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Abstract 

Prostate cancers, which account for 14% of all cancers diagnosed in the United States, and 

colorectal cancers, which account for 8.2% of all cancers, present a unique set of diagnostic 

problems [1].   In the case of prostate cancer, overdiagnosis of early-stage disease and poor 

accuracy at characterizing high-risk disease, especially when diagnosed at the intermediate stage, 

are major problems.  A new prognostic method is thus necessary for improving prostate cancer 

management.  In the case of colorectal cancer, early disease diagnosis is of critical importance 

for the purpose of reduction in disease-specific death rates.  An automated screening tool which 

identifies cases that warrant further examination by the pathologist would assist in the 

implementation of a wide-spread screening program.  

Quantitative phase imaging (QPI) of unstained tissue provides information on the refractive 

index distribution, or tissue morphology, with nanometer level sensitivity.  Subtle morphological 

changes in both the epithelial and stromal regions of tissue, which are not visible in stained tissue 

sections used in current pathological settings, can be measured using QPI.  Thus QPI would be a 

valuable addition to current diagnostic pathology.  

The specific aims of this thesis are: 

1. Quantitative Gleason grading of prostate cancer: Gleason grading, which is based on 

glandular differentiation seen on a prostate biopsy, is a widely accepted prognostic tool in 

prostate cancer.  Due to the qualitative nature of Gleason grading, consensus among general 

pathologists on Gleason scores 5-7 can range from 44.7%-49.2% [2].   

This aim of the project is to use QPI to objectively differentiate between prostate cancers of 

various Gleason grades, thus assisting pathologists with diagnosis. 
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2. Predict prostate cancer outcomes after prostatectomy: The risk of biochemical recurrence, 

which is defined as increasing serum PSA levels, is around 25% in men who undergo radical 

prostatectomy, whereas the risk of prostate cancer specific mortality in the same group is 7-12% 

[3-5].  Hence, a method capable of forecasting recurrence is highly desirable. 

This aim of the project is to use QPI to measure nanometer-level morphological changes in tissue 

that can be used to identify individuals at high risk for prostate cancer recurrence and to identify 

specific patient groups that will benefit from QPI over conventional pathology techniques. 

3. Quantitative screening of biopsies for colon cancer diagnosis: Colorectal cancer develops 

from benign adenomatous polyps that advance to carcinoma through a series of genetic 

mutations over the course of 5-10 years.  A colonoscopy can be used to identify and remove 

polyps, but examination by a pathologist is required to determine whether the polyp was benign 

or cancerous and if further treatment is necessary.  A quantitative tool that can identify dysplastic 

or cancerous tissue that warrants further examination by the pathologist will help with the 

implementation of colonoscopy as a widespread screening tool for early cancer detection.   

This aim of the project is to use QPI to flag dysplastic and cancerous regions in colorectal 

biopsies that warrant further examination by pathologists. 
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CHAPTER 01: General Introduction 
 

Pathologists make a diagnosis of cancer on suspicious tissue extracted from patients following 

routine screening exams or surgery.  After fixation and tissue processing, which involves 

dehydration of tissue followed by embedding in paraffin, thin slices of tissue are sectioned using 

a microtome.  The pathologist then examines the tissue under a microscope in order to make a 

diagnosis.  Optically thin slices of tissue do not significantly scatter or absorb light.  Due to the 

transparent nature of tissue, in clinical pathology, contrast is extrinsically generated by adding 

dyes to make structures visible.  Tissue biopsy sections are traditionally stained with 

hematoxylin and eosin (H&E).  Hematoxylin stains nucleus in a deep blue-purple by a reaction 

that is not completely understood, whereas eosin non-specifically stains proteins pink and makes 

the cytoplasm and extra-cellular matrix visible [1].  H&E double stain was first introduced in 

1876 by Wissowzky and more than a century later, continues to be the most frequently used 

staining method in diagnostic pathology [2].  When the pathologist suspects the presence of 

cancer on the H&E stained biopsy, a consecutive biopsy section is stained with specialized 

stains, immunohistochemical markers (IHC) and/or molecular markers to make a final diagnosis.   

IHC and molecular pathology, represent major innovations in the field of diagnostic pathology 

by labeling specific proteins or using molecular information to aid diagnosis.  In molecular 

pathology, the DNA sequence of the patient is profiled to determine which treatment would yield 

a better response, whereas in immunohistochemistry, downstream proteins expression is studied 

using antibodies for the protein.   

The origins of immunohistochemistry (IHC) can be traced to 1934, when Marrack conjugated a 

red stain to benzidine tetraedro for detection of typhus and cholera bacteria [3, 4].  Since the 
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visualization of red stain was difficult in dilute solutions, Albert Coons developed fluorescin 

conjugated antibodies to visualize Streptococcus pneumoniae in tissue using ultraviolet light in 

1941 [5, 6].  But it wasn’t until the early 1960s, after the introduction of enzyme labeled 

antibodies,  almost a century after H&E staining was introduced and 30+ years after IHC was 

first introduced, that the reports of IHC being used in diagnostic pathology laboratories appeared 

in literature [7-9].  Immunohistochemistry is often termed the “brown revolution” of pathology, 

due to the brown color of the peroxidase stain.  Antigen preservation has been a problem that has 

often resulted in variability in IHC diagnosis.  Formaldehyde fixation has been reported to 

damage or mask antigen sites to which IHC antibodies bind [10].  Antigen preservation in frozen 

tissue is reported to be better than in formalin fixed-paraffin embedded (FFPE) tissue and alcohol 

fixation represents an intermediate option for antigen preservation [11].  But FFPE tissue is the 

most commonly used histological method used internationally and there have been proposals by 

specialists to make IHC on FFPE tissue the diagnostic standard [5, 12].  Other problems in 

immunohistochemistry include the definition of a positive stain, which is subject to variation 

based on the tissue compartment where a positive stain was seen (center of the tumor Vs the 

periphery), pattern of the staining (cellular compartment: cytoplasm Vs the nucleus) and staining 

intensity that can be considered positive [13].  All of these sources of variation contribute to 

inter-observer variability in interpretation of IHC results.  Many computer-assisted IHC 

interpretation methods are in development today, in an attempt to make interpretation 

quantitative and thus standardized [14].  However, these methods are still subject to variations in 

interpretation stemming from illumination source, sensor of the camera, intensity of the stain and 

signal multiplexing [14]. 
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The most commonly used molecular pathology technique is the fluorescence in-situ 

hybridization (FISH) probe, which was first developed in the 1980s to detect amplifications in 

specific DNA sequences.  FISH probes for HER2 have been used to guide treatment for breast 

cancer, but often IHC is preferred due to greater familiarity with IHC [15].  Some FISH probes 

are sensitive to some fixatives, chemicals and heat; and the fluorescence signals weaken with 

time, making re-analysis of the same sample difficult [16].  Molecular pathology is a relatively 

new field, and now more accessible with availability of various DNA sequencing technologies 

manufactured by Illumina, Roche and Life Technologies.  Identification of genetic mutations can 

be used to predict risk of disease.  Additionally, gene expression signatures through platforms 

like Oncotype DX can be used to guide treatment decisions.  These molecular pathology tests 

can be expensive, there are limited clinical validation studies and limited guidance is available 

for clinicians regarding which tumors should be sequenced for which mutations and clinical 

follow-up implications [17].   

A common theme that emerges from studying innovations in pathology is that the developments 

have focused on extrinsic tissue markers and pace of clinical adoption is slow.  The slow pace 

could be due to the applicability of each immunohistochemistry marker or molecular test for a 

limited number of diseases, thus generating a large number of tests for specific clinical end-

points in each disease.  Additionally, some IHC techniques require tissue fixation to be 

performed in a manner that is different from the standard pathology processing standards thus 

proving to be cumbersome.   

Structural information in tissue holds enormous diagnostic potential, as evidenced by the 

permanence of non-specific stains, such as H&E in pathology practice.  Cells and tissue also 

have intrinsic contrast in the form of refractive index differences between various structures.  
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Quantitative phase imaging (QPI) is a microscopy technique that reports on nanoscale changes in 

tissue architecture, while also providing structural information.  It uses intrinsic tissue contrast, 

thus eliminating the need for specialized stains and is insensitive to changes in illumination and 

camera.  Additionally, the same imaging modality can be used to report on multiple tissue 

archetypes, thus reducing the learning curve.  The quantitative nature of this technology also 

eliminates inter-observer differences prevalent in some pathology specialties. 

In this thesis, I show the utility of QPI for solving problems in prostate and colorectal cancer 

pathology, which represent 22% of all cancers diagnosed by pathologists today [18].  In Chapter 

2, I provide a detailed introduction to the nature of interactions between light and tissue, as well 

as quantitative phase imaging.  I also introduce spatial light interference microscopy (SLIM), the 

QPI technique central to our approach.  In Chapter 3, I introduce the issues concerning prostate 

cancer prognosis.  Specifically, inter-observer differences in Gleason grading, a prognostic tool 

used to guide treatment decisions, has a huge impact on disease outcomes.  I demonstrate a 

method that combines structural information with light scattering differences in tissue 

microenvironment to improve Gleason grading accuracy.  In Chapter 4, I show how light 

scattering changes in the stroma, or connective tissue adjoining glands has valuable prognostic 

potential beyond the ability of Gleason grading.  In a nested-case control study, where patients 

are matched according to Gleason grade and pathological tumor stage, I demonstrate the ability 

of QPI to predict post-surgical biochemical recurrence with higher accuracy than currently used 

clinical techniques.  In Chapter 5, I validate the recurrence prediction tool on a general 

population of patients and identify which patient groups would benefit from using QPI for 

prognosis.  In Chapter 6, I demonstrate how QPI can help with the implementation of wide-

spread colorectal cancer screening programs.  By combining structural information with phase 
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distribution, quantitative diagnoses can be made on colorectal tissue, such that specific tissue 

regions requiring pathologists’ attention can be highlighted.   In Chapter 7, I provide a brief 

outlook on other pathology problems that can potentially be solved using QPI.  
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CHAPTER 02: Introduction to Quantitative Phase Imaging 

2.1 Light-Tissue Interaction 

When light is propagated through tissue, there is a change in the irradiance, spectrum, 

polarization, phase, direction and coherence due to which information about tissue can be 

obtained [1-3].  The light-tissue interaction can be classified as elastic and inelastic.  Elastic light 

scattering occurs when the direction of propagated light changes but the frequency of is 

conserved.  This is different from dynamic light scattering where Doppler shifts caused by 

dynamic specimen such as live cells cause small changes in light frequency[4].  In diseases such 

as cancer, the morphological changes in tissue modify light properties such as scattering 

parameters and this information can be used to diagnose disease.   

Compared to X-rays and -rays, the electromagnetic radiation in the optical regime is non-

ionizing and, thus, noninvasive. With respect to ultrasound waves, light provides higher 

resolution and contrast. On the other hand, however, optical waves are strongly scattered in 

biological tissues, which reduces their penetration depth and makes extracting diagnosis 

information extremely difficult. This strong light-tissue interaction is due to the morphology of 

the biological matter that exhibits significant features over length scales on the order of the light 

wavelength.  For example, let us look at highly compartmentalized structures such as cells.  The 

three major structures in cell are cell membrane, nucleus and cytoplasm.  The cell membrane 

encompasses the cytoplasm and is made of a phospholipid bilayer composed of proteins and 

glycoproteins that float on lipids.  The cytoplasm encompasses cytosol in which various 

organelles such as mitochondria, golgi apparatus, endoplasmic reticulum, peroxisomes, 

lysosomes are suspended.  The cell nucleus is separated from the cytoplasm by the nuclear 

envelope and is the site of DNA replication and RNA translation[5].  The different cellular 
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structures have different refractive indices due to varying compositions.  These morphological 

features translate into refractive index inhomogeneity and, consequently, scattering.  Thus the 

cell is a scattering medium with large structures such as nucleus scattering light at smaller angles 

and smaller organelles such as mitochondria scattering light at large angles [6, 7].   

The inhomogeneous wave equation, which describes the optical field propagation in the tissue, is 

generally difficult to solve, except in the asymptotic regimes of very strong or very weak 

scattering. The former regime applies whenever bulk tissues are studied, for example, in in-vivo 

settings. In this case light is multiply scattered and, eventually, the wave-vector distribution 

becomes isotropic. At that point, the coherence area of the field reaches a minimum of the order 

of the wavelength squared, meaning that the phase of the field can be physically defined locally, 

over the scale of the wavelength of light. At larger scales, this scattering regime is commonly 

described not in terms of the wave equation, but a diffusion equation, which governs the 

distribution of light energy density in the tissue and ignores coherent phenomena. The tissue 

optical parameters that govern the diffusion process are the scattering mean free path, ls, and the 

anisotropy factor, g, which scales ls to higher values to account for forward scattering. A number 

of methods have been proposed to measure these parameters and correlate them to certain 

disease states (see, e.g., Chap. 2 in [8]). Generally, changes in scattering parameters can be used 

to report on certain disease onset and development. Furthermore, understanding this diffusion 

process can have broader implications in medical diagnosis. For example, spectroscopic 

approaches, such as fluorescence and Raman scattering, provide chemically specific information, 

but are affected by the presence of a diffusive background. Thus, a priori knowledge of the 

tissue optical parameters allows extracting quantitative information from spectroscopy as well 
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[9]. In particular, light scattering spectroscopy, with diffusion background correction, was shown 

to inform of cellular level modification during cancer progression [10].  

Today, extracting tissue scattering parameters remains challenging, especially due to the broad 

biological variability within the same tissue type, among different tissue types, and across 

patients (Table 2.1. in Ref. [8] provides a glimpse of this variability). Sometimes, Monte Carlo 

simulations are used iteratively to fit the measurements, with ls and g as fitting parameters [11]. 

An alternative approach has been proposed to deal with tissue turbidity: instead of trying to 

model it, remove it using phase conjugation approaches[12]. More recently, this type of time-

reversal method has been used to focus light deep into the tissue and modulate it 

ultrasonically[13].  

The weak scattering regime applies to light propagating in thin, transparent objects and is 

typically modeled via the Rytov or (first) Born approximation. The Rytov approximation is more 

appropriate for reconstructing smooth objects, i.e., for low-resolution imaging, and the Born 

approximation works better for imaging finer structures (see, e.g., p. 485 in Ref. [14]).  Although 

this description is employed mainly in describing interaction of light with single cells, exploiting 

the pathlength gating in optical coherence tomography[15], Ralston et al. have shown that the 

interaction of light with bulk tissue can be described by the first-order Born approximation as 

well [16]. In this case, the phase of the scattered field is measured interferometricaly and the 

tissue structure is reconstructed by solving the inverse problem.  

Recently, quantitative phase imaging (QPI), in which optical pathlength shifts induced by cells 

and tissue are measured quantitatively, has been the subject of intense research efforts [17]. This 

new dimension in imaging has demonstrated valuable potential for studying cell structure and 
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dynamics [18]. Interestingly, it has been shown that, under the Born approximation, QPI is 

equivalent to an ultrasensitive angular scattering measurement [19-22]. Furthermore, measuring 

the quantitative phase map associated with a thin slice of tissue provides information about the ls 

and g parameters of the bulk [20, 22]. In this thesis, I demonstrate that optical path-length maps 

of thin, unlabeled tissue hold cancer diagnosis and prognosis value.  

2.2 Quantitative Phase Imaging (QPI) 

Spatially-resolved investigation of biological structures has been made possible by QPI 

techniques. Digitally recorded interference microscopy with automatic phase-shifting 

(DRIMAPS) is a quantitative phase imaging technique that has been used for measuring cell 

growth, dry mass, cell spreading and cell motility [23-25] [26, 27]. Using the transport of 

intensity (TIE) equation, full-field quantitative phase microscopy methods have been developed 

[28, 29].  TIE-based methods do not require the two beams used in interferometry experiments 

and therefore have high stability with respect to phase noise.  But these methods are 

computationally intensive as it involves imaging samples through various focal planes, followed 

by numerical computation of phase using partial differential equations.  

Gabor developed digital holography which combines traditional holography with digital 

recording [30] [31].  Numerically solving the Fresnel propagation equation, the field distribution 

at different optical planes can be calculated.  This makes reconstruction of in-focus field possible 

for optically thin objects, and the phase map of the sample can be constructed.  Digital 

holography has been adapted for phase shifting interferometry and quantitative phase imaging 

[32] [33-35]. 
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Full-field QPI techniques using lasers as illumination source, such as Fourier phase microscopy, 

diffraction phase microscopy and Hilbert phase microscopy were developed and provide phase 

stability over broad temporal scales [36-40].  White light based QPI methods such as wDPM and 

SLIM developed in our lab eliminate the speckles from laser illumination, and therefore 

increases phase sensitivity [41-43].  SLIM is described in more detail below.    

2.3 Spatial Light Interference Microscopy (SLIM) 

Zernike developed phase contrast microscopy in the 1930s, which is a qualitative method of 

imaging transparent objects, also termed as phase objects [44-46]. Holography, developed by 

Gabor, enabled recording both amplitude and phase information of such objects [31]. Spatial 

Light Interference Microscopy (SLIM), combines both of these principles, and is a white-light 

quantitative phase imaging method that uses the spatially coherent field from a phase contrast 

microscope [41, 47-49]. 

SLIM is developed as an add-on module to an existing phase contrast microscope, as shown in 

Fig. 2.1. The image field outputted by the microscope is Fourier transformed by the lens system 

L1, L2, L3 onto the surface of a spatial light modulator (SLM). The SLM shifts the phase of the 

unscattered light with respect to the scattered light, sequentially, in increments of /2 (see Ref. 

[50]). Lens L4 recreates the image of the sample at the CCD, which records an image for each 

phase modulation. The four intensity images are combined to uniquely render the quantitative 

phase map of the image field, as shown in Fig. 2.1 (inset).  The transverse resolution of SLIM 

images is limited only by the numerical aperture of the objective and the spatial path length 

sensitivity is 0.3nm.   
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Figure 2.1: The imaging system. The SLIM set-up is an add-on module to a commercial phase 

contrast microscope. The first set of lenses (L1 and L2) magnify the image to maintain the 

resolution of the microscope.  The Fourier transform of the image plane is projected by lens L3 

onto the spatial light modulator (SLM) where the phase pattern is shifted in phase 4 times, in 

increments of π/2.  The lens L4 Fourier transforms the pattern on the SLM and the final image is 

recorded onto the CCD and stored on the computer.  (Inset) Four phase shifted images of 

prostate tissue recorded using a 40X/0.75NA objective with the final quantitative phase image 

shown on the right.  Color bars indicate phase values in radians. 

Since the development of the original SLIM system (SLIM 1.0) in the QLI laboratory, a 

commercial version known as the CellVista Q100 system was developed.  While the original 

SLIM system was used in the development of the Gleason grading scheme, the nested-case 

control study for development of a cancer predictor and colon cancer screening tool, the 

commercial system in combination with lab-developed software was used for validation of the 

recurrence predictor and colon cancer screening on large tissue regions.  Details regarding 

sample acquisition and specific imaging modalities are included in the Materials and Methods 

section of each chapter. 
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CHAPTER 03: Quantitative Gleason Grading of Prostate Cancer 
 

3.1 Abstract 

 

1 in 7 men receive a diagnosis of prostate cancer in their lifetime.  The aggressiveness of the 

treatment plan adopted by the patient is strongly influenced by Gleason grade.  Gleason grade is 

determined by the pathologist based on the level of glandular formation and   complexity seen in 

the patient’s biopsy.  However, studies have shown that the disagreement rate between 

pathologists on Gleason grades 3 and 4 is high and this affects treatment options.  We used 

quantitative phase imaging to develop an objective method for Gleason grading.  Using the 

glandular solidity, which is the ratio of the area of the gland to a convex hull fit around it, and 

anisotropy of light scattered from the stroma immediately adjoining the gland, we were able to 

quantitatively separate Gleason grades 3 and 4 with 81% accuracy in 43 cases marked as difficult 

by pathologists.   
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3.2 Motivation 

 

98.9% of men diagnosed with prostate cancer between the years 2004 – 2010 survived 5 years or 

longer [1].  When the data is further categorized based on disease stage at diagnosis, 80.7% of 

the cancers were diagnosed at the local stage, during which the 5 year survival rate is 100% [1].  

However, the 5-year survival rate for individuals with distant metastasis of prostate cancer is 

28%.   Hence diagnosis of prostate cancer at an early stage, when it has a higher chance for cure, 

is critical for patient survival.  However, various studies have shown that not all prostate cancers 

diagnosed at an early stage require intervention [2, 3].  A particularly compelling argument 

towards this end was provided from a study by Porter et. al. that showed that 1.2 million new 

cases of prostate cancer would be diagnosed if all men between the ages of 62-75 years old 

underwent prostate biopsies, irrespective of their PSA levels [4].  Various nomograms and risk 

assessment tools have been developed to identify men with prostate cancer who have a higher 

risk of disease progression and mortality.  The most commonly used tools include D’Amico risk 

stratification, CAPRA score, Kattan nomogram and Partin tables [5-8].  A patient’s Gleason 

grade is an important consideration in each of these tools. 

A patient’s Gleason grade is determined by the pathologist based on the level of glandular 

differentiation seen in the H&E stained biopsy.  A primary and secondary Gleason grade (1-5) is 

assigned based on the amount of biopsy area containing a particular pattern.  The Gleason grades 

are added up to assign a Gleason score (1-10).  The Gleason grade is considered to be an 

indicator of possible tumor size, metastasis and outcome [9-12].  A Gleason score of 6 or less is a 

common criteria used to adopt active surveillance as a prostate cancer management strategy [13].  

Thus it’s critical to ensure that the Gleason grade is correctly determined.  The qualitative nature 

of Gleason grading can lead to a high degree of disagreements among various pathologists’ 



18 
 

diagnoses.  A study by Allsbrook et. al. showed that the level of under-grading of Gleason score 

7 prostate cancer was 47% and that for Gleason score 8-10 prostate cancers was 25% among 

general pathologists [14].  When the same study was repeated on urologic pathologists, the 

agreement rate was 70% or higher in the Gleason score ranges of 2-4, 5-6, 7, 8-10 among the 38 

consensus cases but there were 10 non-consensus cases [15].  Clearly, a quantitative technique 

that can objectively predict Gleason grades with a high degree of accuracy would assist 

pathologists in performing Gleason grading.  This would also have important implications on 

prostate cancer treatment. 

Quantitative phase imaging (QPI) of unstained tissue provides information on the refractive 

index distribution, or tissue morphology, with nanometer level sensitivity.  Subtle morphological 

changes in both the epithelial and stromal regions of tissue, which are not visible in stained tissue 

sections used in current pathological settings, can be measured using QPI.  Thus QPI would be a 

valuable addition to current diagnostic pathology.  In this paper, we show the ability of QPI to 

help pathologists quantitatively and therefore, objectively differentiate between Gleason grade 3 

and 4 prostate cancers. 

3.3 Gleason Grading 

 

The Gleason grade is the most widely used grading scheme in prostate cancer.  The system was 

developed by Dr. Donald Gleason in the 1960s and is based on glandular differentiation seen in 

hematoxylin and eosin (H&E) stained slides [9, 16].  Pathologists determine Gleason grade 

based on glandular presence and differentiation in stroma [9, 16].  The Gleason score has been 

proven to be an indicator of tumor size, metastasis, treatment and outcome [9-12].  
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Figure 3.1: A side-by-side comparison of H&E and SLIM images of the same tissue microarray 

cores show that SLIM images reveal a lot more information about the tissue due to the intrinsic 

contrast in tissue.  Single strands of stroma stand out in SLIM images as opposed to the uniform 

pink distribution seen in H&E images.  In the zoomed in version of the image seen in figures A 

& B, the stroma separating glands pops out clearly in SLIM images enabling the classification of 

the glands as grade 3. Side-by-side comparison of Gleason grade 4 tissue microarray cores 

shown in C & D once again shows the ability of SLIM to detect stroma allowing for better 

visualization of fusing glands and stromal invasion allowing for accurate Gleason grading.  Also, 

smaller structures within nuclei are more prominent. In the Gleason grade 5 images shown in E 

& F, the loss of glandularity and presence of epithelial cells in stroma are clearly visible in the 

SLIM images 

The variation in grades on a scale from 1-5, in order of increasing severity, is based on glandular 

differentiation and glandular presence in stroma [9, 16-18].  The primary grade is the pattern 

present in maximum biopsy area and the secondary grade is the second most prominent pattern.  

The two grades are added to provide a Gleason score of 1-10. 
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Figure 3.2: Zoomed in SLIM images of various Gleason grades. (A) Gleason grade 3 pattern 

with medium sized individual glands separated by stroma. (B) Gleason grade 4 pattern with 

small merging glands showing loss of stromal separation. (C) Gleason grade 5 pattern with no 

visible glands and individual cells interspersed in the stroma. 

 

In current clinical practice, grades 1 and 2 are rarely diagnosed.  Gleason grade 3 glands are 

medium to small size, singular with infiltrating edges as seen in Figs 3.1-A,B which shows a 

side-by-side comparison of H&E and SLIM images.  In a zoomed-in version of Gleason grade 3 

in figure 3.2-A, stroma between adjacent glands is clearly visible, thus, aiding the determination 

of the grade [9].  Gleason grade 4 consists of small glands that are fusing into one another (Figs 

3.1-C, D; Fig 3.2-B) [9].  Gleason grade 5 represents the most severe cancer where glandular 

architecture is lost and epithelial cells are distributed individually or in sheet like patterns in the 

stroma (Figs 3.1-E, F) [16]. 
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In the zoomed-in version in Fig 3.2-C, no glands are visible and epithelial cells can be seen 

between stromal fibers. 

3.4 Quantitative Separation of Gleason Grade 3 and 4 

43 cases from the TMA 2 data set with consensus diagnosis from 3 pathologists were analyzed.  

22 cores with only Gleason grade 3 glands from patients with a final diagnosis of Gleason 3+3 

cancer and 21 cores with only Gleason 4 glands and final diagnosis of Gleason 4+4 cancer were 

imaged using SLIM.  Solidity, which the ratio of the area of the gland to that of a convex hull fit 

around the gland, was measured for all glands in the cores.  Additionally, anisotropy, which is 

the average cosine of the scattering angle, was measured for the layer of stroma surrounding all 

the glands.  Our study showed that Gleason 3 glands had a higher degree of solidity and higher 

values of anisotropy in the stroma immediately adjoining the gland (Fig. 3.3).  Using glandular 

solidity and stromal anisotropy alone, 81% of the Gleason grade 4 cores and 82% of the Gleason 

grade 3 cores were correctly classified.  We believe the higher glandular solidity values can be 

explained by the reduced invasive edges and lower degree of glandular fusion seen in Gleason 3 

glands.  Additionally, the lower value of anisotropy seen around Gleason grade 4 glands means 

the stromal layer has a higher level of disorder in advanced stages of disease.   
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Figure 3.3: Quantitative Gleason Grading in prostate cancer tissue: SLIM images show 

clear distinction between glands and stroma.  This helps us isolate glands as well as single 

strands of stroma immediately adjoining glands.  (A) Gleason grade 4 tissue microarray core 

where glands are starting to lose stromal separation and are merging into each other.  Using 

ImageJ and a tablet we manually marked glands and measured the solidity.  Solidity is defined as 

the ratio of the area of the gland to the area of a convex hull fitted to the gland.  This parameter 

varies from 0 to 1; with 1 being a perfect polygon.  (B) In a zoomed in region from (A), we 

isolate the single layer of stroma immediately adjoining the glands.  We calculate optical 

anisotropy which is directly proportional to the square of the ratio of the phase gradient to the 

phase variance in that region.  Optical anisotropy is an indicator of forward scattering of light in 

the tissue region, also a label-free indicator of morphological changes in tissue at the nano-scale 

level.  (C) Solidity is useful in separation of Gleason grade 3 and 4 glands (AUC 0.74).  By using 

a cut-off value of 0.9188 we can classify grade 3 glands with an accuracy of 86% and grade 4 

glands at 57% accuracy.  (D) Optical anisotropy in stroma is useful in separating Grade 4 glands 

with an accuracy of 80% and Gleason grade 3 glands with 56% accuracy (AUC 0.72).  (E) By 

combining the optical anisotropy in stroma and the solidity of glands, we can separate Gleason 

grade 3 and 4 glands with an overall accuracy of 81.39%; with Grade 3 glands classified with 

81% accuracy and Grade 4 glands classified at 82% accuracy.  Grade 3 glands have a higher 

solidity index in the glands and higher anisotropy value in the stroma immediately adjoining 

glands. 

B A 

C D E 
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3.5 Discussion 

 

Glandular solidity is an indicator of glandular shape, and decrease in solidity is a reflection of 

invasive edges.  This strongly correlates with morphological indicators currently used by 

pathologists for qualitative Gleason grading performed on H&E stained images.  By combining 

glandular shape descriptors with stromal morphology measurements, QPI was able to distinguish 

between the Gleason grade 3 and 4 prostate cancers with an accuracy of 81.39%.   

The stromal changes reported in the layer adjoining cancerous glands are not currently used in 

pathology for Gleason grading of prostate cancer.  The stroma is a complex environment 

consisting of the extracellular matrix, fibroblasts, smooth muscle cells, growth factors, regulatory 

receptors, blood vessels, nerve fibers and immune cells [19].  In the prostate, the primary stromal 

components are fibroblasts and smooth muscle cells [20].  The various components of the stroma 

provide adhesion, growth factor secretion and regulation, structural framework and support, cell 

attachment and migration and permeability [21, 22].  In response to carcinoma in the epithelium, 

the repair mechanism in stroma is activated [23].  The stromal changes seen in cancer using 

immunohistochemistry or molecular studies mimic the changes seen in wound healing 

mechanisms such as increased growth factor secretion, angiogenesis, matrix remodeling, 

elevated immune response and increased protease activity [24-28].  These changes also include a 

switch to the activated myofibroblast phenotype from fibroblast characterized by increased 

secretion of vimentin and smooth muscle to myofibroblast with reduced levels of α-smooth 

muscle actin and calponin [23, 26, 27, 29, 30].  In immunohistochemistry studies performed by 

other groups, hyaluronan (HA) level was observed to be high in the stroma of prostate biopsies 

of higher Gleason grades but HA receptor CD 44 level is inversely related to Gleason grade [31].  
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High platelet-dervived growth factor (PDGFR-β) expression and low expression of whey acidic 

protein family member WFDC1/PS20 has also been seen in stroma adjoining high Gleason grade 

glands [32, 33].  In another study, an increased level of stromal cells with fibroblast and myo-

fibroblast phenotype and reduced levels of smooth muscle actin cells were observed in 

proliferative cancerous tissue of prostate [34].  In-vitro studies have shown the ability of prostate 

fibroblasts to transform into myo-fibroblast cells [35, 36].   

The importance of stromal regulation of prostatic epithelium has been demonstrated in in-vitro 

studies in the past.  Prostate epithelium cultured on reconstituted extra-cellular matrix showed 

increased levels of prostate specific antigen and prostatic acid phosphatase as opposed to 

increased cell growth and reduced PSA, PAP levels seen in cells grown on plastic plates [37].  In 

our study, we saw changes in the single layer of stroma adjoining glandular epithelium. This 

might be indicative of stroma-epithelial cross-talk previously seen in literature.   

While the label-free nature of SLIM prevents us from knowing the exact molecular or 

morphological change that leads to the increased diversity we see in the anisotropy measurement,  

all the changes documented with immunohistochemistry would contribute to increased 

disorganization in the stroma which we measure as optical anisotropy, a highly sensitive 

indicator of morphological changes.  One advantage of SLIM is that we can measure the final 

effect of all the molecular changes which cannot be done in immunohistochemistry due to its 

inherent reactive nature.   

SLIM shows the potential to guide treatment decisions for prostate cancer at the diagnostic stage 

by improving the current accuracy of Gleason grading seen in pathology.  In the next chapters, I 
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show how anisotropy reports on prostate cancer prognosis with more sensitivity than Gleason 

grading.   

3.6 Materials and Methods 

3.6.1 TMA Cohort for the Gleason Grading Study 

The tissue microarray (TMA) set used for the Gleason grading study was obtained from the 

National Cancer Institute Cooperative Prostate Cancer Tissue Resource (NCI-CPCTR).  The 

tissue was collected at four academic institutions: George Washington University, New York 

University, University of Pittsburg, and Medical College of Wisconsin.  Procedures, policies and 

protocols for TMA construction and slide preparation are available at the CPCTR website [38, 

39].  The Gleason TMA set includes prostatectomy tissue from 250 patients and includes 

controls from 18 benign hyperplasia cases.  It also includes information on the patient’s final 

Gleason grade diagnosis.  The tissue was arrayed into 4 blocks and two 4µm sections were cut.  

One was deparaffinized and stained with H&E for pathology control.  The adjacent section was 

deparaffinized and coverslipped without staining for SLIM imaging.  The studies have been 

performed in the United States in accordance with the procedure approved by the Institutional 

Review Board at University of Illinois at Urbana-Champaign (IRB Protocol Number: 13900). 

3.6.2 SLIM Imaging System 

Spatial Light Interference Microscopy (SLIM) is a quantitative phase imaging system that was 

developed as an add-on module to a commercial phase contrast microscope and is described in 

detail in Ref. [40].  Briefly, the back focal plane of the phase contrast objective is projected onto 

a liquid crystal phase modulator (LCPM).  At the LCPM, three π/2 phase shifts, additional to the 

one already present in the phase contrast image, are introduced and recorded by the CCD.  The 

four intensity images corresponding to each phase shift are recorded, and a final phase image is 

computed from the information.  The final phase image computed corresponds to: 
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𝜙(𝑥, 𝑦) =
2𝜋

𝜆
∫ (𝑛(𝑥, 𝑦, 𝑧) − 𝑛0)

ℎ(𝑥,𝑦)

0

𝑑𝑧 

Where ϕ(x,y) is the phase at a given point, λ is the center wavelength of the white light source 

(552.3nm), n(x,y,z) is the refractive index at a given point and n0 is the refractive index of the 

surrounding medium.  The refractive index difference is integrated over the entire thickness of 

the sample to measure the phase.  SLIM has a transverse resolution of 0.4 microns and a spatial 

path length sensitivity of 0.3nm. 

The SLIM system was modified to raster scan through large fields of view and stitch the frames 

together.  This provides the high throughput necessary for whole slide imaging.  The samples 

used in this study were imaged using the 40X/0.75NA objective of the SLIM system.          

3.6.3 Optical Anisotropy 

Optical anisotropy is defined as the average cosine of the scattering angle associated with a 

single scattering event.  Since QPI records both the amplitude and the phase of the light passing 

through the sample, it has the ability to measure light scattering parameters.  Using the scattering 

phase theorem, the optical anisotropy of light passing through the tissue can be measured as [41]  

𝑔 = 1 −
1

2𝑘0
2

〈|∇[𝜑(𝑟)]|2〉𝑟

〈∆𝜑2(𝑟)〉𝑟
2

 

Where k0 is the wave number of the light source, ∇[𝜑(𝑟)] is the phase gradient and ∆𝜑2(𝑟) is 

the variance of the phase.  The phase gradient and phase variance are averaged over a tissue 

region of interest, r.  In our study, the region of interest was a single layer of stroma immediately 

adjoining the glands, as shown in Fig. 3.4. 
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Figure 3.4: Stromal Region Selection. A single layer of stroma immediately adjoining these 

glands is highlighted in red in the above image.  We calculate optical anisotropy in this layer of 

stroma using the scattering phase theorem. 

3.6.4 Solidity 

Glandular solidity is defined the ratio of the area of the gland to that of the area of a convex hull 

fit around the gland (Fig. 3.5).  This parameter is an indicator of the uniformity of the edges of 

the selected tissue region.  In order to measure glandular solidity, the glands of interest were 

selected using the ROI feature on ImageJ.  ImageJ was then used to measure the area of the 

gland, fit a convex hull around the gland, measurement of the area of the convex hull and finally, 

the solidity. 

 

Figure 3.5: Glandular Solidity.  Solidity is defined as the ratio of the area of the gland to the 

area of the convex hull or polygonal fit around the gland.  In the above image, the inner 

boundary is the ROI of the gland, and the outer boundary shows the convex hull around the 

gland. 
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CHAPTER 04: Post-Prostatectomy Prediction of Prostate Cancer 

Recurrence – Nested Case Control Study 
 

4.1 Abstract  

The risk of biochemical recurrence of prostate cancer among individuals who undergo radical 

prostatectomy for treatment is around 25%.  Current clinical methods often fail at successfully 

predicting recurrence among patients at intermediate risk for recurrence.  We used a label-free 

method, spatial light interference microscopy, to perform localized measurements of light 

scattering in prostatectomy tissue microarrays.  We show, for the first time to our knowledge, 

that anisotropy of light scattering in the stroma immediately adjoining cancerous glands can be 

used to identify patients at higher risk for recurrence.  The data show that lower value of 

anisotropy corresponds to a higher risk for recurrence, meaning that the stroma adjoining the 

glands of recurrent patients is more fractionated than in non-recurrent patients.  Our method 

outperformed the widely accepted clinical tool CAPRA-S in the cases we interrogated 

irrespective of Gleason grade, prostate-specific antigen (PSA) levels and pathological tumor-

node-metastasis (pTNM) stage.  These results suggest that QPI shows promise in assisting 

pathologists to improve prediction of prostate cancer recurrence.   
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4.2 Motivation 

The Surveillance, Epidemiology, and End Results (SEER) program by the National Cancer 

Institute (NCI) estimates that while 233,000 men will be diagnosed with prostate cancer in 2014 

in USA alone accounting for 14.0% of all cancer cases, the number of men who will die of the 

disease is 29,480 accounting for 5.0% of all cancer deaths [1].  Because most prostate cancers 

are not lethal, active surveillance is a desirable treatment option for patients presenting with 

localized prostate cancer, low prostate specific antigen (PSA) levels, and low risk according to 

the D’Amico risk category (see Supplemental Information for a brief review of this metric) [2].  

However, radical prostatectomy reduces the risk of bone metastasis and mortality among patients 

in the intermediate and high risk categories [2].  Studies have shown that the risk of biochemical 

recurrence, which is defined as increasing serum PSA levels, is around 25% in men who undergo 

radical prostatectomy, whereas the risk of prostate cancer specific mortality in the same group is 

7-12% [3-5].  

Clearly, a method capable of forecasting recurrence is highly desirable. The commonly used 

tools to predict biochemical prostate cancer recurrence after prostatectomy, Kattan nomogram 

and Cancer of the Prostate Risk Assessment (CAPRA-S score), have c-index values ranging 

from 0.76-0.81 (see Supplemental Information for a review of this metric) [6, 7]. Here we 

studied pairs of subjects with similar CAPRA-S scores but different outcomes; one member of 

the pair had biochemical recurrence while the other one did not. In our study, we targeted the 

groups where existing methods have a discriminatory ability of 0.5.  In essence, we used difficult 

cases where these methods fail to identify patients at high risk of recurrence after prostatectomy.  

We used quantitative phase imaging (QPI) to measure scattering anisotropy in the stroma 

adjoining glands in prostatectomy tissue microarrays. We were able to differentiate between 
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recurrent and non-recurrent groups with an area under the receiver-operating characteristic curve 

(AUC) of 0.72 in 181 difficult cases (3-4 cores per case) regardless of age of the patient, 

pathologic staging and Gleason grade scores. Our technique exploits light scattering signatures 

in the stroma as a predictive marker.  

Light scattering rather than absorption is the physical phenomenon that renders our bodies 

opaque to visible radiation. Elastic light scattering, i.e., modification of the direction of 

propagation without change in wavelength, is induced by the inhomogeneity of tissue at multiple 

spatial scales. Measuring certain properties of the scattered field (e.g., angular distribution, 

optical spectrum) informs on the morphology of healthy and diseased tissues. Thus, solving a 

scattering inverse problem holds valuable diagnosis potential. Scattering differences measured 

using optical coherence tomography have been used as a diagnostic measure for in-vivo cancer 

diagnosis in bladder, esophagus, skin, uterus, stomach and breast [8-14].  These studies 

concluded that scattering was stronger in cancerous regions when compared to normal tissue.  

Studies on colorectal and pancreatic cancer using enhanced backscattering spectroscopy and 

partial wave spectroscopy have shown the potential of scattering parameters in studying the field 

effect of cancer [15, 16]. However, scattering signatures in the stroma and the epithelium cannot 

be assessed separately using these methods due to low spatial resolution.  

While carcinoma itself is uncontrolled proliferation of epithelial cells, it also leads to many 

changes in the stromal microenvironment with positive feedback into epithelial growth 

promotion.  The importance of stroma has been documented in mouse models, where the 

implanted cancer is more aggressive when the xenograft has both cancerous epithelium and 

fibroblasts [17].  The study of stroma as a separate entity is relatively new in optical diagnosis. 
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Second harmonic generation (SHG) studies on ovarian and breast stroma showed that malignant 

tumors exhibit greater organization in the collagen fibrils with a more uniform orientation [18, 

19].  Further SHG studies in breast showed that the linear orientation of collagen in a direction 

perpendicular to the cancerous glands, also known as the TACS-3 signature, is associated with 

poor prognosis in breast cancer [20].  In malignant ovarian tissue, it was shown that, due to this 

perpendicular alignment, the stromal region adjoining the gland in a parallel orientation show a 

fractionated appearance [19]. Importantly, light scattering by shorter filaments results in a more 

isotropic angular distribution.  However, structural information obtained using SHG might be 

incomplete since the signal can only be generated by non-centrosymmetric structures. 

Additionally, SHG signal amplitude is largely qualitative, as it depends not only on tissue 

structure, but also the phase matching condition, which cannot be controlled.   

Spatial light interference microscope (SLIM) is a QPI technique, central to our approach (see 

Figure 4.1A and Refs. [21, 22]).  SLIM uses a commercial phase contrast microscope and white 

light illumination, resulting in nanometer scale sensitivity to optical pathlength shifts [23].  In 

essence, SLIM combines phase contrast microscopy with holography. The instrument was 

programmed to scan microscope slides containing 320-360 individual cores, as illustrated in Fig. 

4.2.  
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Figure 4.1: The imaging system. (A) The SLIM set-up is an add-on module to a commercial 

phase contrast microscope. The first set of lenses (L1 and L2) magnify the image to maintain the 

resolution of the microscope.  The Fourier transform of the image plane is projected by lens L3 

onto the spatial light modulator (SLM) where the phase pattern is shifted in phase 4 times, in 

increments of π/2.  The lens L4 Fourier transforms the pattern on the SLM and the final image is 

recorded onto the CCD and stored on the computer.  (B) Four phase shifted images recorded 

using a 40X/0.75NA objective with the final quantitative phase image shown on the right.  Color 

bars indicate phase values in radians. 
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Figure 4.2: Mosaic SLIM imaging of an unstained tissue microarray. A) Unstained tissue 

microarray slide.  B) The mosaic is set up around the core of interest. C) The recording at each 

tile proceeds as shown by the arrow.  For each 1388x1040 pixel SLIM tile, four intensity images 

are recorded. The phase images are then stitched together using an ImageJ plugin built in our lab. 

 

The resulting SLIM image contains rich information about tissue morphology, with the glandular 

epithelium and stroma structures clearly resolved (Fig. 4.3).  This allows us to interrogate 

scattering changes specific to prostate stroma.  In the past, SLIM has shown potential for prostate 

cancer diagnosis [21].  A question of great importance in prostate cancer is the prediction of a 

patient’s prognosis.  In this paper, we used an unstained prostate tissue microarray containing 
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prostatectomy samples of patients with and without biochemical recurrence of cancer, and 

studied changes in scattering signatures to identify patients at higher risk for recurrence. 

 

Figure 4.3: Comparison of H&E and SLIM images.  A-B) H&E and SLIM images 

corresponding to a patient who had biochemical recurrence of prostate cancer after undergoing 

radical prostatectomy. C-D) H&E and SLIM images corresponding to the matched twin who did 

not have cancer recurrence.  Both patients had Gleason score 7 (3+4) prostate cancer of pT2b 

stage without seminal vesicle invasion, no extra-prostatic extensions and surgical margins were 

free of cancer.  The H&E images themselves do not provide any information about recurrence.   
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4.3 Anisotropy as a recurrence predictor 

 

Figure 4.4: Optical Anisotropy Calculation. A) Optical anisotropy (g) was calculated in the 

single layer of stroma immediately adjoining multiple glands in each core.  B) The histograms 

show the distribution of anisotropy values among the 89 non-recurrent and 92 recurrent cases.  

The bin-size on the histogram was set at 0.01.  C) SLIM image of a stromal tissue region in the 

prostate imaged using the 40X/0.75NA objective.  Optical anisotropy value calculated using the 

scattering phase theorem in this tissue region was g=0.932.  D) Anisotropy calculation using 

Henyey-Greenstein phase function fit of the scattering angular distribution yields g=0.928. 

Analysis of anisotropy in the stroma immediately adjoining the glands from 181 individuals who 

underwent prostatectomy (89 with recurrence after prostatectomy pair-matched with 89 without 
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recurrence; and 3 additional un-matched recurrent cases) are summarized in Fig. 4.4.  The 

anisotropy values are displayed as a histogram with a bin width set at 0.01.  The anisotropy value 

in the stromal layer immediately adjoining the glands was lower among patients with recurrence 

(0.911±0.039) than in patients who did not have recurrence of cancer after prostatectomy 

(0.935±0.031).  This difference in anisotropy values is statistically significant (t-test, p=7.66x10
-

6
).  The accuracy of anisotropy measurement in the stroma was characterized using the Henyey-

Greenstein fit, as shown in Fig. 4.4-C,D.  The accuracy estimation is described in more detail in 

materials and methods. 

 

Figure 4.5: Results for Prostate Cancer Recurrence using Anisotropy of Scattering.  Single 

layers of stroma immediately adjoining 12-16 glands were isolated in SLIM images from each of 

the 92 recurrent and 89 non-recurrent patients who underwent prostatectomy. The patients in the 

two groups were matched based on age at prostatectomy, Gleason grade and clinical stage. The 

optical anisotropy parameter was calculated for each region, as described in Materials and 

Methods.  This parameter separates cases of recurrence from non-recurrent twins with an AUC 

of 0.72, as shown.  Lower values of this index correspond to a greater probability of biochemical 

recurrence.  By using a cut-off value of g=0.938, we can predict recurrence with a sensitivity of 

77% and specificity of 62%. CAPRA-S scores corresponding to 161 patients, 83 recurrent and 78 

non-recurrent, showed poor discrimination (AUC 0.54). Twenty cases were excluded in 

CAPRA-S analysis due to one or more missing parameters for CAPRA-S calculation. 
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Anisotropy (g) can be used to distinguish between recurrent and non-recurrent cases with an 

AUC of 0.72 as shown in Fig. 4.5.  When the prediction threshold was set at g = 0.938, as 

determined from the ROC curve, recurrence could be predicted with a sensitivity of 77% and 

specificity of 62%.  The threshold value, g=0.938, is not between the mean values of the two 

distribution due to the skewness in the g- distribution among the recurrent and non-recurrent 

groups.  The threshold is in the region between the median value of the recurrent (0.921) and 

non-recurrent (0.945) groups.  The CAPRA-S score (see Supplemental Information), which is 

commonly used as recurrence prediction tool in clinical practice, was calculated for 161 patients 

(83 recurrent, 78 non-recurrent) from the same set. Twenty subjects were not included in 

CAPRA-S analysis due to missing values for pre-surgical PSA level, extra-capsular extensions, 

and/or lymph node status.  In those 161 patients, CAPRA-S distinguished between the two 

groups with an AUC of 0.54.  This low performance of CAPRA-S is not surprising because some 

of the parameters used for CAPRA-S calculation, namely, Gleason score and lymph node status 

were pair-matched by design.  

4.4 Effect of PSA on anisotropy as a recurrence predictor 

Pre-surgical prostate specific antigen (PSA) level is one of the parameters used in CAPRA-S 

calculation and ranges from 0-3 out of the total possible CAPRA-S score of 0-12.  This means 

the PSA level can have a significant impact on a patient’s CAPRA-S score.  The cases in our 

tissue microarray (TMA) cohort were not matched based on PSA levels and PSA showed poor 

correlation with anisotropy (Pearson r = -0.12).  In order to study the effect of PSA on the 
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predictive ability of CAPRA-S score and anisotropy, we compared the performance of the two 

tools at the PSA ranges used in the CAPRA-S calculations as shown in Fig. 4.6. 

At the PSA range of 0-6 ng/ml, the CAPRA-S parameter failed (AUC 0.4) on the 57 cases (31 

recurrent, 26 non-recurrent), whereas anisotropy showed better performance (AUC 0.7).  In the 

intermediate PSA range of 6.01-10 ng/ml and 10.01-20 ng/ml, both CAPRA-S and anisotropy 

were able to discriminate between recurrent and non-recurrent cases, but anisotropy showed 

significantly better performance.  Anisotropy showed best performance in the PSA range of 

10.01-20 ng/ml with an AUC of 0.88 in 36 cases (23 recurrent, 13 non-recurrent).   

In the 18 cases where PSA levels were greater than 20 ng/ml, both CAPRA-S and anisotropy 

showed poor performance. Our data shows a decrease in anisotropy value in the stroma adjoining 

glands among all individuals with pre-surgical PSA levels greater than 20 ng/ml, irrespective of 

recurrence status.  This decrease in anisotropy among non-recurrent individuals contributes to 

the low discrimination of our method.  We believe that high PSA levels influence the 

morphology of stroma such that it causes increasing fractionation and non-uniform swelling of 

stromal fibers (illustrated in Fig 4.9 in the materials and methods section).  Our observations are 

consistent with previous studies that have implicated PSA in regulating prostate stromal cell 

growth by modulating interactions with growth factors and cytokines [24, 25].  The reason 

CAPRA-S failed on cases with high PSA levels is that levels of PSA>20ng/ml corresponds to 3 

CAPRA-S points out of the maximum 12.  Hence it over-estimates the CAPRA-S score among 

individuals without recurrence but high pre-surgical PSA levels.  Note that, CAPRA-S is 

expected to fail among non-recurrent patients with high PSA levels, as the patient pairs are 

matched in all other relevant parameters. In all PSA ranges, anisotropy performed better than 
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CAPRA-S and a higher value of anisotropy corresponded to a lower probability of biochemical 

recurrence of prostate cancer.  

 

Figure 4.6: Influence of PSA on Anisotropy Values.  Optical anisotropy (g), has poor 

correlation with pre-surgical PSA levels which prompted the prostate cancer diagnosis (Pearson 

r=-0.12).  The performance of anisotropy and CAPRA-S is compared across various PSA ranges.  

A) At PSA 0-6 ng/ml, anisotropy (AUC 0.7) outperforms CAPRA-S (AUC 0.41), which failed 

on the 57 cases.  B) At PSA 6.01-10ng/ml, CAPRA-S has the best results (AUC 0.61), but 

anisotropy (AUC 0.75) still shows better discrimination.  C) At PSA 10.01-20 ng/ml, anisotropy 

(0.88) has the best performance among all the PSA ranges and performs better than CAPRA-S 

(0.59). D) At PSA>20ng/ml, both anisotropy (AUC 0.55) and CAPRA-S (AUC 0.48) show poor 

discrimination. 



43 
 

4.5 Discussion 

It is rather interesting that recurrence is associated with lower g-values.  In other words, more 

serious clinical states are correlated with tissue scattering that appears more isotropic. These 

findings suggest that the stroma around the recurrent glands is fragmented to smaller subunits 

than in their non-recurrent counterpart or that there is a loss of collagen fiber alignment in cases 

of worse outcome. Normal prostate stroma is composed of collagen fibers, smooth muscle cells 

and fibroblasts, unlike breast and ovarian stroma, which are not smooth muscle-rich [26].  This 

might also explain why collagen orientation results are markedly different in breast, ovarian and 

prostate cancers.   

We believe that the changes in anisotropy of scattering detected by QPI are consistent with 

current understanding of prostate cancer biology.  In order for cancer to metastasize, malignant 

epithelial cells breach the basement membrane and invade the stroma.  This appears to explain 

why the changes we detected in stroma are directly adjoining the glands.  Stromal invasion also 

triggers a wound healing process during which various growth factors are secreted and 

fibroblasts switch to myofibroblastic phenotype for wound closure [27-29]. The inability to 

successfully close the wound, which was associated with decreased α-smooth muscle actin and 

desmin expression has been correlated with shorter recurrence time [28]. Fibroblasts and 

myofibroblasts also continue secreting extra-cellular matrix components (ECM) and proteases 

for degradation of existing ECM.  High levels of stromal protein cleavage factors matrix 

metalloproteinase (MMP) 2,9 and lower levels of tissue inhibitors of metalloproteinase (TIMP) 

1,2 were associated with higher Gleason scores (8-10), higher probability of metastases and 

lower probability of cure [30, 31].  Molecular studies have shown the importance of the stroma 

in cancer aggressiveness.  However, studying all molecular expression changes together would 
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involve multiple rounds of immunohistochemistry and other tests which are difficult to quantify 

or reproduce.  On the other hand, QPI characterizes changes in the light scattering caused by 

morphological changes in the stroma, which are the final result of all the molecular changes 

associated with cancer progression.  The increasingly fragmented appearance of stroma and the 

increased disorganization in cases with poor prognosis is measured as a decrease in optical 

anisotropy. Anisotropy shows significant promise in forecasting the recurrence of prostate cancer 

in individuals who undergo prostatectomy.  By combining the label-free nature and nanoscale 

sensitivity of SLIM, we measure changes in optical scattering that are not measurable using 

conventional pathology techniques.  The samples used in this paper represent cases in which the 

current widely accepted prognostic tool CAPRA-S fails at predicting the recurrence of prostate 

cancer.  Further studies will determine whether anisotropy can be used to identify high-risk 

patients in other cohorts and from prostate biopsies, and thus distinguish patients who might 

benefit from active surveillance instead of prostatectomy.   

4.6 Materials and Methods 

4.6.1 Prostate tissue specimens. We used the National Cancer Institute Cooperative Prostate 

Cancer Tissue Resource (NCI-CPCTR) tissue microarray (TMA5), which provides both tissue 

and clinical data associated with patients who underwent radical prostatectomy for treatment of 

prostate cancer.   The tissue was collected at four academic institutions: George Washington 

University, New York University, University of Pittsburg, and Medical College of Wisconsin.  

Procedures, policies and protocols for TMA construction and slide preparation are available at 

the CPCTR website [32, 33].  The studies have been performed in the United States in 

accordance with the procedure approved by the Institutional Review Board at University of 

Illinois at Urbana-Champaign (IRB Protocol Number: 13900). 
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4.6.2 TMA cohort. The outcomes TMA set (TMA5) includes pathologic material from 200 

paired recurrence and non-recurrence prostate cancer cases (400 altogether).  Measurement of 

prostate-specific antigen (PSA) levels in serum is the most commonly used diagnostic and tumor 

recurrence marker in prostate cancer.  Increasing serum PSA concentrations is considered 

evidence of clinical recurrence after prostatectomy or radiation treatment.  The CPCTR created a 

Perl-based algorithm to calculate post-treatment PSA outcomes results based on the initial PSA 

and multiple PSA values obtained after treatment.  For the script, PSA recurrence was defined as 

a single PSA value of greater than 0.4 ng/ml, or a PSA value greater than 0.2 ng/ml with 

additional subsequent increasing values. Details of the algorithm can be found in this reference 

[34]. 

Each patient with biochemical recurrence of prostate cancer was matched by race, Gleason sum 

score (primary and secondary Gleason grades were also accounted), pTNM stage, and age at 

radical prostatectomy with a patient who did not show recurrence.  All cases had no known 

metastasis, ≥5 years follow-up, a PSA nadir and at least 5 PSA tests after surgery.  Cases were 

arrayed over five blocks with a single focus of tumor from each patient represented in 

quadruplicate 0.6 mm cores.  Case-control pairs were allocated in the same block.  The complete 

set of five blocks has 1,600 prostate tissue cores.  For this study, two 4µm thick TMA tissue 

sections were cut from each block at the University of Illinois at Chicago. The thickness was set 

at 4µm in accordance with standard practice in pathology. One set was stained with Hematoxylin 

and Eosin (H&E) for pathology verification and also as a control.  An adjacent set was submitted 

unstained to the Quantitative Light Imaging Laboratory, Urbana, Illinois, for SLIM imaging. 

This set of slides was subsequently de-paraffinized, cover slipped and imaged using the spatial 
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light interference microscope (SLIM).  The demographics of the patients whose tissue was 

interrogated using SLIM is shown in Fig. 4.7.  

 

Figure 4.7: Patient Demographics. The histograms show the demographics associated with 181 

prostatectomy cases used for our study based on various parameters such as the pT stage, pre-

surgical PSA levels, Gleason score and primary Gleason grade.   

 

4.6.3 Spatial Light Interference Microscopy (SLIM). SLIM is developed as an add-on module 

to an existing phase contrast microscope, as shown in Fig. 1A. The image field outputted by the 

microscope is Fourier transformed by the lens system L1, L2, L3 onto the surface of a spatial 

light modulator (SLM). The SLM shifts the phase of the unscattered light with respect to the 

scattered light, sequentially, in increments of /2 (see Ref. [21]). Lens L4 recreates the image of 

the sample at the CCD, which records an image for each phase modulation. The four intensity 
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images are combined to uniquely render the quantitative phase map of the image field, as shown 

in Fig. 4.1B.  The transverse resolution of SLIM images is 0.4 µm, limited by the numerical 

aperture of the objective and the spatial path length sensitivity is 0.3nm.   

In order to image pathology slides, the SLIM imaging system was modified to mosaic together 

large fields of view necessary for diagnosis.  The SLM switching, image acquisition, and stage 

scanning was synchronized via the computer and software developed in house.  Before scanning, 

individual focus points were set at each frame of the mosaic to ensure the entire tissue is in 

focus. Post-processing code was written in MATLAB and ImageJ to stitch all the tiles of the 

mosaic together in order to obtain the final quantitative phase image of the tissue.  The TMA 

slides were imaged via a 40X/0.75NA objective as illustrated in Fig. 4.2. The size of single field 

of view in the 40X SLIM system is approximately 99x74µm, corresponding to 1388x1040 pixels 

on the camera.  The diameter of each tissue core was approximately 0.6 mm, so each core was 

imaged as a 10x10 mosaic which was cropped to 10,000x10,000 pixels for analysis.  An example 

of the side-by-side comparison between SLIM images and H&E stained images is shown in Fig. 

3. Note that the morphological details contained in the H&E image, e.g., glandular structure, cell 

nuclei and stromal fiber alignment are recovered in the SLIM image. 

Stromal regions directly adjoining randomly selected 12-16 malignant glands per patient were 

selected for analysis.  A Wacom tablet and the region of interest (ROI) feature on ImageJ were 

used to manually select the stromal ROIs as shown in Fig. 4A.  The size of the ROI is subject to 

variation based on the size of the glands.  Additionally, the width of stromal fibers can vary due 

to swelling. Individual stromal fibers and separation between adjacent fibers are clearly visible in 

SLIM images enabling accurate segmentation of the stromal fiber adjacent to the gland.   For 
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each stromal region, we calculated the optical anisotropy, g, which is a measure of directionality 

of light scattered by tissue, as detailed below. 

4.6.4 Optical Anisotropy Calculation. The anisotropy factor is the average cosine of the 

scattering angle,  cosg  .  The scattering-phase theorem [35] states that the anisotropy 

factor can be computed from quantitative phase images as  

𝑔 = 1 −
1

2𝑘0
2

〈|∇[𝜑(𝑟)]|2〉𝑟

〈∆𝜑2(𝑟)〉𝑟
2 ,       [1] 

where k0=2/𝜆0 is the wavenumber, 𝜆0=552nm is the center wavelength of white light used in 

our imaging,  r is the stromal region over which optical anisotropy is calculated, 〈∇[𝜑(𝑟)]〉𝑟 is 

the mean phase gradient intensity, and 〈∆𝜑2(𝑟)〉𝑟  is the phase variance.  Eq. 1 is derived using 

the regular thin object approximation for QPI, which gives the expected phase shift proportional 

with thickness. However, g is a property of the tissue bulk, not of the particular slice. Therefore, 

as long as the out-of-focus light is negligible, i.e., the phase measurement integrates over the 

entire tissue thickness, g is independent of thickness. 

Once the quantitative phase image of the core was available, a map of the gradient was computed 

using ImageJ.  In our study, we calculated g in the stromal layer immediately adjoining the 

glands, as illustrated in Fig. 4.4-A.  This stromal region was the region of interest, ‘r’, in 

equation (1).    The mean phase gradient intensity and phase variance were computed in the 

stromal region of interest and finally the value of g was obtained.   

Figure 4.8 illustrates the low- and high-values of g: more isotropic scattering corresponds to 

lower values of g. Our results indicate that bad outcomes are correlated to lower g-values. 
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Figure 4.8: Optical Anisotropy. Optical anisotropy (g) is defined as the average cosine of the 

scattering angle in a single scattering event.  Optical anisotropy is directly proportional to the 

square of the magnitude of phase gradient averaged over a tissue region and inversely 

proportional to the phase variance in the same region.  (a) A tissue slice with high anisotropy is 

primarily forward scattering.  (b) Tissue slide with low anisotropy scatters uniformly in all 

directions.   

 

Figure 4.9: Effect of PSA on tissue morphology A) Prostatectomy tissue of patient with pre-

surgical PSA level 30.1 ng/ml who did not have recurrence of prostate cancer. Stromal fiber 

thickness is uniform but has fractionated morphology. B) Prostatectomy tissue of unmatched 

patient with recurrence of prostate cancer who had pre-surgical PSA level 32 ng/ml. Stromal 

fiber thickness is non-uniform and has a more pronounced fragmented morphology. Arrows 

point to such fragmented filaments. 
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The morphology of stroma adjoining glands among patients with high PSA levels 

(PSA>20ng/ml), is fractionated and shows non-uniform swelling.  This causes anisotropy to fail 

at identifying non-recurrent individuals with high pre-surgical PSA levels as illustrated in Figure 

4.9.  

We calculated the accuracy in the measurement of anisotropy retrieved from the scattering phase 

theorem by comparing it with g-values obtained from fitting the scattering angular distribution 

with the Henyey-Greenstein phase function.  The Henyey-Greenstein distribution is [36]: 

𝑃(𝜃) ∝
1−𝑔2

[1+𝑔2−2𝑔 cos (𝜃)]
3
2

. 

The g-value obtained with the Henyey-Greenstein fit over the tissue region shown in Fig. 4C is 

g=0.928, with fit accuracy R
2
=0.982 (Fig. 4D).  The g-value over the same region calculated 

using the scattering phase theorem, is g=0.932.   

For the purposes of prognosis and diagnosis, precision in the measurement of g is more critical 

than accuracy.  In order to estimate the errors in our g calculations, we considered an area of 

background, with no tissue, and quantified the effect of the background phase noise upon the 

resulting g-values. Let us consider 

𝑔 = 1 −
1

2𝑘0
2

𝑓1

𝑓2
, 

where 𝑓1 = 〈|∇𝜙(𝑟)|2〉𝑟 is the average phase gradient intensity squared over a given tissue 

region and 𝑓2 = 〈∆𝜙2|𝑟|〉𝑟
2 is the phase variance squared over the tissue region. 

The error in our measurement is given by 



51 
 

∆𝑔 = |
1

2𝑘0
2

𝑓1∆𝑓2 − 𝑓2∆𝑓1

𝑓2
2 | 

where ∆𝑓1 and ∆𝑓2 are the standard deviations due to phase noise in 𝑓1 and 𝑓2, respectively. In 

order to evaluate ∆𝑓1 and ∆𝑓2, we selected a region of the SLIM image with no tissue, i.e., 

background, and computed the standard deviations of 𝑓1 and 𝑓2 due to noise. As a result, we 

obtained ∆𝑔 = 3.8𝑒 − 4, which describes the error in our measurements due to spatial phase 

noise. This low value is the direct result of the absence of speckles in SLIM imaging due to the 

white light illumination. 

4.6.5 CAPRA-S Score. The Cancer of the Prostate Risk Assessment (CAPRA-S) score is a 

commonly used post-radical prostatectomy prostate cancer recurrence risk assessment tool, 

which is described in detail elsewhere [7].  It assigns differential weightage to PSA levels before 

surgery, pathological Gleason score, extra-capsular extension, surgical margin status, seminal 

vesicle invasion and lymph node invasion.  The weightages are added up to provide a score that 

determines the risk of biochemical recurrence of prostate cancer. 

4.6.6 Receiver Operating Characteristic (ROC). The ROC curve plots the sensitivity (true 

positive rate) against 1-specificity (false positive rate).  In order to plot an ROC curve using 

binary data, incremental cut-off or threshold values are set at which the true positive and false 

positive rates are determined and plotted.  The area under the ROC curve (AUC) (this is 

equivalent to c-index in a binary outcome, however, c-index is calculated differently) represents 

the accuracy of the classification.  An AUC of 1 corresponds to a perfect classification method 

whereas an AUC of 0.5 corresponds to random guess, like a coin toss. 
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4.6.7 D’Amico Risk Classification.  The D’Amico risk classification is based on the 

combination of clinical parameters such as prostate specific antigen (PSA) levels measured in 

blood, Gleason score on the biopsy and prostate tumor size (T) as measured in either a digital 

rectal exam or trans-rectal ultrasound.  There are three categories [37]: 

1. D’Amico low risk category: Blood PSA level ≤ 10 ng/ml, Gleason score ≤ 6, T1-T2a. (T1: 

Tumor was an incidental finding that is not palpable; T2a: Tumor is in less than one half of one 

side of the prostate) 

2. D’Amico intermediate risk classification: Blood PSA level of 10-20 ng/ml, Gleason score 7, 

T2b. 

(T2b: Tumor is confined to one side of the prostate, but more than one half of one lobe) 

3. D’Amico high risk classification: Blood PSA level > 20 ng/ml,  Gleason score ≥ 8, T2c-T3a. 

(T2c: Tumor is in both sides of the prostate; T3a: Tumor shows extra-capsular extension.  
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CHAPTER 05: Post-Prostatectomy Prediction of Prostate Cancer Recurrence – External 

Validation in a General Population of Patients 

 

5.1 Abstract  

Prediction of biochemical recurrence risk of prostate cancer following radical prostatectomy is 

critical for determining the need of adjuvant treatment options for the patient.  Various 

nomograms exist today for identifying the individuals at higher risk for recurrence; however, an 

optimistic under-estimation of recurrence risk is a common problem associated with these 

methods.  We previously showed that anisotropy of light scattering measured using quantitative 

phase imaging, in the stromal layer adjacent to cancerous glands, is predictive of recurrence. 

That nested-case controlled study consisted of specimens specifically chosen such that the 

current prognostic methods fail.  Here we report on validating the utility of optical anisotropy for 

predicting prostate cancer recurrence in a general population of 192 patients, with 17% 

probability of recurrence.  Our results show that our method can identify recurrent cases with 

73% sensitivity and 72% specificity, which is comparable to that of CAPRA-S, a current state of 

the art method, in the same population.  However, the results show that, while CAPRA-S 

performs better than our technique at low Gleason scores (5-6), it underperforms our method for 

patients with Gleason scores 7 – 10. Essentially, this means that CAPRA-S is better at 

identifying nonrecurring cases, while our scattering anisotropy marker performs better in 

selecting the recurring cases. 
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5.2 Motivation 

In 2010, 138,000 men in the USA underwent radical prostatectomy for treatment of prostate 

cancer [1].  Biochemical recurrence or increase in serum prostate specific antigen (PSA) levels 

after prostatectomy is an early sign of prostate cancer recurrence.  17-33% of patients who 

undergo radical prostatectomy as primary form of treatment experience a biochemical recurrence 

of prostate cancer and 29-34% of individuals in that cohort will have metastatic prostate cancer 

with bone as the most common site of metastasis [2-6].  The 5-year survival rate for metastatic 

prostate cancer is 25% - 43% [3, 7].  Identification of individuals at high risk for biochemical 

recurrence will enable early adjuvant treatment for those patients, and thus reduce the risk for 

metastatic disease and prostate cancer-specific mortality. 

Various methods based on pre and post-surgical evaluation of prostate tissue and clinical 

parameters have been developed for prediction of biochemical recurrence and these techniques 

have been reviewed elsewhere [8, 9].  The post-prostatectomy biochemical recurrence prediction 

methods which are most widely reported and validated are the Stephenson nomogram and 

CAPRA-S which have concordance index values reported between 0.72 - 0.77 [9, 10].  

Optimistic prediction of non-recurrence is a problem that has previously been noted in both 

methods, despite the high discrimination accuracy [9, 11].  Additionally, these methods can lead 

to erroneous results as they rely on PSA levels and Gleason score reports which are prone to 

errors from assay sensitivity and inter-observer variability respectively [12].   

Recently, biomarker-based approaches have been developed as both stand-alone 

predictors of prostate cancer recurrence and in combination with nomogram-based approaches 

[13-19].  The combination of those biomarkers with existing nomograms resulted in improved 

performance, but they are still subject to the problems associated with nomograms.  We 

previously demonstrated the utility of anisotropy of light scattering in the stromal layer adjacent 
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to cancerous gland, measured using quantitative phase imaging (QPI) [20], as an independent 

biomarker for prediction of biochemical recurrence [19].  The study was conducted in a nested 

case control population where recurrent cases were matched with non-recurrent cases based on 

age, pTNM stage, primary and secondary Gleason score.  We demonstrated that anisotropy had 

the ability to identify recurrence with 77% sensitivity and 62% specificity, while CAPRA-S 

showed poor discriminatory ability as multiple CAPRA-S parameters were used as matching 

criterion. 

In this study, we present an external validation of optical anisotropy as a biomarker for prostate 

cancer recurrence.  The patient population in this study had a recurrence probability of 17% 

which is representative of a general population.  The aim of this work was to identify specific 

conditions where using anisotropy as a recurrence predictor had added value over currently used 

prognostic tools.  We performed this study by first testing the performance of anisotropy as a 

recurrence predictor, and then comparing the performance of anisotropy with CAPRA-S across 

the low, intermediate, and high risk CAPRA-S groups and finally, comparing the performance of 

anisotropy with CAPRA-S across Gleason scores 5-6, 7 (3+4), 7 (4+3), 8-10.   Our results 

showed that anisotropy has added value over CAPRA-S at Gleason score ≥ 7; and at CAPRA-S 

≥ 3 which corresponds to the intermediate and high risk groups.  
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5.3 Anisotropy as a predictor of biochemical recurrence 

 

Figure 5.1: Optical anisotropy as a predictor of prostate cancer recurrence. (A) Histograms 

of the distribution of anisotropy in the single layer of stroma surrounding 6-18 glands from 33 

patients with post-prostatectomy biochemical recurrence of prostate cancer and 159 non-

recurrent patients.  The bin-size on the histogram was set at 0.02. The anisotropy value is lower 

in the recurrent patients, compared to the non-recurrent patients (One-way ANOVA, p= 7.05x10
-

5
) (B) Kaplan-Meier survival curve with end-point as disease recurrence for 67 patients with low 

anisotropy values (0.83 - 0.93) and 125 patients with high anisotropy values (0.93 – 0.97). 

Anisotropy (g) of light scattering was measured using the scattering phase theorem in the 

unstained prostatectomy samples imaged using spatial light interference microscopy (SLIM), a 

QPI method (see Materials and Methods for details) [21, 22].  Anisotropy was calculated in the 

single stromal layer adjoining 6-18 glands from each of the 33 patients with post-prostatectomy 

biochemical recurrence of prostate cancer and 159 patients who did not have recurrence.  The 

calibrated anisotropy value in the recurrent cases (0.913±0.028; median = 0.92) was lower than 

that in the non-recurrent cases (0.932±0.023; median = 0.938) (See Appendix A for details about 

calibration).  The difference in anisotropy values in the cancer-adjacent stroma from the 

recurrent and non-recurrent groups was statistically significant (one-way ANOVA, p = 7.05x10
-

5
).  These results are summarized in Fig 5.1-A.  A Kaplan-Meier survival analysis was performed 
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to test the utility of anisotropy for predicting biochemical recurrence as the end-point.  The 

anisotropy ranges tested were 0.68 - 0.93 (67 patients) and 0.93 – 0.97 (125 patients) and the 

results, which are summarized in Fig 5.1-B, show that patients with low anisotropy values had a 

higher likelihood of disease progression.  The 3-year and 5-year recurrence-free probability 

dropped from 95% and 90% respectively for patients with high anisotropy values to 70% and 

65% respectively for patients with low anisotropy values.  

5.4 Comparison of anisotropy, pre-surgical PSA level, Gleason score and CAPRA-S as 

recurrence predictors 

 

Figure 5.2: Comparison of recurrence prediction metrics. The performance of anisotropy 

measured on quantitative phase images, pre-surgical prostate-specific antigen (PSA) levels, 

Gleason score and CAPRA-S as post-prostatectomy biochemical recurrence predictors was 

studied in 192 prostatectomy cases (33 recurrent, 159 non-recurrent).  The best performance was 

observed with CAPRA-S (AUC 0.81) and Gleason scores (AUC 0.78).  The discriminatory 

ability of anisotropy (AUC 0.74) was lower than that of CAPRA-S and Gleason score.  However, 

at the optimal performance point, anisotropy had a sensitivity of 72.7% and specificity of 73.6% 

compared to the 69.6% sensitivity and 77.4% specificity.  Pre-surgical PSA level (AUC 0.6) was 

a poor predictor of recurrence. 
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We compared the ability of anisotropy to distinguish between recurrent and non-recurrent cases 

using the receiver-operating curve analysis as shown in Fig 5.2.  Anisotropy had an area under 

the curve (AUC) of 0.74 (95% CI 0.64 – 0.84) and at a cut-off value of g = 0.93, recurrence was 

predicted with a sensitivity of 73% and a specificity of 73%.  Pre-surgical PSA, with an AUC of 

0.6 (95% CI 0.5 - 0.7) was not a good predictor of post-prostatectomy biochemical recurrence.  

In this cohort of patients, representative of a general population, both Gleason score and 

CAPRA-S out-performed anisotropy as a recurrence predictor.  Gleason score with an AUC of 

0.78 (95% CI 0.69 - 0.86) and CAPRA-S with an AUC of 0.81 (95% CI 0.73 – 0.89) showed 

comparable predictive ability.  At the cut-off value of Gleason score = 6.5, the sensitivity and 

specificity of recurrence prediction was 93.9% and 41% respectively; and at a cut-off value of 

Gleason score = 7.5, the sensitivity and specificity of recurrence prediction was 42% and 95% 

respectively.  This steep gradient is reflective of Gleason score 7 being disease with diverse 

prognosis.  For CAPRA-S, the optimal cut-off value for recurrence prediction was CAPRA-S = 

2.5, resulting in a sensitivity of 69% and specificity of 77%.  The optimal performance of 

CAPRA-S and anisotropy in identifying recurrence in a general population is comparable, with 

anisotropy more sensitive and CAPRA-S more specific.  

5.5 Anisotropy as predictor of recurrence at various CAPRA-S ranges 

CAPRA-S has high specificity in recurrence prediction and anisotropy has higher sensitivity.  So 

we compared the performance of anisotropy as a recurrence predictor at the low, intermediate 

and high risk CAPRA-S ranges as defined previously [11].  At low CAPRA-S risk range of 0-2 

CAPRA-S points, the probability of recurrence was 7.5% in 133 patients in the study.  

Anisotropy could identify recurrence with 70% sensitivity and 75% specificity (AUC 0.66, Fig 

5.3-A).  At intermediate CAPRA-S risk range of 3-5 CAPRA-S points, the probability of 

recurrence was 31.1% in 45 patients.  Using anisotropy, recurrent patients could be identified 
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with 71% sensitivity and 65% specificity (AUC 0.79) (Fig 5.3-B).  14 patients in our study had 

high risk CAPRA-S scores of 6-11 and the probability of recurrence was 64.3%.  Anisotropy 

could identify recurrence in this group with 78% sensitivity and 80% specificity (AUC 0.71) (Fig 

5.3-C). 

 

Figure 5.3: Performance of Anisotropy as a recurrence predictor. The performance of 

anisotropy as a recurrence predictor was compared across the low (0-2), intermediate (3-5) and 

high (6-11) CAPRA-S ranges.  (A) At the low CAPRA-S range, the probability of recurrence 

was 7.5% and anisotropy (AUC 0.66) predicted recurrence with 70% sensitivity and 75% 

specificity.  (B) At the intermediate CAPRA-S range, the probability of recurrence was 31.1%.  

Anisotropy (AUC 0.79) identified recurrence with 71% sensitivity and 65% specificity.  (C) At 

the high CAPRA-S range, the probability of recurrence was 64.3% and anisotropy (AUC 0.71) 

identified recurrence with 78% sensitivity and 80% specificity. 

 

5.6 Effect of Gleason score on anisotropy and CAPRA-S as recurrence predictors 

Gleason score is an important component of CAPRA-S, with 0-3 points out of the total possible 

0-11 CAPRA-S points coming from the Gleason grades.  The observation that the overall 

performance of CAPRA-S and Gleason score in our cohort was comparable, led us to study the 

performance of anisotropy and CAPRA-S at various Gleason score ranges to determine added 

value.   These results are summarized in Fig 5.4 and Table 5.1.  In Fig 4, we show the results 

from the AUC analysis comparing CAPRA-S and anisotropy at the Gleason score ranges 5-6; 7 

(3+4), 7 (4+3) and 8-10.   
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Figure 5.4: Gleason-score adjusted performance of Anisotropy and CAPRA-S. (A) At 

Gleason scores of 5-6, both anisotropy and CAPRA-S show poor performance at identification of 

recurrent individuals.  However, the probability of recurrence at this stage is 3% and CAPRA-S 

outperforms anisotropy due to it’s ability to identify 100% of the non-recurrent cases. (B) At 

Gleason score of 7 (3+4), anisotropy (AUC 0.72) and CAPRA-S (AUC 0.68) show comparable 

performance.  The probability of recurrence at this stage was 16%.  (C) At Gleason score of 7 

(4+3), the probability of recurrence is 43%.  CAPRA-S (AUC 0.38) failed due to overestimation 

of the recurrence risk.  Anisotropy was able to identify recurrence (AUC 0.73). (D) At Gleason 

score of 8-10, the probability of recurrence is 64%.  Anisotropy (AUC 0.73) was able to identify 

the recurrent cases with a higher level of accuracy than CAPRA-S (AUC 0.6). 

 

At Gleason score 5-6, the probability of recurrence was 2.98% among the 67 patients and 

all cases had CAPRA-S scores in the low and intermediate range (Fig 4A, Table 1).  At this 

Gleason range, anisotropy over-estimated the probability of recurrence.  While only 1.5% and 

50% of patients with low and intermediate CAPRA-S scores, respectively, had a recurrence, 
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CAPRA-S did not provide added value over Gleason score.  At Gleason score 7 (3+4), 

anisotropy (AUC 0.72) had better discrimination ability than CAPRA-S (AUC 0.68) (Fig 5.4B).  

For the 89 patients in our study with Gleason score 7 (3+4), 70.8% patients had low CAPRA-S 

scores, 27% had intermediate CAPRA-S scores and 2.2% patients had high CAPRA-S scores; 

29.2% had low anisotropy values and 70.8% had high anisotropy values (Table 5.1).  While both 

patients with high CAPRA-S scores had a recurrence, 9.5% patients with low CAPRA-S and 

12.5% with intermediate CAPRA-S scores also experienced recurrence.  The probability of 

recurrence among patients with low and high anisotropy values was 26.9% and 6.3% 

respectively.  Anisotropy, thus had a 63.6% sensitivity and 76% specificity for identifying 

recurrence at Gleason score 7 (3+4) and demonstrated added value over both Gleason score and 

CAPRA-S.   

For the 14 patients with Gleason score 7 (4+3), the probability of recurrence was 42.85%.  

57.1% patients had low anisotropy values and 42.9% patients had high anisotropy values, 

whereas, 35.7% patients were classified into the low and intermediate risk categories of CAPRA-

S and 28.6% patients were classified into the high risk category of CAPRA-S (Table 5.1).  

However, the CAPRA-S grouping and recurrence rates showed an inverse relationship, and 

therefore CAPRA-S showed poor discrimination in Gleason 7 (4+3) patients (AUC 0.38) (Fig 

5.4C).  62.5% of patients with low anisotropy values had recurrence and 83.3% of patients with 

high anisotropy did not have a biochemical recurrence. Anisotropy shows the ability to predict 

recurrence with 83.3% sensitivity and 62.5% specificity (AUC 0.73) and thus outperforms 

CAPRA-S in the patients with Gleason score 7 (4+3).   
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Table 5.1: Recurrence prediction across Gleason scores.  The above table shows the 

percentage of cases with recurrence and the total number of cases in each sub-category according 

to stacked Gleason grade and anisotropy or stacked Gleason grade and CAPRA-S score. 

 

Our study had 22 patients with Gleason score 8-10 and the probability of recurrence in this 

cohort was 63.3%.  72.7% of the patients had low anisotropy values and 27.3% of the patients 

had high anisotropy values (Table 5.1).  There were no patients in the CAPRA-S low risk 

category since Gleason score 8-10 corresponds to 3 CAPRA-S points [9].  63.6% and 36.4% 

patients were in the CAPRA-S intermediate and high risk categories.  While the probability of 

recurrence linearly scales within the CAPRA-S ranges from 57.1% to 75%, the sensitivity of 

recurrence prediction was low (AUC 0.6, Fig 5.4D).  81.3% of the patients with low anisotropy 

values had recurrence and 83.3% of the patients with high anisotropy values did not experience a 

biochemical recurrence.  The overall sensitivity and specificity of anisotropy as a recurrence 
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predictor in this cohort was 92.8% sensitivity and 62.5% specificity (AUC 0.73) and thus shows 

better discrimination than CAPRA-S in patients with Gleason score 8-10.       

5.7 Discussion 

Our results show that a lower value of optical anisotropy in the stromal layer immediately 

adjoining cancerous glands, which is indicative of a more fractionated stromal morphology, is a 

strong predictor of prostate cancer recurrence, and therefore poor prognosis.  Interestingly, these 

predictive changes in stromal morphology are more pronounced at advanced stages of disease 

progression, that is, Gleason ≥7, as opposed to Gleason score 5-6.  This suggests that stromal 

disorganization is a critical requirement for disease progression at advanced disease states.   

The probability of post-prostatectomy disease recurrence is small at Gleason score 5-6.  At this 

Gleason range, very high sensitivity combined with very high specificity is necessary for 

identifying recurrence.  CAPRA-S has high accuracy at predicting non-recurrence at this disease 

stage, and therefore outperforms anisotropy. 

However, at Gleason 7, the probability of recurrence varies based on the primary and 

secondary pattern.  The 5-year recurrence rate for Gleason 3+4 and Gleason 4+3 has been 

reported to be 14.6 - 29% and 33.3 – 38.9%  respectively [23-26].  It is very important to have a 

prognostic method with high sensitivity at this Gleason range to prevent under-treatment.  

Anisotropy is a strong recurrence predictor at this Gleason range as evidenced by our previous 

study and the current validation study.  At Gleason score 8-10, the probability of recurrence is 

63.6% and current tools have the propensity for over-estimating recurrence and this can lead to 

over-treatment.  For recurrence prediction at Gleason 8 – 10, anisotropy has both high sensitivity 

and high specificity.  CAPRA-S showed poor discrimination for recurrence prediction at the 

Gleason range ≥7 and this could be due to the low number of patients having Gleason >6 in the 

CaPSURE database, which was used to construct CAPRA-S, [9, 11].  
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Based on our results, we conclude that anisotropy has to potential to improve treatment 

decisions for patients diagnosed with prostate cancer of Gleason grades 7 – 10.  Since our 

technique relies solely on parameters measured in prostate tissue, anisotropy measurements show 

potential as a prognostic predictor for use in biopsies. 

5.8 Materials and Methods 

5.8.1 Prostate Tissue Specimen 

We obtained the 217 case biochemical recurrence tissue microarray (TMA) set from the Prostate 

Cancer Biorepository Network (PCBN).   The TMA set has prostatectomy tissue and clinical 

data associated with patients who were treated for prostate cancer with radical prostatectomy at 

New York University and Johns Hopkins University.  The studies have been performed in 

accordance with the protocols approved by the Institutional Review Board at the University of 

Illinois at Urbana-Champaign (IRB Protocol Number: 13900). 

5.8.2 TMA Cohort 

The TMA set had prostatectomy tissue from 217 patients with 23 cases of adjacent normal tissue 

and 13 cases of benign prostatic hyperplasia (BPH).  38 patients had a biochemical recurrence of 

prostate cancer and 164 patients did not have a biochemical recurrence.  There were 4-5 cores 

per patient and the cores were arrayed across 5 blocks.  192 cases were analyzed in this study 

and information regarding the patients’ clinical parameters is shown in Table 5.2.  
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Table 5.2: Characteristics of TMA Cohort. This table provides information regarding the total 

number of patients in the TMA set within each clinical category. 

 

TMA tissue sections were cut from each of the 5 blocks at New York University.  The 

sectioning thickness was 4μm, which is standard pathology practice.  The tissue was de-

paraffinized and the unstained tissue slide was cover-slipped with aqueous mounting medium at 

the pathology laboratory at the University of Illinois at Chicago.  The slides were then imaged at 

the Quantitative Light Imaging Laboratory in Urbana, Illinois using the spatial light interference 

microscope (SLIM), which is a QPI technique described below. 
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5.8.3 Spatial Light Interference Microscopy 

The Spatial Light Interference Microscopy (SLIM) system is an add-on module to a phase 

contrast microscope and is reviewed in detail elsewhere [21].  We used the commercial SLIM 

system (Cell Visa Q100, Phi Optics, Inc.) combined with imaging software developed in house, 

which synchronizes SLM switching, stage scanning and image acquisition.  The TMA slides 

were imaged using the 40X/0.75NA objective and the size of each field of view, which can be 

controlled, was set at 85.16 x 82.6 μm corresponding to 528 x 512 pixels on the camera.  We 

used a 10% overlap setting on all sides of each frame during mosaic acquisition.   

5.8.4 Sample Analysis 

The Grid and Collection plugin in Fiji was used to stitch the mosaic together.  The diameter of 

each tissue core was approximately 0.7 mm, so the cropped dimensions of the image of each 

tissue core were set at 5000 x 5000 pixels.  Fiji was used to perform analysis of the images.  

Using a Wacom tablet and the region of interest (ROI) feature on Fiji, a single layer of stroma 

adjoining 5-6 glands from each core was segmented for analysis (Fig. 5.5).   In our study, one 

core from each patient was arrayed in each of the 3 slides analyzed, and thus we had 6-18 

stromal regions for each patient with reduced number of regions in cases were cores were 

missing.  The clear visibility of individual stromal fibers in the SLIM images allows us to 

accurately segment the stromal fiber immediately adjoining the cancerous glands.  The size of 

each stromal region analyzed varied as a result of variation in glandular size and stromal width.  

We then measured the phase variance and phase gradient in the stromal region, in order to 

calculate optical anisotropy (g) using the scattering phase theorem.  
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Figure 5.5: Quantitative Phase Images obtained using Spatial Light Interference 

Microscopy (SLIM). (A) Unstained prostatectomy core from a patient with biochemical 

recurrence of prostate cancer 3 months after prostatectomy (B) Zoomed-in region from the 

recurrent patient with the single layer of stroma surrounding the Grade 3 cancerous gland 

marked.  Anisotropy in this selected region is computed for recurrence risk calculation. A lower 

value of anisotropy, or higher degree of fragmentation in the stroma, is observed in the patients 

at high risk for recurrence (C) Unstained prostatectomy core from a patient without biochemical 

recurrence of prostate cancer for 44 months PSA follow-up time after radical prostatectomy (D) 

Single layer of stroma surrounding a Grade 3 cancerous gland from the non-recurrent patient is 

marked, and anisotropy was calculated in this selected region.  The stromal layer was less 

fragmented and hence had a higher value of anisotropy.  
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5.8.5 Optical Anisotropy (g) 

Optical anisotropy (g) is defined as the average cosine of the scattering angle associated with a 

single scattering event.  Anisotropy can be calculated from the quantitative phase images using 

the scattering phase theorem [22]: 

g = 1-
1

2k0
2

〈|∇[φ(r)]|2〉r

〈∆φ2(r)〉r
2                                                                                                          [1] 

where k0=2/λ0 is the wavenumber.  The center wavelength of the white light used in our 

imaging system, λ0=552nm. Optical anisotropy is calculated over the stromal region, r, 

corresponding to the ROI.  〈∇[φ(r)]〉r is the mean phase gradient intensity, and 〈∆φ2(r)〉r  is the 

phase variance.   

Anisotropy value measured is not restricted to the tissue slice imaged and is actually a 

property of bulk tissue.  The phase measurement and therefore g, is representative of the entire 

tissue when out-of-focus light is negligible.  Anisotropy measurements are, therefore, thickness 

independent (See Appendix B for experimental evidence).  Precision, and therefore repeatability, 

is an important requirement for prognostic tools.  As in our previous study, we measured the 

effect of phase noise in a background area (no tissue) and measured its effect on g-values.  We 

repeated this measurement since we used a different imaging configuration in our current study.  

The error is measured as: 

∆g = |
1

2k0
2

f1∆f2-f2∆f1

f2
2 |                                                                                               [2] 

Where f1and f2 are the square of the average phase gradient intensity and square of the phase 

variance, respectively, and are measured over the same background region.  ∆f1 and ∆f2 are the 
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standard deviations in f1and f2, respectively, due to phase noise.  In the current imaging set-up,     

Δg = 1.52 x 10
-3

. The low error value is attributed to white light imaging, which eliminates 

speckles, and therefore increases precision. 
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CHAPTER 06: Colorectal Tissue Screening with Quantitative Phase Imaging 

 

6.1 Abstract 

Colorectal cancer is the second-leading cause of cancer related deaths in the United States.  

Screening for colorectal cancer using colonoscopy can lead to diagnosis of the disease in the pre-

cancerous, or dysplastic stage and thus improve outcomes and reduce disease-specific mortality.  

The colonic tissue excised during screening is assessed by the pathologist in order to make a 

final diagnosis.  However, dysplasia is typically present in 25% of colonoscopy tissue.  

Quantitative phase imaging (QPI) can flag specific areas of tissue with dysplasia or cancer, 

which require surgical intervention, with 96.3% sensitivity and 96.9% specificity.  Thus QPI has 

the potential to help in the implementation of wide-spread screening programs. 
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6.2 Motivation 

Colorectal cancer develops from benign adenomatous polyps that advance to carcinoma through 

a series of genetic mutations over the course of 5-10 years.   The overall 5-year survival rate for 

colorectal cancer is 64.7%.  When the data is further categorized based on the disease stage at 

diagnosis, 39.6% of the cancers are diagnosed at the local stage and has 89.8% 5-year survival 

rate [1].  But 36% of colorectal cancers diagnosed at regional stage have 70.5% 5-year survival 

rate and the 20% cases with distant metastasis have 12.9% 5-year survival rates [1].  Early 

diagnosis of colorectal cancer is thus strongly correlated with reduced disease-specific mortality.    

The United States Preventive Services Task Force (USPSTF) recommends colorectal cancer 

screening among individuals of the age group 50-75 years through either annual high-sensitivity 

fecal occult blood test (FOBT), colonoscopy every 10 years or sigmoidoscopy every 5 years 

combined with high-sensitivity FOBT every 3 years [2].   Colonoscopy has the highest 

sensitivity among all screening tools for identification of polyps and also allows for early 

removal of polyps, which has been linked to reduced colorectal cancer incidence and colorectal 

cancer-related deaths by interruption of disease progression [3-5].   In the USA, colonoscopy is 

the preferred form of colorectal cancer screening and the percentage of individuals in the age 

group of 50-75 years who underwent colorectal cancer screening increased from 54% to 65% 

from 2002 to 2010 [6]. 

The prevalence of an adenoma among all individuals undergoing colonoscopy is 25 - 27%, and 

the prevalence of high grade dysplasia and colorectal cancer is even lower, 1 - 3.3% [3, 7].  

However, a biopsy or polyp removal is performed in 50% of all colonoscopies as current 

screening methods cannot distinguish adenoma from a benign polyp with high accuracy [8].  A 
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pathologist examines all the polyps that have been excised to determine if the tissue was benign 

or dysplastic or cancerous, and if further treatment is necessary.   

The Patient Protection and Affordable Care Act in the United States now requires all insurances 

to cover cancer-screening strategies recommended by the USPSTF.  This would mean that the 

number of colon cancer screening cases examined by pathologists will show a large increase.   

Considering the small proportion of cases with advanced neoplasms in the midst of a large 

volume of tissue excised during screening, a quantitative tool that can flag dysplastic or 

cancerous tissue with a high level of accuracy will help with the implementation of colonoscopy 

as a widespread screening tool for early colorectal cancer detection.  Also, this could greatly 

impact screening strategies world-wide, as recent studies that have shown the critical need for 

implementation of colorectal cancer screening in Asia in light of an alarming increase in 

colorectal cancer incidence [9-11].    

Semi-automated computational screening of pathology cases has had a huge impact in cervical 

cancer screening using the Papanicolou test, also known as the Pap smear.  The FDA-approved 

BD Focal Point Slide Profiler, a cytologic screening tool, automatically classifies 25% cases as 

normal without any further analysis necessary by the pathologist, and flags 75% of the cases for 

further pathology analysis with a risk grouping, thus reducing the number of cases requiring 

examination by the pathologist [12].   

Here, we show how Spatial Light Interference Microscopy (SLIM), a quantitative phase imaging 

method, can be used to identify dysplastic and colon cancer cases with 96.3% sensitivity and 

96.9% specificity and therefore serve as a supporting diagnostic tool for pathologists and 

gastroenterologists and thus assist with the implementation of new colon cancer screening 

programs.   
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6.3 Quantitative Classification of Tissue Microarray Cores 

In order to quantitatively classify tissue into the categories of high index of suspicion (dysplasia, 

intra-mucosal carcinoma and carcinoma) and low index of suspicion (normal, hyperplasia), a 

support vector machine (SVM) classifier was built using glandular solidity and glandular phase 

median as the support vectors (See Materials and Methods for details).  The SVM classifier was 

first tested on three slides of the tissue microarray set from UIC, consisting of 816 glands from 

100 cores designated as normal, 168 glands from 27 cores designated as hyperplastic, 219 glands 

from 34 cores designated as dysplastic and 704 glands from 102 cores designated as cancerous.  

86% of the glands from normal cores and 85% of the glands from hyperplastic cores were 

classified into the low index of suspicion group (Fig. 6.1).  68% of the glands from dysplastic 

cores and 80% of the glands from cancerous cores were classified into the high index of 

suspicion group.  It should be noted that in order for a core to be diagnosed as normal or 

hyperplastic, all glands in that core show normal or hyperplastic morphology on the H&E 

images.  However, for a core to be diagnosed with dysplasia, intra-mucosal carcinoma or 

carcinoma, a minimum of one gland has to display said morphology on the H&E image, and 

other glands could have normal or hyperplastic morphology.  This explains the higher 

discrimination accuracy seen in glandular classification from cases in the low index of suspicion 

group, in comparison to cases in the high index of suspicion group.  This distribution in apparent 

mis-classifications are also visible in Fig xx that shows the number of glands classified as high-

index of suspicion and low-index of suspicion in each core belonging to the normal, hyperplasia, 

dysplasia and carcinoma categories. 
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Figure 6.2: The Accuracy of Classification of Colorectal Tissue. The accuracy of 

classification of cancerous, dysplastic, normal and hyperplastic cores into the “high index of 

suspicion” and “low index of suspicion” groups is shown in the above figure.  The high index of 

suspicion (dysplasia, cancer) cases are flagged with 96.3% sensitivity and 95.3% specificity. 

 

Our end goal was to flag cores with suspected cancer or dysplasia for further examination by 

pathologists. To this end, the risk stratification of multiple glands from each core was pooled 
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together and a threshold was set, such that, if 50% or more glands from a single core were 

classified as “high index of suspicion,” the core was flagged.  This resulted in 135 cores being 

flagged for further analysis by the pathologist.  A closer examination of the flagged cores 

showed that 88% of all cores with dysplasia and 99% of all cores with cancer were flagged (Fig. 

6.2).  Additionally, 5% of all normal cores and 4% of all hyperplastic cores were incorrectly 

flagged as high index of suspicion.  The overall sensitivity and specificity for identification of 

high index of suspicion cases was 96.3% and 96.9% respectively.   

 

6.4 Pathologists’ Analysis of Flagged TMA Cores 

The 135 cores which were flagged as high index of suspicion were then presented to two 

different pathologists for diagnosis on both SLIM and H&E.  Neither pathologist was involved in 

the gold standard diagnosis that was used for building the SVM classifier for quantitative 

diagnosis.  Additionally, they were not provided with any details regarding the accuracy of the 

quantitative risk stratification, to prevent classification bias.  In order to train the pathologists for 

identification of relevant morphological features on SLIM images, they examined SLIM and 

H&E images of cores that were used to build the SVM classifier side-by-side.  After completion 

of training, they were first asked to examine all flagged cases using SLIM only, and then 

diagnose the cores as either “normal”, “hyperplasia”, “dysplasia”, “intra-mucosal carcinoma” or 

“carcinoma”.  Once all cases were diagnosed on SLIM, the consecutive H&E section was 

presented to the pathologists for diagnosis under the same categories.  The main aims of this 

exercise were to determine if pathologists could identify the incorrectly flagged cases on SLIM 

alone, and to test the consensus between the SLIM and H&E diagnoses made by the pathologists.  
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If pathologists are able to make accurate qualitative diagnoses on SLIM images, the case-loads in 

pathology laboratories for tissue staining, in a colon cancer setting, could be reduced.    

The agreement between the SLIM and H&E diagnosis made by the same pathologist, as well as 

the agreement between the SLIM and H&E diagnosis made by the two pathologists was 

computed using Cohen’s kappa estimate [13].  The weighted Cohen’s kappa estimate was used 

since the level of disagreement between the diagnosis of cancer as dysplasia is lower than the 

level of disagreement in a diagnosis of cancer as normal [14].  Our analysis showed that the 

weighted kappa for agreement between SLIM and H&E diagnosis of all cases by the same 

pathologist, or intra-observer agreement according imaging modalities, was 0.69 and 0.86 for the 

two pathologists (Table 6.1).   

 

Table 6.1: Intra-observer agreement among pathologists. The weighted kappa score for the 

agreement between the pathologist’s diagnosis on SLIM and the same pathologist’s diagnosis of 

the same case on H&E was computed for all 138 cases flagged as high-suspicion by the 

automated classifier.  The weighted kappa score for each pathologist is in the substantial 

agreement range.  It should be noted that all the flagging errors were identified by each 

pathologist on the SLIM images itself.  

The kappa agreement between the H&E diagnosis of all cases compared across both pathologists 

was computed as 0.73, and the kappa for the SLIM diagnosis agreement by both pathologists 

was 0.67 (Table 6.2).  Since kappa score is a conservative estimate of agreement, the kappa 

scores obtained in our study is considered to be in the substantial agreement range [15].  It 

should be noted that both pathologists were able to correctly identify all the incorrectly flagged 
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cases (normal, hyperplasia) on SLIM alone, and it showed consensus with their diagnoses on the 

H&E images of the same cases.  

 

Table 6.2: Inter-observer agreement among pathologists. The weighted kappa score for the 

agreement between the Pathologist # 1 diagnoses on H&E and Pathologist # 2 diagnoses on 

H&E was computed for all 138 cases flagged as high-suspicion by the automated classifier.  

Their agreement on H&E is within the good agreement range.  The weighted kappa score was 

also computed for the diagnoses by both pathologists on the SLIM images.  Their agreement on 

SLIM is within the substantial agreement range.   

 

6.5 Quantitative Classification of Biopsy Slides 

A surgically resected colon sample was imaged using the fast tissue scanner (see Materials and 

Methods for details).  The large tissue image was cropped to 10000x10000 pixel regions over 

which the glands were segmented for extracting the phase median and glandular solidity values.  

The SVM classifier then flagged the glands as either high or low index of suspicion and an 

adjacent H&E section with pathologist’s diagnosis was used for comparison of diagnostic result.  

As shown in Fig. 6.3, the quantitative classifier flagged all the regions with cancerous or 

dysplastic regions as high index of suspicion and all benign regions were identified as low index 

of suspicion.   
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6.6 Discussion 

10% of all adenomatous polyps are cancerous [16] and endoscopic methods currently used in 

clinic cannot distinguish adenomas from carcinomas.  Many optical methods have been 

developed for conjunction with endoscopy methods for colorectal cancer screening and have 

been reviewed elsewhere [17, 18].  Confocal endomicroscopy has shown potential for in-vivo 

distinction between hyperplastic and dysplastic tissue but it involves the use of contrast agents 

such as fluorescin and acriflavine hydrochloride and is time-consuming [19-21].  In-vivo 

spectroscopy-based methods such as low coherence enhanced backscattering spectroscopy and 

inverse spectroscopic optical coherence tomography have been used to identify normal-

appearing tissue that is adjacent to dysplastic and cancerous tissue, also known as the field effect, 

to guide effective diagnoses and improve miss-rates of colonoscopy [22, 23].  Optical coherence 

tomography methods also have the resolution to differentiate between gastrointestinal mucosa 

and the muscular layers, thus showing potential for in-vivo diagnosis [24-27].  Elastic scattering 

spectroscopy uses a point scanning method and has 84% sensitivity and specificity for 

distinguishing hyperplasia from adenomas, which may not be optimal [28].  Raman spectroscopy 

and fluorescence spectroscopy based measurements have shown higher sensitivity and specificity 

rates for distinguishing adenoma from hyperplasia, but they still do not approach the accuracy of 

histopathology and are less practical due to issues related to power of the optical signals [29, 30]. 

 Histopathology, following colonoscopy tissue resection, continues to remain the gold-

standard for diagnosis of colorectal cancer and dysplasia.  SLIM has a high sensitivity and high 

specificity for flagging cases requiring pathological examination, and also flags specific regions 

on large tissue samples, such as biopsies, requiring the attention of pathologists.  Since 

pathologists are able to identify the incorrectly flagged cases on SLIM alone, the number of 
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cases that will have to be stained is reduced, thus reducing case-loads for tissue processing in 

pathology labs.  Thus SLIM can help optimize diagnostic time-lines in colorectal screening 

programs.   

6.7 Materials and Methods 

6.7.1 Study Design   

 

Figure 6.4: Schematic for quantitative diagnosis. Quantitative parameters extracted from 

SLIM images of multiple glands from 131 patients in a tissue microarray set.  The parameters 

from 25% of the patients were used to build a support vector machine (SVM) classifier on 

MATLAB.  In the internal validation of the classifier, it was tested on the remaining 75% of the 

patients and additionally, pathologists were asked to make a diagnosis on SLIM images, to check 

if false positives could be identified on SLIM itself.  In the external validation, a large surgically 

resected colon tissue slide was imaged using the fast tissue scanner and the classifier was tested 

on this image. 

A schematic for the design of this study is shown in Fig 6.4.  A tissue microarray (TMA) set 

containing tissue with colon carcinoma, intramucosal carcinoma, dysplasia, hyperplasia and 

normal colonic mucosa was imaged using the QPI technique, spatial light interference 

microscopy, SLIM 1.0 scanner.  Quantitative features were extracted from the image to construct 

a support-vector machine (SVM) classifier on MATLAB to flag cases with dysplasia, 

intramucosal carcinoma and carcinoma as high index of suspicion using 25% of the cases in the 

TMA set.  The classifier was then tested on the remaining 75% cases in the TMA set as an 

internal validation.  Subsequently, collaborating pathologists were asked to make a diagnosis on 
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the SLIM images of flagged cases to determine utility for reducing tissue processing case-loads 

in pathology laboratory.  Finally, colon tissue surgical resection and biopsy slides were obtained 

from two different sites and imaged using the fast tissue scanner.  The SVM classifier was then 

tested on the tissue as an external validation. 

6.7.2 TMA Cohort 

  A tissue microarray (TMA) was prepared with archival pathological 

material collected from 131patients who underwent colon resection for treatment 

of colon cancer at the University of Illinois at Chicago (1993 to1999). For each case, 0.6 mm in 

diameter colon core duplicates of tumor, normal, dysplastic, and hyperplastic mucosa were 

retrieved based on donor block availability. Tissue cores were transferred using a MTA-1 manual 

arrayer (Beecher Instruments, Inc.) into a high density array composed by four blocks with 

primary colon cancer (n=127patients) and mucosa of normal (n=131 patients), dysplastic (n=33 

patients), and hyperplastic colon (n=86 patients).  The tissue collection was performed in 

accordance with the procedures approved by the Institutional Review Board at the University of 

Illinois at Chicago (IRB Protocol Number: 2004-0317). 

Two 4μm sections were cut from each of the four blocks at the University of Illinois at Chicago.  

The first section was de-paraffinized and stained with hematoxylin and eosin (H&E) and imaged 

using the Nanozoomer.  One of the pathologists on our team made a diagnosis for all tissue cores 

in the TMA set and this was provided to us as the “ground truth” for analysis.  A second adjacent 

section was cut at 4μm thickness and was de-paraffinized and cover-slipped without staining 

using the aqueous mounting medium. This slide was then sent to the Quantitative Light Imaging 

Laboratory at Urbana, Illinois for further analysis.  These studies followed the protocols outlined 
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in the procedures approved by the Institutional Review Board at the University of Illinois at 

Urbana-Champaign (IRB Protocol Number: 13900). 

6.7.3 Quantitative Phase Imaging of TMA Slides 

  An unstained set of TMA slides with colorectal tissue samples from patients with cancer, 

dysplasia, and hyperplasia; and normal controls was imaged using spatial light interference 

microscopy, SLIM 1.0, the imaging system is described in detail elsewhere [31].  Briefly, SLIM 

is an add-on module to the commercial phase contrast microscope that introduces 3 additional 

phase shifts to the phase contrast image using a spatial light modulator (SLM) and records them 

as intensity images.  The quantitative phase is then computed mathematically from the four 

intensity images (where scattered an un-scattered light are phase shifted by π/2, π, 3π/2 and 2π) 

using MATLAB.   

The TMA slides were imaged using the 40X/0.75NA objective of the SLIM 1.0 imaging system.  

The spatial resolution of the resulting image was 0.4μm, which is the resolution of the objective.  

The optical path length sensitivity of this imaging system is 0.3nm.  The SLIM 1.0 system has 

the ability to mosaic large fields of view necessary for tissue scanning, but the speed is limited 

by the refresh rate of the SLM, capture rate of the camera and the computational ability of the 

computer.  A single field of view was 1388 x 1040 pixels on the CCD camera, and this 

corresponded to a physical size of 99 x 74μm of the object, in this case, the tissue sample.  Each 

colorectal tissue core was approximately 0.8mm in diameter, and therefore, this corresponded to 

a mosaic with 80 imaging fields of view.  Every 5 fields of view were manually focused, thus 

setting up multiple smaller focal planes and ensuring that all tissue regions were in-focus.  The 

images were captured at 0% overlap in all directions, and this setting was adjusted using the  
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microscope capture software, AxioVision.  The images were stitched using an ImageJ plugin that 

was built in our lab and each core was cropped to an image size of 12000 x 12000 pixels (Fig 

6.5).   

6.7.4 Support Vector Machine (SVM) Training 

  Complete glands present on all cores were manually segmented on SLIM images using a 

Wacom tablet and the region of interest (ROI) feature on ImageJ.  Solidity, which is the ratio of 

the area of the gland to the area of the convex hull fitted around the gland, and median phase 

value in each gland was measured.   

25% of the cases in the TMA set were used to build an automated classifier for diagnosis.  

Solidity and phase median measurements were extracted from 454 glands from cores diagnosed 

as normal and 194 glands from cores diagnosed with cancer.  These measurements were used to 

create a classifier with the support vector machine (SVM) algorithm on MATLAB (Fig. 6.6).  A 

linear kernel was used to build the classifier and sequential minimal optimization was used to 

calculate the hyper-plane for separation of the different classes of data.  The classes designated 

were low index of suspicion which would contain normal and hyperplastic tissue, and high index 

of suspicion, which would contain dysplastic and cancerous tissue.   

6.7.5 Internal Validation 

 The TMA cores from the three slides, which were not used for building the classifier, were used 

for internal validation of the classifier.  The solidity and phase median values were extracted 

from 816, 168, 219 and 704 glands from 100, 27, 34 and 102 cores diagnosed as normal, 

hyperplasia, dysplasia and cancer respectively.  Using the SVM classifier, each gland was then 

stratified as low or high index of suspicion.   

 



90 
 

 F
ig

u
re

 6
.6

: 
Q

u
a
n

ti
ta

ti
v
e 

p
a
ra

m
et

er
s 

fo
r 

cl
a
ss

if
ic

a
ti

o
n

. 
 (

A
) 

G
la

n
d
u
la

r 
so

li
d
it

y
 i

s 
th

e 
ra

ti
o
 o

f 
th

e 
ar

ea
 o

f 
th

e 
g
la

n
d
, 
to

 t
h
e 

ar
ea

 o
f 

a 

co
n
v
ex

 h
u
ll

 f
it

te
d
 a

ro
u
n
d
 t

h
e 

g
la

n
d
. 
 G

la
n
d
s 

w
it

h
 d

y
sp

la
si

a 
an

d
 c

ar
ci

n
o
m

a 
h
av

e 
lo

w
er

 s
o
li

d
it

y
 v

al
u
es

 t
h
an

 b
en

ig
n
 g

la
n
d
s 

d
u

e 
to

 

in
v
as

iv
e 

ed
g
es

. 
 (

B
) 

T
h
e 

p
h
as

e 
d
is

tr
ib

u
ti

o
n
 i

n
 a

 c
an

ce
ro

u
s 

g
la

n
d
 i

s 
o
v
er

 a
 w

id
er

 r
an

g
e 

o
f 

p
h
as

e 
v
al

u
es

 t
h
an

 n
o
rm

al
 g

la
n
d
s.

  
C

an
ce

ro
u
s 

g
la

n
d
s 

h
av

e 
a 

h
ig

h
er

 p
h
as

e 
m

ed
ia

n
 v

al
u
e 

th
an

 n
o

rm
al

 g
la

n
d
s.

 (
C

) 
G

la
n
d
u
la

r 
so

li
d
it

y
 a

n
d
 p

h
as

e 
m

ed
ia

n
 w

er
e 

co
m

b
in

ed
 u

si
n

g
 a

 

su
p

p
o
rt

-v
ec

to
r 

m
ac

h
in

e 
cl

as
si

fi
er

 i
n
 M

A
T

L
A

B
, 

to
 b

u
il

d
 a

 l
in

ea
r 

k
er

n
el

 c
la

ss
if

ie
r 

to
 s

ep
ar

at
e 

n
o

rm
al

 a
n

d
 c

an
ce

ro
u

s 
g
la

n
d

s.
  
4

5
4

 g
la

n
d

s 

fr
o
m

 4
9
 n

o
rm

al
 c

o
re

s 
an

d
 1

9
4
 g

la
n
d
s 

fr
o
m

 3
2
 c

an
ce

ro
u
s 

co
re

s 
w

er
e 

u
se

d
 t

o
 b

u
il

d
 t

h
e 

cl
as

si
fi

er
. 

  



91 
 

6.7.6 External Validation 

 A paraffin-embedded surgically resected colon sample was obtained from the University of 

Illinois at Chicago.  It was sectioned at 4μm thickness, de-paraffinized and later coverslipped 

with aqueous mounting medium.  The slide was imaged using the commercial SLIM system 

(Cell Vista, Q100) that has a tissue scanning component.  The slide was imaged with the 

40X/0.75NA objective, and had a spatial resolution of 0.4μm. The size of each field of view was 

221 x 165μm, corresponding to 1392 x 1040 pixels on the CCD camera.  15,589 fields of view 

were mosaicked together, with 10% overlap on all sides, to image the surgically resected tissue.  

The images were stitched together using software developed in the QLI laboratory and then 

cropped into 176 images of 10000 x 10000 pixels, corresponding to 1587.3 x 1587.3μm .  

Manual segmentation of glands was performed on these cropped images, using ImageJ, to 

measure the solidity and median phase value of the glands.  The SVM classifier was used to 

classify the glands as low or high index of suspicion.  The individual glandular diagnoses were 

then thresholded at 50% to obtain a single flagging measure for each 10000x10000 pixel tissue 

region.  Thus multiple diagnoses can be made in order to flag specific regions for pathology 

assessment.  
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CHAPTER 07: Summary & Future Work 

In my thesis, I have shown how quantitative phase imaging has the potential to be a great asset in 

the pathology toolbox.  The quantitative nature of this method eliminates intra- and inter-

observer differences.  The utility of this method with FFPE tissue makes it fit in well with 

current pathology practices, without the need for changes in tissue processing pipelines.  

Additionally, the morphological information in H&E images is retrieved qualitatively in phase 

images, thus allowing pathologists to perform image segmentation, when necessary, without 

extensive additional training for identification of tissue compartments, as observed in the 

qualitative diagnosis of colorectal images by our pathology collaborators.  Since QPI maps are 

self-calibrating with respect to illumination, machine learning implementation for automated 

classification will be easier to implement.  The fast scanning ability of SLIM systems will also 

help in situations where high throughput is necessitated, as in screening settings. 

In the case of prostate cancer, quantitative Gleason grading using QPI has higher classification 

accuracy than currently reported clinical consensus studies [1, 2].  This will help improve 

treatment outcomes.  Machine learning algorithms used in conjunction with QPI can eliminate 

sources of bias in quantitation, such as region of interest selection, and further improve reliability 

of Gleason grades. 

Anisotropy measured in QPI images is a powerful prognosticator of prostate cancer recurrence.  

The prognosis ability works particularly well for patients with Gleason score 7+ prostate cancers 

where current prognostic methods such as CAPRA-S and Kattan nomogram based methods have 

poor predictive ability.  Anisotropy can thus enable early adjuvant treatment for patients 

undergoing prostatectomy, and thus reduce the risk of recurrence, especially in patients with 

intermediate Gleason grades.  Among patients with high Gleason grades, 8-10, anisotropy has 
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added specificity over clinical methods to reduce over-treatment.  It is important to note that in 

our studies, the end point was biochemical recurrence which serves as a surrogate end-point for 

metastatic recurrence.  29 - 34% of biochemical recurrence progresses to metastatic recurrence, 

which has poor survival rates [3, 4].  It is important to study if anisotropy, in conjunction with 

other clinical methods, can improve prediction of metastasis and risk of prostate cancer specific 

mortality, further reducing over-treatment of patients with intermediate and high Gleason grades.  

A tool that can make such predictions at the pre-surgical stage will be of great comfort for 

patients trying to make a decision between watchful waiting, active surveillance and surgery [5, 

6].  So it is important study if QPI can help with decisions regarding treatment options with more 

value than Gleason grading itself, and methods that combine Gleason grading with other patient 

characteristics, such as D’Amico risk stratification and Epstein criteria [7-9].  

Finally, with the fast tissue scanner, SLIM now has the ability to help in large volume settings 

such as colorectal cancer screening.  Important problems in colon pathology include being able 

to differentiate between benign conditions such as irritable bowel disease and Crohn’s colitis, 

which often results in repeat biopsies for diagnosis [10].  Additionally, the ability to predict 

which patients with dysplasia are likely to progress to invasive carcinoma can help guide surgical 

decisions, especially for patients with high grade dysplasia or intra-mucosal carcinoma.  Studies 

have shown than colonoscopies can miss upto 24% of adenomas due to flat dysplastic 

presentation in an endoscopy, as opposed to polyps [11].  It would therefore be worthwhile to 

study if QPI has the ability to detect the so-called field effect in an adjacent polyp resected 

during colonoscopy and use that information to predict the presence of adjacent dysplasia, and 

help with decisions about frequency of colonoscopy for such patients. 
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APPENDIX A: System Calibration for Anisotropy Measurements 

 

 Optical anisotropy, as measured with the scattering phase theorem, is a function of phase 

gradient and phase variance.  However, measurement of phase gradient and variance are 

sensitive to differences in measurement conditions, such as the number of pixels corresponding 

to each micron, or physical dimensions, of the CCD camera and the angles measured by an 

optical system.  In our previous study, we used Spatial Light Interference Microscopy (SLIM 

1.0) for measurement of quantitative phase images (QPI), and it had a different optical 

configuration from Cell Vista Q100, which was used for QPI in this study.  Additionally, while 

we used the same magnification objective, 40X/0.75NA on both systems, the physical 

dimensions of the camera were different on the two systems, with 14pixels per micron on SLIM 

1.0 and 6.3 pixels per micron on Cell Vista Q100.   

 

Figure A.1: Calibration Curve for Anisotropy.  The calibration curve normalizes anisotropy 

measurements from the Q100 SLIM system to the anisotropy measurements obtained using 

SLIM 1.0.  Anisotropy values measured using SLIM 1.0 are higher than that from the Q100 

imaging system. 
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In order to normalize the measurement of anisotropy across the two imaging systems, we used a 

cumulative distribution function based transformation approach.  A prostatectomy tissue core 

from the OCTMA5 data-set (Cooperative Prostate Cancer Tissue Resource, Chicago), which was 

used in our previous study, was re-imaged using the Q100 imaging system.  Anisotropy was 

calculated in the entire tissue core using a 4.42 micron averaging window, corresponding to the 

average width of individual stromal fibers surrounding cancerous glands.  Histograms of 

anisotropy over a range of 0 to 1 was calculate with 512 bin width on the SLIM 1.0 images and 

1024 bin width on the Q100 SLIM system.  The histograms were converted to cumulative 

distribution functions and a 1-to-1 anisotropy mapping was performed by matching the height of 

the histogram corresponding to each g-range.  The calibration curve obtained through this 

method is shown in Fig A.1.  The anisotropy values measured using Q100 are lower than the 

measurements from SLIM 1.0.  The Q100 system is more sensitive to finer features and therefore 

the anisotropy measurements are lower.   

Tissue preparation is another possible source of variation in anisotropy measurements.  In order 

to determine if systemic calibration is the only source of variation in g-values, we performed a 2-

step validation: 

1. We measured the anisotropy cut-off value for optimal prediction of biochemical recurrence 

using the prostatectomy samples from the Prostate Cancer Biorepository Network (PCBN) that 

was used in this study.  The PCBN samples were sectioned at New York University and were de-

paraffinized and cover-slipped using aqueous mounting medium at the University of Illinois at 

Chicago.   

The un-calibrated cut-off value for recurrence prediction was g = 0.82, which after calibration 

corresponds to g = 0.93. 
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2. We imaged prostatectomy samples obtained from CPCTR using both the Q100 system and the 

SLIM 1.0 system.  The CPCTR samples were sectioned at the University of Illinois at Chicago, 

de-paraffinized and cover-slipped using aqueous mounting medium at Presence Covenant 

Medical Center, Urbana, Illinois. 

  

 

Prostatectomy tissue from 35 patients (19 with recurrence and 16 without recurrence), with 2 

cores per patient, were imaged using the Q100 system.  Anisotropy measurements were 

performed on a single layer of stroma surrounding 6-12 cores per patient.  The un-calibrated 

Figure A.2: Precision of Anisotropy Measurements. A) In order to measure the precision 

of the calibration curve, anisotropy was measured on 70 cores from 35 patients in the CPCTR 

TMA set using Q100 imaging system.  The optimal cut-off value for recurrence prediction 

was determined to be g=0.82, corresponding to the un-calibrated g cut-off value measured for 

the PCBN TMA set.  The calibrated value is g= 0.93.  B) Anisotropy was measured on 120 

cores from 30 patients in the CPCTR TMA set using the SLIM 1.0 imaging system.  The 

optimal cut-off value for recurrence prediction was g=0.93 corresponding to the calibrated 

value from the Q100 system. 
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optimal cut-off value for recurrence prediction was g = 0.82 and after calibration, this 

corresponded to g = 0.93 (Fig A.2-A).  This corresponded to the cut-off value obtained for the 

PCBN TMA imaged using the Q100 system.   

Prostatectomy tissue from 30 patients, that was imaged using Q100, was also imaged using the 

SLIM 1.0 imaging system.  Anisotropy measurements were performed on a single layer of 

stroma surrounding 6-16 glands per patient.  The optimal cut-off value for recurrence prediction 

in that cohort was g = 0.93 (Fig A.2-B).  This value corresponds to the post-calibration cut-off 

value from Q100. 
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APPENDIX B: Sectioning Effects on Anisotropy Measurements 

Anisotropy measurements are independent of thickness, when the light transmitted through tissue 

is in focus.  Here, we show results from an experiment measuring the uniformity of pathology 

tissue sections in small regions of tissue, corresponding to a tissue core and also study the effect 

of tissue sections of varying thickness on anisotropy measurements.     

 

 

Paraffin-embedded thyroid tissue was sectioned at 3.5μm thickness and placed on a glass slide.  

The sample was coated with a standard gold/palladium target using a sputter coater (Denton 

Vacuum, Desk-1 TSC).  A cross-section of the metal-coated tissue slide was then imaged using a 

Figure B.1: Determination of Tissue Thickness.  A) Paraffinized thyroid tissue of 3.5μm 

sectioning thickness was coated with a standard gold/palladium target and imaged using a 

scanning electron microscope.  The thickness of the tissue shows a small decrease, followed by 

an increase, indicating changes in tissue morphology.  B) The same trend is seen in a different 

tissue region on the same slide. 
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scanning electron microscope (FEI Company, Phillips XL30 ESEM-FEG), and the images are 

shown in Fig B.1-A, B.  A sectioning artifact would manifest itself as a uniform reduction in 

thickness in a given direction.  The reduction in thickness followed by an increase, as seen in two 

different tissue regions, indicate that the thickness non-uniformities are a result of variations in 

tissue morphology. 

If the changes in tissue thickness are solely the result of morphology changes, the anisotropy 

measurement would not vary from one section to the next, in serial sections.  To this end, we 

obtained a tissue microarray slides from the University of Illinois at Chicago, consisting of 

normal prostate and prostate cancer cores serially sectioned at differing thicknesses over the 

range of 2μm - 6μm (Fig B.2-A).  A 4μm section was cut adjacent to each of the 2, 3, 5 and 6 

micron sections as an internal control.    Anisotropy was measured in a 32x32μm stromal region 

adjacent to the same gland in the serial sections of a normal and cancerous core from the 

microarray.  The size of the stromal region corresponded to the stromal regions used in 

anisotropy analysis for recurrence prediction.  Our results show that small variations in thickness 

(±1μm) do not affect anisotropy values (Fig B.2-B).  Additionally, the repeatability of anisotropy 

measurements in the serial sections shows that thickness non-uniformities over small tissue 

regions are a property of tissue. 
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Figure B.2: Effect of Section Thickness on Anisotropy.  Anisotropy was measured in a 

32x32μm stromal region adjoining the same gland from a normal and cancerous core across 

sections of thicknesses from 2μm – 6μm.  The anisotropy measurements are comparable across 

the different thicknesses, indicating that a local change in tissue thickness is a function of 

morphology.  

 

 

 


