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ABSTRACT 

In the early days of genomics, the development of a reference genome was an expensive, 

collaborative undertaking reserved only for traditional and popular model organisms; however, 

in a theoretical shift highlighted most clearly by the goals of the Genome 10K Project, the advent 

of next-generation sequencing (NGS) technology has resulted in a shift of focus towards the 

development of reference genomes for a variety of species less commonly studied. One non-

traditional model organism selected as a priority species for the Genome 10K Project is the red 

fox (Vulpes vulpes), and specifically a fox from an experimental breeding project in which silver 

foxes (a melanistic variant of the red fox) have been selected over the past several decades to 

exhibit extreme behavioral phenotypes. The population consists of a strain of hyper-aggressive 

foxes and a strain of hyper-docile foxes, offering a model system through which the genetic 

underpinnings of behavior, as well as the genetic correlates of domestication, can be 

investigated. 

The draft red fox genome, which was developed at BGI, has a sequence depth of 94x and 

is assembled into 676,878 scaffolds with an N50 of 11.80 Mbp. However, in order for the 

reference genome to be integrated with previous work in the model system, it is necessary to 

understand the relationship between the scaffolds and the chromosomes they comprise. 

Therefore, the primary goal of the present study was to assemble the fox chromosomes from the 

scaffolds of the draft red fox genome assembly. 

The draft genome was first analyzed to detect bioinformatic errors known to occur in 

NGS-assembled genomes that might influence the integrity of the chromosome assembly. Based 

on these findings, the 500 largest scaffolds were assembled into the 17 fox chromosomes (16 

autosomes and the X) based both on nucleotide-level synteny among the fox, dog, and cat 

identified through pairwise alignment of the reference genomes and on interspecies synteny 

reported in previously developed comparative maps. The result of the current analysis is the 

development of a new version of the red fox reference genome that will serve as a valuable tool 

in ongoing research by increasing the resolution at which mapping studies can probe the genetic 

architecture of complex behavioral phenotypes in the domesticated fox system.  
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CHAPTER I  

GENERAL INTRODUCTION 

On April 14, 2003, the announcement that the human genome had been sequenced ushered in 

what is now known as the Genomic Era (Guttmacher & Collins, 2003). In the 30 years leading up to this 

announcement, genomics had occupied an ever-increasing importance in modern biology as 

biotechnological advances allowed increasingly complex genetic sequencing to be conducted. As recently 

as the early 1970s, individual genes were sequenced using laborious, chromatographic methods, and it 

was only in 1977 that the first whole genome was sequenced: a bacteriophage (Sanger et al., 1977) whose 

genome was 5,375 base pairs (bp) long. By the late 1990s, first-generation sequencing technology had 

improved sufficiently to allow for the sequencing of much larger genomes, including the 4-Mbp E. coli 

(Blattner, 1997) genome and the 97-Mbp genome of the nematode C. elegans (The C. elegans Sequencing 

Consortium, 1998). The release of the 3-Gbp human genome in the early 2000s (Lander et al., 2001; 

Venter et al., 2001) thereby signified a shift in the power and potential of genomics; technology had 

advanced to the point where massive mammalian genomes could be sequenced and assembled. The 

assembly came, however, not without significant investment, as both the time and money required to 

conduct sequencing with early technologies rendered the cost of these genomes prohibitive.  

The earliest reference genomes assembled belonged to commonly-studied model organisms, such 

as E. coli (Blattner, 1997), C. elegans (The C. elegans Sequencing Consortium, 1998), fruit flies (M. D. 

Adams et al., 2000), humans (Lander et al., 2001; Venter et al., 2001), and mice (Waterston et al., 2002). 

These species were studied by a huge number of researchers, justifying the high cost of genome assembly. 

However, over the past decade, significant advances in sequencing technology have reduced the cost and 

time required to sequence a genome, even genomes as large and complex as mammalian genomes. The 

development of next-generation sequencing (NGS) technologies has reduced the cost of sequencing 

dramatically, from $5,292.39 per Mbp in September 2001 to $0.05 per Mbp in July 2014 (Wetterstrand, 

2014). The time-cost of sequencing has also decreased dramatically, with Illumina’s newest machine, the 

HiSeq X Ten, reportedly producing 6 Tbp of data per day (Hayden, 2014), compared to the 12 Kbp 

produced daily with early Sanger sequencing (J. U. Adams, 2008). These technological developments 

have therefore made sequencing large genomes increasingly feasible. 

The increased accessibility of sequencing technology has led to initiatives such as the 10K 

Genomes Project (Genome 10K Consortium of Scientists, 2009), which seeks to catalogue vertebrate 

diversity among species and to unlock the full potential of comparative genomics. In fact, when the 10K 

Genomes Project selected its priority species, the characteristics evaluated included “scientific value” and 

“phylogenetic diversity” in addition to metrics such as popularity (Genome 10K, 2009). The 10K 

Genomes Project clearly illustrates a shift in the field of genomics, where genome sequencing projects no 



2 
 

longer focus on traditional model organisms exclusively. As the Genomic Era takes hold, genome 

sequencing is becoming an avenue to understanding unusual and endangered species, including species 

with extreme phenotypes of interest (Wagman, 2010).  

One genome recently sequenced and assembled as part of the Genome 10K Project is that of a 

silver fox, a melanistic variant of the red fox (Vulpes vulpes), from an experimentally bred population of 

foxes with extreme behavioral phenotypes. Maintained at the Institute for Cytology and Genetics in 

Novosibirsk, Russia, one strain of foxes has been bred to be hyper-aggressive, whereas the other has been 

bred to be docile and even friendly towards humans (Trut, 1999). This genome assembly is thus expected 

to supply a valuable resource for research into the genetic architecture of complex behavioral phenotypes 

and the genetic changes accompanying domestication; however, before the genome is widely adopted by 

fox researchers, it is important to consider the possible repercussions that the bioinformatic challenges 

encountered during the assembly of genomes from NGS reads can hold for genomic research in 

organismal biology. 

Challenges of Genome Assembly 

In its purpose, the Genome 10K project has been almost universally well-received: cataloguing 

the genomes of species, some of which might soon be extinct, from all branches of the vertebrate tree of 

life will provide an invaluable resource for comparative genomic studies and species-specific research. 

However, on a methodological level, the project met some critiques. Without the reduced sequencing 

costs brought on by NGS technologies, Genome 10K would not be feasible; however, differences in the 

quality of genomes assembled from NGS reads compared to previous genomes raises questions about 

what the quality criteria should be and whether NGS methodologies alone are able to meet these 

standards. 

Technological Considerations 

 NGS technologies have reduced the cost and expedited the output of sequencing. While a number 

of different platforms have emerged, each with individual strengths and weaknesses, one of the most 

popular sequencing approached used in the Genome 10K assemblies is the sequencing-by-synthesis 

technology produced by Illumina. In genome sequencing using Illumina platforms, two types of libraries 

are typically generated: standard paired-end libraries, and mate-pair libraries. 

Paired-end sequencing methods are often used in building a reference genome. During template 

preparation, DNA is fragmented, and fragments are selected based on the desired library sizes (Illumina 

Inc., 2011). While the fragment is only sequenced at its ends, usually for between 50 - 150 bases, the fact 

that the insert size is known provides information about the position of the reads in relation to each other. 
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Thus, paired-end sequenced produces pairs of short reads separated by an unknown sequence of a known 

length. This sequencing method can therefore facilitate the assembly of sequences over short distances. 

 Another library preparation strategy used in genome assembly is that of mate-pair libraries, 

which allow for the generation of libraries with insert sizes on the kilobase scale (Illumina Inc., 2012). In 

mate pair library preparation, much like in paired-end sequencing, DNA is fragmented, but here the ends 

of the fragments are repaired with biotinylated adaptors and the adapters are joined to circularize the 

fragment (Illumina Inc., 2012). The circularized sequences are then re-fragmented and purified to retrieve 

only the labeled fragment (Illumina Inc., 2015). This fragment can then be sequenced using the same 

workflow as standard paired-end sequencing (Illumina Inc., 2010). The most notable difference between 

these sequences and sequences obtained using standard paired-end sequencing is their orientation. 

Because in PE sequencing, the fragments are never circularized, the orientation of their sequencing is 

forward-reverse (FR). However, because of the circularization step in mate-pair library prep, the ends of 

the original fragment comprise the middle of the fragment actually sequenced, resulting in the reverse-

forward (RF) orientation of sequences produced from mate pair libraries. Mate pair libraries are popular 

in genome assembly because the sequencing of longer insert size libraries facilitates long-range sequence 

assembly. 

Genome assembly projects using NGS methods typically utilize a variety of library insert sizes in 

order to mitigate the potential for misassembly that arises due to the challenges associated with assigning 

a single position within a genome to a short sequencing read (Alkan, Sajjadian, & Eichler, 2011). The 

impact of one of the most significant challenges to assembly, the assembly of repetitive segments, is 

strongly influenced by decisions made during library preparation. NGS assemblers are liable to conflate 

multiple occurrences of a similar sequence wherever the repetitive regions are longer than the largest 

insert size of the libraries used (Figure 1). Henson et al. (2012) modeled this phenomenon in the human 

by fragmenting the human genome sequence in silico at the repetitive regions that would be likely to 

disrupt assembly so that all unique sequences remained intact, thereby producing an idealized estimate of 

the maximum lengths of sequence that could be assembled. They estimated that if the human genome 

were assembled de novo using 1000-bp reads, or reads of a similar length to those produced by Sanger 

sequencing, the maximum possible N50 of the assembled sequences would be 8.978 Mbp. However, if 

the read size were reduced to a length more characteristic of NGS, such as 50 or 100 bp, the maximum 

possible contig N50 would drop down to 3-32 Kbp, although the effects of a variety of insert sizes were 

not fully explored in this analysis. Regardless, the introduction of new computational challenges with the 

shift to NGS technology is evident. Although the inclusion of libraries with long insert sizes also has the 

potential to mitigate misassembly due to repetitive sequences, the potential for error when assembling a 

genome from short reads is substantial. 
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Figure 1: (A) Depiction of the ambiguity that arises when a repetitive segment (grey) is longer than the longest insert 
size. Sequencing reads are represented by the black bars labeled A, B, C, and D. Based on the reads, it is impossible 
to tell whether the blue sequence is adjacent to the yellow or purple sequence, as read A could be paired with either 
B or D. In (B), ambiguity is resolved because the insert size is long enough to cover the whole repetitive sequence, 

and it is clear that A pairs with B and that C pairs with D. Adapted from description by Henson et al. (2012). 

Computational Considerations 

The computational and algorithmic challenges of genome assembly have increased with the 

development of cheaper, faster technology because the short reads generated by NGS supply much less 

contextual information about each read. The older methods employed in early sequencing projects were 

more expensive and took more time but produced sequences that were easier to assemble. In the Human 

Genome Project, for example, a hierarchical shotgun sequencing strategy minimized the risk of long-

range misassembly and reduced the risk of local misassembly because shotgun sequencing was 

undertaken only at the clone level, so that the fragments were known to derive from the same physical 

region of the genome (Lander et al., 2001). Even the competing Celera project, which utilized whole-

genome random shotgun sequencing, did not face these challenges to the extent that NGS genome 

assembly projects do because Sanger sequencing generates long reads, thereby greatly facilitating the 

identification of overlapping regions (Henson et al., 2012). As a result, it has been necessary for the 

algorithmic strategies used in genome assembly to evolve to meet the challenges of genome assembly 

from NGS reads.  

A: Repetitive Segment Longer than Insert Size 

B: Insert Size Longer than Repetitive Segment 
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Current popular tools for the de novo assembly of NGS reads include ALLPATHS-LG (Gnerre et 

al., 2011; Ribeiro et al., 2012), Velvet (Zerbino & Birney, 2008) and SOAPdenovo2 (Luo et al., 2012), 

among others. These tools utilize algorithms that break reads into k-mers (fragments of length k), 

construct a de Bruijn graph from the fragments, and identify Eulerian cycles until they have constructed a 

path that traverses each edge (Compeau, Pevzner, & Tesler, 2011; Pevzner, Tang, & Waterman, 2001), 

from which the fragments can then be assembled into continuous sequences. However, there are some 

genomic features which present a significant challenge to assembly. 

Repetitive elements and segmental duplications both often disrupt the assembly of continuous 

stretches of DNA. One analysis of second generation sequencing assemblers (Alkan et al., 2011) 

compared de novo-assembled human genomes from the original SOAPdenovo program (R. Li et al., 

2010) against the human reference genome. They found, as anticipated, that repetitive sequences and 

segmental duplications were both underrepresented in the de novo assembly compared to NCBI build 36. 

These omissions, which occured when similar sequences were mistakenly collapsed together by the 

assembler, resulted in an assembly that was 16.2% shorter than the reference. They further found that 

these assembly issues affected not only non-coding regions but also genes, with 30.3% of human genes 

mapping to more than one scaffold. In a de novo genome, this lack of contiguous assembly of genes 

would be expected to introduce challenges later on in analyzing or predicting genes, given that many 

avenues of biological research hinge upon the assumption that the reference genome’s structure is correct 

(Salzberg & Yorke, 2005). Additionally, many NGS assemblers have historically been liable to mistake 

unique repetitive segments for haplotype variation and to merge sequences that shouldn’t be merged, 

resulting in the “orphaning” of unique sequences (Salzberg & Yorke, 2005). Despite the advances in 

assembly algorithms since the turn of the millennium, genome assembly from NGS reads still encounters 

a number of challenges in producing accurately assembled genomes. Furthermore, many of the metrics 

used to assess the quality of an assembly measure length (e.g. scaffold N50) without factoring in the 

structural integrity of the assembly (Salzberg & Yorke, 2005). Therefore, it cannot necessarily be taken 

for granted that an NGS-based genome assembly will accurately capture the real biological complexity of 

the organism sequenced, even when the traditional benchmarks of assembly seem strong. 

Importance of Accurate Genome Assembly 

NGS technologies have allowed for the assembly of genomes for species outside of the cluster of 

traditional model organisms. However, the reduced investment in each individual reference genome 

assembly means that the assembly quality of the new, NGS-assembled genomes often varies significantly 

from that of reference assembles such as human or mouse. Whereas many older genomes are “finished”, 

involving gap closing and chromosome assembly (Mardis, McPherson, Martienssen, Wilson, & 

McCombie, 2002), newer genomes are more likely to be assembled into scaffolds without further 
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refinement. Given the challenges to accurate assembly discussed above, the biological validity of certain 

aspects of an NGS assembly cannot necessarily be trusted. However, the biological accuracy of a 

reference genome is critical for downstream use by scientists in more organism-oriented fields within 

biology, so identifying and resolving possible areas of misassembly is an important step towards making 

a reference genome useful to the research it can benefit most. 

Beyond issues of misassembly, however, many modern genomes are incompletely assembled: 

genomes are often left as scaffolds instead of being assembled into chromosomes. While scaffold 

assembly certainly provides a wealth of genomic information for analysis, a lack of information about the 

physical position of a scaffold within the genome can restrict the range of applications of the assembly. 

For example, Quantitative Trait Locus (QTL) studies facilitate the genetic analysis of complex traits by 

estimating association with a trait of interest in intervals along the chromosomes. When the genomic 

sequence for a chromosome is available, the sequence falling within a QTL interval of interest can be 

analyzed to identify the genetic features that might be associated with the trait of interest, strengthening 

the study’s potential impact. Because QTL analyzes patterns of linkage at the chromosome level, 

however, genomic information stored in scaffolds cannot be integrated with these results unless the 

scaffolds have assigned to positions along the chromosomes. Knowledge about the sequence underlying 

the chromosomes might also offer insight into regions of cytogenetic interest, such as the site of a fusion 

event or the sequence surrounding an evolutionary breakpoint region (Murphy et al., 2005). Therefore, the 

assembly of scaffolds into chromosomes is an important step in creating a genome assembly that can be 

used across biological disciplines. 

As useful as chromosomal assemblies can be, however, the assembly of scaffolds into 

chromosomes has been characterized as one of the most significant challenges in bioinformatics (Kim et 

al., 2013). Additionally, misassembly can complicate the relationship between scaffolds and the 

chromosomes they are supposed to represent, such as when the sequence within a scaffold collapses 

across a repetitive sequence originating from two separate chromosomes, resulting in a bioinformatic 

chimera. The challenges inherent to chromosome assembly can, however, be alleviated through the 

availability of phylogenomic information about the target species, especially if a genome assembly for a 

reference species is available (Flicek & Birney, 2009). In particular, a recently released tool known as 

Reference-Assisted Chromosome Assembly, or RACA (Kim et al., 2013), facilitates the assembly of 

NGS scaffolds into chromosomes by merging collinear alignments to identify syntenic blocks between 

target, reference, and outgroup species. The program then estimates the posterior probability of adjacency 

among syntenic fragments (SFs) to assemble the SFs into chromosomes. RACA thereby bypasses some 

issues of misassembly, such as chimerism, by breaking scaffolds into syntenic fragments and placing 

them only where alignment is collinear in both the target and reference species. Of course, the tool would 
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be best suited to cases where the karyotype is similar between the reference and target species, since 

segments along a scaffold can only be considered collinear if they align along a single chromosome in the 

reference. RACA has been used to assemble the chromosomes in the Tibetan Antelope genome assembly 

based on a cow reference (Ge et al., 2013) and provides a powerful tool for the refinement of other NGS 

assemblies. 

Genomics of the Red Fox 

 The domesticated silver fox was selected as one of the 101 priority species for the Genome 10K 

project because of its extreme phenotype (Genome 10K, 2009; Wagman, 2010). Given the value of the 

fox model for research into the genetic correlates of complex behavioral traits, the genome has the 

potential to open new avenues of investigation into phenotypes of interest such as social behavior, 

domestication, and aggression, and the genome is likely to contribute significantly to efforts such as high-

resolution mapping of regions of interest to behavioral phenotypes, such as previously identified selective 

sweeps (Kukekova et al., in preparation) and QTLs (Kukekova, Trut, et al., 2011). Additionally, although 

the species was selected because of its unique phenotype, a number of genetic resources have previously 

been developed for the fox that will allow for refinement of the draft genome. The newly sequenced red 

fox genome thus holds the potential to be a valuable tool for the study of complex behavioral phenotypes 

in a non-traditional model system, and to expand the previously developed resources for the study of 

foxes. 

Development of Experimental Populations 

How domesticated or tame behavior arises is a question that evolutionary biology has long sought 

to answer, especially because tame behavior tends to be accompanied by a number of morphological and 

physiological traits in what is known as “domestication syndrome” (e.g. Wilkins, Wrangham, & Fitch, 

2014). For example, smaller body size (as measured osteologically) and, when applicable, horn size in the 

domesticated population compared to the wild progenitors is observed across nearly all early 

domestication events (Clutton-Brock, 1992). Similarly, it is common to find novel coat color variants 

among domesticated animals that are not commonly observed in the ancestral species, such as single-

color coats (Clutton-Brock, 1992) or white spots, as summarized by Trut, Oskina, & Kharlamova (2009). 

Therefore, domestication is a topic of significant interest because of the complex patterns of the 

evolutionary change it has precipitated across many species. 

 Under a popular model of domestication known as the Self-Domestication Hypothesis (Hare, 

Wobber, & Wrangham, 2012), domestication syndromes arise during a phase of unconscious selection 

wherein human activities produce a niche where new resources will be available to animals that are able 

to tolerate increased proximity to humans (Morey, 1994; Trut, 1999). In the 1950s, Dmitry Belyaev and 
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colleagues as the Russian Institute of Cytology and Genetics sought to test whether an initial phase of 

selection for animals that could tolerate the stress of the domestication would be sufficient to produce the 

phenotypic changes characteristic of the domestication syndrome, including small body size and shifts in 

reproductive timing, as well as an increased tolerance of humans (Trut, 1999). Selection for behavior 

would likely act on neurotransmitters and hormones, which could in turn have downstream effects beyond 

those selected for. The hypothesis hinged on two assumptions: first, that genetics contribute to 

“tamability,” or the ability to tolerate the domestication process, and second, that domestication 

introduces strong selection for this trait (Trut, 1999). The second assumption was already supported by 

the steep fitness gradient of animals in captivity (Trut, 1999), so the researchers sought to demonstrate the 

first experimentally by implementing a selective breeding protocol in Vulpes vulpes, the red fox. 

Belyaev and colleagues acquired an initial population of 130 silver foxes, a melanistic variant of 

the red fox, from foxes kept at fur farms within the U.S.S.R. (Trut, 1999), the progenitors of which had 

been captured in Eastern Canada several decades before (Statham et al., 2011) . The fact that the foxes 

had been living in captivity meant that the initial, extreme phase of selection for tamability had already 

occurred; however, their “wild and vicious” behavior (Trut, 1980, p. 124) differed significantly from that 

of long-term domesticates such as goats, sheep, and especially dogs, suggesting that the initial phase of 

selection for the ability to tolerate proximity to humans was not complete. A scoring system was 

developed which quantified foxes in the range of -4 to 4 based on their defensive-aggressive response to 

human contact, incorporating both the distance at which a negative response was elicited, with a smaller 

distance corresponding to a more tamable animal, and the severity of the reaction (Kukekova, Trut, & 

Acland, 2014). Under this scoring system, negative scores were indicative of a negative response to 

human contact, whereas positive scores would have been indicative of a positive response to human 

contact. In each generation, only the 10% most tamable individuals were selected for breeding, thereby 

introducing strong selection pressure.  

The effects of the breeding experiment on behavior were rapid. In the first generation, the average 

behavioral score jumped to 1.3 from an average score of -0.96 in the parental population, with a large 

majority of foxes scoring positively (Trut, 1980). This strong response to selection continued, and by the 

sixth generation, some kits began actively to seek human physical contact. By the 20th generation, 35% of 

the kits actively sought human contact, much like dogs (Trut et al., 2009; Trut, 1999). This proactively 

friendly behavior became increasingly common and by generation 50 was demonstrated by nearly every 

fox (Trut et al., 2009).  
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Figure 2: The progression of experimental populations developed at the ICG in Novosibirsk, Siberia during the 20th 
century. The founding population were captive fur foxes originally derived from eastern Canadian wild fox 

populations. Today, all three populations are still maintained. 

A second experiment was begun in 1970 (Figure 2) in which the 10% of foxes with the most 

negative scores were bred together to create an “aggressive” line of foxes to contrast with the 

domesticated fox strain. These two populations demonstrated fixed patterns of behavior, consistently 

scoring at opposite ends of the behavioral scale (Trut, 1980), as is expected under divergent selection. The 

results of fifty-five years of experimental breeding suggest that selection for tamability produced a 

population of foxes with behavioral phenotypes similar to those of dogs, whereas selection against 

tamability produced a population of aggressive, fearful foxes. These unique phenotypes have rendered the 

silver fox a species of significant interest to the study of genetic effects on behavior, specifically related to 

stress, anxiety, and aggression. 

Genetics of Tame and Aggressive Behavior 

The experimentally bred fox populations have been studied extensively over the past half-

century, with the topics studied evolving as new opportunities in biology emerged. Some of the earliest 

studies focused on quantifying the changes in phenotypes such as behavior (Belyaev, Plyusnina, & Trut, 

1985; Belyaev, 1979; Trut, 1980), hormone levels (Belyaev, 1979), and morphology (summarized in Trut, 

1999). More recently, the focus has shifted towards the identification of genetic loci producing these 

phenotypic shifts. Notably, microsatellite markers were developed for the fox (Kukekova et al., 2004) and 

used to build a meiotic linkage map linking the dog and fox genomes (Kukekova et al., 2007), gene 

expression profiling has revealed differences in the pre-frontal cortices of the strains (Kukekova, Johnson, 

et al., 2011), a genotyping-by-sequencing study identified candidate SNPs underlying population 

differences (Johnson, Wittgenstein, et al., 2015), and whole genome sequencing (WGS) was utilized to 
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identify a variant causing a coat color phenotype of interest (Johnson, Kozysa, et al., 2015). Thus, until 

recently, the methods used by the Fox Farm Experiment had shifted as technology has advanced; it is 

therefore not surprising that with the advent of affordable reference genome assembly, the assembly of a 

reference genome became the newest development towards the genetic mapping of the phenotypes of 

interest. 

The Red Fox Genome Project 

The red fox genome sequencing project began at BGI in 2012. An F1 hybrid (tame x aggressive) 

fox was selected from the population maintained at the ICG. Fifteen paired-end and mate-pair libraries 

(Table 1) were selected for sequencing on an Illumina HiSeq 2000 platform. The paired-end libraries 

were designed to have short insert sizes ranging from 170 to 800 bp and long read lengths of either 100 or 

150 bp, and the mate-pair libraries to have long insert sizes ranging from 2,000 to 20,000 bp and short 

read lengths of 49 bp. 

Library Name Type Insert Size Read Length 
High-Quality 

Sequence Depth 

SZAXPI000586-5 Paired-End 170 100 
25.43 

SZAXPI000594-5 Paired-End 170 100 

SZAXPI008070-166 Paired-End 250 150 15.97 

SZAXPI000585-11 Paired-End 500 100 
15.21 

SZAXPI000593-11 Paired-End 500 100 

SZAMPI008069-169 Paired-End 800 150 13.2 

VULgnsDBDDWAAPEI-21 Mate Pair 2000 49 

11.13 VULgnsDBEDWAAPEI-31 Mate Pair 2000 49 

VULgnsDBFDWAAPEI-16 Mate Pair 2000 49 

VULgnsDBDDLAAPEI-95 Mate Pair 5000 49 
5.48 

VULgnsDBFDLAAPEI-87 Mate Pair 5000 49 

VULgnsDBGDLAAPEI-34 Mate Pair 6000 49 2.26 

VULgnsDBDDTAAPEI-95 Mate Pair 10000 49 
4.54 

VULgnsDBFDTAAPEI-35 Mate Pair 10000 49 

VULgnsDBEDUABPEI-17 Mate Pair 20000 49 0.69 

Table 1: The fifteen paired-end libraries used in the fox genome assembly with their corresponding insert sizes and 

read lengths. 

The sequencing project generated 366.87 Gbp of raw data, of which 225.39 Gbp were high 

quality. The average genome-wide sequencing depth was 152.86x, of which 93.91x was high-quality. 

Based on the assembly statistics, the genome size was estimated to be 2.29 Gb. Reads were assembled 

into contigs with SOAPdenovo2 (Luo et al., 2012) with a contig N50 of 20.12 Kb before the sequences 

were assembled into 676,878 scaffolds. The scaffold N50 was 11.80 Mb, corresponding to Scaffold58. 

The genome was also annotated using a combination of homology information, transcriptome data, and 
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gene prediction. Over 20,000 genes were identified, of which 98% were identified as orthologous to other 

mammalian genomes. This project has therefore produced an assembly which both adds to the resources 

available for the genetic study of the red fox and to the available resources for the genomic study of 

canids as a clade. 

Comparative Genomic Analysis 

For the past decade, studies in the fox have often relied heavily on the dog reference genome 

(Lindblad-Toh et al., 2005). Like the dog, the red fox is a member of the family Canidae within the order 

Carnivora, and the dog-fox divergence date (Figure 3) is estimated at 9-10 MYA (Wayne, 1993). 

Examples of the dog genome’s uses for study of the fox include the development of fox microsatellite 

markers based on canine markers (Kukekova et al., 2004, 2007) and the design of primers in the dog for 

the amplification of  fox sequences with PCR (Johnson, Kozysa, et al., 2015; Johnson, Wittgenstein, et 

al., 2015; Kukekova et al., 2007). Now that the fox reference genome has been assembled, it will be 

possible to compare the genomes of the two species at a higher resolution. 

Karyotypes 

Though the fox and dog are very closely related, their karyotypes have diverged dramatically: the 

fox karyotype is made up of 2n = 34 chromosomes, all bi-armed, with 0-8 B-chromosomes depending on 

the individual fox (Becker et al., 2011; F. Yang et al., 1999). By comparison, the dog has 38 acrocentric 

autosomes in addition to its metacentric sex chromosomes (Becker et al., 2011), comprising 2n = 78. 

Syntenic blocks between the dog and fox are highly conserved, and each fox autosome maps continuously 

to two to three dog chromosomes. This synteny can likely be explained by the fact that, though the dog 

karyotype has been characterized as one of the most rearranged within Carnivora (F. Yang et al., 1999), 

the ancestral canid is estimated to have had a karyotype very similar to that of the modern dog, with 2n = 

82 or more (Graphodatsky et al., 2008).  

Outside of Canidae, however, carnivore chromosome numbers are much lower: for example, the 

cat, whose least common ancestor with the fox and dog was likely 50-60 million years ago (Murphy et al., 

2007; Wayne, 1993) (Figure 3), has 2n = 38 chromosomes. Sixteen of the cat autosomes as well as the 

sex chromosomes are bi-armed and two are single-armed. The ancestral carnivore is estimated to have 

had a karyotype very similar to the modern cat, with 2n = 42 (Murphy, Stanyon, & O’Brien, 2001; Nash, 

Menninger, Wienberg, Padilla-Nash, & O’Brien, 2001). Despite the superficial similarity in the 

karyotypes of the cat and fox, syntenic blocks among Canidae and Felidae appear to have undergone 

substantially rearrangement (Davis et al., 2009; F. Yang et al., 2000). 
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Figure 3: A cladogram, with approximate divergence dates (Wayne, 1993), of the fox, dog, and cat. 

The syntenic blocks among the species were originally characterized with chromosome painting 

to identify regions of interspecies chromosomal homology. In chromosome painting, probes designed 

from the genetic material of one species are hybridized onto another species to identify regions of synteny 

at a resolution of about 5-10 Mbp (Becker et al., 2011). Canid karyotypes and interspecies synteny have 

been explored through a number of studies, with several comparative karyotypes developed that include, 

among other species, the red fox and the dog (Becker et al., 2011; Graphodatsky et al., 2000; F. Yang et 

al., 1999). Comparative karyotypes have also been developed for the dog and cat (F. Yang et al., 2000). 

Thus, a significant body of research is available allowing for the identification of chromosomal 

rearrangements within the evolutionary history of these species. 

These studies suggest, as suggested by divergence time, that synteny is highly conserved between 

dog and fox, and much less so between dog and cat. For example, the red fox karyotype could emerge 

from the dog karyotype through 26 fusions and 4 fissions (F. Yang et al., 1999), with full acrocentric dog 

chromosomes often corresponding to arms of the metacentric fox chromosomes. The comparative 

karyotype therefore identifies 42 conserved syntenic blocks between the two species. Between the dog 

and the cat, on the other hand, many more rearrangements would be required to estimate the evolutionary 

steps leading to the two species’ modern karyotypes: painting of the dog chromosomes with probes from 

cat autosomes identified 65 conserved segments among the species, while painting in the reverse direction 

identified 68 (Yang et al., 2000). A fox-cat comparative karyotype has not currently been experimentally 

developed. 
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Marker-Based Comparative Maps 

 In addition to the chromosome-level comparative maps developed with chromosome painting at 

the turn of the millennium, a number of studies have sought to characterize interspecies homology at a 

finer resolution. In the case of fox-dog comparisons, the major resource is a meiotic linkage map 

developed for the fox chromosomes using canine microsatellite markers (Kukekova et al., 2007). In this 

study, 320 canine microsatellite markers were assembled into 17 linkage groups corresponding to the 

sixteen fox autosomes and the X-chromosome. The average inter-marker distance was reported as 

approximately 7.5 cM. This map was considered a significant advancement in the tools available for 

mapping the loci associated with domestication (Spady & Ostrander, 2007) and has been used in 

subsequent research, such as Johnson, Wittgenstein, et al. (2015). 

However, though all of the markers that mapped both to the dog and fox were uniquely assigned, 

some of the markers were too closely linked to be assigned a specific position with high confidence 

(Kukekova et al., 2007). Therefore, there is a possibility that higher-resolution analysis of dog-fox 

alignment could yield refinements to the current dog-fox syntenic map through the identification of 

rearrangements. Additionally, breakpoints could not be resolved at very high resolution in the four 

regions where synteny between the dog and fox was disrupted, which presents another opportunity for the 

dog-fox map to be refined through further analysis. The meiotic linkage map thus provides a high-quality 

map of synteny between the dog and fox which, though consistent with the findings from chromosome 

painting, offers increased resolution. 

 A syntenic map has also been developed for the dog and cat at a resolution of 939 Kbp through 

radiation-hybrid (RH) mapping (Davis et al., 2009). This tool was developed to assist with the assembly 

of the feline genome and to offer insight into chromosome evolution in cats with respect to other species 

with reference genomes. In this study, 2,662 markers were placed with roughly uniform density along the 

eighteen cat autosomes and X-chromosome. This analysis was complemented by a previously-developed 

meiotic linkage map for the cat (Menotti-Raymond et al., 2009), with which it was 94% consistent. This 

RH-map thus offers improvement in the resolution of cat-dog synteny from earlier comparative 

karyotypes built using chromosome painting (F. Yang et al., 2000). 

Genome-by-Genome Comparisons 

Whereas chromosome painting and linkage mapping are useful tools that have offered valuable 

insight about syntenic relationships among species for decades, the advent of the genomic era offered an 

opportunity for finer resolution analysis through pairwise genome alignment. Pairwise genome alignment 

is the genome-scale comparison of two genomes using an alignment program, often LASTZ (Harris, 

2007). Unlike the draft red fox genome, long-running genome projects have produced and refined 

reference genome assemblies for both the dog (Lindblad-Toh et al., 2005) and the cat (Montague et al., 
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2014; Pontius et al., 2007). The dog genome, which was published a decade ago, used the whole-genome 

shotgun approach with much longer Sanger sequencing reads. Both versions of the cat genome utilized a 

whole-genome shotgun approach with long sequencing reads. Additionally, both the cat and dog genomes 

have been assembled into chromosomes, with these assemblies publicly available through the UCSC 

Genome Browser (Kent et al., 2002; Rosenbloom et al., 2014). Therefore, the status of these two genomes 

present an opportunity for comparative genomic analysis of other species within the Carnivora family, 

such as the fox, via pairwise genome alignment. 

Current Objectives 

 The experimentally bred silver fox system presents a unique opportunity to study the genetic 

architecture of behavior and the genetic correlates of domestication. While a number of tools have been 

developed for the study of the fox, the development of genomic resources are the next step towards 

utilizing this model at its full potential. The genome has been newly sequenced and assembled by BGI as 

part of the Genome 10K initiative; however, this assembly is still in draft form. The current research thus 

seeks to take the first steps towards refining the fox genome assembly for use by the larger biological 

community. 

The present study focuses on addressing two issues characteristic of de novo genome assembly 

with NGS. This first area considered is the quality of the assembly beyond statistics such as N50 and 

coverage, focusing on evaluating the extent to which issues of misassembly such as genome shortening, 

loss of repetitive sequences, non-contiguity of genes, and bioinformatic chimerism can be expected to 

affect the genome in its current form. The second phase of analysis focuses on the assembly of the fox 

chromosomes from the scaffolds. These analyses facilitate the integration of the genome with previously 

developed tools in order to strengthen research into the genetic architecture of behavior in the fox and 

also produce deliverables that will strengthen the fox genome as a tool for use by organismal biologists.  
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CHAPTER II 

NGS ASSEMBLY OF THE RED FOX GENOME 

Overview/Motivation 

 The typical benchmarks of de novo genome assembly speak to the quality of the draft red fox 

genome, which has a contig N50 of 20.12 Kb, a scaffold N50 of 11.80 Mb, and average genome-wide 

coverage of 93.91x. However, these statistics speak mainly to the length of the assembly contigs and 

scaffolds without considering the structural integrity and accuracy of the assembly (Salzberg & Yorke, 

2005). The draft genome is expected to provide a valuable tool for genetic and genomic study of the silver 

fox, but misassembly could complicate the use of this assembly in the anticipated behavioral genetic 

studies. Therefore, the draft genome was evaluated for assembly quality through a set of experiments 

designed to address assembly issues characteristic of de novo genome assemblies sequenced with NGS. 

As discussed above, a number of admonitions have been put forth about the quality of de novo-

assembled genomes (Alkan et al., 2011; Eichler, 2001; Henson et al., 2012; Salzberg & Yorke, 2005). 

Many of these studies identified pitfalls of NGS assembly by assembling human or mouse sequences de 

novo and comparing them against the organism’s accepted reference genome. For the fox genome 

assembly, however, this type of comparison is not feasible. While the high-quality dog reference can be 

used for comparison, several millions of years of divergence between the two species prevents direct 

assessment of the fox based on the dog; however, the dog genome can serve as a guide in some respects. 

In order to analyze the biological integrity of the draft red fox genome assembly, several 

features were examined, including the size of the draft genome and its composite scaffolds, the rate 

at which repetitive segments were incorporated into scaffolds, the fraction of short scaffolds 

containing unique sequence, whether scaffolds had been misassembled such that they were chimeric 

(i.e. contained sequence from multiple, distinct chromosomes), and whether genes had been 

assembled continuously or were split up across multiple scaffolds.  

Misassembly would be expected to have widespread potential impacts on future studies, 

especially if misassembled sequences were incorporated into chromosome assemblies. More immediately, 

however, it was necessary to evaluate the scaffolds to determine whether or not they appeared to 

accurately recapitulate the sequences that comprise the fox chromosomes. Typical problems with using 

NGS for genome assemblies would suggest the risk that many of the small scaffolds might contain 

sequences such as repetitive segments or heterozygous regions that had not been correctly incorporated 

into the assembly of larger chromosomes. Additionally, characteristics such as a loss of sequence in the 

assembly relative to the length expected would suggest that the mapping of the scaffolds to the 

chromosomes would be incomplete. Chimerism is a particularly challenging problem for the assembly of 

scaffolds into chromosomes, since a scaffold cannot be assigned to a unique location in the genome if it 
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contains sequence from multiple regions of the genome. The shortcomings of the draft genome needed to 

be analyzed to determine the strategy needed to build a version of the genome that would most accurately 

capture the biology of the fox. 

Methods 

Library Composition 

Each of the 15 libraries of sequencing reads was aligned against the 500 largest fox scaffolds 

using BWA (H. Li & Durbin, 2009). Because of the differences in read length between the paired-end and 

mate-pair libraries (Table 1), two different BWA alignment programs were used for the two categories of 

libraries: BWA-backtrack for the mate pair libraries and BWA-MEM for the paired-end libraries. BWA 

was selected for alignment after Bowtie2 (Langmead & Salzberg, 2012) was found to produce very low 

(<= 0.5%) rates of alignment for the mate-pair libraries because it is not designed for the alignment of 

very short reads.  

Size metrics were then estimated for the mapping of each library against the fox genome using 

Picard (Broad Institute, 2014), a suite of tools developed by the Broad Institute for the manipulation and 

analysis of SAM and BAM files. Observed insert size distributions were computed for each library and 

compared against the estimated insert sizes reported by BGI to ensure that mapping to the fox genome 

accurately reflected the size distributions selected during template preparation. Finally, insert size 

distributions were visualized for each library using Picard’s histogram function to facilitate visual 

inspection of the results. 

Some challenges were encountered in estimating the insert size distributions of the mate pair 

libraries. By default, BWA assumes reads are in the “forward-reverse” (FR) orientation as is typical in 

single-end and paired-end sequencing, but mate-pair sequences are in the “reverse-forward” (RF) 

orientation (Illumina Inc., 2012). Therefore, in the mate-pair libraries, the RF reads were incorrectly 

flagged by BWA as non-concordant whereas the FR reads were incorrectly flagged as concordant, leading 

to erroneous estimates of the insert sizes consistent with analyzing only sequences inadvertently 

sequenced due to incomplete enrichment during sequencing (Illumina Inc., 2012). Once the BAM files 

were computationally filtered to remove any reads flagged as concordant using the parameter -F 0x2, the 

insert sizes for the correct alignments were obtained and analyzed. 

Genome Size and Scaffold Size Distribution 

The observed length of the fox genome sequence was compared against a previously reported 

value obtained from the Animal Genome Size Database (Gregory, 2015) that was based on analysis of 

DNA content using flow cytometry (Wurster-Hill et al., 1988). The C-value reported for the red fox is 

2.85 pg, which was converted to a length in bp using the formula: G = (0.978 x 109 ) x C (Dolezel, Bartos, 
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Voglmayr, & Greilhuber, 2003), where C is the C-value in pg and G is the size of the genome in bp. The 

percent differences in the two sizes was then calculated and compared against the estimated percentage of 

sequence lost during de novo NGS assembly reported by Alkan et al. (2011). 

 Then, the length of each scaffold was measured by opening the corresponding FASTA file in 

Python and calculating the word count minus the header using Python’s len() function. These results were 

then written to a .CSV file and their distribution examined both as raw and log-transformed values in 

order to elucidate the scaffold lengths included in the assembly.  

Analysis of the Small Scaffolds 

 The major challenges in sequence assembly from NGS reads are repetitive elements and 

orthologous regions, including haplotype diversity. These features are liable to result in bioinformatic 

errors. In order to evaluate the effect of these genomic features in the red fox genome assembly, the 

676,878 scaffolds were screened to identify any scaffolds composed entirely of repetitive elements. This 

was achieved by soft-masking the scaffolds using the command-line release of RepeatMasker 4.0 (Smit, 

Hubley, & Green, 2013) with the “species” parameter set to dog and the “xsmall” parameter specified for 

soft-masking. Soft-masking generated versions of each scaffold where all repetitive sequences had been 

transformed to lower-case. Each soft-masked scaffold was then evaluated in Python using 

(any(x.isupper() for x in seq)), where seq was the complete sequence of the soft-masked scaffold, in order 

to determine whether any of the bases remained unmasked, or in other words, to identify sequences 

composed entirely of repetitive elements.  

In order to assess whether the repeat-only scaffolds contained sequences that had been 

incorporated into larger scaffolds, the unmasked version of each scaffold was then mapped against the 

500 largest scaffolds in the fox genome using LAST (Frith, Hamada, & Horton, 2010). Mapping a 

repetitive scaffold against the largest scaffolds revealed whether or not it had been incorporated into a 

long (defined as 50-Kbp or longer) stretch of sequence. In order to be considered a match, 95% of the 

total length of the repeat-only scaffold was required to map to a single large scaffold. The number of 

times a scaffold mapped to the large scaffolds was then evaluated across all repeat-only scaffolds. 

 A second analysis was undertaken using the small scaffolds that were not repeat-only in order to 

determine the extent to which the small scaffolds recapitulated “unique” (i.e. non-repetitive) sequences 

that were also represented in the 500 largest scaffolds. First, the 500 largest scaffolds were aligned against 

all larger scaffolds (i.e. Scaffold19 would be aligned against scaffolds 1-18) using LAST to ensure that 

each contained unique information. Then, a random set of 1000 scaffolds in the range between 

Scaffold501 and Scaffold676878 was selected with pseudorandom sampling in Python. The randomly 

selected scaffolds were screened to ensure that they were not repeat-only scaffolds, as described above. 

While it would have been ideal to map all scaffolds against all other scaffolds, due to the excessive 
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computational challenge presented by working with 676,878 scaffolds, each of the 1000 randomly 

sampled scaffolds was instead mapped back against the 500 largest fox scaffolds. A Python script was 

written to identify scaffolds that mapped completely (defined as within 3bp of the total length) to one of 

the large scaffolds with an alignment score of at least 80% of the match length. 

Assembly and Misassembly of Genes 

In order to estimate the extent to which the genes in the draft red fox genome had been 

misassembled, a subset of transcripts in the dog transcriptome published by the National Center for 

Biotechnology Information (NCBI)1 was used as a proxy. The transcriptome contains a large number of 

predicted genes, but the subset selected for analysis was exclusively the 1,334 Known RefSeq genes 

(those belonging to the category “NM”), which have been experimentally validated in the dog. Only one 

transcript of each gene was included in the analysis. The sequences were mapped against the full masked 

fox genome assembly using blastn, and only hits with an e-value less than 1.5 were considered. This 

liberal threshold was selected to minimize any the effects of sequence divergence. 

Blast results were returned in a tabular format (using the -m 8 parameter), and the results were 

analyzed with a Python script written for this analysis. Specifically, the script scanned the output to 

identify the scaffold with which the gene had an alignment with the lowest e-value, corresponding to the 

highest probable match. It then evaluated whether the cDNA (query) mapped contiguously against that 

scaffold (target). Because introns were expected to be represented in the genome target but not in the 

cDNA query, the alignment was required to map continuously on the query, with gaps of no more than 

10% of the total length. The gene was assumed to map continuously to the scaffold only if at least 90% of 

the transcript by length had mapped.  

Those transcripts which did not map continuously to a single scaffold were then scanned to 

determine whether gaps at the beginning or end of the alignment of the transcript to the genome could be 

filled in by including matches to another scaffold. If a segment of a transcript mapped to a second 

scaffold, the transcript was identified as chimerically assembled in the fox. Any transcripts that remained 

uncharacterized after both rounds of analysis were examined manually. During manual inspection, the 

gap criterion was relaxed so that if the beginning and end of a transcript mapped to a single scaffold, it 

was assigned to that position. 

Estimating Chimerism 

When sequences are misassembled, they can be sampled from biologically disparate regions of 

the genome. The identification of two non-contiguous segments of sequence as adjacent is known as 

chimerism. The identification of chimeric scaffolds in a de novo assembly can be facilitated by a 

                                                           
1 Version GCF_000002285, downloaded April 21, 2015 from http://www.ncbi.nlm.nih.gov/genome?term=canis%20lupus%20familiaris 
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reference genome if a syntenic map between the two species is available. In the case of the draft red fox 

genome, identification of chimeras can therefore be facilitated by comparing scaffolds against the dog 

genome and against the patterns of dog-fox synteny identified in the dog-fox comparative karyotype (F. 

Yang et al., 1999) and meiotic linkage map (Kukekova et al., 2007). 

Mapping of the largest 500 fox scaffolds against the dog genome was conducted with LAST 

(Frith et al., 2010). The dog genome used in the present analysis consisted of the 38 autosomes, mtDNA, 

and X-chromosome of CanFam3.1, and, additionally, the dog Y-chromosome recently assembled by 

Gang Li and William Murphy (G. Li, personal communication, October 14, 2014). For each scaffold, the 

dog chromosome(s) to which it was most likely orthologous was/were identified. Every scaffold mapped 

to many chromosomes, so it was necessary to identify the chromosome(s) with which it was most likely 

to be syntenic. Thus, for each scaffold, the maximum LAST score corresponding to each chromosome 

was identified, and its z-score relative to the maximum LAST scores of all other chromosomes to which 

the scaffold mapped was computed with the formula � =
���

�
, where, for each scaffold, x is the maximum 

score of the chromosome of interest, µ is the average maximum score across all chromosomes, and δ is 

the standard deviation of maximum scores across all chromosomes. Example distributions are provided in 

Appendix A. Chromosomes with scores that were large enough to be significant at p<0.05 were 

considered significant hits and identified as syntenic to at least a portion of the scaffold.  

Analysis using a second approach complemented the results of the maximum LAST score 

analysis. Here, a Python script was written to scan the LAST mapping results nucleotide by nucleotide 

and to identify, at each position along the scaffold, the mapping hit with the highest score. The genome 

position in the dog of this best-mapped hit was then graphed at each position along the scaffold. This 

method produced an alternative analysis that allows for comparison of the best hit at each nucleotide to 

the scaffold-level syntenic analysis using z-scores. 

Results/Discussion 

Library Metrics 

The average observed insert sizes in each of the libraries when mapped to the Fox500 were 

similar to the predicted insert sizes (Table 2; Appendix B). While most of the libraries show smooth, 

approximately normal distributions, the distribution of the estimated insert sizes for the library with the 

largest insert size, VULgnsDBEDUABPEI-17, is much less smooth than the others (see Appendix B for 

visualization). This phenomenon could potentially be caused by the fact that this library has much lower 

coverage than the others, at only 0.69X (Table 1) and that there would be fewer opportunities for the read-

pairs of a library with an insert size of 20 Kbp to map concordantly onto the scaffolds, given that so many 

of the scaffolds are small: Scaffold500, for example, at 47,686-bp long, is only 2.4 times the length of this 
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library. It has also been noted that errors are more common for longer insert sizes (Henson et al., 2012), 

though no trend of smoothness decreasing with insert size is evident in the other libraries (see Appendix 

B). Despite the roughness of this single graph, however, as a whole, the statistics calculated from the 

mapping of the libraries to the genome closely approximate the predicted sizes (Table 2). 

 

Library Name 
Expected  

Insert Size 
Read Length 

Mean 

Insert Size 

Standard 

Deviation 

Median 

Insert Size 
SZAXPI000586-5 170 100 155.23 15.72 157 

SZAXPI000594-5 170 100 152.39 13.40 153 

SZAXPI008070-166 250 150 220.70 12.33 222 

SZAXPI000585-11 500 100 464.24 18.39 465 

SZAXPI000593-11 500 100 461.36 18.25 462 

SZAMPI008069-169 800 150 785.00 32.75 787 

VULgnsDBDDWAAPEI-21 2000 49 2362.02 178.33 2364 

VULgnsDBEDWAAPEI-31 2000 49 2045.96 188.07 2044 

VULgnsDBFDWAAPEI-16 2000 49 2265.11 171.51 2265 

VULgnsDBDDLAAPEI-95 5000 49 4967.83 318.65 4965 

VULgnsDBFDLAAPEI-87 5000 49 5520.72 351.67 5525 

VULgnsDBGDLAAPEI-34 6000 49 5942.20 388.64 5939 

VULgnsDBDDTAAPEI-95 10000 49 10764.81 1267.83 10967 

VULgnsDBFDTAAPEI-35 10000 49 10905.67 1377.52 11133 

VULgnsDBEDUABPEI-17 20000 49 21551.75 5462.30 23277 

Table 2: Insert size metrics for each of the 15 libraries. Mean, standard deviation, and median insert sizes were 
estimated with Picard.  

The similarity of the measured insert sizes to the expected values supports the integrity of the 

assembly. The reads would map onto the assembled genome only if it had faithfully recapitulated the 

sequence from which they were derived. While this does not preclude misassembly, it does speak to the 

relative absence of major structural errors among the 500 largest scaffolds. The shorter scaffolds, which 

would be expected to provide less information for long-range assembly, were excluded from the present 

analysis; therefore, the integrity of the small scaffolds that would be useful only for short-range assembly 

has not been evaluated. In the future, it may be interesting to use the paired-end libraries to evaluate the 

structural support for the small scaffolds, but based on the present analysis, the estimated library metrics 

largely support the integrity of the draft genome assembly. 

Genome Size Comparison and Trends in Scaffold Size 

 The conversion of the C-value size from the Animal Genome Size Database produced an estimate 

for the size of the fox genome of 2.79 Gbp. The size of the fox genome assembly estimated by BGI was 

2.29 Gbp, meaning that the BGI estimation is only 82% of the size estimated with flow cytometry. This 
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discrepancy is larger than the 16.2% reduction in genome size due to misassembly reported of de novo 

NGS assemblies by Alkan et al. (2011).  

However, the human genome is currently estimated at 3.23 Gbp (Genome Resource Consortium, 

2013), but the flow cytometric estimate for the size of the human genome produced by the same authors 

as the estimate for the fox (Wurster-Hill et al., 1988) suggests an approximate human genome size of 3.42 

Gbp. This discrepancy suggests that the C-value estimates may be slightly inflated, given that the genome 

size estimation for the finished human genome is only 94.4% of the size estimated with flow cytometry. 

Scaling the C-value estimated for the fox to account for this discrepancy would give an estimate of 2.63 

Gbp, corresponding to a discrepancy of about 13% with BGI’s estimate. These results therefore suggest 

that the fox draft genome assembly is likely to be missing at least several hundred megabases of genetic 

material. 

 

Figure 4: Frequency of scaffold sizes in the fox genome, with size log-transformed and binned. As scaffold size 
decreases, frequency of occurrence among the scaffolds increases, meaning that there are a lot of very small 

scaffolds. 

 Additionally, the analysis of the length distribution among the scaffolds suggests that the majority 

of the genomic information in the fox genome assembly has been incorporated into a few large scaffolds, 

while a huge number of very small scaffolds supply very little additional data. The largest scaffold is 

55,683,013-bp long, and the smallest scaffold runs only 100 bp. The length of 100 bp appears, however, 

to be a specified minimum cutoff, and there are 39,843 100-bp scaffolds in the full assembly, and nothing 

smaller. Across the genome as a whole, most of the scaffolds are very small. Figure 4 shows the 



22 
 

distribution of scaffold sizes when the lengths are transformed with a natural log. In total, 64.4% of the 

676,878 scaffolds fell into the smallest bin, corresponding to lengths less than 149 bp or to ln(length) less 

than five. Only 1.69% of scaffolds were longer than 1097 bp (i.e. had a ln(length) of seven or higher). 

Though the distribution is not normal, it is interesting to note that the median scaffold length for the 

genome as a whole is 126 bp and the average is 243 bp, suggesting that a few very large scaffolds may be 

skewing the distribution to make the average larger than the mean. 

In order to determine the effect that the largest scaffolds might have on the genome-wide length 

statistics, the distribution of lengths within the largest 500 scaffolds was examined to see whether it 

followed the same trends as the distribution in the genome as a whole. The smallest scaffold included in 

this analysis was Scaffold500, which is 47,686-bp long. Though of course the distribution is not normal 

(Figure 5), it’s interesting to note that the average scaffold size among the largest 500 scaffolds is 

4,698,760 bp, with a standard deviation of 7,639,151, whereas the median is 1,524,697 bp. The trend here 

therefore recapitulates the genome-wide trend, with a few scaffolds containing most of the genomic 

information. These 500 scaffolds were calculated to contain 94% of the entire sequence of the draft fox 

genome by length.  

 

Figure 5: The lengths of the scaffolds in Fox500 are each represented by a blue dot. The maximum size was 55.7 

Mbp and the minimum size was 47.7 Kbp. Scaffolds 19 and 26 are slightly longer than their ordinal position would 

indicate by several Mbp, but in general the scaffold sizes decay in a roughly exponential trend, as indicated by the 

black dotted line. 

These trends in scaffold length suggest that the elimination of some scaffolds, either by selecting 

a cut-off or by eliminating scaffolds that are unlikely to contain unique sequences (discussed in the next 

section), could potentially produce a more computationally usable draft genome without eliminating any 

unique information. The presence of so many small scaffolds suggests that assembly failed at a number of 

points, “orphaning” many sequences. The very small scaffolds, which in many cases are shorter than the 

smallest library size and are therefore likely to represent isolated sequencing reads, are unlikely to contain 

any  information that will be useful in constructing the genome at long- or even short-range.  
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Without further analysis of the composition of these small scaffolds, it was impossible to 

determine why they were not incorporated into larger sequence assemblies. Assembly would be more 

likely to fail at genomic features such as repetitive segments and segmental duplications, and 

heterozygous sequences are known to introduce a number of assembly errors when short reads are used 

(Alkan et al., 2011; Henson et al., 2012) because the nearly-identical sequences cannot be merged 

(Salzberg & Yorke, 2005). Additional analysis was therefore necessary to determine whether any of these 

common bioinformatic challenges could explain the large number of very small scaffolds in the assembly. 

Analysis of the Small Scaffolds 

After soft-masking, 107,185 scaffolds were found to be composed entirely of repetitive 

sequences, corresponding to 15.8% of all scaffolds by count and comprising 12.5 Mbp of sequence data. 

The largest scaffold identified in this analysis was Scaffold40760, which is 273 bp long. When the 

unmasked all-repeat scaffolds were mapped back onto the 500 largest fox scaffolds, 747 (0.69%) were not 

represented at all, mapping zero times (Figure 6). An additional 4461 (4.61%) were represented only 

once. Most scaffolds, however, were repeated between one and 500 times in the largest scaffolds, with 

Scaffold45466 mapping back onto the largest scaffolds 1,538 times.  

 
Figure 6: Cumulative Distribution Function indicating the number of times repeat-only scaffolds mapped back onto 

the largest scaffolds. The black line’s intersection with the blue line indicates the percentage of scaffolds mapping 0 

times (0.69%) and with the red line, scaffolds mapping 1 or fewer times (4.86%). The purple line demarcates the full 

set of scaffolds. Almost all repetitive scaffolds mapped to the largest scaffolds between 1 and 500 times. 

It is theoretically impossible to assign a location in the genome to any scaffold that contains only 

repetitive elements because by definition it has no single genomic position, rendering these scaffolds 

unusable in further assembly. Furthermore, canid genomes are known to contain a large number of SINE 

elements (Bentolila et al., 1999), whose transposition is a major source of canine diversity (Wang & 

Kirkness, 2005). Therefore, the position of these elements within the genome would be expected to be 

informative to both fox genomic diversity and fox-dog divergence. Identification of the scaffolds 

containing only repetitive sequences with RepeatMasker and their corresponding representation among 
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the largest stretches of assembled sequence served to underscore that in many cases, information about 

the positions of these sequences in the genome has likely been lost during assembly.  

Mapping the repeat-only scaffolds against the 500 largest fox scaffolds suggested that 95% of 

these small scaffolds had been incorporated into the genome in at least two locations. However, the 

number of times each repetitive scaffold truly occurs in the fox genome remains unknown, so it is not 

currently possible to determine how closely this representation would be expected to recapitulate fox 

biology. It is evident that a number of sequences were never incorporated into stretches of unique 

assembled sequence, and that 4.61% are very likely to be underrepresented once the scaffolds are 

assembled into chromosomes. Therefore, the challenge of incorporating repetitive elements in de novo 

assembly appear to affect the fox genome and will cause the loss of some of this information once the 

scaffolds are assembled into chromosomes. 

 The second set of analyses on the small scaffolds sought to estimate the uniqueness of the small 

scaffolds by mapping them against larger scaffolds. As expected, none of the scaffolds ~50 Kbp or larger 

were subsumed by a larger scaffold, and thus were treated as unique sequence assemblies in the present 

analysis. Sizes among the 1,000 randomly sampled small scaffolds ranged from 100 to 9,086 bp and 

represented to 185,851 bp of sequence. Of the scaffolds, 3.8% did not align anywhere in the largest 

scaffolds, suggesting that they contain unique sequences (Table 3). For an additional 0.3%, partial 

matches were found, suggesting similar motifs but unique sequence.  

Match Type Frequency Sequence Length (bp) 

None 3.8% 40,102 

One Location 56.0% 89,923 

Multiple Locations 39.9% 52,385 

Incomplete 0.3% 3,441 

Table 3: Mapping of the 1000 randomly selected small scaffolds onto the largest fox scaffolds. Total sequence 

length queried was 185,851 bp. “Incomplete” matches did not meet the length threshold qualification, which 

required matches to be no more than 3 bp shorter than the scaffold itself. 

The general mapping trends of the small, unique scaffolds against the largest scaffolds suggested 

that assembly errors significantly influenced the composition of the small scaffolds. The majority of the 

scaffolds analyzed (56.0%) mapped to a single location in the large, masked scaffolds. The fact that these 

sequences were not incorporated into the genome would seem likely to have been caused by duplications 

or by heterozygosity. However, the fact that so many of the sequences (39.9%) mapped to multiple 

locations within the largest fox scaffolds suggests that these small scaffolds are not all the product of 

heterozygosity, but rather may also represent prolific duplication events or possibly novel fox-specific 

repetitive sequences that were not detected by RepeatMasker. Future analysis could assess the content of 
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these scaffolds in order to better estimate the bioinformatic or genomic features that have resulted in such 

high identity between small scaffolds and regions of the larger scaffolds. 

Assembly and Misassembly of Genes 

Another potential implication of misassembly for downstream analysis is the misassembly of 

genes, which can result from the disruption of assembly due to duplications or to repetitive intronic 

sequences (Alkan et al., 2011). If a gene is split into multiple scaffolds, it will be detected in pieces during 

gene prediction and may present problems during common uses of a reference genome, such as primer 

design. To assess whether gene misassembly was likely to affect a large number of genes in the fox 

genome, transcripts from the NM category of the NCBI’s dog RefSeq transcriptome were mapped against 

the full fox genome. The NM category was selected because predicted genes may contain errors, and 

therefore the use of transcripts from only experimentally validated genes offered a more appropriate 

standard by which to evaluate the fox assembly.  

Category 
Number of 

Transcripts 
Percent of NM Transcripts 

Number Mapped to One Scaffold 1247 93.50% 

Number Mapping Chimerically 54 4.00% 

Number Unplaced 33 2.50% 

Total 1334 -- 

Table 4: Known RefSeq Genes mapped back onto the fox genome and assigned to one or more scaffolds. 

Of the 1,334 transcripts in dog NM database, 1,247 could be assigned to a position on a single 

scaffold in the fox genome (Table 4). An additional 53 genes were identified as mapping chimerically to 

two or more scaffolds, and 33 could not be assigned to a position in the draft fox genome because a large 

segment of the transcript did not align anywhere in the fox genome. This analysis suggests that a majority 

of known dog genes are represented by continuous orthologous sequences in the red fox assembly, but 

that errors may have been introduced during the assembly of approximately 6.5% of genes. One 

interesting phenomenon of note was that out of all 1,247 transcripts assigned to a single location in the 

fox genome, all but one were placed in scaffolds in the range of Scaffold1 to Scaffold449. This trend in 

assignment suggests that, much like genomic information, most of the genetic information in the fox 

assembly is also contained within a small number of large scaffolds. 

 The fact that 33 transcripts did not map in their entirety to the draft fox genome could be 

influenced by a number of factors. For instance, if these genes have undergone significant sequence 

evolution between the fox and the dog, certain exons may not have aligned due to a loss of homology, 

though a relaxed e-value of 1.5 (p ≤ 0.777) was used to try to mitigate the potential for sequence 

evolution to disrupt alignment. More likely, these transcripts did not align because of gaps or errors in the 
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fox genome assembly. Further investigation into the genes that could not be aligned in this analysis could 

potentially reveal insight into either errors in the genome assembly or into fox-dog evolutionary 

differences. However, the fact that 93.5% of the transcripts mapped to a single scaffold in the draft fox 

genome suggests that genes in this assembly are much less fragmented than the numbers reported for 

other de novo assemblies, such as the 69.7% of genes mapping to a single scaffold reported by Alkan et 

al. (2011), though some bias could be introduced by the selection of only a subset of transcripts. 

Estimating Chimerism 

 The alignment of the 500 largest fox scaffolds against the dog genome and subsequent analysis of 

the z-scores generated a list of the dog chromosomes significantly syntenic to each scaffold (Appendix 

C). Most of the scaffolds (84%) mapped to a single chromosome, while 10% were spilt among two and 

2% among three chromosomes (Figure 7). Five scaffolds (1%), the longest of which was approximately 

252 Kb long (Scaffold337) could not be placed because they mapped with similar affinity to each 

chromosome, and 13 scaffolds (3%), all of which were shorter than 253 Kb, were identified as mapping to 

4, 5 or 6 different chromosomes.  

 

Figure 7: Percent of scaffolds (of the 500 largest scaffolds) mapping to zero (light blue), one (orange), two (grey), 

three (yellow) or more (dark blue) dog chromosomes, as estimated by calculating the z-scores of the maximum 

alignment score against each chromosome. 

 For the scaffolds that could not be assigned a position in the dog genome, the mapping results 

were visually inspected to determine whether any syntenic relationship to the dog could be discerned. The 

raw mapping results from three scaffolds (348, 378, and 384) suggested synteny with a single 

chromosome, though none of the others could be assigned to a position in the dog genome. 

Nonassignability could occur for a number of reasons, including the presence of a large number of long 

repetitive segments or synteny to an uncharacterized region of the dog, as the uncharacterized regions 

were excluded from the current analysis. 

1%

84%

10%
2% 3%

OCCURRENCE OF CHIMERISM AMONG SCAFFOLDS 

BASED ON Z-SCORES
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This second approach, where each nucleotide along the fox scaffolds was assigned to a position in 

the dog genome, generated visual images depicting the relationship between the scaffold and the dog 

genome. These figures allowed for validation of the results generated based on the z-scores. 

Visualizations of three example scaffolds are provided in Figure 8. 

  

Figure 8: Example of nucleotide-level best-hit mapping indicating synteny with one (Scaffold 290, furthest left), two 
(Scaffold 75, center) or three (Scaffold 93, furthest right) dog chromosomes. Scaffold position is represented along 

the x-axis, while chromosome position corresponds to the y-axis. Dog chromosomes are color-coded, with the 
chromosome number in the corresponding color printed next to the y-axis, and point size is scaled by LAST score. 

Though dog and fox are very closely related at the nucleotide level, their karyotypes, as discussed 

previously, have been rearranged extensively, with most fox chromosomes comprising 2-3 dog 

chromosomes. Therefore, it was necessary to evaluate all “chimeric” scaffolds to determine whether they 

were likely to indicate bioinformatic errors, or whether they encompassed regions of the genome where 

syntenic blocks distinct in the dog genome lie adjacent in the fox genome. Of the chimeric scaffolds, five 

mapped to dog chromosomes that are known to map to a single chromosome in the fox. The details of 

these five scaffolds are provided in Table 5. Additional analysis will be necessary to validate these 

scaffolds, and to determine whether any of the apparent bioinformatic chimeras correspond to small, 

previously unidentified, inter-chromosomal rearrangements between fox and dog. 

In summary, 15% of the 500 largest fox scaffolds are expected to contain sequences from 

disparate regions of the genome that have been erroneously assembled. This number may not be precise: 

it’s possible that some of the scaffolds that contain sequences from a single dog chromosome or from 

different dog chromosomes that map adjacently in the fox genome also represent bioinformatic errors in 

assembly. Intrachromosomal misassembly will be difficult to identify, but the probability of a chimeric 

scaffold containing “fused” dog chromosomes by chance alone can be modeled very simply. 

Bioinformatic chimeras are generated due to sequence similarity among different chromosomes. 

Assuming that sequence similarity between a chromosome and all other chromosomes is randomly 

distributed, 5.6% of chimeric scaffolds would be expected to include sequences from chromosomes 
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mapping to the same fox chromosome by chance alone, based on the known pattern of synteny between 

the dog and fox chromosomes. Because there were 88 cases where two chromosomes mapped to the same 

scaffold, we would expect 5 of these 88 cases to include two chromosomes that are fused in the fox 

simply due to chance. Therefore, whether the chimeras in Table 5 are real or bioinformatic will need to be 

further analyzed.  

SCAFFOLD DOG CHROMOSOME CORRESPONDING LOCATION IN FOX 

1 
CFA 28 VVU 15 

CFA 30 VVU 15 

7 
CFA 33 VVU 1 

CFA 12 VVU 1 

9 

CFA 18 VVU 5 

CFA 38 VVU 5 

CFA 20 VVU 9 

239 
CFA 35 VVU 12 

CFA 5 VVU 12 

414 

CFA 19 Both VVU 4 and VVU 5 

CFA 18 VVU 5 

CFA 8 VVU 6 

Table 5: Five fox scaffolds appear to be chimeric based on mapping to the dog, but in fact map to regions of the fox 
where the syntenic blocks corresponding to different dog chromosomes lie adjacent. Scaffolds 9 and 414 map to 

three dog chromosomes, and in both cases one of those chromosomes is not expected to lie adjacent to the others in 
the fox (i.e. is predicted to be a bioinformatic chimera). The syntenic blocks comprising CFA 19 are split apart in the 

fox karyotype, with one composite syntenic block located on VVU 4 and another on VVU 5. 

Conclusion 

The results of the current analysis indicate that the bioinformatic errors frequently found in de 

novo genome assembly using NGS technology do affect the draft red fox genome assembly. First of all, 

the length of the assembly as reported by BGI, 2.29 Gbp, is between 13-18% shorter than flow cytometric 

estimates of the fox genome size, making the loss of genomic material in the red fox assembly consistent 

with the 16% reduction in length during de novo assembly estimated by Alkan et al. (2011). Second, the 

genome is comprised of a large number of very short scaffolds, and analysis of these scaffolds suggests 

that many of them will complicate assembly of the genome into chromosomes because they are 

comprised of repetitive elements (15.8% of the scaffolds in the genome) or are very similar to other 

sequences in the genome (an estimated 80.7% of the scaffolds in the genome). Finally, even among the 

largest assembled scaffolds, the large-scale structural integrity of approximately 15% is questionable, as 

they appear to be chimeric. These types of errors are expected in a de novo assembly, but suggest that the 

loss genetic information and the misassembly of sequences must be considered in downstream analysis 

including chromosome assembly. 
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In some respects, however, the genome assembly performed better than other de novo assemblies. 

The successful mapping of the sequenced libraries back onto the fox genome clearly indicates that the 

assembly has, on the large-scale, recapitulated the genomic biology of the fox. Additionally, only a small 

number of dog transcripts were found to be fragmented among multiple scaffolds (4.0%) or incompletely 

sequenced (2.5%), numbers much lower than those reported in previous research (Alkan et al., 2011), 

based on the alignment of experimentally validated dog transcripts. These results suggest that the draft 

genome holds the potential to, with refinement, offer significant potential for genetic and genomic study 

of the fox.    
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CHAPTER III  

CHROMOSOME ASSEMBLY OF THE RED FOX GENOME 

Overview/Motivation 

 The primary objective of the current analysis is to develop a chromosomal assembly for the red 

fox genome. Assembling genomic sequences into chromosomes will facilitate the use of the genome 

assembly in addressing questions of interest to biologists studying the fox, such as the investigation of 

regions of interest in complex behavioral traits (Johnson, Wittgenstein, et al., 2015; Kukekova, Trut, et 

al., 2011) or of regions containing interesting cytogenetic features, such as interstitial telomeric sequences 

(Becker et al., 2011). The current study approaches the challenge of revising a draft genome comprised by 

676,878 scaffolds into seventeen chromosomes by identifying sequence-level synteny between the fox 

and the dog genomes. 

 In order to identify syntenic sequences, the fox genome was aligned to the dog genome using 

LASTZ (Harris, 2007) and the results were analyzed with the Kent utilities (Kent, Baertsch, Hinrichs, 

Miller, & Haussler, 2003) to produce syntenic nets. This alignment and analysis was repeated to develop 

a syntenic net for an outgroup genome, the cat, aligned against the dog. The chains and nets were then 

analyzed with the program Reference Assisted Chromosome Assembly, or RACA (Kim et al., 2013), 

which assist with the construction of reference-based chromosomes in de novo assemblies by constructing 

syntenic fragments (SFs) from syntenic nets. SFs are sequence fragments that map to unique, continuous 

locations in both the dog genome and fox scaffolds, and may also map to one or more positions in the cat. 

These SFs served as the basis for the assembly of the chromosomes. 

 The SFs were first ordered along each dog chromosome and then evaluated in the context of 

known fox-dog synteny (Kukekova et al., 2007; F. Yang et al., 1999). Synteny between the fox and dog 

has been mapped through a reciprocal chromosome painting study (F. Yang et al., 1999) and through the 

construction of a fox meiotic linkage map using dog-derived microsatellite markers (Kukekova et al., 

2007). Therefore, once the dog chromosomes were constructed from the SFs, it was possible to assign the 

SFs to positions on the fox chromosomes based on the known sytenic relationships between the dog and 

fox chromosomes. Additionally, the corresponding cat chromosomes were also identified and their order 

along the dog chromosomes compared against known dog-cat synteny (Davis et al., 2009; F. Yang et al., 

2000) to determine the extent to which the current assembly recapitulated previous results. This analysis 

allowed for each SF to be ordered along the dog, cat, and fox chromosomes. Additionally, whereas the 

fox and cat chromosomes have not previously been compared with chromosome painting or meiotic 

linkage, this assembly results in a cat-fox syntenic map, albeit one based on bioinformatic rather than 

experimental mapping results. 
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 The secondary goal of the analysis was to refine the fox-dog syntenic map and the scaffolds of 

the draft fox assembly. One such refinement was the reduction of gaps in the dog-fox comparative map. 

Though the fox and dog karyotypes are extensively rearranged, almost all of the fox chromosomes can be 

broken into 2-3 syntenic blocks that correspond to whole dog chromosomes. However, there are four dog 

chromosomes that map to two different syntenic regions each in the fox genome. Previous studies (Becker 

et al., 2011; Kukekova et al., 2007) have sought to identify the breakpoints, but their studies identified 

breakpoint regions at the megabase scale. In the present study, these breakpoint regions are significantly 

reduced through the placement of the SFs and the identification of corresponding cat-dog-fox synteny.  

Another outcome was the refinement of the chimeric scaffolds. Because the SFs identify precise 

locations in the dog that align to precise locations in the fox, it was possible to determine where the 

previously developed dog-derived microsatellite markers (Kukekova et al., 2004, 2007) would align in the 

fox scaffolds. Because these markers have been used previously in the development of the fox meiotic 

linkage map (Kukekova et al., 2007), their relative positions along the fox chromosomes are known. 

Therefore, it was possible to determine whether markers mapping to a single scaffold were known to map 

to different fox chromosomes, allowing for some scaffolds to be identified as bioinformatically chimeric. 

 Through this analysis, synteny between the fox and the dog and between the cat and the dog is 

refined to the nucleotide level through pairwise mapping of the genomes, and the resulting syntenic 

fragments are used to assemble fox chromosomes. The analysis produces a number of deliverables that 

will be useful to canine, feline, and vulpine genetic researchers, including the fox chromosome assembly 

and a cat-fox comparative alignment. 

Methods 

Syntenic Chains/Nets 

Synteny between the dog and fox genomes is well established at the chromosome level, in terms 

of chromosomal segments identified with chromosome painting (F. Yang et al., 1999) and centimorgan-

scale estimations of their sizes and positions identified with meiotic linkage mapping (Kukekova et al., 

2007). Therefore, synteny identified at the nucleotide level between the fox scaffolds and the dog 

chromosomes could be integrated with the results of physical mapping studies to reveal the relationship 

between the fox scaffolds and the fox chromosomes. This process required the construction of a dog-fox 

pairwise genomic alignment comprised of chains and nets, which are two bioinformatic constructs used 

frequently in inter-species genomic comparisons. 

Chains are ungapped collinear alignments of sequence between two species. To make a chain, 

pieces of the target genome must be aligned to the reference using a program such as LASTZ (Harris, 

2007), and then these alignments are merged where they overlap and pruned by score (Figure 9). A net, 

on the other hand, is an assembly of chains which can be strung together through the addition of gaps. In 
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the present analysis, the target genome (the 500 largest scaffolds of the draft fox genome, referred to as 

vv2) and outgroup genome (felCat5) (Montague et al., 2014; Pontius et al., 2007) were each aligned 

against the reference genome (canFam3.1) (Lindblad-Toh et al., 2005) using LASTZ. Because 

rearrangements are expected over the course of millions of years of evolution, chromosomes and 

scaffolds are partitioned into smaller “chunks” prior to alignment to make the alignment more resilient 

against rearrangements. This partitioning and subsequent alignment was conducted using a set of scripts 

provided by Marta Farré Belmonte and Denis Larkin at the Royal Veterinary College in London, U.K. 

that allowed for the LASTZ alignments to be conducted in parallel on a computing cluster (M. Farré 

Belmonte, personal correspondence, February 19, 2015). The dog chromosomes were partitioned into 

pieces of 40,010 Kbp that overlapped each other by 10 KBp, whereas the fox scaffolds and cat 

chromosomes were partitioned into 20,000 Kbp chunks prior to being aligned against the dog.  

              (A) LASTZ      (B) CHAIN     (C) NET 

         

Figure 9: An illustration of the chaining and netting of LASTZ alignment data. Many individual LASTZ alignments 
(A), highlighted by the plethora of colorful arrows whose widths represent score, will be produced between the dog 

chromosome (middle line) and different fox chromosomes (top and bottom lines). Arrows of the same color pointing 
at each other represent corresponding alignments in the dog and fox genomes. In the chaining step (B), these 
alignments are pruned to include only the highest-scoring alignments and are merged (grey arrows) based on 

overlap. No gaps are allowed in the chaining phase. The chains are then netted together with gaps allowed (C).  

LASTZ takes several parameters that influence the scoring schema, including the cost of opening 

or extending a gap and a score threshold below which alignments should be discarded. UCSC has 

published the parameters they recommend for building chains and nets for a number of interspecies 

alignments. Because of the similarity of the divergence time between the fox and dog and that of human 

and chimp, UCSC’s human-chimp alignment parameters were selected for the fox-dog alignment 

(available online at http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro3/). The LASTZ 

parameters included a gap opening penalty (O) of 600, a gap extension penalty (E) of 150, a minimum 

score threshold for inclusion of an alignment on the first pass (K) of 4500 and on the second pass (L) of 

2200, a minimum score threshold for interpolation (H) of 2000, and the default LASTZ scoring matrix.  

The chaining step of the analysis also takes several parameters, including the minScore cut-off 

parameter, which here was set to 5000, and the linearGap parameter, which was set to “medium.” 

However, because of the extensive karyotype rearrangement between dog and fox despite the short 



33 
 

divergence time, the alignment was also tested on CFA 24 with the linearGap parameter set to “loose”, as 

recommended by collaborators on the original RACA publication (M. Farré Belmonte, personal 

communication, April 17, 2015). Based on these results, the fox-dog alignment proceeded with the 

UCSC-recommended human-chimp alignment parameters and linearGap set to medium. 

As for the cat-dog alignment, a previous version of the dog genome (canFam2) had been aligned 

to a previous version of the cat genome (felCat3), and the parameters for this alignment are available 

online at http://hgdownload.cse.ucsc.edu/goldenPath/canFam2/vsFelCat3/. These same parameters were 

used in the current analysis, with the LASTZ parameters set to use the default scoring matrix, O=400, 

E=30, K=3000, L=2200, H=2000 and M=50 (which dynamically masked dog sequences that appeared 

more than 50 times). The chain parameters used were a score threshold of 3000 and a linearGap of 

medium. 

Because this alignment was a large-scale computational procedure requiring over 40,000 

individual LASTZ alignments for the fox-to-dog comparison and over 10,500 for the cat-to-dog, High-

Performance Computing resources, namely the Carl R. Woese Institute for Genomic Biology’s 

Biocluster, were utilized. The Biocluster has over 2824 cores available across 35 nodes and 5 queues 

(Carl R. Woese Institute for Genomic Biology at the University of Illinois at Urbana-Champaign, 2015). 

The scripts, which were written by Marta Belmonte Farré for Sun Grid Engine (a propriety queue 

management system released by Oracle), were altered by consultants hired from the HPCBio group 

associated with the Roy J. Carver Biotechnology Center and the Carl R. Woese Institute for Genomic 

Biology at the University of Illinois at Urbana-Champaign to be compatible with the open-source 

Terascale Open-source Resource and QUEue Manager (TORQUE) used by Biocluster. The HPCBio 

consultants also altered the submission structure of the script so that it would work given the restrictions 

on the Biocluster’s Highthroughput queue, which limits job submissions to 550 per user at any time. 

Using these altered scripts, jobs were manually queued in batches of 550, which allowed for each multi-

species alignment to be run in under a week. For each of the fox and cat genomes mapped against an 

individual dog chromosome, three output files were produced: a .chain file, a .net file, and a multiple 

alignment .psl file. The results of the alignment were visualized as a custom track on UCSC Genome 

Browser against canFam3.1 for visual evaluation. 

Reference Assisted Chromosome Assembly (RACA)  

The software Reference Assisted Chromosome Assembly (Kim et al., 2013), or RACA, was used 

to build syntenic fragments (SFs) corresponding to unique, continuous sequences in both the dog and fox 

genomes and, where possible, in the cat genome as well. RACA constructs SFs by comparing the 

alignments of the target and outgroup species’ genomes to the reference genome using an algorithm 

developed to identify and reconstruct regions of a genome that are likely to have been contiguous in an 
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ancestral species (Ma et al., 2006). In order to construct SFs, RACA merges collinear alignments of 

syntenic nets, which are described above. RACA was instructed to identify SFs of no less than 150 Kbp 

in size using the “resolution” parameter. While RACA can provide additional analysis, such as estimating 

the probability of adjacency among two SFs, these analyses were not necessary for the current study 

because of the pre-existing physical maps. RACA requires as input a number of files providing 

information about the assembly and the target, reference, and outgroup species, which are discussed in 

detail below. Data used exclusively in the estimation of adjacency probabilities is not discussed, because 

the program was not used for that purpose in the current analysis. 

Scaffold Sizes 

 RACA requires that the length of each scaffold be provided in a tab-delimited .txt file. The 

measurement of scaffold sizes was previously discussed in Chapter II. The measured lengths of the 

scaffolds were converted to a tab-delimited format using Python and provided as input to RACA.  

Estimating Dog/Fox Divergence 

A Newick tree indicating the branch lengths between the target, reference, and outgroup species 

must be provided to RACA as input. In order to estimate the phylogenetic relationship between the target 

(fox), reference (dog) and outgroup (cat) species’ genomes, the .net files generated during the creation of 

the chain and net files was converted to .maf format using netToAxt and axtToMaf from the Kent Utilities 

(Kent et al., 2003), then concatenated, and finally analyzed using phyloFit (Hubisz, Pollard, & Siepel, 

2011) to produce a Newick tree. Nucleotide substitution rates were estimated under the reversible 

nucleotide substitution model (Tavare, 1986), as recommended by Yang (1994). The Newick tree was 

then visualized using Polydendron (Gilbert, 1999). 

Construction of Fox Chromosomes 

The output from RACA was used in all further analysis, including the construction of the fox 

chromosomes. This output was a list of syntenic fragments that identified a position in the dog genome, 

the corresponding position on a fox scaffold, and, when available, the corresponding position in the cat 

genome. The primary goal of the current study was to assemble these SFs into the fox’s sixteen 

autosomes and X-chromosome. Thus, the syntenic fragments were transformed into a .csv format using 

Python and sorted according to their order on the dog chromosomes. For each fox chromosome, the SFs 

mapping to the corresponding dog chromosomes were selected and assigned an order based on the order 

and direction of the dog chromosomes on the fox chromosome, as identified by the meiotic linkage map 

(Kukekova et al., 2007). Through these steps, an Excel worksheet was produced for each fox 

chromosome that contained a list of all SFs assigned to that chromosome, their order on the fox 
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chromosome, their position in the dog genome, their position on the fox scaffolds, and their position in 

the cat genome (where available).  

The order of the SFs was then visually inspected to ensure that their ordering was consistent with 

known dog-cat and dog-fox synteny. First, the chromosomes were scanned to identify any fox scaffolds 

that contained multiple SFs whose order in the dog genome was out of order or in an inconsistent 

orientation. For example, if the first five megabases of a scaffold mapped in a positive orientation to the 

chromosome and the next ten mapped in a negative orientation, this shift in orientation would suggest 

either a break in synteny between dog and fox or an error in scaffold assembly. Where available, the 

relationship between the cat and the dog was considered to see if the discordance could be attributed to 

either a dog-specific or fox-specific rearrangement. Next, for each dog chromosome, the SFs were 

arranged according to their order in the cat genome in order to see whether any scaffolds overlapped cat 

sequences out of order. This method had the potential to reveal differences in the cat compared to the 

canid genomes, and could also potentially identify rearrangements in the dog relative to the ancestral 

state. Rearrangements shorter than 100 bp were ignored. 

These results were also compared against previous work using chromosome painting in the dog 

and cat (Davis et al., 2009; F. Yang et al., 2000) in order to identify whether the fox-based synteny 

between dog and cat diverged from direct comparisons among those two species. This analysis involved 

re-sorting the SFs into their order within the cat genome. Any anomalies were noted for future analysis, as 

possible areas of dissolution of cat-canid synteny. 

Marker Analysis 

 One of the major potential problems identified with the assembly in Chapter II was the presence 

of chimeric scaffolds. However, because the SFs link positions in the scaffolds to positions in the dog 

genome, it is possible to assign microsatellite markers to positions in the fox scaffolds based on their 

known positions in the dog genome. Because the physical order of the markers mapping to the fox 

genome is known (Kukekova et al., 2007), mapping the markers onto the scaffolds can provide insight 

into whether SFs within a single scaffold belong to the same linkage group within the fox genome.  

Thus, 411 markers previously used in linkage mapping of the fox (Kukekova et al., 2004, 2007; 

Kukekova, Temnykh, Johnson, Trut, & Acland, 2012; Kukekova, Trut, et al., 2011) were assigned 

locations in the SFs based on their positions in the dog genome. Because the SFs identify specific, 

collinear regions of the dog and fox genomes, it was possible to map each marker to an SF, and thus also 

to a scaffold, by writing a simple Python script. The scaffolds were analyzed to build a list of all scaffolds 

whose composite SFs did not unanimously identify synteny with a single dog chromosome; these were a 

subset of the chimeras identified previously with other methods (Chapter II). If the scaffold contained 

markers in regions that were assigned to two different dog chromosomes, the positions of the markers in 
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the fox genome could be examined to determine whether the scaffold was indeed chimeric. However, if 

markers could not be assigned to one or more of the regions, then further evaluation would be necessary 

to determine whether the chimerism was bioinformatic or whether a previously undetected rearrangement 

could potentially produce the observed chimerism. 

Results/Discussion 

Syntenic Chains/Nets 

Visualizing the netted alignment as a custom track on the UCSC Genome Browser revealed that 

coverage of the dog genome by the nets assembled from the fox-dog genome alignment was high. The 

alignment of the fox to the dog had fewer gaps than the cat-dog alignment (Figure 10), as would be 

expected based on evolutionary divergence. These visualizations suggested that the nets constructed using 

the Kent Utilities had identified fox-dog and cat-dog synteny genome wide. 

  (A) Fox-Dog Net, CFA 38 

 

            (B) Cat-Dog Net, CFA 38 

 

Figure 10: UCSC Genome Browser visualization for a ~3Mbp region on CFA 38 of (A) the fox-dog net and (B) the 
cat-dog net. Very few gaps (white breaks in the black bar labeled “chr38” or “cat38” in A and B, respectively) are 

apparent. More gaps are apparent in the cat-dog alignment than in the fox-dog alignment. 
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Divergence Estimates 

PhyloFit estimated the following Newick tree for the three species: ((canFam3: 0.0156945, vv2: 

0.00985954): 0.0890152, felCat5: 0.0890152). This tree is visualized as Figure 11. The branch lengths in 

the figure and in the nested parenthetical format (above) represent substitution rates. Interestingly, 

although the analysis is outside the scope of the present study, these results suggest that the dog lineage 

may be slightly more diverged from cat than the fox is, potentially consistent with findings of moderately 

accelerated evolution in some dog gene families (Lindblad-Toh et al., 2005), though any conclusions 

from this data would require further analysis such as that suggested by Tajima (1992). 

 

Figure 11. Phenogram constructed from the Newick tree and visualized with Phylodendron. Branch lengths to scale. 
For the branch names, canFam3 refers to the published dog reference genome, vv2 to the 500 largest fox scaffolds, 

and felCat5 to published cat reference genome. 

Chromosome Assembly 

 The assembly of the scaffolds of the draft fox genome into chromosomes was the primary goal of 

this study. The analysis was approached from multiple angles to assess synteny among all the three 

species. The results used in the assembly, and the results obtained from the assembly itself, are discussed 

below. 

Assignment of Syntenic Fragments 

RACA identified 428 syntenic fragments (SFs) conserved between the dog and the fox. The SFs 

were ordered according to their position in the dog chromosome, so that all SFs on a single dog 

chromosome were numbered continuously. For each SF, the program identified the position on the dog 

chromosome and the corresponding position on the fox scaffold. If corresponding sequence was identified 

in the cat, the SF would also include this information, but the fragment was not required to map 

canFam3 

vv2 

felCat5 

0.1 



38 
 

continuously in the cat genome. For example raw SF data, see Appendix D. The ranges of SFs assigned to 

each fox chromosome and to each composite dog chromosome are indicated in Table 6. 

The SFs were ordered along each chromosome based on their position within the dog, and then 

this order was shifted to reflect any regions where the fox showed greater synteny to the cat than the dog. 

The final results from this analysis are included in Appendix D. 

Fox 

Chromosome 

Total 

Number 

SFs 

Dog 

Chromosome 

 SF 

Numbers 

Assigned 

Total 

Number 

of SFs 

1 27 

1 409-428 20 

33 199 1 

12 17-22 6 

2 27 

9 313-324 12 

13 27-31 5 

2 32-41 10 

3 24 

36 251-254 4 

34 232-239 8 

6 276-287 12 

4 23 

19 104-108 5 

32 192-198 7 

4 221-231 11 

5 29 

19 109-117 9 

1 405-408 4 

18 (P) 98-103 6 

38 257-259 3 

18 (D) 91-97 7 

6 27 
22 139-150 12 

8 298-312 15 

7 26 
16 62-75 14 

14 42-53 12 

8 19 
27 161-164 4 

17 76-90 15 

9 17 
25 214-220 7 

20 118-127 10 

10 22 
26 391-404 14 

15 54-61 8 

Table 6: The assignment of SFs to each fox chromosome, and to each composite dog chromosome. Information 

about the individual SFs indicated in the “SF Numbers Assigned” column are included in Appendix D. 

(P)=proximal, (D) = distal, based on fox position. Continues on next page. 
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11 21 
21 128-138 11 

23 151-160 10 

12 43 

11 1-16 16 

35 240-250 11 

5 260-275 16 

13 15 

13 23-26 4 

29 171 1 

7 288-297 10 

14 14 
24 206-213 8 

3 200-205 6 

15 26 

31 177-191 15 

30 172-176 5 

28 165-170 6 

16 9 
37 255-256 2 

10 325-331 7 

X 59 X 332-390 59 

Table 6 (cont.): The assignment of SFs to each fox chromosome, and to each composite dog chromosome. 

Chromosome Synteny 

 Because the fox chromosomes were assembled from SFs that were built based on synteny to the 

dog and cat genomes, comparative genomic analysis allowed for the construction of syntenic maps of 

each fox chromosome (Figure 12) compared to the dog and cat chromosomes. For the most part, synteny 

between the fox, dog, and cat was consistent with previously published results, although this is the first 

explicit analysis of fox-cat chromosomal synteny.  

In two cases, the fox karyotype appears to be more similar to that of the cat than the dog: on VVU 

4 (fox chromosome 4), the segment mapping continuously to FCA B1 (cat chromosome B1) is split into 

two chromosomes in the dog, CFA 19 (dog chromosome 19) and CFA 32 and on VVU 13, the segment 

mapping continuously to FCA F2 is split into two chromosomes in the dog (CFA 13 and 29). Another 

region of potential evolutionary interest is on VVU 6, where the breakpoints between CFA 22 and 8 and 

between FCA A1 and B3 appear to be separated by 485 Kbp, a feature which suggests possible 

breakpoint reuse, though this region was not identified in an analysis of re-used breakpoints within 

Canidae (Becker et al., 2011). In general, however, the assembly closely adhered to the syntenic regions 

identified for dog and fox by linkage mapping, with only six novel rearrangements between dog and fox, 

all smaller than 10Mbp, identified.  

While small rearrangements of sequence in the cat compared to the fox were more common, only 

a few syntenic regions unidentified between cat and dog in the RH-map (Davis et al., 2009) were found in 
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the current nucleotide-level analysis, and all are shorter than 600 Kbp. For example, the region of FCA 

B1 estimated as syntenic to VVU 10 and CFA 15 is larger in the present analysis than was reported in the 

dog-cat RH map (Davis et al., 2009), and small segments (230 and 221 Kbp, respectively) of FCA B3 are 

assigned by this analysis to CFA 13/VVU 2 and CFA 10/ VVU 16 that were previously unidentified. 

Similarly sized refinements can be made for synteny of FCA B4 and CFA 3/VVU 14, FCA C2 and CFA 

33/VVU 1, and FCA D3 and CFA 1/VVU 5. 

         

         

Figure 12: Synteny between the fox chromosomes (black bars) and the dog (indicated to the left) and the cat 
(indicated to the right). Comparative maps were constructed based on synteny detected through pariwise genome 

alignment. Continues on next two pages. 
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Figure 12 (cont.): Comparative chromosomal maps for fox (black bars), dog (to the left of the bars) and cat 
(to the right of the bars). 
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Figure 12 (cont.): Comparative chromosomal maps for fox (black bars), dog (to the left of the bars) and cat (to the 
right of the bars). 

Estimation of Gaps 

In total, 98.95% of canFam3.1 by nucleotide count was covered by the 428 SFs. The percentage 

of each dog chromosome missing from the chromosome assemblies varied by chromosome, and is 

indicated in Table 7. Gaps include the spaces between adjacent SFs and between terminal SFs and the 

ends of the chromosomes. By definition, SFs do not overlap. At least 97% of the sequence of each 

chromosome was captured in the SFs, with >99% of most chromosomes included in the assembly. The 

best-assembled chromosome was CFA 33, which maps to VVU 1. This chromosome was contained 

within a single SF and is missing only 291 bp of sequence, located within the telomeres. This result 

suggests that the assembly in this region of VVU 1 has been largely successful. The dog chromosome 

with the largest percentage of its nucleotides not covered in the assembly is CFA 31, which is located on 

VVU 15. For the majority of dog chromosomes, at least 99% of the sequence by length is represented in 

the fox chromosomal assembly. 

Refinement of Known Gaps 

Four dog chromosomes do not map in conserved syntenic blocks to the fox, with CFA 1, 13, 18 

and 19 each mapping to two regions of the fox chromosomes. The specific regions of each dog 

chromosome belonging to each syntenic block were previously unknown. Based on the nucleotide-scale 

syntenic blocks identified by RACA, synteny in these four regions was analyzed to determine whether the 

size of the gaps could be reduced. SFs were analyzed primarily in terms of whether they fell into the gap 

identified with the meiotic linkage map, as coordinates for these gaps were available in canFam3. 
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CFA # CFA 

Length 

Number of 

Gaps  

Total Len. of 

Gaps (bp) 

% CFA Falling in 

Gaps 

Average 

Gap Len. 

Standard 

Deviation 

Median Len. 

of Gaps 

1 122,678,785 25 1,708,319 1.39% 68,332 143,224.6 6,030 

2 85,426,708 11 2,085,949 2.44% 189,631 441,482.0 100 

3 91,889,043 7 310,162 0.34% 44,308 83,284.1 7,045 

4 88,276,631 12 105,118 0.12% 8,759 18,855.7 104 

5 88,915,250 17 408,190 0.46% 24,011 42,856.3 35 

6 77,573,801 13 116,739 0.15% 8,979 13,823.1 5,992 

7 80,974,532 11 741,271 0.92% 67,388 135,264.1 1,800 

8 74,330,416 16 240,585 0.32% 15,036 29,654.6 573 

9 61,074,082 13 1,444,122 2.36% 111,086 180,706.1 37,045 

10 69,331,447 8 215,319 0.31% 26,914 42,287.9 5,877 

11 74,389,097 17 1,442,100 1.94% 84,829 178,429.0 3,791 

12 72,498,081 7 49,466 0.07% 7,066 9,099.5 4,587 

13 63,241,923 10 492,454 0.78% 49,245 84,574.8 12,019 

14 60,966,679 13 490,777 0.80% 37,752 86,930.7 0 

15 64,190,966 9 475,590 0.74% 52,843 94,885.8 30 

16 59,632,846 15 1,670,793 2.80% 111,386 186,527.6 18,549 

17 64,289,059 16 522,726 0.81% 32,670 60,803.4 6,826 

18 55,844,845 14 902,357 1.62% 64,454 156,703.6 2 

19 53,741,614 15 1,630,679 3.03% 108,711 187,715.2 688 

20 58,134,056 11 326,019 0.56% 29,638 52,894.4 1,121 

21 50,858,623 12 148,543 0.29% 12,378 26,341.0 1,734 

22 61,439,934 13 645,208 1.05% 49,631 83,999.7 2,919 

23 52,294,480 11 20,231 0.04% 1,839 4,223.0 0 

24 47,698,779 9 124,183 0.26% 13,798 25,051.57 591 

25 51,628,933 8 610,630 1.18% 76,328 122,925.8 4 

27 45,876,710 5 157,895 0.34% 31,579 35,725.3 20,967 

28 41,182,112 7 43,578 0.11% 6,225 14,928.9 74 

29 41,845,238 2 122,422 0.29% 61,211 70,908.7 61,211 

30 40,214,260 6 182,986 0.46% 30,497 56,847.6 7,835 

31 39,895,921 16 1,676,572 4.20% 104,785 235,452.2 300 

32 38,810,281 8 444,453 1.15% 55,556 83,468.1 5,236 

33 31,377,067 2 291 0.00% 145 64.3 145 

34 42,124,431 9 391,128 0.93% 43,458 68,216.0 10,388 

35 26,524,999 12 91,765 0.35% 7,647 17,481.4 189 

36 30,810,995 5 5,180 0.02% 1,036 1,597.2 267 

37 30,902,991 3 146,493 0.47% 48,831 84,576.9 1 

38 23,914,537 4 43,253 0.18% 10,813 10,079.6 10,216 

X 123,869,142 60 3,866,474 3.12% 64,441 128,038.3 14,283 

Table 7: Because SFs were defined primarily in terms of their position on the dog chromosomes, this table indicates 
putative gaps in the fox assembly according to the regions covered in the dog.  
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Significant reductions in size were made in the unmapped regions between syntenic blocks on 

CFA 1, 13, 18 and 19. Both continuity within the scaffolds and synteny to the cat were considered in 

refinement. The reduction in size for each gap is summarized in Table 8. These revised breakpoints fall 

within the breakpoint regions identified in both Becker et al. (2011) and the meiotic linkage map 

(Kukekova et al., 2007). As is evident in Table 8, the genome-by-genome alignment conducted in the 

present study has significantly reduced the size of the unassigned region on each dog chromosome. 

Dog Chr. Gap 

(Becker) 

Gap Size 

(Becker) 

(Mbp) 

Gap 

(Kukekova) 

Gap Size 

(Kukekova) 

(Mbp) 

Gap 

(revised) 

Gap Size 

(revised) 

CFA1 24,600,000 to 
25,700,000 

1.1  21,746,216 to 
27,254,893 

5.51  25,534,824 to 
25,579,247  

44,423 bp 

CFA13 37,800,000 to 
38,600,000 

0.8  25,138,447 to 
42,432,978 

17.3  38,258,211 to 
38,277,954  

19,743 bp 

CFA18 24,400,000 to 
26,000,000 

1.6  21,513,345 to 
29,484,473 

7.97  25,259,332 to 
25,332,083  

72,751 bp 

CFA19 18,800,000 to 
22,100,000 

3.3  17,989,216 to 
27,017,104 

9.03  19,878,341 to 
20,333,685  

455,344 bp 

Table 8: Gaps in the assignment of dog chromosomes to syntenic regions on the fox chromosomes. Conversions of 
the positions in the Becker paper, which uses canFam2, were done using UCSC Genome Browser. Previous gap 

estimates from Becker = Becker et al. (2011); Kukekova = Kukekova et al. (2007) and subsequent work. 

Marker Analysis 

The mapping of markers to SFs was undertaken in the hopes that the marker placement could 

confirm whether or not SFs mapping to chimeric scaffolds belonged to a single linkage group as 

identified by Kukekova et al. (2007). If markers could be placed in SFs that mapped to each of the unique 

dog chromosomes assigned to that scaffold, then the scaffold’s chimerism could be determined to be 

either bioinformatic or biological depending on the marker linkage.  

Of the 411 markers mapped to the syntenic fragments in this analysis, 409 could be assigned to a 

location within a syntenic fragment. Table 9 lists all scaffolds identified as chimeric in the present 

analysis (i.e. all scaffolds that contained SFs mapping to multiple different dog chromosomes). These 

scaffolds are a subset of those discussed in Chapter II. Eleven of these scaffolds contained markers that 

allowed for analysis of whether the observed chimerism was caused by bioinformatic errors in assembly.  

The markers allowed for the disambiguation of the 11 chimeras: the chimerism of scaffolds 13, 

18, 22, 28, 41, 60, 75 and 93 was likely to be bioinformatic and in scaffolds 1 and 7 was likely to be 

biologically valid. Scaffold 9 contained two chimeras, one of which appeared to be biological and one of 

which appeared to bioinformatic. The chimeras for which informative markers were not available might 

still represent small, previously-unknown rearrangements; the development of a new set of markers would 

be one way to evaluate whether this is indeed the case. 
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SCAFFOLD 
DOG CHR. 

COVERED 

BIOLOGICALLY 

PREDICTED? 

INFORMATIVE 

MARKERS? 
VERDICT 

1 28, 30 Yes Yes Biological 

5 2, 6    

7 12, 33 Yes Yes Biological 

9 18, 38, 20 Yes Yes (all) 
Biological (18&38), 
Bioinformatic (20) 

12 32,3       

13 14, 21, 5  Yes (all) Bioinformatic 

18 11, 13   Yes Bioinformatic 

21 9, X    

22 6, 8   Yes Bioinformatic 

28 3, 32  Yes Bioinformatic 

29 30, 24       

35 2, 23    

41 24, 1   Yes Bioinformatic 

57 18, 23    

60 7, X   Yes Bioinformatic 

75 11, 30  Yes Bioinformatic 

93 2, 5, 8   Yes (all) Bioinformatic 

100 4, 36    

101 2, 23       

148 15, 1    

174 19, 35       

195 10, 1    

239 35, 5 Yes      

255 18, 27    

Table 9: Chimeric scaffolds were evaluated to determine whether microsatellite markers could be placed in the 
segments that mapped to different dog chromosomes. Where this was the case, it was possible to determine whether 
the chimera represented a biological departure in dog-fox synteny, or whether the scaffold was chimeric because it 

had been misassembled.  

Conclusion 

 The primary purpose of this study was to assemble the scaffolds of the draft fox genome into the 

fox chromosomes for use in genetic mapping studies. The alignment of the fox genome against the dog 

genome and subsequent analysis with the Kent utilities for chaining and netting and with RACA for 

identification of syntenic blocks has produced the results needed for chromosomal assembly. The syntenic 

blocks were assembled into the fox chromosomes based on their position in the dog genome and on 

previously identified fox-dog synteny. Comparison of this map to the previously established pattern of 

cat-dog synteny supported the alignment and also allowed for the refinement of the assembly in locations 

where the dog has diverged from the other carnivores, and for the development of a fox-cat syntenic map. 
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Over 98% of the dog genome by length was placed by the SFs, suggesting that the chromosome 

assemblies are likely to contain a large percentage of the fox chromosome sequence as well.  

 The assembly offers refinements both to the preexisting gaps between syntenic blocks in the dog-

fox linkage map and to the draft genome assembly by highlighting nine artificially chimeric scaffolds. 

Because SFs were mapped into the regions currently unassigned to a syntenic block in the dog, synteny 

with the cat could be used to determine which syntenic block the SFs were most likely to belong to. As 

for the chimeras, mapping of previously-assigned meiotic linkage markers to the scaffolds indicated that 

pieces of the scaffolds belong to different linkage groups, suggesting that they had been erroneously 

assembled. Thus, the fox chromosome assembly has provided information that can be used to mitigate 

some of the assembly problems in the draft fox genome. 

 This study is expected to produce a number of deliverables. First, the fox-dog pairwise alignment 

(based on the chain and net) can be uploaded to UCSC Genome Browser with the release of the draft fox 

genome to facilitate use of the new genome by fox researchers globally who currently rely on the dog 

genome. Second, no pairwise alignment has yet been released for canFam3/felCat5, though they were 

previously available for canFam2/felCat3, so one by-product of the current study was to produce an 

updated tool for the cat and dog genomes. Third, the alignment of the cat and fox chromosomes depicted 

in Figure 12 is, to the author’s knowledge, the first estimated cat-fox syntenic map. Finally, once the red 

fox chromosome assembly has been transformed from a list of syntenic blocks to the corresponding .fasta 

files, versions of these files will be prepared for upload to UCSC Genome Browser as a new track; they 

are anticipated to comprise the second version of the red fox genome following the release of the draft fox 

genome. The chromosomal assembly of the fox genome is anticipated to provide a valuable reference for 

genetic and genomic studies using the red fox as a model. In summary, this study has produced a number 

of tools to facilitate the analysis of vulpine genomics and to integrate the new fox genome with the 

analysis of related species. 
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APPENDIX A 

The 500 largest scaffolds in the fox genome were mapped against the dog genome to determine 

the orthologous region in the dog. Below, each graph represents a scaffold, and each dot represents the 

maximum score obtained for alignment of that scaffold against a particular dog chromosome. 

Chromosomes without ordinal identifiers are indicated as follows: M = CFA 39, X = CFA 40, Y = CFA 

41. Scores of 0 correspond to no mapping between the scaffold and chromosome and were dropped from 

the distribution before z-score analysis (discussed in Chapter II). In Scaffold290, the score distribution 

indicates synteny with a single dog chromosome, whereas Scaffold75 maps to two chromosomes and 

Scaffold93 to three. Though these distributions are not normal, in all cases certain chromosomes map so 

much more significantly to the scaffold that the statistic is still able to differentiate them from the 

background noise. 
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APPENDIX A (cont.) 
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APPENDIX B 

Library-by-library insert size distributions, as generated by Picard. Expected insert sizes can be 

found in Table 2 for comparison. FR libraries are in red, RF libraries are in blue. 
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APPENDIX B (cont.) 

 

 



59 
 

APPENDIX B (cont.) 

 

 



60 
 

APPENDIX B (cont.) 

 

 



61 
 

APPENDIX B (cont.) 
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APPENDIX C 

Z-scores estimated in the analysis from Chapter II by which chimeras were identified. Each 

scaffold was analyzed individually, and the z-score was estimated based on the maximum alignment score 

for each chromosome compared to the maximum alignment score for all other chromosomes. 

Scaffold 
Number 

of SFs 

Dog 

Chromosome 
Z-Score 

1 2 
chr28 3.843059 

chr30 4.866379 

2 1 chr3 6.239366 

3 1 chr4 6.202728 

4 1 chr29 6.299715 

5 1 chr2 6.139409 

6 1 chr20 6.279371 

7 2 
chr33 5.381958 

chr12 3.083004 

8 1 chr12 6.255059 

9 3 

chr18 3.440666 

chr38 3.374353 

chr20 3.810001 

10 1 chr15 6.25924 

11 1 chr10 6.274766 

12 2 
chr32 1.942638 

chr3 5.919194 

13 3 

chr14 5.073155 

chr21 2.404547 

chr5 2.56943 

14 1 chr13 6.28015 

15 1 chr16 6.274541 

16 1 chr36 6.222104 

17 1 chr17 6.237469 

18 2 
chr13 2.713183 

chr11 5.549493 

19 1 chr27 6.235581 

20 1 chr31 6.242674 

21 2 
chrX 1.71426 

chr9 5.953597 

22 2 
chr6 4.669528 

chr8 3.961067 

23 1 chr25 6.222003 

24 1 chr7 6.300224 
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APPENDIX C (cont.) 

25 1 chrX 6.27793 

26 1 chr1 6.239893 

27 1 chr1 6.237079 

28 2 
chr32 4.800156 

chr3 3.882589 

29 2 
chr24 3.464685 

chr30 5.196447 

30 1 chr5 6.242228 

31 1 chr35 6.201027 

32 1 chr9 6.243766 

33 1 chr27 6.278959 

34 1 chr8 6.192043 

35 2 
chr23 4.566402 

chr2 4.159232 

36 1 chr7 6.290854 

37 1 chr11 6.256604 

38 1 chr1 6.237562 

39 1 chr10 6.223381 

40 1 chr37 6.227959 

41 2 
chr24 3.662532 

chr1 5.031662 

42 1 chr37 6.266531 

43 1 chr11 6.269544 

44 2 
chr26 4.274866 

chr12 4.423673 

45 1 chr6 6.320156 

46 1 chr7 6.290728 

47 1 chr13 6.205645 

48 1 chr22 6.229497 

49 1 chr14 6.235257 

50 1 chr18 6.24255 

51 1 chr6 6.291251 

52 1 chr5 6.243653 

53 1 chr5 6.278143 

54 1 chr4 6.212639 

55 1 chr12 6.287769 

56 1 chr7 6.229787 

57 3 

chr18 4.616767 

chr23 3.630935 

chr9 1.723589 
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APPENDIX C (cont.) 

58 1 chr25 6.239471 

59 1 chr23 6.111406 

60 2 
chrX 2.762326 

chr7 5.527326 

61 1 chr18 6.243225 

62 1 chr5 6.170434 

63 1 chr5 6.241687 

64 1 chr34 6.223283 

65 1 chr12 6.236631 

66 1 chr8 6.243436 

67 1 chr34 6.244093 

68 1 chr25 6.21394 

69 1 chr19 6.197273 

70 1 chr15 6.13373 

71 1 chr21 6.244538 

72 1 chr8 6.229415 

73 1 chr4 6.296738 

74 1 chr22 6.242684 

75 2 
chr11 5.411449 

chr30 2.982014 

76 1 chrX 6.252709 

77 1 chr17 6.242795 

78 1 chr9 6.238238 

79 1 chr22 6.241498 

80 1 chr24 6.30313 

81 1 chr1 6.242289 

82 1 chr21 6.168771 

83 1 chr28 6.221597 

84 1 chr14 6.243197 

85 1 chr10 6.237812 

86 1 chr6 6.238301 

87 1 chr5 6.256936 

88 1 chr2 6.242491 

89 1 chr2 6.241015 

90 1 chr14 6.287714 

91 1 chrX 6.242873 

92 1 chr24 6.243827 

93 3 

chr5 2.845548 

chr2 3.915152 

chr8 3.812378 
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APPENDIX C (cont.) 

94 1 chr8 6.236069 

95 1 chr18 6.235492 

96 1 chr15 6.227364 

97 1 chr11 6.20881 

98 1 chr1 6.237815 

99 1 chr32 6.247655 

100 2 
chr36 2.314716 

chr4 5.724101 

101 2 
chr23 4.436519 

chr2 4.28937 

102 1 chr1 6.180256 

103 1 chr19 6.242897 

104 1 chr2 6.242881 

105 1 chr24 6.306676 

106 1 chr26 6.177945 

107 1 chrX 6.225442 

108 1 chr17 6.142627 

109 1 chr24 6.207376 

110 1 chr21 6.284546 

111 1 chrX 6.157319 

112 1 chr11 6.231215 

113 1 chr23 6.233873 

114 1 chr19 6.216196 

115 1 chr32 6.183612 

116 1 chr19 6.229766 

117 1 chr23 6.24369 

118 1 chr16 6.257471 

119 2 
chr26 4.059638 

chr24 4.639109 

120 1 chr1 6.234821 

121 1 chr17 6.17866 

122 1 chr9 6.099407 

123 1 chr23 6.241004 

124 1 chr34 6.203069 

125 1 chr13 6.119622 

126 1 chr15 6.172099 

127 1 chr22 6.220927 

128 1 chr4 6.23891 

129 1 chrX 5.593785 

130 1 chr19 6.199989 
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APPENDIX C (cont.) 

131 1 chr20 6.236613 

132 1 chr4 6.24273 

133 1 chr26 6.19592 

134 1 chr22 6.240746 

135 1 chr10 6.234624 

136 1 chr6 6.269378 

137 1 chr25 6.243159 

138 1 chr32 6.142453 

139 1 chr34 6.244093 

140 1 chr22 6.243971 

141 1 chr19 6.216044 

142 1 chr10 6.316647 

143 1 chrX 6.236773 

144 1 chr16 6.186411 

145 1 chr7 6.242313 

146 1 chr6 6.240564 

147 1 chrX 6.229206 

148 2 
chr15 5.795614 

chr1 2.177689 

149 1 chr21 6.244543 

150 1 chr16 6.212964 

151 1 chr16 6.298772 

152 1 chr36 6.242104 

153 1 chr8 6.180801 

154 1 chr19 6.219847 

155 1 chr23 6.244098 

156 1 chr21 6.244882 

157 1 chr14 6.235029 

158 1 chr1 6.244872 

159 1 chr26 6.217144 

160 1 chr17 6.23514 

161 1 chr8 6.22598 

162 1 chr14 6.233143 

163 1 chr34 6.320269 

164 1 chr20 6.151134 

165 1 chr6 6.243742 

166 1 chr10 6.060747 

167 2 
chr26 2.985925 

chr9 5.406319 

168 1 chr16 6.272617 
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169 1 chr3 6.16463 

170 1 chr7 6.243105 

171 1 chr22 6.241694 

172 1 chrX 6.191241 

173 1 chr8 6.24395 

174 2 
chr35 5.906844 

chr19 1.872934 

175 1 chr26 6.243441 

176 1 chrX 6.221773 

177 1 chr17 6.184109 

178 1 chr8 6.233782 

179 1 chrX 6.187619 

180 1 chr5 6.214943 

181 1 chr17 6.203133 

182 1 chr31 6.223858 

183 1 chr20 6.233249 

184 1 chr15 6.227885 

185 1 chr6 6.234554 

186 1 chr5 6.24386 

187 1 chr32 6.218608 

188 1 chr12 6.240073 

189 1 chrX 6.2386 

190 1 chr17 6.210456 

191 1 chr18 6.235427 

192 1 chr4 6.243597 

193 1 chr1 6.241398 

194 1 chr1 6.239615 

195 2 
chr1 5.082789 

chr10 3.480455 

196 1 chr25 6.237649 

197 1 chr1 6.248001 

198 1 chr16 6.244142 

199 1 chr16 6.242848 

200 1 chrX 6.317362 

201 1 chr6 5.869959 

202 1 chrX 6.202646 

203 1 chr13 6.243548 

204 1 chr13 6.266989 

205 1 chr31 6.244635 

206 1 chr34 6.224341 
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207 1 chr1 6.228254 

208 1 chr23 6.244708 

209 1 chr31 6.232586 

210 1 chr31 6.22802 

211 1 chr19 6.184039 

212 1 chr8 6.163537 

213 1 chr20 6.244684 

214 1 chr14 6.242024 

215 1 chrX 6.224022 

216 1 chr26 6.233104 

217 1 chr13 6.088055 

218 1 chr24 6.232955 

219 1 chr6 6.242611 

220 1 chr38 6.244415 

221 1 chr3 6.232944 

222 1 chr18 6.211941 

223 1 chr31 6.063622 

224 1 chr11 6.213921 

225 1 chrX 6.226083 

226 1 chr5 6.244929 

227 1 chr22 6.218679 

228 1 chr31 6.234257 

229 1 chr35 6.225505 

230 1 chr34 6.306824 

231 1 chr26 6.24447 

232 1 chr6 6.238061 

233 1 chrX 6.228033 

234 1 chr4 6.224015 

235 1 chrX 6.238006 

236 1 chr14 6.241644 

237 1 chrX 6.220201 

238 1 chr9 6.237753 

239 2 
chr35 4.241293 

chr5 4.307898 

240 1 chrX 6.225878 

241 1 chr17 6.203374 

242 1 chr9 6.202422 

243 1 chr22 6.123873 

244 1 chr21 6.287691 

245 1 chr22 6.19457 
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246 1 chr31 6.23652 

247 1 chr22 5.797196 

248 1 chr7 6.241911 

249 1 chr14 6.031946 

250 1 chr18 6.166118 

251 1 chr35 6.244843 

252 1 chr13 6.191658 

253 1 chrX 6.17262 

254 1 chr25 6.217429 

255 2 
chr18 3.963774 

chr27 4.382976 

256 1 chr1 6.225395 

257 1 chr23 6.312672 

258 1 chrX 6.237912 

259 1 chrX 6.233034 

260 1 chr31 6.240255 

261 1 chr9 6.23264 

262 1 chr7 6.244294 

263 1 chr16 6.234706 

264 1 chrX 6.24326 

265 1 chr1 6.234297 

266 1 chrX 6.206468 

267 1 chr21 6.244474 

268 1 chr16 6.231623 

269 1 chr26 6.140089 

270 1 chr1 6.242561 

271 1 chr11 6.239312 

272 1 chr19 6.244237 

273 1 chr14 6.049229 

274 1 chrX 6.038874 

275 1 chr11 6.22138 

276 1 chr16 6.226242 

277 1 chrX 6.196331 

278 1 chr21 6.229978 

279 1 chrX 6.226127 

280 1 chr20 6.244499 

281 1 chr1 6.193964 

282 1 chr35 6.215329 

283 1 chr11 6.178477 

284 1 chr31 6.191415 
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285 1 chr5 6.242307 

286 1 chr36 6.201462 

287 1 chr1 6.243441 

288 1 chr8 6.242306 

289 1 chrX 6.228298 

290 1 chr5 6.236642 

291 1 chrX 6.241496 

292 2 
chrY 5.592 

chr8 1.655975 

293 1 chr14 6.227101 

294 1 chr18 6.230614 

295 1 chr17 6.222931 

296 1 chr11 6.195792 

297 1 chr17 6.202917 

298 1 chr38 6.098711 

299 2 
chr16 1.657821 

chr21 5.970576 

300 1 chr35 5.274263 

301 1 chrX 6.163806 

302 1 chr31 6.112549 

303 1 chr18 6.197971 

304 1 chr11 6.180266 

305 1 chr19 6.241836 

306 1 chrX 6.170733 

307 1 chr11 6.042552 

308 1 chr1 6.218727 

309 1 chr26 5.965679 

310 1 chrY 3.556809 

311 1 chrX 5.960777 

312 1 chrX 6.209778 

313 1 chrX 6.192623 

314 1 chrX 6.157012 

315 1 chr19 5.979252 

316 1 chr5 6.214394 

317 2 
chr16 1.929878 

chr28 2.006761 

318 1 chr16 5.811778 

319 1 chr26 6.244367 

320 1 chrX 6.236596 

321 1 chrX 6.137837 
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322 2 
chr14 2.476812 

chr5 5.653956 

323 1 chr22 6.244111 

324 1 chrX 5.819683 

325 1 chrX 6.175069 

326 2 
chr3 2.616712 

chr10 5.428106 

327 2 
chr3 1.962858 

chr1 1.859552 

328 1 chrX 6.160084 

329 1 chr1 6.240705 

330 1 chr21 6.238274 

331 1 chrX 6.223985 

332 1 chr26 6.243383 

333 1 chrX 6.207551 

334 1 chrX 6.191969 

335 1 chr8 6.209516 

336 4 

chr31 3.017558 

chr32 2.820281 

chr24 1.687448 

chr12 2.790023 

338 1 chrX 6.162449 

339 1 chr4 6.208267 

340 1 chr32 5.659594 

341 1 chrX 6.135633 

342 1 chr13 5.887574 

343 1 chr2 1.717884 

344 1 chr34 6.244668 

345 3 

chr14 2.65753 

chr18 3.236975 

chr2 3.959582 

346 1 chr19 6.204373 

347 1 chrX 6.095731 

348 5 

chr32 1.817767 

chr18 1.96664 

chr22 1.795082 

chr4 1.732697 

chr8 2.82301 

349 1 chr8 6.212203 

350 1 chr2 4.859706 
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351 1 chrX 6.232807 

352 3 

chr13 4.267999 

chr16 2.301837 

chr5 2.094578 

353 1 chr16 6.234014 

354 3 

chr14 3.212599 

chr38 1.944473 

chr9 4.793937 

355 1 chr12 1.755633 

356 1 chr15 6.244696 

357 1 chr17 6.234295 

358 1 chr15 6.242415 

359 1 chr13 6.244345 

360 1 chrY 6.234744 

361 1 chr18 5.849309 

362 1 chr20 6.146074 

363 2 
chr15 2.271105 

chr20 2.563075 

365 2 
chr29 4.747066 

chr10 1.879342 

366 1 chr1 6.146728 

367 1 chrY 6.241795 

368 4 

chr31 3.257417 

chr32 1.995913 

chr6 1.847618 

chr12 2.692295 

369 1 chrX 4.839704 

370 1 chr22 6.222296 

371 1 chr1 6.194118 

372 1 chr13 2.352621 

373 4 

chr13 3.198452 

chr22 1.723698 

chr3 2.103073 

chr9 1.814534 

374 2 
chr31 2.025098 

chr16 2.2745 

375 1 chr5 6.238649 

376 1 chrX 5.760944 

377 1 chr31 6.021246 
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378 6 

chr18 1.879524 

chr26 2.395687 

chr22 1.724551 

chr29 1.922017 

chr4 1.7308 

chr3 1.96576 

379 1 chr31 6.136048 

380 1 chr26 5.864659 

381 1 chrX 6.130121 

382 1 chr8 3.981162 

383 1 chrX 5.535396 

384 4 

chr14 2.230055 

chrY 1.976023 

chr19 1.971091 

chr26 4.257378 

385 1 chr31 4.555447 

386 1 chrX 6.192445 

388 1 chr1 6.199129 

389 5 

chr15 2.171436 

chr16 1.806358 

chr25 1.843611 

chr5 2.16771 

chr1 1.790215 

390 1 chr5 6.236128 

391 2 
chr26 4.308978 

chr11 4.222707 

392 1 chr7 1.891506 

393 1 chr19 6.234125 

394 1 chr19 6.239001 

395 1 chr8 5.936556 

396 1 chr19 6.243982 

397 1 chr7 6.23998 

398 1 chr1 5.613863 

399 3 

chr34 3.005563 

chr16 1.711776 

chr8 1.939332 

400 1 chr16 6.007933 

401 1 chr1 6.181853 

402 1 chr22 6.153821 

403 1 chr13 6.228726 
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404 1 chr32 6.199222 

405 1 chr1 6.195066 

406 1 chr18 6.154244 

407 1 chr8 5.92234 

408 4 

chr28 1.759806 

chr6 2.032779 

chr3 2.290586 

chr1 2.106077 

409 1 chr19 5.352516 

410 1 chr26 6.080336 

411 1 chr17 6.241793 

412 2 
chr25 4.745281 

chr2 3.906641 

413 1 chr16 5.596203 

414 3 

chr19 3.153658 

chr18 3.095834 

chr8 3.368431 

415 1 chr16 5.484782 

416 2 
chr16 5.221452 

chr1 3.241398 

417 1 chr26 6.18485 

418 2 
chr15 1.655477 

chr23 4.790009 

419 2 
chr3 3.787931 

chr10 4.841881 

420 2 
chr19 4.593976 

chr28 3.049925 

421 1 chr19 6.238506 

422 1 chr13 6.230945 

423 3 

chrX 2.607772 

chr11 2.664216 

chr8 2.669861 

424 1 chr14 6.242327 

425 1 chr14 6.228849 

426 2 
chr15 2.289047 

chr19 5.117716 

427 1 chr8 6.227525 

429 1 chrX 6.233725 

430 1 chr8 6.23715 
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431 3 

chr21 2.930981 

chr28 2.39837 

chr11 3.316045 

432 4 

chr35 1.670657 

chr37 2.885846 

chr18 1.796555 

chr3 1.918804 

433 1 chr11 6.24098 

434 1 chr7 6.109032 

435 1 chr1 6.195397 

436 1 chr9 6.097478 

437 1 chr1 6.158699 

438 1 chr16 6.187989 

439 1 chr18 6.121831 

440 1 chr14 6.139723 

441 1 chr19 6.029452 

442 1 chrX 5.940926 

444 1 chrY 6.239254 

445 4 

chr34 2.040331 

chr28 2.040331 

chr3 1.670855 

chr1 1.89993 

446 1 chr26 6.243452 

447 2 
chr22 4.530107 

chr5 4.144082 

448 1 chr22 6.224017 

449 1 chr12 6.23906 

450 1 chr19 6.222835 

451 1 chr31 6.243137 

452 1 chr31 5.903824 

453 6 

chr15 1.852496 

chrX 2.314096 

chr32 2.099032 

chr6 2.109523 

chr1 2.238037 

chr11 1.86561 

454 1 chr22 6.139487 

455 2 
chr25 2.896812 

chr2 5.372216 
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456 2 
chr37 4.153199 

chr3 3.948103 

457 1 chr11 5.623739 

458 2 
chr15 3.864481 

chr17 4.629638 

459 6 

chrX 1.683027 

chr34 1.97687 

chr18 2.523316 

chr21 2.069663 

chr4 1.951095 

chr11 2.098016 

460 1 chr7 6.224008 

461 1 chrX 6.24448 

462 1 chr14 6.160044 

463 1 chr14 1.854912 

464 1 chr9 6.238184 

465 1 chr18 2.556901 

466 1 chr31 6.237649 

467 1 chr2 5.640785 

468 1 chr5 2.104379 

469 1 chr11 1.728143 

470 1 chr26 5.638699 

471 1 chr22 6.240187 

472 1 chr14 6.188812 

473 1 chr15 6.242888 

474 1 chr6 6.236977 

475 2 
chr19 2.603611 

chr22 5.606853 

476 1 chr19 6.216503 

477 1 chr32 6.238165 

478 2 
chr16 4.251126 

chr28 1.891649 

479 1 chr11 6.179559 

480 2 
chr32 4.614874 

chr16 2.173337 

481 2 
chr34 3.912901 

chr16 3.93893 

482 2 
chr25 3.957681 

chr2 4.532137 

483 1 chr34 6.179373 
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484 2 
chr14 5.035841 

chr9 3.548914 

485 1 chr5 6.189977 

486 1 chr13 6.243697 

487 1 chr22 6.145503 

488 1 chr19 6.207895 

489 1 chr17 6.229816 

490 1 chr1 6.201809 

491 1 chr18 5.980626 

492 1 chr19 6.213017 

493 1 chr34 6.244675 

494 1 chr14 6.225417 

495 1 chr16 6.226951 

496 1 chrX 6.135112 

497 6 

chrX 1.881921 

chr18 2.484051 

chr22 2.160646 

chr4 2.067028 

chr3 2.14788 

chr2 1.962773 

498 2 
chr22 2.290112 

chr5 5.728842 

499 2 
chr25 3.846796 

chr2 4.758033 

500 2 
chr34 2.664546 

chr12 5.544293 
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APPENDIX D 

As an example, seven syntenic fragments identified by RACA. This data is taken from RACA’s 

output file “Orthology.Blocks”. For each block, the first line (e.g. “>1”) represents the SF number, and 

the subsequent lines indicate the position of the fragment in each genome. Locations in dog (canFam3) 

and fox (vv2) must be unique and continuous, but more flexibility is permitted for the alignment to cat 

(felCat5). 

>1 
canFam3.chr11:5945-590625 + 
vv2.scaffold304:40686-568218 - 
felCat5.chrA1:89962061-90407488 + 
felCat5.chrA1:99042298-99042300 - 
 
>2 
canFam3.chr11:802529-1605945 + 
vv2.scaffold283:18015-767885 + 
felCat5.chrA1:90467572-91115585 + 
 
>3 
canFam3.chr11:1605945-8923437 + 
vv2.scaffold112:46444-7386489 - 
felCat5.chrA1:91128525-98879548 + 
 
>4 
canFam3.chr11:9055290-9511633 + 
vv2.scaffold224:0-436188 - 
felCat5.chrA1:100068836-100514394 - 
 
>5 
canFam3.chr11:9594529-10212568 + 
vv2.scaffold296:271-637648 - 
felCat5.chrA1:99447990-100041503 - 
 
>6 
canFam3.chr11:10212568-10755694 + 
vv2.scaffold307:3702-546607 + 
felCat5.chrA1:99138499-99447990 - 
felCat5.chrA1:99091502-99137856 + 
felCat5.chrA1:98875896-99091311 - 
 
>7 
canFam3.chr11:11475533-11865091 + 
vv2.scaffold224:372093-795279 - 
felCat5.chrA1:100445107-100849313 - 


