
c• 2015 Jungwook Choi

HIGH PERFORMANCE AND ERROR RESILIENT PROBABILISTIC INFERENCE SYSTEM
FOR MACHINE LEARNING

BY

JUNGWOOK CHOI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Rob A. Rutenbar, Chair
Associate Professor Deming Chen
Professor David A. Forsyth
Professor Naresh R. Shanbhag

ABSTRACT

Many real-world machine learning applications can be considered as inferring the best la-

bel assignment of maximum a posteriori probability (MAP) problems. Since these MAP

problems are NP-hard in general, they are often dealt with using approximate inference

algorithms on Markov random field (MRF) such as belief propagation (BP). However, this

approximate inference is still computationally demanding, and thus custom hardware accel-

erators have been attractive for high performance and energy e�ciency.

There are various custom hardware implementations that employ BP to achieve reason-

able performance for the real-world applications such as stereo matching. Due to lack of

convergence guarantees, however, BP often fails to provide the right answer, thus degrading

performance of the hardware. Therefore, we consider sequential tree-reweighted message

passing (TRW-S), which avoids many of these convergence problems with BP via sequential

execution of its computations but challenges parallel implementation for high throughput.

In this work, therefore, we propose a novel streaming hardware architecture that parallelizes

the sequential computations of TRW-S. Experimental results on stereo matching benchmarks

show promising performance of our hardware implementation compared to the software im-

plementation as well as other BP-based custom hardware or GPU implementations.

From this result, we further demonstrate video-rate speed and high quality stereo matching

using a hybrid CPU+FPGA platform. We propose three frame-level optimization techniques

to fully exploit computational resources of a hybrid CPU+FPGA platform and achieve

significant speed-up. We first propose a message reuse scheme which is guided by simple

scene change detection. This scheme allows a current inference to be made based on a

determination of whether the current result is expected to be similar to the inference result

of the previous frame. We also consider frame level parallelization to process multiple frames

ii

in parallel using multiple FPGAs available in the platform. This parallelized hardware

procedure is further pipelined with data management in CPU to overlap the execution time

of the two and thereby reduce the entire processing time of the stereo video sequence. From

experimental results with the real-world stereo video sequences, we see video-rate speed of

our stereo matching system for QVGA stereo videos.

Next, we consider error resilience of the message passing hardware for energy e�cient

hardware implementation. Modern nanoscale CMOS process technologies su�er in reliability

caused by process, temperature and voltage variations. Conventional approaches to deal with

such unreliability (e.g., design for the worst-case scenario) are complex and ine�cient in

terms of hardware resources and energy consumption. As machine learning applications are

inherently probabilistic and robust to errors, statistical error compensation (SEC) techniques

can play a significant role in achieving robust and energy-e�cient implementation. SEC

embraces the statistical nature of errors and utilizes statistical and probabilistic techniques

to build robust systems. Energy-e�ciency is obtained by trading o� the enhanced robustness

with energy.

In this work, we analyze the error resilience of our message passing inference hardware

subject to the hardware errors (e.g. errors caused by timing violation in circuits) and explore

application of a popular SEC technique, algorithmic noise tolerance (ANT), to this hard-

ware. Analysis and simulations show that the TRW-S message passing hardware is tolerant

to small magnitude arithmetic errors, but large magnitude errors cause significantly inac-

curate inference results which need to be corrected using SEC. Experimental results show

that the proposed ANT-based hardware can tolerate an error rate of 21.3 %, with perfor-

mance degradation of only 3.5 % with an energy savings of 39.7 %, compared to an error-free

hardware.

Lastly, we extend our TRW-S hardware toward a general purpose machine learning frame-

work. We propose advanced streaming architecture with flexible choice of MRF setting to

achieve 10-40x speedup across a variety of computer vision applications. Furthermore, we

provide better theoretical understanding of error resiliency of TRW-S, and of the implication

of ANT for TRW-S, under more general MRF setting, along with strong empirical support.

iii

Acknowledgments

First of all, I would like to thank my advisor, Professor Rob Rutenbar, for his continuous

support and guidance throughout my PhD. He has provided me with invaluable advice, and

I cannot imagine completing this work without his patience and motivation. I would also

like to express my appreciation to the rest of my committee: Professor Naresh Shanbhag,

Professor Deming Chen, and Professor David Forsyth for their insightful comments and

thoughtful help on various issues.

During my PhD, I have been privileged to work with many brilliant people. I sincerely

thank Eric Kim, Ameya Patil and Naresh Shanbhag for the stimulating discussions and

invaluable advice on error resilience study. I am also grateful to Skand Hurkat, Eriko Nurvi-

tadhi, and José Martínez for their tremendous help on implementing advanced probabilistic

inference machines.

My sincere thanks go to my fellow lab mates and colleagues, Glenn Ko, Tianqi Gua,

Abner Guzman-Rivera, Shang-nien Tsai, Minje Kim and Sai Zhang as they always gladly

provide their help and advice on my research. I would also like to thank the people in

KCSA and my beloved friends in South Korea and the U.S. for their friendship. I thank the

administrative sta� in ECE and CS, especially Laurie Fisher, Karen Stahl, Julie Gustafson,

and Erin Henkelman for assisting me many times with the miscellaneous issues.

Finally, I would like to express my sincere gratitude to my family for their consistent

support. I must acknowledge my wife and best friend, Na Young; without her love, en-

couragement, and support, I would not have completed this work. I would also like to

recognize the invaluable contributions of my parents and parents-in-law who have provided

unconditional love and support. Last but not least, my deepest love goes to my little angel

Antonia.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1
1.1 Related Work . 4
1.2 Thesis Contribution . 6
1.3 Dissertation Organization . 7

Chapter 2 Background . 9
2.1 Markov Random Field Inference for Stereo Matching 9
2.2 Statistical Error Compensation . 15
2.3 Hybrid Multicore + FPGA Platform . 17
2.4 Summary . 18

Chapter 3 Hardware Implementation of Sequential Tree-Reweighted Message Passing 20
3.1 Hardware Architecture of MRF Parameter Computation 20
3.2 Design Issues in Hardware Implementation of TRW-S 23
3.3 Hardware Architecture of TRW-S . 25
3.4 Experimental Results . 28
3.5 Summary . 32

Chapter 4 Frame-Level Optimizations for High Speed Stereo Matching 33
4.1 Message Reuse based on Scene Change Detection 33
4.2 Frame-Level Parallelization . 36
4.3 Function-Level Pipelining . 37
4.4 Experimental Results . 40
4.5 Summary . 47

Chapter 5 Error Resilient MRF Message Passing Architecture for Stereo Matching . 48
5.1 Error Analysis of TRW-S . 48
5.2 Simulation Methodology and System Evaluation Setup 53
5.3 Results . 55
5.4 Summary . 58

v

Chapter 6 Toward a General Purpose Probabilistic Inference System 59
6.1 High Performance TRW-S Accelerator for Computer Vision 59
6.2 Error Resilient TRW-S for Computer Vision via ANT 76
6.3 Summary . 83

Chapter 7 Conclusion . 87

References . 89

vi

List of Tables

1.1 Taxonomy of probabilistic inference platforms. 6

3.1 List of stereo matching sub-functions. 20
3.2 Device utilization summary. 28
3.3 Execution cycle and time of streaming TRW-S for stereo matching. 29
3.4 Execution time (in ms) of stereo matching functions. 30
3.5 Comparison of speed between GPU implementations [1, 2, 3] and stream-

ing TRW-S for Tsukuba task. 31

4.1 Analysis of total execution time (in second) for Flower video stereo match-
ing (276 frames). 43

4.2 Impact of message reuse on energy minimization performance and execu-
tion time (in second). Flower video stereo matching task (360x262x276
frames) is used for example. 44

5.1 disparity map and BPR comparison for error-free, conventional and ANT
at various V

dd

. 57
5.2 Estimated compensation overhead and power consumption of ANT ob-

tained via synthesis in a commercial 45 nm CMOS process. 58

6.1 MRF parameter configurations for target computer vision applications 60
6.2 Relative resource overhead of memory interface for di�erent parallel factors. 65
6.3 Summary for FPGA utilization and specification of PE. 72
6.4 Comparison between execution time (in second) of 1 iteration of TRWS

SW, STRM-TRWS and STRM-TRWS-CV for various computer vision tasks. 73
6.5 Performance evaluation of streaming TRW-S hardwares within the taxon-

omy of probabilistic inference platforms. 75
6.6 Performance evaluation of streaming TRW-S hardwares with other non-BP

stereo matching implementations. *MDE/s is calculated for one iteration
of TRW-S inference in order to compensate the fact that the other methods
(e.g., SGM, DP and ADSW) perform one-time search for each pixel. 77

vii

List of Figures

1.1 Simulation results of voltage overscaling (VOS) for a 4-tap correlation filter
(a sensor) at 50 MHz in a 45 nm CMOS process [4]. 3

2.1 Representation of a posterior in a pairwise 4-connected (grid) MRF. 11
2.2 Comparison of energy minimization performance between BP and TRW-S

for Tsukuba stereo matching benchmark [5]. 14
2.3 Statistical error compensation: (a) general form, (b) algorithmic noise

tolerance, and (c) error distributions. 16
2.4 Overall architecture of Convey HC-1 [6]. 18

3.1 (a) Overall architecture of matching cost computation unit (MCC) and
gradient cue computation unit (GCC). (b) Example of image data. Nodes
(circles with numbers) inside the red dotted line and blue dotted line are
used as input for MCC and GCC, respectively. (c) Detailed architecture
of MCC. 21

3.2 Detailed architecture of GCC. 22
3.3 Energy minimization results of TRW-S for di�erent fractional bits. 24
3.4 Diagonal ordering for parallelization of TRW-S. 24
3.5 Streaming TRW-S hardware architecture: (a) overall architecture, (b)

reparameterize unit, (c) message update unit. 26
3.6 Comparison of disparity maps. 30

4.1 Impact of message reuse in energy minimization performance and his-
togram based scene change detection. (Flower video stereo matching task
([5]) is used for example.) . 34

4.2 Pipelining of stereo matching functions. 38
4.3 Video stereo matching task (Flower, [7]) and disparity map results. (Lighter

grey means closer to camera.) . 41
4.4 Possible reduction versus actual reduction in overall execution time due to

function-level pipelining. 41
4.5 Per-frame execution time of CPU and FPGA functions. 42
4.6 Video stereo matching with scene change detection (SCD) based message reuse. 45

5.1 E�ect of AS error on updated message when (a) �H > 0, and (b) �H < 0. . 51

viii

5.2 Verification of error analysis: (a) e�ect of error on message updated via
a box plot of e

AS

vs. ẽ
AS

, and (b) e�ect of error on energy minimization
performance of message passing via a plot of minimum energy (after 10
iterations) vs. e

max

. 52
5.3 Energy minimization performance against various precision in computa-

tion of STRM-TRWS. 53
5.4 TRWS-HW simulation: (a) methodology, and (b) error statistics for AS

at V
dd

= 0.78 V. 54
5.5 Simulation results: (a) performance of ANT with injection of uniform

errors with di�erent magnitude using M[20, 0, 0] and E[4, 12, 4], and (b)
error injection rate vs. energy minimization for di�erent ANT estimators
with M[8, 8, 4]. 56

6.1 Overall architecture of block-parallel memory interface. 62
6.2 Example of processing 3x3 MRF using two PEs. (a) Node and edge data

for a 3x3 MRF mapped to two sets of streams for nodes ({0,2,4,6,8},
{1,3,5,7}), horizontal edges ({0,2,4},{1,3,5}), and vertical edges ({0,2,4},{1,3,5})
are loaded to the corresponding Read bu�ers. (b) The loaded streams are
used by two PEs to compute messages for each node. The diagram shows
indices of nodes that go in and out of each PE. Assume that Read bu�ers
are preloaded. (c) Processing nodes using two PEs with three cycles of
unexpected delay in Read bu�er of PE0 at cycle 5. 66

6.3 (a) Illustration of Jump Flooding algorithm. (b) Comparison of minimum
energy for an image denoising task (House): Full search vs. Jump Flooding. 68

6.4 Streaming architecture for Jump Flooding-based message computation
(JF-UNIT). (a) Message passing unit as a PE. (b) An example for op-
eration of Jump Flooding. Solid and dashed arrows represent labels cho-
sen and not chosen at each level, respectively. (c) Architecture for Jump
Flooding-based message update. 71

6.5 Comparison of inference quality between TRWS-SW and STRM-TRWS-
CV for various computer vision tasks. 73

6.6 Impact of error injection on inference quality for di�erent coupling strengths. 82
6.7 (a) Inference quality vs. error injection for di�erent coupling strength

and ANT, (b) Inference quality vs. coupling strength for di�erent error
magnitude and ANT. 84

6.8 Tsukuba: (a) Inference quality vs. error injection for di�erent coupling
strength and ANT, (b) Inference quality vs. coupling strength for di�erent
error magnitude and ANT. 85

6.9 Venus: (a) Inference quality vs. error injection for di�erent coupling
strength and ANT, (b) Inference quality vs. coupling strength for dif-
ferent error magnitude and ANT. 85

6.10 Teddy: (a) Inference quality vs. error injection for di�erent coupling
strength and ANT, (b) Inference quality vs. coupling strength for dif-
ferent error magnitude and ANT. 86

ix

6.11 Comparison of bad pixel ratio (BPR) for stereo matching of Teddy task
using TRW-S with di�erent ⁄s. 86

x

Chapter 1

Introduction

We are living in the “Big Data” era where “enormous amounts of heterogeneous, semistruc-

tured and unstructured data are continually generated at unprecedented scale” [8]. To

analyze and extract information from the data at scale, many tools from machine learning

have been successfully employed. In particular, probabilistic graphical models (PGMs) are

“an elegant framework which combines uncertainty (probabilities) and logical structure (in-

dependence constraints) to compactly represent complex, real-world phenomena” [9], and

probabilistic inference is a way to derive useful insights from the PGM. Thanks to their

flexibility and representation power, PGMs have been widely used in machine learning to

model a large variety of real-world applications. We are especially interested in undirected

graphical models called Markov random fields (MRFs) for modeling maximum a posteriori

(MAP) problems, which include stereo matching and image denoising in computer vision,

medical image segmentation in bio-engineering, and sound source separation in machine lis-

tening [10, 11, 12]. In these applications, probabilistic inference seeks the most probable

label assignment which describes a set of related, random observations. Thus, probabilistic

inference is practically attractive as one unified framework for machine learning, since one

good implementation can be used for a variety of machine learning applications.

The main focus of this work is to build a probabilistic inference system that can be used

as a unified framework for solving MAP problems in machine learning. To this end, custom

hardware acceleration is promising for two reasons. First, custom hardware acceleration

achieves both high performance and energy e�ciency. For example, application specific

integrated circuits (ASICs) are 500x more energy e�cient than CPU implementation for

video decoding [13], and field programmable gate array (FPGA) acceleration minimizes

latency and maximizes energy e�ciency for intelligent personal assistant applications [14].

1

In our case, the MAP problems are mapped to MRFs and solved using MRF inference

algorithms. Since finding the exact solution for this MRF inference is known to be NP-

hard [15], we exploit message passing based approximate inference methods such as belief

propagation (BP) [16] and sequential tree-reweighted message passing (TRW-S) [17]. But

such approximate inference algorithms are still computationally demanding in general, which

is one significant motivation for custom hardware implementation.

Next, we note that custom hardware acceleration can e�ectively address the reliability is-

sue caused by nanometer imperfections. In the deep sub-nanometer regime, circuits become

increasingly vulnerable to supply noise, leakage, and interconnect noise. As an example, it

is known that variation of threshold voltage of the metal–oxide–semiconductor field-e�ect

transistor (MOSFET) fabrication is increasing as the feature size shrinks down [18]. Emerg-

ing devices are no better, as a line of research shows that the carbon nanotube field-e�ect

transistors (CNFETs) su�er huge variation in I-V curves [19]. These statistical variations

in devices pose huge challenges in hardware implementation, since the overhead of worst

case design has become prohibitively expensive [20]. However, we can employ statistical

error compensation (SEC) in our custom hardware design to enable nominal design with

minimal performance degradation and resource overhead, since SEC analyzes errors caused

by statistical variation of the circuit and uses the analysis for e�ective error detection and

compensation [21].

Furthermore, energy savings can be achieved by carefully trading the enhanced robustness

for energy. Figure 1.1 shows HSPICE simulation results of a 4-tap filter in 45 nm CMOS

subject to voltage overscaling (VOS) [4]. If the errors are fully compensated for without

additional overhead, energy reduction up to 9◊ can be achieved over a system operating at

the point of first failure (PoFF). As we show throughout this dissertation, SEC techniques

provide the much needed low overhead error compensation.In this work, therefore, we first

propose a new hardware architecture for a parallel implementation of TRW-S on an FPGA

platform. We discuss issues in hardware implementation of TRW-S, which includes the afore-

mentioned sequential manner of computation as well as floating to fixed point conversion.

Then, we propose a pipelined hardware architecture in which the order of computation is

devised to execute computation in parallel while preserving the original convergence prop-

2

0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

En
er

gy
 (p

J)

0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Vdd(V)

p eenergy

9X

pe

PoFF

This work

Past work

2170X

Voltage overscaling (VOS)

Figure 1.1: Simulation results of voltage overscaling (VOS) for a 4-tap correlation filter (a
sensor) at 50 MHz in a 45 nm CMOS process [4].

erty of TRW-S. The proposed hardware architecture exploits a novel FIFO based streaming

memory interface to manage streaming data input and output, and the computation inside is

fully pipelined to parallelize data processing (i.e., message passing) over the multiple pipeline

stages.

We take stereo matching as a showcase for performance of our hardware. Stereo matching

extracts depth information from a stereoscopic image pair with di�erent viewpoints. This

fundamental problem has been studied for many years in computer vision and appears in a

wide variety of applications with challenges for accuracy and speed. For example, desire for

accurate video-rate stereo matching comes from applications as diverse as gesture recognition

[22] and automotive navigation [23], since both depend for their quality of service on accuracy

and speed of the stereo matching. We first show that our TRW-S based MRF inference

hardware achieves significant speed-up over a conventional software implementation and

outperforms BP based custom hardware or GPU implementations in terms of both quality

of inference and speed.

Second, we further improve speed-up of our TRW-S based stereo matching hardware to

demonstrate video-rate stereo matching using a hybrid CPU+FPGA platform. The goal is

3

to achieve high frame rate for the stereo video sequence while maintaining the accuracy of

TRW-S. We propose several frame-level optimization techniques that fully utilize capability

of our hybrid CPU+FPGA platform; the techniques are to properly reuse results from

the previous frame and overlap CPU and FPGA execution times for processing multiple

frames in parallel. From experimental results on a famous stereo matching benchmark suite

as well as real-world stereo video samples, we demonstrate that our TRW-S based MRF

inference system is able to satisfy the demanding requirement of high-quality video-rate

stereo matching for real-world applications.

Third, we study the performance of the TRW-S architecture when subject to nanometer

imperfections. We first analyze the error propagation characteristics of a message passing

algorithm. Then, we explore the impact of error resiliency techniques when applied to MRF

inference applications. We utilize our TRW-S based stereo matching hardware architecture

as a test case, and explore its error resilience as well as the impact of a popular SEC tech-

nique, algorithmic noise tolerance (ANT) for error resilient and energy e�cient probabilistic

inference.

Last, we extend our TRW-S hardware toward a general purpose machine learning frame-

work. To support a wider variety of computer vision applications beyond stereo matching,

we propose an advanced streaming architecture with flexible choice of MRF setting. We

perform a thorough evaluation of the performance of our hardware in order to demonstrate

its superiority to our prior implementation. Furthermore, we provide better theoretical un-

derstanding of error resiliency of TRW-S, and of the implication of ANT for TRW-S, under

more general MRF setting, along with strong empirical support.

1.1 Related Work

1.1.1 Taxonomy of probabilistic inference platforms

There have been numerous implementations of probabilistic inference using various types

of platforms. Table 1.1 categorizes previous work into these types. General purpose CPUs

are the most common option for implementation of probabilistic inference because of flexi-

4

ble software (SW) implementation. However, such flexibility incurs significant overhead in

computation, leading to ine�ciency in energy usage. Thus, the general purpose CPUs are

often used for evaluating various probabilistic inference algorithms [10, 24] or realizing a

large scale application using datacenter level computing power [25].

On the other hand, there have been application specific implementations for probabilistic

inference algorithms. In this case, the implementation often exploits application-specific

characteristics to optimize speed or energy e�ciency of computation. In the case of stereo

matching, researchers have simplified message computation and customized scheduling of

the message passing to reduce memory access and achieve high throughput. [1, 2, 3] and

[26] utilized graphic processing unit (GPU) and FPGA for parallel implementation of BP

and TRW, respectively. Also, [27, 28, 1] designed ASICs for high throughput and energy

e�cient implementations of BP. These BP and TRW based inference hardwares achieved high

throughput in message computation thanks to their parallel processing elements. However,

they su�er inferior convergence speed compared to TRW-S implementation, resulting in

slower performance in practice. Also, aggressive customization of message computation in

these implementations has restricted their application to stereo matching.

To achieve better usability, speed and energy e�ciency, researchers have proposed config-

urable hardwares that are implemented in FPGA. [29] demonstrated remarkable performance

on probabilistic inference with directed acyclic graphs (DAGs). Also, [30] proposed Gaus-

sian BP based MRF inference hardware for signal processing application. These configurable

platforms allow flexible setup for various problems, but do not cover MAP problems which

are not well mapped to both DAGs and Gaussian BP. GraphGen in [31] and GP5 in [32]

reported wide coverage for MAP problems, but their performance is not optimal.

In this work, we propose a custom hardware strategy that can achieve the best performance

out of available hardware resources (FPGA slices and memory bandwidth) for wide range

of computer vision applications.

5

Table 1.1: Taxonomy of probabilistic inference platforms.

Application Specific HWs:
Stereo Matching Configurable Hardwares General Purpose

CPUs

FPGA [26]
GPU [1, 2, 3]

ASIC [27, 28, 1]

Bayesian computing machine [29]
Factor graph processor [30]

GP5 [32]
GraphGen [31]

Middlebury API [10]
OpenGM [24]
GraphLab [25]

1.1.2 Error resiliency of probabilistic inference

Previously, SEC was studied for signal processing, such as PN code acquisition filter [4]

and Viterbi decoders[33]. Previous work [34] proposed to apply algorithmic noise tolerance

(ANT), which is a popular technique of SEC, to low density parity check (LDPC) decoder

with BP as a core inference for error resiliency and energy e�ciency. In this work, we extend

the results of [34] to a more general MRF message passing inference, with a more complex

graph and a larger hypothesis space in order to cover a wide range of machine learning

applications.

1.2 Thesis Contribution

The list of our core contributions is as follows:

1. Our TRW-S based MRF inference hardware is 34.5~49 times faster than a standard

SW implementation. It also outperforms other BP based ASIC/GPU implementations

in terms of quality of result and speed.

2. Our TRW-S based MRF inference system implemented on a Convey HC-1[6] performs

stereo matching of a QVGA-size mixed-scene 168-frame video stereo sequence in 7.34

seconds, or equivalently, with a frame rate of 22.9 frame per second.

3. SEC has been applied to our TRW-S stereo matching hardware architecture. Analysis

and simulations show that for a 20-bit architecture, small errors (e Æ 1024) are toler-

able, while large errors (e Ø 4096) degrade the performance significantly. By applying

ANT, experimental results show that the proposed ANT based hardware can tolerate

6

an error rate of 21.3 %, with performance degradation of only 3.5 % compared to an

error-free full precision hardware with an energy savings of 39.7 %.

4. We exploit MRF inference as a general framework for machine learning to extend our

scope to variety of computer vision problems. To this end, we propose a novel hardware

architecture that can support various MRF configurations for solving computer vision

problems, which achieves 10 ≠ 40◊ speedup over a conventional SW implementation

for stereo matching, image denoising, and object segmentation benchmarks ([10, 24])

without sacrifice in inference quality. Also, we extend our understanding of error

resiliency of TRW-S message passing and the impact of ANT under more general MRF

settings, providing asymptotic bounds on error propagation and analyzing implication

of ANT for the error resiliency.

1.3 Dissertation Organization

This dissertation is organized as follows:

• Chapter 1 has introduced promises and challenges of MRF based inference for ma-

chine learning problems and motivation to build a custom hardware accelerator for

them, as the stereo matching problem for a test application.

• Chapter 2 reviews how stereo matching is formulated in an MRF framework and

solved by message passing based inference algorithms, and highlights inference advan-

tages of TRW-S over BP.

• Chapter 3 discusses issues of hardware implementation of TRW-S and proposes an

e�cient hardware architecture.

• Chapter 4 o�ers frame-level optimization techniques considering both the inference

algorithm and the implementation platform to further improve performance of the

TRW-S hardware for our hybrid CPU+FPGA platform.

7

• Chapter 5 applies SEC to the TRW-S hardware to enhance error robustness and save

power consumption.

• Chapter 6 extends our TRW-S hardware to more general purpose computing for

machine learning applications. Furthermore, theoretical analysis on the error resiliency

of message passing inference for a more general MRF inference setting is provided.

• Chapter 7 provides brief conclusions.

8

Chapter 2

Background

In this chapter, we introduce fundamental concepts of MRF inference and SEC. We first

explain how a stereo matching problem can be reformulated as an MRF energy minimization

and solved by MRF inference. To this end, we discuss construction of MRFs as well as

motivation of using TRW-S over BP for MRF inference. Next, we discuss SEC and one

of its important variants called algorithmic noise tolerance (ANT). We also introduce our

target platform, the Convey HC-1 hybrid-core computing device.

2.1 Markov Random Field Inference for Stereo Matching

2.1.1 MRF formulation of stereo matching problem

The goal of stereo matching is to find matching pixels from a pair of stereo images and

statistically infer depth based on their pixel-wise horizontal displacement, which is inversely

proportional to depth. Thus, stereo matching can naturally be formulated as a maximum

a posteriori (MAP) discrete-label inference problem [35], where we seek the most proba-

ble displacement (i.e., a set of disparity labels), x = {x
s

, s œ V}, given stereo images as

observation, y, written as:

arg max
x

P (x|y) = arg max
x

P (y|x)P (x). (2.1)

x
s

is a label in a discrete domain ‰ associated with pixel s in the reference image, and V

corresponds to all the pixels. P (x|y) is called the posterior, and it is rephrased as a product

of the likelihood, P (y|x), and the prior, P (x), using Bayes rule.

Of great practical interest are the cases wherein P (y|x) and P (x) can be defined by a

9

product of small functions. In particular, if the likelihood is determined by a pixel-wise

relationship between the label and the observation, and the prior by a pairwise relationship

between labels of two adjacent pixels, then we can formulate them as a product of factors:

P (y|x)P (x) _
Ÿ

sœV
„

s

(x
s

, y
s

)
Ÿ

(s,t)œE
„

st

(x
s

, x
t

) (2.2)

_ exp

Q

a≠
Q

a
ÿ

sœV
◊

s

(x
s

, y
s

) +
ÿ

(s,t)œE
◊

st

(x
s

, x
t

)
R

b

R

b , (2.3)

where factors „
s

and „
st

represent the likelihood of node s and the prior of edge (s, t),

respectively. These factors are defined in an MRF, which is an undirected graph, G = (V , E),

with a set of nodes (i.e., all the pixels), V , and a set of edges, E , corresponding to the random

variables and the statistical relationship between nodes, respectively. Fig. 2.1 shows an

example of representing a posterior in a pairwise 4-connected (grid) MRF. Note that the

factors are represented in the log space as ◊ = {◊
s

, ◊
st

} in (2.3) to replace the product with

summation for less expensive arithmetic. We call E(x) = q
sœV ◊

s

(x
s

) + q
(s,t)œE ◊

st

(x
s

, x
t

)

the energy function over x defined on an MRF with parameters ◊. Then the original MAP

problem is formulated as an energy minimization problem on the MRF as follows:

arg min
x

E(x) = arg min
x

Y
]

[
ÿ

sœV
◊

s

(x
s

) +
ÿ

(s,t)œE
◊

st

(x
s

, x
t

)
Z
^

\ , (2.4)

where ◊
s

(x
s

) and ◊
st

(x
s

, x
t

) are parameters which penalize certain choices of labels x, and

are called the data cost and the smoothness cost, respectively. The goal of (2.4) is to find

the set of labels x that minimizes the overall summation over ◊
s

(x
s

) and ◊
st

(x
s

, x
t

) terms

(i.e., energy) among all possible per-pixel label choices.

2.1.2 MRF parameter computation

As prologue to MRF inference, we must first compute the MRF parameters (i.e., data

cost and smoothness cost) defined in (2.4). For stereo matching, the data cost models

10

x3 x1 x2

x5

x4

y1

θ12θ31

θ1

θ51

θ14

y3

θ3

y2

θ2

Figure 2.1: Representation of a posterior in a pairwise 4-connected (grid) MRF.

the (dis)similarity of color between a pixel in one image and each of several horizontally

displaced pixels in the other image. The disparity information we seek (called a disparity

map) is recovered from this horizontal separation (i.e., where a left-image pixel is to be

found in the right image). We employ the sampling insensitive matching model of [36] for

the data cost. When comparing dissimilarity of one pixel s in the left image I
L

and a pixel

sÕ = (s ≠ x
s

) displaced by distance x
s

in the right image I
R

, we first compute interpolated

pixel intensity values for neighboring pixels as follows:

I≠
L

(s) = 1
2 (I

L

(s), I
L

(s ≠ 1)) , (2.5)

I+

L

(s) = 1
2 (I

L

(s), I
L

(s + 1)) , (2.6)

I≠
R

(sÕ) = 1
2 (I

R

(sÕ), I
R

(sÕ ≠ 1)) , (2.7)

I≠
L

(sÕ) = 1
2 (I

L

(sÕ), I
L

(sÕ ≠ 1)) . (2.8)

These interpolated intensity values are used to compute the intensity di�erence of two pixels

s and sÕ as follows:

di
L

(s, sÕ) = max
Ó
0, I

L

(s) ≠ Imax

R

(sÕ), Imin

R

(sÕ) ≠ I
L

(s)
Ô

, (2.9)

di
R

(s, sÕ) = max
Ó
0, I

R

(sÕ) ≠ Imax

L

(s), Imin

L

(s) ≠ I
R

(sÕ)
Ô

, (2.10)

11

where Imin and Imax are min {I≠, I+, I} and max {I≠, I+, I}, respectively. Then, the dis-

similarity vector for the node s (which contains one element for each possible disparity label)

is computed as (k=1 or 2):

◊
s

(x
s

) = min
Ó
di

L

(s, s ≠ x
s

)k, di
R

(s, s ≠ x
s

)k

Ô
. (2.11)

Note that ◊
s

(x
s

) is a vector of costs measured from pixel s in the left image to the horizontally

displaced pixel sÕ = s ≠ x
s

in the right image. It is shown in [37] that this matching cost is

well suited to MRF inference since it corrects blurring e�ects.

The smoothness cost models the fact that neighbor pixels are more likely to have the same

(or similar) depth, because most pixels are not on the boundary in the disparity map. We

use truncated smoothness functions with image boundary information considered as follows:

◊
st

(x
s

, x
t

) = w
st

· min
Ó
|x

s

≠ x
t

|k , V
max

Ô
, (2.12)

where k is 1 or 2, V
max

is the maximum smoothness cost, and w
st

is a per-edge weight

for gradient cue based boundary information. The smoothness cost is limited by V
max

in

order to allow disagreement in labels between two nodes across the object boundary in the

image. The per-edge weight has a value of 1 only for the case where the gradient of image

intensity is larger than a threshold, which implies the existence of the boundaries. Note that

w
st

exists for every edge. Thus there are weights in four directions from one node. It is

shown in [35] that considering lower-level visual cues such as object boundary information

in the smoothness cost improves stereo matching. Thus, we use truncated functions with

the gradient cues as our smoothness cost.

2.1.3 MRF inference methods: BP vs. TRW-S

Belief propagation (BP) is one of the most popular algorithms to solve MRF energy mini-

mization problems. In BP, a node propagates its belief of which label is the most probable to

its neighbors by passing messages. Thus, a message is a vector of size |x
s

|, where each value

corresponds to the probability of a label being chosen. (Note that in energy minimization

12

formulation, we take ≠log to represent this vector as the “cost,” as described in (2.3). To

infer the best label assignment, BP repeats messages passing along the edges of an MRF

until the messages converge to a fixed point. (It is called “one iteration” when message

passing covers the entire graph.) One can apply the message passing in any preferred order

(e.g. all messages at the same time), and thus computation of BP can be well parallelized.

In case of a tree-structured MRF graph, BP is guaranteed to find the global optimal

solution [38]. In case of a loopy graph, however, BP is often trapped in a local optimum due

to double counting, a situation in which the belief of a node is propagated along a loop and

passed back to itself, over-emphasizing its own belief [38]. In practice, BP often su�ers from

this e�ect of double counting, and thus the messages may oscillate or converge to obtain a

final energy value much higher than the global minimum.

On the other hand, sequential tree-reweighed message passing (TRW-S) is designed to

avoid double counting. In TRW-S, the original loopy graph is decomposed into a set of trees

that cover the graph, and message passing is now based on these trees in order to reduce

the e�ect of double counting, and there is some new tree-to-tree communication of evolving

results. This tree decomposition leads to the lower bound of the energy minimization problem

(2.4) as follows [17]:

min
x

E(x : ◊) Ø
ÿ

T

Ê
T

min
x

E(x
T

: ◊
T

), (2.13)

where ◊
T

is a set of parameters defined on a tree T , and Ê
T

is a distribution on trees

satisfying ◊ = q
T

Ê
T

· ◊
T

. The lower bound (RHS of (2.13)) consists of energy minimization

problems over the decomposed trees min
x

T

E(Ê
T

: ◊
T

), which BP can find the optimal label

assignment for each tree without double counting. If the best label assignments for the trees

agree on all the nodes, the equality is satisfied in (2.13), and the corresponding assignment is

the optimal solution of the original energy minimization problem. Furthermore, if message

passing is performed sequentially, the lower bound in (2.13) is guaranteed not to decrease

[17]. In other words, by passing messages sequentially, we can restrain the energy value from

oscillating. In practice, therefore, TRW-S often finds lower minimum energy than BP [10].

As an example, Fig. 2.2 shows comparison of energy minimization performance between BP

13

2000000#

3000000#

4000000#

5000000#

6000000#

7000000#

8000000#

9000000#

10000000#

11000000#

0# 20# 40# 60# 80#

En
er
gy
'

Number'of'itera1ons'

TRW/S# BP/M# Lower#bound#

Figure 2.2: Comparison of energy minimization performance between BP and TRW-S for
Tsukuba stereo matching benchmark [5].

and TRW-S for the Tsukuba stereo matching benchmark [5]. TRW-S obtains lower minimum

energy than BP. The minimum energy of TRW-S is close to the lower bound, implying that

this inference result is almost the global optimum.

To exploit this favorable convergence property, we use TRW-S for our inference algorithm.

The two-step message passing rule for a pairwise grid MRF can be written as follows:

◊̄
p

(x
p

) = ◊
p

(x
p

) +
ÿ

sœNb(p)

M
sp

(x
p

), (2.14)

M
pq

(x
q

) = min
x

p

;1
2◊

p

(x
p

) ≠ M
qp

(x
p

) + ◊
pq

(x
p,

x
q

)
<

, (2.15)

where ◊̄
p

(x
p

) and M
pq

(x
q

) are the reparameterize step and the message update step, respec-

tively. A ratio of 1/2 is multiplied to the reparameterization ◊̄
p

(x
p

) to compensate double

counting of nodes in the row-column decomposed graph, where a row and a column trees

duplicate each node. The convergence property of TRW-S is guaranteed by executing (2.14)

14

and (2.15) for all the nodes sequentially, but this sequential nature of computation obstructs

parallelization of the algorithm.

2.2 Statistical Error Compensation

Statistical error compensation (SEC) techniques, such as algorithmic noise tolerance (ANT)

[39], employ statistical estimation and detection techniques to compensate for errors ap-

proximately. Thus, they are best suited for applications where the performance metrics

themselves are statistical. When SEC techniques are applied to these applications, signifi-

cant power savings, e.g., up to 67% for an FIR filter [39], and robustness enhancement can

be achieved, compared to logic/architectural level techniques such as Razor.

A high level depiction of SEC is given in Fig. 2.3(a). SEC utilizes the statistics of errors to

perform detection and estimation to compensate for errors. It also incorporates system level

statistical metrics, such as signal-to-noise ratio (SNR), or bit error rate (BER). SEC operates

on multiple observations, where each observation is generated by erroneous hardware, an

error free estimator, or an erroneous estimator. Each observation y
i

is a corrupted version

of the correct output y
o

, i.e., y
i

= y
o

+ ÷
i

+ e
i

, where ÷
i

denotes hardware errors and e
i

denotes estimation errors. Based on these observations, detection and estimation techniques

are employed in conjunction with the statistical information of ÷
i

and e
i

to obtain the output

most likely to be correct. Errors that have a large e�ect on the system level performance are

detected and compensated, while errors with minimal e�ect on performance are considered

benign and permitted.

2.2.1 Algorithmic noise tolerance

Statistical error compensation (SEC) in the form of algorithmic noise-tolerance (ANT) [39,

33] in Fig. 2.3(b) incorporates a main block and an estimator . The main block, unlike the

estimator, is permitted to make hardware/timing errors. The estimator is a low-complexity

block (typically 5%-to-20% of the main block complexity) generating a statistical estimate

15

C ŷx Estimator/
Detector

1y
2y
Ny

observations corrected
output

, (,)PH K H K

(a)

M

M-est

x

K� oa yy

eyy oe �

hardware errors

ŷ

estimation errors

| |> T
-

error-free
actual

W

(b) (c)

Figure 2.3: Statistical error compensation: (a) general form, (b) algorithmic noise
tolerance, and (c) error distributions.

of the correct main block output, i.e.,

y
a

= y
o

+ ÷ (2.16)

y
e

= y
o

+ e, (2.17)

where y
a

is the actual main block output, y
o

is the error-free main block output, ÷ is the

hardware error, y
e

is the estimator output, and e is the estimation error. Note that the

estimator exhibits estimation error e because it is simpler than the main block. ANT exploits

the di�erence in the statistics of ÷ and e (see Fig. 2.3(c)). To enhance robustness, it is

necessary that when ÷ ”= 0, ÷ be large compared to e. In addition, the probability of the

event ÷ ”= 0 must be small. The final/corrected output of an ANT system ŷ is obtained via

16

the following decision rule:

ŷ =

Y
__]

__[

y
a

, if |y
a

≠ y
e

| < ·

y
e

, otherwise,
(2.18)

where · is an application-dependent parameter chosen to maximize the performance of ANT.

Under the conditions outlined above, it is possible to show that

SNR
uc

π SNR
e

π SNR
ANT

¥ SNR
o

, (2.19)

where SNR
uc

, SNR
e

, SNR
ANT

and SNR
o

are the signal-to-noise ratios of the uncorrected

main block (÷ dominates), the estimator (e dominates), the ANT system, and the error-free

main block (ideal), respectively. Thus, ANT detects and corrects errors approximately, but

does so in a manner that satisfies an application-level performance specification (SNR). Sev-

eral low-overhead estimation techniques have been proposed by exploiting data correlation,

system architecture, and statistical signal processing [21].

Conventional fault-tolerant techniques focus on providing complete correctness while in

operation. However, communication-inspired algorithmic noise-tolerance (ANT) techniques

[20] utilize the fact that some applications are tolerant to small errors and show significant

improvement in robustness while providing energy e�ciency. This is done not by concen-

trating on error-free output, but rather by trying to meet the signal-to-noise ratio (SNR) or

bit error-rate (BER) specification of the application. The communication-inspired approach

treats nanometer circuit fabrics as a noisy channel, and faults and errors resulting from this

channel are addressed through statistical signal processing techniques that were primarily

used in communication systems for several decades.

2.3 Hybrid Multicore + FPGA Platform

Our implementation targets a Convey HC-1 hybrid-core computing system containing an

Intel Xeon dual core processor and four Xilinx Virtex-5 (LX330) FPGAs [6]. Fig. 2.4 shows

the overall architecture of Convey HC-1. The FPGA fabric consists of three major parts:

17

Host
Processor

(Intel Xeon)
AEH AE0 AE1 AE2 AE3

mc
0

mc
1

mc
2

mc
3

mc
4

mc
5

mc
6

mc
7

AEs

MCs

Figure 2.4: Overall architecture of Convey HC-1 [6].

the application engine hub (AEH) that interfaces the Xeon to the FPGAs; the memory

controllers (MCs); and the FPGAs themselves, in which Convey refers to as application

engines (AEs). Each FPGA is connected to eight MCs, which control 16- DRAM DIMMs to

provide 20-GB/s (or 1-kb/cycle) of memory bandwidth per FPGA. This memory bandwidth

will be fully utilized in Chapter 3 to achieve the maximum speedup for TRW-S inference.

The platform provides a single, cache-coherent virtual memory system across the host

processor, and the FPGA fabric [40]. The data transfer between the host and the FPGAs

is expedited using a dedicated data mover, and thus any data written by the host processor

core can be used in any FPGA through the front-side bus and AEH, and vice versa. The

platform also supports nonblocking calls for the FPGA functions [6], which allows overlap of

the execution time for the CPU and FPGA functions. These capabilities o�er a broad space

of frame level optimization for video stereo matching; we shall explore this in Chapter 4.

2.4 Summary

This chapter has shown that a stereo matching problem can be formulated as an energy min-

imization over an MRF. Further, we reviewed two message passing based inference algorithm

which can solve this energy minimization problem: belief propagation (BP) and sequential

18

tree-reweighted message passing (TRW-S). We showed that TRW-S has a favorable conver-

gence property which BP lacks, and that TRW-S outperforms BP in practice. The downside

of TRW-S is its inherent sequential manner of computation which makes parallelization

challenging. In Chapter 3, we will show a novel way to expose necessary parallelism in the

computation of TRW-S.

19

Chapter 3

Hardware Implementation of Sequential
Tree-Reweighted Message Passing

Our MRF-based stereo matching consists of the sub-functions shown in Table 3.1. We

consider hardware implementation of both the message passing algorithm of TRW-S and the

MRF parameter computation, since these two steps consume most of the execution time.

For example, the TRW-S inference and the MRF parameter computation take 73.3% and

21.3%, respectively, of the total CPU execution time of stereo matching for the Tsukuba

task. We will show in this chapter that both the MRF parameter computation and TRW-S

inference can be massively parallelized to achieve order of magnitude speed-up by hardware

accelerators implemented in FPGAs.

3.1 Hardware Architecture of MRF Parameter Computation

The MRF parameter computation consists of calculating matching cost for the data cost term

and finding gradient cues for the smoothness cost (so, this hardware is called COM_COST).

The matching cost and the gradient cues are computed independently using a Matching Cost

Table 3.1: List of stereo matching sub-functions.
Function name Partition Description

RD_IMGS CPU Get stereo image pair
COM_COST FPGA Compute MRF parameters
STRM-TRWS FPGA Run TRW-S inference
GET_LABEL CPU Obtain the best labeling result

WR_DISP CPU Produce disparity map

20

IMG1_U

R

R

0

...

2

L

C

U

L

1

D

IMG1_C

IMG1_D

nD-1

IMG1 shift register

W
ri

te
 to

 M
em

or
y

M
C

C
1

M
C

C
0

M
C

C
nD

-1nD
-1

0
1

...

W
ri

te
ba

ck
 F

IF
O

GCC

IMG2 shift register

IMG2

L
oa

d
FI

FO

R
ea

d
fr

om
 M

em
or

y

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

Left image (for IMG1) Right image (for IMG2)

(b)(a)

Pixel data used for MRF
parameter computation

(MCC)

Pixel data used for
Gradient cue computation

(GCC)

(c)

Img1_L Img2_L Img2_C Img2_RImg1_C Img1_R

IL
- IL

+

>>1 >>1

min max

Img1_C

IL_min IL_maxImg1_C

IR
- IR

+

>>1 >>1

min max

Img2_C

IR_min IR_maxImg2_C

min

max max

diL diR

ds_red(0) Red
Green

Blue

ds(0) ls=0
ls=1

ls=nD-1

0 0

Figure 3.1: (a) Overall architecture of matching cost computation unit (MCC) and
gradient cue computation unit (GCC). (b) Example of image data. Nodes (circles with
numbers) inside the red dotted line and blue dotted line are used as input for MCC and
GCC, respectively. (c) Detailed architecture of MCC.

Computation unit (MCC) and a Gradient Cue Computation unit (GCC), as shown in Fig.

3.1(a). To exploit the maximum parallelism, the MCC is designed to compute di�erence of

color intensity (red, green, blue) for all the labels in parallel, and the GCC is designed to

compute gradients of each color intensity in for directions (right, down, left, up) in parallel.

Thus, the MCC reads three (left, center, right) pixel data (i.e., color intensity) from the left

image and nD + 2 pixel data from the right image for the nD label data cost. The GCC

reads five pixels of color (RGB) data to compute gradient of color in four directions from

the center node.

FIFOs and shift registers are utilized to feed the required pixel data from the left (IMG1)

and the right images (IMG2). Fig. 3.1(a) shows the overall architecture of the MCC and

the GCC. The (red, green, blue) pixel data for both left and right images are loaded the

load FIFO and fetched into the IMG1 and IMG2 FIFOs. There are three FIFOs for IMG1:

IMG1_U, IMG1_C, and IMG_D. These IMG1 FIFOs are managed to temporarily store

the pixel data for the up, center, and down rows of the left image, which are fetched from the

memory in row-major order. For example, if all the pixels in the left image of Fig. 3.1(b) are

loaded, IMG1_U, IMG1_C, and IMG_D will contain data for pixels {0,1,2,3}, {4,5,6,7},

21

Img1_R Img1_LImg1_D Img1_C Img1_U

dx_right dx_leftdy_down dy_up

sx_rightR sy_downR sx_leftR sy_upR
R G B

sx_right sy_down sx_left sx_up

thd

hcue_f

1bit

thd

vcue_f

1bit

thd

hcue_b

1bit

thd

vcue_b

1bit

hcue_fvcue_b

hcue_b vcue_f

thd: gradient
threshold

Figure 3.2: Detailed architecture of GCC.

and {8,9,10,11}, respectively. Also, the IMG2 FIFO temporarily stores the pixel data from

the right image. Depth of the IMG1 and IMG2 FIFO is set as the width of the image to

align the pixel data by the rows of the image.

The pixel data stored in the IMG1 and IMG2 FIFOs are used to fill the shift registers.

The depth of the IMG1 shift register is 3, since the MCC and the GCC require only the

center pixel from IMG1 along with its right and left neighbors. On the other hand, the

depth of IMG2 shift register is nD + 2, since the MCC requires three (left, center, right)

pixel data for each nD label. For example, if nD = 2 and the pixel 6 in Fig. 3.1(b) is the

center pixel, the MCC_0 and the MCC_1 read {5,6,7} and {4,5,6} for IMG2 to compute

◊
6

(0) and ◊
6

(1), respectively.

Figure 3.1(c) shows the detailed hardware architecture of the MCC. As discussed before,

the matching costs of each color for all the labels are computed in parallel, and then merged

at the last stage to generate a vector of data cost with the size of nD. The computations are

equivalent to equations from (2.5) to (2.11) in Section 2.1.2, which are pipelined to maximize

throughput as well as to reduce the critical path.

Figure 3.2 shows the detailed architecture of the GCC. The color values are subtracted

(dx_right, dy_down, dx_left, and dy_up) and squared (sx_right, sy_down, sx_left, and

sy_up) to find the gradient. The computations for the four directions for the three colors

22

are done in parallel, and then merged at the last stages. Note that the actual value of

the smoothness cost as well as the per-edge weight are not computed. This is because the

smoothness cost is a function of the labels and the per-edge weight, and the weight is an on-

o� function so that it has non-unity value only if the gradient value is less than the threshold.

Thus, we can simply store only the one bit signals to indicate whether the per-edge weight

needs to be applied or not. In this way, we can again reduce the size of the input data.

The computed matching costs for a node are packed with the four bit gradient cue flags,

and then they are put in the write back FIFOs to dump into the memory. These MRF

parameters are used in the inference engine to compute the most probable labels.

3.2 Design Issues in Hardware Implementation of TRW-S

In this section, we discuss design issues that are critical in our hardware implementation of

TRW-S: floating point to fixed point conversion and parallelization of message passing.

3.2.1 Floating point to fixed point conversion

TRW-S has floating point arithmetic inherently in the algorithm, as accounted by the frac-

tional constant in [17]. This fractional constant is set to 1/2 in (2.15) for the case of a 2-D

grid MRF, which can be implemented with a simple bit shift instead of a floating point

arithmetic unit.

We determine the proper number of fractional bits (FB) to convert floating point arith-

metic in the software implementation of TRW-S [10] to fixed point arithmetic. Fig. 3.3 shows

the energy minimization results of TRW-S for di�erent FB values. As the diamond-mark

curve indicates, the energy minimization results are not too sensitive to FB.

However, the lower bound shows more sensitivity to FB. Note that the lower bound is

related to the convergence of TRW-S, since the higher the lower bound, the closer to the

optimal label assignment. For the Tsukuba stereo benchmark ([10]), TRW-S is converged

with FB of 7 and 8, but not converged with 6 or smaller FB. Thus, we choose 8-bit as FB,

23

360000

362000

364000

366000

368000

370000

372000

8 7 6 5 4
Fractional*bit*width

Energy*for*different*fractional*bits*

Total.energy

Lower.bound

Figure 3.3: Energy minimization results of TRW-S for di�erent fractional bits.

!

1

3

2 4

5 7

6 8 9

1

3

2 4

5 7

6 8 9

1

3

2 4

5 7

6 8 9

Figure 3.4: Diagonal ordering for parallelization of TRW-S.

which includes the minimum bit width (= 7-bits) plus 1-bit as a guard bit. Experiments

with other benchmarks (Teddy and Venus, from the standard Middlebury suite [10]) show

that this choice of FB increases at most 0.23% of the minimum energy.

3.2.2 Parallelization of TRW-S

As discussed in Section 2.1.3, parallelization of TRW-S is not straightforward due to its

sequential message passing. Since the newly updated messages are used in the next message

passing, there is data dependency between neighboring nodes in the tree decomposed MRF.

Therefore, in the original implementation of TRW-S, the message passing is done in row-

major order.

However, if we smartly choose an update order, we can more aggressively parallelize

message passing on the monotonic chains. In Fig. 3.4, we show a novel diagonal ordering

that is suitable for parallelization. The number inside the node shows the diagonal ordering

of TRW-S for the forward pass, and the arrows indicate the messages passed after each belief

update of a node. As we can see in the figure, message passing in a diagonal row (grouped in

24

rectangles) only depends on the messages passed from the previous row (arrows). Therefore,

we can perform message passing for the nodes in the same diagonal row in parallel. This

exposes significant new opportunities for acceleration.

3.3 Hardware Architecture of TRW-S

There are two broad options, given the diagonal order scheme from Fig. 3.4. We might

try to build many parallel computational units, each dedicated to handling one pixel node.

However, as we quickly discovered, the application is extremely demanding of DRAM mem-

ory bandwidth: message passing for each node involves computations for the complete set

of labels for each pixel, which means that each node is producing and consuming kilobits of

data for its message passing. To render this tractable, we have devised a streaming archi-

tecture that consists of a single, deeply pipelined message passing unit and a set of FIFO

memory interfaces. The deep pipeline allows us to have many (14, in our final design) pixels

“in flight” in each clock period, and to start and retire a complete pixel and all its message

computations in each clock tick. The FIFO memory interface simplifies control over the data

dependency of message passing between contiguous diagonal rows.

3.3.1 Overall architecture

The overall architecture of our TRW-S hardware is shown in Fig. 3.5(a), which consists of

the pipelined message passing unit along with three types of FIFOs: Read FIFOs, Feedback

FIFOs, and Write FIFOs. The Read FIFOs consist of FIFOs for data cost, and horizontal

and vertical messages. The Feedback FIFOs consist of previously computed horizontal and

vertical messages. The Write FIFOs consist of two write back bu�ers. The role of these

FIFOs is to maintain a stream of data to be processed by the message passing unit.

The Read FIFOs keep reading data from the memory. These data are processed in the

message passing unit to generate new messages. The Write FIFOs are used to store the

new messages temporarily. If one of them becomes full, it starts dumping messages to the

25

!

dcost Mhor Mver Mhor_p Mver_p

Hhor Hver
Truncation

Normalization

+2λ +λ +2λ+λ+0
16:1 min
(4 stages)

H

v_max

Label 0~15

H_min

M_new

Read
FIFOs

R
ep

ar
am

Msg update
(Horizontal)

Msg update
(Vertical)

Lo
ad

Write
FIFOs

Feedback
FIFOsSt

or
e

M
em

or
y

Message passing unit

(a)

(b) (c)

Figure 3.5: Streaming TRW-S hardware architecture: (a) overall architecture, (b)
reparameterize unit, (c) message update unit.

26

memory. (In the meantime, data fetching from the memory to the Read FIFOs is stalled.)

The Write FIFOs employ double bu�ering to bu�er the new messages and dump the stored

messages simultaneously, which allows the message passing unit to keep working. The newly

computed messages are also temporarily cached to the Feedback FIFOs. These messages

are necessary in the message passing of the subsequent nodes. The Feedback FIFOs make

the recently computed messages available right away, so that the message passing unit can

avoid stalls.

Since this FIFO memory interface and the pipelined message passing unit perform in a

decoupled, streaming manner, we refer to this hardware architecture as streaming TRW-S

(STRM-TRWS). Memory access by FIFOs and message passing by the processing element

are done in parallel to exploit as much memory bandwidth as possible.

3.3.2 Pipelined message passing unit

The message passing unit consists of one reparameterize unit (Reparam) and two message

update units (MsgUpdate). As shown in Fig. 3.5(b,c), both processing units are fully

pipelined by stages. The Reparam computes (2.14) to generate new reparameterization,

which is used in the two MsgUpdate for computation of new messages (2.15) in horizontal

and vertical directions. Our message update unit supports truncated linear and quadratic

cost, and Potts models for the pairwise parameters [10].

We employ two hardware optimizations for e�cient computation. First, we exploit a

parallel message construction technique ([1]) that exploits the truncated form of smoothness

cost functions and limits the search space for optimization in message computation (2.15) to

reduce the complexity from O(|‰|2) to O(|‰|) (|‰|: number of assignment labels). Second,

since the messages for all labels are computed in parallel, data are processed in a block

manner. To deal with the case that the size of a message vector is larger than the memory

bandwidth (i.e., it takes more than 1 cycle to access data for a message vector from the

memory), a folded pipeline architecture ([41]) is employed for our message passing unit,

where a long message vector is “folded” into multiple blocks to take multiple cycles for

processing it. For example, if |‰| = 20 and the block size B = 16, it takes two cycles to

27

Table 3.2: Device utilization summary.
Unit COM_COST STRM-TRWS
Slice Register 20,667 25,325
Slice LUT 21,320 25,591
Slice LUT FF 60 0
36Kb Block RAM 32 90

process a message, and thus the folding factor is two.

3.4 Experimental Results

In this section, we present performance of our TRW-S inference system. This system consists

of software run by CPU for data management (e.g., image read/write) and overall control,

as well as MRF computation and inference hardware implemented on FPGAs, and per-

forms stereo matching benchmarks. Our implementation runs entirely on the Convey HC-1

platform; the host processors and all FPGA functions are run at 2.13GHz and 150MHz,

respectively.

3.4.1 Hardware specification

Table 3.2 shows the device utilization summary of our FPGA implementation. The following

design choices were made for this implementation.

In STRM-TRWS, 15-bit data cost and 24-bit messages in horizontal and vertical directions

are packed as 63-bit data for one label of one node. The experiments show that this choice

of bit-width is appropriate to avoid overflow in computation. Given the memory bandwidth

of 1-Kbit/cycle, data of up to 16 labels can be fetched from or written back to the memory

every cycle. By employing the folded pipeline architecture (folding factor of 4), the hardware

can support up to 64-label stereo matching. The remaining 16 out of 1024 bits are used to

control the data path. The depth of FIFOs is determined as follows. The depth of the

Read and Write FIFOs are set to 512; a larger depth allows more pending data, in case

28

Table 3.3: Execution cycle and time of streaming TRW-S for stereo matching.

Task Image size #labels Smoothness Cost STRM-TRWS SW([10])
Cycle/#iter second second

Tsukuba 384x288 16 Truncated linear 478,134 0.0032 0.12
Venus 434x383 20 Truncated quadratic 1,436,257 0.0096 0.47
Teddy 450x375 60 Potts model 2,914,599 0.0194 0.67

the memory su�ers long latency. The depth of the Feedback FIFOs is determined by the

maximum height of the input image. Since the maximum height is set to 512, the depth

should be 4x512=2048 (4 is the folding factor).

A similar memory interface is used in COM_COST. Furthermore, four 512-depth 32-bit

width FIFOs (IMG1_U, IMG1_C, IMG1_D, IMG2) are used for bu�ering stereo image data

to be used in MCC and GCC. In addition, 60 DSP48Es– Xilinx Virtex 5 blocks customized

for e�cient digital signal processing operations [42] – are used to compute square di�erence

in color in MCC and GCC.

3.4.2 Experimental results

We first run three stereo matching tasks (Tsukuba, Teddy, and Venus, from the standard

Middlebury suite [10]) in FPGA to evaluate the speed of our streaming TRW-S. Table 3.3

shows the execution cycle and time for one iteration. According to experiments, memory

bandwidth utilization of our hardware architecture is about 93.1%. This shows that the

FIFO interface for the message passing unit e�ectively hides the long latency of DRAM. As

we can see in the table, the streaming TRW-S is 34.5~49 times faster than the speed of a

reference software implementation of TRW-S [10] running on an Intel Core i7 machine. The

disparity maps of stereo matching tasks obtained after 500 iterations and the ground truths

are compared in Fig. 3.6. As we can see, the results of our hardware are almost identical to

the software results, and look very similar to the ground truth.

Next, we evaluate function-by-function performance of our stereo matching system for

29

STRM_TRWS SW impl.Ground truth

Tsukuba

Venus

Teddy

Left image Right image

Figure 3.6: Comparison of disparity maps.

Table 3.4: Execution time (in ms) of stereo matching functions.
Tsukuba Stereo Matching Benchmark (384x288,16 labels) ([5])

Inference Iterations 5 40
RD_IMGS 22.3 22.4

COM_COST (CPU / FPGA) 146.9 / 4.5 147.0 / 4.5
STRM-TRWS (CPU / FPGA) 500.0 / 18.9 3720.0 / 127.1

GET_LABEL 1.9 1.9
WR_DISP 10.9 10.6

Minimum energy 394,434 370,359
Min. energy of VLSI impl. [1] 396,953 in 137.4 ms

the well-known Tsukuba task. Table 3.4 shows the execution time of the stereo matching

functions, with di�erent number of iterations for the inference. As the MRF inference

minimizes the energy over the iterations, the number of iterations can be either adaptively

increased to achieve a desired minimum energy, or pre-determined for some fixed latency of

the entire inference engine. In the latter case, the minimum energy is a metric to evaluate the

quality of solutions, as is used in [10]. In this work, therefore, we demonstrate performance

for our hardware in terms of the execution time (determined by a fixed number of iterations)

and minimum energy.

30

Table 3.5: Comparison of speed between GPU implementations [1, 2, 3] and streaming
TRW-S for Tsukuba task.

Real-time BP
[2]

Tile-based BP
[1] Fast BP [3] Our HW

GPU
platform

NVIDIA
GeForce 7900

GTX

NVIDIA
GeForce 8800

GTS

NVIDIA GeForce
GTX 260 N/A

Number of
iterations

(coarse to fine
scales) = (5, 5,

10, 2)

(B, TI, TO) =
(16, 20, 5)

(3 coarse to fine
scales) = (9, 6, 2) To = 5

Time (ms) 79.71 124.38 61.41 26.10

Since RD_IMGS, GET_LABEL, and WR_DISP functions are partitioned as CPU func-

tions, they are processed in the host side. For COM_COST and STRM-TRWS functions,

both CPU and FPGA execution time are measured for comparison. As shown in Table 3.4,

the hardware implementation of COM_COST and STRM-TRWS run 32.6 and 26.5 times

faster than the same functions run in the host processor, respectively. Thus, we can con-

clude that it is beneficial to accelerate both COM_COST and STRM-TRWS functions in

the FPGA side.

Graphics processing units (GPUs) have also been widely explored in this application, given

their obvious historical origins in the video universe. Hence, it is also worthwhile to examine

comparisons between our FPGA implementation and those implementations. There are

several notable e�orts to use GPUs to accelerate variants of belief propagation algorithms

for stereo matching [1, 2, 3]. (These include both older and newer GPU architectures.) Real-

time BP ([2]) and Fast BP ([3]) exploit the idea of applying BP in a hierarchical manner

(from coarse to fine scales, [43]) to speed up convergence of BP. In Tile-based BP ([1]), the

entire graph is divided into small tiles; BP is performed on each tile but only messages on the

boundary are kept to reduce memory access. Since all of these implementations are based

on BP, there is no convergence property which leads closer to the optimum solution or the

lower minimum energy, unlike TRW-S.

Table 3.5 shows execution time for each implementation for stereo matching of the stan-

dard Tsukuba single-frame benchmark with its own GPU platform and iteration settings.

31

Here, GPU execution time includes only the time for inference, whereas execution time of

our system includes both data cost computation and inference processed in FPGA. As we

can see, the execution time of our system is faster than the execution time of these other

GPU implementations, although our hardware is running at a much slower clock frequency

(150MHz). We believe that aggressively custom design with a tightly coupled streaming

memory interface is what leads to such significant speed-ups.

Next, let us consider some recent e�orts in fully custom hardware for this task. A notable

VLSI implementation of tile-based BP ([1]) can run up to 64-label stereo matching of a

320x240 image in 137.4ms for a high quality result. For the Tsukuba benchmark, it obtains

the lowest minimum energy of 396,953 with the same setting. Note that the lowest minimum

energy corresponds to a high quality stereo result for the MRF. In comparison, for single

frame performance, our system can achieve about 6 times faster speed in inference with a

slightly lower minimum energy (when the number of iterations is 5), or about the same speed

but with much lower minimum energy (when the number of iterations is 40), as shown in

Table 3.4.

3.5 Summary

In this chapter we have implemented a stereo matching system with a novel FPGA hardware

that performs TRW-S inference in a fully pipelined, streaming architecture. Experimental

results show promising performance – speed, solution quality – of our streaming TRW-S

compared to recent VLSI and GPU implementations of BP.

32

Chapter 4

Frame-Level Optimizations for High Speed Stereo
Matching

Starting from the parallel streaming architecture proposed in Chapter 3, further speed-up

can be achieved by frame-level optimization in order to handle stereo video frames rapidly.

In this chapter, we discuss three key optimization techniques to speed up stereo matching for

multiple frames: message reuse based on scene change detection, frame-level parallelization,

and function-level pipelining.

4.1 Message Reuse based on Scene Change Detection

As discussed in Section 2.1.3 the message passing operation is repeated until all the messages

are converged to a fixed point. Once converged, these messages along with the initial data

costs comprise the beliefs, which are used to determine the best label assignment for each

pixel. Therefore, the entire computation of the message passing is to reach the correct

messages based on given MRF parameters. In general, messages are initialized to zero (i.e.

uniform distribution), and it takes tens to hundreds of iterations of message passing to reach

the fixed point. If we know a better initial point, we can reduce such computational e�orts

but still reach to the proper fixed point.

It is common in video stereo matching that the contiguous frames in the video input

contain similar pixel contents. Since the MRF parameters are computed based on these

pixel contents, the initial parameters of the contiguous frames are also similar, leading to

the similar inference results. Such similarity implies that the converged messages for the

stereo matching of the previous frame can be re-used as a better starting point for the

stereo matching of the current frame. The advantage of this so-called “warm start” can be

33

3600000$

4100000$

4600000$

5100000$

5600000$

6100000$

6600000$

7100000$

0$ 4$ 8$12$16$20$24$28$32$36$40$44$48$52$56$60$64$68$72$76$80$

En
er
gy
'

Number'of'itera1on'

without$message$reuse$

Reuse$from$frame275

Reuse$from$frame1

(a) Energy minimization performance for Flower task
(frame 276) with/without message reuse from di�erent
frames (frame 1 or frame 275).

current input frame Previous frame for message reuse

Frame 276 Frame 275 Frame 1
HIST_DIST=834 HIST_DIST=20,966

Without message reuse Message reuse

Iteration 80 Iteration 20 Iteration 20
(b) Input frames (first row) and resulting disparity maps (the second row) for
di�erent settings: without message reuse, message reuse from the similar frame,
and message reuse from the di�erent frame.

Figure 4.1: Impact of message reuse in energy minimization performance and histogram
based scene change detection. (Flower video stereo matching task ([5]) is used for example.)

34

seen in Fig. 4.1, which compares energy minimization performance for Flower video stereo

matching task ([7]) with or without reusing previous messages. If we initialize messages to

zero, it takes 80 iterations to achieve minimum energy lower than 3700000, at which most

of the visual artifacts in the disparity map are removed. (See the left-most disparity map

in the second row of Fig. 4.1(b).) In contrast, if the messages from the previous frame are

reused as the initial values of the current message passing, it takes less than 20 iterations to

achieve the similar minimum energy. (The center disparity map in the second row of Fig.

4.1(b).) Therefore, it is beneficial to reuse messages from the previous frame if the frames

have potential to reach to a similar fixed point.

Then, the challenge is to detect when the contiguous frames have such a chance. There is

a line of research on scene change detection (SCD) for e�cient video compression (e.g. [44]),

where the simplest approach is to construct a histogram over the color intensity to compute

visual similarity between two frames. In our work, we construct a histogram not over the

color intensity but over the initial maximum likelihood labels. There are two advantages

in working with the maximum likelihood labels. First, we are not directly interested in the

visual coherency between the frames, but rather we are interested in predicting similarity

of the MRF inference results. The maximum likelihood label assignments are the result of

MAP in (2.4) without considering priors, and thus the maximum likelihood labels implicitly

characterize the data cost, guiding us to determine which frames will have the similar infer-

ence results. Second, the best maximum likelihood labels can be found easily with simple

additional steps that can be incorporated in our MCC in Fig. 3.1. Since the histogram is

built over the labels, we need a register vector of size |x
s

| for the histogram, which is usually

smaller than a vector for the color intensity (e.g. 256 bins for each color intensity).

In our work, therefore, we attached a hardware block at the end of MCC that finds the

best maximum likelihood label for each pixel and accumulates it into one of the bins of

the histogram. All the computation in this block is fully pipelined so that there is little

overhead in throughput. Once all the pixels are processed, the histogram is compared to the

histogram of the previous frame, calculating the L-1 distance, called HIST_DIST. Based

on this distance (i.e. HIST_DIST), the inference engine (i.e. STRM-TRWS) determines

whether it should reuse the previous messages or not. As shown in Fig. 4.1, if the inference

35

reuses messages from the totally di�erent frame (e.g. frame 1 of the Flower task), the

distance of the histogram is 20,966, and thus the energy minimization is slower, compared

to the distance of the histogram for the case where the messages from frame 275 are reused

(HIST_DIST = 834). We set a threshold for this distance to avoid reusing messages with

high HIST_DIST.

The idea of reusing inference results of the previous frames is also applied in other MRF

inference techniques such as graph cuts ([45]), but to the best of our knowledge, this is the

first attempt to incorporate the message reuse technique in a hardware implementation.

4.2 Frame-Level Parallelization

Since MRF inference for each frame is independent of the others, we can further speed up

the stereo matching by utilizing the multiple FPGAs available on the platform. For example,

we can process two frames of stereo input in parallel by implementing two inference engines

on two di�erent FPGAs. Note that each FPGA has its own memory bandwidth of 20-

Gbyte/s. Thus, we can simply put the MRF parameters for two image frames in a di�erent

location of the shared memory and then run the two inference engines independently. Thus,

a multiple-FPGA stereo matching system is attractive since 1) the frame-level parallelism is

obvious and easily accessible in this video application, and 2) larger memory bandwidth can

be utilized by employing multiple FPGAs, which is the prime bottleneck of performance.

In this work, COM_COST and STRM-TRWS are implemented in FPGAs, and they can

be invoked by the host processor like other CPU functions to perform stereo matching.

Since COM_COST and STRM-TRWS occupy one FPGA each, we can launch multiple

COM_COST or STRM-TRWS functions in parallel using four FPGAs available on the

Convey HC-1 to process more than one frame at the same time. The following pseudo code

is an example of processing two frames in parallel using two FPGAs for COM_COST and

STRM-TRWS each.

In this example, two image frames (even and odd) are read by the host processor and

passed to two FPGAs (called AE1 and AE3) for COM_COST of two frames in parallel.

36

I n i t i a l i z e
For (idx =0; idx<numFrame ; idx+=2)

Even_frame <≠ RD_IMGS [idx] ;
Odd_frame <≠ RD_IMGS [idx +1] ;
COM_COST (Even_frame@AE0 , Odd_frame@AE1) ; // p a r a l l e l proc .
STRM≠TRWS (Even_frame@AE2 , Odd_frame@AE3) ; // p a r a l l e l proc .
GET_DISP (Even_frame from AE2) ;
GET_DISP (Odd _frame from AE3) ;
WR_DISP (Even_frame) ;
WR_DISP (Odd_frame) ;

End

MRF parameters computed by COM_COST are used by another two other FPGAs (AE2

and AE4) to perform inference (STRM-TRWS) for two frames in parallel. Then, disparity

map results are retrieved (GET_DISP) and output (WR_DISP) by the host processor

sequentially. Note that data transfer between the host processor and the FPGAs is managed

by the cache coherent shared-memory, and can be expedited by using a dedicated data

mover [6]. Also, we can observe that the number of calls for RD_IMGS, GET_DISP, and

WR_DISP increases in proportion to the number of frames processed in parallel. The

execution time for these CPU functions limits the benefit of frame-level parallelization.

4.3 Function-Level Pipelining

As the sub-functions of the stereo matching are partitioned to CPU and FPGAs, the next

obvious question is how to overlap the execution time of these groups. Since the inference is

done in hardware, the host processor is available while the FPGA is busy doing inference.

Thus, we can apply basic software pipelining ([46]) so that the FPGA performs inference for

the current frame while the host processor is preparing the input for the next frame, as well

as processing the labeling results of the previous frame.

On the Convey HC-1, FPGA functions appear as callable procedures, which can be invoked

by the host, and pass parameters back and forth. Because the platform supports non-

37

RD_IMGS [N]
COM_COST [N]

CALL_TRWS [N]

RTN_TRWS [N]

GET_LABEL [N]

WR_DISP [N]

: Overlap region

A
B

C

D
E

Function Name Execution Time

: Number of framesN

RD_IMGS[1]

COM_COST[1]
CALL_TRWS[1]

RD_IMGS[2]
RTN_TRWS[1]

COM_COST[2]
CALL_TRWS[2]

GET_LABEL[1]
WR_DISP[1]
RD_IMGS[3]

RTN_TRWS[2]

GET_LABEL[N]

WR_DISP[N]

COM_COST[N]
CALL_TRWS[N]

GET_LABEL[N-1]
WR_DISP[N-1]

RTN_TRWS[N]

Execution Time

A
B

C

B

C

B

C

B

C

D

E

COM_COST[N-1]
CALL_TRWS[N-1]

GET_LABEL[N-2]
WR_DISP[N-2]
RD_IMGS[N]

RTN_TRWS[N-1]

Pr
ol

og
St

ea
dy

 s
ta

te
Ep

ilo
g

Figure 4.2: Pipelining of stereo matching functions.

38

blocking calls for these custom FPGA functions ([6]), we can further increase the speed of

stereo matching by overlapping the execution time for the CPU functions and these hardware

functions. Fig. 4.2 shows an example of applying the non-blocking call for STRM-TRWS.

Note that STRM-TRWS is now divided into two sub-functions: CALL_TRWS (the “call”)

and RTN_TRWS (the “return”). Thus, the computation time of the host function calls

between CALL_TRWS and RTN_TRWS (overlap region in Fig. 4.2) is hidden by the

execution time of the FPGAs.

It is not di�cult to see that we can combine this functional pipelining and the frame-level

parallelization to achieve the most speed-up. However, there is a balancing issue: the more

frames that are processed by the inference engines in parallel, the longer time it takes to

manage the input and output data of the inference, as observed in the previous section. If the

time for input and output data management is shorter than the time for parallel inference,

the total stereo matching time can be reduced because the time for data preparation can

be overlapped with the inference. But if the number of frames processed in parallel is too

large, then the time for data management becomes dominant in the entire execution, and

the benefit of exploiting multiple FPGAs vanishes. Therefore, it is important to make the

two balanced.

We can estimate the ideal execution time T for N frame stereo matching by the execution

time of each function (A ≥ E) defined in Fig. 4.2 as follows:

T = A + N ◊ (B + C) + (D + E). (4.1)

Thus, the computation time of the host processor (= A + D + E) can be neglected if

(B + C) is greater than (A + D + E) and N is large enough. This is the case when the time

for data management on the host processor and the time for inference on FPGAs are well

balanced.

39

4.4 Experimental Results

In this section, we show results from full video experiments. Benchmarks like the single-

frame Middlebury set ([5]) are less common here. We use a set of real-world stereo examples

from [7] for our experiments.

4.4.1 E�ect of function-level pipelining

We perform stereo matching of a stereo video task (Flower) from [7] on our system with

the non-blocking function calls to analyze the e�ect of function-level pipelining. This stereo

video task consists of 276 frames of 360x262 stereo flower images as input. The 16-label

(disparity levels) stereo matching is performed for 80 iterations to obtain the disparity map

results in Fig. 4.3, since it requires considerable e�ort to propagate the depth information

on the body of flower to its empty background. This task is more challenging than Tsukuba,

for which TRW-S produces a reasonable outcome within only 5~40 iterations.

Next, we analyze the e�ect of the function-level pipelining used in our implementation.

Figure 4.4 shows possible reduction versus actual reduction in overall execution time due

to the function-level pipelining. The possible reduction comes from the portion of the CPU

execution time relative to the total execution time. The actual reduction is calculated as

the di�erence of execution time with and without applying the function-level pipelining. In

case of single-frame stereo matching, the actual reduction is zero since there is no possible

overlap between CPU and FPGA execution time. However, the actual reduction becomes

closer to the portion of the CPU execution time as the number of frames increases. In

the case of 64-frame stereo matching, the di�erence between the possible reduction and the

actual reduction is only 0.5%. Thus, we can conclude that the pipelining of the functions

improves the speed of the stereo matching by hiding most of the CPU execution time. (Since

the portion of the CPU execution time is around 8% of the entire execution time, there is

ample time for the host processor.)

40

Left Right Disparity map

Frame 1

Frame 124

Frame 153

Frame 276

Figure 4.3: Video stereo matching task (Flower, [7]) and disparity map results. (Lighter
grey means closer to camera.)

0.0%$
2.0%$
4.0%$
6.0%$
8.0%$
10.0%$

1$ 2$ 4$ 8$ 16$ 32$ 64$

Number'of'frames'processed'

Por.onofCPUfnexecu.on$.me$(possible$reduc.on)$

Actual$reduc.on$in$execu.on$.mebypipelining$

Figure 4.4: Possible reduction versus actual reduction in overall execution time due to
function-level pipelining.

41

19.7% 18.7% 18.9%

220.7%

116.9%
79.3%

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

1% 2% 3%Ex
ec
u&

on
)&
m
e)
pe

r)f
ra
m
e)
(m

se
c)
)

Number)of)frames)processed)in)parallel)

CPU%fn%execu5on%5me%per%frame%

FPGA%fn%execu5on%5me%per%frame%

Figure 4.5: Per-frame execution time of CPU and FPGA functions.

4.4.2 E�ect of frame-level parallelization

We further examine our stereo matching system for parallel processing of multiple frames.

Among the four FPGAs available on the Convey HC-1, we assign one for the MCC and GCC,

and the other FPGAs for STRM-TRWS. The number of FPGAs used for STRM-TRWS is

equal to the number of frames processed in parallel. We compare the execution time of the

CPU and FPGA functions, normalized by the number of frames processed concurrently. As

shown in Fig. 4.5, the FPGA execution time per frame decreases inversely proportional to

the number of FPGAs. Thus, we can conclude that the computations for multiple frames

are well parallelized. In contrast, the CPU execution time per frame does not change as

more hardware is utilized, as expected from Section 4.2. Since the CPU per frame execution

time is smaller than the FPGA execution time, we can exploit functional pipelining to fully

overlap CPU execution time with FPGA execution time.

We now analyze the total execution time for Flower video stereo matching. The execution

time is measured for di�erent numbers of frames processed in parallel, and function-level

pipelining is applied for all the cases. To provide an idea of how well our optimization

42

Table 4.1: Analysis of total execution time (in second) for Flower video stereo matching
(276 frames).

Num. FPGAs 1 2 3
Total Exec Time (T

t

) 61.3 33.3 23.4
Estm. Time with Pipelining (T

p

) 60.9 32.3 21.9
Estm. Time w/o Pipelining (T

np

) 66.4 37.4 27.1

techniques work for entire frames, we also present estimated execution time with and without

applying function-level pipelining for each parallel processing of frames. Table 4.1 shows the

total execution time of stereo matching of 276 stereo flower images (T
t

) along with the

estimated execution time of either applying the pipelining (T
p

) or not (T
np

) using di�erent

number of FPGAs. T
p

is computed by (4.1), and T
np

is the execution time of one parallel

processing of frames multiplied by the number of parallel processing calls (e.g. multiply 92

if the number of FPGAs is 3). Thus, T
p

and T
np

are the lower and the upper bound of the

total execution time. Since T
t

is closer to T
p

than T
np

, we can see that our stereo matching

system takes advantage of pipelining. In case of using three FPGAs for STRM-TRWS, the

speed of the stereo matching is 11.8 frames per second.

4.4.3 Impact of message reuse

Next, we analyze the impact of message reuse in the total execution time and the quality of

the inference results. We perform video stereo matching for the same Flower task, applying

both function-level pipelining and 3-frame parallel processing. Table 4.2 shows the execution

time of the stereo matching with/without enabling message reuse. As shown in the table,

the total execution time depends on either CPU execution time or FPGA execution time.

If the number of iteration is large (i.e. the number of iteration = 80), the FPGA execution

time takes the majority of the total execution time, and the CPU time is mostly hidden by

the FPGA execution time. On the other hand, if the number of iteration is small (i.e. = 20),

the FPGA execution time is shorter than the CPU execution time, o�setting the benefit of

FPGA acceleration. Thus, as discussed before, this emphasizes the importance of balancing.

43

Table 4.2: Impact of message reuse on energy minimization performance and execution
time (in second). Flower video stereo matching task (360x262x276 frames) is used for
example.

Without Message Reuse With Message Reuse
Number of iterations 80 40 20 40 20

Total Exec. Time 22.0 11.9 10.1 11.8 10.1
CPU Exec. Time 9.4 9.8 9.2 9.3 9.1

FPGA Exec. Time 21.2 10.7 5.4 10.8 5.6
Avg. Incr. in Min. Energy 0.0% 4.0% 9.7% 0.4% 2.0%

One interesting question is if we can further decrease the number of iterations to reach

the balancing point without sacrificing the quality of inference results. As we discussed in

Section 4.1, the Flower task requires 80 iterations to get rid of the artifacts on the background

of the disparity map (Fig. 4.1(b)). Therefore, if the number of iterations is decreased to 40,

where the balancing point between CPU and FPGA execution time resides, the minimum

energy is increased 4.0% on average (compared to the 80-iteration case), causing defects in

the disparity map results. However, if message reuse is applied, we can achieve the same

balancing point (i.e. the number of iterations = 40) without much increase in the minimum

energy. Therefore, the message reuse based on the scene change detection can help improving

both the speed of stereo matching and the quality of inference. In our platform, the maximum

speed of high quality stereo matching for Flower task is 22.8 frame per second.

4.4.4 Impact of scene change detection based message reuse

Lastly, we demonstrate the e�ectiveness of our scene change detection (SCD) based mes-

sage reuse for a video stereo matching scenario. The scenario consists of two video stereo

sequences, Flower (frames resized to 320x240, QVGA) and Ume from [7]. To emulate scene

changes in the video, these sequences are interleaved as follows: frame 1 to 42 and 85 to 126

from the Flower sequence, and frame 43 to 84 and 127 to 168 from the Ume sequence, as

described in Fig. 4.6(a).

We run our stereo matching hardware with four di�erent settings: 1) run 80 iterations

44

(a) Interleaved stereo video sequence (320x240x168 frames).

!5.00%&

0.00%&

5.00%&

10.00%&

15.00%&

20.00%&

25.00%&

30.00%&

1& 51& 101& 151&N
or
m
al
iz
ed

+d
iff
er
en

ce
+in
+m

in
+e
ne

rg
y+

Frame+number+

Se,ng&2:&Always&reuse&messages&
Se,ng&3:&Reuse&messages&based&on&SCD&(threshold&=&2400)&
Se,ng&4:&Reuse&messages&based&on&SCD&(threshold&=&9600)&

(b) Normalized di�erence in energy for di�erent settings (setting 1 as a reference).

Figure 4.6: Video stereo matching with scene change detection (SCD) based message reuse.

45

without reusing messages, 2) run 20 iterations with reusing messages all the time, 3) run 20

iterations with reusing messages if HIST_DIST is less than the threshold of 9600, otherwise

run 80 iterations, 4) same as 3) but with the threshold of 2400. We measure the minimum

energy for each case and use the minimum energy of the first setting to compute normalized

di�erence with the other settings. Per frame normalized di�erence in energy is shown in Fig.

4.6(b). Since there are three scene changes in the interleaved video sequence, if we reuse

messages all the time (setting 2), the incorrect messages are reused at those scene changes

(frame 43, 85 and 127), and thus the min energy curve rises rapidly (12~28% increase in

energy). This undesirable outcome of the uninformed message reuse can be avoided by our

simple scene change detection scheme described in Section 4.1. As shown in Fig. 4.6(b), the

minimum energy curves of both setting 3 and 4 do not show spikes at the scene changes. The

minimum energy curves of setting 3 and 4 are no higher than 5% of the minimum energy

curve of setting 1. The energy curve of setting 3 is closer to the energy curve of setting 1 (i.e.,

the normalized di�erence is zero in many frames), since its threshold is more conservative.

On the other hand, the energy curve of setting 4 sometimes shows even lower energy, despite

the fact that it takes one-quarter of the number of iterations of setting 1.

The execution time for the setting 1 to run entire frames (= 168) is 11.05s, using all

the other frame-level optimization techniques in this chapter as well. In comparison, the

execution time of setting 2 is only 6.56s, but it su�ers spikes in the energy curve due to

incorrect message reuse at the scene changes. Our scene change detection based message

reuse can provide good middle points. If we want conservative inference results, we can

set the threshold low to achieve low minimum energy more reliably and also reduce a little

execution time. Otherwise, we can set a higher threshold to save significant time but still

avoid spikes in the energy curve. For example, setting 3 and 4 with the threshold of 2400 and

9600, respectively, result in the execution time of 9.19 and 7.34s, respectively. Therefore, we

can conclude that our scene change detection based message reuse can be properly applied

to the TRW-S inference for more e�cient video stereo matching.

46

4.5 Summary

We have designed and benchmarked a video-rate stereo matching system implemented on a

hybrid CPU+FPGA platform (Convey HC-1). We model the stereo task as statistical infer-

ence on a Markov Random Field model, and show how to implement TRW-S style inference

at video rates on the hybrid platform. We employ both parallelization of TRW-S and vari-

ous frame-level optimization techniques for video-rate stereo matching. Experimental results

show that this system performs stereo matching of QVGA size 168 frame mixed stereo video

sequence in 7.34 seconds (i.e., 22.8 frame per second) with minimum energy di�erence less

than 5%.

47

Chapter 5

Error Resilient MRF Message Passing Architecture for
Stereo Matching

In this chapter, we consider error resilient hardware implementation of TRW-S inference. As

machine learning applications are inherently probabilistic and robust to errors, statistical

error compensation (SEC) techniques can play a significant role in achieving robust and

energy-e�cient implementation [34, 47]. By trading the increased robustness for energy,

significant energy savings can be achieved as well. In [34], algorithmic noise tolerance (ANT)

has been applied to a message passing based low density parity check (LDPC) decoder and

shown to achieve 45.7 % energy savings while maintaining less than 4.7 dB degradation in

bit error rate (BER) at a HW error rate (percentage of clock cycles in which an erroneous

output exists) of 30%.

Motivated by this prior work, therefore, we utilize our TRW-S based stereo matching

hardware architecture (STRM-TRWS) we discussed in Chapter 3 as a test case to explore

error resiliency and energy e�ciency of message passing based MRF inference hardware. We

first analyze the error propagation characteristics of our message passing algorithm. Then,

we explore the impact of SEC when applied to MRF inference applications.

The remainder of the chapter is organized as follows. Section 5.1 describes the error

resilience characteristic of the message passing hardware in detail. The implementation of

TRW-S and the methodology to generate and compensate HW errors are discussed in Section

5.2. Section 5.3 shows the results, while Section 5.4 summarizes the chapter.

5.1 Error Analysis of TRW-S

It is well known in the literature (e.g. [34]) that iterative message passing algorithms such as

TRW-S are intrinsically robust to errors. In this section, we analyze the error propagation

48

of TRW-S as a test case to understand the basis of the inherent error robustness and how

to exploit it to find the optimal precision for TRW-S hardware implementation.

In this section, we provide a simple analysis on error propagation of TRW-S to understand

the basis of the inherent error resiliency of iterative message passing algorithms. We further

explore the optimal precision for the TRW-S hardware, which is motivated by the inherent

error resiliency of TRW-S inference.

5.1.1 Error analysis of TRW-S

We start our analysis of the error propagation of TRW-S from the message update equations

(2.14) and (2.15). For simplicity, we assume binary labels for all the nodes and the Potts

model ([10], with penalty of C) for the pairwise cost. The message update (2.15) can then

be represented as follows:

M
st

(0) = min{H
st

(0), H
st

(1) + C} (5.1)

M
st

(1) = min{H
st

(0) + C, H
st

(1)}. (5.2)

Note that other message passing algorithms with a truncated smoothness cost (e.g. BP in

[35, 48]) can also be represented this way.

To see the e�ect of arithmetic error on the result of the final message, we assume that

arithmetic errors only occur in add/subtract (AS) and compare and select (CS) operations.

An erroneous message for label 0, M̃
st

(0), can be represented as follows:

M̃
st

(0) = min{H
st

(0) + e
AS

(0), H
st

(1) + e
AS

(1) + C}

+e
CS

, (5.3)

where e
AS

(0) and e
AS

(1) represent the error propagated from neighbors as well as any arith-

metic errors that occurred during computation of H
st

, and e
CS

indicates errors that occur

in CS. By setting e
AS

= e
AS

(0) ≠ e
AS

(1), and ẽ
CS

= e
CS

+ e
AS

(1), M̃
st

(0) can be rewritten

49

as:

arg1 arg2

M̃
st

(0) = min{
˙ ˝¸ ˚
H

st

(0) + e
AS

,
˙ ˝¸ ˚
H

st

(1) + C} + ẽ
CS

= M
st

(0) + ẽ
AS

+ ẽ
CS

, (5.4)

where ẽ
AS

and ẽ
CS

are the e�ective error in the message M
st

generated by AS and CS,

respectively. We will refer to H
st

(0) + e
AS

and H
st

(1) + C as arg1 and arg2, respectively,

and define �H , H
st

(1) + C ≠ H
st

(0).

We analyze the relationship between e
AS

and ẽ
AS

to understand error propagation char-

acteristic of the message passing inference. First, assume that H
st

(0) < H
st

(1) + C, i.e.,

�H > 0. Then, when e
AS

is small, such that e
AS

< �H, arg1 will be chosen as the mini-

mum and ẽ
AS

= e
AS

. Once e
AS

Ø �H, min will now choose arg2 and ẽ
AS

will be fixed to

�H (see Fig. 5.1(a)). Next assume that H
st

(0) > H
st

(1) + C, i.e., �H < 0. In this case,

if e
AS

Ø �H, arg2 will be selected as the minimum, which is the correct minimum, and

ẽ
AS

= 0. When e
AS

< �H, min will select arg1, and ẽ
AS

= e
AS

≠ �H (see Fig. 5.1(b)).

Note that the e�ect of e
AS

depends only on —H which, in turn, only depends on the error

free computation of H
st

. Based on Fig. 5.1, we can deduce two error characteristics of

TRW-S:

1. TRW-S is a�ected more by negative errors than positive errors, since the e�ect of

positive errors is either bounded (Fig. 5.1(a)) or removed (Fig. 5.1(b)).

2. If the magnitude of an error is small (|e
AS

| < |—H|), it can either be preserved (Fig.

5.1(a)) or removed (Fig. 5.1(b)).

Similar conclusions can be derived for M̃
st

(1).

The error generated by CS, ẽ
CS

, can be viewed as part of the overall error in a message,

ẽ = ẽ
AS

+ ẽ
CS

. The error ẽ will a�ect the message computation of the adjacent node and thus

can be regarded as a propagated error for the next message computation. Normalization

50

ASe~

ASeH'

H'

(a)

ASe~

ASe
H'

(b)

Figure 5.1: E�ect of AS error on updated message when (a) �H > 0, and (b) �H < 0.

that occurs at the final step of MSG_UPD can also be shown to significantly reduce the

magnitude of the propagated errors.

5.1.2 Verification of error analysis

Two experiments are performed on TRW-S stereo matching hardware to verify our analysis.

We first run Tsukuba stereo matching [10] on our software simulator of STRM-TRWS with

error injection on AS in (5.4) to see the e�ect of error on the message update. The Potts

model with C = 20 is used as the smoothness cost, and the computation in hardware has 20-

bit fixed point precision. The injected errors, e
AS

, are drawn from u(≠128, 128), where u(a, b)

is a uniform distribution between a and b. Figure 5.2(a) shows the resulting relationship

between e
AS

and ẽ
AS

summarized as a box plot. Note that |ẽ
AS

| cannot be larger than C

due to truncation and normalization in message update. It can be seen that ẽ
AS

is more

likely to be close to zero for e
AS

> 0 than for e
AS

< 0, which agrees with our analysis.

For a macroscopic view of the e�ect of error on the message passing performance, we fur-

ther apply errors with di�erent magnitude on both e
AS

and e
CS

and run the same Tsukuba

stereo matching. We apply uniform errors as follows: e
AS

, e
CS

≥ u(min[0, e
max

], max[0, e
max

]),

and ≠215 Æ e
max

Æ 215. Note that all injected errors are of the same sign. Fig. 5.2(b) shows

the e�ect of errors on the energy minimization performance for di�erent error magnitudes

51

−20

−15

−10

−5

0

5

10

15

20

−1
30

−1
20

−1
10

−1
00

−9
0

−8
0

−7
0

−6
0

−5
0

−4
0

−3
0

−2
0

−1
0

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

eAS

ẽ
A
S

(a)

−32768 −1024 −32 0 32 1024 32768

106

107

emax

M
in

im
um

 e
ne

rg
y

Error rate 0.001
Error rate 0.01
Error rate 0.1
Error rate 0.3
Error Free

(b)

Figure 5.2: Verification of error analysis: (a) e�ect of error on message updated via a box
plot of e

AS

vs. ẽ
AS

, and (b) e�ect of error on energy minimization performance of message
passing via a plot of minimum energy (after 10 iterations) vs. e

max

.

and error injection rates. If the error magnitude is small (e.g., |e
max

| Æ 512), the minimum

energy given by (2.4) approaches the error free performance after 10 iterations. However, if

the error magnitude is large (e.g., |e
max

| Ø 1024), the minimum energy does not decrease

with iterations, which indicates that message passing fails to find the best label assignment.

Furthermore, the slope of the minimum energy is steeper in case of the negative errors,

as expected by our analysis. Therefore, we can conclude that TRW-S is tolerant to small

magnitude errors but su�ers from large magnitude errors.

We can exploit this intrinsic error robustness of TRW-S to optimize the fixed point pre-

cision of arithmetic computations in (2.14) and (2.15). Figure 5.3 shows energy vs. preci-

sion used in the computation of STRM-TRWS when running the Tsukuba stereo matching.

M[a, b, c] represents di�erent precision options applied to the main computation of STRM-

TRWS: a precision of a-bits is used to perform the computation of (2.14) and (2.15) after

b-bit LSB truncation and c-bit MSB saturation. The baseline precision is M[20, 0, 0] in [49],

which outputs the same energy minimization results as the floating point implementation

[10]. Compared to this baseline, 8-bit LSB truncation (M[12, 8, 0]) produces a similarly low

energy minimization curve, whereas 12-bit truncation (M[8, 12, 0]) results in a higher mini-

mum energy curve. According to our experiments, 8-bit precision with less than 11-bit LSB

truncation (i.e., M[8, 8, 4], M[8, 9, 3], and M[8, 10, 2]) achieves comparable energy minimiza-

52

1 2 3 4 5 6 7 8 9 10
3.5

4

4.5

5

5.5

6

6.5

7 x 105

Number of iterations

En
er

gy

M[20,0,0]
M[12,8,0]
M[8,12,0]
M[8,8,4]
M[8,9,3]
M[8,10,2]
M[8,11,1]
M[7,8,5]

Figure 5.3: Energy minimization performance against various precision in computation of
STRM-TRWS.

tion performance to the baseline precision (M[20, 0, 0]). However, other precisions, such as

M[8, 11, 1] or M[7, 8, 5], perform worse due to large magnitude quantization or saturation

errors.

5.2 Simulation Methodology and System Evaluation Setup

A cycle accurate software simulator has been implemented to simulate STRM-TRWS. We

employ this simulator in the experiments we describe in the following section. The simulation

methodology is summarized in Fig. 5.4(a). We evaluate error resiliency of STRM-TRWS by

injecting errors in the simulator. For accurate error resiliency simulation, input dependent

timing based error statistics are obtained via gate level simulations using an HDL simulator.

First, the gate delay is characterized with respect to supply voltage for basic gates such

as a full adder and XOR using circuit level simulators with a commercial 45 nm process

library. Then a structural HDL implementation of the REPARAM and MSG_UPD block

is simulated via an HDL simulator using the pre-characterized delay values. By choosing

the delay values that correspond to various supply voltages, HDL simulation is e�ectively

run at di�erent voltages. For a supply voltage (V
dd

) less than the critical voltage, errors

can be observed in the output. Through characterization of these errors, error statistics are

53

TRW-S
Software
Simulator

Circuit
Simulation

TRW_S HW
Architecture

Delay injection
(voltage

overscaling)

ANT

Energy
Performance

45nm CMOS
PDK

Verilog
RTL

Error
injection

(a)

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

error magnitude

pr
ob

ab
ilit

y

(b)

Figure 5.4: TRWS-HW simulation: (a) methodology, and (b) error statistics for AS at
V

dd

= 0.78 V.

obtained and used to inject errors in the AS and CS block of the software simulator.

The message passing unit was designed for V
dd,crit

= 1.2 V at f
CLK,crit

= 270 MHz. Figure

5.4(b) shows error statistics obtained for the AS block at V
dd

= 0.78 V. Large magnitude

errors can be seen to occur with high probability, which is expected due to the nature of LSB

first computation. The CS block did not exhibit any errors under these operating conditions,

due to its short critical path. Thus, ANT was only applied to AS operations in REPARAM

and MSG_UPD units of STRM-TRWS (Fig. 3.5(b) and (c)), which are vulnerable to large

magnitude errors. For the estimator, a reduced precision replica (RPR) of the main block

has been used. This particular estimator has a shorter critical path than the original block

and thus is not subject to timing errors but su�ers from estimation errors.

54

5.3 Results

As discussed in Section 5.1, the message passing inference such as TRW-S has intrinsic

robustness to small magnitude errors but is vulnerable to large magnitude errors. Since ANT

converts large hardware errors into small estimation errors, it can e�ectively compensate

large magnitude errors and significantly enhance error resiliency of the message passing

inference.To evaluate error compensation of ANT on the message passing inference, we run

TRW-S with ANT (the estimator with precision E[4,12,4] is used) applied for Tsukuba stereo

matching task. Figure 5.5(a) shows the energy minimization performance of ANT when

uniform errors with di�erent magnitude, as in Section 5.1.2, were injected at various error

rates. Only the tail (where e
max

> 32) is shown. For small magnitude errors (e < 1024),

performance of ANT is mostly dictated by the main block. When large magnitude errors

(e > 4096) are injected, the estimator becomes active and successfully compensates for the

errors. The slight degradation in performance is observed when errors of (1024 Æ e Æ 8192)

are injected; this is because hardware and estimator errors have similar magnitude and thus

ANT is not able to compensate for the errors. To avoid this ambiguity, the estimator should

be designed to have estimation errors distinct from the hardware errors ; this is true in

our case where the timing errors have large magnitude but the RPR has low magnitude

quantization errors.

Next, we explore the optimal precision for the estimator. We run the Tsukuba task at

various V
dd

and compare the energy minimization performance. A precision of M[8, 8, 4] has

been used for the precision optimized main block, and an estimator of precision E[a, b, c]

is used for ANT. Figure 5.5(a) shows the energy minimization performance of ANT with

di�erent estimators at various V
dd

. It is evident that energy minimization performance is

drastically degraded in the conventional case (no error protection), while ANT introduces

tolerance to a significant amount of errors. Compared to 2-bit and 3-bit precision estimators,

estimators with precision higher than 4-bit show much lower minimum energy. At V
dd

= 1 V,

where the error rate of the AS block is p
e,AS

= 0.8 %, the minimum energy of E[4, 12, 4] is

almost the same as the minimum energy of the error free case.

To further establish the e�ectiveness of error compensation capability of ANT for STRM-

55

32 1024 32768

106

107

emax

M
in

im
um

 e
ne

rg
y

Error rate 0.01
ANT Error rate 0.01
Error rate 0.1
ANT Error rate 0.1
Error rate 0.3
ANT Error rate 0.3

(a)

0.7 0.8 0.9 1 1.1

106

107

Vdd (V)

M
in

im
um

 e
ne

rg
y

No ANT
E[2,14,4]
E[3,13,4]
E[4,12,4]
E[5,11,4]
E[6,10,4]
Error Free

(b)

Figure 5.5: Simulation results: (a) performance of ANT with injection of uniform errors
with di�erent magnitude using M[20, 0, 0] and E[4, 12, 4], and (b) error injection rate vs.
energy minimization for di�erent ANT estimators with M[8, 8, 4].

TRWS, the disparity maps are compared for three cases: error free, conventional, and ANT.

The estimator precision is set to E[4, 12, 4]. Table 5.1 shows the disparity map of each case

at di�erent V
dd

. The disparity map for the conventional case becomes corrupted even at a

low error rate of 1 %. In contrast, the disparity map when ANT is applied is comparable to

the error free case when the same 1 % error rate is applied. Furthermore, at low V
dd

, where

the error rate is 5 % to 25 %, the disparity map of ANT is still close to the disparity map of

the error free case, which demonstrates the outstanding error compensation of ANT.

To evaluate the accuracy of the disparity maps, bad pixel ratio (BPR) is employed [5] as

the system level metric. BPR is calculated by comparing the depth label of each pixel in

the non-occlusion region to the true disparity map (ground truth) and counting a pixel to

be bad if the label di�ers by more than a threshold Ÿ (Ÿ = 1 in our case). As shown in Table

5.1, BPR of the conventional case rises drastically from 10.4 % to 70.4 % as V
dd

is scaled

down. In contrast, BPR of ANT is robust to errors; BPR is at most 6.27 %, at a high error

rate of 21.3 %.

Such enhancement in error robustness of ANT can be exploited to achieve power savings in

circuit implementation. The power consumption of the message passing unit is estimated via

switching activity based RTL synthesis in a commercial 45 nm synthesis library. Switching

56

Table 5.1: disparity map and BPR comparison for error-free, conventional and ANT at
various V

dd

.

V
dd

Error-Free Conventional ANT

1.0V
p

e,AS

= 0.8 % 2.7% 10.4% 2.51%

0.9V
p

e,AS

= 2.9 % 2.7% 60.7% 2.31%

0.84V
p

e,AS

= 5.1 % 2.7% 70.3% 3.93%

0.75V
p

e,AS

= 21.3 % 2.7% 70.4% 6.27%

activity is obtained from Verilog simulations running stereo matching of Tsukuba task. This

switching activity is then annotated in RTL synthesis to estimate accurate power consump-

tion. Table 5.2 summarizes the synthesis results with cell utilization and estimated power

consumption including leakage and dynamic power. As can be seen, the cell overhead of

ANT is approximately 97.4 %, which is significant. However, at an extreme supply voltage

of V
dd

= 0.72 V, ANT is able to achieve 39.7 % power savings while maintaining the system

performance. This result shows that significant energy savings is possible via voltage scaling,

even when additional complexity has to be added for the system to perform correctly.

57

Table 5.2: Estimated compensation overhead and power consumption of ANT obtained via
synthesis in a commercial 45 nm CMOS process.

M [8,8,4] only ANT (M[8,8,4] + E[4,8,4])
Cell 40,790 80,534 81,366

V
dd

(V) 1.10 1.10 0.72
Power (mW) 11.82 17.81 7.136
(leak, dyn) (2.03; 9.79) (3.39; 14.42) (0.23; 6.91)

5.4 Summary

SEC has been applied to a Markov random field (MRF) based stereo image matching archi-

tecture. Analysis and simulations show that for a 20-bit architecture, small errors (e Æ 1024)

are tolerable, while large errors (e Ø 4096) degrade the performance significantly. By apply-

ing ANT, experimental results show that the proposed ANT based hardware can tolerate an

error rate of 21.3 %, with performance degradation of only 3.5 % at an overhead of 97.4 %,

compared to an error-free full precision hardware with an energy savings of 39.7 %.

58

Chapter 6

Toward a General Purpose Probabilistic Inference
System

So far, we have discussed TRW-S based MRF inference hardware covering issues from our

high throughput architectures and associated system level optimizations to a proposed energy

e�cient implementation, but our scope of application was still limited to stereo matching.

In this chapter, we exploit MRF inference as a general framework for machine learning to

extend our scope to a variety of computer vision problems. To this end, we propose a novel

hardware architecture that can support various MRF configurations for solving computer

vision problems. Furthermore, we extend our understanding of the error resiliency of TRW-S

inference and the impact of ANT toward more general MRF settings.

6.1 High Performance TRW-S Accelerator for Computer Vision

6.1.1 Challenges for high performance computer vision solver

As described in Chapter 2, MRF inference solves MAP problems in the process of minimizing

the energy function (2.4), where the smoothness cost can be defined as follows:

◊
st

(x
s

, x
t

) = ⁄ · Ê
st

· min
Ó
|x

s

≠ x
t

|k, ◊
max

Ô
, k = 1 or 2. (6.1)

⁄ and Ê
st

represent coupling strength of entire edges and a specific one, respectively, and

◊
max

is the maximum smoothness cost. (6.1) can represent linear/quadratic costs, truncated

linear/quadratic costs, and the Potts model [10], which are widely used in computer vision

applications. Some examples of the popular choices of {⁄, Ê
st

, k, ◊
max

} along with the number

of labels (|‰|) for di�erent applications are shown in Table 6.1.

In Chapter 3 and 4, we have demonstrated that TRW-S inference can be implemented in

59

Table 6.1: MRF parameter configurations for target computer vision applications

Benchmarks Tasks Size |‰| ⁄ Ê
st

k ◊
max

Stereo matching
Tsukuba 384x288 16 20 2 1 2
Venus 434x383 20 50 1 2 7
Teddy 450x375 60 10 3 1 1

Image denoising House 256x256 256 5 1 2 Œ
Penguin 122x179 25 1 2 200

Object segmentation
Plane

320x213
4

1 Potts 1 1Building 7
Car 8

FPGA to achieve significant speedup in stereo matching without sacrifice in the quality of

inference. One of the factors that enable such speedup is application specific customization

of data and control paths. For example, our streaming TRW-S hardware (STRM-TRWS)

is optimized for the tasks that use multiple of 16 labels (up to 64 labels with folding) and

truncated smoothness costs. This aggressive customization results in limitation in usability

of STRM-TRWS; it cannot run applications that require the non-truncated quadratic cost,

or it sacrifices significant speed if the number of labels is not a multiple of 16. Therefore,

in order to enhance the usability of the TRW-S hardware to the wider applications, it is

necessary to design a hardware architecture that can support all these applications and

achieve high performance at the same time.

6.1.2 Accelerator architecture

In this section, we propose a novel block-parallel streaming accelerator architecture for high

performance TRW-S inference on various computer vision problems. The proposed architec-

ture consists of a novel block-parallel memory interface and multiple streaming processing

elements (PEs). The goal of this architecture is to achieve maximum throughput by fully

utilizing the available memory bandwidth, which can be represented as follows:

MemBWUtil = ParallelFactor(P) ◊ BlockSize(B).

60

The parallel factor and the block size are related to inter- and intra-node parallelization,

respectively. The block-parallel memory interface enables parallel processing of multiple

nodes in an MRF, and the streaming PE performs a block of message computation in parallel.

More detailed description follows in the next section.

6.1.2.1 Block-parallel memory interface

The block-parallel memory interface is illustrated in Fig. 6.1. This memory interface is

equipped with P sets of Read / Feedback / Writeback bu�ers and PEs. The bu�ers work as

FIFOs, and Read Bu�ers handle not only node data but also data for horizontal and vertical

edges (EHOR and EVER, respectively), while Feedback and Writeback bu�ers only handle

edge data. The node data consists of data cost (a vector of values in multiple blocks) and

control signals (e.g., edge connectivity information) obtained from the graph structure. The

edge data consists of a message (also a vector in multiple blocks) and optional coe�cients

such as the per-edge coupling strength (Ê
st

). As the same memory read interface is shared

to fetch node and edge data into the Read bu�ers, the node data is first loaded, followed

by the edge data. On the other hand, Writeback bu�ers solely occupy the memory write

interface.

In the beginning of inference, a look-up table inside each PE for smoothness cost is ini-

tialized according to the pre-defined MRF setup. Then, P streams of node/edge data of an

MRF stored in the external memory are fetched via Read bu�ers, and along with the edge

streams stored in Feedback bu�ers, they are processed by P PEs to compute new messages.

(The control signals in the node data determine which edge stream each PE needs to wait.)

The newly computed messages are temporarily stored in Feedback bu�ers to be used in the

later message updates. They are also stored in Writeback bu�ers to be dumped back to the

external memory. Each stream consists of a block of data that is a portion of a full vector

of length |‰|, and thus it takes multiple cycles to fetch a full vector if B < |‰|.

The goal of parallel memory interface is to process multiple nodes of an MRF in parallel.

The diagonal ordering used in Chapter 3 can be simply decomposed into multiple sub-

ordering using a modulo operation (e.g., subIndex = index modulo P), so that each sub-

61

Figure 6.1: Overall architecture of block-parallel memory interface.

ordering can be fetched to corresponding Read bu�ers. Although the streams for node and

edge data can be fetched independently, they should be executed in a way that all the

diagonal rows are strictly ordered. Therefore, we check collision at each PE to process the

stream with a lower node index first.

The following pseudo code shows how to check collision for each PE. There is no collision

between the node streams since each node stream is uniquely associated with each PE.

Whereas, collision check is necessary for edge streams since an edge stream can be processed

by any PE based on the structure of the graph. Thus, for each PE, we check collision for

accessing edge data by comparing its edge bu�er index with the other PEs. For example,

if PE[i] and PE[j] attempt to access edges in the same edge bu�er, signals collision[i][j]

and collision[j][i] become 1. At the same time, we also check which PE has a priority in

accessing the bu�er by comparing their node indices, e.g., PE[i] has a priority over PE[j] if

node_idx[i] < node_idx[j]. To save computation, we only compare PE pairs corresponding

to the entries of the upper triangle of a P by P matrix; the rest of the entries can be derived

from them. Then, for each (i, j) pair, we can check if a stall is required; i.e., in case of PE[i],

if stall[i][j] = 1 for any j, PE[i] needs to be stalled, and thus we set collision_check[i] as

1. In this way, the diagonal ordering appropriate for parallel processing can be enforced.

As an example, Fig. 6.2 illustrates how an MRF is processed by the block-parallel memory

62

// C o l l i s i o n check f o r PE[i]
For (i =0; i<P; i++) {

For (j=i +1; j<P; j++) {
// Compare b u f f e r i n d i c e s f o r c o l l i s i o n check
c o l l i s i o n [i] [j] = (buf fe r_idx [i] == buf fe r_idx [j]) ;

// The lower node index , the h igher p r i o r i t y
p r i o r i t y [i] [j] = (node_idx [i] < node_idx [j]) ;

// C o l l i s i o n check f o r the lower t r i a n g l e
c o l l i s i o n [j] [i] = c o l l i s i o n [i] [j] ;
p r i o r i t y [j] [i] = ~ p r i o r i t y [i] [j] ;

}
// C o l l i s i o n never occurs f o r the same PE
c o l l i s i o n [i] [i] = 1 ’ b0 ;
p r i o r i t y [i] [i] = 1 ’ b1 ;

For (j =0; j<P; j++) {
// check s t a l l f o r each (i , j) pa i r
s t a l l [i] [j] = (c o l l i s i o n [i] [j] & ~ p r i o r i t y [i] [j]) ;

}

c o l l i s i o n _ c h e c k [i] = | (s t a l l [i]) ;
}

63

interface. Data loading for Read bu�ers is shown in Fig. 6.2(a). We assume that P = 2

and |‰| = 4B (i.e., each node and edge data consists of 4 blocks). A sample 3x3 MRF is

depicted on the left, where the indices for nodes and horizontal/vertical edges are assigned

based on the diagonal ordering. The diagram on the right shows the node and edge data

loaded into the corresponding Read bu�ers. As P = 2, there are two sets of Read bu�ers for

nodes (RD_NODE[i]), horizontal (RD_EHOR[i]) and vertical (RD_EVER[i]) edges, which

are associated with two memory read ports (MemRD[i]). Node and edge data in the external

memory are grouped into streams via the modulo operation so that each memory port can

feed each stream to the corresponding Read bu�er (e.g., a node stream {0,2,4,6} goes to

RD_NODE[0]). Note that the same memory port is shared; thus Read bu�ers for nodes and

edges take turns fetching data. The loaded messages are later temporarily stored in Feed-

back bu�ers (FB_EHOR[i], FB_EVER[i]) for proper message computation; e.g., the new

messages EHOR0 and EV ER0 computed from NODE0 are stored in FB_EHOR[0] and

FB_EVER[0], respectively, to be used for processing NODE1 and NODE2, respectively.

The loaded streams are used to compute messages. Fig. 6.2(b) specifies the node indices

that go in and out of each PE at each cycle, where each node takes edge data from Read and

Feedback bu�ers to compute two messages in horizontal and vertical directions. We assume

that the PEs have two cycles of latency for message computation, and data in Read bu�ers

is pre-loaded and ready for use. At first, PE[0] starts processing NODE0 while PE[1] waits

for a new horizontal message from it. Since NODE0 is a node in the left-top corner of the

MRF, only data from Read bu�ers are required for computing new messages. At cycle 3, the

first block of the new messages EHOR0 and EV ER0 are computed and stored in Feedback

bu�ers (i.e., FB_EHOR[0] and FB_EVER[0]), initiating the process for NODE1 by PE[1].

After that, every PE can process the next node in its stream as soon as its current node is

processed, since the newly computed messages are ready for use in the Feedback bu�ers. At

the end, it takes 22 cycles to process 36 blocks of nodes (i.e., 9 nodes), achieving throughput

of 0.82 block per cycle per PE.

However, as data loading is done independently for each Read bu�er and its latency

depends solely on the associated memory port, there can be unexpected delay in fetching

data to Read bu�ers, inserting bubbles in the pipeline and causing collisions. Fig. 6.2(c)

64

Table 6.2: Relative resource overhead of memory interface for di�erent parallel factors.

FPGA resources P=4 P=8
Slice registers 100% 100%

Slice LUTs 208% 321%

illustrates this scenario, where 3 cycles of delay occur in data loading of RD_NODE[0]

at cycle 5. In this case, PE[0] stalls with three bubbles in the pipeline and resumes its

processing for NODE2 at cycle 8, while PE[1] processes NODE1 and NODE3. Then, at

cycle 11, while PE[0] is processing the last block of NODE2, PE[1] attempts to process

NODE5 that takes EV ER2 in FB_EVER[0]. Since PE[0] also accesses FB_EVER[0] to

fetch EV ER0, a collision occurs at this point, asserting collision_check[1] = 1. Thus,

PE[1] stalls one cycle.

The proposed block-parallel memory interface have two design parameters to configure, the

parallel factor P and the block size B, and the choice of P and B a�ects overall performance

as well as the resource utilization. If P is high, we can keep small block size, and thus we

can avoid wasting the memory bandwidth for applications with a large range of number of

labels. As an example, in case of STRM-TRWS in Chapter 3, MemBWUtil = 16, P = 1,

and B = 16, and thus it wastes 12 labels of memory bandwidth for the Venus stereo matching

task since it takes two blocks to convey data for 20 labels. If P = 4, there is no waste in

memory bandwidth. However, the higher P results in the more complex memory interface,

causing higher usage in hardware resources. Table 6.2 shows that FPGA resource utilization

for the memory interface more than doubles as P doubles. Therefore, it is important to find

the best option given the platform.

6.1.2.2 Streaming Jump Flooding for fast approximate message computation

For high performance TRW-S inference, it is important to quickly and accurately update

the messages. In general, message computation has complexity of O(|‰|2). STRM-TRWS in

Chapter 3 reduces this complexity to O(|‰|) by limiting its capability to the truncated cost

functions, which are common in stereo matching. [43] proposes a O(|‰|) message update

65

MRF$to
streams
(P=2)$

(a)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

PE
0

i 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8

o 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8

PE
1

i 1 1 1 1 3 3 3 3 5 5 5 5 7 7 7 7

o 1 1 1 1 3 3 3 3 5 5 5 5 7 7 7 7

(b)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

PE
0

i 0 0 0 0 B B B 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8

o 0 0 0 0 B B B 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8

PE
1

i 1 1 1 1 3 3 3 3 C 5 5 5 5 7 7 7 7

o 1 1 1 1 3 3 3 3 C 5 5 5 5 7 7 7 7

(c)

Figure 6.2: Example of processing 3x3 MRF using two PEs. (a) Node and edge data for a
3x3 MRF mapped to two sets of streams for nodes ({0,2,4,6,8}, {1,3,5,7}), horizontal edges
({0,2,4},{1,3,5}), and vertical edges ({0,2,4},{1,3,5}) are loaded to the corresponding Read
bu�ers. (b) The loaded streams are used by two PEs to compute messages for each node.
The diagram shows indices of nodes that go in and out of each PE. Assume that Read
bu�ers are preloaded. (c) Processing nodes using two PEs with three cycles of unexpected
delay in Read bu�er of PE0 at cycle 5.

66

algorithm (i.e., distance transform) for linear/quadratic cost functions, but this algorithm

is strictly sequential. As a promising alternative, [50] proposes a parallel O(|‰| log |‰|/P)

message update scheme based on the Jump Flooding algorithm, initially proposed for GPU

implementation of distance transform in [51].

The message computation in (2.14) and (2.15) can be thought as a distance transform from

H(x
p

) = 1

2

(◊
p

(x
p

) + q
sœNb(p)

M
sp

(x
p

)) ≠ M
qp

(x
p

) to M
pq

(x
q

) via distance measure ◊
pq

(x
p,

x
q

),

which can be rewritten as

M(x
q

) = min
x

p

{H(x
p

) + ◊
pq

(x
p,

x
q

)} . (6.2)

The optimal M(x
q

) can be found by full search over x
p

and x
q

, which takes O(|‰|2) compu-

tation. However, the Jump Flooding algorithm converts this computation into search over a

trellis. Fig. 6.3(a) illustrates the concept of Jump Flooding. At level i, each label searches

for the locally best choice among the candidate labels with a stride d = (|‰|/2i), written as

follows:

S
i+1

(x
q

) = arg min
x

p

œ{S

i

(x

q

+d),S

i

(x

q

≠d),S

i

(x

q

)}
H(x

p

) + ◊
pq

(x
p

, x
q

), (6.3)

where the initial label is set as S
0

(x
q

) = x
q

.

As d æ 1, each label refers to all the other labels at least once, leading to a locally best

label x̃ú
q

= S
i

(x
q

) that is close to the true optimal label xú
q

= arg min
x

p

{H(x
p

) + ◊
pq

(x
p,

x
q

)}.

Then, x̃ú
q

can be used to reconstruct an approximate message as

M̃(x
q

) = H(x̃ú
q

) + ◊
pq

(Âxú
q

, x
q

) ƒ M(xú
q

).

Since the number of iterations is at most log |‰|, the total complexity is reduced to O(|‰| log |‰|).

Also, note that for each i, computation of (6.3) can be parallelized across the labels. There-

fore, complexity of the parallel implementation of Jump Flooding becomes O(|‰| log |‰|/P).

Although Jump Flooding significantly reduces the complexity of message update, it does

not always find the optimal labeling due to its greedy search scheme. However, it is shown

in [50] and [51] that the results of Jump Flooding are very close to the optimal solutions. In

67

(a)

37500000%

37600000%

37700000%

37800000%

37900000%

38000000%

38100000%

38200000%

1% 9% 17
%

25
%

33
%

41
%

49
%

57
%

65
%

73
%

81
%

89
%

97
%

En
er
gy
'

Number'of'itera1ons'

Full%search% JumpFlooding%

(b)

Figure 6.3: (a) Illustration of Jump Flooding algorithm. (b) Comparison of minimum
energy for an image denoising task (House): Full search vs. Jump Flooding.

particular, if the smoothness cost is linear, it always finds the optimum messages. Even for

non-linear smoothness costs, Jump Flooding finds the messages that are similar to the accu-

rate ones since the candidates with di�erent message values are highly penalized throughout

the search. Thus, Jump Flooding achieves good empirical performance, as demonstrated in

Fig. 6.3(b) that the full search and Jump Flooding produce almost identical energy curves

for an image denoising task (House) which utilizes the quadratic smoothness cost.

To support various smoothness costs for message computation and achieve high through-

put, we designed a streaming architecture based on Jump Flooding for each PE in Fig.

6.1, which is shown in Fig. 6.4. The JF-based message passing unit computes the mes-

sages in horizontal and vertical directions, and as shown in 6.4(a), the overall architecture

of JF-based message passing is similar to the message passing unit in Chapter 3 (Fig. 3.5);

the reparameterize unit (REPARAM) takes node and edge data from Read and Feedback

bu�ers, respectively, to compute H(x
p

) in (6.2), and two Jump Flooding units (JF-UNITs)

take this H(x
p

) as input to compute approximate messages M̃(x
q

) in horizontal and vertical

directions via Jump Flooding (6.3).

It is important that the message update operation, like the message update unit (MSG_UPD)

in our prior work, be fully pipelined for high throughput. Thus, we design a novel stream-

ing architecture for Jump Flooding. We start from rewriting the original Jump Flooding

operation (6.3) as a two-step update rule for the pipelined implementation as follows:

68

S
i+1

(x
q

) = arg min
x

p

œ{x

q

±d,x

q

}
H

i

(x
p

) + ◊
pq

(S
i

(x
p

), x
q

), (6.4)

H
i+1

(x
q

) = H
i

(S
i+1

(x
q

)).

This update rule highlights the fact that S
i+1

(x
q

) can be found by considering the input

vectors S
i

(x
q

) and H
i

(x
q

) together with their delayed version, i.e., S
i

(x
q

±d) and H
i

(x
q

±d),

respectively. This motivates the FIR-filter-like streaming architecture for Jump Flooding.

To illustrate this idea, Fig. 6.4(b) shows an example of 8-label message update. The solid

and dashed arrows represent the label chosen and not chosen at level 1, respectively, and the

numbers in the circles indicate the locally best label at level i, S
i

(x
q

). As before, the initial

label is set as S
0

(x
q

) = x
q

, and H
0

is also initialized as H
0

(x
q

) = H(x
q

). At level 1, we

compute (6.4) to find S
1

(x
q

). Di�erent from (6.3), we also update H
1

(x
q

) based on S
1

(x
q

)

so that we do not need to keep the original vector H(x
q

). This results in FIR-filter-like

feed-forward execution of Jump Flooding, since output of each stage can be computed using

only its input passed from the previous stage. For example, to approximate for M(0) at

level 3, it is not necessary to maintain the input vector H throughout the stages as (6.3)

does, since it can be obtained from H
3

(0) which is passed from the previous stage.

Motivated by the above discussion, the Jump Flooding scheme is implemented as a fully

pipelined streaming architecture, as shown in Fig. 6.4(c). Each stage in JF-UNIT performs

computation for (6.4) at each level. The bu�ers take a block of data at every cycle, and

the depth of the bu�er is set as d/B to allow necessary delay (i.e., the varying strides, d)

for comparison of S
i

(x
q

) and H
i

(x
q

) with S
i

(x
q

± d) and H
i

(x
q

± d). The computation unit

(COMP) compares three candidates (corresponding to x
p

œ {x
q

± d, x
q

} in (6.4)) through a

4-stage pipeline and passes the locally best candidate S
i

along with the updated H
i

and the

corresponding message value M
i

to the next stage. The smoothness cost (6.1) is implemented

as a look-up table, where the data is indexed by the di�erence between two labels |x
p

≠ x
q

|.

To save hardware resources, the smoothness cost table is decomposed according to the levels

in (6.3), and thus the look-up table of the ith level contains 2i≠1 entries. Due to its log |‰|

pipelined stages, this streaming architecture takes O(log |‰|) COMPs, O(|‰|) storage and

69

latency, and a throughput of B per cycle for each PE. As a concrete example, the architecture

shown in 6.4(c) compares the labels with varying strides (starting from 4) throughout three

stages of COMPs with B = 1, and thus it takes 3 COMPs, 14 bu�er storage, 7 entries for

the smoothness cost table and latency of 19 cycles (7 cycles from the center bu�ers and 12

cycles from COMPs), achieving throughput of one block per cycle.

Furthermore, the proposed streaming architecture of JF-UNIT can be configured to sup-

port various smoothness costs. At the end of each stage, there are three options for output

to be passed to the next stage: the bypassed input, the output of the center bu�er, and the

output of COMP. By configuring the choice of the output, we can realize various types of

smoothness cost functions. For non-truncated linear/quadratic smoothness costs, the input

data stream goes through all the stages to find the approximate messages. For truncated

costs, the stream can skip the first few COMP stages since the search space is reduced

by truncation. In case of the Potts model (i.e., ◊
max

= 1), the stream can skip all the

COMPs since we only need to find min H(x). To compensate the latency to find min H(x),

we configure the data path to make the stream bypass some stages. In other words, the

bu�ers in JF-UNIT can be configured to work as a configurable delay registers with the

delay varying from 0 (bypass all the stages) to 2log|‰|≠1 (go through all the stages). Thus,

JF-UNIT can e�ectively support various smoothness costs used for a variety of computer

vision applications.

6.1.3 Performance

In this section, we provide the performance of the proposed streaming Jump Flooding-based

TRW-S accelerator for computer vision (STRM-TRWS-CV) in terms of speed and quality of

inference. Table 6.4 shows comparison of execution time (1 iteration) of STRM-TRWS-CV

with the software execution time (TRWS-SW) for the various computer vision tasks from

Middlebury and OpenGM benchmarks [10, 24]. Stereo matching is to find the best disparity

label given horizontally shifted stereo images, as explained in detail in Section 2.1. Image

denoising is to restore a noisy image by inferring proper color intensities (in 8-bit grayscale)

of all the pixels based on a noisy image. The labels are intensities (0~255), and the data cost

70

(a) (b)

(c)

Figure 6.4: Streaming architecture for Jump Flooding-based message computation
(JF-UNIT). (a) Message passing unit as a PE. (b) An example for operation of Jump
Flooding. Solid and dashed arrows represent labels chosen and not chosen at each level,
respectively. (c) Architecture for Jump Flooding-based message update.

71

Table 6.3: Summary for FPGA utilization and specification of PE.

XC5VLX330 Slice Reg Slice LUT BRAM DSP48E
PE 11.4% 9.2% 0.0% 1.0%

MemIF 9.1% 9.3% 74.0% 1.6%

Specification of PE (P=4, B=4)
Num of
stages

Number of
bu�er entries

Block size
(bits)

Depth of
pipeline

Throughput
(blocks/cycle)

6 34 96 70 4

for each pixel is the squared di�erence between the label and the observed intensity [10].

Object segmentation is to detect and segment object classes in images [24]. Each pixel of an

image is associated with a discrete random variable that takes labels like grass, tree, or sky.

The distribution over these variables is modeled as a likelihood of the MRF formulation,

where we can assign smoothness prior to solve the problem as energy minimization. All of

these benchmarks represent fundamental applications in computer vision. The detail MRF

setting for each task is summarized in Table 6.1.

STRM-TRWS-CV is implemented in the same Xilinx Virtex-5 (LX330) FPGA on Convey

HC-1, and the final version is configured as P = 4, exploiting most of the available FPGA

resources (e.g., 80% of Slice Registers and 81% of Slices LUTs in total). Table 6.3 shows a

summary of the FPGA utilization and the specification of our PE for P = 4 and B = 4.

The benchmark data and the execution time of TRWS-SW are from [24], in which an Intel

Xeon W3550, 3.07GHz 12GB RAM machine has been used. For the stereo matching tasks,

we also include the execution time of our TRW-S stereo matching system (STRM-TRWS)

for comparison.

As shown in the table, STRM-TRWS-CV achieves significant speedup (11 ≠ 41◊) across

the tasks. Furthermore, in case of stereo matching, the execution times of STRM-TRWS-

CV are comparable to STRM-TRWS, even though STRM-TRWS is highly optimized for the

stereo matching application. This is due to the fact that STRM-TRWS-CV is less likely to

waste the memory bandwidth than STRM-TRWS. For example, in case of Venus task, which

uses 20 labels, STRM-TRWS-CV outperforms STRM-TRWS since STRM-TRWS su�ers

from wasting the memory bandwidth of 12 out of 32 labels due to its 16-label block size.

72

Table 6.4: Comparison between execution time (in second) of 1 iteration of TRWS SW,
STRM-TRWS and STRM-TRWS-CV for various computer vision tasks.

Benchmarks
[10, 24] Tasks TRWS-SW STRM-

TRWS
STRM-

TRWS-CV Speedup

Stereo Matching
Tsukuba 0.085 0.0032 0.0046 18.5
Venus 0.352 0.0096 0.0086 40.7
Teddy 0.514 0.0194 0.0263 19.5

Image
Denoising

House 1.208 N/A 0.0436 27.7
Penguin 0.435 N/A 0.0145 30.0

Object
Segmentation

Plane 0.011 N/A 0.0007 15.5
Building 0.016 N/A 0.0013 11.3

Car 0.023 N/A 0.0013 16.2

Figure 6.5: Comparison of inference quality between TRWS-SW and STRM-TRWS-CV for
various computer vision tasks.

This demonstrates that our STRM-TRWS-CV architecture can support a wide variety of

computer vision tasks more e�ectively than the previous architecture.

We further compare the output of inference between TRWS-SW and STRM-TRWS-CV

for various computer vision tasks. As shown in Fig. 6.5, the outputs of TRWS-SW and

STRM-TRWS-CV are almost identical, indicating that our Jump Flooding-based hardware

architecture achieves significant speedup with little compromise in the output quality.

Next, we evaluate our hardwares with the taxonomy of probabilistic inference platforms

summarized in Table 1.1. We focus on stereo matching as it provides standardized perfor-

mance comparison through the well-known benchmarks suite [10]. Table 6.5 shows various

73

performance results of stereo matching for the di�erent belief propagation implementations

along with our TRW-S implementations (STRM-TRWS and STRM-TRWS-CV). For fair

comparison, we consider the same Tsukuba stereo matching task and measure the perfor-

mance in terms of “Million Disparity Estimations per second” (MDE/s) that achieves the

similar energy values. MDE/s is defined as (Number of pixels ◊ Disparity range (i.e., num-

ber of labels) ◊ Frame rate), and it reflects how large a problem a hardware can handle

at what speed (the higher, the better). The reported execution times from the literature

are used. Also, the numbers of iterations are chosen to achieve similar energy. The energy

values for the tile-based BP and OpenGM are from [1] and [24], respectively, and we obtain

the energy value for PATRA by SW simulation. The energy value for GraphGen is assumed

to be equal to the STRM-TRWS result since they use the same TRW-S algorithm.

As shown in Table 6.5, our TRW-S implementation customized for stereo matching (STRM-

TRWS) achieves the highest MDE/s compared to the other belief propagation implemen-

tations based on ASIC, FPGA, GPU and CPU platforms. In particular, our hardware

outperforms PATRA since its lower throughput is compensated by faster convergence of the

TRW-S algorithm over TRW. Even the configurable TRW-S implementation (STRM-TRWS-

CV) shows compelling performance (achieving higher MDE/s than others except PATRA),

demonstrating superiority of our hardware architectures.

As MDE/s is a very popular measure used in stereo matching literature, we can also use

it to compare our hardware with the other non-BP based stereo matching implementations.

The stereo matching implementations are grouped as local, semi-global, and global, based on

the scope of search for the best disparity label. The local methods such as sum of di�erence

(SAD) or adaptive support weight (ADSW) focus on local windows to find the best label

corresponding to the disparity of matching pixels in the stereo images. On the other hand,

the global methods such as dynamic programming (DP) and belief propagation consider

all the pixels in the image for search (i.e., the window size is equal to the image size). The

semiglobal method (i.e., semiglobal matching, SGM) is an alternative between the two, which

limits search space from the entire image to a few streaks (e.g., 8 streaks from left, right,

up, down, and four diagonal directions) in order to reduce the computational complexity.

As the search window becomes larger, the greater the chance of finding the correct disparity

74

Ta
bl

e
6.

5:
Pe

rfo
rm

an
ce

ev
al

ua
tio

n
of

st
re

am
in

g
T

RW
-S

ha
rd

wa
re

sw
ith

in
th

e
ta

xo
no

m
y

of
pr

ob
ab

ili
st

ic
in

fe
re

nc
e

pl
at

fo
rm

s.

Ta
xo

no
m

y
A

pp
lic

at
io

n
sp

ec
ifi

c
C

on
fig

ur
ab

le
G

en
er

al
pu

rp
os

e
H

W
ty

pe
A

SI
C

FP
G

A
G

PU
FP

G
A

C
PU

N
am

e
T

ile
-b

as
ed

BP
[1

]
PA

T
R

A
[2

6]
ST

R
M

-
T

R
W

S
T

ile
-b

as
ed

BP
[1

]
ST

R
M

-
T

R
W

S-
C

V
G

ra
ph

G
en

[3
1]

O
pe

nG
M

[2
4]

Pl
at

fo
rm

U
M

C
90

nm
(1

85
M

H
z)

M
ax

el
er

M
ax

W
or

ks
ta

tio
n

X
ili

nx
V

irt
ex

-6
SX

47
5T

(1
00

M
H

z)

C
on

ve
y

H
C

-1
X

ili
nx

V
ir

te
x-

5
LX

33
0

(1
50

M
H

z)

N
V

ID
IA

G
eF

or
ce

88
00

G
T

S

C
on

ve
y

H
C

-1
X

ili
nx

V
ir

te
x-

5
LX

33
0

(1
50

M
H

z)

Te
ra

sic
D

E4
(1

50
M

hz
)

In
te

lX
eo

n
W

35
50

(3
.0

7G
H

z)

Ta
sk

Ts
uk

ub
a

(3
84

x2
88

,1
6

la
be

ls)
It

er
at

io
ns

5
(T

I=
20

)
18

5
5

(T
I=

20
)

5
5

5
En

er
gy

39
69

53
40

01
92

39
44

34
39

69
53

39
44

34
39

34
34

39
34

34
T

im
e

(s
)

pe
r

ite
ra

tio
n

N
/A

0.
00

12
0.

00
32

0.
01

95
0.

00
46

0.
00

70
0.

08
50

M
D

E/
s

35
.8

81
.9

11
0.

6
18

.2
76

.9
50

.6
4.

2

75

for each pixel, but the greater computational complexity is required [52].

Table 6.6 summarizes various stereo matching implementations using di�erent hardware

platforms including multi-core CPUs, GPU, ASIC, and FPGA. As shown in Table 6.6,

the global methods (e.g., Wang 2006 [53]) achieve lower MDE/s than the semiglobal or

local methods in general. However, our streaming hardware experiments (STRM-TRWS

and STRM-TRWS-CV) show promising MDE/s compared to the other implementations,

suggesting that our hardware can achieve compelling speed while maintaining the global

search space for better inference quality.

6.2 Error Resilient TRW-S for Computer Vision via ANT

In Chapter 5, we discussed error resiliency of TRW-S message passing hardware and im-

plication of ANT for it. However, the discussion was mainly focused on empirical results

rather than thorough theoretical understanding. In particular, the previous error analysis

of TRW-S was limited to a very simple MRF setting associated with the Potts model and

binary labels. To better understand the behavior of erroneous inference applied to various

machine learning applications, error resiliency analysis of massage passing inference with a

more general MRF setting is required. To this end, we discuss theoretical reasoning about

error resiliency of TRW-S under general MRF setting. In particular, we discuss the relation-

ship between the error resiliency and the coupling strength imposed by the smoothness cost

of the message passing inference. Furthermore, we discuss the implication of ANT for this

theoretical analysis, which is strongly supported by empirical results.

6.2.1 Error resiliency of message passing inference under varying coupling
strength

As discussed in Chapter 5, message passing inference based on Sum-Product or Max-Product

type belief propagation has exhibited intrinsic error resiliency [47, 34]. In [59], Ihler et al.

have shown a contraction bound of Sum-Product BP that implies its inherent error resiliency,

but the scope of their study was limited by the labels in the continuous domain. As this

76

Ta
bl

e
6.

6:
Pe

rfo
rm

an
ce

ev
al

ua
tio

n
of

st
re

am
in

g
T

RW
-S

ha
rd

wa
re

s
w

ith
ot

he
r

no
n-

BP
st

er
eo

m
at

ch
in

g
im

pl
em

en
ta

tio
ns

.
*M

D
E/

s
is

ca
lc

ul
at

ed
fo

r
on

e
ite

ra
tio

n
of

T
RW

-S
in

fe
re

nc
e

in
or

de
r

to
co

m
pe

ns
at

e
th

e
fa

ct
th

at
th

e
ot

he
r

m
et

ho
ds

(e
.g

.,
SG

M
,D

P
an

d
A

D
SW

)
pe

rfo
rm

on
e-

tim
e

se
ar

ch
fo

r
ea

ch
pi

xe
l.

W
or

k
M

D
E/

s
Ty

pe
M

et
ho

d
Pl

at
fo

rm
C

PU
G

eh
rig

20
10

[5
4]

72
.7

Se
m

ig
lo

ba
l

SG
M

In
te

lC
or

e
i7

-9
75

ex
,3

G
H

z

G
PU

W
an

g
20

06
[5

3]
53

.0
G

lo
ba

l
A

D
SW

+
D

P
�A

T
IR

ad
eo

n
X

L1
80

0
Er

ns
t

20
08

[5
5]

63
.9

Se
m

ig
lo

ba
l

SG
M

N
V

ID
IA

G
eF

or
ce

88
00

U
LT

R
A

A
SI

C
C

ha
ng

20
10

[5
6]

27
2.

5
Lo

ca
l

A
D

SW
U

M
C

90
nm

(9
5M

H
z)

FP
G

A

H
irs

ch
m̈

ul
le

r
20

12
[5

7]
32

8.
3

Se
m

ig
lo

ba
l

SG
M

X
ili

nx
V

irt
ex

-5
(1

25
M

H
z)

T
to

fis
20

15
[5

8]
11

79
.0

Lo
ca

l
A

D
SW

K
in

te
x-

7
FP

G
A

(2
00

M
H

z)
ST

R
M

-T
RW

S
55

3.
0*

G
lo

ba
l

T
RW

-S
X

ili
nx

V
irt

ex
-5

(1
50

M
H

z)
ST

R
M

-T
RW

S-
C

V
38

4.
7*

77

bound sheds light on the understanding of error resiliency of belief propagation, we start

from their framework to analyze the error resiliency of Max-Product type inference.

We first define the message update rule for the Max-Product inference as

m
st

(x
t

) Ã max
x

s

{„(x
s

, x
t

) · „
s

(x
s

) ·
Ÿ

uœNb(t)\s

m
us

(x
s

)} = max
x

s

{„(x
s

, x
t

) · M
st

(x
s

)}, (6.5)

where x
s

œ ‰ is a discrete label, „
s

and „
st

are the potentials corresponding to the likelihood

and the prior (as described in Chapter 2), and Nb(t)\s is a set of nodes that are direct

neighbors of a node t excluding s. Also, assume that all the entries of „
s

and „
st

have

positive values and all the messages are initialized as a uniform distribution. Note that this

Max-Product type inference is equivalent to ≠ log of (6.2). We now consider the case when

arithmetic errors occurred during the computation of (6.5), producing an erroneous message

m̂
st

(x
t

). We define an error as a di�erence (in ratio) between the error-free and the erroneous

messages, e(x) , m̂(x)/m(x). Then, we can write an erroneous message update as

m̂
st

(x
t

) Ã max
x

s

{„(x
s

, x
t

) · „
s

(x
s

) ·
Ÿ

uœNb(t)\s

m̂
us

(x
s

)} = max
x

s

{„(x
s

, x
t

) · M
st

(x
s

) · E
st

(x
s

)}.

(6.6)

To analyze the behavior of e(x), we need to define a measure. In this work, we follow the

motivation presented in [59] to use a dynamic range as our measure. The dynamic range of

a vector e(x) and a matrix „(x, y) are defined as

d(e(x)) , max
a,b

ı̂ıÙe(a)
e(b) , d(„(x, y))2 , max

a,b,c,d

„(a, b)
„(c, d) . (6.7)

Therefore, log d(e) represents the largest di�erence among the entries of e(x).

For Sum-Product BP (i.e.,
´

instead of max in (6.5)), Ihler et al. have shown that the

following bound holds [59]:

d(e
ts

) Æ d(„
ts

)2d(E
ts

) + 1
d(„

ts

)2 + d(E
ts

) . (6.8)

78

(6.8) indicates that the dynamic range of errors on the updated messages is bounded by

both the dynamic range of „
ts

and E
ts

. This can be seen by describing limiting behavior;

d(e
ts

) Æ d(„
ts

)2 as d(E
ts

) æ Œ, and d(e
ts

) Æ d(E
ts

) as d(„
ts

)2 æ Œ. In other words,

the increasing dynamic range of error in the incoming messages has limited e�ect on the

dynamic range of error in the output message, implying error resiliency of the Sum-Product

algorithm.

We expected that a similar bound for the Max-Product inference would exist. However,

it was not tractable to extend the analytical approach in [59] to the Max-Product to claim

a bound similar to (6.8), since non-linearity of the max operation hinders adopting the

approach of [59] based on linear combination of the message update rule. As an alternative,

we can evaluate the asymptotic behavior of (6.7).

We start from the definition of the dynamic range as follows:

d(e)2 = d(m̂/m)2 = max
a

{max
x

Õ{„(xÕ, a) · M(xÕ) · E(xÕ)}
max

x

{„(x, a) · M(x)} }·max
b

{ max
x

{„(x, b) · M(x)}
max

x

Õ{„(xÕ, b) · M(xÕ) · E(xÕ)}}.

For simplicity, consider the following pairwise potential:

„(x, y) , exp(≠⁄|x ≠ y|p), p = 1 or 2.

Note that this pairwise potential is equivalent to ≠ log of (6.1) where Ê
st

= 1 and ◊
max

= Œ,

which is widely used in our computer vision applications. We claim that the following

asymptotic bounds hold:

If d(„)2 æ Œ, then d(e)2 = d(E)2,

If d(E)2 æ Œ, then d(e)2 Æ d(„)4.

(6.9)

The proof is as follows. If d(„)2 æ Œ (i.e., ⁄ æ Œ), since „ dominates, the maximizing

argument should be one that maximizes „, which is when x = y for „(x, y). Therefore,

79

max
x

Õ{„(xÕ, a) · M(xÕ) · E(xÕ)} = M(a)E(a),

max
x

{„(x, a) · M(x)} = M(a),

max
x

Õ{„(xÕ, b) · M(xÕ) · E(xÕ)} = M(b)E(b),

max
x

{„(x, b) · M(x)} = M(b).

By dividing the common factors M(a) and M(b), we get

d(e)2 = max
a

{E(a)} · max
b

{1/E(b)} = d(E)2.

Now consider the case when max
x

E(x) æ Œ and thus d(E)2 æ Œ. Assume xú =

arg max
x

E(x). Since max
x

E(x) now dominates, the maximizing argument should be one

that maximizes E. Therefore, the following holds:

max
x

Õ{„(xÕ, a) · M(xÕ) · E(xÕ)} = „(xú, a) · M(xú) · E(xú),

max
x

Õ{„(xÕ, b) · M(xÕ) · E(xÕ)} = „(xú, b) · M(xú) · E(xú).

By plugging this into d(e)2,

d(e)2 = max
a

{„(xú, a) · M(xú) · E(xú)
max

x

{„(x, a) · M(x)} } · max
b

{ max
x

{„(x, b) · M(x)}
„(xú, b) · M(xú) · E(xú)}.

Note that M(xú) and E(xú) are constants. By dividing the common constants,

d(e)2 = max
a

{ „(xú, a)
max

x

{„(x, a) · M(x)}} · max
b

{max
x

{„(x, b) · M(x)}
„(xú, b) }.

Define „
max

= 1 and „
min

= exp(≠⁄ · ||‰| ≠ 1|p), then we can obtain the following upper

bound,

d(e)2 Æ max
a

{ „

max

max

x

{„(x,a)·M(x)}} · max
b

{max

x

{„(x,b)·M(x)}
„

min

}

Æ { „

max

„

min

·max

x

{M(x)}} · {„

max

·max

x

{M(x)}}
„

min

}

Æ { „

max

„

min

·max

x

{M(x)}} · {„

max

·max

x

{M(x)}}
„

min

}

= „

2
max

„

2
min

= d(„)4.

80

Therefore, we can find the asymptotic bounds for d(e)2, which are equivalent to the asymp-

totic bounds of Sum-Product BP 6.8. These bounds imply that similar error resiliency can

be expected for the Max-Product type inference such as TRW-S.

6.2.2 Empirical support for theoretical error bounds

In this section, we provide experimental results to support our theoretical analysis described

in Section 6.2.1. To evaluate the impact of error injection to the inference quality, we employ

the same software simulator used in Chapter 5, but this time, we also change the coupling

strengths ⁄ of the smoothness cost. We run TRW-S for the Tsukuba stereo matching task,

but for simplicity in analysis, we use linear smoothness cost with ⁄. Errors with varying

magnitudes (≠215 ≥ 215) are injected to the message computation with 1% injection rate.

Fig. 6.6 shows the impact of the injected errors on the energy minimization performance for

the di�erent coupling strength ⁄. We measure degradation of inference quality in terms of

energy increment; to measure the energy increment solely due to the error injection, we o�set

the erroneous energy with the error free energy, i.e., Energy
erroneous

(⁄)≠Energy
error≠free

(⁄).

Overall, an error resiliency trend similar to that observed in Chapter 5 can be found;

the TRW-S inference is resilient to the small magnitude errors but vulnerable to the large

magnitude ones. However, one thing to note is that, as the error magnitude becomes large,

the more degradation of inference quality can be observed as the larger ⁄ is used. This trend

is consistent with our analysis in 6.2.1 that, as the dynamic range of input errors becomes

dominant, its impact on the output error becomes more bounded by the dynamic range of

the pairwise potential, i.e., the coupling strength ⁄ .

Next, we explore the impact of ANT on the the quality of inference with the erroneous

message computation. We use a simple LSB-truncated reduced precision replica (RPR) as

our estimator of ANT. Fig. 6.7(a) shows the degradation of inference quality vs. error

magnitude for di�erent ⁄. As can be seen, RPRs with larger than 8-bit precision e�ec-

tively compensate for the errors and maintain low degradation of inference quality. Also,

as ⁄ increases, the larger degradation of inference quality is observed for the case without

ANT.However, note that the error compensation of RPRs with 8-bit or larger precision is

81

Figure 6.6: Impact of error injection on inference quality for di�erent coupling strengths.

consistent regardless of ⁄. This unique trend is more distinct if we plot the same graph as

the degradation of inference quality vs. ⁄. As shown in Fig. 6.7(b), as the error magni-

tude increases, the degradation of inference quality increases more drastically as ⁄ increases.

However, once protected by RPRs, the degradation of inference quality becomes less a�ected

by ⁄. In other words, ANT enhances the error resiliency of the message passing inference

regardless of the coupling strength.

We can explain this trend using our error analysis. From (2.18), one can show that the

di�erence between the output of ANT y
ANT

and the error-free output y
o

is bounded by the

estimation error ‘ and the ANT threshold · as follows:

|y
ANT

≠ y
o

| Æ ‘ + ·.

In other words, ANT can replace a large magnitude error with a small magnitude one,

decreasing the dynamic range of error. Therefore, from (6.9), the errors on the output that

are once bounded by the coupling strength due to large magnitude input errors now become

bounded by the input errors with low dynamic ranges thanks to error compensation by ANT.

Therefore, the error resilience of the message passing inference can be greatly enhanced by

82

ANT regardless of the choice of coupling strength.

To verify our analysis, we perform stereo matching tasks with erroneous TRW-S under

more realistic MRF settings; we run TRW-S for Tsukuba, Venus and Teddy using the di�er-

ent configurations specified in Table 6.1. The experimental results are shown in Fig. 6.8-6.10.

Similar trends can be observed from all these tasks, supporting our analysis. This also im-

plies that with help of ANT, one can realize a variety of computer vision applications using

various coupling strengths under erroneous computational fabric, since ANT will e�ectively

compensate for the errors regardless of the choice of the coupling strength.

We further consider the impact of error characteristic of the message passing inference

on the perceptual quality. Fig. 6.11 shows comparison of bad pixel ratio (BPR) for stereo

matching of Teddy task using TRW-S with di�erent ⁄s (i.e., ⁄ = 4 or 10). When setting up an

MRF for stereo matching, large ⁄ is often preferred to motivate a smooth label assignment.

The first row of Fig. 6.11 shows the disparity maps of Teddy task with di�erent ⁄s, and as

expected, the larger ⁄ achieves the lower BPR. However, as we discovered in the previous

sections, the larger ⁄ is, the more the quality of inference is a�ected by errors, resulting

in higher BPR, as shown in the second row of Fig. 6.11. Then the last row of Fig. 6.11

shows that ANT with 8-bit precision RPRs can e�ectively compensate for the errors and

reduce BPR. This demonstrates that ANT can be used to enable error resilient processing

of TRW-S for a wider variety of MRF settings.

6.3 Summary

In this chapter, we have discussed e�orts to extend our high performance and error resilient

probabilistic inference system toward more general purpose computing. We have proposed a

novel block-parallel architecture to support three di�erent MRF inference models, for stereo

matching, for denoising, and for object segmentation, that are popular in computer vision

and represent core components of the popular Middlebury and OpenGM benchmark suite

[10, 24]. We then provided more thorough understanding about the error resiliency of the

inference method, leading to a strong reasoning about e�ective ANT-based stochastic error

compensation.

83

(a)

(b)

Figure 6.7: (a) Inference quality vs. error injection for di�erent coupling strength and
ANT, (b) Inference quality vs. coupling strength for di�erent error magnitude and ANT.

84

(a) (b)

Figure 6.8: Tsukuba: (a) Inference quality vs. error injection for di�erent coupling
strength and ANT, (b) Inference quality vs. coupling strength for di�erent error
magnitude and ANT.

(a) (b)

Figure 6.9: Venus: (a) Inference quality vs. error injection for di�erent coupling strength
and ANT, (b) Inference quality vs. coupling strength for di�erent error magnitude and
ANT.

85

(a) (b)

Figure 6.10: Teddy: (a) Inference quality vs. error injection for di�erent coupling strength
and ANT, (b) Inference quality vs. coupling strength for di�erent error magnitude and
ANT.

Lambda 4
BPR 13.3%

Lambda 10
BPR 12.8%

Lambda 4
Error 15b,410%
BPR 52.0%

Lambda 10
Error 15b,410%
BPR 56.8%

Lambda 4
Error 15b,410%
ANT 8b
BPR 33.0%

Lambda 10
Error 15b,410%
ANT 8b
BPR 17.5%

Figure 6.11: Comparison of bad pixel ratio (BPR) for stereo matching of Teddy task using
TRW-S with di�erent ⁄s.

86

Chapter 7

Conclusion

In this work, we designed and demonstrated a set of novel high performance and error

resilient probabilistic inference systems. First, we implemented and benchmarked a video-

rate stereo matching system implemented on a hybrid CPU+FPGA platform (Convey HC-

1). We modeled the stereo task as a statistical inference on a Markov random field, which

was reliably solved by the sequential tree-reweighted (TRW-S) algorithm. We proposed

both algorithmic and frame level parallelization techniques for e�ective implementation of

TRW-S inference on the hybrid platform. The pipelined streaming TRW-S architecture

associated with three frame level optimization schemes (function level pipelining, frame level

parallelization, and scene change detection based message reuse) achieved the goal of high

quality video-rate stereo matching. Experimental results show that this system outperforms

existing belief propagation based GPU/ASIC implementations in terms of accuracy and

speed of inference.

Second, we studied the error propagation characteristics of an iterative message passing

based stereo image matching application in depth. We observed that the message passing

hardware has intrinsic robustness to small magnitude errors but is vulnerable to large magni-

tude errors. Our approach to apply a popular statistical error compensation technique (SEC)

called algorithmic noise tolerance (ANT) exploited the error characteristic of the message

passing hardware to remarkably enhance its error resiliency, which was further traded for

significant energy savings.

Finally, we extended our high performance and error resilient probabilistic inference sys-

tem toward more general purpose MRF computing. We proposed a novel block-parallel

architecture to support various MRF inference models that are popular in computer vision,

which achieved 10 ≠ 40◊ speedup over a standard SW implementation for stereo matching,

87

image denoising, and object segmentation benchmarks. We then provided thorough un-

derstanding about the error resiliency of the inference method, leading to strong reasoning

about e�ective ANT-based stochastic error compensation.

88

References

[1] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen, “Hardware-e�cient
belief propagation,” Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 21, no. 5, pp. 525–537, 2011.

[2] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo
matching using hierarchical belief propagation,” in BMVC, vol. 6, 2006, pp. 989–998.

[3] X. Xiang, M. Zhang, G. Li, Y. He, and Z. Pan, “Real-time stereo matching based on
fast belief propagation,” Machine Vision and Applications, vol. 23, no. 6, pp. 1219–1227,
2012.

[4] E. Kim, D. Baker, S. Narayanan, D. Jones, and N. Shanbhag, “Low power and error
resilient PN code acquisition filter via statistical error compensation,” in Proc. Custom
Integ. Circuits Conf. (CICC), Sep. 2011.

[5] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1-3,
pp. 7–42, 2002.

[6] Convey Computer, “Convey Reference Manual,” Online:
http://www.conveycomputer.com, Sep. 2009.

[7] “Stereo movie sample,” Online: http://www.stereomaker.net/sample/index.html.

[8] D. Che, M. Safran, and Z. Peng, “From big data to big data mining: challenges, issues,
and opportunities,” in Database Systems for Advanced Applications. Springer, 2013,
pp. 1–15.

[9] D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques.
The MIT Press, 2009.

[10] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tap-
pen, and C. Rother, “A comparative study of energy minimization methods for Markov
random fields with smoothness-based priors,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 30, no. 6, pp. 1068–1080, 2008.

[11] M. Kim and P. Smaragdis, “Single channel source separation using smooth nonnega-
tive matrix factorization with markov random fields,” in Machine Learning for Signal
Processing (MLSP), 2013 IEEE International Workshop on. IEEE, 2013, pp. 1–6.

89

[12] S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, “A survey of mri-based medical image
analysis for brain tumor studies,” Physics in Medicine and Biology, vol. 58, no. 13, p.
R97, 2013.

[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richard-
son, C. Kozyrakis, and M. Horowitz, “Understanding sources of ine�ciency in general-
purpose chips,” in ACM SIGARCH Computer Architecture News, vol. 38, no. 3. ACM,
2010, pp. 37–47.

[14] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R. G.
Dreslinski, T. Mudge, V. Petrucci, L. Tang et al., “Sirius: An open end-to-end voice
and vision personal assistant and its implications for future warehouse scale computers,”
in Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2015, pp. 223–238.

[15] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph
cuts,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 11,
pp. 1222–1239, 2001.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[17] V. Kolmogorov, “Convergent tree-reweighted message passing for energy minimization,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 10, pp.
1568–1583, 2006.

[18] M. Miranda, “The threat of semiconductor variability,” IEEE Spectrum, 2012.

[19] C. G. Almudever and A. Rubio, “Carbon nanotube growth process-related variability
in cnfets,” in 2011 11th IEEE International Conference on Nanotechnology, 2011.

[20] N. R. Shanbhag, “Reliable and e�cient system-on-a-chip design,” IEEE Computer,
vol. 37, no. 3, pp. 42–50, Mar. 2004.

[21] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochastic computation,”
in Proc. 47th Design Automation Conf. (DAC), 2010, pp. 859–864.

[22] J. I. Woodfill, G. Gordon, and R. Buck, “Tyzx deepsea high speed stereo vision system,”
in Computer Vision and Pattern Recognition Workshop, 2004. CVPRW’04. Conference
on. IEEE, 2004, pp. 41–41.

[23] W. Van Der Mark and D. M. Gavrila, “Real-time dense stereo for intelligent vehicles,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 7, no. 1, pp. 38–50,
2006.

[24] J. H. Kappes, B. Andres, F. Hamprecht, C. Schnorr, S. Nowozin, D. Batra, S. Kim, B. X.
Kausler, J. Lellmann, N. Komodakis et al., “A comparative study of modern inference
techniques for discrete energy minimization problems,” in Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013, pp. 1328–1335.

90

[25] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,
“Graphlab: A new framework for parallel machine learning,” in UAI 2010, Proceedings
of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina
Island, CA, USA, July 8-11, 2010, 2010. [Online]. Available: https://dslpitt.org/uai/
displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26 pp.
340–349.

[26] W. Zhao, H. Fu, G. Yang, and W. Luk, “Patra: Parallel tree-reweighted message passing
architecture,” in Field Programmable Logic and Applications (FPL), 2014 24th Inter-
national Conference on. IEEE, 2014, pp. 1–6.

[27] S. Park, C. Chen, and H. Jeong, “VLSI architecture for MRF based stereo matching,”
in Embedded Computer Systems: Architectures, Modeling, and Simulation. Springer,
2007, pp. 55–64.

[28] J. Park, S. Lee, and H.-J. Yoo, “A 30fps stereo matching processor based on belief
propagation with disparity-parallel PE array architecture,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on. IEEE, 2010, pp.
453–456.

[29] M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput bayesian computing machine
with reconfigurable hardware,” in Proceedings of the 18th annual ACM/SIGDA inter-
national symposium on Field programmable gate arrays. ACM, 2010, pp. 73–82.

[30] H. Kroll, S. Zwicky, R. Odermatt, L. Bruderer, A. Burg, and Q. Huang, “A signal
processor for Gaussian message passing,” in Circuits and Systems (ISCAS), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 1969–1972.

[31] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F. Martínez, and
C. Guestrin, “GraphGen: An FPGA framework for vertex-centric graph computation,”
in Field-Programmable Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual
International Symposium on. IEEE, 2014, pp. 25–28.

[32] S. Hershey, J. Bernstein, B. Bradley, A. Schweitzer, N. Stein, T. Weber, and B. Vigoda,
“Accelerating inference: towards a full language, compiler and hardware stack,” arXiv
preprint arXiv:1212.2991, 2012.

[33] R. Abdallah and N. R. Shanbhag, “Error-resilient low power Viterbi decoders,” in Int.
Symp. on Low Power Elect. and Design (ISLPED), 2008, pp. 111–116.

[34] E. P. Kim and N. R. Shanbhag, “Energy-e�cient LDPC decoders based on error-
resiliency,” in IEEE Workshop on Signal Process. Syst. (SiPS), 2012, pp. 149–154.

[35] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 7, pp.
787–800, 2003.

91

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26

[36] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image
sampling,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20,
no. 4, pp. 401–406, 1998.

[37] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with
radiometric di�erences,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 31, no. 9, pp. 1582–1599, 2009.

[38] Y. Weiss, “Correctness of local probability propagation in graphical models with loops,”
Neural Computation, vol. 12, no. 1, pp. 1–41, 2000.

[39] R. Hegde and N. R. Shanbhag, “A voltage overscaled low-power digital filter IC,” IEEE
Journal of Solid-State Circuits, vol. 39, no. 2, pp. 388–391, Feb. 2004.

[40] J. D. Bakos, “High-performance heterogeneous computing with the convey hc-1,” Com-
puting in Science & Engineering, vol. 12, no. 6, pp. 80–87, 2010.

[41] K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of control circuits in folded
pipelined DSP architectures,” Solid-State Circuits, IEEE Journal of, vol. 27, no. 1, pp.
29–43, 1992.

[42] Xilinx, “Virtex-5 FPGA Xtreme DSP Design Considerations,” Online:
http://www.xilinx.com, January 2012.

[43] P. F. Felzenszwalb and D. P. Huttenlocher, “E�cient belief propagation for early vision,”
International journal of computer vision, vol. 70, no. 1, pp. 41–54, 2006.

[44] S.-J. Kang, S. I. Cho, S. Yoo, and Y. H. Kim, “Multi-histogram based scene change
detection for frame rate up-conversion,” in Consumer Electronics (ICCE), 2013 IEEE
International Conference on. IEEE, 2013, pp. 332–333.

[45] K. Alahari, P. Kohli, and P. H. Torr, “Reduce, reuse & recycle: E�ciently solving
multi-label MRFs,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on. IEEE, 2008, pp. 1–8.

[46] M. Lam, “Software pipelining: An e�ective scheduling technique for vliw machines,” in
ACM Sigplan Notices, vol. 23, no. 7. ACM, 1988, pp. 318–328.

[47] J. Choi, E. P. Kim, R. A. Rutenbar, and N. R. Shanbhag, “Error resilient MRF message
passing architecture for stereo matching,” in IEEE Workshop on Signal Process. Syst.
(SiPS), 2013.

[48] M. Tappen and W. Freeman, “Comparison of graph cuts with belief propagation for
stereo, using identical MRF parameters,” in IEEE Int. Conf. on Comp. Vision, 2003,
pp. 900–906.

92

[49] J. Choi and R. A. Rutenbar, “Video-rate stereo matching using Markov random field
TRW-S inference on a hybrid CPU+FPGA computing platform,” in Proc. of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM,
2013, pp. 63–72.

[50] S. Alchatzidis, A. Sotiras, and N. Paragios, “E�cient parallel message computation for
map inference,” in Computer Vision (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 1379–1386.

[51] G. Rong and T.-S. Tan, “Jump flooding in GPU with applications to Voronoi dia-
gram and distance transform,” in Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games. ACM, 2006, pp. 109–116.

[52] M. Bleyer and C. Breiteneder, “Stereo matching—state-of-the-art and research chal-
lenges,” in Advanced Topics in Computer Vision. Springer, 2013, pp. 143–179.

[53] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, “High-quality real-time stereo
using adaptive cost aggregation and dynamic programming,” in 3D Data Processing,
Visualization, and Transmission, Third International Symposium on. IEEE, 2006, pp.
798–805.

[54] S. K. Gehrig and C. Rabe, “Real-time semi-global matching on the CPU,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society
Conference on. IEEE, 2010, pp. 85–92.

[55] I. Ernst and H. Hirschmüller, “Mutual information based semi-global stereo matching
on the GPU,” in Advances in Visual Computing. Springer, 2008, pp. 228–239.

[56] N. Y.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm and
architecture of disparity estimation with mini-census adaptive support weight,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 20, no. 6, pp. 792–805,
2010.

[57] H. Hirschmüller, M. Buder, and I. Ernst, “Memory e�cient semi-global matching,” IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 3, pp. 371–376, 2012.

[58] C. Ttofis, C. Kyrkou, and T. Theocharides, “A hardware-e�cient architecture for accu-
rate real-time disparity map estimation,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 14, no. 2, p. 36, 2015.

[59] A. T. Ihler, J. W. Fisher III, and A. S. Willsky, “Loopy belief propagation: Convergence
and e�ects of message errors,” Journal of Machine Learning Research, pp. 905–936,
2005.

93

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Related Work
	Taxonomy of probabilistic inference platforms
	Error resiliency of probabilistic inference

	Thesis Contribution
	Dissertation Organization

	Chapter 2 Background
	Markov Random Field Inference for Stereo Matching
	MRF formulation of stereo matching problem
	MRF parameter computation
	MRF inference methods: BP vs. TRW-S

	Statistical Error Compensation
	Algorithmic noise tolerance

	Hybrid Multicore + FPGA Platform
	Summary

	Chapter 3 Hardware Implementation of Sequential Tree-Reweighted Message Passing
	Hardware Architecture of MRF Parameter Computation
	Design Issues in Hardware Implementation of TRW-S
	Floating point to fixed point conversion
	Parallelization of TRW-S

	Hardware Architecture of TRW-S
	Overall architecture
	Pipelined message passing unit

	Experimental Results
	Hardware specification
	Experimental results

	Summary

	Chapter 4 Frame-Level Optimizations for High Speed Stereo Matching
	Message Reuse based on Scene Change Detection
	Frame-Level Parallelization
	Function-Level Pipelining
	Experimental Results
	Effect of function-level pipelining
	Effect of frame-level parallelization
	Impact of message reuse
	Impact of scene change detection based message reuse

	Summary

	Chapter 5 Error Resilient MRF Message Passing Architecture for Stereo Matching
	Error Analysis of TRW-S
	Error analysis of TRW-S
	Verification of error analysis

	Simulation Methodology and System Evaluation Setup
	Results
	Summary

	Chapter 6 Toward a General Purpose Probabilistic Inference System
	High Performance TRW-S Accelerator for Computer Vision
	Challenges for high performance computer vision solver
	Accelerator architecture
	Block-parallel memory interface
	Streaming Jump Flooding for fast approximate message computation

	Performance

	Error Resilient TRW-S for Computer Vision via ANT
	Error resiliency of message passing inference under varying coupling strength
	Empirical support for theoretical error bounds

	Summary

	Chapter 7 Conclusion
	References

