure 2.5: Graph of t(Nj), τ(Nj), and t(Nj) + τ(Nj)

Then the mean first decay time for N atoms is

τ =

∫ ∞
0

t′e−Nat
′
adt′

so τ =
1

N2a
.

Now consider the transition j → j′. From the preceding,

t =
1

λj
lnNj and τ =

1

N2
j aj′j

so
d(t+ τ)

dNj

=
1

λjNj

− 2

aj′jN3
j

which is zero at
aj′j
λj

=
2

N2
jmin

(2.14)

Thus the ratio
aj′j
λj

can be determined from the value of Nj when the

transition occurs. Because N2
jmin � 1, the ratio is � 1, as we assumed.

Since the value of λj has been determined we can get aj′j from the ratio.

Notice that the above model was explicated for the trees of protein folds
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and FSFs but can be adapted without modification for any level of the protein

architectural hierarchy for which all the relevant data discussed is available,

namely abundance data and a known relationship between nd and time.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Phylogenetic Analysis

Two analyses were performed at different levels of the protein structure hi-

erarchy, the first on folds and the second on fold superfamilies (FSFs.) The

data used to construct the trees consisted of fold and FSF abundances. There

were 1030 folds in 749 species across all three super kingdoms. There were

1733 FSFs in 981 species across all three super kingdoms. SCOP was used

for both fold and FSF classification. These numbers were the latest available

at the time of retrieval. An argument for the virtues of SCOP over other

classification schemes such as CATH is given in [4]. While we have placed the

graphs for folds and FSFs alongside each other in Figures 4.7-4.9, discussed

later, to demonstrate the similar evolution of folds and FSFs, the graphs

are not directly comparable because of the different numbers of organisms

present in each study.

PAUP* was used to construct phylogenetic trees for both FSFs and folds

following the previously described methods [4], with genomic abundance

within species serving as characters. A single g value for each structure

in each species resulted in two matrices, 1733x981 and 1030x749 for FSFs

and folds, respectively. Since large genomes are more likely to have larger

protein structure abundances, we normalized the abundances (g) to a linearly

ordered 0-23 scale using the formula (for FSFs):

gab norm = round[
23 ln(gab + 1)

(gmax + 1)
] (3.1)

And for folds, on a linearly ordered 0-20 scale:

gab norm = round[
20 ln(gab + 1)

(gmax + 1)
] (3.2)
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Here, gab is the g value of the FSF (or fold) a in species b. gmax is the

maximum g value in the matrices above. These normalized matrices were

then handed to PAUP* to compute the trees described above in a standard

NEXUS file.

3.2 Calculating nd

Trees for folds and FSFs were returned in Newick format. In Newick format

numbers represent leaves and parentheses around two or more nodes repre-

sents an immediate common ancestor among those. For example, ((1, 2), (3, 4), 5)

corresponds to the tree in Figure 3.1. The leaves of this tree are 1, 2, 3, 4,

and 5 and the internal nodes of the tree are (1, 2), (3, 4), and ((1, 2), (3, 4), 5)

representing nodes 6, 7, and 8 respectively. In order to calculate the nd value

of any node in a tree given in Newick format one must count the number

of left parentheses, ‘ ( ’, to the left of the node and subtract from this the

number of right parentheses, ‘ ) ’, to the left of the node. For example, for

the leaf 3 there are 3 left parentheses to its left and 1 right parentheses to

its left, so its unnormalized nd value is 2, which is confirmed by inspection.

Similarly, the internal node (3, 4) has 2 left parentheses and one right paren-

thesis to its left so it’s unnormalized nd value is 1, as can again be verified

by inspection.

Thus, a Java program was written to de-nest the tree, which is to say

get a listing of all its internal nodes and leaves, find the location of each

node within the tree’s Newick format, and count the number of left and right

parentheses to the left of the node to yield the node’s nd value.

8

6

12

7

43

5

Figure 3.1: A tree corresponding to Newick format ((1,2),(3,4),5)
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3.3 Collecting Genomes

Genome sizes for all organisms were mainly downloaded from NCBI, genomes

online.org, and project webpages. As a check of sanity, the sum of genome

abundances for a given species was graphed against that species’ genome

size. We expected, and found, a generally increasing trend; a species with a

larger genome is more likely to have a larger sum. No extreme or unexpected

outliers were found, though the data did have an expected scatter. This data

is presented in section 4.1.

3.4 Finding the Nodes in a Comb

The comb analysis, calculating λ’s and a’s assuming p-combs and n-combs

described in chapter 2, was first performed only on the comb-like leaves, that

is, those leaves that sprang directly from the stem line of the tree. There were

187 such nodes for FSFs and 147 for folds, discovered by manual inspection,

accounting for 11% and 14% of the nodes of the respective trees. The analysis

was then repeated for all leaves of the trees, assuming each sprang directly

from the stem line and the results of the previous calculation were compared.

There were no major differences in the results.

Justification for the lack of bias in the comb approach was sought by

binning the count of nd for each of the comb nodes; each comb node’s nd

value was binned in one of a sequence of bins of size 10 spanning the entire

range of possible nd values for the structure tree. A uniform distribution

was discovered, with one spike at the combinatorial explosion, as one might

expect given a look at the spiky nature of the raw data at this point. These

results are presented and discussed in 4.2.

3.5 Calculating the Total Abundances, λ’s, and a’s

As denoted in equation 2.4 the total abundance of a protein structure is given

by the dot product of the effective population size vector and the local ge-

nomic abundances vector. The effective population size of a particular species

is itself dependent on the genome size of that species as noted in equation

2.5, so the effective population size vector is dependent on the corresponding
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genome size vector. Note, however, that the exponent on G in equation 2.5 is

a derivation from population genetics. We were curious as to how robust our

qualitative results were to variations in this exponent and this was explored

by repeating the analysis through a range of different exponents from -2 to 2.

This procedure was performed in an Excel spreadsheet using array formulas.

The λ’s and a’s were also calculated in this spreadsheet and all results were

graphed against time using equations 2.6 and 2.7. Qualitatively, the results

presented in this paper appeared to hold well for values of G’s exponent in

that range, and the overall pattern evinced disappeared in a continuous fash-

ion as we got further away from the exponent’s actual value, leading us to

believe that our results are robust in the face of a potentially oversimplified

population genetics model.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Sum of Genome Abundances vs Genome Size

As discussed in section 3.3, as a check, the sum of fold abundances for a given

species was graphed against that species’ genome size. Each data point was

created by summing the abundances of all folds present in a given species

and graphing it vs. that species’ genome size. A generally increasing trend

was expected and found, as shown in Figures 4.1-4.3, with a species with a

larger genome more likely to have a larger sum. Below the data for folds is

presented separately by superkingdom because, while the data is increasing

for all superkingdoms, for Archaea and Bacteria the graphs are linear while

for Eukaryotes a power law is a much better fit. The linear graphs show an

abundance of about 1.25 copies per gene.

It’s noteworthy that there are known power laws for local structure abun-

dance [5] within a genome, but the sum of these local abundances across

species, for a given fold, shows a linear relationship in Bacteria and Archaea,

as shown in Figures 4.1 and 4.2. However, the power law is preserved for

Eukaryotes. The Metazoan kingdom is the largest contributor to the scatter

in this power law. When Metazoa are removed the R2 noticeably increases

as can be seen from Figures 4.4 and 4.5.
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Figure 4.1: Archaeal Sums of Fold Abundances vs Genome Size

Figure 4.2: Bacterial Sums of Fold Abundances vs Genome Size
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Figure 4.3: Eukaryotic Sums of Fold Abundances vs Genome Size

Figure 4.4: Sums of Fold Abundances vs Genome Size for Fungi, Metazoa,
Plants, and Protista
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Figure 4.5: Eukaryotic Sums of Fold Abundances vs Genome Size for Fungi,
Plants, and Protista

4.2 No Comb Bias

As discussed in section 3.4, justification for the lack of bias in the comb ap-

proach was sought by binning the count of nd for each of the comb nodes. A

uniform distribution was discovered, with one spike near the combinatorial

explosion, before it for FSFs and after it for folds, since a larger nd corre-

sponds to an earlier time. The presence of this spike near the combinatorial

explosion is discussed in section 4.3. However, the presence of a uniform

distribution across the entire timeline suggests that the comb approach will

not yield a biased perspective. The graph for both FSF and fold nodes is

presented in Figure 4.6 below.
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Figure 4.6: Binned count of normalized nd for comb nodes for FSF and fold
data. Comb nodes are leaves diverging directly off the stem line on the tree
of FSFs or folds. The bins are of size 1

30
.

4.3 Graphs for Nj, λj, and aj and Their Interpretation

As described in chapter 3, both the a’s and λ’s were graphed as functions

of the time of origin of a structure. The results for both FSFs and folds are

presented in Figures 4.7-4.9.

4.3.1 Nj’s

Figure 4.7 shows the log(Nj) vs time for both folds and FSFs for present

day perfect comb nodes. Note that the present is at t = 0. Qualitatively,

both fold and FSF total abundances have experienced a similar history, with

total abundance dropping with time until a spike occurs around 1.5 Gyrs, at

which point total abundance increases until the present. FSFs experienced

this spike just prior to 1.5 Gyrs while folds experienced it just after. In

general, also, FSFs had a larger total abundance over time.

Since only present day structures are used in this graph, the time on the

x-axis represents a given structure’s time of origin. Thus, in general, present
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Figure 4.7: log(Nj) vs time (in Gyrs) for perfect comb fold and FSF nodes

structures that came into existence earlier have had longer to grow in abun-

dance and, therefore, have a greater total abundance than structures that

came into existence later. However, after the spike in the data innovations

in the form of structure variations measured by λ’s (see Figure 4.8) grow

so rapidly that the newer structure abundances actually catch up to and

outpace older structure abundances.

Moreover, the spike in the graph is present in all Figures, 4.7-4.9, always

just prior to 1.5 Gyrs in FSFs and just after that time in folds. This time

period corresponds to the combinatorial explosion of structural domains, or

“big bang” discussed in [17], referring to the sudden, punctuated appearance

of a large number of terminal leaves (structures) following the evolutionary

halfway mark, primarily due to the high combination and rearrangement of

domains and distribution of these new combinations in novel lineages, and

the rise of organismal diversification.
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4.3.2 λj’s

Figure 4.8 shows the log(λj) vs time for both folds and FSFs for present

day perfect p-comb nodes. Note again that the present is at t = 0. Again,

qualitatively, both fold and FSF total abundances have experienced a similar

history, with λ’s increasing with time until a spike occurs around 1.5 Gyrs,

at which point λ’s increase much faster until the present. FSFs experienced

this spike just prior to 1.5 Gyrs while folds experienced it just after. In

general, also, FSFs had larger λ’s over time. As previously mentioned, 1.5

Gyrs corresponds to the combinatorial explosion.

The super-exponential growth in λ’s after the combinatorial explosion of

structural domains is to be expected for the following reasons. Consider

a particular structure X. Once structure combinations are possible X will

appear in combination with other structures. Moreover, it is this new com-

bination that gets selected for its functionality. That additional selection

pressure, above that of X’s on its own, speeds that structure’s diversifica-

tion. As combinations proceed and generations of new structures are born

the new structures form combinations with each other as well as with struc-

tures prior to the explosion. Again, each new combination and structure that

X plays a role in has a unique history and selection pressure that contributes

to the λ explosion after the combinatorial explosion in Figures 4.8. This same

super-exponential tendency in the λ’s following the combinatorial explosion

is also the reason why newer structure abundances outpace older structure

abundances around this time in 4.7.
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Figure 4.8: log(λ) vs time (in Gyrs) for perfect, p-comb fold and FSF nodes

4.3.3 aj’s

Figure 4.9 shows the log(aj′j) vs time for both folds and FSFs for present

day perfect p-comb nodes. Note again that the present is at t = 0. Again,

qualitatively, both fold and FSF total abundances have experienced a similar

history, with a’s increasing with time until a spike occurs around 1.5 Gyrs, at

which point a’s decrease until the present. FSFs experienced this spike just

prior to 1.5 Gyrs while folds experienced it just after. Interestingly, unlike

in Figures 4.7 and 4.8 where FSFs dominate folds, folds had larger ln(aj′j)’s

over time. This is because a’s and N ’s have an inverse square relationship

as seen in equation 2.14, and FSFs dominate folds in total abundance over

time. Thus, folds dominate FSFs in log(aj′j)’s over time because their total

abundances are generally lower.

Domination aside, the values of a’s increase consistently for both structures

until the spike. This spike occurs nearer the end of superkingdom specifi-

cation and into the epoch of organismal diversification [18]. The analogy

we keep in mind is that of a developing field of knowledge. The initial re-

searchers cannot help but make many novel discoveries, fundamental results

and so forth, laying many flags in the sand. The next wave of researchers,
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however, usually do not make as many wholly novel, fundamental discover-

ies, partly perhaps due to the scarcity of such results in the field, but also

because it is easy to establish oneself by combining many of the basic results

into novel combinations. Matters appear to have progressed in much the

same way in the history of protein structure.

Thus, following the combinatorial explosion a’s values decrease. As de-

scribed earlier, old structures’ appearances in various combinations results

in high numbers of old structures being preserved relative to low numbers of

entirely new structures. This explains the simultaneous rise in λ in Figure

4.8 and fall of a in Figure 4.9 following the combinatorial explosion. It also

suggests that once combinations arose with a vengeance the easiest route to

satisfying evolutionary needs was via combinations rather than novel domain

discoveries. This makes a certain mathematical sense accurately captured in

the phrase “combinatorial explosion” itself, combinations now yielding an

avenue with a much larger number of possibilities than the alternative.

It should be clear that, qualitatively, λ’s, a’s, and N ’s for both FSFs and

folds experienced very similar qualitative histories. “There is no doubt that

protein families and superfamilies are monophyletic, that is, they derive from

a common ancestor. In contrast, monophyly of protein folds, as opposed to

folds originating by convergence from unrelated ancestors, remains an issue of

debate” [19]. Our results suggest that folds may indeed retain an evolutionary

relationship after all. This is not unexpected as a tight correlation between

folds and FSFs has been previously noted in several studies [4],[17], and [18].
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Figure 4.9: log(aj′j) for present j to future j’ vs time (in Gyrs) for perfect,
p-comb fold and FSF nodes

4.4 Comparing Folds to FSFs

Data from the SCOP 1.75 database reveals that there is, on average, between

1 to 2 FSFs in each fold, with an overall average of 1.64 FSFs per fold across

all protein classes. Thus, it is no surprise that the history of folds and FSFs

is quite similar in Figures 4.7-4.9. If there was only one FSF in each fold,

then the λ of the FSF would be the same as the λ of the fold. This equality

would then make the N ’s and a’s similar by virtue of equations 2.7 and 2.11.

Yet, there is a gap between the two curves, especially evident in Figure

4.7 and Figure 4.9. Moreover, in all curves, the spike in the data occurs at

slightly different times, just before 1.5 Gyrs in FSFs and just after that in

folds. However, as mentioned in section 3.2, while the graphs of folds and

FSFs are laid alongside each other they are not directly comparable. The

significantly larger number of organisms in the FSF study, as compared to

the fold study, accounts for the gap between the curves in Figure 4.7, causing

the total abundance of FSFs, which is a function of the number of organisms,

to be consistently above the total abundance of folds. The gap in the total

abundance causes the gap in the remaining graphs due to the mathematical
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relationships between N , λ, and a. Specifically, equation 2.11 shows a direct

proportionality between log(N) and λ, resulting in FSFs being above folds

in Figure 4.8. Since λ is only proportional to log(N) the visible gap shrinks.

Similarly, equation 2.7 shows an inverse relationship between N and a so in

Figure 4.9 we expect the fold curve to dominate the FSF curve.

Finally, note that the time in Figures 4.7-4.9 was determined via the linear

relationship between t and nd in equations 2.6 and 2.7. However, nd is a

normalized node distance so the larger the number of structures present in

the study the larger the normalization. A larger normalization pushes back

the nd value, and thus the time, of older structures. Since there are more

FSFs than folds in our study, the FSFs have a larger normalization and

this is a contributor to the FSF curve having a downward spike earlier than

the fold curve in Figure 4.7. Again, the mathematical relationships between

N , λ, and a then maintain this spike separation in Figures 4.8 and 4.9.

These reservations on comparison aside, there is still a remarkable similarity

between the evolutionary history of folds and FSFs evinced in the figures.

4.5 Conclusions

We have produced an approximate model for the evolution of protein folds

and FSFs. We believe that the biological assumptions incorporated into our

model are more plausible than those used in previous models. We used them

to conclude: 1) that there appears to be a tight connection between the

history of folds and FSFs, 2) that the corresponding transition probabilities

to new variants of a fold experienced a sharp increase just as the transition

probabilities to new folds experienced a steep decline and 3) that this simul-

taneous sharp increase in λ and decline in a is explainable by and consistent

with the combinatorial explosion and the rise of organismal diversification.

We believe that variations of our simple model will be applicable to other

problems dealing with the evolution of protein structure, and may have uses

wherever the simple assumptions of a birth-death model with available abun-

dances and a molecular clock exist.
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