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ABSTRACT 

 

Humans as a species are generally audio-visual creatures and do not take full advantage of the 

olfactory sense. Nonetheless, even humans can recognize and differentiate among thousands of 

different odorants under challenging conditions. Molecular recognition by the olfactory system derives 

its specifity from a complex pattern of responses generated by cross-reactive olfactory receptors. These 

receptors are encoded by approximately one thousand genes, which represents roughly 3% of the entire 

human genome. As a concept, the use of multiple cross-reactive chemical sensors is broadly applicable 

to any situation in which the sensors can be simultaneously exposed to each of a set of multiple target 

analytes; such an "artificial nose" has significant potential in all areas of chemical sensor technology. 

The chemical sensor arrays discussed in this work are based upon cross-reactive colorimetric 

response: each of many sensor elements in an array is a mixture of dyes or other compounds that 

changes color upon exposure to an analyte. These arrays typically use strong, poorly-reversible chemical 

reactions involving a diverse set of color-changing dyes or chromogens; such colorimetric sensor arrays 

have evolved to be fast, sensitive, portable, and inexpensive. Importantly, the analyte scope of the 

developed arrays has been shown to be capable of tailoring based on their intended applications, and 

can be made to be either broad or narrow as desired: in previous works, they have proven to be capable 

of discriminating among a broad range of analytes including both gaseous and aqueous analytes 

involving many different types of chemical reactivity, including Lewis and Brønsted acidity/basicity, 

molecular polarity, redox properties, and chelation. 

Of particular interest is the study of chemicals which are hazardous to human life, by either 

directly interacting with the human body or indirectly causing a physical effect. This work discusses 

development of colorimetric sensor arrays for two such cases: aqueous toxins and explosives materials. 

Both types of analytes are particularly challenging due to their relative lack of chemical reactivity: 
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aqueous toxins derive their toxicity from interaction with specific proteins within the human body, while 

explosives have high potential energy but are kinetically inert. Targeting these analytes while still 

maintaining high sensitivity, low noise, and the ability to discriminate among them was the primary 

focus of these two projects. 

Further, inexpensive portable technology for the quantitative analysis of these arrays is vitally 

necessary for their intended use outside of the laboratory. This work discusses development of an 

automated, truly portable device that fits into a pocket and improves upon previous instrumentation in 

scan speed, sensitivity, and noise. Since colorimetric sensor arrays are monitored by optical 

transduction, development of portable scanners involves investigating inexpensive, compact, low-noise 

optical imagers. Previous works focused on flatbed scanners, which have since shown to have limitations 

in portability (flatbed scanners will certainly not fit in someone's pocket), scan speed (~15-45 seconds 

per scan), noise (largely induced by the scanner's moving parts), and processing ability (processed 

manually). To improve upon this, an optical line imager known as a contact image sensor was used to 

act as the optical transducer; chemical sensor arrays were printed linearly so as to maintain 

compatibility with the line imager. The final device included disposable sensor array cartridges, a flow 

control system, control software, and analysis software for pattern matching. 
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Chapter 1: Optical sensor arrays for chemical sensing 

 

This chapter taken in large part from the following reference: 

Askim, J. R.; Mahmoudi, M.; Suslick, K. S. "Optical sensor arrays for chemical sensing: the optoelectronic 
nose" Chem. Soc. Rev. 2013, 42, 8649. 
 

1.1 Introduction and classes of chemical sensors 

As a species, we are visual creatures and underappreciate the olfactory sense.  Nonetheless, even 

humans can recognize and discriminate more than 10,000 different odorants.1 Molecular recognition by 

the primary olfactory system derives its specificity in an entirely different manner than the usual lock-

and-key substrate-enzyme specificity. Instead, olfactory specificity originates from pattern recognition 

of the responses of several hundreds of highly cross-reactive olfactory receptors.  Indeed, for land-based 

animals, there are typically about 1000 active olfactory receptor genes, which represents roughly 3% of 

our entire genome!2-3  

Development of rapid, sensitive, portable and inexpensive systems for identification of a wide range 

of toxic gases, vapors, and aqueous solutions has become an urgent societal need and has important 

applications ranging from the chemical workplace to the general population. New approaches to 

chemical sensing4-13 with improved discriminatory powers are essential to eliminate false positives for 

the monitoring of toxic gases at sub-ppm levels.14 In 1982, Persaud and Dodd15 tried to mimic the 

olfactory system using semiconductor transducers; this was one of the first artificial devices to 

successfully discriminate among a wide variety of odors without the use of highly specific receptors, i.e., 

an electronic nose.  

The long history of visual indicators in analytical chemistry has led to the development of optical 

sensor arrays as an alternative to electronic sensors.  There has been much recent progress in this 

“optoelectronic nose” approach,5,10,14,16-21 and we will present here an overview of the recent progress in 
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colorimetric and fluorometric sensor arrays, examine the methods of analysis of the high dimensional 

data so obtained, and review important and diverse applications. We also discuss previous limitations of 

sensor arrays and prior electronic nose technology and comment on the recent successes in overcoming 

those failings. Finally, we will examine the emerging trends that are likely to impact the development of 

new optical sensor arrays. 

Optical sensor arrays provide a facile, efficient, and sensitive approach for the rapid detection and 

identification of wide range of chemical substrates based on colorimetric or fluorescent changes 

quantified by digital imaging. 7, 22-27 Every optical sensor array must contain both an active center that 

can interact strongly with desired analytes and an intense chromophore or fluorophore that is strongly 

coupled to that active center.14 It is the intermolecular interactions of analytes with the active center, 

often through strong chemical interactions rather than simple physical adsorption, that results in a 

colorimetric or fluorometric change (i.e., chemoresponsive). Using a chemically diverse array of such 

chemo-responsive colorants, one generates a pattern that is an optical fingerprint for any odorant or 

mixture of odorants. 5,10,16-17,19 The colorants are cross-reactive, but the pattern of the array response is 

unique: in this manner, olfactory-like responses are converted into an easily monitored optical output, 

thus acting as an optoelectronic nose. 

 

1.1.1 Chemical sensors 

There is an increasing demand to measure the chemical environment both inside our own bodies 

and in our surrounding environment. The healthy function of the human body is dependent on various 

chemical processes; thus, in situ monitoring is of crucial importance, e.g., the chemical composition of 

patient blood samples in medical diagnosis. The impact of the environment on living systems similarly is 

of critical interest, and analysis of types and amounts of a wide range of toxins, pollutants, and even 

naturally occurring chemical species becomes of increasing importance.  
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Such analyses and diagnostic methods need suitable sensors. A sensor is a device that converts an 

input signal from a stimulus into a readable output signal.13,28 The input signal can be any measurable 

characteristic such as quantity or physical variation, while the output is ultimately an electrical signal. 

Small and inexpensive sensors enable mass production and widespread application.29  Indeed, the 

development of new sensor technology faces the dilemma of trying to create sensors that are both 

increasingly sensitive and increasingly robust.  Just as position and momentum are canonical variables, 

one may argue that beyond a certain point, the more sensitive a sensor becomes, inherently the less 

robust it can be.  As we shall see, one path around this dilemma is the development of disposable 

sensors, thus unlinking the opposing demands.   

 Chemical sensors respond to the chemical environment (i.e., interactions with molecular species), 

rather than the physical environment (e.g., temperature or pressure).  Chemical sensors can therefore 

be categorized into two major groups: those that discriminate among analytes based on physical 

properties (e.g., molecular weight, vapor pressure, etc.) and those that measure chemical properties 

(e.g., reactivity, redox potential, acid-base interactions, etc.). Chemical sensors can also be grouped by 

their signal transduction methods into three classes: (1) electrical and electrochemical, (2) 

thermometric, and (3) optical.  We will focus on this last class of sensors as array components, but let us 

first briefly overview all three sensor transduction classes. 

 

1.1.2 Electrical and electrochemical Sensors 

An electrical sensor is a resistive or capacitive measurement device that responds to analyte 

interactions with receptor layer of sensor. In a sense, the olfactory receptors of the vertebrate olfactory 

system are a large array of bioelectrical sensors.30-31 In chemical sensing, electrical and electrochemical 

sensors are nearly indistinguishable. Both intrinsically involve the interaction of chemical analytes with 

an electrical circuit and resistance, capacitance, current, or voltage as the monitored response.13,32,33  
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In attempts to mimic the olfactory system, a wide variety of electrical and electrochemical sensors 

have been explored, including metal oxide semiconductors (e.g. SnO2)
34, metal oxide semiconductor 

field effect transistors (FET) (e.g. Ga2O3)
35-37 and chemical field-effect transistors (ChemFET),38-39 

conductive polymer sensors40 of both intrinsically conductive (e.g. polythiophenes)41 and composite 

types (e.g. carbon-black polymer composite),12 and coated quartz vibrators or acoustic wave sensors.42 

In general, electrical sensors rely fundamentally on physical adsorption as the primary interaction 

between the chemical analytes and the electrically active surface; this reliance on physical adsorption, 

however, inherently provides for sensitivity to change in humidity, which remains a huge problem for 

both laboratory and especially field use. 6,8-9,13,28 In addition, aging of the surface of electrical sensors can 

induce significant baseline drift.6  

Most recently, tremendous efforts have been developing with low dimensional nanomaterials as 

highly sensitive sensor transducers:  e.g., nanowires, nanotubes, nanofibers, graphene and single (or 

few) layer two-dimensional materials.43-44,45,46-51 In large part, the potential for high sensitivity comes 

from the extreme surface area to mass ratios intrinsic to low dimensional materials, which permit 

extraordinary sensor exposure to analyte interactions.  Selectivity remains key, however, to the future 

success of such systems for chemical or biomedical sensor applications. 

Electrochemical sensors52-55 are also extremely diverse and can be used for a wide range of 

applications, but are beyond the scope of this review. The reader is referred to recent reviews on 

applications in environmental56-60, clinical61-63, bio-sensing39,55,64-67, food33,68 and biohazard agent69 

analyses. 

 

1.1.3 Thermometric sensors 

The mechanism of transduction in thermometric sensors relies on the measurement of the local 

heat change from specific chemical reactions or adsorption events involving the analyte.  Thermometric 

4



 

 

sensors are constructed by coating a catalytic sensor layer on the surface of a thermometer. In this case, 

the interaction of a target analyte with a chemical sensor can generate or consume heat that is then 

measured by sensitive thermistor (i.e., semiconductors with strongly temperature-dependent 

conductivity).70,71   Thermometric sensors most commonly utilize enzymatic reactions with high enthalpy 

changes28.72-74 Due to the simplicity of the thermal biosensing approach (e.g., there is no need for 

labeling reactants), this method can be considered as a suitable replacement for other signal 

transduction methods that require a sophisticated cascades of reaction steps. 

A wide range of applications (e.g. detection of sucrose75, glucose76-79, uric acid80, insulin81, and 

lactate82 by suitable immobilized enzymes) have been reported for thermometric biosensors. Moreover, 

a multi-analyte determination method has been performed by thermal biosensors using MEMS 

thermopiles.78,83-84 

 

1.1.4 Optical sensors 

Optical sensors use visible or ultraviolet light to interrogate sensors for analysis. Optical sensors can be 

represented in general terms as a wavelength selectable light source, the sensor material itself 

interacting with analytes, and a light detector (Figure 1.1). What the detector monitors varies by 

technique (e.g. refractive index, scattering, diffraction,  absorbance, reflectance, photoluminescence, 

chemiluminescence, etc.), can cover different regions of the electromagnetic spectrum, and can allow 

measurement of multiple properties (e.g. intensity of light, lifetime, polarization, etc.).28,85  The focus of 

this review, however, is on optical sensor arrays that use absorbance, reflectance or fluorescence array 

detectors (i.e., digital cameras or scanners).  
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Figure 1.1 General arrangement of spectroscopic measurements: A, light reflection; B, light refraction; C, 

light absorption; D, fluorescent emission. Reproduced with permission from ref. 85 

 

Colorimetry (i.e., quantitative measurement of absorbance or reflectance spectra) is, of course, one of 

the oldest of analytical techniques,86 and colorimetric sensors stretch back even before the beginnings 

of chemistry (e.g., squeeze a lemon into tea) with straightforward “naked-eye” quantitation.  

Colorimetric detection is a fairly simple technique, and the advent of universal digital imaging has given 

it new and exciting possibilities.  We will use the general term colorimetry to include simple three color 

(i.e., RGB) imaging, hyperspectral imaging (i.e., more color channels), and full spectrophotometry (i.e., 

hundreds of color channels with nm resolution).  

Fluorometry (i.e., the quantitative measurement of fluorescence spectra, cf. Figure 1.2)87-89 can 

provide excellent sensitivity  and fluorescent sensors often have some advantages (e.g., sensitivity, 

depending upon the background fluorescence), although at the cost of a more sophisticated 

experimental apparatus.90  Fluorescence-based approaches and fluorescence parameters (e.g. Stokes 

shift, fluorescence intensity and anisotropy, emission and excitation spectra, and fluorescence lifetime) 

can provide substantial flexibility as an analytical approach.91-92 Fluorescence techniques can be divided 

into three main classes: intrinsic fluorescent93-96, extrinsic fluorescent91,97-98, and displacement or 

differential99-103 probes. 
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Figure 1.2 Partial Jablonski diagram for absorption, fluorescence, and phosphorescence. Reproduced 

with permission from ref. 104 

 

Optical chemical sensors must perform two functions:  they must both interact with analytes 

and subsequently report on such interactions (e.g., by changing color).  While many dyes and 

fluorophores do so intrinsically, there are also many other “artificial receptors” (i.e., compounds capable 

of supramolecular interactions) that are not spectroscopically active.  For example,  crown ethers, 

cryptands, cyclodextrins and calixarenes often have excellent molecular recognition capabilities to 

selectively bind analytes of interest (especially cations, often anions, and sometimes neutral 

organics),100-101,105-106 but they are often spectroscopically inert. Such complexing agents can be 

covalently modified to incorporate a suitable chromophore or fluorophore, which can then report on 

analyte binding. 
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Figure 1.3 Switching on fluorescence of 9,10-bis((1-aza-4,7,10,13,16-

pentaoxacylooctadecyl)methyl)anthracene by binding of guest molecules. hv, excitation light; hv', 

fluorescent emission.  Reproduced with permission from ref. 107. 

 

For example, the linkage of an anthracene fluorophore with a crown ether receptor creates a 

diamine sensor for detecting food spoilage.107 In the absence of guest molecules (diamines such as 

putrescine or cadaverine), the fluorescence of anthracene is ‘switched-off’ by photo-induced electron-

transfer; when a diamine is bound, however, fluorescence intensifies substantially (Figure 1.3). 

 

1.2 Optical sensor array concepts 

The olfactory system permits differentiation among a huge numbers of chemical compounds and 

complex mixtures over an enormous range of concentrations. This kind of molecular recognition could 

not utilize the usual model of biospecificity, i.e., the lock-and-key mechanism of enzyme-substrate 

interaction.  The olfactory receptors represent the exact opposite of that kind of specificity and show 

highly cross-reactive, non-specific interactions with odorants.  Molecular recognition instead occurs 

through the pattern of response from hundreds of different types of olfactory receptor epithelia cells 

(each of which expresses only a single one of the hundreds of olfactory receptors found in our genome), 

as analyzed by the olfactory bulb and the brain. 
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1.2.1 Importance of intermolecular interactions 

In applying this concept of cross-reactive pattern recognition to artificial chemical sensing, the 

importance of intermolecular interactions become predominant. Fundamentally, chemical sensing is 

molecular recognition, and molecular recognition is the consequence of interactions between 

molecules.108-110 The classification and strengths of inter-molecular interactions are well established 

(Figure 1.4) and form a complete continuum from the weakest of interactions that are manifest only 

near 0 K to the strongest of covalent or ionic bonds.   There is a seamless range from bond formation 

and ligand coordination, electrostatic ion-ion and proton acid-base interactions, hydrogen-bonding, 

halogen bonding, charge-transfer and - molecular complexation, dipolar and multipolar interactions, 

and van der Waals interactions (e.g., physical adsorption). 

 

 

Figure 1.4 The range of intermolecular interactions on a semi-quantitative energy scale.  Such 

interactions are a continuum from the very weakest van der Waals and dispersion forces to the very 

strongest covalent or ionic bonds. 

 
Remarkably, nearly all prior electronic nose technology relies essentially exclusively on van der 

Waals and physical adsorption, the weakest and least selective of forces between molecules.  As we will 
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argue here, colorimetric sensor arrays provide a successful method of dealing with the dilemma of 

sensor sensitivity vs. robustness.  In many ways, colorimetric sensor arrays revisit the earlier, pre-

electronic era of analytical chemistry,111-113 updated by the addition of modern digital imaging easily 

quantified by digital imaging.7,17,114-116 and pattern recognition techniques (discussed in Section 3). 

The advantage of stronger interactions for sensor arrays is both the obvious one of greater inherent 

sensitivity and the more subtle one of great chemical specificity. Ligation of Lewis base analytes (e.g. 

amines, thiols, etc.) gives bond enthalpies from ~40 to ~200 kJ/mol.  In contrast, the enthalpy of physical 

adsorption of analytes (e.g., onto metal oxide surfaces) or absorption (e.g., into polymers) is only ~5 to 

20 kJ/mol. The effective equilibrium constant for physical adsorption will typically be only about 5 x 10-5 

as large as that for ligation to metal ions. Even more importantly, stronger interactions bring a much 

wider range of chemical interactions than simple physisorption, and consequently one may access a 

much higher dimensionality and improve one’s ability to discriminate among very similar analytes or 

complex mixtures of analytes. 

Based on their recognition elements properties, the sensors used in an array will span a range of 

molecular specificity. At one end, there are individual sensors that are nearly completely promiscuous, 

i.e., highly cross-reactive; these include polymers and polymer blends with optical reporters embedded 

that adsorb analytes primarily based on hydrophobicity.117-118 Promiscuous sensors can contribute to the 

sum of an array’s response, but are insufficient in and of themselves to provide the differential 

selectivity most desirable for chemical sensor arrays.  At the other extreme, there are highly selective 

artificial receptors that are specific for one or perhaps one closely related class of analytes. While this 

class of sensor can produce high specificity for specific analytes, alone they too will not make a sensor 

array capable of dealing with a wide range of analytes and mixtures;119 furthermore, the synthesis of 

such selective artificial receptors can be complex and problematic. The optimal optical sensor array will 

therefore incorporate a range of colorimetric or fluorometric sensors from the promiscuous to the 
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monogamous. 

One sees exactly this range of receptors and receptor response in the olfactory system.  The nose is 

a sensitive array of sensors able to distinguish many types of volatile analytes, but it is not equally 

sensitive to all analytes. The limits of detection of human olfaction are well known120 and span a range 

of more than 109. Consider the human olfactory detection limits for the simplest of analytes, those with 

one methyl group and one other functionality, as shown in Figure 1.5. Olfactory response to 

methanethiol is over 1 million times stronger than that of methanol, methylamine is bound more than 

100,000 times more strongly than methanol, and the range from ethane to methane thiol is 107. Van der 

Waals forces, hydrogen bonding, and sterics cannot account for such a large range for comparably sized 

molecules.  It has been suggested121 that the olfactory receptors (ORs) are, in large fraction, 

metalloproteins, and that metal ion (Cu+, Zn+2, etc.) ligation of strong Lewis base analytes (e.g., thiols, 

amines, phosphines, carboxylic acids, etc.) likely contributes substantially to the binding of many 

analytes by the ORs.  In fact, Suslick and coworkers121 discovered a highly conserved tripodal binding site 

in roughly 70% of all ORs sequences, and a very recent report from Matsunami and coworkers122 

confirms the crucial role of copper ions in at least one mouse OR.
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Figure 1.5 Human olfactory thresholds for detection of a series of comparable molecules with the 

structure HC3-X. 

 

1.2.2 Design requirements of an optical sensor array 

There are two fundamental design requirements for a colorimetric or fluorometric sensor array:  (1) 

the chemo-responsive dye or fluorophore must contain a center to interact with analytes, and (2) this 

interaction center must be strongly coupled to an intense chromophore or fluorophore.  The first 

requirement implies that it would be highly advantageous for the interaction to be more than simple 

physical adsorption and involve other, stronger chemical interactions.  

Based on the significant intermolecular interactions responsible for optical changes, one may divide 

chemoresponsive dyes into roughly five separate (albeit slightly overlapping) classes:  (1) Lewis 

acid/base dyes (i.e., metal ion containing dyes), (2) Brønsted acidic or basic dyes (i.e., pH indicators), (3) 

dyes with large permanent dipoles (i.e., zwitterionic, solvatochromic, or vapochromic dyes) for detection 

of local polarity and hydrogen bonding, (4) redox responsive dyes, and (5) chromogenic aggregative 
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colorants (including simple ionic sulfides and plasmonic nanoparticle precursors).  In addition, one may 

also consider environmental modifications to provide shape selectivity, either by modifying the dye 

peripheral superstructure or by molecularly imprinted polymers.  The original colorimetric sensor 

array17,123-124 made use of porphyrins and metalloporphyrins as sensors, utilizing primarily aspects of 

Lewis and Brønsted acid/base  dyes; as discussed later, the range of sensors has broadened significantly 

over the past decade. An example of a 36 spot sensor array for use with gas phase analytes is shown in 

Figure 1.6. 

 

 

Figure 1.6 An example of a 6x6 colorimetric sensor array and its cartridge packing for use with gas phase 

analytes. 

 
For gas phase sensing, a colorimetric sensor array is simply digitally imaged before and during 

exposure to any volatile analyte, odorant, or complex mixture of odorants. The imaging is mostly 

commonly achieved with an ordinary flatbed scanner, but one may also use digital cameras, portable 

handheld readers, and even cell phones; constancy of illumination is, of course, important. 

From the digital images, a difference map (Figure 1.7) is easily generated by digital subtraction, pixel 

by pixel, of the image of the array before and after exposure:  red value after exposure minus red value 

before, green minus green, blue minus blue.  Averaging of the centers of the spots (typically ~200 pixels) 

avoids artifacts from non-uniformity of the dye spots, especially at their edges. The other advantage of 

using the differences in RGB colors is that it tends to cancel out discrepancies in printing because the 

color differences are only a weak function of variation of the dye concentration or spot intensity from 
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array to array.114 

 

 

Figure 1.7 Image of the 36-dye colorimetric sensor array (Left) before exposure and (Middle) during 

exposure to ammonia at its IDLH (immediately dangerous to life or health concentration). (Right) 

Subtraction of the two images yields a difference vector in 108 dimensions (i.e., 36 changes in red, 

green, and blue color values); this vector is usefully visualized using a difference map, which shows the 

absolute values of the color changes.  For purposes of display to increase the color palate, the color 

range of difference maps are usually expanded. 

 
The resulting data is inherently digital (simply a vector of 3N dimensions where N=total number of 

spots) and all quantitative and statistically analysis is done directly from the digital difference vectors.  

The color difference maps are useful primarily for convenient visualization of color changes of the dye 

array; note that the color values are the absolute values of the differences and that expansion of the 

color space is useful for visualization. Note also that color difference maps shown throughout this 

review are generally from different arrays and therefore should only be compared within a single figure. 

The choice of the individual sensor dyes in an optical sensor array is governed empirically by its 

intended use.  One must consider if this array is meant for a broad range of analyte detection and 

discrimination or will it have a more specialized application. Keep in mind that the great power of optical 

sensors is their ability to probe the chemical properties of analytes through intermolecular interactions 

other than physical adsorption.  If one uses only optical probes that measure local polarity (e.g., 

solvatochromic or vapochromic fluorescent probes doped into various polymers) then one has lost this 
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opportunity. Potential analytes vary in their chemical properties: hydrophilicity, solubility, redox, 

hydrogen bonding, Lewis donor/acceptor, and proton acidity and basicity of target analytes need to be 

considered. In general, an optimal sensor array for general sensing purposes will incorporate as much 

chemical diversity among the individual sensors as possible.  Given the likelihood of metal ion binding 

sites in the olfactory receptors themselves,121-122 incorporation of metal ion-containing dyes into optical 

sensor arrays can make an important contribution to construction of a chemo-responsive sensor array. 

One must also consider possible interferents presented by ambient, complex environments. Finally, the 

stability of the dyes used in the array and their quantitative magnitude of response must of course be 

considered. 

 

1.2.3 Classes of colorimetric and fluorometric sensors 

1.2.3.1 Lewis acid/base dyes (i.e., metal ion containing dyes) 

Lewis acid dyes 

Most strongly odiferous compounds are Lewis bases: thiols, phosphines, amines, carboxylic acids.  

Not coincidentally, these are also among the most common volatile metabolites of microorganisms; 

arguably, the primary function of the olfactory system is to keep us (and our digestive system) away 

from high concentrations of bacteria and other microbes, and hence the location of our nostrils 

immediately above the mouth!  If one desires a sensor for the detection of such Lewis bases, then Lewis 

acids are the obvious solution, consistent with the likely involvement of metal ions in the olfactory 

system itself.121-122 

Among Lewis acid dyes, metalloporphyrins (with different metals and different peripheral 

substituents) are a natural choice for the detection of metal-ligating vapors because of their open 

coordination sites for axial ligation, their large spectral shifts upon ligand binding, and their intense 

coloration. Indeed, the difference in color of scarlet red arterial blood and the purple of venous blood is 
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an example of the colorimetric detection of dioxygen as it ligates to a metalloporphyrin (i.e., the iron 

heme of hemoglobin). In addition, it is well recognized that porphyrins show significant solvatochromic 

effects resulting in distinguishable colorimetric changes before and after interactions with a wide range 

of both ligating volatile organic compouns (VOCs) (e.g., amines, thiols, phosphines, phosphites,  thiols, 

etc.) and even weakly-interacting vapors (e.g., arenes, halocarbons, or ketones).17  Metalloporphyrin are 

therefore nearly ideal for colorimetric10,14,17,125  or fluorometric7,126 (for d10 metals primarily) detection of 

metal-ligating vapors.  A set of representative structures are shown in Figure 1.8. 

 

 

Figure 1.8  Molecular structures of some representative chemoresponsive or chromogenic dyes 

containing Lewis acid metal ions.  

 

Shape and size selective metalloporphyrins 

In addition to color change, another distinguishing feature with metalloporphyrins is one’s ability to 

modify their periphery and provide shaped pockets to restrict access to the metal center. This capability 

was first developed by Collman and coworkers127 with the picket-fence porphyrins used for reversible O2 
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binding to Fe(II) porphyrins and later expanded by many others.  Of special interest was Suslick’s 

development of bis-pocket porphyrins128-129 for selective hydroxylation of terminal methyl and 

methylene groups of alkanes and the selective ligation demonstrated on the first dendrimer decorated 

porphyrins130-131 by Moore and Suslick.   This type of thermodynamic selectivity is desirable for 

colorimetric sensors, as equilibrium binding to shape-selective metalloporphyrins can distinguish very 

similar molecules from the same chemical class (e.g., branched vs. linear amines). 

A relatively new class of shape-selective metalloporphyrins was developed by Sen and Suslick.132-133  

A family of bis-pocketed porphyrins containing siloxyl groups on the ortho positions of a tetraphenyl 

porphyrin core has been shown in Figure 1.9. The family contains porphyrins with six, seven, and eight 

tert-butyldimethylsilyl groups (denoted as Zn(Si6PP), Zn(Si7OHPP), and Zn(Si8PP)), giving a set of 

metalloporphyrins with very similar electronic characteristics but differing steric encumbrance about the 

metal binding site. Zn(Si6PP), for example, has a binding pocket of ~4 Å, greatly restricting the bonding 

site. These zinc complexes were sensitive to the shape and size of Lewis basic analytes; binding 

constants for a series of amines were found to be controllable over a range of 101 to 107 relative to 

Zn(TPP)133  and used in a colorimetric array to distinguish among alkyl amines.134  
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Figure 1.9 Bis-pocketed zinc siloxylporphyrins for shape-selective discrimination of Lewis base analytes.  

Upper:  chemical structures. Lower: molecular models (framework side view and space-filled top-view) 

of Zn(Si8PP) 

 

Lewis acid sensors for anion detection 

The coordination chemistry of anions was a long overlooked area of inorganic chemistry.  The 

biological and medical importance of many anions, from the simple (Cl-, F-, HPO4
-2, PO4

-3, etc.) to the 

complex (ATP, lipid anions, nucleic acids, etc.), has demanded and received much greater attention in 

recent years.135  The supramolecular chemistry of anions also plays essential roles in catalysis and 

environmental sciences.   

There has been tremendous recent effort in the design of anion receptors for sensing by 

colorimetric or fluorometric means.  The use of Lewis acid dyes for the detection of anions has been an 

active area of research and has been extensively reviewed recently.101,136-145 There are, however, unique 

challenges to these studies because anion complexation is quite different from that of metal cations, 

largely because of the relatively large size of anions and the omnipresence of protons in aqueous media.  

Anion receptors can be neutral or positively charged and in general anion–receptor interactions are 
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dominated by electrostatics and hydrogen bonding.  It is common to link a chromogenic or fluorescent 

reporter moiety to a specific chelating receptor, but one may also use fluorescent Lewis acids directly. 

Displacement assays, dyes with urea, thiourea, or naphthalimide sites, or metal ion containing dyes 

(especially of lanthanide and labile d8 and d10 transition metal ions) have all been explored especially 

heavily as anion binding sites for both colorimetric and luminescent detection.  Work on colorimetric 

and fluorometric sensors for specific anions is important, but mostly beyond the scope of this review. 

 

Lewis base sensors for cation detection 

Chelating and macrocyclic ligands are, by definition, Lewis bases. Modern supramolecular chemistry 

finds its origins in the design of crown ethers, cryptands, etc. and their size specific binding of metal 

ions.146  However, the use of semi-specific chelating Lewis acid dyes for colorimetric sensors of metal 

ions, so-called complexometric indicators147-148 (Figure 1.10), dates back more than 150 years.   

Complexometric indicators are used to chelate metal ions while simultaneously inducing a color 

change. These chromogenic or ionochromic dyes are designed to bring about a specific color change in 

the interaction with metal cations. Classical complexometric indicators (many of which are natural 

products also used as histological stains and some of which date back to the early 1800s) may have 

greater or lesser degrees of specificity:  for example, calcein and Eriochrome Black T are used to detect 

Ca+2, Mg+2, and Al+3; hematoxylin for Fe+3 and Al+3; murexide for Ca+2, Cu+2, Ni+2, and rare earth ions; and 

xylenol orange for Ga+3, In+3, and Sc+3. Traditionally, complexometric titrations were displacement 

reactions, starting with the metal ions bound to the indicator and then displaced by the addition of 

EDTA, so that the free dye (rather than the metal ion complex) served as the endpoint indicator. Recent 

interest in metal ion sensors have taken advantage of the cross-reactivity of complexometric indicators 

to generate solution based arrays, for example using a microtiter plate or an immersed membrane149-152 

for simple identification of single metal ions in water. 
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Figure 1.10 Upper: A sampling of traditional complexometric indicators. Lower:  Eriochrome Black T in 

aqueous solution. 

 

1.2.3.2 Brønsted acidic or basic dyes (i.e., pH indicators) 

The origins of chemistry as a discipline are closely tied to our fascination with “pretty colors” and 

the importance of the dye industry to early chemists can hardly be overstated.153-155 Many dyes, of 

course, change their colors depending on the pH. Litmus (7-hydroxyphenoxazone) was available even to 

alchemists in the Medieval times and literally means “colored moss” in Old Norse (litmus is produced by 

lichens, particularly Roccella tinctoria).  There are, of course, dozens of pH indicators derived from 

natural products, especially the anthocyanin oxonium dyes from blueberries to grapes to red cabbage to 

rhubarb (Figure 1.11). 
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Figure 1.11 Some naturally occurring pH indicators.  Litmus is from a lichen, delphinidin from cabernet 

sauvignon, and cyanidin from blueberries. 

 

Synthetic pH indicators received enormous effort during the first half of the 20th century,113 but even 

today substantial interest in new formulations (including sol-gel encapsulated indicators and indicators 

suitable for intra-cellular use in vivo) continues.99,156-157 An immense variety of organic chromophores 

(e.g. azo dyes, nitrophenols, phthaleins, sulfophthaleins, aniline-sulfophthaleins, triphenylmethane dyes, 

etc.) were created largely to measure the pH of aqueous solutions or as histological stains for biomedical 

applications.113,158 The pKa values among various pH indicators for aqueous solutions range, of course, 

from below 0 to 14.  The chemical diversity of some pH indicator dyes that have been used in 

colorimetric sensor arrays is shown in Figure 1.12. 
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Figure 1.12 A sampling of representative pH indicator dyes. 

 

1.2.3.3 Solvatochromic and vapochromic dyes  

Dyes whose dipole moments are significantly different between their ground and excited states will 

show color changes depending upon the polarity of their environment:  i.e., solvatochromism.  If the 

excited state has a larger dipole moment, it will be more stabilized relative to the ground state in a more 

polar environment and vice versa. Nearly all dyes inherently show some solvatochromism.  For 

“solvatochromic” dyes, these changes in dipole moments are very large, leading to impressive color or 

fluorescence changes that depend upon the polarity of the solvent in which the dye is dissolved (Figure 

1.13).   

Common classes of solvatochromic dyes include the merocyanines, azobenzenes, oxazones, 

thiazines, nitro-amino-substituted polythiophenes, and pyridinium N-phenolate betaine dyes.  A 

common feature of most solvatochromic dyes is that they are “push-pull” systems (Figure 1.11) with a 

strong zwitterionic component to their electronic structure, i.e., a large conjugated π system with strong 

electron donor groups at one end and strong electron withdrawing groups at the other. 
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Figure 1.13  Brooker's merocyanine dye,  (1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-

dihydropyridine, and its solvatochromic shifts in various solvents. 

 

Several solvent polarity scales159 have been based on the wavelength shifts of optical transitions of 

solvatochromic dyes, including Kosower’s and Brooker’s early studies, Reichardt’s ET159-163 and Taft’s π* 

164-165 scales. Solvent polarity is very much a multi-parameter property, involving dipolar, quadrupolar, 

and mult-polar interactions, hydrogen bonding donation and acceptor properties, Lewis acid-base 

interactions, etc. Thermodynamic and theoretical analysis of the origin and meaning of solvation, 

solvent polarity, and solvatochromism continue actively;166-169 especially useful are thorough 

comparisons among all related multiparameter descriptions of solvent polarity.159,167,170-171  Of particular 

interest for optical sensor arrays, the use of polymers doped with a solvatochromic dye (often Nile red) 

as a reporter on swelling of the polymer by absorbed analytes has been heavily used for optical fiber 

sensors.6,172-173 

A separate class of solid-state materials that provide a colorimetric response to solvent vapors are 

referred to as vapochromic or vapoluminescent solids.174-175  These are most commonly porous 

coordination complexes, particularly of square planar Pt(II) d8 compounds.  The vapochromism is 

triggered by intercalation of solvent molecules into the porous crystals and the color and luminescence 

changes derive from changes within the solids from weak interactions including coordination of solvent 

molecules to the metal centers, metallophilic contacts, π-π stacking, hydrogen bonding, and general 

23

http://en.wikipedia.org/wiki/File:Brooker's_merocyanine.png
http://en.wikipedia.org/wiki/File:Brooker's_merocyanine.png


 

 

non-specific host-guest interactions; these interactions can lead to changes in the ordering of excited 

states, leading to large luminescent differences. A particularly striking example has been recently 

reported using triarylboron-functionalized phenylacetylide platinum(II) square planar complexes.176  

Chiral vapochromic materials have also been used for identification of enantiomeric vapors.177  Because 

vapochromism requires intercalation into the interstices of crystalline materials, the response time can 

be somewhat slow (although controllable, perhaps, using nanocrystalline morphologies), and the weak 

interactions responsible can also lead to limited sensitivity of these materials as sensors. 

 

1.2.3.4 Redox indicator dyes 

Oxidation/reduction (redox) indicators are colorimetric reagents which show a distinct color change 

at a specific electrode potentials. These are all organic compounds exhibiting reversible redox reactions. 

Examples include anilinic acid, diphenylamine, eriogreen, m-cresol-indophenol, methylene blue, and nile 

blue.178-180 

Due to the fact that the majority of redox indicators engage a proton as a participant in their 

electrochemical reactions, redox indicators are sometimes divided into two groups separating those that 

are dependent on pH and those that are not. In order to make an optical sensor for sensitive detection 

of hydrogen peroxide (i.e. in the concentration range of 10-8 to 10-1 mol/L), a redox indicator (e.g. 

Meldola blue) was used in a sol-gel layer.180 In order to have sensitive detection of triacetone triperoxide 

(TATP) vapor (i.e. in the range of 50 ppb to 10 ppm), a colorimetric sensor array based on redox dyes 

including Lissamine Green B, o-dianisidine, diphenyl amine, N-phenyl-1,4-phenylenediamine and N,N'-

diphenyl-1,4-diphenyldiamine (Figure 1.14) was constructed by Lin and Suslick181. Using a method of 

hydrolyzing TATP vapor to constituent acetone and hydrogen peroxide, the array was capable of 

detecting concentrations of TATP vapor down to 2 ppb. 
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Figure 1.14 Representative structure of some common pH-independent redox dyes.  

 

1.2.3.5 Chromogenic aggregative colorants 

Chromogenic colorants whose color is altered by aggregative phenomena has become an area of 

massive recent development, especially for biosensing.182-184 Processes that cause aggregation, 

dispersion, or formation of colloidal materials generate changes in color and fluorescence through 

various mechanisms, ranging from simple absorbance and scattering by colloidal solids to plasmonic 

absorbance to quenching of attached or adsorbed fluorophores.  The simple precipitation of metal salts 

or formation of metal nanoclusters on reaction with thiols and sulfides goes back to the earliest 

qualitative spot tests.111-112   

The recent cutting edge is represented by control over the nanostructure of optical sensors. For 

example, gold nanoparticle (NP) agglomerates that efficiently quench adsorbed fluorophores; analyte 

binding can disperse such nanoparticle agglomerates and create a fluorescence turn-on. Judicious choice 

of NP functionalization and of fluorophore provides a versatile platform for solution phase sensing.  

 

1.2.3.6 Displacement strategies for fluorescent probes 

There are three general classes of fluorescent indicators for chemical sensing in solution: (1)  

intrinsic probes (where the sensor is itself fluorescent), (2) conjugated or extrinsic probes (where a 
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fluorophore is conjugated to the sensor binding site and its fluorescent properties modulated by analyte 

binding), and (3); displacement, dissociation, or differential probes (where the analyte competitively 

binds to an artificial or natural receptor that also binds a fluorophore).99,102-103,185 

Displacement probe strategies require some sort of reversible interaction between a receptor 

(natural or artificial) and a reporting fluorophore/chromophore; the binding of the reporter molecule 

must modify the fluorescence or color the reporter. The receptor can be either specific for one class of 

analytes or more cross-reactive.  

Indicator displacement assays (IDA) use a parallel set of multiple not-too-selective displacement 

probes, often referred to as differential selectivity, to generate a pattern of response not unlike the 

colorimetric sensor arrays already discussed. This approach has been particularly well explored by the 

Anslyn group.101-103 The potential disadvantage of displacement strategies, of course, is diminished 

sensitivity because there is an inherent competition between the analyte and the already bound 

fluorescent or colorimetric reporter.  

One normally thinks of sensor arrays as single physical solid devices:  a printed array on a polymer 

membrane or a bundle of fiber optic probes, etc.  Displacement strategies, however are generally 

limited to solution phase sensing and do not lend themselves easily to a solid-state sensor array 

platform that could be immersed in a solution of analytes.  Instead, solution phase array sensing is 

carried out by a parallel analysis of multiple aliquots of the analyte solution, each with an added, 

different homogeneous probe, e.g. using microwell plates with a microwell fluorescent scanner. 

Kubarych, Adams, and Anslyn used a set of commonly available proteins with a set of fluorophores 

as non-specific probes for hydrophobic molecules.186 In this case, non-specific hydrophobic binding 

interactions were used with an indicator displacement strategy to provide multiple diverse probe sites 

within a single protein molecule, as shown schematically in Figure 1.15. This led to the ability to 

differentiate among several different hydrophobic species including fatty acids and food oils. 
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Figure 1.15 Illustration of a displacement strategy using serum albumin as a non-specific receptor and 

fatty acid as an analyte displacing a fluorescent indicator. Dyes are initially bound in disparate 

hydrophobic binding sites which lead to differential sensing ability. Reproduced  with permission from 

ref. 186.  

 

 

1.2.3.7 Molecularly imprinted optical sensors 

One way to improve optical sensor resistance to interferents is the application of a molecular 

imprinting technique.187 The molecular imprinting is a process which can rapidly synthesize polymers 

with differential selectivity to targeted analytes, which include both molecular and ionic species as well 

as enantiomers188-195 In general terms, one includes a non-polymerizing analyte in the monomer solution 

during polymerization.  The templating analyte is then exhaustively removed from the resulting 

polymer.  This molecularly imprinted polymer (MIP) must be sufficiently crosslinked to retain internal 

structural integrity, but not so rigid as to prevent template removal. As with displacement assays, MIP 

sensors face the problems of specificity and are also generally limited to solution phase sensing. 

As an example, Shimizu and coworkers189 constructed a sensitive, selective receptor array with a 

molecular imprinting procedure which was able to classify different amines (Figure 1.16). They applied a 

dye-displacement strategy for rapid and versatile measurable colorimetric response. The presence of 

molecularly imprinted polymers (MIP) with high cross-reactivity as detection elements provided a 

specific response for each analyte.  
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Figure 1.16 A representative Scheme of an molecularly imprinted polymer sensor array that uses a dye-

displacement strategy to give an easily visualized and unique colorimetric response pattern for each 

analyte Used with permission from ref. 189. 

 

 

1.2.4 Substrate considerations 

1.2.4.1 Printed arrays 

While the choice of chemoresponsive dye or fluorophore will dominate the effectiveness of any 

optical sensor array, the functionality of the array will also be influenced by the substrate and 

morphology of the substrate upon which the colorant is placed.  Sensitivity, reliability, accuracy, 

response time, susceptibility to interferents, and shelf-life of the array can be heavily influenced.  

A wide variety of solid supports have been used for colorimetric and fluorometric array 

construction. The desired properties of such substrates include inertness towards gases and liquids, high 

surface area (to incorporate sufficient colorant),  optical transparency or high reflectivity, and stability 

over a wide pH range.16,48,85,89,156  A simple method for array manufacture involves printing dye 

formulations on the surface of reverse phase silica gel plates, acid-free paper, or porous polymer 

membranes made out of a material such as  cellulose acetate or polyvinylidene difluoride (PVDF).  

Robotic pin printers serve this function particularly well (Figure 1.17). Ink-jet printing works well for a 
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limited number of sensors, and spin-coating196 can also be used, but is difficult for multiple spot arrays. 

 

 

 

Figure 1.17 A robotic pin printer (upper) with a slotted pin printing array (lower) is capable of printing 

hundreds of sensor arrays per hour. 

 

A major shortcoming of many chemical sensors is their sensitivity to changes in ambient humidity.6,8 

For any real world application, changes in humidity from day to day or from indoors to outdoors can 

involve changes of tens of thousands of ppm in water vapor concentration. Any significant response to 

humidity can prove lethal for detection of ppm concentrations of VOCs.  The use of hydrophobic 

materials (e.g., PVDF membranes) as colorimetric or fluorometric sensor array substrates can be highly 

advantageous in reducing array response to humidity over a wide range (10 to >95% relative 

humidity)14,17,114,197-198 and can even permit the use of such arrays in aqueous solutions.199   
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For sensing applications, soluble, molecularly-based dyes are deposited as a viscous film or on a high 

surface area membrane or solid, and the analytes can gain access to the colorant with an acceptable 

response time. In contrast, pigments (which by definition are insoluble colorants) are not generally 

permeable to analytes and therefore reactive only on their outermost surfaces, which dramatically 

reduces any colorimetric or fluorometric response to the presence of analytes.  Molecular dyes, 

however, often have limited shelf-life as sensors, particularly when incorporated into viscous films or 

polymers due to crystallization (and consequent loss of analyte accessibility to the colorant centers).200  

Porous sol–gel glasses can also provide excellent matrices for chemically responsive colorants.85,156,201-

202 An effective nanoporous pigment sensor can be made by adding chemoresponsive dyes to ormosils 

prepared from suitable silane precursors in low volatility solvents. 16,197,200,203-204 In addition, the physical 

and chemical properties of the matrix (e.g., hydrophobicity, porosity) can be easily altered using 

organically modified sol–gel (i.e., “ormosil”) formulations, and different silane precursors are needed 

depending on the solubility of the dye. The use of these porous pigments significantly improves the 

stability and shelf-life of the colorimetric sensor arrays and permits direct printing onto non-permeable 

polymer surfaces.16,200,203,205 Additionally, we have observed that the matrix may serve as a 

preconcentrator, improving the overall sensitivity.  

Digital image analysis shows that printing of these nanoporous pigments have a uniform color 

distribution across the center of the spot (Figure 1.18).200 Reproducibility of the optical densities of 

printed spots is excellent, and chemical sensing experiments generally use the difference between 

before-exposure and during-exposure image, which further reduces errors in the pattern analysis.  It is 

also important that image analysis of printed spots utilize the average RGB values of the center portion 

of the printed spots to eliminate artifacts from the spot edges.114  
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Figure 1.18 (a) Image of a printed array, 1.2.5 x 1.2.5 cm. (b) RGB values of a linescan across the centre 

of a typical spot.  Used with permission from ref. 200. 

 

The development of optically based chemical sensing platforms has increasingly employed substrates 

manufactured with advanced processing techniques, and the control of over sensor morphology, micro- 

and nano-structure must be characterized.21 Scanning electron microscopy has shown that the 

nanoporous pigment films are typically ~3-4 μm thick with uniform silicon content throughout the spot, 

and transmission electron micrographs reveal the pore structure of these ormosil films (Figs. 19 and 20), 

which assist in mass-transport, and are responsible for the fast response times observed during sensing 

experiments (90% response generally occurs in < 2 minutes).200  

Another means of generating nanoporous pigments has been reported.  Bang et al.205 who prepared 

silica microspheres using tetramethoxysilane (TMOS) and methyltrimethoxysilane precursors (MTMS) in 

which chemoresponsive pH and solvatochromic dyes were incorporated with an ultrasonic-spray 

aerosol-gel synthesis method.206 
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Figure 1.19 SEM micrographs of a 1 mm diameter spot of a porous ormosil pigment printed on PET film: 

(a) top surface and (b) energy dispersive spectroscopic (EDS) elemental mapping (Si Kα); (c) cross-section 

and (d) EDS elemental mapping (Si Kα).  Used with permission from ref. 200. 

 

 

Figure 1.20 TEM micrograph of porous ormosil pigment showing the  50 to 200 nm pore structure 

created in these ormosil xerogels. Used with permission from ref. 200. 

 

1.2.4.2 Fiber optic arrays 

A powerful alternative, especially for fluorescent sensors, is the use of fiber optic arrays.  Almost 

twenty years ago, Walt and co-workers began developing multi-fiber optical bundles as cross-reactive or 

multi-receptor high-density sensor arrays.207 In this technique, bundles of very small silica fiber-optic 

cables are chemically etched to create a 2-dimensional array of microwells, which are used to hold a 

random distribution of beads containing individual fluorescent probes. In order to ameliorate the loss of 

physical position as a useful measurable property, these beads are functionalized with optical encoding 

elements so as to identify themselves during the analysis. A graphical explanation of this process is 
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shown in Figure 1.21 and SEM images of the final arrays are shown in Figure 1.22. 

For achieving simultaneous, multi-analyte, high-density, and high-throughput sensing analysis, the 

optical fiber-based arrays were developed using optical fiber bundles that comprise thousands of 

individual single-core fibers which are individually modified with a diverse sensing chemistry using a 

random assembly method. In general, the fiber arrays (with total size of around 1mm) contain a few 

thousand up to a hundred thousand individual fibers with size of 2-10 μm prepared by selective etching 

of the polished array in acid solution208 (Figure 1.22). This engineered structure enables individual wells 

to be recognized by the optical fiber defining its base, providing a high-density array of micro-wells that 

can be simultaneously and independently interrogated by light. Excitation light is introduced into the 

unfunctionalized end of the fiber; emission signals from individual sensors return through the fiber and 

are magnified and projected onto a charge-coupled device (CCD) camera, leading to the simultaneous 

observation of all sensors.209 

 

 

Figure 1.21 General strategy used for creating bead microarrays using etched fiber-optic bundles. Types 

A, B, and C (blue, green, and red respectively) indicate the types of self-encoded beads, while the insets 

represent a typical time-based sensor response to an exposed analyte. Reproduced with permission 

from ref. 210. 
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Figure 1.22 SEM images of etched fiber-optic bundles. (a) Optical fiber-based array with hexagonal pits 

contains 50,000–60,000 fibers; inset shows magnified views of the individual fibers (bright dots); (b) 

microwells etched into the individual fibers and surrounded by cladding; darker gray circles correspond 

to the ends of the optical fibers defining the bottom of each well; (c) beads loaded into wells. 

Reproduced with permission from ref. 173. 

 

These fiber-based fluorescent sensors have found impressive use in biosensing181, 182 for 

immobilization of desired bio-molecular sensors172,211-212, single molecule detection213-214, and even 

whole cells215-216 on the fibers.217-218 Living cells and beads containing biological recognition elements are 

loaded into the micro-wells (with the volume of femtoliter).209,219-220 

 

1.3. Statistical analysis and modeling 

Chemical property space has a very high dimensionality because of the large number of different 

chemical properties that are largely orthogonal to one another (e.g., Lewis acid/base, Brønsted 

acid/base, redox, electrophilicity, nucleophilicity, hydrogen bonding, polarity, etc.).  To differentiate 

among all possible volatile compounds and the huge assembly of possible mixtures of those compounds 

requires highly multidimensional data representing a wide range of chemical properties space.  

Fundamentally, this is why the olfactory system evolved to incorporate hundreds of highly cross-reactive 
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receptors:  the combinatorials of the responses of those cross-reactive sensors provides the high 

dimensional data used by the olfactory bulb for pattern recognition of odorants. 

If one bases a sensor array on physical properties, however, there is a very limited dimensionality to 

the resulting data. Physical adsorption/absorption will dominate any interaction of analytes either with 

simple surfaces (e.g., metal oxide electrical sensors or chemFETs, etc.) or with polymer coatings (e.g., 

coated quartz microbalances, conductive or composite polymer sensors, etc.).  The primary 

contributions to physisorption (van der Waals, weak hydrogen bonding, polar interactions) are roughly 

equivalent to what chemists refer to as “hydrophobicity”.   

As a consequence, one of the dirty little secrets of electronic noses is that they are only rarely 

multidimensional arrays in a statistical sense.5,8,18  The sensor may be a physical array (e.g., an array of 

ten or twenty different metal oxides or a dozen different conductive polymer composites), but that does 

not in and of itself make the sensor a multidimensional array for analytical or statistical purposes. In 

general, in such physical arrays, there is in fact only one overwhelming dominant dimension that 

contains >90% of the total variance among analytes:  most often,that dimension is essentially 

hydrophobicity.  As a consequence of this intrinsic low dimensionality, most conventional electronic 

nose technology is not able to distinguish among large libraries of similar complex mixtures.   

Low dimensional data does have some advantages.  Statistically, analysis is simplified, but often at 

the cost of more limited discriminatory abilities.  The primary advantage of relying on weak analyte-

sensor interactions such as physical adsorption is improved reversibility, especially over short periods of 

time, but even this is a two edged-sword:  the reversibility comes directly from the weakness of the 

interaction, which implies diminished sensor sensitivity! 

In contrast, sensor arrays based on chemical properties have intrinsically a much higher 

dimensionality.  Having a high dimensionality has the advantage of much greater ability, at least in 

principle, of being able to differentiate among analytes with much greater discriminatory power.  The 
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disadvantage of limited reversibility for strong interactions can be overcome by making the sensor array 

disposable, as we have already discussed, and is counterbalanced by the improvement in sensitivity and 

improved limits of detection.   

The greater dimensionality, however, must also involve a more sophisticated approach to statistics 

than that which chemists are often comfortable.221  The inherent problem with high dimensionality is 

that the analytical volume increases much more rapidly than the available data, so the datasets are 

often formally “sparse” compared to the total size of the parameter space.  In addition, this “curse of 

dimensionality” creates difficulties for function approximation, model fitting, information extraction, as 

well as computation.222  Statistic methods for multidimensional data all share the common goals of 

displaying multidimensional data effectively, evaluating data sets, and predicting the identity of 

unidentified samples based on a known library. 

There are a variety of statistical methods available to deal with high dimensional data well beyond 

the scope of this review.223-224 We will give an overview here only of the three most common 

approaches: hierarchical cluster analysis (HCA), principal component analysis (PCA), and linear 

discriminant analysis (LDA). 

In general, for chemometric data there are two distinct statistical approaches:  clustering vs. 

classification.223-225  Cluster analysis essentially tells one what resembles what, e.g., how close the 

vectors representing data are to one another in a high dimensional space.  Classification analysis, on the 

other hand, attempts to predict to which category (among a fixed number of known categories) any 

particular (new) datum belongs. 

Statistical methods can be either biased, in which case the evaluation algorithm is told of the class 

identities of individual cases, or unbiased (or model-free), where all cases are evaluated identically 

regardless of class identity. Unbiased methods are typically used to evaluate a data set to provide a 

semi-quantitative idea of the quality of the data set and follow simple, straightforward algorithms. 
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Biased methods, on the other hand, can provide significantly more power and utility with a concomitant 

increase in complexity, but at the cost of demanding datasets for which one already knows the answers.  

Biased methods can be predictive, allowing for class assignment of new experimental cases by using a 

training set. 

 

1.3.1 Hierarchical Cluster Analysis (HCA) 

HCA is an agglomerative clustering technique whereby clusters are determined from the Euclidean 

distance between experimental data.  In its simplest form, nearest-neighbor points are paired into a 

single cluster which is then paired with other nearest-neighbor points or clusters until all points and 

clusters are connected to each other, shown schematically in Figure 1.23224-225 The most common 

clustering criterion used in HCA is Ward’s minimum variance method, which minimizes the total within-

cluster variance. 

 

 

Figure 1.23 Schematic representation of a hierarchical cluster analysis (HCA) of multidimensional data 

(shown in only two dimensions on the left) that forms a dendrogram based on clustering of those 

experimental measurements (shown on the right). 

 

The resultant dendrogram shows connectivity and some measure of the distance between each of 

the pairs. In the context of chemical analyses, these two important pieces of data answer two questions: 

connectivity explains relationship similarity, i.e. ‘what species/samples are similar to each other?’ and 
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distance explains magnitude, i.e. ‘how similar are they?’. 

There are three primary limitations to the HCA technique. The first involves fundamental limitations 

of all unbiased methods:  HCA is not easily capable of predictive analysis. Second, dendrograms created 

using HCA must be re-created with each addition of a new analyte, so comparing dendrograms (even 

with a very similar data set) is typically only useful for rough qualitative purposes, i.e. 'what does this 

new sample look most like?'. The third limitation is that of interpretation of noisy data. One must be 

cognizant that the dendrograms are essentially “mobiles” and that rotations around clustering axes do 

not represent meaningful differences between dendrograms, as shown in Figure 1.24:  mis-clustering of 

noisy data can be easily misinterpreted. 

 

 

Figure 1.24  The effect of noisy data in dendrograms showing two classes of data, red and blue with 

one mis-clustering shown as a red square.  These two dendrograms are mathematically identical and 

represent exactly the same data:  the order of connectivity is not relevant on the y-axis.  At first glance, 

however, the red square data appears much further out of place in the dendrogram on the left 

compared to the dendrogram on the right.  

 

Despite these limitations, dendrograms provide a straightforward method of displaying cluster 

similarity semi-quantitatively. A representative example containing 100 VOCs is shown as Figure 1.25; it 

is worth noting that similar chemical classes cluster tightly together, which is a consequence of the 

reactivity of the particular sensor array. 
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Figure 1.25 Dendrogram from HCA of the colorimetric array responses to 100 common organic 

compounds at full vapor pressure at 300 K. Reproduced with permission from ref. 10,114. 

 

1.3.2 Principal Component Analysis (PCA) 

PCA is a dimensional reduction technique that condenses the variance among several possibly-

correlated dimensions by creating a new orthogonal set of dimensions using linear combinations of the 

initial dimensions. These new dimensions (also called directions, components, etc.) are ranked such that 

the first dimension explains the largest amount of data variance, the second dimension explains the 

second largest, and so on.  One typically seeks a number of new orthogonal dimensions sufficient to 

encompass at least 95% of the variance. Plots using the resulting set of principal components are often 

easier to visualize than the original data set, but only if the original dataset is actually low dimensional in 

a statistical sense.  As discussed earlier, electronic nose data often requires only two or perhaps three 

principal components to express the true variability among the data, regardless of the number of 

different sensors in the physical array. For low dimensional data, PCA therefore provides a 

straightforward method of displaying sample set variability, i.e. 'how similar are these species/samples 

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

p-xylene
toluene

benzene
nonanol

dodecanol
1-decanol

benzyl alcohol
2-decanol
3-decanol

cycloheptanol
CH3CHPhCH2OH

butanol
cyclopentanol

4-decanol
heptanol

ethanol
2-hexanol

hexanol
3-hexanol

pentanol
2-octanol

octanol
3,3-Me2-2-butanol

cyclohexanol

benzylamine
decylamine

undecylamine
dicyclohexylamine

nonylamine
heptylamine

cyclooctylamine
2-Et-1-hexylamine

2-heptylamine
amylamine

n-octylamine
dipropylamine

N,N-Me2benzylamine
triethylamine

di-iso-butylamine
di-n-butylamine

di-sec-butylamine
t-octylamine

1,5-Me2hexylamine
N,N-Me2hexylamine

3,5-dimethylaniline
dibenzylamine

aniline
3,4-lutidine

2-picoline
pyridine

3-picoline
4-picoline

3,5-lutidine
(n-Bu)3P
Me2PhP

dodecane
tetradecane

octane
cyclohexene

1-octene
1-decene

trans-5-decene
Et-nonanoate
Me-octanoate

Et-benzoate
Me-benzoate

2-octanone
3-heptonone
3-decanone

benzylthiol
octylthiol

cyclohexylthiol
hexylthiol

pentylthiol

C7F15CO2H
CF3CO2H

Cl3CCO2H
BrCH2CO2H
ClCH2CO2H

CH3CHClCO2H
formic acid

phenol
pentanoic acid
hexanoic acid
Me2CHCO2H

Me3CCO2H
BrCH2CH2CO2H

octanoic acid
heptanoic acid

acetic acid
propionic acid

1-myrtenal
(d,l)-CH3CHPhCHO

decanal
benzaldehyde

o-tolualdehyde
nonanal

heptanal
hexanal
octanal

Hydrocarbons
Phosphines
Aromatic
Amines

Aliphatic
Amines

Carboxylic
Acids

Ketones
Thiols

Alcohols

Arenes

Aldehydes

Esters

Strong Acids
//

//

//

//

Squared Euclidean (Minimum Variance)

360014009000 200100 300 700

39



 

 

to each other?'. 

As we shall see in Section 3, when dealing with a large number of analyte classes, a sensor array 

designed to probe a large reactivity space (i.e., an array with high dimensionality in a statistical sense) is 

highly desirable.  If one is examining a narrow class of analytes, however, then apparent high 

dimensionality of a sensor array, regardless of the number of actual physical sensors, becomes 

indicative of large amounts of noise relative to total variance:  in such cases, in the absence of noise, the 

theoretical maximum dimensionality is equal to the lesser of either the number of sample classes or the 

size of the chemical reactivity space.  

As a consequence, the dimensionality of one’s data is not determined directly by the number of 

different sensors in one’s array. As an example, Lin and Suslick181 designed a colorimetric array 

containing 16 redox-sensitive dye formulations to detect specifically strong oxidants and peroxy-based 

explosives and was not designed with other reactivity properties in mind. This array probes only a small 

chemical reactivity space, and the PCA reveals that only two dimensions (n.b., not 16) were required to 

reach 95% variance, as shown in Figure 1.26.   

 

 

Figure 1.26 PCA score plot showing two-dimensional separation of multiple classes of redox-active 

analytes generated from triacetone triperoxide vapor (concentration labels only) and other redox-active 

analytes. Circled areas represent 95% confidence intervals. Note that only two dimensions were 

required to reach 94.9% variance, implying a small chemical reactivity space probing only one or two 
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primary reactivity properties; this particular sensor array used several two-electron redox-sensitive dyes 

encapsulated in a xerogel matrix and was not designed with other reactivity properties in mind. 

Reproduced with permission from ref. 181. 

 

Since principal components are combinations of individual array component responses, the number 

of dimensions required for 95% variance provides information about the range of analyte-sensor 

interactions being probed; an array that probes only pH, for example, may only have one dimension 

required to reach 95% variance, while an array that probes pH, hydrophobicity, dipole moments, film 

permeability, and nucleophilicity can be expected to require at least five dimensions. PCA is thus a 

powerful tool for evaluating sensor arrays, especially those with multiple disparate components, as it 

allows some insight into the sensor's "chemical reactivity space", i.e. the number and possibly identities 

of chemical interactions being probed by the sensor array. A scree plot, showing the cumulative 

contributions of each principal component, provides a quantitative measure of the contributions of 

different orthogonal reactivities to the variance of the array response (Figure 1.27). 
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Figure 1.27 (a) a scree plot of data from a colorimetric sensor array tested with 100 VOCs, showing high 

dimensionality: 22 dimensions required for >95% total variance. (b) a scree plot from a colorimetric 

sensor array tested with 14 natural and artificial sweeteners, showing low dimensionality: 2 dimensions 

required for >95% total variance. It can be inferred that the chemical reactivity space of the sensor array 

interacting with VOCs is large, while that used in the array for artificial sweeteners is small, with pH 

being a primary component. Reproduced with permission from refs. 114 and 226. 

 

Like HCA, PCA is an unbiased method that is best suited for evaluation of data sets rather than 

prediction. PCA, however, can make rudimentary prediction methods possible, especially if the data set 

is low dimensional and has a large separation among sample classes. If the data set does not have a 

large separation, however, PCA may not adequately be able to predict the identity of an experimental 

sample. Examples of these are shown as Figure 1.28. 
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Figure 1.28 PCA score plot showing red and blue classes and three unknown experimental points A, B, 

and C. Circled areas represent 95% confidence intervals. By using a dataset with good separation (left), it 

can be inferred that green circle A belongs to the blue class, and grey circle B does not belong to either 

the blue or red classes. Using a dataset with poor separation (right), orange circle C cannot be 

unambiguously identified despite appearing to be significantly closer to other members of the red class, 

with the dashed line representing an obvious (by eye) separation between the two classes. 

 

1.3.3 Linear Discriminant Analysis (LDA) 

Like PCA, linear discriminant analysis (LDA) is a dimensional reduction technique that constructs a 

set of orthogonal dimensions used to describe the data; LDA, however, seeks to find a set of dimensions 

that best separates data into already known classes, rather than simply describing the total variance. 

Unlike HCA or PCA, LDA is a biased method; statistical analysis using LDA requires inputting a class label 

for each sample. Components of each dimension are ranked in order to maximize the ratio of between-

sample variance to within-sample variance; i.e. it ranks components based on their signal to noise ratio 

as compared among differing sample classes. 

LDA can be used to predict the identity of unknown samples by using a training set, similar to PCA. 

However, because the dimensional components are optimized to maximize differentiability, LDA will 

show better ability to differentiate among sample classes. A general example of this improvement is 
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shown as Figure 1.29. 

 

 

Figure 1.29 Score plots comparing data analyzed with PCA (left) and LDA (right). Circled areas represent 

95% confidence intervals. The most obvious separation by eye in the PCA plot is along dimension A, 

which is orthogonal to dimension B; this is used as the first dimension in LDA analysis and is a 

visualization of the between-sample variance. Orange circle C is clearly identified as being in the red 

class using LDA, while identification is ambiguous using PCA. 

 

The primary weakness of LDA is related to sample size. All statistical methods require multiple 

observations in order to determine any useful data (e.g. mean, variance, etc.); LDA is unique among the 

three methods presented here, however, as sample class covariances must also be determined in order 

to allow for comparison among classes. Because of this, the covariance matrix tends to be unstable 

when sample size is not significantly larger than the number of sample classes being analyzed, and this is 

more problematic for high dimensional data;222 consequently, LDA can give drastically fluctuating results 

with small sample sizes (compare to PCA or LDA, which can be unreliable with small sample size, but not 

unstable). A representative example of a two-component LDA plot is shown as Figure 1.30.  
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Figure 1.30 LDA score plot showing separation among five serum proteins at 25 nM concentration. 

Circled areas represent 95% confidence intervals. Reproduced with permission from ref. 227. 

 

As an improvement on LDA, tensor discriminant analysis228-230  (TDA) is an array generalization of 

LDA better able to take advantage of high dimensionality. More precisely, tensor discriminant analysis is 

used to classify multi-way array measurements (i.e., “tensor measurements”), rather than one-way 

vector measurements.228-229 For example, the data collected using colorimetric sensor arrays can be 

viewed as a 3-way tensor with the first way corresponding to choice of the dye, the second way 

corresponding to the effects of the color changes (i.e., ΔR, ΔG, ΔB, which are not fully independent for 

any one dye), and the third way corresponding to time progression (for kinetic responses).230 The 

general strategy of tensor discriminant analysis is to find orthogonal linear classifiers, which are 

essentially linear combinations of the three-way interactions of the effects of the dye spot choice, the 

three color changes of each spot (i.e., ΔR, ΔG, ΔB), and the temporal evolution, to maximize the ratio of 

between-class variation to within-class variation. Tensor discriminant analysis can greatly improve the 

sensitivity, specificity, and computational efficiency of discriminant analysis method because of the 

dimensionality reduction.  For example, if there are 36 dyes, then LDA would have to deal with 

36*3=108 dimensions, whereas TDA would reduce that to 36+3=39 dimensions, thus eliminating 69 
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dimensions (i.e., 108-39) that contain primarily noise. 

 

1.4 Applications of optical sensor arrays 

1.4.1 Discrimination of volatile organic compounds 

The colorimetric sensor array first developed by Rakow and Suslick used an array of different 

metalloporphyrins exclusively for the visual identification of different families of organic vapors.17 

Ligation of analytes to metalloporphyrins induced large color changes that were used for their 

identification. The sensor array was able to respond to a wide range of organic compounds such as 

alcohols, amines, ethers, phosphines, phosphites, thioethers, thiols, arenes, halocarbons and ketones, 

often with sensitivities below 1 ppm and importantly, without response to change in humidity. Using 

different metalloporphyrins with a wide range of chemical hardness and ligand-binding affinities as well 

as solvatochromic effects allowed differentiation among a wide range of volatile analytes.   

By broadening the types of sensors in the colorimetric array to include shape selective bis-pocketed 

porphyrins, pH indicators, and solvatochromic dyes to a total of 24 sensors, Rakow et al.134 were able to 

demonstrate highly selective discrimination among very closely related amines, with sub-ppm 

sensitivities. Discrimination among linear alkyl amines, and even isomeric amines was possible, as shown 

in Figure 1.31.  Similar arrays were tested by Tang et al.231 and by Luo et al.232 who were able to 

demonstrate limits of detection for trimethyl amine and ammonia, respectively,  below 50 ppb.   
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Figure 1.31 Color-difference maps for a family of 12 amines using a 24 spot colorimetric sensor array 

containing shape selective bis-pocket metalloporphyrins. Reproduced with permission from ref. 134. 

 

With further expansion of the array to 36 colorimetric sensors, Suslick and coworkers114 were able to 

demonstrate error-free discrimination among 100 different VOCs with common organic functionalities 

including primary, secondary, tertiary, and aromatic substituents of amines, arenes, alcohols, aldehydes, 

carboxylic acids, esters, hydrocarbons, ketones, phosphines, and thiols.  The array discriminates among 

VOCs by probing a wide range of intermolecular interactions, including Lewis acid-base, Brønsted acid-

base, metal ion coordination, hydrogen bonding, and dipolar interactions.  LODs are analyte dependent 

and were not determined in this study, but were generally in the low ppbv range for amines, carboxylic 

acids, thiols, and phosphines. The sensitivity of the array to bases and acids is a result of the strong 

metal-analyte interactions, either by metal ligation (i.e., coordination or dative bonding) or by Brønsted 

acid-base interactions. Weakly coordinating vapors such as esters, ketones, alcohols, arenes, and 

hydrocarbons show a lower response, just as the mammalian olfactory system. 

 Importantly, by proper choice of dyes and substrate, the array is essentially non-responsive to 

changes in humidity. A selection of the difference maps of a representative subset of 24 VOCs are 

presented in Figure 1.32 

The PCA of the dataset representing the full 100 VOCs shows an extraordinarily high level of 
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dispersion by the colorimetric sensor array: 14 dimensions are required to define 90% of the total 

variance, 22 dimensions for 95% of the total variance, and 40 dimensions for 99% (Figure 1.27). 

Most remarkably, because the colorimetric sensor array is based on analyte-array chemical 

reactivity, chemical class information becomes readily available from the data analysis.114 Figure 1.32 

shows the familial similarities of the color difference maps of alkyl amines vs. aromatic amines vs. 

carboxylic acids vs. aldehydes vs. phosphines, simply by inspection.  The more detailed analysis afforded 

by HCA shows how well that chemical class information can be revealed (Figure 1.25). 

 

 

Figure 1.32 Colorimetric array response to VOCs visualized as color difference maps. Shown are 24 

representative VOCs after equilibration at their vapor pressure at 295 K. Reproduced with permission 

from ref. 114. 

 

While these colorimetric sensor arrays work exceedingly well for reactive volatiles, they have not 

had especially high sensitivity to less reactive vapors. For example, common VOC indoor air pollutants 

(e.g., aromatic hydrocarbons, chlorocarbons, other organic solvents) are generally not especially 

reactive and are not detected at low concentrations.  Lin, Jang, and Suslick recently reported19 a 

dramatic improvement in the sensitivity of colorimetric sensors for the detection and identification of 

such less-reactive VOCs by the use of a disposable pre-oxidation technique in which the analyte-stream 
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was passed through an oxidation tube (of chromic acid on silica) before reaching the array (Figure 1.33). 

Preoxidation of VOCs produces reactive species such as carboxylic acids, phenols, and aldehydes which 

have a stronger interaction with the colorimetric sensor array. This results in a ~300-fold enhancement 

of sensitivity with a concomitant increase in discrimination ability.  

 

 

Figure 1.33 Left: Schematic illustration of the preoxidation technique. A Teflon tube is packed with 

chromic acid to pretreat the gas flow containing a VOC before it is passed over the colorimetric sensor 

array. Center and Right: Responses to p-Xylene at IDLH concentrations without (center) and with (right) 

pre-oxidation tube. Reproduced with permission from ref. 19. 

 

Since each VOC produces a different mixture of oxidized derivatives, the array response to these 

more reactive volatile by-products provides a unique, but much more sensitive, signature for the initial 

VOC.  20 commonly found VOC pollutants in indoor air were examined as representative analytes and all 

were discriminable by HCA, as shown in Figure 1.34, both at their immediately dangerous to life or 

health (IDLH) and at their permissible exposure limit (PEL).  
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Figure 1.34 HCA dendrogram for 20 commonly found indoor pollutant VOCs at their IDLH concentrations 

and a control. All experiments were run in quintuplicate with 30 mg chromic acid on silica as the pre-

oxidation reagent; no confusions or errors in classification were observed in 105 trials. Reproduced with 

permission from ref. 19. 

 

1.4.2 Toxic Industrial Chemicals (TICs) 

Toxic industrial chemicals (TICs), by their very nature, are chemically reactive. The toxicities inherent 

in toxic industrial chemicals derive from a very wide range of specific chemical reactivities that affect 

multiple systems within living organisms. Some acute toxins target specific, critical metabolic enzymes 

(e.g., HCN inhibits cytochrome c oxidase while phosgene inhibits pulmonary function); some cause cell 

lysis in the lungs creating pulmonary edema (e.g., HCl, HF) and others are potent oxidants or reductants 

that can target various biosystems.  There is an obvious need for rapid, sensitive identification, and 

determination of TICs,233 yet we have no small and inexpensive technology for personal dosimetry of 

TICs in the chemical workplace or by first responders to industrial fires or chemical spills.   
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Prior electronic nose technology, which utilizes weak analyte-sensor interactions, have had a limited 

ability to detect compounds at low concentrations relative to analyte saturation vapor pressure and 

therefore are often unable to detect TICs at their IDLH (immediately dangerous to life or health), PEL 

(permissible exposure limit) concentrations.  In addition, interference from large environmental changes 

in humidity or temperature remains highly problematic. 

Colorimetric sensor arrays, however, are exceptionally well designed for the detection, identification 

and quantification of TICs due to their reliance on analyte chemical reactivity.  Suslick and coworkers in a 

series of papers16,197,203-204 developed the use of nanoporous sol-gel pigments for the chemoresponsive 

elements of an extremely sensitive colorimetric sensor array.  They selected high hazard TICs from the 

reports of the NATO International Task Force 25 and 40234 and examined the ability of their array to 

discriminate among the 20 TICs shown in Table 1.1. 
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Table 1.1 List of toxic industrial chemicals at their IDLH (Immediately Dangerous to Life or Health) and 

PEL (Permissible Exposure Limit) concentrations compared to limits of detection extrapolated using data 

collected at 20% PEL concentration.197 

 

 

The sensor array was able to discriminate without error among these 20 TICs at both their IDLH 

concentration within two minutes of exposure and at PEL concentration within five minutes of 

exposure; HCA showed no mis-clustering errors and jackknifed LDA gave an error rate below 0.7% out of 

147 trials (Figs. 35 and 36). Limits of detection limits (listed in Table 1) were generally well below the PEL 

(in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array 

was not responsive to changes in humidity or temperature over a substantial range. The array 

performed well in the presence of various common potential interferents and has shown excellent 

stability and reproducibility. 

While LODs are defined absolutely with respect to S/N, that only defines when one can determine 

that some analyte is present. Limits of recognition are much more important, but they are also library 

dependent.  Figure 1.37 demonstrates a limit of recognition for a subset of TICs is well below 5% of their 
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PEL, which becomes of interest for epidemiological studies.  Consistent with the array’s ability to 

discriminate among many possible TICs over many possible concentrations, PCA and LDA confirmed the 

high dimensionality of the colorimetric sensor array with 17 PCA dimensions required to capture 95% of 

the variance.197 

 

 

Figure 1.35 Color difference maps of 20 representative TICs at their IDLH. Reproduced with permission 

from ref. 204. 
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Figure 1.36 HCA dendrogram for 20 TICs at IDLH concentrations and a control. All experiments were 

performed in septuplicate; no confusions or errors in clustering were observed in 147 trials. Reproduced 

with permission from ref. 197 

 

 

Figure 1.37 Limits of recognition for TIC identification. Left: the effect of concentration on array 

response to NH3, SO2, and HCN. Right: HCA of a subset of TICs demonstrates a limit of recognition well 

below 5% of the PEL. Reproduced with permission from ref. 204. 

 

Several reports of more specialized arrays for specific subsets of TICs have also been published. For 

example, Sen et al.235 developed a disposable colorimetric sensor array which can detect H2S 

concentrations in the range of 50 ppb to 50 ppm at ambient temperature. Bang et al.205 prepared 
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nanoporous silica microspheres incorporating chemoresponsive dyes and used an array of these to 

detect and quantify ammonia gas at its IDLH (immediately dangerous to life or health), PEL (permissible 

exposure limits), and 0.1 PEL concentrations  with a reported LOD of 100 ppb. Sen, Kim and coworkers236 

expanded their work to a sensor array for ammonia, chlorine, hydrogen chloride and sulfur dioxide. This 

sensor is able to rapidly measure IDLH concentrations (100 ppm) of SO2 with a response time of about 

30 s.  Hou et al.237 also report a very similar portable device for toxic gas detection. The reported sensor 

includes a transparent and hermetic gas of chlorine, sulfur dioxide, ammonia, benzene and isoprene 

with LODs for some analytes in the ppb regime. 

 
1.4.3 Explosives detection 

Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an 

explosive of choice for terrorists in recent years. TATP is easily produced by an acid catalyzed reaction of 

acetone with hydrogen peroxide.238 Owing to lack of UV absorbance, fluorescence or facile ionization, 

TATP is difficult to detect directly.239  Techniques that are able to detect generally require expensive 

instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Lin and 

Suslick181 reported a new method for determination of TATP vapor using a colorimetric sensor array. In 

this method, the gas stream containing TATP vapor is decomposed by a solid acid catalyst (Amberlyst 

15) and the resulting H2O2 vapor, being kinetically much more reactive, is easily detected by redox 

indicators (Figure 1.38).  

TATP was detectable even at very low concentrations using this technique, with an LOD below 2 ppb 

(i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal 

hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) did not generate an 

array response, and the array could also differentiate TATP from other chemical oxidants (e.g., hydrogen 

peroxide, bleach, t-butylhydroperoxide, peracetic acid) (Figure 1.26). 
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Figure 1.38 (a) Acid catalyzed decomposition of TATP. (b) Color difference maps of TATP vapor at 

concentrations specified after 5 min (top row) and10 min (bottom row) of exposure. Reproduced with 

permission from ref. 181 

 

Kostesha, Alstrøm et al. 240-241 have reported very briefly on a colorimetric sensor array capable of 

detection of explosives’ vapors, but no details were given on dyes used in their array.  In this work, 

classification ability of K–nearest neighbor (KNN), artificial neural networks (ANN) and sparse logistic 

regression (SLR) methods were compared.  

 

1.4.4 Aqueous analytes 

If a colorimetric sensor array is printed on a hydrophobic membrane and the dye formulations 

sufficiently hydrophobic, then upon immersion into an aqueous solution containing organic compounds, 

the sensor array will respond to the volatile vapors of solutes. Zhang and Suslick199 prepared a simple 

colorimetric sensor array that was able to probe different organic compounds at very low 

concentrations (below 1 µM) in water. As shown in Figure 1.39, unique fingerprints were observed for a 

wide range of dissolved organic compounds.  
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Figure 1.39 Color change profiles with the base-sensitive sensor array for representative aqueous 

solutions of organic compounds (all amines 10 mM, all others 50 mM, in pH 7 phosphate buffer). 

Reproduced with permission from ref. 199. 

 

Monitoring toxic metal ions in water has also been accomplished using a nanoporous pigment array.  

Feng et al.151 reported a CSA for identification trace heavy metal ions (including Hg, Pb, Cd, Zn, Ag, As, Ni 

and Cu) at waste water-discharge standard concentrations. Suitable chemoresponsive dyes were 

immobilized using ormosil formulations; in this case, five separate probes were analyzed asynchronously 

through a filtration method and organized into an array. Discrimination of heavy metal ions was 

performed without interference of Na+, K+, Ca2+, Mg2+ ions and good repeatability and high stability was 

obtained for this sensor. 

Recognition of amino acids in aqueous solutions has also been accomplished using a colorimetric 

sensor array. Dan-Qun et al.242 used a 6×6 array to distinguish among amino acids based on differences 

between their chemical properties and specific residue structures.  Ten natural amino acids including 

glycine (Gly), valine (Val), methionine (Met), proline (Pro),serine (Ser), tyrosine (Tyr), glutamine (Gln), 

glutamate (Glu), lysine (Lys), and histidine (His) were identified within 5 min of exposure at 

concentrations of 375 μM (Figure 1.40). 
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Figure 1.40 Average color change profiles of 10 amino acids visualized as color difference maps. 

Reproduced with permission from ref. 242.  

 

Fluorescent displacement assays have also been used for identification of amino acids in solution.  

For example, dansyl-modified β-cyclodextrins bearing a metal binding site, with pendant L-amino acids, 

were employed for selective identification of unmodified amino acids in aqueous buffer at neutral pH243-

244  and as enantioselective fluorescence sensors for the discrimination of enantiomers of the amino 

acids valine and proline. The best conditions to perform enantiomeric analyses l used fluorescence 

quenching by the copper(II)/amino acid complexes in a fluorescence microplate reader. 

Fluorometric displacement assays using complexometric solution sensor arrays have been used for 

identification of metal ions.  In 2003, Mayr et al.152 developed an eight-component fluorometric array 

for discrimination among five separate metal cations using cross-reactive complexometric fluorophores 

in solutions held in a microtiter plate. The wells were monitored simultaneously using a CCD camera and 

a set of fiber-optic cables to reduce the imaged area (Figure 1.41).  The fluorescence decay profile of the 

indicator is referenced against the phosphorescence of an added inert reference dye at a different 

wavelength. The source of illumination were blue LEDs, one for each well. The assembly allows the 

detection of dye concentrations in the nanomoles-per-liter range without amplification and the 

acquisition of 96 wells simultaneously. Some discriminatory ability was shown by this straightforward 

liquid-phase array, but limited statistical analysis was performed; classification accuracy of 82 to 93% 

was reported. A gray-scale image showing the raw fluorescence response to several analyte sets are 
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shown as Figure 1.42. 

 

 

Figure 1.41 (a) Fiber-optic adapter for fluorescent imaging of 96 well microtiterplates; (b) schematic of 

the apparatus showing LED array illumination and CCD camera detection. Reproduced with permission 

from ref. 152. 

 

 

Figure 1.42 Greyscale output of eight-component array after exposure to various concentrations of 

metal ions. Analytes vary by column, and included some multi-ion solutions; specific concentrations are 

given in ref. 152. Of note, columns 5-9  are set at 2+, Cu2+, Ni2+, Zn2+, and Cd2+ respectively. 

Reproduced with permission from ref. 152. 
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1.4.5 Applications to complex mixtures 

1.4.5.1 Foods and beverages 

Colorimetric Sensor Arrays 

The analysis of complex mixtures presents a difficult challenge even for the most sophisticated 

analytical techniques, and the ability to discriminate among closely similar such mixtures often remains 

problematic. Foods and beverages are characteristic in the complexity of their compositions.  A 

component by component analysis is generally unwanted and often impractically difficult, given the 

hundreds of different compounds found in edible materials.  Instead, one is more interested in 

questions of authenticity, contamination, and food processing quality control.  For these goals, the sort 

of fingerprinting that sensor arrays provides can prove extremely valuable. 

Coffee provides a readily available archetype of such highly multicomponent systems.  While 

unroasted, green coffee contains more than 300 volatile compounds, while more than 1000 volatile 

compounds have been identified for roasted coffee including carboxylic acids, alcohols, aldehydes, 

alkanes, alkenes, aromatics, esters, furans, ketones, lactones, oxazoles, phenols, pyridines, pyrazines, 

pyrroles, thiazoles, and thiophenes.245-247 Furthermore, the roasting of coffee beans is highly dynamic, 

and the processes that develop the flavor and aroma of coffee are strongly time and temperature 

dependent. 

Suslick, Feng and Suslick248  made use of the same sensor array developed for TIC identification to 

the analysis of coffee aromas. The color changes of the sensor array were used as a digital 

representation of the array response and analyzed with standard statistical methods. PCA revealed that 

the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the 

total variance and 25 dimensions for 95%. In quintuplicate runs of ten commercial coffees and controls, 

no confusions or errors in classification by HCA were observed in 55 trials (Figure 1.43). In addition, the 

effects of temperature and time in the roasting of green coffee beans were readily observed and 
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distinguishable with a resolution better than 10 C and 5 min, respectively.   

 

 

Figure 1.43 HCA for 10 commercial coffees and a control. All experiments were run in quintuplet trials; 

no confusions or errors in classification were observed in 55 trials. Abbreviations:  Maxwell House 

Original Roast, MHOR; Folgers Grande Supreme Decaf, FGSD; Eight O’Clock Hazel Nut, EOHN; Maxwell 

House Original Roast Decaf, MHORD; Starbucks Sumatra Roast, SSR; Starbucks Columbian Roast, SCR; 

Starbucks Espresso Roast, SER; Folgers Columbian Roast, FCR; Café Mai Traditional, CMT; Eight O’Clock 

Columbian Roast, EOCR; the number indicates nth trial; Control = no coffee present. 

 

Zhang and Suslick had earlier applied a very similar approach to commercially available soft drinks 

using an early version of their array containing only 25 chemically responsive dyes printed on a 

hydrophobic membrane.249 Fourteen commercial soft drinks were analyzed and facile identification of 
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all of the soft drinks was readily achieved using comparison of the color change profiles or a PCA score 

plot (Figure 1.44) Using a HCA dendrogram, the misclassification rate was < 2%, and even very similar 

sodas were easily differentiated. In addition, the monitoring of soft drinks as they degas or upon dilution 

also proved to be possible. This work demonstrated the potential of colorimetric sensor array 

technology for quality assurance/control applications of sodas and perhaps other beverages as well. 

 

 

Figure 1.44 PCA score plot using the three most important principal components based on the data for 

the analysis of all soft drinks. The resolution between classes is in fact much better than can be shown 

by these three principal components which account for only 65.7% of the total variance.  Abbreviations:  

A&W RB, A&W® Root Beer; CD TW, Canada Dry® Tonic Water; CD CS, Canada Dry® Club Soda; LC SW, 

LaCroix® Sparkling Water. 

 

In a similar application, Zhang et al.250 showed that colorimetric sensor arrays were able to 

differentiate among 18 brands of beer. Differentiation between ales and lagers (Figure 1.45) was 

without error, and even among very similar beers proved straightforward with an error rate of 

identification <3%.  In addition, differentiation of pristine beer from the effects of watering or de-

carbonation proved possible.  These results suggest that colorimetric sensor arrays may prove useful for 
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QA/QC applications. 

 

 

Figure 1.45 Colorimetric array analysis of a complex mixture: headspace analysis of various beers 

compared to 5% ethanol in carbonated water. Brands in red are lagers, brands in green are ales. 

Reproduced with permission from ref. 10. 

 

Ya et al.251 also analyzed five commercial baijiu (a Chinese distilled alcoholic beverage)  using a 

simple colorimetric artificial nose. The presence of chemoresponsive dyes containing porphyrins and 

porphyrin derivatives provided a unique pattern of color changes in response to baijiu. With the aid of 

PCA and HCA, classification of types of baijiu was done according to their trace components. Using linear 

discriminant analysis (LDA), flavor styles were determined with 100% accuracy. 

Y. T. Chang and co-workers have developed spectrophotometric microplate assays252-256 for 

evaluation of tap and bottled water using 45 dyes including pH indicators, metal ion complexometric 

indicators, and substituted quinone dyes known to be responsive to various organic and inorganic 

species.  By monitoring the optical spectra of the microwell plates, they were able to classify water 

samples in terms of their place of origin, metal ion content, and carbohydrate content.  

Detection and quantification of sugars and sweeteners is very important in real-time food quality. 

Musto, Lim, and Suslick226,257-258 have developed colorimetric sensor arrays for detection and 

quantification of sugars and artificial sweeteners by immobilizing suitable chemoresponsive dyes in 
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insoluble nanoporous pigments.  The sensor array was able to accurately determine 14 sugars and 

sweeteners at millimolar concentrations at pH 7.4 (Figure 1.46).  The concentrations of sugars and 

sweeteners could also be determined over at least a five-fold range, and glucose concentrations were 

measurable over the full range of clinical importance for blood sugar determinations.  The sensor array 

worked as well in tea infusions.  Ghosh et al.259 applied the same concepts later to a microplate liquid 

ensemble of boronic acid derivatives and pH indicators with similar success and were able to show 

quantitative analysis of sugar concentrations.  

Monitoring of food freshness, especially of meats, poultry and fish, are an obvious application of 

sensor arrays.  Huang et al.260 constructed a colorimetric sensor array by printing the nine 

chemoresponsive dyes on a reverse phase silica gel plate. These dyes were sensitive to volatile 

compounds produced during spoilage of fish. PCA and neural network techniques were applied for 

classification of the degree of spoilage, allowing evaluation of the fish freshness with the accuracy of 

87.5%. Recently Salinas et al.261 reported an optoelectronic nose constructed of 16 pigments able to 

identify the age of chicken meat.  
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Figure 1.46 Colorimetric sensor array for sugars. a. Color difference maps  for 14 representative natural 

and artificial sweeteners (10 mM) and one control.  b. Hierarchical clustering analysis dendrogram for 

aforementioned sweeteners; zero misclassifications were observed in 100 trials. Reproduced with 

permission from ref. 226. 

 

Indicator Displacement Assays 

Anslyn and co-workers have developed a general displacement strategy using serum-albumin as a 

differentially selective receptor capable of binding both fluorescent reporters and a variety of non-polar 

analytes (e.g., fatty acids). The resultant probe was able to differentiate among fatty acids (palmitic acid, 

oleic acid, stearic acid, and linoleic acid) and among edible oils (sunflower oil, hazelnut oil, canola oil, 
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extra virgin olive oil, and peanut oil).186 A graphical representation of their data using PCA is shown as 

Figure 1.47, showing clear distinction among analyte species. It is worth noting that the PCA is very 

strongly dominated by a single component (~90% of total variance), and that dimension essentially 

represents the hydrophobicity of the analytes.   

 

 

Figure 1.47 PCA plot showing differentiation among several fatty acids (A) and food oils (B). Reproduced  

with permission from ref. 186. 

 

In a similar concept, Anslyn and coworkers used a set of metallo-histidine peptides in order to 

discriminate among polyphenol-based wine flavonoids.262 In this indicator displacement assay, the 

probes were based on replacement of a catechol dye from a Cu2+ center bound to the peptide; the 

design strategy (shown as Figure 1.48) is quite straightforward and specific due to significant structural 

similarity between the indicator dye and chosen analytes. The resulting discrimination, however, was 
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only moderate.   

 

 

Figure 1.48 General scheme used for discrimination of wine flavonoids.  Differential sensing ability is 

provided by several peptide sequences used with an indicator displacement strategy. Modified from ref. 

262. 

 

Much more impressive results were obtained by the same group using a diversified set of 

colorimetric indicators and synthetic boronic acid and guanidinium functionalized receptors.263  The 

authors showed the ability of the array to discriminate malate, tartrate and citrate and then using 

spectrophotometric data at three wavelengths (the indicator maxima), they were able to discriminate 

accurately among six different red wines, as shown in Figure 1.49. In contrast with the earlier paper,262 

these more chemically diverse displacement assays provide a much higher dimensionality of data (three 

dimensions include  88% of the discriminatory power) and a much improved distinction between the 

wines. 
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Figure 1.49 Linear discriminant score plot from spectroscopic data from synthetic receptor displacement 

indicator assays. Modified from ref. 263. 

 

1.4.5.2 Proteins 

There have been several recent studies reported on the optical sensor array identification of single 

proteins in solution.  While it is not clear what application single protein identification may have, in 

some cases the approaches are intellectually clever.  One may hope that such arrays might prove useful 

for detecting a specific rogue protein against a constant complex mixture as found in plasma; cross-

reactive sensor arrays, however, are unlikely to be able to achieve such a goal at biomedically relevant 

concentrations.  Such tests remain to be reported. 

For colorimetric sensor arrays, Hou et al.264 tested an array modeled closely on Suslick’s work using a 

series of porphyrins and indicator dyes capable of rapid interaction with proteins. The array produced 

distinct patterns in response to each protein which permitted accurate identification of the pure and 

mixed proteins as well as denatured proteins.  Figure 1.50 shows two dimensional PCA plots which show 

excellent discrimination among the proteins, especially given that only ~64 to 82% of the total variance 

is captured in a two dimensional plot.  Remarkably, one is able to discriminate thermally denatured 
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proteins from the native form rather easily. 

 

 

Figure 1.50 PCA from a 36 dye colorimetric sensor array (a) for seven individual and mixed proteins and 

(b) for six natural vs. thermally denatured (Dn) proteins. Reproduced with permission from ref. 264. 

 

In another example of a pseudo-array data analysis using sequential array sensing of parallel 

solutions, displacement or differential assays have also been used to identify protein solutions.  The 

Rotello group generated multiple differential sensing parallel arrays using gold nanoparticles with the 

aim of discriminating among a variety of biological samples; this work has been both succinctly265-266 and 

exhaustively reviewed.267-269  Several different fluorophores have been used. The interaction of analytes 

with nanoparticles adds additional unique characteristics, as shown schematically in Figure 1.51. 
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Figure 1.51 Illustration of competitive binding between protein and quenched green fluorescent 

protein-gold nanoparticle complexes and protein aggregation, which leads to fluorescence or further 

quenching. Reproduced with permission from ref. 270. 

 

For detection of seven common proteins (bovine serum albumin, cytochrome c, alkaline 

phosphatase, acid phosphatase, subtilisin A, lipase, and β-galactosidase) Rotello et al.271 prepared a 

sensor array based on six cationic functionalized gold nanoparticles (AuNPs) and an anionic PPE (poly(p-

phenyleneethynylene)) polymer. The fluorescence of PPE polymer was quenched by interactions of 

AuNPs with polymer, but addition to a protein solution diplaced the polymer and enhanced the 

observed fluorescence.  By using different functionalization, one could alter the protein affinity to the 

surface of nanoparticles and, thus, producing distinct fluorescence response patterns. Fluorescence 

responses to individual proteins were fingerprinted, giving a detection limit of 4 to 215 nM depending 

on protein size.  

Of particular note, Rotello used a gold nanoparticle-fluorophore system made from gold 
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nanoparticles conjugated to green fluorescent protein (GFP-NP) to act as the displaced indicator. Using a 

protein as the displaced indicator is a straightforward method of discriminating among peptide-based 

analytes due to the molecular similarity between the incoming analyte and the displaced probe. This 

method was used for discrimination among several types of human serum proteins (Figure 1.52),270 and 

then in a subsequent publication to mammalian cells,272 as discussed in the last section. 

 

 

Figure 1.52  Fluorescent displacement sensing using multiple solutions doped with five GFP-NP sensors 

for five serum proteins (25 nM) at pH 7.4. Reproduced with permission from ref. 270. 

 

Li et al.273 used a set of functionalized Fe nanoparticles to discriminate among several proteins.  This 

work used only two probes for discrimination, leading to an inherently low maximum dimensionality. In 

practice, the discrimination ability of the probes comes almost exclusively from a single dimension, as 

shown in Figure 1.53. The authors state that surface charge, protein size, and surface hydrophobicity all 

play roles in discrimination of these species; they may all contribute in a composite sense to the 

principal component, but the one-dimensional nature of the data establishes that this is not truly an 

array sensor. The origin of the specificity is not clear; proteins with very similar pI values are 

differentiated, and there is no correlation with protein size or surface charge. A more detailed data 
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about surface hydrophobicity may provide some further insight. 

 

 

Figure 1.53 LDA score plot showing discrimination among 10 separate proteins. Note the complete 

dominance by one dimension (factor 1), showing that the discrimination ability comes nearly exclusively 

from a single dimension. Reproduced with permission from ref. 273. 

 

1.4.5.3 Intra-cellular sensing using ratiometric fluorometry 

In a sense, the use of two or more fluorophores in a single probe is also array sensing. So ratiometric 

fluorescent probes, where one has two fluorophores excited at the same wavelength, but emitting at 

different wavelengths, permits an array-like response that is self-calibrating.  Let us examine a few 

recent examples of intra-cellular sensing using ratiometric fluorometry.  

Intra-cellular temperature probes provide an interesting example.  Small local temperature changes 

may have significant effects on the cellular signaling pathways and their nanoparticle uptakes;274-277 

thus, the development of novel temperature nanosensors may prove very useful for intra-cellular 

profiling and imaging. Peng et al.278 prepared a ratiometric type of fluorescent nanoparticles with a 

green and a red fluorescence from a single wavelength excitation; these nanoparticles showed the 

capability of monitoring temperature variations in the physiological temperature range (i.e. 25°C-45°C), 
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as illustrated in Figure 1.54. 

 

 

Figure 1.54 (a) Schematic representation of temperature-sensing nanoparticles containing a random 

dispersion of Eu-DT (structure shown as b) and OASN  (structure shown as c) in a silylated poly(methyl 

methacrylate) matrix (BTD-PMMA), which is covered with a silica outer shell; (d) ratiometric 

fluorescence response; (e) temperature calibration plot. Reproduced with permission from ref. 278. 

 

Monitoring of the pH inside live cells is also of importance for probing living cell functions.279 Peng et 

al.280 employed ratiometric fluorescent nanogels for monitoring pH variations (Figure 1.55). The 

hydrogel was prepared from polyurethane containing both hydrophilic and hydrophobic domains,281 

thus the nanogel chains rearranged to form a three-dimensionally stable nanostructures282-283 when 

placed in water. It is noteworthy to mention that the volume of the nanogels were not affected by pH, 

so the efficiency of FRET was constant during in vitro pH sensing. The developed pH probe is suitable for 

montoring the pH in the range of 6-8. Figure 1.55b shows the fluorescence emission spectra of the 

nanogels at various pH values upon excitation at 450 nm. Calculation of the ratio of the observed 

emission intensities of the dyes in various pH values is presented in Figure 1.55, showing around nine 
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fold variation in the ratio on going from pH 5 to pH 9.  

A final example simultaneously measured oxygen content and pH value in bacterial cultures 

(Pseudomonas putida), Kocincova et al.284 prepared and employed a "dual" sensor based on organosilica 

microparticles (for oxygen sensing) and polymethacrylate derivative embedded into a polyurethane 

hydrogel (for pH sensing). 

 

 

Figure 1.55 (a) Schematic representation of the ratiometric pH sensing nanogel; (b) spectrum showing 

the pH-dependent absorption of bromothymol blue in aqueous solution at pH 5.0, 7.0, and 9.0 (gray 

curves), and absorption and emission spectra of coumarin 6 (C6) and Nile Red (NR) in ethanol; (c) 

fluorescence spectra of the ratiometric pH-responsive nanogels at 450 nm excitation at various pH 

values from 4.92 to 9.18; d) pH calibration plot from the ratio of the fluorescence intensities at 620 nm 

and 500 nm of the ratiometric nanogels. Reproduced with permission from ref. 280.  

 

1.4.5.4 Detection and identification of bacteria 

The detection and identification of bacteria are pressing problems in both medicine and industry. 

Bacterial infections are involved in food poisoning, hospital-acquired infections, and other areas that are 
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of great concern for public health, and sepsis remains one of the leading causes of death even among 

first world nations.285-286  In industry, many products must be screened after manufacture for bacterial 

contamination before they may be released and as a consequence regulation of the food industry must 

be particularly stringent.287-288 Existing methods for identification of pathogenic bacteria are limited by 

the necessity of long culturing times, the need for highly trained laboratory personnel, or the 

requirement of expensive and high-maintenance equipment.289-294 

Bacteria stink: that is, they produce volatile organic compounds (VOCs) to which the mammalian 

olfactory system is highly responsive. Consequently, an experienced microbiologist can readily identify 

many bacteria by smell.  Applications of prior electronic nose technology, however, have been limited by 

the low dimensionality of traditional sensor arrays (e.g., metal oxides) and have achieved only modest 

success, even when attempting to classify small numbers of bacterial species.295-297 

Using a disposable colorimetric sensor array, Carey et al.298 were able to identify different species 

and specific strains of human pathogenic bacteria based on volatile compounds produced during 

bacterial growth. In 164 trials monitoring bacterial growth as a function of time, they were able to 

identify 10 strains of bacteria including Enterococcus faecalis and Staphylococcus aureus and their 

antibiotic-resistant strains during 10 hours of culture time with 98.8% accuracy as evaluated by 

jackknifed LDA using timestacked data. Figure 1.56 shows the color difference maps and time evolution 

of the array response to the head-gas mixture produced in sealed Petri dishes. Figure 1.57 shows a PCA 

score plot using the three most important dimensions, which account for only 79% of the total variance. 
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Figure 1.56 (a) Color difference maps and time response profile resulting from colorimetric sensor array 

exposure to a growing culture of E. coli, American Type Culture Collection (ATCC) #25922. (b) The color 

change values versus time plotted for all color channels (R, G, and B values for each spot, i.e., 108 

color channels) at each time point. (c) Color difference maps for 10 different bacterial strains resulting 

from colorimetric sensor array exposure to Petri dish growing cultures after 480 min. Reproduced with 

permission from ref. 298. 

  

E. faecalis
VRE 

E. faecium E. coli 53502

S. sciuriS. aureus S. aureus
MRSA 

S. epidermidis P. aeruginosa

E. coli 25922E. faecalis

120 min 210 min 240 min 360 min 480 min

50

0

-50

-100

-150

Time (min)

C
o

lo
r 

C
h

a
n

g
e

100 200 300 400 500 6000

a

b

c

76



 

 

 

Figure 1.57 PCA score plot using the three most important principal components based on 164 trials of 

10 bacterial strains and controls. The resolution between bacterial classes is in fact much better than 

can be shown by any three-dimensional PCA plot because the first three principal components account 

for only 79% of the total variance. 

  S. aureus;  MRSA;  S. epidermidis;  S. sciuri;  P. aeruginosa;  

 E. faecium;  E. faecalis;  E. faecalis VRE;  E. coli 25922;  E. coli 53502;  Control. Reproduced with 

permission from ref. 298. 

 

Rotello and co-workers used an aqueous solution based displacement assay to identify bacteria in 

liquid growth media using the fluorescence quenching of fluorophores attached to gold nanoparticles.299 

They made use of cationic gold nanoparticles with conjugated polymer fluorophores as their differential 

fluorescence probe, whose response is dictated by the binding strength of the bacterium to the gold 

nanoparticle. By manipulating the surface chemistry of gold nanoparticles and the constitution of the 

conjugated polymer, they generated array-like data (albeit one solution at a time). Nine bacterial species 

and 3 strains of E. coli were examined in 64 trials with a 95% accuracy of classification by LDA (Figure 

1.58). 
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Figure 1.58 LDA score plot for the fluorescence response patterns to bacteria as determined from 

solution displacement assays using gold nanoparticle displacement assays.  The first two dimensions 

contain 96.2% of the variance. Reproduced with permission from ref. 299. 

 

The immobilized fluorescent bead strategy that Walt developed for use with microwelled optical 

fiber bundles (discussed earlier) has also been recently applied to bacterial identification.  Fixed arrays 

of this sort are difficult to reuse multiple times, in part due to photobleaching. Walt and coworkers have 

attempted to address this problem by using a free bead strategy; 300 using optical trapping, the arrays 

are re-created between each use. Since the methods of signal transduction are identical to those used in 

the immobilized bead strategy, it is expected that performance will be similar. A false-color image 

showing raw data output using this method is shown as Figure 1.59 for detection of three strains of E. 

coli. 
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Figure 1.59 False color images of raw three-component microbead array responses to three strains of E. 

coli. Each column is one strain. Top row (a-d) shows the identity of the beads from their fluorescence, 

while bottom row (e-h) shows intensity response to the exposed analyte as a gray scale.  The array is 

~25x25 µm. Modified from ref. 300. 

 

1.4.5.5 Cancer and disease diagnosis 

Optical sensor arrays also have begun to find applications to medical diagnosis of disease.  Different 

cell line produce different volatile metabolites, as discussed early with bacteria; this applies to any 

rapidly growing cells, and in principle the breath is in equilibrium with the volatiles produced within the 

body.  Breath analysis has a long history as an underutilized diagnostic tool;301-303 limitations in analytical 

tools that are sufficiently sensitive, specific, or inexpensive have limited this approach in clinical or 

hospital applications.  Electronic noses301,303-304 have certainly been examined for breath analysis, 

especially for diagnosis of lung cancer and of respiratory infections with some limited success. 

Colorimetric sensor arrays of the type developed in Suslick’s lab for bacterial identification298 too, have 

had some preliminary clinical success for breath diagnosis.  Point of care diagnosis of bacterial sinusitis, 

as one example, has achieved classification accuracy as high as 90% in initial studies at the University of 

Pennsylvania medical school.305  Lung cancer screening using breath analysis has also been reported by 

Mazzone et al.304 at the Cleveland Clinic with promising initial results.  In a study with 229 subjects (92 

with lung cancer), individuals with different histologies could be accurately distinguished from one 
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another (86.4% for adeno-carcinoma vs. squamous cell carcinoma), and the accuracy of breath 

biosignatures could be optimized by incorporating clinical risk factors. 304 

In an entirely different approach to cell differentiation, it is not surprising that different cell lines 

interact differently with different nanoparticles306-308 and that those interactions are strongly affected by 

the chemical nature of the nanoparticle surfaces, particularly as biomolecules adsorb onto nanoparticle 

surfaces forming a “protein corona”.309-311   

Taking advantage of nanoparticle-whole cell interaction, the parallel soluble fluorescent 

displacement assays that Rotello et al. 272,312-313 have developed for protein identification also have been 

applied to differentiation between normal and cancerous whole cells. For example, green fluorescent 

protein coated gold nanoparticles array were used to differentiate types of mammalian cancer cells 

(HeLa (cervical), HepG2 (liver), MCF-7 (breast), and NT2 (testis))312. The nanoparticle suface ligand 

structures for mammalian cell discrimination are shown as Figure 1.60. A score plot summarizing the 

array’s discrimination ability272 is shown as Figure 1.61. 
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Figure 1.60 The six nanoparticle ligand structures used for mammalian cell discrimination. Differential 

sensing ability derives from displacement of GFP from the nanoparticles to release GFP in the presence 

of species with differential relative affinities for the gold nanoparticle with various surface ligands (NP1 

through NP6). Reproduced with permission from ref. 272. 

 

 

 

Figure 1.61 LDA score plot showing clear differentiation between healthy and metastatic mammalian 

cells and among cells from various organs. The blue/red shading is meant to delineate healthy/normal 

and metastatic/tumor cells. Reproduced from ref. 272. 
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1.5 Limitations, opportunities, and future challenges 

The primary limitation of a sensor array, including the mammalian nose, is that it gives a composite 

response to complex mixtures.  One does not get a component by component analysis from cross-

reactive sensor arrays. Most chemists naturally assume that the goal with any complex mixture is to 

achieve a complete quantitative analysis of each component.  But in fact, for multi-component analytes, 

there are generally multiple analytical goals:  one often wants to know is this mixture the same as that 

one, is there one (or a few) component(s) that have changed against a constant complex mixture, is this 

mixture genuine or counterfeit, was this material processed correctly or not?  

The primary strength of a sensor array, including the mammalian nose, is that it gives a composite 

response to complex mixtures. The ability to fingerprint complex mixtures is often greatly simplified by 

such a composite response. With recent advances in optical sensor arrays, exquisite fingerprinting of 

extremely similar mixtures or single analytes has been achieved over a wide range of analyte types. 

Another characteristic of sensor arrays that probes chemical properties of analytes, rather than 

physical properties, is non-uniform intrinsic response to analytes.  This too is a good news-bad news 

story.  The good news is that most analytes of concern (e.g., toxic gases) are, essentially by definition, 

highly reactive and therefore easily detected, even at sub-ppm concentrations.  This eliminates many of 

the problems of false-positives associated with traditional electronic nose and solid state chemical 

sensors.   The bad news is that some analyses are interested in less reactive analytes.  One solution, 

developed only recently, is to pre-react the analyte stream to produce, for example, partial oxidation 

products that are more reactive and therefore more easily analyzed by chemoresponsive sensors.19  

More selective methods of "activating" these analytes, especially in the presence of a high 

concentration of interferents, would add significantly to the capabilities of current optical sensor arrays 

for gas analysis. 

The alternative of incorporating even more promiscuous optical sensors has some merit as well; the 
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difficulty is that the weak interactions usually used in monitoring such properties (e.g., physisorption 

onto surfaces, absorption into polymers) generally lead to lower sensitivity (e.g., solvatochromic shifts of 

polymer adsorbents are typically undetectable below ~0.1% of the saturation vapor pressure of an 

analyte). 

For heterogeneous optical arrays designed for liquid sensing, contamination of analyte solutions due 

to probe solubility is a major problem.  One is caught in a dilemma for solid state optical arrays that are 

to be immersed in liquids:  the solvates must have access to the sensor medium, but the sensor dyes 

must not dissolve into the liquid.  In principle, one may overcome this problem by immobilization of 

dyes into sol-get formulations, but in practice immobilization is sometimes imperfect.   

Solution phase array sensing is carried out by a parallel analysis of multiple aliquots of the analyte 

solution, each with an added, different homogeneous probe, e.g. using microwell plates. This is a 

cumbersome procedure, and one that should yield to improved technology using heterogenization of 

the soluble probes, including covalent attachment to the probe substrate.   

All in all, however, one can only be impressed by the development of optical sensor arrays over the 

past decade.17 Colorimetric sensor arrays have demonstrated excellent potential for complex systems 

analysis in real-world applications and provide a novel method for discrimination among closely similar 

complex mixtures. 

 The commercialization of optoelectronic nose technology is underway in several companies and 

one expects that significant markets are likely to develop in the future.  
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Chapter 2: Liquid-phase sensing 

 

2.1 Background 

Exposure to waterborne toxins is a concern in most developed countries, and enforced by a 

combination of environmental and health protection agencies (US EPA, OSHA, etc). The US military also 

has significant concern due the likelihood of being required to use foreign water sources when 

performing operations overseas.  

A list of relevant toxins and suggested maximum exposure levels for military personnel was 

provided in 2005 after years of revision of old, defunct toxin tables.1 The list ranked toxins based on a 

combination of hazard severity (i.e., toxicity, flammability, and reactivity) and encounter probability (i.e., 

physical state and difficulty of transport, worldwide rarity, and infamy with regards to historical events); 

the product of the two scores was used to rank toxins roughly objectively using the criteria set for each 

score. The list was also partially subjective, as it removed specific compounds due to their relatively low 

toxicity toward humans (e.g., benzene, which is very toxic to rabbits but fairly innocuous to humans) or 

previous omission and lack of study (e.g., pesticides). A subselection of this list was targeted for study 

with colorimetric sensor arrays, provided in Table 2.1. 
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Table 2.1 Aqueous toxins chosen for investigation and their suggested maximum exposure levels. 

 

Species MEG (5 day) MEG (1 year) EPA 

Metal Cations Hg2+ 

 

155 nM 10 nM 

 

Cd2+ 500 nM 62 nM 44 nM 

 

Cu2+ 2 M 2 M 20 M 

     
Anions CN- 231 mM 11 M 8 M 

 

AsO2
- 4 M 800 nM 133 nM 

     
Organophosphate Methamidophos 

 

5 nM 5 nM 

Pesticides Acephate 

 

300 nM 300 nM 

 Methyl Parathion 

  

13 nM 

     

Organics Nicotine 2.5 M   

 

The selected analytes represent a relatively broad selection of physical and physiological 

properties. Mercury (Hg2+) and cadmium (Cd2+) both have toxicity owing to the physiological 

replacement of Zinc (Zn2+) in various enzymes crucial to human respiration; their reactivity is otherwise 

fairly low, however, and detection would require some sort of chelating dye. Copper (Cu2+), on the other 

hand, simply promotes production of reactive oxygen species in the body, and its corresponding toxicity 

is significantly higher than other heavy metals; chelating dyes are also likely the best candidates for 

detection. Cyanide (CN-) is toxic due to its poisoning of cytochrome c oxidase, a protein crucial for 

human cellular respiration (specifically, processing oxygen); it is also somewhat more reactive than 

many chemical species and has a high affinity for heavy metals, so exploiting this provides the most 

likely route for detection. Arsenite (AsO2
-) toxicity is the primary source of toxicity for all arsenic-

containing species, and is derived from inhibition of pyruvate dehydrogenase (Acetyl-CoA synthesis) and 
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succinic dehydrogenase by interfering with thiol redox reactions; the best candidate for detection in this 

case will exploit its redox properties. Organophosphate toxicity is derived from poisoning of 

acetylcholine esterase; organophosphate reactivity is especially low, and detection will likely require a 

similar environment as in an affected enzyme. Nicotine is toxic due to its poorly reversible interactions 

with nicotinic receptors in the brain; there are well-known colorimetric tests for nicotine, but adapting 

these to a colorimetric sensor array in an aqueous environment constitutes a significant challenge. 

The most common potential interferents are from divalent alkali earth metals (i.e., "hard 

water") which could potentially interact with sensors designed for divalent Hg2+, Cd2+, and Cu2+
 as well as 

Cl-, which could potentially interact with sensors designed for CN-. Interferent concentrations range from 

water that is considered extremely "hard", such as the water in Turkey, and water that is considered 

extremely "soft", such as the water in Nigeria. Relevant concentrations of these interferents are listed in 

Table 2.2. 

 

Table 2.2 Interferent concentrations in both "hard" and "soft" water conditions. 

Species Turkey2 Nigeria3 

Ca2+ 1.4 mM 0.08 mM 

Mg2+ 0.7 mM 0.1 mM 

Cl- 1.2 mM - 

 

2.2 Experimental procedures 

A flow setup for aqueous sensing was created using a sealed cell originally developed for gas 

sensing. Arrays were printed on the appropriate substrate (PVDF or PET), then adhered to a silicone 

backer. This silicone-cartridge composite was then adhered to the underside of the flow cell (which itself 

97



had silicone elastomer seals and needle entry ports attached), thereby sealing the sensor components 

inside the flow cell; the flow cell was then attached to a rigid cartridge via clasps in order to help prevent 

leakage during operation. The flow cell was then used upside-down on an Epson V600 flatbed scanner 

for imaging; pictures of the setup are shown in Figure 2.1. The overall volume of the flow cell was 

approximately 500 L, with the volume directly around the chemical sensor array being approximately 

100 L. 

This setup was attached to a pair of peristaltic pumps via needles inserted into the elastomer-

sealed ports. One pump was attached to the inlet, and one was attached to the outlet; this was 

necessary to minimize pressure differences (and thus liquid or air leakage) on the inside of the flow cell. 

This setup was still prone to leakage, but was an improvement over a single-pump system; leakage in 

this case would ruin an experimental trial, as water on the scanner (caused by too-high pressure in the 

cell) would change the optical properties of the scan, and bubbles in the cell (caused by too-low 

pressure in the cell) would obscure imaging and obstruct liquid flow. The experimental setup was not 

optimized, and had approximately 25% failure rate with regards to leakage. 

Arrays were initially equilibrated with deionized water for 1 minute while flowing at 1.5 

mL/minute (i.e., total cell replacement approximately every 20 seconds). A "before exposure" scan was 

collected, and then the cell was switched to an analyte flow by briefly pausing the pumps and moving 

the inlet line to a vial containing the analyte solution. These were then imaged at the time points further 

specified (typically 3 and 10 minutes). 
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Figure 2.1 Sealed cartridge (left), sealed cartridge with PVDF array affixed and marked flow path 

(center), flatbed scanner used for imaging (right). In the center image, red arrows indicate the liquid 

flow path, blue lines indicate the edges of the sealed chamber, and the black box indicates the 

colorimetric sensor array. 

 

2.3 Array Development 

2.3.1 Array Development - General Considerations 

The first questions asked when starting an applied project like colorimetric aqueous toxin 

sensing is "Can we use a system that already exists, and if not, why?". Evaluation of an array developed 

for studying toxic industrial chemicals (TICs) in the gas phrase4-6 revealed several key differences 

between gas-phase sensing and liquid-phase sensing. Sensor spots that are not optimized for use in 

aqueous conditions will often dissolve into the ambient medium and cause a variety of effects. In order 

from least-to-most overt, these are blooming, leaching, disassociation, and disintegration. 

Blooming is a chromatographic effect where a poorly-soluble dye migrates along the substrate; 

the spot becomes larger and often decreases in intensity. Blooming is caused when the immobilization 

matrix has a low but non-negligible partition coefficient between the ambient medium and substrate 

Epson Perfection V600

99



(i.e., the matrix is poorly soluble in the ambient medium, but also has a relatively high affinity for the 

substrate), and the ambient medium has an affinity for the substrate. Blooming most commonly occurs 

when using a substrate with similar polarity to the ambient medium (e.g., sensing aqueous analytes with 

a cellulose substrate) and only rarely occurs when using a substrate with opposite polarity (e.g., sensing 

aqueous analytes with a PVDF substrate). This problem is avoided in aqueous conditions by using either 

a strongly hydrophobic substrate (e.g., PVDF) or a hydrophilic substrate with an insoluble matrix (e.g., 

sol-gel). 

Leaching is a process where the dye in the sensor spot dissolves into the ambient medium; the 

spot becomes significantly less intense, and can sometimes leave only the insoluble matrix behind after 

the dye completely migrates out of the sensor spot. This effect can be observed in Figure 2.2; blue 

circles indicate spots that underwent significant leaching. Leaching is caused when a sensor dye is very 

soluble in the ambient medium and the immobilization matrix has an affinity for the ambient medium 

but is insoluble; in this case, the matrix stays in place, but the dye diffuses out of the spot. Leaching 

occurs very commonly as most colorimetric dyes are highly soluble in water and most immobilization 

matrices are at least somewhat hydrophilic. This problem can be decreased or eliminated in aqueous 

media by using highly hydrophobic matrices, but this also eliminates one of the necessary conditions for 

sensing species that have a similar polarity to the ambient medium (e.g., chloride ions in water). A more 

direct solution would be to attach the dye to the matrix through covalent modification or ion pairing, 

but this was not fully explored. Leaching manifests as a non-zero background response which changes as 

a function of time. Using negative controls, the magnitude of the leaching effect was quantified and 

used in an identical method to non-leaching arrays, such as those using gas-phase analytes. It was 

determined that leaching contributed significantly to the noise in the control samples, which in turn 

resulted in worse (i.e., higher) detection limits; this is one of the primary weaknesses of the method. 
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Disassociation is a physical process where a sensor spot actually lifts away from the substrate in 

its entirety. These spots will typically drift downstream and attach to the end of the flow cell or another 

sensor spot. Disassociation is caused when the immobilization matrix has low affinity for the substrate 

but has an affinity for the ambient medium and is insoluble; in this case, the sensor spot will become 

briefly suspended in the ambient medium induced by turbulent conditions and detach from the 

substrate. Disassociation is common when using low surface area substrates (e.g., PET sheets) but 

extremely rare when using high surface area substrates (e.g., PVDF, cellulose, or any porous membrane). 

This problem is trivially avoided in aqueous media by using porous substrates. 

Disintegration is caused when the immobilization matrix dissolves into the ambient medium. 

This is caused when the immobilization matrix is soluble in the ambient medium. This effect can be 

observed in Figure 2.2; red circles indicate spots that disintegrated upon exposure to water. The entire 

spot simply dissolves into the ambient medium; insoluble dyes are either solubilized by the matrix or 

suspended as particles. Disintegration is common in aqueous media when using hydrophilic matrices 

(e.g., PEG, glycerol, or surfactants). This problem is avoided in aqueous media by using poorly soluble or 

insoluble matrices (e.g., sol-gel or BBP). 
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Figure 2.2 TICs array on PET upon exposure to air (left), immediate exposure to deionized water 

(center), and 30 minutes of exposure to deionized water (right). Several problems are clearly evident, 

inluding dye leaching and probable spot disassociation. 

 

Sensor arrays also experience non-chemical problems when switching from a gas to a liquid 

environment. For the array in aqueous media shown in Figure 2.3, it is evident that matrices require 

time to become fully wetted by the media (red circles); as diffusion in liquids is significantly slower than 

in gas, it is also expected that mass transfer from the analyte stream to the sensor spots will be slower. 

Additionally, bubbles (blue circles) have a tendency to become trapped between the substrate and the 

flow cell as the spots are sufficiently hydrophobic so as to stabilize the hydrophobic air bubble against 

the surface of the hydrophobic flow cell (the analyte stream in this case was behind the array, away 

from the camera). 

Air Water, 0 min Water, 30 min

TICS array on PET
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Figure 2.3 TICs array on hydrophilic PVDF (i.e., PVDF/cellulose composite membrane) upon immediate 

exposure to deionized water (left) and 30 minutes of exposure to deionized water (right). Problems with 

air bubbles and incomplete spot saturation are clearly evident, as well as significant dye leaching. 

 

Briefly sonicating these arrays in an ultrasonic cleaning bath (e.g., 15 seconds or less) removed 

bubbles and ensured that spots were saturated with ambient media, but also enhanced problems with 

leaching and blooming, as shown in Figure 2.4. From this, is is clear that the TICs array is not suitable for 

use in aqueous environments, though some of the spots (especially spots using strongly hydrophobic 

octyl-TEOS sol-gel matrices) were largely unaffected by the aqueous environment. 

Water, 0 min Water, 30 min

TICS array on hydrophilic PVDF
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Figure 2.4 Sonicated TICs arrays printed on hydrophilic PVDF. Leaching and blooming effects are clearly 

evident. 

 

In order to address these problems, one must look back to initial development of gas-phase 

sensor arrays (e.g., the TICs array) and examine solutions to related problems. Whereas the primary 

problems in gas-phase sensing are dye or matrix volatility, an analogous problem in aqueous sensing 

exists as dye or matrix solubility. Sensor array design must then consider solubility as well as volatility. 

This problem is more often encountered with aqueous-phase sensing due to the relatively high solubility 

of most compounds compared to their volatility: most compounds are soluble to a certain extent in 

water due to water's incredible ability to act as a solvent. Further, even insoluble particles can be 

suspended (especially when in close association with a partially soluble compound such as a surfactant), 

which causes similar problems. Flow also amplifies this effect due to the constant depletion of the 

Water, 0 min Water, 20 min

TICS array on hydrophilic PVDF
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dissolved dye and matrix near the surface of the sensor spot. Thus, special care must be taken so as to 

reduce solubility while still maintaining reactivity. 

 

 

Figure 2.5 Cartoon showing analogy between gas-phase problems with volatility and aqueous-phase 

problems with solubility. 

 

2.3.2 Array development - CN- detection using enzymatic sensors 

An early attempt at sensing CN- was made by investigating its ability to inhibit horseradish 

peroxidase (HRP), a well-studied peroxidase enzyme. In the presence of hydrogen peroxide, HRP will 

oxidize a wide variety of organic substrates, such as o-dianisidine, a chromogenic dye that turns green 

upon 1-e-oxidation and brown-black upon 2-e- oxidation. This is a turn-off method, in which the sensor 

Gas

N2 ambient

Volatility is a problem

Aqueous

H2O ambient

Solubility is a problem
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response is maximal when there is no cyanide present. Initial proof-of-concept experiments using 

hydrogen peroxide directly turned out to be troublesome, however; the spots tended to react unevenly 

(as too-high concentrations of peroxide irreversibly damaged the enzymes) and hydrogen peroxide also 

reacted with other spots on the array, which made inclusion of a peroxide-consuming spot in a larger 

sensor array impossible. 

Instead, hydrogen peroxide was generated in situ by including glucose oxidase (GOx) in sensor 

spots alongside HRP. Glucose oxidase produces hydrogen peroxide (and D-glucono--lactone) when 

exposed to glucose. Despite being able to reach theoretically higher concentrations of hydrogen 

peroxide, this two-enzyme method was found to be significantly more reproducible and gave higher 

total response than using hydrogen peroxide directly. It was assumed that having equal concentrations 

of the two enzymes (in reactive units per mL; reactive units are equivalent to 1 micromol turnovers per 

minute) would give the best behavior, as the stoichiometry of the reaction is 1:1. Enzyme concentrations 

were tested in order to determine the minimum amounts necessary to give a suitable control response; 

these trials are shown in figure 2.6, showing that 150 u/mL of both enzymes was necessary to get the 

minimum acceptable response. Since this is a turn-off sensor, minimizing the enzyme concentration was 

desirable so as to not consume the organic chromogen too quickly. A response over time plot is shown 

as Figure 2.7, giving the total squared euclidean distance (i.e., the sum of every dimensions' response 

squared) as a function of time. This plot is for all tested concentrations together, but it is also worth 

noting that the plot looks very similar for any one particular chosen concentration. As shown, the sensor 

response decreased significantly on exposure to aqueous KCN. 
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Table 2.3 Vital properties for GOx and HRP screen 

Matrix Formulation  
TMOS 7.5% by volume 
Methyl TMOS 7.5% by volume 
2-MeOEtOH 45% by volume 
H2O 40% by volume 
o-dianisidine 2.5 mg/mL 
HCl ~ 10 mM 
MES buffer 10 mM, pH 5.5 
  
Drying/Curing 5 days at 4 °C 
Membrane Nitrocellulose, 0.22 m 
  
Procedure MES buffer (as above) for 1 minute 
 100 mM Glucose in MES buffer after 1 minute 
 

 

Figure 2.6 Screen of different GOx and HRP concentrations in order to determine optimal enzyme 

concentration. 

 

100 u/mL GOx and HRP

150 u/mL GOx and HRP

200 u/mL GOx and HRP

250 u/mL GOx and HRP

1 mM MES

100 mM Glucose

Trial 3
20 min
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Figure 2.7 Sensor response for entire array described above. 

 

This sensor response data was processed using a second order kinetic fit in order to give a 

linearized temporal response by assuming that the squared euclidean distance was proportional to the 

concentration of the oxidized dye. This approximation is purely empirical; proper determination of 

analyte concentration using this system would require normalization and calibration.  By plotting against 

KCN concentration, it was observed that the intercept (which is roughly inversely proportional to the 

catalytic rate coefficient kcat) had a linear relationship with [KCN], as shown in Figure 2.9. Solving for 

[KCN] where the intercept was equal to 3x the standard deviation of the control data (i.e., [KCN] = 0), an 

estimated limit of detection was calculated to be approximately 18 M. 
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Figure 2.8 Processed sensor response. The data was fit using a second-order kinetic equation to give a 

linear response over time. 

 

Figure 2.9 Approximation of detection limit using a linear fit of the kinetic parameters determined using 

a 2nd order kinetic approximation. 

 

During these experiments, significant amounts of variability were observed. It was eventually 

found that the curing/drying time of the array had a strong effect on its behavior, so a study was 

performed comparing different drying times with a selection of immobilization matrices, as shown in 

Figures 2.10 and 2.11. Of the matrices listed below, the 7.5% isv TMOS/MeTMOS mixture is identical to 

tB

At
SqED




ABAtSqEDt /// 

0

0.00005

0.0001

0.00015

0.0002

0.00025

0 5 10 15 20

T
im

e
/S

q
E

D
(m

in
)

Time (min)

y = -1.1E-06x + 2.86E-06
R² = 0.5324

0

0.0000005

0.000001

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0 0.2 0.4 0.6 0.8 1

S
lo

p
e

 (
u

n
it

le
s
s

)

[KCN] (mM)

y = 0.000115x + 8.83E-06
R² = 0.9951

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0 0.2 0.4 0.6 0.8 1

In
te

rc
e

p
t 

(m
in

)

[KCN] (mM)

109



that described above. H2O only indicates that there were no matrix components; the buffered 

components were printed directly on the membrane, with dramatic reduction in print quality. PvA-SbQ 

is a water soluble photocurable polymer that was used in the hopes of eliminating any problems with 

cross-reactivity between the sol-gel matrix and enzymes during the sol-gel curing process; it was cured 

using a short-term exposure to UV light generated with an Ar lamp. The 15% isv TMOS mixture listed 

below is similar to the 7.5% TMOS/MeTMOS matrix except that MeTMOS was replaced with TMOS, 

increasing its hydrophilicity. 

 

Figure 2.10 Drying study of HRP and GOx-containing spots with 4 different immobilization matrices. 

7.5% isv TMOS, 7.5% isv MeTMOS

H2O only

10% PVA-SbQ (1.7 wt% overall)

15% isv TMOS
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Figure 2.11 Effects of array curing/drying at room temperature and in a refrigerator at 4 °C. As observed, 

the dye became increasingly oxidized in un-exposed arrays as drying time and temperature increased, 

and subsequent array response decreased on exposure to glucose. 

 

Unfortunately this experiment generated two fatal results for this project: (1) curing caused the 

organic dye to oxidize over time, even in samples without a matrix, and (2) curing dramatically 

decreased the responsiveness of the spots toward glucose after only 3 days. Since this is a turn-off 

sensor designed for low analyte concentrations, reproducibility and high response are paramount in 

order to reliably detect minor decrease in signal upon exposure to inhibitors such as CN-. Because the 

shelf life of this array was only approximately 3 days (essentially aspect of the array suffered significant 

degradation upon even this short-term curing/drying), the enzymatic approach to CN- detection was 

shelved indefinitely. 

To replace this sensor, it was decided to investigate previously-developed chemical-based 

sensors instead and improve their performance in aqueous conditions: compared to this HRP/GOx 

0 min

Day 3, RTDay 1, RT

20 min

Day 6, RT

MeTMOS/TMOS

No matrix

PVA-SbQ

TMOS
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system, chemical sensors are cheaper, easier to prepare, significantly more tolerant to curing/drying 

conditions, would not likely require an additive in the media (e.g., glucose), and (most importantly) are 

turn-on sensors. 

 

2.3.3 Array development - initial probe choices 

Probes for CN- took advantage of the high stability of certain metal-cyanide bonds, specifically 

Hg2+-CN and Ag+-CN. A probe for CN- incorporating Hg2+ is essentially the opposite of a probe meant to 

detect Hg2+; interaction with CN- effectively pulls Hg2+ out of a sensor spot meant to detect it, forming 

unreactive HgCN2 or an intermediate salt. One such dye initially chosen was the chelating dye 

diphenylcarbazone (DPC), shown in Figure 2.12, which forms a yellow spot that turns purple on 

exposure to Hg2+; this color change is the opposite when DPC-Hg is exposed to CN-. 

 

Figure 2.12 Probes chosen for Hg2+
 (i.e., DPC) and CN- (i.e., DPC-Hg). 

 

DPC is poorly soluble in water, and DPC-Hg is essentially insoluble; the interaction between DPC 

and Hg2+ is reversible, however, and it could potentially cause problems to include Hg2+ in a sensor array 

that is also designed to detect Hg2+. Thus, sensors based on Hg2+ were largely abandoned in favor of 

probes based on Ag+, which also has a strong interaction with CN- . A strongly hydrophobic spot 

diphenylcarbazone
DPC

diphenylcarbazone-mercury
DPC·Hg
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containing AgNO3 and a pH indicator (either Bromophenol Blue [BPB] or Bromocresol Green [BCG], as 

shown in Figure 2.13) was on the TICs array, and these spots showed a response to KCN and immunity to 

a NaCl interferent, as shown in Figure 2.14. Importantly, these spots were also resistant to blooming and 

dissolution, unlike many spots on the TICs array. It is generally speculated that these spots work by 

converting HCN to HNO3 which then acidifies the pH indicator; essentially, it allows HCN to act as a 

strong acid, which is contrary to its weak acidity in solution.  

Development of arrays including DPC-Hg is especially troublesome, as the dye's insolubility 

makes it impossible to prepare normally; instead, aqueous HgCl2 is printed on top of a DPC spot. This 

makes the spot especially problematic with regards to reproducibility and potential Hg2+ contamination. 

As such, once Ag+-containing spots proved to be effective, DPC-Hg was abandoned as a sensor choice; 

this spot will not be discussed further, as reproducibility was poor and quite frustrating. 

 

 

Figure 2.13 Bromophenol Blue sodium salt (BPB, left) and Bromocresol Green sodium salt (BCG, right). 

These dyes were chosen as a pH indicators for probing the interaction between AgNO3 and CN-. 
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Figure 2.14 Response of AgNO3-containing sensors toward aqueous KCN. The estimated detection limit 

was 5 M. Signals were scaled from (1,16) to (0,255). 

 

Other chelating dyes were chosen for detection of other metal ions, including Cd2+ and Cu2+. 

Their structures are shown in Figure 2.15. These dyes are traditionally-used dyes in titration experiments 

for quantitation of these and other metal ions. Note also that dithizone was investigated and seemed to 

be a very sensitive probe, but it was found to be unstable upon exposure to air and was abandoned. 

 

 

Figure 2.15 Structures of chelating dyes investigated for detection of aqueous Cd2+ and Cu2+. 

 

  

BPB + AgNO3

BCG + AgNO3

Control
KCN
100 M

NaCl
1 mM

LOD 5 M

1-(2-pyridylazo)-2-naphthol
PAN

4-(2-pyridylazo)-resorcinol
PAR

4-(2-thiazolylazo)-resorcinol
TAR
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2.3.4 Array development - substrate, matrix, and dye choices 

Based on previous experiments with the TICs array (section 2.3.1), hydrophobic PVDF 

membrane was chosen as an ideal substrate for aqueous sensing: non-porous PET sheets did not 

provide adequate adhesion for the sensor spots, and hydrophilic membranes had significant problems 

with bleeding. Of the substrates tested, only PVDF sufficiently maintained integrity of the sensor spots; 

PVDF also dramatically reduced problems with bubbles preferentially adhering to spot surfaces. 

After testing several matrix formulations, a set of general truisms was established for the best-working 

sensors: 

1. The matrix must have a similar polarity to the probed species 

 KCN is highly polar, but freely converts to the volatile HCN, which is nonpolar. 

 All metal salts are highly polar. 

2. The matrix must be accessible to the ambient medium 

 PVDF is hydrophobic and has small pores which trap air (i.e., inaccessible to water) 

 The ambient medium for soluble species is water, which is hydrophilic 

 The ambient medium for volatile species is air, which is hydrophobic 

3. Any matrix which is accessible to water will leach soluble dyes 

4. All dyes are partially soluble in water 

The last two points are especally difficult for aqueous sensor development, as it essentially guarantees 

that any effective dye will also eventually dissolve into the aqueous medium. Covalent attachment of 

the dye to the matrix or substrate would almost certainly solve this problem, but this was not pursued.  
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2.3.5 Array design finalization and results 

Results for the ultimate array design are described below. Both arrays are described in order to 

discuss the effectiveness of DPC-Hg (as a CN- sensor) as well as PAN and TAN (primarily included to 

detect Cd2+). The design of array JA-2.3.5 is shown in Figure 2.16. A table with relevant spot formulations 

is shown in Table 2.4. 

 

 

Figure 2.16 Picture of array JA-2.3.5.1 before exposure. The array uses 4 different colorimetric probes 

and immobilization agents optimized for use in aqueous conditions. 

 

  

AgNO3 + BCG (for CN-)
Hydrophobic sol-gel

PAR (for Cd2+)
Hydrophilic sol-gel

DPC (for Hg2+ and Cu2+)
Amphiphilic polymers
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Table 2.4 Spot and formulation list for Array JA-2.3.5. 
Spot Dye Amount Formulation 
DPC 8 mg/mL PEG 400 (50 mg) + BBP (200 L) + MeOEtOH (750 L) 
PAR 4 mg/mL JA197D 
BCG + AgNO3 2 mg/mL BCG 

5 mg/mL AgNO3 
SLII-042A 

 

Difference map at relevant analyte concentrations are shown in figure 2.17. Though there is 

significant overlap between the Hg2+ and Cu2+ signals, the analytes are able to be easily differentiated by 

the change in the red channel, as evidenced by the difference maps showing yellow spots for Hg2+ and 

green spots for Cu2+ (i.e., Hg-DPC and Cu-DPC are different shades of purple). The sensor array showed 

no response to interferents, as shown in Figure 2.18. 

 

Figure 2.17 Average difference maps of relevant analyte concentrations. For visualization, responses 

were scaled so that the range of (2-19) was projected onto 8-bit color space (i.e., 0-255). Note that the 

control response was subtracted from each of the non-control analytes. 

10 min exposure

Control
CdCl2
10 M

HgCl2
1 M

KCN
10 M

Expansions at (2,19)

CuCl2
1 M

Control
CdCl2
10 M

HgCl2
1 M

KCN
10 M

CuCl2
1 M
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Figure 2.18 Average difference maps of a control sample and relevant interferants. For visualization, 

responses were scaled so that the range of (2-19) was projected onto 8-bit color space (i.e., 0-255). Note 

that the control response was subtracted from each of the non-control analytes. 

 

Results measuring the sensitivity of this array are shown in Table 2.5. The sensor array compares 

well to published values for similar colorimetric or portable methods, but in general has a few major 

flaws. The sensitivity of the array toward Hg2+ is very nearly on-target, and is easily capable of detecting 

Hg2+ in water just above drinking water limits (i.e., very long-term exposure). Limits of detection for CN-  

and Cd2+ are lower than published values, but is still suitable only for detection of acutely toxic water 

(detection limits are still higher than the EPA limits). In the opposite direction, the array's limit of 

detection for Cu2+ is several orders of magnitude lower than desired; the array is too sensitive, which 

could cause problems as Cu2+ could be considered a potential interferent for Hg2+ due to overlapping 

sensor response. 

Control
CaCl2
1 mM

MgCl2
1 mM

NaCl
1 mM

Expansions at (2,19)

Control
CaCl2
1 mM

MgCl2
1 mM

NaCl
1 mM

3 min exposure

10 min exposure
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Table 2.5 Results of sensor array sensitivity (i.e., limit of detection, LOD) as compared to relevant values: 

maximum exposure guidelines for acute (i.e., 5 day) exposure, chronic (i.e., 1 year) exposure, EPA 

drinking water guidelines, and published limits for similar sensors.s 

 
Species MEG (5 day) MEG (1 year) EPA LOD Lit 

 
Hg2+ 

 
155 nM 10 nM 33 nM 100 nM7 

Metals Cd2+ 500 nM 62 nM 44 nM 250 nM 1 mM8 

 
Cu2+ 2 M 2 M 20 M 17 nM 160 nM9 

Anions CN- 231 M 11 M 8 M 175 nM 1.6 mM10 
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Chapter 3: Handheld reader for colorimetric sensor arrays 

 

This chapter taken in large part from the following references: 

Askim, J.R.; Suslick, K.S. "A Handheld Reader for Colorimetric Sensor Arrays" Accepted, Analytical 
Chemistry. 2015 
 
Suslick, K.S. "User's Manual. PROJECT JAWBREAKER:  A Handheld  Optoelectronic  System." Progress 
report to TSWG. 2014 
 

3.1 Introduction 

Development of rapid, sensitive, portable and inexpensive systems for identification of gaseous 

analytes has become an urgent societal need and has important applications ranging from the chemical 

workplace to security screening to even health monitoring of the general population. The use of 

colorimetric sensor arrays has proven to be a fast, sensitive, and versatile method of liquid, vapor, and 

gas analysis where the specificity derives from the pattern of response from cross-reactive sensor arrays 

rather than individual sensors for specific analytes.1-5  Colorimetric sensor arrays have been successfully 

used to differentiate among diverse families of analytes, ranging from toxic industrial chemicals,6-9 to 

various foods and beverages,10-17 to pathogenic bacteria and fungi.18-23 Unfortunately, these methods 

have generally been limited to use in laboratory settings due to the fragility and bulk of the 

instrumentation.  

The use of colorimetric sensor arrays would benefit greatly from a portable, low-noise optical reader 

with onboard processing capability.  To that end, we have developed a handheld reader to analyze 

colorimetric sensor arrays that is a self-contained, truly portable analytical device. The handheld reader 

uses a color contact image sensor (CIS) that contains a linear CMOS sensor array for optical 

transduction;24,25 due to their short focal distances, CIS devices are commonly used as business card 

scanners and in some flatbed scanners. The handheld reader also incorporates a disposable sealed 

cartridge, a diaphragm micropump for analyte flow control, and onboard electronics that provide rapid, 
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low-noise measurement of red, green, and blue reflectivity of a linearly-arranged colorimetric sensor 

array during exposure to gaseous analytes. The handheld reader is also capable of performing statistical 

evaluation (e.g., classification) in real-time.  

 Because machine learning and pattern recognition terminology is less commonly used by 

chemists, we have included Table 3.1 below with definitions of some of the common terms used in our 

discussions in this and following sections. 

 

Table 3.1.  Definitions of pattern analysis terminology 

Sample  
A single data point consisting of one measurement of each sensor element. For us, this 
would be the color change vector measured from a single cartridge exposure at a given 
time. 

Class, Cluster  
A collection of multiple samples all assigned the same identity. For example, 35 scans 
of Hydrochloric Acid gas would all be assigned the class "HCl". 

Group  A collection of one or more classes; a supercluster. 

Supervised 
learning 

Supervised (“biased”) learning infers a function from labeled training data. The training 
data consists of a set of pre-known examples, i.e., a name/class/output value linked 
with an input object (typically a data vector). A supervised learning algorithm analyzes 
the training data and produces function that can be used for mapping new examples 
into the pre-existing known classes.  

Unsupervised 
learning 

Unsupervised (“unbiased”) learning is the task of finding structure in unlabeled data.  
The observations given to the learner are not predetermined (“unlabeled”) and there is 
no bias (error or reward) in the number of possible classes generated.  Cluster analysis 
is typically unsupervised. 

Classifier  A function that can separate two or more already known groups. 

HCA, 
Hierarchical 
Cluster 
Analysis 

A function that groups a set of objects so that objects in the same group (a cluster or 
class) are more similar to each other than to those in other clusters. Hierarchical 
cluster analysis (HCA) is an unsupervised (“unbiased”) connectivity model for clustering 
that is based on distance connectivity in some high dimensional space and presents a 
resultant dendrogram of connectivity.  

LDA, Linear 
Discriminant 
Analysis;  
PCA, Principal 
Component 
Analysis 

LDA (also Fisher’s LDA) uses a training set of data to find a linear combination of 
dimensions to separate two or more classes of objects so as to maximize the 
separation between the classes. LDA is related to principal component analysis (PCA) in 
that they both look for linear combinations of variables that best explain the data. LDA 
is a supervised method that explicitly attempts to model the difference between the 
classes of data. PCA on the other hand is unsupervised and does not take into account 
any difference in class. 
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Table 3.1 (continued) 

SVM, Support 
Vector 
Machine  

SVMs (also called support vector networks) are a supervised (“biased”) learning model 
used for classification.  Given a set of training examples in pre-assigned groups, SVM 
builds a model that assigns new examples to one category or another (one-against-one 
or one-against-the rest) using a non-probabilistic binary classifier algorithm. SVMs can 
efficiently perform a non-linear classification using what is called the kernel trick, 
implicitly mapping their inputs into high-dimensional feature spaces. 

Kernel 
methods 

Kernel methods are a class of algorithms for pattern analysis and are closely associated 
with support vector machine classification.  Kernel functions permit the operation of 
high dimensional data without ever computing the coordinates of the data in that 
space; rather, inner products (scalar value from the dot product of two vectors) of all 
pairs of vector data are used (i.e., the “kernel trick”).  Processing data into a form that 
can easily be separated in a linear fashion (a vector between two groups). A "linear 
kernel" is not further processed; it is assumed that the incoming data is already able to 
be separated in a linear fashion. A common example of a non-linear kernel is the radial 
kernel, which is often used to measure distance from a fixed point. Kernels can be 
tailored to suit the overall shape of data that is to be classified, if necessary.  

One-against-
one 

A method where one classifier is created for each pair of classes. This means that there 
are N*(N-1)/2 total pairs, where N is the number of classes. This sort of method can 
easily use a linear kernel as long as each class is distributed evenly around a central 
point (a center for each class). 

One-against-
the-rest 

A method where one classifier is created for each class. This means that there are N 
total pairs, where N is the number of classes. This sort of method cannot easily use a 
linear kernel, as class will often be "surrounded" by other classes, except in very special 
cases. A radial kernel is often used for this method. 

 

 

3.2 Methods and materials 

3.2.1 Handheld reader construction 

M116 CIS  modules were purchased from CMOS Sensor Inc. (Mountain View, CA, USA).25 

Diaphragm micropumps were purchased from Schwarzer Precision (Essen, NRW, Germany).26 Onboard 

processing and device operation were controlled using custom-designed electronics (D3 Engineering, 

Rochester, NY, USA) centered around a TMS320DM6437 Digital Signal Processor as the CPU (Texas 

Instruments, Dallas, TX, USA). Other components (chassis, flow manifolds, etc.) were custom-designed 

(iSense Systems/Metabolomx, Mountain View, CA, USA and Intelligent Product Solutions, Hauppage, NY, 

USA).  The component costs of the handheld reader are modest: M116 CIS module ($80, CMOS Sensor 
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Inc), NHD-042H1Z LCD screen ($18, Newhaven Display), 2 position membrane switch ($10, SSI 

Electronics), and SP-100-EC-LC diaphragm micropump ($80, Schwarzer Precision). Prototype 

components consisted of the digital processor and chassis; we estimate that the digital processor could 

be replaced with commercially-available components for < $100, and a plastic chassis could be mass-

produced for < $10. 

 

 
Figure 3.1 Schematic of the important optical components present in the handheld reader. The reader 

uses a CMOS Sensor Inc M116-A8C1 contact image sensor (i.e., 2.4 inch wide business card scanner) to 

read a custom-designed colorimetric sensor array cartridge.  Components of the CIS are adapted from 

http://www.csensor.com/M116_CIS.htm (accessed 28 January, 2014). 

 

3.2.2 Colorimetric sensor array cartridge 

A custom linear cartridge was designed to fit the handheld reader and provide a narrow flow path 

for analyte exposure of a colorimetric sensor array. Polypropylene membranes (0.2 µm) were used as 

printing substrates for the array and were purchased from Sterlitech Corporation (Kent, WA, USA). The 

polypropylene was mounted to an injection-molded low-volatility white polycarbonate cartridge 

(Dynamic Plastics, Chesterfield Twp, MI, USA) using a solvent-weld (dichloromethane). 

colorimetric sensor array cartridge

linear CMOS array

+ circuit board

RGB LEDs,

diffuser and

light guide

cover glass

self-

focusing

lens

123



 

 

The colorimetric sensor array then robotically printed on the substrate using procedures described 

previously.8 Arrays used for evaluation of the handheld reader used 28 to 48 colored spots printed at 1.0 

or 1.2 mm center-to-center distances; 1.2 mm spacing provided more consistent physical separation of 

the sensor elements. All reagents were analytical-reagent grade, purchased from Sigma-Aldrich and 

used without further purification.  

After colorimetric sensor arrays were printed, they were thoroughly dried under nitrogen. A glass 

microscope slide was then snapped into the cartridge, providing a gas-tight seal against a Viton O-ring, 

as shown in Figure 3.2.  This provides a nearly ideal flow path for the analyte stream with a flow volume 

of ~85 µL.  The arrangement of the CIS and the linear colorimetric sensor array is shown in Figure 3.1. 

 

 

Figure 3.2 Photographs of the cartridge and a colorimetric sensor array showing side and array views.  

The sensor array shown here has 40 sensor elements at 1.2 mm center-to-center spacing and represents 

typical printing quality. 

 

3.2.3 CIS calibration 

As designed, the CIS outputs an analog signal between ~0-3.4V that is fed into a 12-bit analog-

digital converter (ADC) with a 5V reference voltage. Initially, illumination parameters (i.e., LED voltage 

and pulse widths) were set to their maximum allowed values in order to determine the optimal pixel 
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clock rate; a pixel clock of 500 kHz (1478 total pixels, which gives a 3.0 ms capture window for each of 

the red, green, and blue LEDs) was found to be ideal for maximizing the signal from a white substrate 

without significant over-exposure. To minimize response variability between pixels and to maximize 

sensitivity, illumination levels were further optimized by varying the voltage for each of the red, green, 

and blue LEDs; these optimized illumination levels are a one-time calibration of the CIS and were used 

for all further experiments with all five instruments constructed. Individual pixels vary slightly in 

responsivity; pixels (and by extension, separate scanner units) were calibrated by normalizing from data 

obtained using a cartridge containing a blank polypropylene substrate for a 100% reflectance standard 

and turning off all illumination for a 0% reflectance standard. These calibration standards are an 

additional one-time calibration for each individual handheld reader. 

 

3.2.4 Array testing 

All tests were performed using a built-in diaphragm micropump (approximately 580 cm3/min 

flow rate).  For laboratory-controlled gas sampling, air was drawn through a bubbler containing 

deionized water to generate 100% relative humidity (RH) flow for the control gas stream. The analyte 

gas stream was generated by drawing air through a bubbler containing dilute aqueous ammonia to 

generate an NH3 gas stream, whose concentration was confirmed by in-line analysis using an FTIR multi-

gas analyzer, MKS Instruments model 2030; typical concentration was 50 ppm. The humidity control is 

not a requirement for use of these colorimetric sensor arrays, whose insensitivity to changes in humidity 

have already been well established.6,8,9,27-32  Control and analyte gas streams were pulled through 

cartridges with the onboard micropump and scanned at 1.0 Hz. The arrays were initially exposed to the 

control gas line for 10 min before being switched to the analyte line for 10 min. The colorimetric sensor 

array response is sufficient for analysis even after only a few seconds of exposure, but the exposure 

times were intentionally made extremely long (i.e., 10 min) in order to guarantee total equilibration 
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with the analyte gas stream and thus eliminate any potential for change in the sensor array response 

during the gathering of noise and statistical data using multiple scans over a short period of time.  

 

3.2.5 Data processing 

All data processing on the handheld device was done using custom-designed software. Spot location 

followed a two-step process:  first, the array is initially assumed to have perfectly-defined spacing and 

then those initial position are further refined. Spot locations were initially estimated algorithmically by 

sweeping over the array in order to locate an appropriate number of adjacent spot centers with a 24 

pixel (approximately equal to 1.0 mm) center-to-center distance that gave the highest total deviation 

from the background color (i.e., this assumes ideal printing of the array) as defined by total sum of the 

squared Euclidean distance of pixel responses. Due to minor imperfections in printing positions inherent 

in pin-printing, however, spot distances are not perfectly uniformly spaced; the software thus further 

refined positions to account for individual variation in the center location of each printed spot by finding 

the pixel which gave the minimum in spatial variance over a 9-pixel window (i.e., the center of the spot 

is where the color is most uniform, and changes the least over a short distance). To evaluate the 

effectiveness of this protocol, spot widths were varied manually in order to examine the effect of 

feature size on resultant S/N; nine pixel minimization proved optimal. 

Data processing for 2-dimensional images (DSLR, iPhone, and flatbed scanner) was performed using 

proprietary spot-finding software designed by iSense, Inc. (Mountain View, CA); using this software, spot 

centers and sizes are initially set manually, and the software optimizes these spot locations in a batch 

process after data collection across all images in an individual experimental trial. 

 

  

126



 

 

3.2.6 Spot finding algorithm 

The custom spot finding alogorithm for our one-dimensional data from the CIS functions as 

follows.  A background reflectance threshold was set to 85% of the maximum reflectance observed from 

a blank cartridge.  Pixels with red, green, or blue reflectance less than that threshold were assigned to 

dye spots (i.e., colored pixels); the leading and trailing edges of each sensor spot were used to identify 

the spot.  The spatial variance in RGB values for each dye spot pixel (i.e., comparing data from adjacent 

pixels) was calculated using a radius of 3 pixels (i.e., 7 total pixels) and gave a measure of the local color 

uniformity for each pixel. For each spot, the spot center was set to the colored pixel with the minimum 

variance over a 23 total pixel span (i.e., the pixel in the middle of the most color-uniform environment 

over a center-to-center spacing of spots in the sensor array). 

 

3.2.7 Device comparison and characterization 

Four separate imaging devices were compared, and their relevant parameters are described in Table 

3.2: the handheld reader (which uses a stationary linear CMOS-based CIS), a high-end consumer-grade 

flatbed scanner (Epson V600, which uses Epson ReadyScan LED technology, i.e., a white LED illumination 

bar), a high-end consumer-grade DSLR camera (Canon EOS 5D Mark II), and a high-end consumer-grade 

smartphone (Apple iPhone 5S). The DSLR and smartphone methods required external illumination 

("natural white" LED light strips, purchased from SuperBrightLEDs.com, used with a current controlled 

power supply) and had different non-zero focal distances; the focal distances used were the minimum 

necessary in order to ensure appropriate illumination of the chemical sensor arrays (e.g., elimination of 

shadows obscuring sensor elements and elimination of unwanted specular reflection).  

Noise statistics for each of these imaging methods were quantified by comparing images taken of a 

colorimetric sensor array that was equilibrated with the ambient environment (i.e., an un-exposed 

colorimetric sensor array). Images from each device were collected by scanning at least 20 frames of the 
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colorimetric sensor array. The last 10 frames obtained in each experiment were then used to obtain 

color data; each spot’s color values consisted of a Red, Green, and Blue (RGB) values which are 

themselves composed of data averaged from multiple pixels depending on the spot size:  i.e., each 

spot’s RGB values resulted in 87 separate values (dimensions) for a 29-spot array. Standard deviations 

for each dimension were calculated from the 10 scans, and the noise parameter for each imaging 

methodology was quantified by using the average of these standard deviations among all dimensions. 

The edges of any colorimetric sensor spot represent, of course, a discontinuity in the measured RGB 

values.  As a consequence,, colors measured near the edges of a spot show increased variability (among 

sequential scans) when subjected to small variations in center position (i.e., physical jitter) compared to 

measurements near spot centers. This increased variability is due to changes in the alignment of 

physical location on the sensor array to specific pixels in the imager from scan to scan and is therefore 

sensitive to physical motion (jitter). In order to investigate the magnitude and effect of physical jitter in 

each of these methods, spot center positions were shifted across the image horizontally (i.e., all digital 

spot centers are shifted simultaneously by N pixels in the X direction, and N is varied) and noise was 

calculated as a function of this shift by comparison among multiple scans. Two-dimensional methods 

(smartphone, flatbed scanner, and video camera) used a 4-pixel radius circular spot from the 

measurement center point (resulting in 13 pixels), while the one-dimensional data obtained from the CIS 

used a 4-pixel linear spot from the measurement center point (resulting in 4 pixels). All appropriate gas 

flow apparatuses were active during these scans (i.e., the diaphragm micropump for the handheld 

device and mass flow controllers for the smartphone, flatbed scanner, and video camera).  The handheld 

reader was further characterized by obtaining the response profiles upon varying illumination intensity. 
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Table 3.2 Summary of parameters used in compared 
imaging methods.*  

Method 
Sensor 
Type 

Focal 
Dist. 

Pixel 
Res. 

Scan 
Rate 

Handheld 
Reader 

CIS CMOS ≈ 2 mm 600 ppi 2.0 Hz 

Flatbed 
Scanner 

CIS CCD ≈ 2 mm 590 ppi 0.02 Hz 

DSLR 
Camera 

2D CMOS 30 cm 900 ppi 30 Hz 

Smartpho
ne 

2D CMOS 10 cm 560 ppi 30 Hz 

* Pixel resolution (i.e., pixels per inch, ppi) was 
 calculated using known 1.0 mm reference distances. 

 

3.3 Results and discussion 

3.3.1 Background 

Colorimetry initially evolved as a slow, bulky, qualitative analysis method; techniques such as 

colorimetric titration and spot tests involved multiple milligrams of material and were evaluated with 

little more than inspection by eye.33 Improvements in microelectronics have allowed for significant 

miniaturization of optical transduction components which in turn allows for faster, smaller, quantitative 

analyses that are evaluated electronically. The imaging methods used to evaluate gas-phase colorimetric 

sensor arrays involve the use of flatbed scanners,6,8,9,27,28,30-32,34 digital cameras,35-42 and smartphone 

cameras (often with associated analysis software).43-47 These methods are inexpensive, powerful, and 

significant improvements over classical qualitative techniques; nonetheless the use of off-the-shelf 

hardware leaves much room for additional improvement and optimization. The analyses still generally 

require manual data processing with a separate device, and the complete apparatuses themselves are 

also bulky due to the size of both the imaging instrumentation and essential auxiliaries (i.e., gas flow 

controllers, illumination sources, and external devices required for data processing). 

In a similar vein, portable instrumentation for liquid-phase analytes has found some success in urine, 

saliva, and pH sensing.18,19,48,49  These methods use only single-point measurements (vs. continuous 
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monitoring) and usually require significant operator input, e.g., manual dipstick testing or downloading 

and manual processing of collected data on a separate computer.  

In order to create a portable reader designed for gas phase analysis with colorimetric sensor arrays, 

we have developed a handheld reader.  The device is a self-contained, truly portable analytical device 

with a portable, low-noise optical reader and onboard processing capability.  

 

3.3.2 Device construction 

The handheld reader was designed with a compact form factor in which a CIS optically images 

the reflectance from a colorimetric sensor array rigidly held 2 mm from its surface. The CMOS array 

present in the CIS is a broadband photodetector; RGB reflectance values are measured by sequentially 

illuminating the array with red, green, and blue LEDs. A general schematic for operation with a sealed 

colorimetric sensor array cartridge is shown in the supporting information as Figure 3.1, light emission 

profiles are provided as Figure 3.6, and an illumination timing chart for the CIS is given in Figure 3.7. 

Additionally, the chassis itself minimized stray light exposure. 

One primary application of colorimetric sensor arrays is monitoring and analysis of gaseous 

analytes.1 To accommodate this, a cartridge was designed to fit the handheld reader and provide a low-

volume flow path for analyte exposure of a colorimetric sensor array. The array is printed on a substrate 

(e.g., polypropylene membrane) and mounted to the cartridge, which is then sealed using a glass 

microscope slide that sits against a Viton O-ring, as shown in Figure 3.2. A flow system using a 

diaphragm micropump was incorporated to allow for gas exposure at ambient pressure without the 

need for external attachments; the cartridge outflow port was sealed to a gas flow manifold by 

compression of an O-ring upon closure of the top latch (Figure 2). The micropump can produce a static 

pressure of ~500 mbar and was powerful enough to pull vapor analytes through bubblers and loosely 

packed tubes of silica gel. 
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Critical to the advancement of this project, linearization of the array was successfully completed.  

Using a line imager such as a CCIS (color contact image sensor) requires a linear rather than a two-

dimensional (e.g., 6x6) array.  In addition, a linear array greatly reduces the dead volume inside a 

cartridge and substantially improves the analyte gas stream flow over the sensor array by eliminating 

stagnant pockets of poorly mixed gases (e.g., corners in a square array).  We therefore designed a linear 

sensor cartridge with the goals of easy assembly, inexpensive production, minimal dead volume, and 

optimization of gas flow path, with special attention to minimization of entrance length before gas 

analytes hit the sensor array.  Figure 3.3 show the resulting design.  Injection molded cartridges (Figure 

3.3) are mounted with a linear printed colorimetric sensor array and a microscope slide is snapped in 

place as cover (Figure 3.4).   

 

 

      

 

Figure 3.3  Injection molded cartridges.  The inlet tube can be attached to a flexible “snout” (e.g., Teflon 

tubing) for sniffing of specific locations.  The cartridge design minimizes dead volume and improves gas 

Inlet Inlet SpotsGasketOutletCartridge

Outlet

Inner wall forms channel 

and stabilizes o-ring
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flow path substantially with a linear channel, 1.2 x 0.5 x 77 mm (<50 µL). 

 

 

 

 

 
 
Figure 3.4 JawBreaker sensor array, consisting of DNT-sensitive, general Lewis/Brønsted TICS-sensitive, 

metal-containing, ketone-specific, vapochromic/solvatochromic, and redox-sensitive colorimetric 

sensors.  Upper image: sensor array in cartridge but without glass slide in place. Middle image: array 

with glass microscope slide cover in place.  The sensor array itself is housed in the injection molded 

Locator

Fe2+ Redox

(acid-treated)

TICS  

(acid-treated) DNPH

Fe2+ Redox

(neutral)

TICS

(acid-treated)

TICS

(base-treated)

Amino

Redox

Solvato-

chromic

Nitro-

sensitive

Lewis acids

metal-containing

132



 

 

snap-on cartridges requires no adhesive for sealing the standard microscope slide as a cover. Bottom 

image: enlarged annotated set of the 40 chemically responsive dyes that make up the array in its final 

formulation.  The array is 50 mm long and 4 mm wide.  The cartridges are stored under nitrogen in 

aluminized Mylar pouch to maximize shelf-life. 

 

 

Figure 3.5  Photographs of the handheld reader including front, rear, and cartridge bay views. 

Dimensions are 12.5 cm tall by 9.5 cm wide by 4.0 cm thick.  The rear panel and 9 V battery were 

removed in order to provide a better view of the internal electronics and diaphragm micropump 

(located in rear image, lower right). Left:  front view.  Left center:  rear view, case cover removed.  Top 

right and lower center right:  top view with lid open showing top of sensor cartridge in place (the sensor 

array itself is not visible here).  Lower right: top view of the lid with lid open showing the sealing 

manifold to the cartridge that is connected to the micropump inside the case. The handheld reader is 

powered by external power supply or standard 9V battery (red & black wires to battery connector 

shown in lower left-center photo, but battery removed to show internal view).  
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Digital data was produced from the analog output of the CIS using a 12-bit ADC. The onboard 

processor used a 700 MHz CPU to control component behavior and image processing; the internal bus 

and CPU are capable of transferring images and performing these relatively simple analyses at rates 

much greater than the 48 Hz scan rate. A database of relevant sensor responses is stored on the 

handheld sensor enabling classification in real-time. User control for autonomous modes (e.g., real-time 

monitoring and comparison to known databases) was provided by a simple LCD screen and two-button 

control scheme. Relevant specifications are shown in Table 3.3. 

Table 3.3. Relevant component parameters of the 
handheld reader. 

Scanner Size 12.8 cm x 9.5 cm x 4.0 cm 

Scanner Weight 460 g + battery + cartridge 
Cartridge Size 7.9 cm x 2.8 cm x 1.0 cm 
Cartridge Weight 11 g 
Battery Weight 48 g 
Static Pressure26 550 mbar  
Pump Rate26 50-580 cm3/min, adjustable 
Current Draw ~400 mA at 100% duty 
Battery Charge 1200 mAh 
Scan Time 11 ms  

 

3.3.3 Further device characterization 

The device was characterized further in order to assess its operational parameters. The emission 

spectra for the RGB LED light sources are shown as Figure 3.6. Illumination and timing profiles are shown 

in Figure 3.7; it is important to note that there are blank scan cycles separating each illumination cycle. 

The effects of scan rate and scan position on the measured noise are shown in Figure 3.8 and S5 

respectively. 
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Figure 3.6 Emission profile of the illuminating red, green, and blue LEDs within the contact image sensor 

(CIS) used in the handheld scanner. Applied potential and illumination times were optimized to ensure 

that Red, Green, and Blue responses when scanning a uniform white sample were consistent and 

significantly under the saturation region of the photodiodes of the CIS. 
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Figure 3.7 Illumination profile for a single scan of the CIS showing applied voltage (vertical) and time 

(horizontal). (A) Full profile over 10,212 cycles, i.e., one full scan of the RGB pixels, which consists of 

cycles of data collection during exposures to red LED illumination followed by a dummy cycle (without 

illumination) followed by green illumination, etc. The vertical black lines represent the beginning and 

end of the capture window of the photodiodes. (B) Closeup of the capture window bounding the green 

LED illumination. There are 1484 clock cycles in a capture window consisting of 38 processing cycles, 

1440 active pixel cycles, and 6 overscan processing cycles; this scan period is used to fully clear the shift 

register and simultaneously expose the sensor elements to light. Light exposure is controlled through a 

combination of voltage and pulse-width modulation; red, green, and blue LEDs are kept on for 1440, 

1440, and 640 cycles at 3.20 V, 3.44 V, and 3.20 V, respectively, and are centered around the center of 

the active scan period (i.e. starting at the 38th cycle relative to the start pulse for red and green LEDs, 

and the 438th cycle relative to the start pulse for the blue LED). Data is clocked out of the shift register at 

1 pixel per cycle during a subsequent dummy scan period consisting of approximately 1920 cycles 

containing the aforementioned 38 inactive processing cycles, 1440 active pixel cycles, and 6 overscan 
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processing cycles combined with a variable number of cycles used to account for additional data 

processing. Note that LED on/off times are on the order of tens of nanoseconds, which is negligible 

compared to the 2 microsecond clock cycle. 

 

 

Figure 3.8 The effect of scan rate on output consistency of a 29-spot colorimetric sensor array. There is 

no significant change in observed noise as scan rates are varied from 1 Hz to 48 Hz. 
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Figure 3.9 Observed noise profile of a typical 29-spot colorimetric sensor array. Spot diameter was fixed 

at 10 pixels. There was no correlation between observed noise and spot color (R2 = [0.005, 0.093, 0.006] 

for [Red, Green, Blue]), nor was there a correlation between observed noise and spot location (R2 = 

[0.018, 0.001, 0.002] for [Red, Green, Blue]). 

 
Importantly, the current prototype reader suffers from intermittent overheating of the electronics (most 

likely overheating of the analog-digital converter by the CPU).    When overheating does occur, the color 

difference maps will show artifacts in the color changes over broad regions of the CCIS, even between 

the sensor dye bars, as shown in Figure 3.10. Under most lab testing conditions, one does not usually tax 

the CPU sufficiently to cause significant heating.  Under intensive testing conditions, however, 

continuous running of the handheld reader can lead to overheating in an idiosyncratic manner 

depending on rates of sample acquisition vs. wait times in between samples.   We have a simple work-

around to this problem:  after a sample acquisition, one should simply turn the reader off between 

acquiring samples and observe a 5 min waiting period before the next sample acquisition.  Longer term, 

this overheating problem can be easily addressed either by increasing the space and adding insulation 
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between the two electronics components or by increasing ventilation inside the currently sealed, non-

vented case of the handheld.  

 

 

 

Figure 3.10 Artifacts created by overheating are shown and compared to a normal scan.  When 

overheating occurs, the color difference maps will show artifacts in the color changes over broad regions 

of the CCIS, even between the sensor dye bars, These are taken from the Graphics Report pdf output 

from the PC GUI software. 

 

3.3.4 Scan and processing rate comparison 

Previous studies with colorimetric sensors use flatbed scanners6,8,9,27-32,34 or digital cameras,35-42 both 

of which capture a series of large, high-resolution two-dimensional images that are then analyzed using 

external software. The scan rates of each of these methods are primarily regulated by acquisition and 

data transfer speeds. In order to make a useful set of comparisons among available imaging devices, we 

examined an Epson V600 flatbed scanner, an iPhone 5s, a Canon EOS 5D Mark II DSLR camera, and the 

handheld reader (which uses a CMOS Sensor Inc. M116 CIS).  The Epson V600 flatbed scanner has a 

moving scanning bar and transfers images directly to the connected computer, which limits its scan rate: 

800 dpi images of a typical 2.5 cm x 2.5 cm array take approximately 45 seconds to acquire and transfer, 

Normal

Overheated

overheating
artifact

139



 

 

while higher-resolution images take even longer. DSLR cameras, on the other hand, are not limited by 

moving parts and have higher bandwidth data transfer methods available; a typical video mode using 

the DSLR has a collection rate of 30 Hz with a transfer rate of approximately 1 to 10 Hz during batch 

transfer, which means that 1 min of video data requires between 3 to 30 min to transfer the data from 

the camera to a computer for external processing. Smartphones such as the iPhone 5s operate similarly 

to DSLR cameras but also have onboard processing potential similar to the handheld reader, and data 

transfer times can thus be assumed to be zero; in-depth comparison would require access to specific 

onboard software (i.e., apps) dedicated to scanning similar chemical sensor arrays, so at present only 

hardware comparisons apply when considering use of a smartphone for array analysis. The handheld 

reader described here is capable of scan rates of 48 Hz with essentially real time processing (i.e., faster 

than time between subsequent scans) without affecting consistency, as shown in Figure 3.8. 

Images collected with a flatbed scanner or camera are typically processed in batch using a manually 

calibrated spot-finder and can require additional steps (e.g., file conversion, extraction, or image 

cropping) which significantly increases processing time making real-time analysis impossible. Dedicated 

software could potentially eliminate these secondary steps, so comparison also requires looking at the 

fundamental nature of two-dimensional vs. one-dimensional images as they apply to colorimetric sensor 

arrays.  During imaging, spot centers move relative to the imaging device and are not perfectly aligned 

relative to each other; determining the locations of these spots (i.e., spot-finding) is the primary 

bottleneck in data processing.  The origin of this problem is two-fold:  First, due to the realities of 

printing large numbers of arrays, sensor spot centers are not always perfectly aligned relative to each 

other. Second, when arrays are positioned for imaging, the spot locations are not aligned identically 

relative to the imaging device (i.e., pixel positions of sensor elements).  

Data handling, and specifically spot-finding, with one-dimensional images collected by the handheld 

reader is relatively simple and fast compared to handling two-dimensional images:  (1) the file size is 
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much smaller (e.g., 1440 pixels compared to 30x1440 or more pixels for the same linear array), (2) spot 

finding methods are much simpler for one-dimensional data than for two-dimensional data (i.e., there 

are no rotational or vertical degrees of freedom in one dimensional data)2, and (3) the fraction of pixels 

relevant to image analysis is much greater in one-dimensional images (i.e., data efficiency is improved 

because pixels corresponding to non-sensor and interstitial areas are minimized). 

Combining the improvements in data transfer and increased speed with one-dimensional spot-

finding methods, image processing with the handheld device can be performed continuously in real 

time. With basic data collection, the primary bottleneck in the handheld device is actually the exposure 

time of the CIS itself: spot-finding (measured at ~6 ms) takes approximately half the time of a single scan 

cycle (measured at ~11 ms). 

 

3.3.5 S/N comparison 

Two-dimensional imaging methods use a number of pixels per sensor element that is proportional 

to the square of the chosen spot diameter; for the handheld reader with its linear CIS, the number of 

pixels is linearly proportional to the spot diameter. One might have expected that the much larger 

number of pixels per spot in 2D methods would translate to a lower calculated noise simply by virtue of 

signal averaging. Experimentally, however, this is not the case: as illustrated in Figure 3.11, the handheld 

reader shows lower average noise per spot than other methods for every tested spot size; a typical 

profile showing the noise of each spot is shown in Figure 3.9. The smallest improvement with the CIS is 

approximately five-fold (i.e., compared to the flatbed scanner with large spot size), and the largest 

improvement is more than 25-fold (i.e., compared to the smartphone with small spot size). The relative 

change in observed noise as the spot size increases (i.e., the trend as spot spot size varies) is similar 

among all four methods tested. It is also worth noting that the difference in observed noise per pixel 
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(rather than per spot) is even larger, as the 2- 2 

pixels in 2D methods vs ~2r pixels in the handheld device).  

 

Figure 3.11 Typical noise observed in detected spots as a function of spot size in the handheld reader, 

flatbed scanner, DSLR camera, and smartphone camera; standard deviation shown is determined from 

10 scans of an array with 29 spots. Note that each of these methods uses 12-bit color space (i.e., [0-

4095]) and the dynamic range defined by the difference between fully white and fully black areas is 

approximately equal for each (i.e., ~2750). 

 

Optical reading of arrays must also deal with the finite size of sensor spots. Printed spots have 

discontinuities at their edges: each sensor has some more or less uniform colored area at its center 

whose coloration eventually transitions (either gradually or abruptly) to a blank space between spot or 

to another overlapping spot.  In the presence of physical jitter or vibration, there will be artifacts 

induced in color difference measurements at the edge of the spots.  To maximize the response 

consistency for each spot, the most uniform area of each spot should be compared before and after 

exposure; i.e., avoid the edge regions.  This minimizes the effect of physical jitter on the digital output.  

The usable spot radius is thus less than the apparent radius defined only by a printed spot's edge; this is 

analogous to capturing the top of a plateau and avoiding the cliff at the edge.  
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The sensitivity of each imaging technique to physical jitter can be measured by observing such edge 

region artifacts.  If one measures the optical response across a spot, small changes in spot position (due 

to physical jitter) will result in significant apparent color changes at the spot edges, resulting in large 

standard deviations in color values measured near the edges, as seen in Figure 3.12.  Dramatic increases 

in noise near the spot edges compared either to the spot center (located at 0 pixels) or to the areas 

between spots (located at -10 and +10 pixels) are observed in imaging with the flatbed scanner or the 

video camera.  Images taken with an iPhone 5s camera show this edge effect to a lesser extent. 

Observed noise using the CIS is substantially decreased relative to these other methods and has no 

apparent correlation with relative position whatsoever (Figure 3.12B). 

 

 

Figure 3.12 Reproducibility of spot imaging as a function of position across the spot, showing the 

appearance of edge effects.  On the x-axis, 0 represents the spot center and ±10 represent the space 

between spots. (a) Comparison of the observed noise from four imaging devices vs. distance from the 

physical center of the dye spots, averaged over all 29 spots; (b) Greatly expanded scale for the standard 

deviation of the noise measured for imaging using the CIS; no edge artifacts are observed for the CIS. An 

0

10

20

30

40

50

60

-10 -5 0 5 10

A
ve

ra
ge

 S
ta

n
d

ar
d

 D
e

vi
at

io
n

Relative Position from Spot Center (Pixels)

1.9

1.95

2

2.05

2.1

2.15

2.2

-10 -5 0 5 10

A
ve

ra
ge

 S
ta

n
d

ar
d

 D
e

vi
at

io
n

Relative Position from Spot Center (Pixels)

A B

CIS

CIS

Smartphone

Flatbed scanner

DSLR camera

143



 

 

identical chemical sensor array was used for all scans; relative spot positions were normalized to the 

resolution of the CIS (600 ppi). 

 

Edge artifacts of the sort seen in Figure 3.12A are explained by physical motion (i.e., jitter) between 

individual scans, which contributes significantly to the observed noise in imaging methods.  In the case 

of a flatbed scanner, a moving scan bar controlled with servos introduces jitter in the location of the 

imaged pixels.  In the case of the digital camera and the smartphone, the relatively long distance 

between the colorimetric sensor and the optical lens likely made the methods more susceptible to 

physical jitter caused by vibrations. With the necessary focal lengths for typical camera lenses, it is 

difficult to maintain absolute structural rigidity and eliminate relative motion.  The smartphone focal 

length is one-third of the DSLR camera (10 vs. 30 cm), which contributes to the improvement in noise 

observed with the smartphone camera; additionally, the imaging software used in a smartphone has 

many automatic processing features built-in (importantly, including anti-shake software) and may have 

had an effect both in terms of the edge-center difference and overall measured noise. For the CIS, the 

substantial decrease in distance between the optical sensor element relative to spots (≈2 mm) and the 

absence of any moving components essentially eliminates the artifacts induced by jitter.  Importantly for 

the CIS, adding physical vibration (e.g., turning on the gas micropump) did not have any effect on 

measured noise values. 

 

3.3.6 Proof of concept: array analysis 

To show the utility of the device, an array known to be sensitive to toxic industrial chemicals 

containing acid and base-treated pH indicators, porphyrins, and other chemoresponsive dyes (described 

in previous papers8) was exposed to a stream of NH3 vapor at roughly its OSHA Permissible Exposure 

Limit (PEL) of 50 ppm. Digital output from the 12-bit ADC ranged from approximately 50 to 2800 (i.e., 
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~2750 possible values, giving approximately 11 bits of color resolution), corresponding to 0% and 100% 

reflectance respectively. The maximum output from the CIS was adjusted by limiting the total light 

intensity so as to avoid loss of sensitivity due to overexposure; this is primarily a function of total 

reflectivity of the cartridge (specifically its internal flow channel), so adjustment of illumination intensity 

is a one-time calibration. Results of array exposure after 15 seconds are shown as Figure 3.13. 

 

 

Figure 3.13 Differential array response to NH3 at PEL concentration (50 ppm). (A) Image before 

exposure. (B) Image after 15 seconds exposure. (C) Difference image of A and B. (D) Graph of data used 

to construct C. Images are projected onto 8-bit RGB color space (i.e., [0-255]) for display; images A and B 

were normalized to a uniform white substrate, while difference image C was normalized to maximum 

and minimum difference values. Maximum signal/noise was approximately 280. 

Spot locations were determined automatically by using a spot finding algorithm. As a test of this 

algorithm, a 45 spot array with intentionally added gaps and semi-overlapping spots was printed at 1.0 

mm (approximately 23.6 pixel) spacings (Figure 3.14).  Each spot had a full-width half-maximum of 

approximately 7 pixels, though this was intentionally made somewhat larger for several spots. To 

determine locations of spots vs. space between spots, a simple spot finding algorithm was used (cf. SI 
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for detailed description).  This algorithm was tested with an array containing 45 spots and 3 interspersed 

gaps (i.e., blank areas not containing any sensor spots), as shown in Figure 3.14. In order to test the 

resilience of the algorithm, the print quality of this array is intentionally poor and contains irregular 

spacing and obvious overlap among some sensor elements. As shown in Figure 3.14, 44 of 45 printed 

spots were accurately located, and all 3 gaps were correctly identified; one spot (fifth from the left in 

Figure 3.14) was missed by the algorithm due to its color similarity and physical overlap with the 

adjacent spot (fourth from left).  

With the CIS, the color data has only a single search dimension (i.e., it is a linear array), so locating 

spots is straightforward and requires computational time that scales linearly with the number of pixels 

in the array. In comparison, two-dimensional systems (e.g., camera images) have an additional search 

direction and increased area between spots, which require significantly more complex algorithms that 

demand computational time on the order of the square of the number of pixels (i.e., a factor of 102 to 

103 increase in computation time for typical sensor arrays).50 
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Figure 3.14 Results of spot-finding procedure applied to a problematic colorimetric sensor array. The 

print quality of this array was deliberately poor in order to test the resilience of the spot-finding 

algorithm; irregular spacing and overlap among sensor elements were intentional and are not present in 

typical sensor arrays (cf. Figure 3.2). Normalized RGB data is shown above an image of the array in red, 

green, and blue traces. Vertical gray lines correspond to spot centers and show accurate location of 44 

of 45 spot locations and all three gaps. 
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3.3.7 Database processing and handling 

Compared to low-dimensional sensor systems, high-dimensional sensor systems must involve a 

more sophisticated approach to statistics than that which chemists are often comfortable.  The inherent 

problem with high dimensionality is that the analytical volume increases much more rapidly than the 

available data, so the datasets are often formally “sparse” compared to the total size of the parameter 

space.  In addition, this “curse of dimensionality” creates difficulties for function approximation, model 

fitting, information extraction, as well as computation.  Statistic methods for multidimensional data all 

share the common goals of displaying multidimensional data effectively, evaluating data sets, and 

predicting the identity of unidentified samples based on a known library. 

 There are a variety of statistical methods available to deal with high dimensional data well 

beyond the scope of this manual.  We will give an overview here only one approach: support vector 

machine (SVM) analysis (other approaches are discussed in Chapter 1).  In general, for chemometric 

data there are two distinct statistical approaches:  clustering vs. classification. Cluster analysis essentially 

tells one what resembles what, e.g., how close the vectors representing data are to one another in a 

high dimensional space.  Classification analysis, on the other hand, attempts to predict to which 

category (among a fixed number of known categories) any particular (new) datum belongs. 

 Statistical methods can be either unbiased (unsupervised, model-free), where all cases are 

evaluated identically regardless of class identity, or biased (supervised), in which case the evaluation 

algorithm is told of the class identities of individual cases. Unbiased methods, such as HCA, are typically 

used to evaluate a data set to provide a semi-quantitative idea of the quality of the data set and follow 

simple, straightforward algorithms. Biased methods such as SVM, on the other hand, can provide 

significantly more power and utility with a concomitant increase in complexity, but at the cost of 

demanding datasets for which one already knows the answers.  Biased methods can be predictive, 

allowing for class assignment of new experimental cases by using a training set. 
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The classification method used in this project is a Support Vector Machine (SVM) using a linear 

kernel. It has similarities to Linear Discriminant Analysis (LDA), another very widely used method in 

pattern recognition. Like LDA, linear SVM finds a plane that best separates a single pair of classes (cf. 

Figure 3.15):  an incoming sample is then classified as either "Class A" or "Class B" for each pair (a "one 

against one" method). One "vote" is collected for each pair in this way. The incoming sample is then 

classified as whichever class got the most votes. Unlike LDA, SVM does not require a large number of 

samples to maintain accuracy. This is because only a small number of points are picked from each class 

to generate a classifier. The method is not analytically solvable; generation of classifiers requires an 

initial guess followed by multiple rounds of iteration in order to find a specific classifier that maximizes 

separation between existing data and minimizes the chances that new data will be misclassified (how 

important these individual factors are) can be adjusted if necessary; this project uses the default 

parameters of the software library described below, which have been found to be optimal in most cases:  

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf 

 

Figure 3.15  Two classes of data (green vs. blue) are present in this two dimensional example.  SVM finds 

the best plane to divide the two sets (i.e., the rightmost image).  The data points (which are vectors, in 

this case two-dimensional) that define the margins of the best separation are the “support vectors” 

(indicated by red arrows) and the algorithm that finds those is the support vector machine. 
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 In order to do this, existing data points are identified as "support vectors" and assigned a weight 

that is proportional to how heavily they are used in the classifier; points near the border (the points that 

are most likely to be misidentified) are weighted most heavily, while points that are very far from the 

border are usually ignored completely. The key to the method is determining the identity of these points 

and their weights. There are multiple methods for doing this; the current industry standard uses 

algorithms developed by several computer scientists at the National Science Council of Taiwan in a 

software package known as LIBSVM  http://www.csie.ntu.edu.tw/~cjlin/libsvm/. This package allows for 

flexibility to solve individual problems which are often much more complex than the data in this project. 

Because this project uses a linear kernel, the weighted points are collected into a single vector that is 

compared to each incoming sample (also a vector) using a dot product to generate a single "decision 

value" for each classifier; a decision value greater than zero indicates class A, while a decision value less 

than or equal to zero indicates class B.  

 Two other pieces of data are provided: first is the relationship between an incoming sample and 

the known-blank sample (the maximum signal-to-noise ratio as compared with each element of the 

blank data set). This allows for a "no detect" threshold, currently set to provide a 95% probability that 

any sample identified as outside the threshold will not actually be a blank (i.e. a maximum 5% rate of 

false positives; in general the rate of false positives is much less, generally below 1%). This uses a 

statistical distribution that varies based on the number of samples: the larger the numbers of samples, 

the narrower the detection threshold. The second piece of information is an identical relationship 

between the incoming sample and the top matches obtained via SVM (top 3 displayed on the handheld 

device, top 10 recorded for PC GUI software). Error is only described for sensor elements that are above 

the detection threshold. This provides a measure of how similar the incoming data is to the assigned 

classes that are already in the database (which may be especially useful in cases where the sample 
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analyte being collected is not previously in the database; it will be assigned an already existing class, but 

will also have a high error signal). 

 

3.3.8 User software 

There are two associated software packages that have been designed for the JawBreaker 

reader:  a graphical user interface (GUI) run on a PC and the onboard software for the handheld reader 

operation untethered from a PC. 

PC GUI Software. PC-Based Jawbreaker GUI Software does the following functions: 

1. Downloads data from the handheld. 

2. Generates databases. In the process, performs SVM classification on data set. This is similar to 

the SVM on the handheld - mathematically identical, but the steps taken use the whole dataset 

instead of the distilled version. This is necessary to generate a new distilled database. 

3. Generates a no-detect threshold based on a t-distribution. This can be narrowed by collecting 

more blank samples. 

4. Generates graphical reports based on downloaded data. In the process, performs SVM on data 

set. This is identical to the SVM on the handheld, as long as it's using the same database. It uses 

the distilled database. 

5. Provides S/N and Error signal magnitude and probability based the aforementioned t-

distribution. 

  

The SVM classification methods that we are using are well developed in the pattern recognition 

community.  The specifics of the SVM classifications are identical between the PC GUI and the Handheld 

software systems; the only difference is that the PC-Based GUI gives slightly more information (i.e. 
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probability estimates) because it has a more advanced math package. In both cases, the software 

follows the same logic chain, as follows: 

1. Detect or no detect, based only on the previously collected library of blank/control samples. This 

answers the question of whether or not you can see anything at all. 

2. If analyte is detected, uses SVM for classification based on loaded database. This answers the 

question of what pre-existing class of analyte the sample data most closely resembles. 

3. Error signal of each identified class. This answers the question of how much you can trust the 

SVM classification and suggests the possibility of considering the new sample a new class of 

analyte. 

 

 Two screenshots of the PC GUI are provided in Figures 2.13 and 2.14 to illustrate its control 

options.  Refer to sections 1.4-1.10 for detailed annotations. More sophisticated off-line statistical 

analysis (e.g., hierarchical cluster analysis, linear discriminant analysis, principal component analysis; cf. 

definitions in Table 3.1 above) of results using standard packages (we particularly like MVSP v. 3.1 or 

XLSTAT v. 2014 from KCS Corp., www.kovcomp.com) or other custom software (e.g., for more 

sophisticated support vector machine (SVM) analysis LIBSVM, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ or SVMlight, www.svmlight.joachims.org) becomes possible 

once the reader responses are downloaded to a PC using the Report function of the GUI (Figures 3.16 

and 3.17). 

There are three types of reports that can be generated from the PC GUI software (excerpted output 

examples shown in Figure 3.18):  (a) classification results, (b) graphical raw data, and (c) cross-validation, 

using the labeled buttons in the Reports section of the GUI opening page. 
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• ‘Classification Results’ - A comma-separated table showing the top 10 classification results for 

each trial.  This is given for each trial, even if the trial is found to be too low a response to be 

reliably assigned and is listed as ‘Not detected’. (Section 1.7) 

• ‘Graphical Raw Data’ - An Adobe Acrobat PDF document showing the raw data graphically. This 

option also generates a table of the  processed raw data. (Section 1.7) 

•  ‘Cross-Validation’ – Using the SVM algorithms for classification, the cross-validation report is 

generated using a leave-one-out method:  one at a time, each of the sample measurements is 

chosen to be left out from the classification database, the library is re-calculated, and then the 

chosen measurement is evaluated using the new library.  (Section 1.9) 

 

 

Figure 3.16  Opening screen image of the Jawbreaker_PC.exe graphics user interface.  
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Figure 3.17  Annotated opening screen image of the Jawbreaker_PC.exe graphics user interface showing 

directory, handheld connection, data acquisition, library preparation, and report functions. 

 

  

Change/save directory Operator logs

Report Creation

Database operations

Connect to
handheld
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a. 

 

 

b. 

 

 

c. 

 

 

Figure 3.18  a)  Excerpt from the Classification Results Report, showing only the first match from the 

library (remaining 9 matches would be in columns further to the right). b) An excerpt from the Raw Data 

Graphical Report output from the PC GUI Report.  c)  An excerpt from a cross-validation report.  Match 

accuracy is the leftmost table.  The right two tables show the first two closest matches (out of ten) for 

two sets of analytes, in this example, AN and ANFO. 

 

Onboard software. The handheld reader has its own, separate software controlled by a two-button 

control panel (labelled “A” and “B”) on the front face of the handheld reader.  There are three menus 

accessible on the handheld reader:  Main Menu, Diagnostic Menu, and Memory Management; all 

Folder 
Name Sample ID

Detected 
Yes/No

Detect 
Threshold 

S/N

Detect 
Threshold 

Pct Detect S/N Detect Pct
Match 1 

Name
Match 1 

Votes
Match 1 

Error S/N
Match 1 
Error Pct

AN 0JB2 000 Yes 4.213172 95 84.00447 100 AN 15 2.3808 0.035964

Class 
Name Count Accuracy

!control 7 100.00%

AN 7 14.30%

ANFO 7 57.10%

Sample 
Folder

Rank 1 
Name

Rank 1 
Vote

Rank 2 
Name

Rank 2 
Vote

AN ANFO 15 AN 14

AN ANFO 15 AN 14

AN ANFO 15 AN 14

AN ANFO 15 AN 14

AN ANFO 15 AN 14

AN AN 15 ANFO 14

AN ANFO 15 AN 14

Sample 
Folder

Rank 1 
Name

Rank 1 
Vote

Rank 2 
Name

Rank 2 
Vote

ANFO AN 15 ANFO 14

ANFO AN 15 ANFO 14

ANFO ANFO 15 AN 14

ANFO AN 15 ANFO 14

ANFO ANFO 15 AN-NM 14

ANFO ANFO 15 AN-NM 14

ANFO ANFO 15 AN-NM 14
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options proceed in A-B choices using the two-button controls.  A flowchart of the entire menu tree on 

the handheld is presented in Figure 3.2.2. The classification methods are identical between the PC GUI 

and the handheld software systems. Online real-time SVM (support vector machine) classification 

software is built into the handheld and provides the three best matches from the pre-existing onboard 

library, in order of goodness of fit. 

 

The handheld reader software does the following functions: 

1. Collects and saves data. 

2. Classifies incoming data and saves classification. 

3. Provides S/N and Error signal magnitude. 

4. Contains a distilled database - it contains enough information to perform SVM and related 

statistical tests, but not the entire database. (A distilled database contains one vector for each 

classifier. The full database would have upwards of 5 or more vectors for each classifier. The 

way the data is handled is identical.)  
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Chapter 4: Optoelectronic nose for identification of explosives 

 

This chapter taken in large part from the following reference: 

Askim, J. R.; Li, Z.; Rankin, J. M.; LaGasse, M. K.; Suslick, K. S. "An Optoelectronic Nose for Identi-
fication of Explosives" Manuscript in preparation 2015 

 

4.1 Introduction 

Detection and identification of explosive compounds has spawned intensive research in trace 

detection and rapid screening 1. Situational requirements must be considered and optimized in order to 

provide appropriate detection methods; issues of sensitivity, selectivity, speed, analyte scope, environ-

mental tolerance, device size and cost play into the balance between ideal and practical analysis. Single-

target colorimetric tests and ion-mobility spectroscopy (IMS) are by far the most commonly-used tech-

niques for explosives detection, as they can be very sensitive, selective, fast, small, and cost-effective 1-5; 

these techniques, however, only function for a narrow range of analytes (e.g., individual colorimetric 

tests are highly specific, and IMS is fairly specific for nitro-organics). In comparison, methods that are 

useful for a broad range of analytes suffer from other limitations: gas chromatography/mass spectrome-

try, for example, is relatively slow, expensive, and non-portable 6, and traditional electronic nose tech-

nology, as another example, suffers from poor selectivity and environmental tolerance (e.g., changes in 

humidity) 7-9. 

Gas-phase sensing using colorimetric sensor arrays offers an important alternative technique 

with broad analyte response, high sensitivity, and high selectivity 10-11. These sensor arrays combine mul-

tiple cross-reactive colorimetric sensors that probe a wide range of analyte chemical properties 12-15, in-

cluding Lewis and Brønsted acidity/basicity, molecular polarity, and redox properties. Colorimetric sen-

sor arrays are cost-effective and have shown high environmental tolerance 10. Imaging of the sensor ar-
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rays has typically used digital cameras or flatbed scanners. Portable imaging methods (including both 

dedicated and cellphone-based systems) are also currently in development 16-23. These colorimetric sen-

sor array/imaging systems have been successfully used to differentiate among diverse families of ana-

lytes, ranging from toxic industrial chemicals 12,24-26, to various foods and beverages 27-34, to pathogenic 

bacteria and fungi 35-40. While the application of optical methods for the detection of explosives has had 

significant success with fluorescent sensors 41-45, colorimetric sensor arrays for the identification of ex-

plosives still have significant room for improvement.  

We report here the development of a new colorimetric sensor array and handheld reader for 

the identification of explosives and their components and describe several new classes of colorimetric 

sensors including cross-reactive metal-dye salts and other dyes designed to take advantage of the reac-

tivity of carbonyl and nitro compounds. The resulting printed array had forty sensor elements mounted 

in a snap-together, disposable cartridge (shown in Figure 4.1) with a linear gas flow path. We have ap-

plied this array to the identification of sixteen analytes that include common explosives, home-made 

primary and secondary explosive mixtures, and non-explosive compounds characteristic of military-

grade explosives 46-47. Specifically, the analytes examined herein (with their abbreviations) are ammoni-

um nitrate (farm grade, AN), ammonium nitrate/fuel oil (AN-FO), ammonium nitrate/nitromethane (AN-

NM), cyclohexanone (C6H10O), cyclotrimethylenetrinitramine (RDX), 2,3-dimethyl-2,3-dinitrobutane 

(DMDNB), 2,4-dinitrotoluene (DNT), hydrogen peroxide (H2O2), hexamethylene triperoxide diamine 

(HMTD), nitromethane (NM), nitromethane/ethylene diamine (Picatinny Liquid Explosive, PLX), pentae-

rythritol tetranitrate (PETN), potassium chlorate/fuel oil (KClO3-FO), potassium chlorate/sugar (KClO3-S), 

and triacetone triperoxide (TATP). 
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Figure 4.1 Linearized colorimetric sensor array and disposable cartridge. (A) Cartridge side view (7.9 x 

2.8 x 1.0 cm). (B) Cartridge front view. (C) Handheld reader (12.8 x 9.5 x 4.0 cm). 

 

4.2 Materials and methods 

4.2.1 Array preparation 

Colorimetric sensor arrays were printed on polypropylene substrates using a robotic pin printer; 

the procedure is described in previous works 25. In this case, custom-designed rectangular pins were 

used instead of round pins, and 40 spots were printed at 1.2 mm center-center distance. 

Polypropylene membranes (0.2 µm) were used as printing substrates for the array and were 

purchased from Sterlitech Corporation (Kent, WA, USA). All reagents were analytical-reagent grade, pur-

chased from Sigma-Aldrich and used without further purification. Cartridges were custom injection-

molded using low-volatility white polycarbonate (Dynamic Plastics, Chesterfield Twp, MI, USA), as shown 

in Figure 4.1 (a,b). Polypropylene substrates were adhered to cartridges using low-volatility 3M™ 465 

Adhesive Transfer Tape (3M Co., St. Paul, Minnesota, USA). Colorimetric sensor arrays were printed on 

these substrates using procedures described previously25; in this case, custom-designed rectangular pins 

were used instead of round pins, and 40 spots were printed at 1.2 mm center-center distance; images of 

the pins used are shown in Figure 4.2. The chemoresponsive dyes used in each spot is described in Table 

4.1 along with a color-coded legend indicating the intended purpose of each spot (i.e., expected chemi-

cal reactivity). 
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Figure 4.2 Pin holder for rectangular pins used to print linear colorimetric sensor arrays (left) and close-

up view of a rectangular pin (right). 

 

Table 4.1 Array composition (top) and category legend (bottom). TsOH = p-toluenesulfonic acid (1M in 

2-methoxyethanol); TBAH = tetrabutylammonium hydroxide (40% in H2O); DNPH = 2,4-

dinitrophenylhydrazine. 

# Name # Name 

1 FeCl2 + Nile Red + TsOH 21 HgCl2 + Bromophenol Blue 

2 a-Naphthyl Red + TsOH 22 LiNO3 + Bromocresol Green 

3 Tetraiodophenolsulfonephthalein + TsOH 23 AgNO3 + Bromocresol Green 

4 Pyrocatechol Violet + TsOH 24 Pb(OAc)2 + Disperse Red 

5 Bromocresol Green + TsOH 25 Bromophenol Blue + TBAH 

6 Methyl Red  + TsOH 26 Methyl Red + TBAH 

7 Bromocresol Purple + TsOH 27 Chlorophenol Red + TBAH 

8 DNPH + Pararosaniline + TsOH 28 Nitrazine Yellow + TBAH 

9 DNPH + Pararosaniline + TsOH 29 Bromothymol Blue + TBAH 

10 DNPH + Pararosaniline + TsOH 30 Thymol Blue + TBAH 

11 FeCl2 + Nile Red 31 m-Cresol Purple + TBAH 

12 ZnTPP 32 N,N'-diphenyl-1,4-diphenyldiamine + TBAH 

13 ZnTMP 33 tolidine + TBAH 

14 CoTMP 34 o-dianisidine + TBAH 

15 CdTPP 35 Nile Red 

16 Bromophenol Red 36 Nile Red 

17 Bromophenol Blue 37 Merocyanine 540 

18 Nile Red 38 1-ethyl-4-(2-hydroxystyryl)pyridinium iodide 

19 Acridine Orange Base 39 TBAH 

20 Zn(NO3)2 + Bromophenol Blue 40 Methylene Blue 
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What How Why 

DNPH spot Brady reaction Ketones and Aldehydes 
Locator spot None, though spot may have other reactivity Slide edge 
Metal salts Metal complexation Ligands 
pH indicators pH and Lewis acidity/basicity Acidic/Basic compounds 
Porphyrins Ligation, Lewis acidity/basicity Ligands 
Redox-sensitive dyes Fenton chemistry / other oxidation Redox compounds 
Solvatochromic dyes Solvatochromism Solvents 
Strong base Meisenheimer adduct formation Nitroaromatics 

 

4.2.2 Analyte samples 

All reagents were purchased from Sigma and used without purification except as follows: gener-

ic farm-grade/commercial-grade ammonium nitrate (AN) was purchased from Fredrich Electronics 

(Boonville, MO). RDX and PETN were supplied by Los Alamos National Labs (Los Alamos, NM). HMTD and 

TATP was synthesized as described in ref 48. HMTD was synthesized as described in ref 49 at 1/50 scale. 

Fuel oil was purchased as diesel fuel from a local gas station. Powdered sugar was purchased from a lo-

cal market. Detailed composition of all analytes, in addition to a control, are described in Table 4.2. The 

experimental setup using the handheld imaging device is shown in Figure 4.4. 
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Table 4.2 Composition of all explosive analytes and related compounds. 

Name Component(s) 

control Ambient lab air (approx. 15% rel. humidity at 24°C) 

AN Ammonium Nitrate, farm grade (FG) 

AN-FO 94.48 wt% Ammonium Nitrate, FG + 5.52 wt% Fuel Oil (diesel) 

AN-NM 66.30 wt% Ammonium Nitrate, FG + 33.70 wt% Nitromethane 

C6H10O Cyclohexanone 

DMDNB 2,3-Dimethyl-2,3-dinitrobutane 

DNT 2,4-Dinitrotoluene 

H2O2 Hydrogen Peroxide (30% in H2O) 

HMTD Hexamethylene Triperoxide Diamine 

NM Nitromethane 

PC-S, KClO3-S 74.12 wt% Potassium Chlorate + 25.88 wt% Powdered Sugar 

PC-FO, KClO3-FO 89.73 wt% Potassium Chlorate + 10.27 wt% Fuel Oil 

PETN Pentaerythritol Tetranitrate 

PLX  95.00 wt% Nitromethane + 5 wt% Ethylene Diamine 

RDX Cyclotrimethylenetrinitramine 

TATP Triacetone Triperoxide 

 

4.2.3 Array response 

Using the onboard micropump, arrays were initially exposed to control media (ambient lab air, 

~30% relative humidity at 24°C) for 2 minutes and scanned as a 'before exposure' image. Arrays were 

then exposed to analyte head space by pumping from sample vials using a short Teflon feed tube (3.8 

cm) for 2 minutes and scanned as an 'after exposure' image. Analyte response was calculated by calcu-

lating the difference between the measured red, green, and blue (RGB) values before and after expo-

sure (e.g., Rafter - Rbefore). Seven independent samples were measured for each analyte. 

Difference maps (for visualization) were constructed by taking the absolute value and scaling a 

relevant color range (indicated on each difference map) to the 8-bit color scale (i.e., 0-255). For S/N 

measurements, signal and noise were calculated for each dimension using all trials in the control data 

set (i.e., each of red, green, and blue values for each sensor element; total of 120 dimensions for an ar-

ray with 40 sensor elements); signal for each dimension was defined as the difference between each 
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analyte trial measurement and the control average (e.g., Ranalyte-n - Rcontrol-avg) and noise was defined as 

the standard deviation in the control data set (e.g., R
2 = n(Rcontrol-n - Rcontrol-avg)

2/(N-1)). 

 

4.2.4 1H-NMR spectra of DMDNB and PETN 

1H-NMR spectra of DMDNB (2,3-dimethyl-2,3-dinitrobutane) and PETN (pentaerythritol 

tetranitrate) were collected with a Varian 500 MHz NMR spectrometer with a narrow-bore coil (Varian 

Inc, Palo Alto, CA, USA). The limit of detection of this method was defined as the point at which peaks 

could no longer be resolved from baseline noise (i.e., 3*100 mol % / baseline). 

 

4.2.5 Attempts to detect KClO3 mixture volatile species 

Control samples and samples of KClO3 and KClO3+Sugar were analyzed using solid-phase micro-

extraction (SPME) and iodometry (KClO3+Fuel Oil was deliberately avoided due to the large amounts of 

volatile hydrocarbons expected). For SPME, a PDMS/DVB fiber (Supelco, Bellefonte, PA) was exposed to 

headgas of the samples in 2 mL vials fitted with teflon septa for 60 seconds. Fibers were analyzed with 

an Agilent 7890A GC at an injector temperature of 200°C. SPME desorption time was 2 min onto a 

Restek TRX-5 SILMS capillary GC column. Carrier gas was helium (1 mL/min); initial oven temperature 

was maintained at 100°C for 2 min and increased by 7.5°C/min for 20 min (total run time 22 min). No 

peaks were discernible from the baseline. We interpret this as the failure to detect any volatile organic 

species, which are primarily expected to be oxidation products. 

For iodometry, headspace was sampled from 7 mL vials identically to experimental trials using 

the handheld reader, except that an impinger was inserted between the sample vial and the colorimet-

ric sensor array and gas was collected for 1 hour. The impinger contained 50 mL of 2 wt% KI in deionized 

water and was fitted with a stainless steel gas dispersion frit in order to maximize bubble surface area. 

Following collection, 1 mL of liquid from the impinger was added to 100 L of starch indicator solution (1 
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mg/mL in H2O), acidified with 20 L of 1M TsOH, stirred, and allowed to sit for 10 minutes. KClO3 sam-

ples showed no color change. We interpret this as the failure to detect oxidizing species (e.g., ClO, ClO2, 

Cl2, etc). 

4.2.6 Sampling protocol 

Samples were prepared by weighing 100 mg of each analyte into 7 mL scintillation vials; fuel-

oxidizer mixtures were prepared based on a 1:1 stoichiometric ratio. TATP and HMTD instead used 20 

mg samples in order to reduce risks during synthesis and storage. All sample vials were sealed with air-

tight Teflon-lined caps and equilibrated for 12 h before testing, which permits complete saturation of 

the head volume of the vial. Safety note: screw-type caps should not be used for explosive materials - 

particles caught in the threading potentially can explode when caps are screwed down. 

The limits of detection (LODs) for this sampling protocol were estimated for AN, NM, and DNT 

samples (representing highly responsive, moderately responsive, and weakly responsive analytes re-

spectively) using sample masses ranging from 0.5-100 mg; calculated LODs were as follows: AN (0.13 

mg), NM (0.52 mg), DNT (1.8 mg). Limits of detection were calculated as follows. Response values for a 

control sample were collected in septuplicate. Response values were also collected in triplicate trials at 

several different sample masses: AN: 0.5 mg, 1 mg, 2 mg, 5 mg, 10 mg, 20 mg; NM: 2 mg, 5 mg, 10 mg, 

20 mg, 50 mg; DNT: 5 mg, 10 mg, 20 mg, 50 mg. A single-point LOD was then calculated for each dimen-

sion using LODsingle
 = 3 * StDevcontrol / (ResponseAvg Trial - ResponseAvg Control). Plotting LODsingle vs. sample 

mass, second-order least-squares interpolation gave polynomials of the form Ax2 + Bx + C with the fol-

lowing R2 values: AN (0.999158), NM (0.990908), DNT (0.997853). These 2nd order polynomials were 

then solved for y = x, corresponding to the position where the calculated LOD was equal to the sample 

mass. Note that single-point LOD estimates calculated using the lowest tested sample mass (AN: 0.5 mg, 

NM: 2 mg, DNT: 5 mg) were only 30-40% higher than values calculated using quadratic fitting. 
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4.2.7 Database analysis and classification 

Hierarchical cluster analysis (HCA) was performed using using Ward's method (i.e., total Euclide-

an distance variance minimization) with Matlab software (MathWorks Inc, Natick, MA, USA). Principal 

component analysis (PCA) was performed using MVSP software (Kovach Computing Services, Pentraeth, 

Isle of Anglesey, UK). Support vector machine (SVM) analysis was performed using custom software 

making use of LIBSVM, an open source SVM library, using a linear kernel with default parameters 50. 

 

4.3 Results and discussion 

4.3.1 Handheld reader details 

The portable reader used in this work uses a compact color line imager (contact image sensor, 

or CIS) combined with a linear chemoresponsive dye array. CIS operation is shown schematically in ref 51.  

The reader itself is shown in Figure 4.3 and specifications are provided in Table 4.3.  As indicated, the 

analyte gas flow path is directly from the sample container into the cartridge over the sensor array and 

out through a diaphragm micropump (Schwarzer SP100-ECLC), which minimizes the possibility of cross-

contamination. Illumination levels for the red, green, and blue (RGB) LEDs were controlled using a com-

bination of applied voltage and pulse-width modulation.  Raw data was normalized using a calibration 

created from a one-time measurement of a 0% reflectance standard (i.e., the sensor array with all LEDs 

turned off) and a 100% reflectance standard (i.e., a blank array without any sensor dye elements printed 

on it). 
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Figure 4.3 Photographs of the handheld reader including front, rear, and cartridge bay views. Dimen-

sions are 12.5 cm tall by 9.5 cm wide by 4.0 cm thick.  The rear panel and 9 V battery were removed in 

order to provide a better view of the internal electronics and diaphragm micropump (located in rear im-

age, lower right). 

Table 4.3 Relevant component parameters of the handheld reader. 

Scanner Size 12.8 cm x 9.5 cm x 4.0 cm 

Scanner Weight 460 g + battery + cartridge 

Cartridge Size 7.9 cm x 2.8 cm x 1.0 cm 

Cartridge Weight 11 g 

Battery Weight 48 g 

Static Pressure 550 mbar typical 

Pump Rate 580 cm3/min typical 

Current Draw ~400 mA 

Battery Charge 1200 mAh typical 

Samples/Battery 100 typical 

 

4.3.2 Colorimetric sensor array 

Colorimetric sensor arrays make use of multiple cross-reactive dyes in order to give analyte 

specificity 10-11. Such arrays are robotically printed and disposable 10,25. In order to develop a colorimetric 
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sensor array for explosive analytes, several dyes previously found to be broadly cross-reactive (i.e., in 

discriminating among toxic chemicals 12,24-25, oxidants 26, and common organic solvents 52) were opti-

mized; these included acid and base-treated pH indicators, Lewis acids, redox-sensitive dyes and chro-

mogens, and solvatochromic dyes formulated with immobilization matrices for printing (Table 4.1). In 

addition, several chromogenic species were added to the array to target specific analytes important to 

the identification of explosives, as discussed below.  

 Hydrogen peroxide. The array sensor elements responsible for the detection of H2O2 are based 

on Fenton's reagent 53 and on well-established redox indicators 26. Acidified ferrous chloride was com-

bined with an empirically-optimized dye (Nile Red, a very intense, neutral, solvatochromic and pH-

responsive dye with a highly conjugated structure) in a printable plasticized medium. When exposed to 

H2O2 vapor, the green-blue sensor spot turns yellow-brown as the dye is oxidized by radicals produced 

catalytically by reaction with Fe2+/Fe3+. 

 Cyclohexanone. Acidified 2,4-dinitrophenylhydrazine (DNPH), also known as Brady's reagent 6, 

was combined with an empirically-optimized dye (Pararosaniline, a cationic triphenylmethane dye). 

When exposed to ketones such as cyclohexanone, the red-orange sensor spot turns yellow-brown. 

There is evidence suggesting that this mixture forms the DNPH analog of Schiff's reagent 54; of the sev-

eral pH indicators tested, only triphenylmethane dyes (e.g. methyl violet, crystal violet, pararosaniline, 

etc.) showed any reaction and the color of these dyes changed significantly upon addition of the DNPH 

reagent, which suggests the specific involvement of reactions between DNPH and the dyes. 

 Nitro-organics. Two strategies were employed for the detection of nitro-organic compounds. 

First, the use of tetrabutylammonium hydroxide was incorporated into the array for the formation of 

Meisenheimer complexes with nitroaromatic compounds (2,4-dinitrotoluene) 55; under the sampling 

conditions and concentrations use, however, this approach proved to be of limited effectiveness. Se-

cond, a family of chemoresponsive metal cation dye anion salts were created in situ by reaction of the 
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acidic form of dyes and the metal chloride or nitrate salts. A large number of alkali and transition metal 

ions were screened, and Ag+
, Li2+, Hg2+, and Zn2+ were found to be the most responsive.  Screening of pH 

indicator dyes revealed bromocresol green (pH range ~3.8-5.4) and bromophenol blue (pH range ~3.0-

4.6) to be effective. Further investigation of these salts and the origin of their colorimetric response is 

ongoing. 

 

4.3.3 Array response 

Analytes were tested using a field-appropriate sampling protocol; milligram-scale samples (100 

mg for most analytes, 20 mg for HMTD and TATP) were stored in small glass vials and the headspace was 

sampled through a short Teflon tube while open to the ambient environment (Figure 4.4). The data was 

collected in septuplicate trials for each analyte and consisted of red, green, and blue (RGB) values meas-

ured for each of 40 printed sensor elements in the array before and after exposure using an optical line 

imager (12-bit contact image sensor, CIS). The resulting 120-dimensional difference vectors had values 

ranging from -100% to +100% reflectance change. Graphical representations of the average signal/noise 

vectors (i.e., scaled color difference maps) for each analyte class are shown in Figure 4.5. These differ-

ence maps demonstrate a broad range of response patterns, which are discernable even by eye. Among 

analytes of similar chemical composition, the array responses are similar, but still differentiable. One 

example showing a graphical form of subtraction on raw images is shown as Figure 4.6; note that this 

was figure was generated by subtracting the numeric values and constructing a bitmap for visualization. 

Average difference maps for each analyte class and the control are shown in Figure 4.7. As shown, the 

array responses vary considerably across the range of tested analytes. 
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Figure 4.4 Image of sampling procedure. The handheld device was held in a metal rack with a tube in-

serted into a glass vial containing the analyte, shown from the (A) front, and (B) side. The array cartridge 

is attached to a short feed tube (3.8 cm). Prior to analyte headspace sampling, the array is equilibrated 

to the ambient background atmosphere for 2 minutes. The feed tube is then inserted into a 7 mL glass 

vial for headspace sampling, and measurements were collected after 2 minutes of exposure to sample 

headspace at a flow rate of approximately 580 cm3/minute (sccm). 
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Figure 4.5 Difference maps of the 40-element colorimetric sensor array showing signal-to-noise of 16 

explosives, related analytes, and the control. S/N ratios of 3-10 were scaled for display on an 8-bit RGB 

color scale (i.e., 0-255). The average response of all analytes except for KClO3-Sugar and KClO3-Fuel Oil 

are obviously detectable. 

 

 

Figure 4.6 Raw sensor images collected before (A) and after (B) exposure to AN head gas, and a scaled 

difference map (C, RGB color range 0-16 scaled to 0-255). 
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Figure 4.7 Average sensor response vectors of 15 explosives and related compounds. Normalized reflec-

tance values were scaled so that the relevant response range (i.e., 0.39% to 3.9% of maximum reflec-

tance) is displayed on an 8-bit RGB color scale (i.e., 0-255). 

 

4.3.4 Database evaluation 

Hierarchical cluster analysis (HCA) was used to give a preliminary evaluation of the acquired da-

tabase and the relative similarities among the data collected. HCA is an unsupervised evaluation tech-

nique that groups array response data in the full 120-dimensional vector space (i.e., color difference 

changes in red, green, and blue for each of the 40 sensor elements on the colorimetric sensor array); 

starting with single data points, clusters are formed hierarchically by connecting the centroids of uncon-

nected clusters or data points (in this case using Ward's method, which minimizes the total within-

cluster variance). The resulting dendrogram shows connectivity (indicates which clusters are most simi-

lar to each other), and inter-cluster distance (describes the magnitude of similarity). The HCA dendro-

gram for the response of these common explosives is shown as Figure 4.8. The method shows obvious 

discrimination among 11 of the 16 analytes (including the control). Confusions of clustering were ob-

served among the group containing the weakly-responding potassium chlorate mixtures (KClO3-Fuel Oil 
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and KClO3-Sugar) and separately among the group containing nitroalkyls and nitroamines (PETN, RDX, 

and DMDNB). 

 

 

Figure 4.8 Hierarchical cluster analysis (HCA) of the normalized difference vectors (i.e., changes in reflec-

tance) for 16 explosives, related analytes, and the control; 112 trials in total. All species were clearly dif-

ferentiable except among members of two groups: KClO3 mixtures (KClO3-Sugar and KClO3-Fuel Oil) 

and nitroalkyls/nitroamines (DMDNB, PETN, and RDX). 

 

In addition to HCA, principal component analysis (PCA) 56-59 was employed to provide an estima-

tion of the dimensionality of the data acquired with the colorimetric sensor array, which is itself a meas-

ure of the dimensionality of the chemical reactivity space probed by the sensor array. PCA is an unsu-

pervised statistical approach that generates a set of orthogonal vectors (i.e., principal components) us-

ing a linear combination of array response vectors to maximize the amount of variance in each principal 
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component. A scree plot of the normalized data is given in Figure 4.9. A total of 10 dimensions were re-

quired to capture 90% of the total variance and 16 dimensions for 95% of the total variance; this strong-

ly suggests that the colorimetric sensor array is probing a very broad range of chemical reactivities, as 

intended. The high dimensionality of this sensor array is in stark contrast to traditional electronic nose 

sensor arrays in which only 1 or 2 dimensions are required to reach 95% of the total variance (in these 

cases, the sensor array is probing only a very limited range of chemical properties, e.g., hydrophobicity).  

 

 

Figure 4.9 Scree plot of the principal component analysis for 15 explosives and related compounds. 10 

dimensions were required to account for 90% of the total variance and 16 dimensions for 95% of the 

total variance, which strongly suggests that the colorimetric sensor array probes a broad range of chem-

ical reactivity.  

 

The high dimensionality of the colorimetric sensor arrays also makes PCA unsuitable for use in 

discrimination among analyte species: too little of the variance is captured in two or three dimensions to 

avoid overlap of analyte classes, and in fact, PCA score plots show significant overlap among classes 

even among samples that show obvious qualitative differences in response (Figure 4.10). In order to 

demonstrate how this translates into discrimination ability (or lack thereof) and compare this sensor 

array to other works using PCA for analysis, the first four principal components were plotted as shown in 

Figure 4.20. Upon cursory examination, it is obvious that PCA using the first two dimensions provides 
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adequate discrimination for some analytes (e.g., AN, AN-NM, AN-FO, NM, etc) but shows essentially no 

discrimination for others (e.g., both nitroalkanes, both chlorate-containing analytes, and HMTD all ap-

pear to be inseperable using the first two dimensions). Extending this to the third and fourth dimen-

sions, additional analytes are able to be discriminated (TATP, H2O2, cyclohexanone, etc) but there is still 

significant overlap among many analytes. 
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Figure 4.10 PCA score plots showing the first four principal component axes. The first four components 

show essentially no discrimination among several analyte classes (e.g., nitroalkanes, chlorate-containing 

species, HMTD). 
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4.3.5 Classification using Support Vector Machines (SVM) 

PCA and HCA are unsupervised analysis tools for an existing data set, and they are inherently not 

well suited for predictive (i.e., classification) use.  They provide no direct method for classification of un-

known data. For example, if one were to use PCA for classification of unknown data, a decision method 

must be implemented using a set of criteria. In datasets where PCA plots do provide good discrimination 

in 1 or 2 dimensions 11, one can do a simple supervised pairwise comparison by manually drawing a line 

connecting the two clusters and setting the decision value somewhere in the middle; unknown data is 

then projected onto that line and compared to the decision value (note that this is identical to separa-

tion using a dividing plane). Using this method, PCA is essentially a form of optimization for the decision 

boundaries. PCA, however, does not optimize differentiation among analyte classes—instead it simply 

minimizes the number of dimensions needed to describe the shape of the dataset. 

There are other methods of optimizing decision boundaries in higher dimensional space that do 

not require projection onto a one or two dimensional space (as in PCA).  Specifically, here we make use 

of a common machine learning tool, support vector machine (SVM) analysis. Unlike unsupervised meth-

ods such as PCA, HCA, or other clustering methods, SVM is a predictive method that is designed to clas-

sify incoming data that is not part of the training database. SVM classification is based on pairwise class 

prediction and focuses on the data most likely to be misclassified (i.e., data near the decision boundary 

for any given class pair, the so-called support vectors) to create decision boundaries that best separate 

the data for any given pair of classes in high dimensional space. The result of each pairwise comparison 

gives a vote that is used to determine the final classification 60. SVM optimization factors have been fully 

developed and incorporated into LIBSVM, an open-source SVM library 50. 

Compared to PCA, SVM is better optimized for discrimination of multidimensional data: PCA de-

scribes the shape of the entire data set, while SVM maximizes discrimination ability. Implementation of 

SVM requires multiple rounds of iteration and optimization parameters. In this work, class data was 
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found to be roughly normally distributed and no data transformation was necessary (i.e., a linear kernel 

was used). Default SVM parameters were found to be quite well-optimized for the colorimetric sensor 

array database; this is not surprising, since HCA results already showed a high level of separation using a 

Euclidean distance clustering method. Classifiers took the form of a decision hyperplane based on a 120-

dimensional vector (i.e., optimized linear combinations of RGB values of the sensor array) combined 

with a scalar decision value. 

Classification accuracy. Classification accuracy of the SVM method was estimated using cross-validation 

which split the database and created classifiers based on training and evaluation data sets. Cross-

validation results using a leave-one-out permutation method are shown in Table 4.4. Interestingly, the 

two KClO3 mixtures (KClO3-Sugar and KClO3-Fuel Oil) and nitroalkanes (DMDNB and PETN) were non-

separable within their respective groupings, but the method showed no other misclassifications. 

 

Table 4.4 Support vector machine (SVM) classification results (i.e., leave-one-out cross-validations of 

112 permutations) of 16 common explosives, related compounds, and the control. The Accuracy column 

shown for each analyte represents the percentage of correctly identified analytes among 7 independent 

trials. Similarly, the Misidentifications column indicates which incorrect classifications were supplied by 

the algorithm. 

Analyte Accuracy Misidentifications 
control 100% (7/7)  
AN 100% (7/7)  
AN-NM 100% (7/7)  
AN-FO 100% (7/7)  
C6H10O 100% (7/7)  
DNT 100% (7/7)  
H2O2 100% (7/7)  
HMTD 100% (7/7)  
NM 100% (7/7)  
PLX 100% (7/7)  
RDX 100% (7/7)  
TATP 100% (7/7)  
KClO3-Sugar 86% (6/7) KClO3-FO (1/7) 
KClO3-FO 57% (4/7) KClO3-Sugar (3/7) 
DMDNB 0% (0/7) PETN (7/7) 
PETN 14% (1/7) DMDNB (6/7) 

 

182



 

 

 

In the case of the KClO3 mixtures, both analytes have very low response but all individual trials were dis-

tinguishable from the control group. Neither KClO3 nor sucrose or corn starch (the primary additive in commer-

cial sugar) are sufficiently volatile to provide a strong response and the sensor array is known to be insensitive 

to hydrocarbons 61; confusions among the chlorate analytes are therefore unsurprising. We are not confident in 

the colorimetric sensor array's ability to detect these species: the maximum signal in all KClO3 mixture samples 

barely exceeds estimated detection requirements (maximum S/N ~9, estimated detection limit requires S/N ~8-

9) and no volatile reactants were detected using headspace analysis with either solid phase microextraction or 

iodometry. The origin of any apparent detection of KClO3 mixtures and discrimination from control samples re-

mains an open question. 

Since DMDNB and PETN were unable to be distinguished from each other, it was suspected that the 

PETN sample may contain significant amounts of DMDNB (which is commonly used as a taggant for PETN and 

other explosives). The absence of any detectable DMDNB peak in the PETN spectrum (Figure 4.21) indicates that 

the amount of DMDNB present in the PETN sample is less than the detection limit of the method, which was 

estimated to be approximately 0.02 mol %. This detection limit is slightly below the concentration expected for 

a standard taggant (~ 0.04 mol %) 9,62-63. Based on this, it is unlikely that the response of both analytes is due to 

the same compound, since that compound would have to be very volatile as well as highly reactive due to its 

low concentration. The similarity in array response is then likely due to the similar chemical reactivity of the two 

analytes; the array cannot distinguish between these two nitroalkyl species. 
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Figure 4.11 1H-NMR spectra of DMDNB and PETN showing both a full range and zoomed in on the primary 

DMDNB peak at 1.79 ppm. 

 

Such grouping does not diminish the utility of the method: KClO3 is the relevant component in its explo-

sive mixtures (it will react with essentially any oxidizable material), and both DMDNB and PETN are similar nitro-

organics; also, DMDNB is commonly used as a volatile taggant for explosives containing the less-volatile PETN 

and RDX at a recommended concentration of 0.05 wt% 9,62-63. Confusions were only observed within each of 

these groups. If one re-analyzes all the data with 14 classes (i.e., including groupings of chlorate mixtures and 

nitroalkanes), SVM accuracy is raised to 100%. In comparison to HCA, SVM was able to perform classification of 

new data and could completely differentiate RDX (a nitroamine) from DMDNB and PETN (nitroalkanes). 
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4.4 Conclusion 

A colorimetric sensor array was developed for classification of common explosives and related com-

pounds representing a broad range of relevant species and chemical reactivity. The array incorporates pH indi-

cators, metal-dye salts, redox-sensitive chromogenic compounds, solvatochromic dyes, and other reactive 

chromogenic mixtures designed to take advantage of the unique reactivity of carbonyl and nitro compounds; 

ultimately, this results in a highly cross-reactive sensor array capable of probing a very large range of chemical 

reactivities. Experiments were performed with a specially-designed handheld system making use of a linear col-

or contact image sensor; the handheld unit provided automated classification without operator input. Based on 

cross-validation results, support vector machine analysis was able to discriminate 16 separate analytes into 14 

groups with an estimated acccuracy approaching 100%. This method has significant implications in portable ex-

plosives identification and may prove to be a useful supplement to other current technologies. 
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Appendix: Device programming 

 

Onboard software 

Prerequisite software for development: 

 Texas Instruments Code Creator Studio 5.4 (editor for Windows); 

http://processors.wiki.ti.com/index.php/Download_CCS 

 Texas Instruments TMS320DM6437 bios 5.41.10.36 (bios library); http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/dspbios/index.html 

 ActivePerl 5.8.8 (2nd stage compiler); http://www.activestate.com/activeperl 

 Texas Instruments C6000 code generation tools 7.3.5 (1st stage compiler); 

http://processors.wiki.ti.com/index.php/TI_Development_Tools_Information 

 D3 Electronics Mercury library for TMS320DM6437 (code library); provided in digital appendix 

Code Creator Studio uses a customized version of C that includes such concepts as 'far externs', which 

are not commonly supported in other compilers; as such, it would be very difficult to compile this 

software using another studio/compiler. 

The primary contribution to the onboard device software fell into three categories: user interface, file 

operations, and statistics processing. It is worth noting that the TMS320DM6437 uses a multi-threaded 

processor and each processor can be assigned a "task" that it works on roughly independently of other 

active threads. Communication between these threads uses a standard semaphore method using a 

mailbox and wait statements; improper implementation of the semaphore was the primary cause of 

many errors including scan failure and general poor performance. Scan failure was affected by 

semaphore timing due to an extremely poor choice by D3 Engineering to control part of the scanner 
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with a microcontroller (i.e., independent of the CPU) and part with the CPU; as such, it is very easy to 

cause desynchronization between the microcontroller and CPU because the microcontroller continues 

to run while the CPU is in a wait cycle. 

The user interface of the handheld device is a simple menu that steps through the three primary 

functions of the device (collecting/processing scans, memory management, and a status display). Each 

of these functions is relatively straightforward and will not be discussed in-depth. 

File operations consisted of creating the file format and manipulating the onboard NAND flash memory 

in order to allow proper saving of data. The file format is documented well in the source code and will 

not be discussed. Manipulating the NAND flash memory was necessary due to a bug in D3 Electronics 

code: their built-in command to save data to the NAND flash memory would fail due to an incorrectly-

written evaluation/test step following the write to the flash memory. The process of writing to NAND 

flash memory is fairly convoluted: first, a memory block must be write-unprotected, then erased, then 

written, then write-protected. Memory blocks cannot be subdivided, meaning that the data in each 

memory block must be saved first so that no data is lost. The file-save algorithm used by D3 electronics 

was very slow; it is suspected that it was performing multiple redundant operations, such as saving 

memory blocks which did not need to be altered. The file save procedure was sped up and made 

significantly more reliable by carefully writing only those blocks that required alteration. In addition, a 

specifically-sized memory area was dedicated to save files in order to more-easily calculate which 

memory blocks were in use. 

Statistics processing primarily involved implementation of evaluation algorithms taken from SVM.NET. 

Importantly, linear classifiers can be collected into a single vector; evaluation of new data involves trivial 

data transformations (the dot product of each classifier with the incoming data vector). The relative 

magnitude (i.e., positive or negative) provides a vote for one class or another; collection of these votes 
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then gives the predicted class of the incoming data. The most difficult challenge of this was 

implementing vector mathematics in C language; due to thread memory limitations (i.e., only so much 

memory can be allocated for any particular subroutine), each intermediate vector in the mathematics 

required careful allocation in order to maintain data integrity. 

 

PC GUI software 

Prerequisite software for development: 

 SVM.NET (LIBSVM code library for .net, i.e., C# language); 

http://www.matthewajohnson.org/software/svm.html 

 PdfSharp for .net (pdf creation library); http://www.pdfsharp.net 

 Microsoft Visual Studio 2013 (editor and compiler for Windows); http://www.visualstudio.com/ 

Source code for the PC GUI software is provided in the digital appendix in the 'PC GUI software' folder. 

The software was written in C#. 

The PC GUI software was written as a major overhaul to PC GUI software originally provided by D3 

Engineering. As such, every aspect of the software was altered or newly created. The major components 

worth discussing are the implementation of statistical handling, report output, and communication 

protocols. 

Statistical handling was done through a minor modification of SVM.NET, which is a C# port of LIBSVM (a 

well-known SVM library). Normally, classifiers in SVM require implementation of a kernel function with 

each support vector (i.e., weighted data point in the training set); there can be anywhere from three to 

tens of support vectors depending on the complexity and ambiguity of data. With a linear classifier, 

however, these support vectors can be pooled together into a single vector that is suitable for export to 
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the handheld device. Other than that, statistical handling was performed using basic functions in the 

library API in order to appropriately classify incoming data via a voting mechanism, as described above 

for the onboard software. 

Report output used a combination of basic text output (via a comma separated value table) and 

generation of Adobe Acrobat (pdf) documents using the PdfSharp library API. While this API is 

extraordinarily slow and is a bottleneck in performance, it is the difficulty of working with pdf 

documents through Adobe's proprietary libraries that causes this bottleneck rather than the PdfSharp 

library itself. Report output was done by inserting graphics and text; graphics were created by directly 

generating bitmap files by manipulating their binary representations. 

Communication protocols were modified from those used by the original implementation of the D3 

Engineering PC GUI. Specifically, the original implentation would abort immediately upon being 

commanded to do so; this resulted in many problems where the software did not stop "gracefully" and 

cause freezes and lockups. By altering the communication protocol such that the PC GUI and handheld 

device would communicate their attempts to abort and subsequently drain the data buffer harmlessly, 

this problem was eliminated completely. Additionally, new commands were added to facilitate saving 

and loading of new software and new chemical libraries. 
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