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Abstract 

 

Endometriosis is a debilitating disease that is diagnosed in 0.5-5% fertile and 25-40% of infertile 

women, but the underlying mechanisms involved in progression of the disease as well as the 

associated infertility are yet unclear. Research now shows evidence that the immune system has 

a pivotal role in endometriosis development as well as the related infertility. Among other 

immune cells, the T-helper lymphocytes accumulate in the normal endometrium during the mid- 

to late-secretory phase of the menstrual cycle and are considered essential for endometrial 

receptivity. The goal of this project was to 1) study the relationship between anti-inflammatory 

T-regulatory (Treg) and pro-inflammatory T-helper-17 (Th17) lymphocytes in the eutopic 

endometrium of patients with the primary complaint of infertility; 2) explore the involvement of 

interleukin-17 (IL-17) in the promotion of a pro-inflammatory environment and the 

consequences of this altered microenvironment on eutopic endometrial and ectopic endometriotic 

cells; and 3) characterize EMMPRIN expression in the eutopic endometrium in women with 

endometriosis-related infertility and its correlation to elevated IL-17 expression.  

Endometrial biopsy samples collected from patients during the mid- to late-secretory 

phase of their menstrual cycles were evaluated for Treg and Th17 lymphocyte subsets and the 

Th17 specific cytokine, IL-17 expression. These data were compared to the fertility status in 

these patients. Overall, Treg cell counts were higher and Th17 cell counts were lower in patients 

who conceived compared to those that did not get pregnant. Conversely, patients who maintained 

their infertile status had a lower Treg cell count and higher Th17 cell count in their eutopic 

endometrium. The ratio of Treg:Th17 cell counts was significantly correlated to their fertility 

status. Patients with a ratio less than 3 failed to conceive in spite of medical or surgical 

intervention. Laparoscopic intervention for ectopic lesion excision had a boosting effect on the 
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endometrial Treg cell population which was in turn correlated to a positive pregnancy outcome. 

The IL-17 expression was elevated in both the glandular and stromal compartments of the 

endometrium in patients with a low Treg:high Th17 cell ratio.  

IL-17 is associated with various inflammatory conditions including endometriosis. IL-17 

treatment did not have any effect on cell proliferation in endometrial or endometriotic cell type. 

But IL-17 did positively affect cell migration and invasion in the endometriotic cells, though not 

in the endometrial cells. To understand this differential effect we assessed IL-17 receptor (IL-

17R) expression in both cell types and observed that the receptor expression was fairly similar in 

both cell types. Thus we concluded that the differential effect was probably due to specific 

interaction processes of IL-17 with different cell types or another co-receptor expressed 

specifically on the endometriotic cells could mediate this effect. The inflammatory NFκB 

pathway is the hallmark of IL-17 activity, but our results showed that in our uterine cell lines, IL-

17 did not induce the NFκB pathway. Instead IL-17 activated an alternate MAPK signal 

transduction pathway, but only in the endometriotic 12Z cells.  

Because it is known that cell motility requires MMP induction, we also evaluated 

changes in EMMPRIN expression in these cells when treated with IL-17. Endometriotic cells 

showed a transient increase in EMMPRIN expression post treatment which could partially 

explain their enhanced motility in the presence of IL-17. We also assessed the correlation 

between IL-17 and EMMPRIN expression in the eutopic endometrial samples from patients with 

endometriosis. We found that IL-17 expression positively correlated with EMMPRIN expression 

in about 90% of the samples tested.  

Our experiments using IL-17 may reveal the mechanisms involved with the creation of a 

pro-inflammatory environment and its consequence on eutopic endometrial cells as well as 
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processes involved in the establishment of ectopic endometriotic lesions. We believe this project 

addresses questions that will greatly increase our understanding of how a specific immune cell 

niche may regulate endometrial receptivity. Moreover, a better understanding of the mechanisms 

of Epithelial to Mesenchymal Transition will aid research in the field of endometriosis as well as 

cancer.  
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CHAPTER 1 

INTRODUCTION 

 

Endometrial receptivity is a complex phenomenon dependent upon the interaction and 

precise synchronization of multiple factors that control structural changes in the endometrial 

lining in response to changes in circulating steroid hormones(1). Previous studies have suggested 

that a delicate and stage-specific leukocyte and cytokine equilibrium is also involved in the 

control of uterine receptivity. It is therefore important to understand the immunological factors 

involved in implantation and early pregnancy, particularly in reproductive pathologies that may 

result in infertility. One such example is the establishment of endometriosis and subsequent 

infertility.  

Endometriosis is a debilitating inflammatory disease that is diagnosed in 5-10% of 

women of reproductive age. In addition to causing chronic pelvic pain, up to 30-50% of women 

with endometriosis are infertile (2). The pathogenesis of endometriosis is considered to be 

multifactorial, but the actual underlying mechanisms are as yet unclear. Research now shows 

evidence that the immune system plays a pivotal role in the development of endometriosis as 

well as the related subfertility. In patients with endometriosis, immune responses are altered in 

favor of the survival and establishment of endometriotic tissue in extra-uterine locations (3). A 

key feature of endometriosis is inflammation, which involves an overproduction of cytokines, 

chemokines, prostaglandins and metalloproteinases. Peritoneal immune cells such as T-helper 

cells secrete IL-17, one such inflammatory factor, which possibly facilitates the adhesion, 

invasion, and proliferation of endometriotic cells and the progression of endometriosis.  
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Evidence suggests that the increased concentrations of certain growth factors and/or 

cytokines in the peritoneal fluid of patients with endometriosis induce establishment and 

proliferation of the ectopic endometriotic implants, and also may inhibit early reproductive 

events.  It has been proposed that both pro-inflammatory and immune tolerance factors co-exist 

at the maternal-fetal interface in a normal pregnancy and an imbalance between these anti- and 

pro-inflammatory factors leading to immune dysregulation in the reproductive tract of women 

with endometriosis may have a profound negative impact on the outcome of implantation and 

pregnancy. Hence our hypothesis was that the presence of endometriotic lesions promotes a pro-

inflammatory environment leading to shifts in the T-helper cell profiles and related cytokine 

milieu in the eutopic endometrium during the window of implantation (WOI). To test this 

hypothesis, our objectives were: 

1. to characterize alterations from an anti-inflammatory lymphocyte phenotype toward a 

pro-inflammatory phenotype in the eutopic endometrium of patients with infertility.   

2. to explore the mechanisms involved in the promotion of a pro-inflammatory environment 

and the consequences of this altered microenvironment on eutopic endometrial cells and 

on the processes involved in the establishment of ectopic endometriotic lesions.  We 

conducted in vitro experiments using recombinant human IL-17 (recHuIL-17) to evaluate 

effects on cell migration, epithelial to mesenchymal transition, and cell signaling. 

3. to characterize EMMPRIN expression in the eutopic endometrium in women with 

endometriosis-related infertility. We also evaluated the effect of recHuIL-17 on 

EMMPRIN expression in endometrial and endometriotic cells and the signaling pathway 

involved.  
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Hence the overall goal of this project was to gain a better understanding of how a specific 

immune cell niche might regulate eutopic endometrial and endometriotic cell function. In chapter 

2, an overview of endometrial receptivity, immune factors involved in its pathophysiology, 

endometriosis and its pathogenesis, various factors and signaling pathways involved in its 

establishment and its effect on endometrial receptivity are presented. Chapter 3 presents ex vivo 

data demonstrating an alteration in the T-cell profiles of the eutopic endometrium in women with 

endometriosis and its correlation to subfertility in these women. T-regulatory cells accumulate in 

the normal endometrium during the mid- to late-secretory phase of the menstrual cycle and are 

considered essential for uterine receptivity. To this end we have characterized and quantified the 

eutopic endometrial expression of T-regulatory cells, T-helper 17 cells, ratio of Treg to Th17 

cells and expression of the cytokine Interleukin 17 in fertile and infertile women with 

endometriosis. These data were then compared to patient fertility history to evaluate these 

endpoints as possible uterine receptivity biomarkers. Chapter 4 presents our findings on the 

effects of recHuIL-17 on endometrial and endometriotic cell function in vitro. Elevated levels of 

IL-17 are known to trigger signaling pathways that augment the pro-inflammatory milieu 

systemically as well as in the local environment. We have evaluated the effect of recHuIL-17 

treatment on immortalized eutopic endometrial and ectopic endometriotic cell lines to assess 

changes in cell proliferation, migration and invasion, and activation of signaling pathways. An 

IL-17 enriched local environment is known to support peritoneal inflammation and adhesions. 

EMMPRIN is another factor known to be involved in matrix remodeling, metalloproteinase 

production, inflammation and EMT, processes known to affect embryo implantation and 

establishment of metastatic implants. We evaluated the correlation between IL-17 and 

EMMPRIN protein expression in the eutopic endometrium of women with endometriosis related 
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subfertility and the effect of recHuIL-17 treatment on EMMPRIN expression in endometrial and 

endometriotic cell lines to determine changes in EMMPRIN expression in these cells. Chapter 5 

presents a summary of our findings and future directions in this area of research. Chapter 6 

includes detailed information on the materials and techniques used in our studies.   
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FIGURE 

Overall Model for Specific Aims 

 

 

 

Figure 1.1: Overall model presents the three objectives of this study which aim to evaluate 

the altered endometrial immune cell status and its effects on endometrial and 

endometriotic cell function in vitro as well as its relation to EMMPRIN activity. 
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CHAPTER 2 

LITERATURE REVIEW 

 

ENDOMETRIAL RECEPTIVITY 

The two main components of the uterus, the endometrium and the myometrium, work in 

perfect coordination to allow an embryo to attach, develop during the course of the pregnancy 

into a mature fetus and be expulsed during parturition. Our focus is on the endometrial tissue 

which is composed of glandular and luminal epithelium, stromal fibroblasts, cells associated with 

blood vessels and subpopulations of leukocytes, whose numbers and phenotypes vary with 

menstrual cycle stage (4). As is commonly known, the endometrium undergoes specific changes 

during the menstrual cycle under the influence of sex steroid hormones and other key factors that 

are especially evident during the mid- to late-secretory phase of the cycle when the endometrium 

prepares for the advent of the embryo. Major changes occur in the endometrial epithelium 

associated with the window of implantation. These include increases in secretory activity of the 

glands while the luminal epithelium undergoes synchronized modifications including the loss of 

specific inhibitory components that could prevent blastocyst attachment, the simultaneous 

acquisition of adhesion ligands and microvilli known as pinopods as well as alterations in its 

junctional integrity to allow blastocyst attachment and invasion. The stromal cells undergo a 

transformation commonly known as the predecidual response, which uniquely in women, occurs 

independently of the presence of the embryo. A substantial increase in the numbers of leukocytes 

and the development of long, coiled spiral arteries are also critically important as these 

subsequently form the decidual compartment of the placenta (152,153).  
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Involvement of Sex Steroids:  

Sex steroid hormones are the most prominent players in this dynamic process making the 

uterus capable of supporting pregnancy when exposed to a suitable balance and appropriate 

sequence of estrogen and progesterone during the menstrual cycle. Progesterone is the hormone 

known to be absolutely essential for establishment and maintenance of pregnancy by virtue of its 

genomic activity via the progesterone receptors PRA and PRB. Some of the effects of 

progesterone include an anti-estrogen effect through down-regulation of the estrogen receptor 

(5),  controlling the expression of cell cycle progression and growth factors as well as their 

receptors, and simultaneously repressing cell cycle arrest proteins (6),  induction of specific 

marker expression such as pinopods on the endometrial surface (7) and osteopontin (ligand 

believed to bind integrin receptors (8)) on the trophoblast side of the maternal-fetal interface. 

Progesterone also acts via non-genomic pathways but the physiological and/or pathological 

relevance of this action in the uterus is yet largely unknown (6). Several studies have also 

established the critical role played by progesterone in the process of decidualization of 

endometrial stromal cells.  

 

The Decidua:  

The crosstalk between the sex steroid hormones, estrogen and progesterone, and cAMP 

(9) regulates morphological and biochemical changes in the stromal compartment of the 

endometrium during this key phenotypic transition. The stromal cells are transformed during this 

process from elongated fibroblast-like cells to enlarged epithelioid-like cells with polyploid 

nuclei. They also synthesize new cellular products of the extracellular matrix, hormones and 

peptides, cytokines and chemokines, growth factors and matrix metalloproteinases that all aid in 
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this remodeling. Additional changes in the decidua include accumulation of glycogen, lipids and 

proteins that serve as nutrient medium to support embryo growth until the placenta is completely 

developed and takes over in early pregnancy (10). The decidua thus plays an important role in 

the remodeling of the materno-fetal interface, wherein it is proposed to “encapsulate” the 

developing embryo thus keeping trophoblast invasion in check and protecting the maternal 

tissues from excessive invasion (11). In addition to this complex interaction with embryonic 

trophoblast cells, human decidual cells secrete cytokines and chemokines that attract peripheral 

immune cells to the maternal decidua thus orchestrating local immunomodulation that supports 

placental as well as embryonic development. Progesterone and its receptor also play a key role in 

the localized suppression of the maternal immune system and control of cytokine cascades that 

are the prime mediators of the dialogue at the maternal-fetal interface.   

Thus the endometrium may be viewed as a guardian, allowing the embryo to attach and 

invade under a specific set of precisely controlled molecular and cellular events, coordinated by 

autocrine, paracrine and endocrine factors that are vital to endometrial receptivity during the 

putative window of implantation (WOI).  The overall data in the literature strongly suggest that 

misregulation of these WOI factors leads to an inhospitable environment for the embryo and one 

in which implantation often fails. 

 

UTERINE MUCOSAL IMMUNITY 

The uterine mucosa needs to be prepared to respond to antigenic challenges, just as the 

other mucosal surfaces in our body such as the intestinal, bronchial, salivary, mammary, nasal- 

and ocular-associated glandular tissues. Although these mucosal immune systems share 

structural and functional similarities, the human uterus is unique, as it undergoes cyclical 
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proliferation and shedding under the control of sex steroid hormones (9, 154). These hormones 

along with a number of other factors have considerable effect on both the afferent and efferent 

immune events in the gravid as well as non-gravid uterus (13). As a result, the leukocyte sub-

populations within the endometrium vary considerably across the menstrual cycle, with maximal 

numbers associated with the processes of implantation and also menstruation (152).  

 

Uterine Mucosal Leukocytes:  

In the normal physiological setting the populations of dendritic cells, uNK and specific 

subsets of T-lymphocyte cells increase at the implantation site. These cells maintain a local 

immunosuppressive environment in the uterus so that the semi-allogeneic embryo is protected 

from the maternal immune system and allowed to attach. Moreover, they also interact with the 

invading trophoblast cells to direct as well as limit their invasion into the endometrium (14). 

During this receptive phase, these specific populations of leukocytes constitute approximately 

20-40% of all endometrial cells, and hence it has been proposed that the sub-types of cells 

trafficking to the endometrium are likely to be critical for endometrial receptivity (14).  

 

T-helper Lymphocytes:  

Among these key immune cells are the T-lymphocytes, identified on the basis of their 

expression of surface CD4 and T-cell receptor (TCR) molecules. These cells account for a 

significant 5-10% of the endometrial leukocyte population in both the cyclic and pregnant 

endometrium of all species investigated so far (154). These T-lymphocytes, also known as T-

helper (Th) cells can be classified into Th1 cells that are involved in cellular immunity, Th2 cells 

that are involved in humoral immunity, Th17 cells that produce pro-inflammatory cytokines and 



10 
 

are responsible for induction of inflammation and Treg cells which play central roles in 

immunoregulation and induction of tolerance (15). The Th1 ⁄ Th2 hypothesis originally provided 

the rationale to explain immune regulation during pregnancy, but was found incomplete when 

Th2-dominant immunity, observed to support pregnancy, was also reported in women with 

recurrent abortion as well as in implantation failure. Thus the pregnancy paradigm was expanded 

to include the Th1/Th2/Th17 and Treg cell model (Figure 2.1).  

 

Balance between Treg and Th17 lymphocytes:  

The Treg cells are especially critical for localized immunosuppression at the implantation 

site as they are capable of suppressing other immune responses in vitro and in vivo. There are 

two main distinct lineages of Treg lymphocytes: nTregs that originate in the thymus and iTregs 

that are induced in the peripheral circulation by activation of naïve T cells in the presence of 

TGFβ. Both these types of Treg cells have T-cell receptors specific for self-antigens and are 

distinguished from other CD4 cells by their surface expression of CD25 and the unique use and 

expression of a transcription factor known as Forkhead Box P3 or FoxP3 (155). FoxP3 is now an 

established marker for Treg cells in mice and humans and is shown to be present in the 

endometrium of pregnancy (16). Various studies and reviews have confirmed that Treg 

lymphocyte populations are increased in the peripheral circulation (16,17) as well as the decidua 

(18–20) during early pregnancy, showing a stable and highly suppressive phenotype and hence 

are believed to be critical for embryo tolerance, invasion and establishment of pregnancy (21,22). 

However, it has also been proposed that the balance between Treg cells and their 

reciprocal cell types should be considered when evaluating immune status, especially since the 

presence of Treg cells and their reciprocal subset known as Th17 cells are inversely related to 
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each other in the decidua (18). These Th17 lymphocytes express the retinoid-related orphan 

receptor-γt (RORγt), secrete large quantities of the cytokine IL-17 and are directly involved in 

neutrophil-mediated inflammatory processes (155). Because the Th17 cells are involved in 

inflammatory processes, it would be best that the proportion of Th17 cells should be reduced 

during pregnancy to prevent embryonic rejection. However, Nakashima et.al, (23) showed that 

the Th17 cell population remains stable in the peripheral circulation as well as decidua of 

pregnant women as compared to non-pregnant women, throughout the entire duration of 

pregnancy. This continuing presence can be explained by the fact that these cells are required to 

prevent in-utero infections and so are not removed from the uterus completely.  

 Treg and Th17 cells share a common lineage with their relative abundance determined 

by the cytokine environment in which naïve T-cell differentiation occurs. The key to preferential 

differentiation of naïve T cells to the Th17 phenotype rather than the Treg phenotype is the 

presence of the pro-inflammatory cytokine IL-6 in addition to TGFβ (which on its own induces 

Treg differentiation).  It has therefore been proposed that the Treg and Th17 cell subsets, with 

their common developmental pathways but opposite effects, may have evolved to regulate tissue 

inflammation (24). The net result is that Th17-dominated tissues undergo further immune-

mediated tissue damage, precipitating towards a chronic pro-inflammatory milieu. This delicate 

balance between the differing T-cell populations further substantiates the functional significance 

of T-lymphocytes in the uterine environment and their very probable association with 

pathologies of pregnancy. 
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Role of T-helper lymphocytes in uterine pathology:  

Extensive research in the field of reproductive immunology has now linked these aberrant 

T-cell population phenotypes with the occurrence of various conditions such as recurrent 

pregnancy loss (RPL), miscarriage (RM) or spontaneous abortions (RSA) as well as 

preeclampsia. Women who suffer from RPL/RM/RSA have been shown to have reduced 

peripheral levels of CD4+CD25+Tregs (20,24–26) and significantly increased levels of Th17 

cells (20,24,25,27,28) as well as increased ratios of Th17/Treg cells (24,25) when compared to 

normal fertile controls. Similar phenotypes were also observed in the decidual tissues of these 

patients (20,27). Women with preeclampsia were also observed to have decreased numbers of 

peripheral as well as decidual Treg cells (29). Decreases in the endometrial Treg phenotype have 

also been implicated as a cause for unexplained implantation failure (30).      

All this evidence supports the hypothesis that the absolute numbers as well as relative 

proportions of T-lymphocytes found in the uterus and peripheral circulation are one of the major 

determining factors for embryo acceptance or rejection. 

 

CYTOKINES  

Cytokines are small glycoproteins critical for the normal functioning of the immune 

system. They are involved in the growth, development and activation of immune cells and also 

mediate crucial inflammatory responses via specific cell-surface receptors. Every cell in the body 

is exposed to specific combinations of cytokines at a given time, sometimes with similar 

functions, resulting in a synergistic or antagonistic interaction, the overall consequence of which 

influences the ultimate effect on the cell. These potent molecules induce a cascade of 

biochemical events within the cell leading to various outcomes such as alteration in cellular 
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proliferation, apoptosis, differentiation, motility, extracellular matrix deposition or breakdown 

and/or release of other cytokines. By virtue of these multiple effects, these molecules are 

receiving increasing attention in regards to their role in the uterus, particularly during embryonic 

implantation. 

 

Uterine cytokines:  

Cytokines are among the first and most abundant molecules produced locally and 

secreted by the endometrium during the receptive phase of the menstrual cycle. A major source 

of cytokines is the subsets of leukocytes present in the uterus at this time. Cytokines are often 

grouped based on the type of leukocytes they are produced by. Since the different types of 

leukocytes produce unique profiles of cytokines that induce distinct responses, the cytokines are 

often grouped depending on their ability to promote or inhibit an inflammatory response. These 

proteins, due to their small radius of activity, dictate cellular functions by autocrine or paracrine 

effects, thus promoting a unique immune environment essential to successful implantation. Not 

only do cytokines play a part in the selective recruitment of specific leukocytes to the 

endometrium, but also act as potent intercellular signals regulating adhesive properties of the 

endometrial epithelium and trophoblast, spiral arteriole remodeling, blastocyst attachment and 

invasion as well as trophoblast proliferation and differentiation (28–31,152). Several cytokines 

known to influence leukocyte maturation, function and consequent inflammation, are also 

expressed by non-immune cells in the endometrial tissue such as endometrial stromal, epithelial, 

and decidual cells and trophoblast cells under the regulation of ovarian steroid hormones (31,35).  
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Cytokines and endometrial receptivity:  

The role of inflammation in the endometrium, during the window of implantation, 

emphasizes the critical function of cytokines in regulating maternal receptivity as well as embryo 

implantation. Studies have compared the production and/or presence of these cytokines in the 

peripheral circulation as well as endometrium of fertile and infertile women, thus defining the 

specific role of cytokines in this process. Research also shows that cytokines, though necessary 

for implantation, also have the capacity to skew local immune environment through their 

influence on the recruitment, differentiation and expansion of specific lymphocyte populations at 

the implantation site. This function could possibly account for reproductive anomalies such as 

recurrent miscarriages, habitual abortions and/or implantation failure. The exact mechanism by 

which these abnormal immune factors cause these conditions is unknown, but there is strong 

evidence that it may involve modulations or an imbalance between the various cells of the 

immune system, especially the T-lymphocyte subgroups (as stated earlier in this review), as also 

by the cytokine secretion profile (36–38). Moreover, it has also been shown that patients who 

underwent ovarian stimulation during IVF cycles (versus natural cycles) had significantly higher 

pro-inflammatory cytokine profiles in their endometrial secretions and this was hypothesized to 

be the reason for an unreceptive intrauterine milieu (39).    

 

INTERLEUKIN 17:  

One such pro-inflammatory cytokine is Interleukin 17 (IL-17) which is mainly secreted 

by activated CD4+ Th17 cells but is also known to be produced by other cells of the innate and 

adaptive immune systems (40). IL-17 belongs to the IL-17 family of cytokines, which includes 

IL-17A (also called IL-17), IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25) and IL-17F. 
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Comparison of the human IL-17s with other species suggests that this family of cytokines is 

highly conserved across vertebrates (41). Although the cellular sources and expression patterns 

of the IL-17 cytokines is different across species, they all have pro-inflammatory functions. All 

the members of this family are similarly sized secreted proteins that are expressed as homo- or 

heterodimers. Although IL-17 has an important role in maintaining mucosal barrier integrity 

during homeostasis, its dysregulation mediated inflammation can be destructive to tissues (42). 

This cytokine has been classified as a pro-inflammatory cytokine because of its striking ability to 

act on a broad range of cell types to induce expression of many inflammatory mediators such as 

cytokines, chemokines and metalloproteinases (40). IL-17 induces production of these pro-

inflammatory cytokines which then either forms a positive feedback loop (as seen with IL-6 that 

is needed for Th17 differentiation) or synergizes with them (as seen with TNFα and IL-1β) to 

induce a larger amount of inflammatory factors (43). IL-17A/IL-17 in particular has a more 

important role in driving autoimmunity than the other family members. Extensive reviews by 

Moseley et.al, (44) and Witowski et.al (45) among others, discuss the association of increased 

levels of IL-17 with various conditions including rheumatoid arthritis, airway inflammation, 

inflammatory bowel disease, intraperitoneal abscesses and adhesions as well as allograft 

rejections.   

 

The IL-17 Receptor:  

The IL-17 receptor family comprises five receptor subunits, IL-17RA – IL-17RE (46). 

The receptor for IL-17A/IL-17 (IL-17RA/IL-17R) is a single-pass transmembrane protein of 

approximately 130kDa (44). Though the IL-17 cytokine is expressed by activated T-cells, its 

receptor is expressed ubiquitously on all nucleated cells. Fibroblasts, epithelial cells and 
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endothelial cells express both IL-17RA and IL-17RC, whereas T cells express IL-17RA but not 

the other receptors (42). The IL-17 receptor is not related to any of the other known cytokine 

receptors and in spite of its relatively large size it does not possess similarity to any other known 

protein (41). The receptor is a long transmembrane protein with an N-terminal signal peptide 

followed by a fibronectin III-like extracellular domain, a short transmembrane domain and an 

unusually long cytoplasmic SEF/IL-17R (SEFIR) domain (45,46). Early studies have shown that 

the affinity of IL-17R for its ligand, IL-17, is lower than that needed to mediate responses, which 

indicates the need for an additional subunit for binding the ligand and/or eliciting signaling. 

Since it is used by multiple members of the IL-17 family, IL-17R could also have a shared 

cytokine receptor subunit, such as the gp130, which is a common signal transducer for the IL-6 

family of cytokines (46). The binding of its ligand to the IL-17R activates the NFκB, a hallmark 

transcription factor associated with a highly pro-inflammatory program of gene expression. It is 

also known to activate other common signaling pathways including MAPKs, JNK, p38 and 

ERK, PI3K and JAK/STATs (43).    

 

SIGNALING PATHWAYS 

 Emerging knowledge about IL-17 and its effects on different organ systems has provided 

insight into the possible signaling pathways involved. The IL-17 family of receptors has unique 

structural features and mediates signaling events that are distinct from those induced by other 

adaptive immunity related cytokines. Studies show that IL-17 activates a highly pro-

inflammatory program of gene expression via activation of NFκB and/or MAPK signal 

transduction pathways.    
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Nuclear Factor-κB Pathway:  

NFκB is a hallmark transcription factor associated with induction of inflammation as it 

can modulate production of chemokines, adhesion molecules, and matrix metalloproteinases and 

can also induce prostaglandin synthesis enzymes such as COX-2, thus controlling the expression 

of many downstream pro-inflammatory molecules. IL-17 induces the NFκB signal transduction 

pathway by engagement of a heteromeric complex of receptors and subsequent recruitment of an 

essential adaptor known as Act1. This adaptor ubiquitinates the TRAF6 ligase which promotes 

activation of the inhibitor of NFκB kinase (IKK) complex and thus induces the 

classical/canonical NFκB signaling pathway via degradation of IκB and activation of the p50 and 

p65 subunits of this pathway (46–48). The involvement of this pathway in IL-17 signaling 

effects was conclusively proven by both in vitro (RNA-interference knockdown of Act1) as well 

as in vivo (Act1, IKK or TRAF6 deficient mice) studies. NFκB activity and hence its 

inflammatory consequences can be inhibited by stimulating synthesis of IκB, the molecule that 

restrains NFκB in the cytosol or by competitive nuclear receptor binding brought about by 

progesterone (49). However it is uncertain whether specific inhibition of only NFκB or its 

signaling factors would suffice for treating the inflammatory condition produced as a result of 

this pathway. Moreover, NFκB has some vital roles in normal immune responses and so it would 

be prudent to target post-transcriptional expression of specific pro-inflammatory molecules 

without blocking NFκB activity altogether. 

 

Mitogen Activated Protein Kinase Pathway:  

Another possible player to consider in the control of this complex interaction is that IL-17 

can also induce Act1-dependent, TRAF6-independent signaling events via activation of the 
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Mitogen-activated protein kinase (MAPK) transduction pathway. MAPK pathways are among 

the most common signal transduction pathways and are involved in many physiological 

processes that regulate gene expression, mitosis, motility, cell survival or apoptosis, and 

differentiation(50). Though not completely understood, the effect produced by IL-17 is thought 

to be mediated through rapid and strong phosphorylation of extracellular signal-regulated kinases 

(ERK) which aids in controlling the stability of mRNA transcripts. MAPKs can thus increase 

mRNA transcript half-life, in turn increasing their concentration(46,47). Since many IL-17 

targets are genes related to chemokine and cytokine synthesis, stabilization of such molecules 

can promote the inflammatory response induced by IL-17. 

 

Role of signaling pathways in the uterus: 

Both these signaling pathways (NFκB and MAPK) play key roles during the menstrual 

cycle too. King et.al, (51) have shown that premenstrual progesterone withdrawal induces the 

NFκB signaling pathway via upregulation of IKKβ mRNA which is involved with the 

inflammatory effects seen during the process of menstruation. They also showed that the IKKα 

mRNA, which is involved with morphogenesis signaling to NFκB pathway, is upregulated in the 

decidua under continually maintained progesterone levels thus supporting the differentiation 

taking place in the decidua during the pre-implantation stage. This differential regulation of the 

IKK subunits was shown to be due to their preferential phosphorylation by MAPK factors. 

Similarly, Murk et.al, (52) showed a menstrual cycle dependent involvement of the MAPK 

pathway in the normal menstrual cycle, with sex steroid hormone regulated ERK 

phosphorylation thus implying its possible role in decidualization, glandular differentiation and 

cell survival. Due to this very specific and tightly defined involvement of these signaling 
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pathways in the normal menstrual cycle as well as the preimplantation priming of the 

endometrium, it would be reasonable to suppose that any dysregulation in these pathways would 

possibly lead to an aberrant and unresponsive endometrium and consequent pregnancy failure as 

has been observed in patients with elevated IL-17 levels.  

 

ENDOMETRIOSIS 

One of the most commonly encountered gynecological conditions in women of 

reproductive age; endometriosis is an estrogen-dependent disorder characterized by the presence 

of endometrial glandular and stromal cells outside the uterus, primarily on the pelvic peritoneum, 

ovaries, recto-vaginal pouch and in some cases in extra-pelvic regions such as the chest wall, 

lungs, bone and brain. Endometriosis is a very poorly understood and extremely debilitating 

benign gynecological condition, causing chronic pelvic pain, dysmenorrhea with or without 

abnormal bleeding and infertility (53–55), and accounts for up to 40% of infertility cases (56). 

Though the pathogenesis of this condition is not yet definitive, many theories have been 

proposed to explain the establishment of the disease. Among the most popular is the “retrograde 

menstruation theory” proposed by Sampson (1927) that states the sloughing of eutopic 

endometrium through patent fallopian ducts into the peritoneal cavity during menstruation is the 

source of endometriotic tissue in ectopic regions. This sequence of events has been shown to be 

influenced by factors such as impaired antegrade menstruation due to congenital or postnatally 

developed lower tract obstruction, alteration in the eutopic endometrial as well as peritoneal 

environment to support establishment of lesions and possible genetic changes of the cells at the 

implantation site to promote survival. It has been proposed that a defective immunosurveillance 

in these women may support attachment and persistence of these ectopic lesions (57). Hence 
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multiple factors work together to increase the propensity of the endometrial tissue to attach and 

implant in the ectopic locations in these women. 

 

Role of Inflammation in Endometriosis:  

Although a benign disorder, the process by which endometrial cells attach and invade 

ectopic surfaces is similar to malignancies. Studies show that endometrial cells will implant only 

on surfaces that have some amount of mesothelial cell injury. Though it is yet unknown what 

could be the cause for this damage, it is accepted that inflammation is a key feature of 

endometriotic tissue. This is seen as an overproduction of pro-inflammatory factors such as 

matrix metalloproteinases, prostaglandins, cytokines and chemokines by these ectopic lesions as 

well as the peritoneal lining which supports their survival and progress. Pro-inflammatory 

leukocytes and associated cytokines and growth factor levels are elevated in the peritoneal fluid 

(58–61) as well as serum (62) in women with endometriosis. Moreover, Gonzalez-Ramos et.al, 

(63) showed constitutive NFκB activation in peritoneal endometriosis in women and further 

discuss the significant role played by this inflammatory signaling pathway in the initiation and 

progression of endometriosis (64). This is also supported by previous studies in which inhibitors 

of the NFκB pathway caused a significant reduction in xenograft development in the nude mouse 

model (65) as well as the rat model (66) of endometriosis.  

 

Role of the “Epithelial to Mesenchymal Transition” Process in Endometriosis:  

The presence of these inflammatory factors is thought to enhance the establishment of 

ectopic lesions via Epithelial to Mesenchymal Transition (EMT). During this process an 

epithelial cell undergoes multiple biochemical changes that then help it assume a mesenchymal 
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cell phenotype, which gives the cell an enhanced migratory capacity, invasiveness, and increased 

resistance to apoptosis (67). This process of endometrial cell attachment and transmesothelial 

invasion is observed to be rapid and dynamic in vitro (68) and hence difficult to be witnessed 

under in vivo conditions. But studies, with primary tissue samples from women with 

endometriosis, show a distinct difference in the expression of key EMT markers between 

endometrial and endometriotic tissue, thus confirming the role played by EMT in lesion 

establishment. Matsuzaki and Darcha,(69) observed that samples from initial stages of 

endometriotic lesions such as red peritoneal endometriosis as well as ovarian endometrioma 

expressed lower epithelial and higher mesenchymal marker levels as compared to menstrual 

endometrium. They further showed that chronic lesions such as black peritoneal and deep 

infiltrating endometriosis expressed higher epithelial marker levels than menstrual endometrium, 

red lesions or ovarian endometrioma, but also retained some mesenchymal marker expression. 

This is supported by Bartley et.al,(70) who showed an increased mesenchymal marker 

expression in endometriotic tissue as compared to endometrium with respect to both the gene and 

protein expression.  

 

EXTRACELLULAR MATRIX METALLOPROTEINASE INDUCER: 

Extracellular Matrix Metalloproteinase Inducer (EMMPRIN), also known as Basic 

immunoglobulin superfamily (Basigin) or Cluster of Differentiation147 (CD147) is a widely 

expressed transmembrane glycoprotein that belongs to the immunoglobulin superfamily (71). It 

was first described as a factor made by tumor cells that stimulated production of matrix 

metalloproteinases (72) but is now known to be expressed on normal cells as well, including 

hematopoietic, endothelial, epithelial cells and leukocytes. EMMPRIN is a highly conserved 
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protein in several species and is expressed in both embryonic and adult tissues (73,74). Four 

different isoforms of EMMPRIN have been identified. Isoform 1 is a retina specific molecule 

(75) and has three Ig-like domains. The more ubiquitous isoform 2 is expressed in most tumor 

and fibroblast cells (76) and is also the only secreted form (77). Isoforms 3 and 4 are less 

abundant and were identified in human endometrial stromal cells and cervical carcinoma cells. 

The human EMMPRIN protein is 269 amino acid-long with a predicted molecular mass of 

28kDa and the intact glycoprotein has a molecular weight that ranges from 43kDa to 66kDa 

(72,74). This wide molecular weight range is explained by the differentially glycosylated 

extracellular N-terminal which consists of two immunoglobulin-like domains (Fig. 4) (71,78). 

The MMP-inducing function of EMMPRIN depends on the level of glycosylation of this N-

terminal Ig domain. Furthermore, the highly glycosylated form of EMMPRIN is increased on 

exposure to inflammatory signals (79,80). This MMP-inducing property of EMMPRIN plays a 

significant role in various processes such as wound healing, tumor invasion and metastasis (73).  

 

Role of EMMPRIN in Reproductive Physiology and Pathology:  

EMMPRIN also plays an important role in reproductive processes such as menstruation 

and embryo implantation among others. EMMPRIN is expressed in the mouse uterus during the 

peri-implantation period (81) and plays an important role in reproduction, as it is needed for 

normal uterine stromal cell proliferation and decidualization in mice (82), embryo implantation 

(83) and null mice (both male and female) are sterile (84). EMMPRIN is also important for 

human reproduction as it is known to be expressed in the human endometrium during the 

menstrual cycle (85) and is involved with endometrial remodeling (86). The mechanisms of 

EMMPRIN regulation are not completely understood but studies have shown that ovarian steroid 
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hormones regulate EMMPRIN expression in the endometrium (86,87). EMMPRIN expression is 

highest in the epithelial cells throughout the proliferative phase of the menstrual cycle when 

estradiol levels are high. During the secretory phase, EMMPRIN expression is stronger in the 

stromal compartment of the endometrium but weaker in the glandular and luminal epithelium 

and thought to be under the influence of the elevated progesterone levels (86,88). This increase 

in EMMPRIN expression is correlated to the increase in MMPs that play a significant role in 

endometrial tissue breakdown during menses. Besides being regulated by steroid hormones, 

EMMPRIN expression is also regulated by certain cytokines (89) and in turn can induce 

expression of cytokines and chemokines (90). Expression of EMMPRIN is also seen to be 

elevated in ectopic endometriotic tissue throughout the menstrual cycle (86). It is hypothesized 

that this could be involved in stimulating MMP production at the site of endometriotic tissue 

invasion into the peritoneal wall or any other abdominal organ. The baboon endometriosis model 

has also shown an increased EMMPRIN expression in the eutopic as well as ectopic endometrial 

tissue especially in the animals with earlier stages of endometriosis (88). Elevated EMMPRIN 

expression in ectopic lesions is also correlated with cell survival and migration (91). 

 

ROLE OF IMMUNE FACTORS IN ENDOMETRIOSIS RELATED INFERTILITY:  

The invasive process of endometriotic lesion establishment is supported by pro-

inflammatory leukocytes and their associated cytokines, which contribute to the development of 

endometriosis and also maintain a subclinical inflammatory environment in the peritoneal cavity 

(as mentioned earlier in this review). This further exerts a pathological effect on the eutopic 

endometrium especially during the window of implantation (92), leading to alterations in normal 

function such as impaired decidualization (93–95), which could account for the unexplained 
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infertility and recurrent pregnancy loss seen in women with minimal and mild endometriosis 

(14). This subclinical peritoneal inflammation can also influence the population of leukocytes in 

the eutopic endometrium especially the sub-populations of T-helper lymphocytes. As discussed 

earlier in this review, an imbalance in the T-lymphocytes towards a pro-inflammatory phenotype 

with an increase in Th17 cells and decrease in Treg cells is associated with pregnancy failure. A 

similar phenotype has been shown in the peritoneal environment of women with endometriosis, 

but has not been studied in the eutopic endometrium of women with endometriosis related 

infertility.  

Moreover, the peritoneal IL-17 profiles are elevated in women with endometriosis (96), 

but the eutopic endometrial expression has not been characterized in women with endometriosis, 

and neither its effect on eutopic endometrial function. Though Pongcharoen et.al, (97) have 

proposed that the IL-17 cytokine plays an important role in angiogenesis and hence for 

establishment of pregnancy, it has also been shown that decreased ratios of serum Treg/Th17-

related-cytokines may play a role in the pathogenesis of defects resulting in implantation failure 

(98). This was supported by Wang et.al. (28), who detected significantly elevated IL-17 cytokine 

levels in both peripheral blood and decidua of unexplained RSA patients. Soluble IL-17 levels 

from cell culture supernatants were significantly higher in patients with unexplained recurrent 

spontaneous abortions as compared to normal early pregnancy levels (24). Furthermore, Liu 

et.al, (24) suggested that cells other than the lymphocytes at the maternal-fetal interface, 

specifically decidualized stromal cells and glandular epithelial cells could also express and 

secrete IL-17 leading to a localized pro-inflammatory environment in the endometrium. Thus an 

overproduction of IL-17 may be involved in aggravation of inflammatory responses in the 
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endometrium and the consequent unreceptive milieu, making it an important factor for further 

exploration and a potential target for therapeutic intervention in cases of failed pregnancy.  
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FIGURES 

 

Figure 2.1: Th1/Th2/Th17/Treg Model 

The T-lymphocytes, also known as T-helper (Th) cells are classified into Th1 cells that are 

involved in cellular immunity, Th2 cells that are involved in humoral immunity, Th17 cells that 

produce pro-inflammatory cytokines and are responsible for induction of inflammation and Treg 

cells which play central roles in immunoregulation and induction of tolerance. Adapted from 

review article (99). 
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Figure 2.2: Cytokine secretion profiles for T-lymphocyte sub-populations 

Th17 cells produce pro-inflammatory cytokines that in turn induce production of other 

inflammatory factors that play a role in host defense mechanism (physiological effect) and 

autoimmunity (pathological effect). Treg cells produce anti-inflammatory cytokines that play 

important roles in peripheral and local immune tolerance. Adapted from review article (99). 



28 
 

 

Figure 2.3: IL-17 signaling pathway 

IL-17 activates a highly pro-inflammatory program of gene expression via activation of NFκB 

and/or MAPK signal transduction pathways.    
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Figure 2.4: Structure of EMMPRIN  

EMMPRIN is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. It 

has a wide molecular weight range which is explained by the differentially glycosylated 

extracellular N-terminal which consists of two immunoglobulin-like domains. (Image courtesy 

of Dr. Braundmeier).   
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CHAPTER 3 

THE EUTOPIC ENDOMETRIAL T-HELPER CELL PROFILE IN WOMEN WITH 

ENDOMETRIOSIS RELATED INFERTILITY IS PRO-INFLAMMATORY RATHER 

THAN THE CHARACTERISTIC ANTI-INFLAMMATORY PROFILE OBSERVED 

NORMALLY DURING THE WINDOW OF IMPLANTATION 

 

ABSTRACT  

The endometrium, under the influence of specific set of precisely controlled molecular and 

cellular events, allows the semi-allogeneic embryo to attach and invade during the putative 

window of implantation (WOI). Of the many factors controlling endometrial receptivity, T-

regulatory cells are one subset of T-helper lymphocytes that accumulate in the normal 

endometrium during the mid- to late-secretory phase of the cycle and are considered essential for 

receptivity. The goal of this project was to study the relationship between Treg and Th17 cells in 

the eutopic endometrium of women with the primary complaint of infertility. The endometrial 

biopsy samples had been collected prospectively from patients during the mid- to late-secretory 

period of their menstrual cycles. Tissue samples were evaluated immunohistochemically for Treg 

and Th17 lymphocyte subsets and the Th17 specific cytokine, IL-17 expression. These data were 

compared to the fertility status in these patients. Overall, Treg cell counts were higher and Th17 

cell counts were lower in patients who conceived compared to those that did not get pregnant. 

Conversely, patients who maintained their infertile status, even after laparoscopic intervention 

for ectopic lesion removal, had a lower Treg cell count and higher Th17 cell count in their 

eutopic endometrium. The ratio of Treg:Th17 cell counts was significantly correlated to their 

fertility status. Patients with a ratio less than 3 failed to conceive in spite of medical or surgical 

intervention. Laparoscopic intervention seemed to have a boosting effect on the endometrial 

Treg cell population which was in turn correlated to a positive pregnancy outcome. The IL-17 
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expression was elevated in both the glandular and stromal compartments of the endometrium in 

patients with a low Treg:high Th17 cell ratio. Hence, it can be concluded that patients with a 

high Treg:Low Th17 cell count ratio in their eutopic endometrium during the secretory phase of 

their menstrual cycle are more likely to conceive, especially after laparoscopic removal of 

endometriotic lesions. 

 

INTRODUCTION  

Recurrent Pregnancy Loss (RPL) also referred to as recurrent miscarriage (RM) or 

habitual abortion (HAB) is defined as two or more consecutive pregnancy losses prior to 20 

weeks from the last menstrual period. Currently a number of etiologies are accepted for such 

pregnancy losses such as parental chromosomal abnormalities, certain uterine anatomic 

abnormalities, endocrine disorders, infections, and possibly immunologic abnormalities (100). 

However when none of these factors are evident, they are classified as idiopathic or unexplained 

pregnancy losses. Coincidental findings of concurrent disease conditions such as endometriosis 

may be considered a reason for these recurrent losses.  

Endometriosis is a poorly understood and extremely debilitating benign gynecological 

condition commonly encountered in women of reproductive age. It is an estrogen dependent 

disorder characterized by the presence of endometrial glandular and stromal cells outside the 

uterus, primarily on the pelvic and/or abdominal organs (101) and in some cases in extra-pelvic 

regions such as chest wall, lungs, brain and bone (102). Chronic pelvic pain, dysmenorrhea with 

or without abnormal bleeding are common symptoms of this condition (53,54). Endometriosis 

also accounts for 30-50% of infertility in women (56). Endometriosis related infertility has 

numerous causes but in this chapter we are focusing on the role of T-helper lymphocyte subsets.  
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In a normal physiological setting specific populations of immune cells increase at the 

implantation site to help maintain a local immunosuppressive environment in the uterus for the 

semi-allogeneic embryo to attach (14). Among these key immune cells are the T-helper 

lymphocytes, which account for a significant 5-10% of the endometrial leukocyte population. 

The T-regulatory (Treg) cells are especially critical for localized immunosuppression at the 

implantation site and are seen to increase in the peripheral circulation (17,103) as well as the 

decidua (18,19) during early pregnancy, showing a stable and highly suppressive phenotype and 

hence are believed to be critical for embryo tolerance, invasion and establishment of pregnancy 

(21,22). However, it has also been proposed that the balance between Treg cells and their 

reciprocal cell types should be considered when evaluating immune status, especially since the 

presence of Treg cells and their reciprocal pro-inflammatory subset known as T-helper 17 (Th17) 

cells are inversely related to each other in the decidua (18). Hua et.al (98) have also shown that 

decreased ratios of serum Treg/Th17-related-cytokines may play a role in the pathogenesis of 

defects resulting in implantation failure, which was supported by Wang et.al, (104), who 

detected significantly elevated Interleukin 17 (IL-17) cytokine levels in both peripheral blood 

and decidua of patients with unexplained spontaneous abortion.  

Our goal in this first aim was to evaluate whether women with endometriosis have a pro-

inflammatory rather than an anti-inflammatory T-cell and related cytokine milieu in their eutopic 

endometrium during the receptive phase of their menstrual cycle. Eutopic endometrial biopsies 

were collected from women presented with complaints of unexplained infertility or unexplained 

recurrent pregnancy loss. These women were between 25-40 years of age and had not received 

any medical treatment for their fertility issues prior to undergoing the endometrial biopsy. A 

subset of patients had undergone a laparoscopy for removal of endometriotic lesions. The 
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endometrial biopsies were collected during the mid- to late-secretory phase (specifically 7 days 

post LH surge) from the middle front or back region of the uterine body (not close to the cornua). 

The biopsy tissue sections were assessed for Treg and Th17 cell profiles as well as for the 

cytokine Interleukin 17 (IL-17). The results were correlated with the fertility status of these 

women to ascertain potential markers for uterine receptivity and positive pregnancy outcome. To 

keep the study completely unbiased, I was blind to the patient history and/or categorization. 

 

RESULTS 

Characterization of the T-helper lymphocyte subsets in the eutopic endometrium of 

patients with UI/uRPL and/or confirmed endometriosis  

Treg cells are known to accumulate in the normal endometrium during the mid- to late-

secretory phase and are considered essential for uterine receptivity. On the other hand Th17 cells 

play a critical role in autoimmunity, which suggests that Th17 cells may hinder the mechanisms 

mediating maternal tolerance towards the conceptus and hence impair maintenance of pregnancy. 

Thus we first evaluated the Treg and Th17 lymphocyte subset populations in the eutopic 

endometrium of patients, with the primary complaint of recurrent pregnancy loss, using 

established immunohistochemistry techniques. The Treg cell count per unit area of eutopic 

endometrium analyzed was not different in “UI/uRPL Fertile” patients (27.50±3.97 

cells/100mm
2
 tissue area) as compared to the UI/uRPL Infertile” patients (23.42± 2.86 

cells/10mm
2
 tissue area) (Figure 3.1.C). But when patients with confirmed endometriosis were 

evaluated, it was observed that “Fertile with endometriosis” patients had a significantly higher 

Treg cell number (27±4.07 cells/10mm
2
 tissue area) in their eutopic endometrium as compared to 

“Infertile with endometriosis” patients (17±2.10 cells/10mm
2
 tissue area) (Figure 3.1.D). These 
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findings concur with data shown by Sasaki et.al. (20) that Treg cells are found in higher numbers 

in the decidua of normal early pregnancy as compared to spontaneous abortion cases. 

Conversely, we also observed that the pro-inflammatory Th17 cell numbers in the eutopic 

endometrium of “UI/uRPL Fertile” patients (10.10±2.09 cells/10mm
2
 tissue area) was not 

different than that observed in “UI/uRPL Infertile” patients (16.27±1.98 cells/10mm
2
 tissue area) 

(Figure 3.2.C). But again, when the patients with confirmed endometriosis were evaluated, it was 

observed that “Fertile with endometriosis” patients had a significantly lower Th17 cell number 

(6±1.45 cells/10mm
2
 tissue area) in their eutopic endometrium as compared to the “Infertile with 

endometriosis” patients (17±2.07 cells/10mm
2
 tissue area) (Figure 3.2.D). Liu et.al. (24) have 

shown that the proportion of Th17 cells was significantly higher in the decidua of patients with 

unexplained recurrent spontaneous abortions. These results indicate that the immunosuppressive 

FoxP3+ Treg lymphocytes might indeed play an important role in maintenance of a receptive 

endometrium. And a converse increase in inflammatory RORγt+ Th17 cell population in the 

endometrium might interfere with this receptivity. 

 

Characterization of the T-helper lymphocyte subsets in the eutopic endometrium of 

patients with different stages of endometriosis 

We then concentrated on the patients with endometriosis and compared between patients who 

had different stages of endometriosis as confirmed by laparoscopy. Our results showed that the 

Treg population in the eutopic endometrium was highest when the patients had early stage of the 

disease (36.92±13.23 cells/10mm
2 
tissue area) as compared to stage II endometriosis (18.64±3.19 

cells/10mm
2 

tissue area) or stage III endometriosis (29.11±9.83 cells/10mm
2 

tissue area) when 

the ectopic lesions are well established (Figure 3.3.A). The Th17 cell population was highest in 
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the stage III patients (14.98±3.61 cells/10mm
2 

tissue area) than the stage I (12.33±4.86 

cells/10mm
2 

tissue area) or stage II (10.95±2.82 cells/10mm
2 

tissue area) (Figure 3.3.B), 

indicating a consistent pro-inflammatory environment in the endometrium once the disease is 

established and also during the initial stages of ectopic lesion invasion. These data were 

unfortunately not statistically significant probably due to small sample size in each comparison.  

 

Characterization of the Treg and Th17 lymphocyte subsets in the eutopic endometrium of 

patients who underwent laparoscopy for removal of ectopic lesions 

Due to the wide range in the Treg and Th17 cell populations mentioned above, we decided to 

evaluate the T-cell populations in patients who underwent the endometrial biopsy before 

laparoscopic intervention for ectopic lesion removal as compared to those patients who had the 

biopsy after the laparoscopy. Our results showed that patients who had the biopsy before the 

laparoscopic intervention and who conceived successfully had a higher Treg population 

(26.16±11.15 cells/10mm
2 

tissue area) in their eutopic endometrium as compared to patients who 

did not conceive (14.56±3.29 cells/10mm
2 

tissue area). Moreover, it was interesting to see that 

post laparoscopic intervention, a larger number of patients conceived and had a much higher 

Treg cell population (37.18±10.53 cells/10mm
2 

tissue area) than patients who did not get 

pregnant in spite of the laparoscopy (8.39±3.80 cells/10mm
2 

tissue area) (Figure 3.4.A). 

Conversely, patients who had the biopsy before the laparoscopy and who conceived had a 

significantly lower Th17 cell population to begin with (3.22±1.62 cells/10mm
2 

tissue area) as 

compared to those who did not get pregnant (13.99±3.17 cells/10mm
2 

tissue area). And the 

laparoscopic intervention did seem to have a significant effect on the Th17 cell population in 

patients who conceived post laparoscopy (4.43±0.94 cells/10mm
2 

tissue area) as compared to 
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patients who continued to be infertile (18.41±2.29 cells/10mm
2 

tissue area) (Figure 3.4.B). This 

finding could suggest a boost in the “helpful” Treg immune status as a result of the laparoscopy 

which was also observed in the baboon model of endometriosis (105).     

 

Evaluation of the Ratio of Treg to Th17 cell populations in the eutopic endometrium of 

patients  

As mentioned earlier, a receptive uterus usually has an anti-inflammatory environment in 

preparation for the advent of the semi-allogeneic embryo. It has been previously proposed that 

the balance between specific T-cell subsets and/or their related cytokines better reflects the 

immune status in the endometrium than Treg cell frequency alone(18,106). Our initial evaluation 

of the Treg:Th17 cell ratios in patients with a history of UI/uRPL indicates that the ratio of 

Treg:Th17 cells was highly significant and correlated with pregnancy outcomes (Figure 3.5.A). 

UI/uRPL patients with a higher Treg:Th17 cell ratio (5.59±1.23) had a better chance at 

conceiving than patients with a lower ratio (2.97±0.72). Moreover, “Fertile with endometriosis” 

patients had a significantly higher Treg:Th17 ratio (7.29±1.82) as compared to the “Infertile with 

endometriosis” patients (1.85±0.45) (Figure 3.5.B). It was consistently observed that few patients 

conceived successfully when this Treg:Th17 cell ratio was less than 3. We confirmed this finding 

on further evaluation of patients who underwent the biopsy before the laparoscopic intervention 

as compared to those after. Patients who underwent the biopsy after the laparoscopic intervention 

had significantly better Treg:Th17 ratios and a better chance of conceiving (8.53±1.75 in fertile 

group v/s 0.50±0.25 in infertile group) than the patients who underwent the biopsy before 

laparoscopy (9.84±5.51 in fertile group v/s 1.76±0.87 in infertile group) (Figure 3.5.C). Thus 

again confirming our previous findings that the laparoscopic intervention might indeed be 
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helping the immune system shift towards a more normal anti-inflammatory environment in the 

endometrium. 

 

Evaluation of Th-17 cell specific cytokine - Interleukin-17 expression in eutopic 

endometrial samples of patients and correlation with fertility status 

Cytokines with the capacity to alter immune responses are abundant in and around the 

implantation site. Hence we decided to evaluate the expression of a Th-17 cell specific cytokine, 

IL-17, in the eutopic endometrial biopsy samples to determine whether elevated IL-17 levels 

play a part in promoting the pro-inflammatory environment in the eutopic endometrium in 

patients with endometriosis related infertility as judged by the Treg:Th17 cell ratio data. 

Endometrial sections stained for IL-17 expression were analyzed using a semi-quantitative H-

Score technique. Five independent fields each were evaluated for glandular and stromal 

expression of the cytokine in each patient’s sample. A significant inverse relationship between 

this Treg:Th17 cell ratio and the IL-17 expression H-Score analyses (Figure 3.6.i) was observed. 

Patients with a low IL-17 H-Score had a high Treg:Th17 cell ratio whereas patients with a high 

IL-17 H-Score had a low Treg:Th17 cell ratio. This trend was observed to be consistent in both 

the glandular as well as the stromal compartments of the eutopic endometrium (Figure 3.6.A-D). 

Furthermore, these elevated levels stayed consistent in the patients who did not conceive in spite 

of the laparoscopic intervention (2.67±0.33) as compared to the other groups mentioned earlier 

who had H-scores less than 2.08±0.05 on an average, irrespective of pregnancy outcome. Liu 

et.al.(24) have shown a similar increase in IL-17 expression in decidualized stromal cells and 

decidual glands of patients with unexplained recurrent spontaneous abortions as compared to 

normal fertile women.  



54 
 

 

DISCUSSION 

It is known that the endometrium undergoes specific changes during the mid- to late-

secretory phase of the menstrual cycle wherein it acquires a “receptive” phenotype thus 

preparing for the advent of the semi-allogeneic embryo. Compromised receptivity as seen in 

unexplained infertility or the various forms of pregnancy loss has been associated with various 

cellular and molecular defects in the endometrium (107). Extensive research in the field of 

reproductive immunology has now linked aberrant immune responses with the occurrence of 

recurrent pregnancy loss, and atypical T-cell subset populations are considered at least partly 

responsible for implantation failure. Our hypothesis was that the absolute numbers as well as 

relative proportions of T-helper lymphocytes, specifically the Treg and Th17 cell populations, 

found in the secretory phase endometrium, are strongly associated with the patients’ fertility 

status and hence are some of the major determining factors for uterine receptivity and embryo 

acceptance or rejection. We determined that a relationship does exist between these cell sub-

populations and endometrial receptivity in women with endometriosis related infertility. We 

evaluated the presence and number of Treg and Th17 cells in the eutopic endometrium of fertile 

and infertile patients, during the mid- to late-secretory phase of their menstrual cycles. We 

observed that patients with high Treg numbers had a better chance at conceiving than patients 

with low Treg numbers in their endometrium. Conversely, patients with a higher pro-

inflammatory Th17 cell count in their endometrium had a significantly lower chance of 

conceiving. Interestingly, we observed that the ratio of the Treg to Th17 cell counts was a better 

and more reliable correlation to patient fertility status than the individual cell counts by 

themselves. Moreover, our results suggest that the correlation between the relative numbers of 
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these cell types (Treg:Th17 ratios) and the pro-inflammatory cytokine IL-17 was a good 

indicator of a patients’ ability to conceive. A subset of these patients underwent laparoscopic 

intervention for excision of ectopic endometriotic lesions before the endometrial biopsy was 

conducted for the above mentioned assessments. We compared all the above mentioned 

parameters in the patients who underwent the biopsy before laparoscopic intervention to those 

who underwent the biopsy after the laparoscopic intervention to assess whether this surgical 

procedure had any significant effect on restoring the imbalanced endometrial immune cell milieu 

and in turn helping endometrial receptivity. We found that the laparoscopic intervention did 

indeed have a boosting effect on the patients’ endometrial immune response which increased 

their chance of conceiving. 

An expansion in the CD4+CD25+FoxP3+Treg cell pool occurs around the time of 

implantation in mice (108) but it is not known whether these cells are preferentially recruited to 

the endometrium or undergo local expansion at the materno-fetal interface. Treg cells appear to 

play a similar role during establishment of human pregnancy. Decreases in the endometrial 

expression of the Treg transcription factor FoxP3 mRNA, have been implicated as a cause for 

unexplained infertility (30). Our results show a similar trend with regards to T-lymphocyte cell 

counts. We observed that women with endometriosis who had a higher anti-inflammatory Treg 

cell population in their eutopic endometrium (during the window of implantation) had a better 

chance of conceiving than the women who had a lower Treg cell population to begin with. 

Previous research has shown that the peripheral blood (17,103) and decidual (17) CD4+CD25+ 

Treg cell population were highest during the first trimester of pregnancy. In fact it was also 

shown that the CD4+CD25+Foxp3+ Treg cell population was enriched in the early normal 

pregnancy decidua as compared to the peripheral blood of the same pregnant woman(18,19). 
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This phenotype of increased Treg cell population is hence thought to contribute to the 

immunosuppressive environment in the endometrium and allows tolerance to the fetal semi-

allogeneic cells. Its dysregulation in reproductive pathologies is often thought to contribute to the 

associated infertility. Circulating Treg cells were shown to be reduced in women with 

unexplained recurrent spontaneous abortion(24) and recurrent pregnancy loss (25).  

Concurrently, pro-inflammatory Th17 cell numbers were shown to be significantly 

increased in the peripheral circulation in patients with unexplained recurrent spontaneous 

abortion(24) and recurrent miscarriage(104). A similar increase in Th17 cells was shown in the 

decidua of patients with recurrent pregnancy loss (109) and recurrent or inevitable spontaneous 

abortion (27,28).  Our results showed that the patients with a higher pro-inflammatory Th17 cell 

population in their eutopic endometrium had a significantly lower chance of conceiving as 

compared to patients with a lower Th17 cell population. Th17 cells play an important role in host 

defense mechanisms. But an over production of these Th17 cells and a concurrent decrease in 

Treg cells is also associated with autoimmune and inflammatory disease conditions. This effect 

may be due to the reciprocal developmental pathways for both cell types and the opposing 

effects of these cells on immune processes. 

And so it has been proposed that a fine balance between these two cell types is crucial to 

maintaining peripheral and/or local immune equilibrium. Various studies of Hashimoto 

thyroiditis (110), acute respiratory distress syndrome (111), coronary atherosclerosis (112) to list 

a few have shown the importance of this balance. It has also been shown that peripheral 

circulation levels of Th17 to Treg cell ratios are increased in patients with recurrent pregnancy 

loss (25) and unexplained recurrent spontaneous abortion (24) as compared to normal fertile 

controls. We observed that the ratio of Treg cell to Th17 cell populations (Treg:Th17) was a 
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better indicator of fertility status than the absolute individual values of the T-cell subsets. 

Patients with a consistently low Treg:Th17 ratio (less than 3) failed to conceive. Though it has 

been shown that the decidual populations of both T-cell types are significantly inversely 

correlated in recurrent spontaneous abortion cases (28), nothing specific has been studied with 

regards to this ratio and it’s correlation to fertility. Hence our result is a novel finding and may 

be used as a reliable marker for endometrial receptivity. This novel marker would be especially 

helpful when assessing endometrial receptivity in patients who are undergoing assisted 

reproduction treatments. 

Because the patients we were assessing for the above mentioned parameters had a 

confirmed diagnosis of endometriosis, we next decided to evaluate whether the stage of disease 

had an impact on these T-cell phenotypes. Studies have proposed that a defective T-cell response 

is associated with endometriosis establishment. Peritoneal T-cell characterization has shown that 

the CD4+ Treg cells are decreased in stage I and II of the disease (113), but they did not evaluate 

the endometrial T-cell populations. Very few studies have focused on the effect of endometriosis 

on the eutopic endometrial T-cell population. One study showed that the total CD4+ T cell 

number in the eutopic endometrium was lower than that seen in the ectopic lesions (114), but 

they did not characterize the individual T-cell subsets nor did they compare these parameters to 

fertility. We observed that the stage of endometriosis did not have a statistically significant effect 

on the T-cell populations; though the Treg cells did seem to decline as the disease progressed. 

The baboon model of endometriosis showed a similar phenotype. The systemic and eutopic 

endometrial Treg lymphocytes in the animals with endometriosis were reduced at 1 month post 

inoculation of ectopic lesions and this reduction was maintained through the 15 months of the 

study as compared to the disease free animals (105). We also observed that the Th17 cells 
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gradually increased (though not significantly) as the disease progressed, indicative of a 

consistent pro-inflammatory environment once the disease was established. This supports our 

earlier findings that the low Treg and concurrent high Th17 cell phenotype is responsible for the 

endometriosis related infertility. Though Th17 cells have not been characterized previously for 

stage of disease, the cell specific cytokine Interleukin-17 (IL-17) has been shown to be 

significantly higher in the peritoneal fluid of patients with minimal/mild stage endometriosis as 

compared to those with moderate/severe stage of disease (115,116).     

Other studies have also shown abnormal serum and peritoneal fluid T-cell related 

cytokine levels in patients with endometriosis. Peritoneal fluid IL-17 levels were shown to be 

significantly higher in patients with endometriosis related infertility as compared to patients who 

were fertile (115). On the other hand, decreased ratios of Th17/Treg-related-cytokines in the 

serum have also been implicated in the pathogenesis of implantation failure (98). Our data shows 

that elevated expression of IL17, in both the glandular and stromal compartments of the eutopic 

endometrium, is inversely related to the T-cell ratios. Even though the R
2
 value is low (0.105), 

we observed that patients with a higher IL17 H-score consistently had a lower Treg:Th17 cell 

ratio. These data in turn suggest that the pro-inflammatory environment produced by the elevated 

IL-17 levels may be one of the reasons for the unreceptive endometrium during the secretory 

phase in these infertile patients. This result concurs with previous data that have shown 

significantly elevated expression of IL-17 mRNA and protein in the decidua of patients with 

recurrent spontaneous abortion (28). IL-17 acts through the induction and expression of other 

pro-inflammatory cytokines and chemokines, which mediate immune cell infiltration and 

destruction of tissue. Various treatment modalities are under investigation currently for 

autoimmune and pro-inflammatory conditions that focus on targeting the IL-17 cytokine or its 
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receptor. IL-17 cytokine and receptor inhibitors are being tested for treatment of psoriasis, 

psoriatic arthritis and ankylosing spondylitis (117), lung damage in bleomycin-treated mice 

(118), attenuation of pro-inflammatory molecules in astrocytes (119), amelioration of 

experimental autoimmune encephalomyelitis (120) and collagen-induced arthritis in rats (121) to 

name a few among many. Current medical treatments for endometriosis associated symptoms 

usually target hormonal pathways (122,123). Newer drugs targeting non-hormonal pathways that 

affect inflammation, angiogenesis, tissue adhesion and invasion are being considered for 

endometriosis treatment (123,124). But all these treatment modalities have significant side 

effects as their targets also play important roles in physiological processes.  

Currently, surgical excision of the ectopic lesions is the only known treatment that has 

true benefits without the side effects associated with hormonal therapy. Laparoscopic excision of 

endometriotic lesions significantly reduced the associated symptoms such as dysmenorrhea, 

pelvic pain, dyspareunia and improved quality of life for patients (125–127). Moreover, 

laparoscopic excision of lesions has also been shown to improve subsequent conception and live 

birth rates irrespective of whether they underwent IVF/ICSI cycles or not (125,128,129). But 

speculations on why the fertility index improves post excision are yet unclear. One explanation 

could be the immunobiological effect of surgery. The baboon model of endometriosis showed 

that early laparoscopic intervention, whether excisional or sham, resulted in a recovery of Foxp3 

mRNA and Foxp3-positive cells (105). Our results showed a similar trend. Patients who 

underwent laparoscopic intervention for removal of lesions had a higher endometrial Treg count, 

significantly lower endometrial Th17 count, significantly better Treg to Th17 ratio and had a 

much higher conception rate, as compared to patients who did not undergo the excisional surgery 

before the endometrial biopsy were collected. These findings could be suggestive of the 
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immunobiological boosting effect mentioned earlier, which helps the body transition back 

towards an anti-inflammatory milieu from the pro-inflammatory one due to endometriosis. Other 

studies have shown a similar improvement in endometrial receptivity brought on by the effect of 

endometrial biopsy-induced inflammation (130) and lipiodol hysterosalpingogram (131) and 

base their inference on an immunomodulatory effect of these treatments. 

Tomaccetti et.al, (92) proposed in an extensive review that altered humoral and cell-

mediated immunological function may possibly alter endometrial characteristics during the 

crucial implantation window and thus affect endometrial receptivity in women with 

endometriosis. Overall, our experiments characterizing the eutopic endometrial T-cell 

populations in specific groups of patients have yielded promising results that support our 

hypothesis that an anti-inflammatory T-lymphocyte phenotype (high Treg-low Th17) in the 

eutopic endometrium is associated with a positive pregnancy outcome, whereas a pro-

inflammatory T-lymphocyte phenotype (high Th17-low Treg) in the eutopic endometrium is 

associated with infertility and pregnancy loss (Figure 3.7). Hence our data strongly indicates 

using the ratio of the Treg:Th17 cell populations in the endometrium as a novel and reliable 

marker of uterine receptivity and predictor of successful pregnancy. The specific role of 

excisional laparoscopy in boosting the T-cell phenotypes and its positive fertility outcome is also 

a novel finding which could be further explored with larger sample size. The IL-17 cytokine 

expression data further add strength to this hypothesis and support its use as a better target for 

treatment in patients with endometriosis related fertility problems. These data can further be used 

to assess exactly how the elevated IL-17 levels affect specific endometrial cell functions to add 

to the pro-inflammatory environment induced in the eutopic endometrium by the presence of 

ectopic endometriotic lesions.    
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FIGURES 

 

Figure 3.1. Characterization of Treg lymphocyte numbers in the eutopic endometrium 

during the receptive phase of the menstrual cycle.  

Fertile women (A) had a higher number of endometrial Treg cells than infertile women (B). The 

Treg cell numbers per unit area of tissue analyzed in the “UI/uRPL Fertile” patients did not differ 

from that observed in the “UI/uRPL Infertile” patients (C). The Treg cell numbers per unit area 

of tissue analyzed in the “Fertile with endometriosis” patients was significantly higher than in the 

“Infertile with endometriosis” patients (D). (n=31 UI/uRPL Fertile, n=34 UI/uRPL Infertile, 

n=19 Fertile w/ Osis, n=17 Infertile w/ Osis; p<0.05) 
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Figure 3.2. Characterization of Th17 lymphocyte numbers in the eutopic endometrium 

during the receptive phase of the menstrual cycle. 

Fertile women (A) had a lower number of endometrial Th17 cells than infertile women (B). The 

Th17 cell numbers per unit area of tissue analyzed in the “UI/uRPL Fertile” patients did not 

differ from that observed in the “UI/uRPL Infertile” patients (C). The Th17 cell numbers per unit 

area of tissue analyzed in the “Fertile with endometriosis” patients was significantly lower than 

in the “Infertile with endometriosis” patients (D). (n=31 UI/uRPL Fertile, n=34 UI/uRPL 

Infertile, n=19 Fertile w/ Osis, n=17 Infertile w/ Osis; p<0.05) 
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Figure 3.3. Characterization of the T-helper lymphocyte subsets in the eutopic 

endometrium of patients with different stages of endometriosis. 

Patients with Stage I endometriosis had the highest Treg counts as compared to Stage II and 

Stage III patients (as indicated with blue bars). Patients with Stage III endometriosis had the 

highest Th17 numbers than women with Stage I or Stage II (as indicated with red bars) indicative 

of consistent pro-inflammatory milieu once the disease is established. Differences were not 

statistically significant probably due to small sample size. (n=7 Osis I,  n=17 Osis II, n=5 Osis 

III; p>0.05)  
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Figure 3.4. Characterization of the Treg and Th17 lymphocyte subsets in the eutopic 

endometrium of patients who underwent laparoscopy for removal of ectopic endometriotic 

lesions. 

Patients who had the laparoscopic removal of ectopic lesions showed an increase in the Treg cell 

population and had a better chance at conceiving whereas patients who showed no increase in 

Treg numbers post laparoscopy were consistently infertile (A). Concurrently, patients who had 

laparoscopic removal of lesions but maintained their significantly high Th17 cell profile 

continued to be infertile (B). (n=3 biopsy before laparoscopy+pregnant, n=6 biopsy before 

laparoscopy+not pregnant, n=8 biopsy after laparoscopy+pregnant, n=3 biopsy after 

laparoscopy+not pregnant; p<0.05)     
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Figure 3.5. Evaluation of the Ratio of Treg to Th17 cell populations in the eutopic 

endometrium of patients.  

Treg:Th17 cell ratio was highly significant and correlated with pregnancy outcomes. UI/uRPL 

patients with a higher Treg:Th17 cell ratio had a better chance at conceiving than patients with a 

lower ratio (A). “Fertile with endometriosis” patients had significantly higher Treg/Th17cell 

ratios than the “Infertile with endometriosis” patients (B). Patients who had a ratio of less than 3 

even after laparoscopic removal of ectopic lesions continued to be infertile (C). (n=31 UI/uRPL 

Fertile, n=34 UI/uRPL Infertile, n=19 Fertile w/ Osis, n=17 Infertile w/ Osis, n=3 biopsy before 

laparoscopy+pregnant, n=6 biopsy before laparoscopy+not pregnant, n=8 biopsy after 

laparoscopy+pregnant, n=3 biopsy after laparoscopy+not pregnant; p<0.05) 
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Figure 3.6. Evaluation of Th-17 cell specific cytokine - Interleukin-17 expression in eutopic 

endometrial samples of patients and correlation with fertility status. 

A significant inverse relationship (p<0.0001) between Treg:Th17 cell ratio and the IL-17 

expression H-Score was observed (i). Patients with a low Treg to high Th17 ratio showed 

increased expression of IL-17 in both glandular (A) and stromal (C) compartments of the 

endometrium. Conversely, patients with a high Treg to low Th17 ratio showed a lower 

expression level for IL-17 in both the glandular (B) and stromal (D) compartments of the 

endometrium. (n=66, p<0.05) 
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Figure 3.7. Model for overall hypothesis. 

The anti-inflammatory T-lymphocyte phenotype (high Treg-low Th17) in the eutopic 

endometrium is associated with a positive pregnancy outcome, whereas a pro-inflammatory T-

lymphocyte phenotype (high Th17-low Treg) is associated with infertility and pregnancy loss. 

(Image adapted from Journal of Reproductive Immunology 2010)    
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CHAPTER 4 

EFFECTS OF INTERLEUKIN-17 ON ENDOMETRIAL AND ENDOMETRIOTIC CELL 

MIGRATION, INVASION AND ACTIVATION OF SIGNALING PATHWAYS 

 

ABSTRACT  

The pathophysiology of endometriosis is yet unclear but is known to involve complex 

interactions between ectopic endometriotic cells and the peritoneal mesothelium. Endometriotic 

lesion establishment and growth are supported by various factors that regulate cell growth and 

survival, migration and invasion. Overall, a pro-inflammatory microenvironment in the vicinity 

of an ectopic endometriotic lesion is thought to aid its survival, attachment and invasion into 

extra-uterine surfaces. One such cytokine is interleukin-17 (IL-17) which is associated with 

various inflammatory conditions including endometriosis. The goal of this study was to evaluate 

the effect of IL-17 treatment on endometrial (Ishikawa) cells and endometriotic (12Z) cells with 

respect to cell proliferation, motility and induction of signaling pathways. IL-17 treatment did 

not have any effect on cell proliferation in either cell type. IL-17 positively affected cell 

migration and invasion in the endometriotic cells but not in the endometrial cells. To understand 

this differential effect we assessed IL-17 receptor (IL-17R) expression in both cell types and 

observed that the receptor expression was fairly similar in both cell types. Thus we concluded 

that the differential effect observed was probably due to factors other than the IL-17R expression 

in these endometrial cell types. We investigated which signaling pathway was utilized by IL-17 

in these uterine cell types. The inflammatory NFκB pathway is the hallmark of IL-17 activity, 

but our results showed that in our uterine cell lines, IL-17 did not induce the NFκB pathway. 

Instead IL-17 activated an alternate MAPK signal transduction pathway, but only in the 

endometriotic 12Z cells. Since it is known that cell motility requires MMP induction, we also 



84 
 

evaluated changes in EMMPRIN expression in these cells when treated with IL-17. 

Endometriotic cells showed an increase in EMMPRIN expression post treatment which could 

partially explain their enhanced motility in the presence of IL-17. We then assessed the 

correlation between IL-17 and EMMPRIN expression in eutopic endometrial samples from 

patients with endometriosis. We found that IL-17 expression positively correlated with 

EMMPRIN expression in about 90% of the samples tested. All these data together support a role 

for the pro-inflammatory cytokine IL-17 in cell migration and invasion through its effects on 

EMMPRIN expression and the induction of MAPK signaling pathway.  

 

INTRODUCTION  

Endometriosis is one of the most common gynecological disease conditions in women of 

reproductive age characterized by the presence of endometrial cells outside the uterus (102). The 

most popular hypothesis for the pathogenesis of this condition is the “retrograde menstruation 

theory” proposed by Sampson (1927), which suggests that eutopic endometrial fragments pass 

through patent fallopian ducts into the peritoneal cavity during menstruation and invade and 

establish as ectopic lesions on extra-uterine surfaces. This induces an inflammatory micro-

environment in that area and is thought to be responsible for the symptoms associated with 

endometriosis, such as chronic pelvic pain, dysmenorrhea and infertility (53).  

 Although a benign condition, the endometrial cell attachment and invasion into the 

ectopic surfaces, is thought to occur in a manner similar to cancer metastasis. This process not 

only involves chronic inflammation but also the process of epithelial to mesenchymal transition. 

Epithelial to mesenchymal transition (EMT) defines a process by which stationary, polarized 

epithelial cells undergo a transformation into motile mesenchymal cells (132). This 
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transformation helps the cells acquire a phenotype that increases their migratory and invasive 

capabilities, which in turn helps in the establishment of endometriotic ectopic lesions. The 

endometrial cells that undergo this transition acquire mesenchymal markers especially in the 

initial stages of lesion establishment (69). The inflammatory microenvironment is also thought to 

be supported by pro-inflammatory leukocytes and their associated cytokines. One such cytokine 

is interleukin-17 (IL-17), a pro-inflammatory cytokine produced primarily by Th17 cells , that is 

found to be elevated in the peritoneal fluid of women with endometriosis (115).  

 Our goal in this second aim was to assess the effect of IL-17 on eutopic and ectopic 

endometrial cells in culture and evaluate effects on processes that affect endometriotic lesion 

establishment. Due to the unavailability of primary cells from patients with endometriosis, we 

decided to conduct our study using immortalized/transformed endometrial (Ishikawa) cells and 

endometriotic (12Z) cells that have been characterized and are representative of these cell types. 

Both cell types were treated with doses of recombinant human IL-17 (recHuIL-17) ranging from 

10 pg/ml to 100 ng/ml. Both cell types were also treated with positive and negative control 

recombinant proteins as needed for each experiment. Several parameters important to the process 

of EMT were assessed such as cell proliferation, migration and invasion, expression of EMT 

marker proteins and activation of the NFκB signaling pathway.      

          

RESULTS 

Effect of IL-17 on endometrial and endometriotic cell proliferation 

Cell proliferation assays were used to evaluate the effect of the pro-inflammatory 

cytokine IL-17 on endometrial (Ishikawa) and endometriotic (12Z) cell growth. Proliferation of 

both cell types was assessed 48 hours after treatment with different doses of recHuIL-17 by 
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conducting cell counts and tritiated thymidine incorporation experiments. Results showed that 

the cell proliferation rate was similar between cells treated with and without the recHuIL-17 

(Figure 4.1). 

 

Effect of IL-17 on endometrial and endometriotic cell motility 

The effect of IL-17 on cell motility was evaluated using the Radius
TM

 24-well cell 

migration assay and the CytoSelect
TM

 24-well cell invasion assay. The migration assay showed 

that the highest dose of recHuIL17 (100 ng/ml) promoted cell migration when compared to the 

vehicle control treated cells (8.16±1.50% v/s 3.54±0.74%) in the endometriotic (12Z) cells at 24 

hours post treatment. However, IL-17 had no effect on the endometrial (Ishikawa) cells at any of 

the treatment doses or time-points (Figure 4.2).  

The invasion assay showed a similar pattern. The highest dose of recHuIL-17 (100 ng/ml) 

increased invasiveness of the endometriotic (12Z) cells at 24 hours post treatment as compared to 

the vehicle control treated cells, but had no effect on the endometrial (Ishikawa) cells (Figure 

4.3). These data suggest that IL-17 enhances the cell migration and invasive ability in the 

endometriotic cells but not in the endometrial cells.   

 

IL-17 Receptor expression in endometrial and endometriotic cells 

Due to the differential effect of IL-17 on endometrial and endometriotic cell migration 

and invasion, immunoblots were conducted to confirm and assess IL-17 receptor (IL-17R) 

expression in these cells. The THP-1 monocyte cell line was used as a positive control for IL-

17R expression. Interestingly both the endometrial (Ishikawa) and endometriotic (12Z) cells 

showed near equal expression of the IL-17R when normalized to GAPDH (Figure 4.4). This 
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suggested that IL-17 may exert differential effects that are dependent on cell type or other co-

receptor expression levels.   

 

Effect of IL-17 on Epithelial to Mesenchymal Transition markers 

To investigate whether recHuIL-17 induced alterations in the EMT phenotype of 

endometrial and endometriotic cells in culture, we treated both cell types with different doses 

(100 ng/ml, 10 ng/ml, 1 ng/ml and 10 pg/ml) of IL-17 and assessed morphological and EMT-

related markers at 0, 15 min, 60 min and 24 hours post treatment.  

 Endometriotic (12Z) cells acquired an elongated, fusiform appearance with dendritic 

processes when treated with the 10 ng/ml and 100 ng/ml doses of IL-17. None of the other doses 

had any effect on morphology of the endometriotic cells. Moreover, the treatments had no effect 

on the morphology of the endometrial (Ishikawa) cells (Figure 4.5). RecHuTNFα treatment was 

used as a positive control to induce EMT and had a positive effect on both cell types.    

 As EMT is an important mechanism for cell migration and invasion, we further evaluated 

the effect of recHuIL-17 on EMT protein marker end-points including cytokeratin (epithelial 

marker) and vimentin (mesenchymal marker). Both cell types expressed the mesenchymal 

marker vimentin, at all time-points irrespective of treatment, though the endometriotic (12Z) 

cells had a higher expression of vimentin as compared to the endometrial (Ishikawa) cells 

(Figure 4.7). This can be explained by the fact that these immortalized cells may have undergone 

EMT already and probably retain some of the mesenchymal markers. Conversely, the epithelial 

marker, cytokeratin expression was not consistent between the cell types. Only the endometrial 

(Ishikawa) cells expressed this epithelial marker at all time-points irrespective of treatment 

(Figure 4.6).  



88 
 

 

Activation of the NFκB signaling pathway  

 NFκB is a transcription factor often associated with inflammatory conditions and has 

been shown to act as a downstream target of IL-17 signaling (133). We next tested the effect of 

recHuIL-17 on activation of this signaling pathway by evaluating phosphorylation of its inhibitor 

molecule IκBα and nuclear translocation of the p65 subunit of this pathway, as both are 

processes  involved in NFκB pathway induction (46).  

 Phosphorylation of IκBα and its subsequent degradation is considered the most common 

proximal step of the signaling pathway activation. We treated both endometrial and 

endometriotic cells with recHuIL-17 (100 ng/ml, 10 ng/ml, 1 ng/ml and 10 pg/ml) and assessed 

cell lysates at 0, 15 min, 60 min and 24 hours post treatment for pIκBα and total IκBα protein 

expression. Unfortunately the phosphorylated and total protein forms of the IκBα molecule were 

very difficult to assess on immunoblots and the results were inconsistent. However, from some 

of the better immunoblots showing total IκBα protein estimation, it appeared that IL-17 

treatment at higher concentrations (100 ng/ml and 10 ng/ml) did reduce the total IκBα protein 

levels in the endometriotic (12Z) cells at 24 hours post treatment, though this effect was not 

statistically significant (Figure 4.8.A and 4.8.B). This reduction in total IκBα protein expression 

could be interpreted as loss due to phosphorylation and degradation of the molecule.          

Due to the difficulty in assessing phosphorylation of the IκBα protein expression, we 

decided to evaluate the next step in the signaling pathway activation, which was nuclear 

translocation of the p65 subunit of the NFκB molecule. Both endometrial (Ishikawa) and 

endometriotic (12Z) cells were treated as described above and observed for localization of p65 

using immunofluorescence. Interestingly we observed that the highest dose of recHuIL-17 (100 
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ng/ml) increased the cytoplasmic expression of p65 in the endometriotic (12Z) cells at 24 hours 

post treatment, but nuclear translocation of the protein was not observed (Figure 4.9). None of 

the other concentrations had an effect on p65 protein localization. The IL-17 had no effect on the 

endometrial (Ishikawa) cells at any of the time-points irrespective of treatment. 

 

Activation of the MAPK signaling pathway 

Given the variable results obtained with the IκBα phosphorylation and p65 nuclear 

translocation assessment, we then decided to evaluate whether IL-17 was acting on the 

endometrial and endometriotic cells through an alternate signaling pathway. The mitogen 

activated protein kinase (MAPK) is one such signal transduction pathway that is commonly 

associated with processes that regulate mitosis, cell motility, survival or apoptosis and 

differentiation. IL-17 is thought to activate this pathway through phosphorylation of extracellular 

signal-regulated kinases (ERK 1/2), the major signaling molecule in the MAPK pathway. We 

tested this by treating both endometrial (Ishikawa) and endometriotic (12Z) cells with different 

doses of recHuIL-17 (100 ng/ml, 10 ng/ml, 1 ng/ml and 10 pg/ml) and assessed ERK 1/2 

phosphorylation at 0, 15 min, 60 min and 24 hours. We observed that the higher concentrations 

of IL-17 (100 ng/ml and 10 ng/ml) strongly phosphorylated ERK1/2 in the endometriotic (12Z) 

cells but did not have a definitive effect on the endometrial (Ishikawa) cells (Figure 4.10.A and 

4.10.B). This effect was seen to peak at 60 minutes post treatment in the endometriotic (12Z) 

cells and seemed to wane by 24 hours post treatment.      
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EMMPRIN Expression 

Because elevated EMMPRIN expression in ectopic lesions is associated with cell survival and 

migration (91), we wanted to determine whether the heightened cell motility observed in the 

earlier experiments could be due to increased EMMPRIN expression as a result of IL-17 

signaling. We treated both cell types with recHuIL-17 (100 ng/ml, 10 ng/ml, 1 ng/ml and 10 

pg/ml) and evaluated EMMPRIN protein expression in cell lysates at 0, 15 min, 60 min and 24 

hours. Our results showed that IL-17 treatment at all doses increased EMMPRIN expression 

starting at 15 min and peaking at 60 minutes post treatment. This effect was more apparent in the 

endometriotic (12Z) cells and was not very consistent in the endometrial (Ishikawa) cells (Figure 

4.11.A and 4.11.B).  

 

IL-17 and EMMPRIN expression in ex vivo patient samples 

Since EMMPRIN is involved in a number of pro-inflammatory conditions, we decided to assess 

the correlation between IL-17 and EMMPRIN expression in endometrial biopsy samples 

collected from patients with endometriosis. H-Score analyses of immunohistochemistry samples 

revealed that for a majority of patients, IL-17 and EMMPRIN protein expression were positively 

correlated. Patients with a high IL-17 expression H-Score showed elevated EMMPRIN 

expression in both the glandular and stromal compartments of the endometrium. Patients with a 

low IL-17 H-Score showed a physiological stromal expression, which was expected as the 

samples were collected during the secretory phase of the patients’ menstrual cycles (Figure 

4.12). From these results we can propose that uterine epithelial cell (glandular) expression of 

EMMPRIN may possibly be regulated by IL-17 action.         
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DISCUSSION 

 Endometriosis is an estrogen-dependent disorder defined by the presence of endometrial 

cells outside the uterus, which induces a chronic inflammatory microenvironment. This condition 

is associated with chronic pelvic pain, dysmenorrhea, ovulation pain, abnormal bleeding and 

infertility (134). Despite significant steps in endometriosis research, the pathogenesis of 

endometriosis is still unclear. Sampson’s retrograde menstruation theory explains how the 

endometrial tissue reaches the extra-uterine regions but it is yet not completely understood how 

these tissue fragments form the ectopic lesions. But it is accepted that inflammation is a key 

feature associated with endometriosis. Pro-inflammatory factors such as cytokines, chemokines 

and matrix metalloproteinases are produced by these ectopic lesions and found in the peritoneal 

fluid of patients (58,59) and in turn are thought to aid in the survival of these ectopic lesions. 

One such cytokine is Interleukin 17 (IL-17), which is known to drive inflammation (46), is 

elevated in the peritoneal fluid of patients with endometriosis (115) and in turn induces the 

production of other pro-inflammatory factors (135) that affect endometriotic cells. But it is not 

known whether this pro-inflammatory cytokine plays a role in the initial stages of endometriotic 

lesion establishment. Our results show that the pro-inflammatory cytokine interleukin-17 (IL-17) 

positively impacts endometriotic cell migration and invasion, and induces epithelial to 

mesenchymal transition in these ectopic cells but has no effect on the endometrial epithelial 

cells. 

 Cell proliferation and motility are key properties epithelial cells acquire as they transition 

into a mesenchymal phenotype. It is known that endometrial cells from different sources i.e. 

from eutopic endometrium and ectopic endometriotic lesions have different proliferative 

capabilities (136). And it is also known that cytokines affect cell proliferation and motility (39). 



92 
 

Our proliferation assay experiments showed that neither of the doses had any significant effect 

on endometrial or endometriotic cell growth. A previous study has shown that higher ng/ml IL-

17 doses (similar to our 100ng/ml and 10ng/ml doses) had a positive effect on the proliferation of 

endometriotic stromal cells (137) after 48 hours of treatment. But on the other hand it has also 

been shown that IL-17 treatment has no effect on the proliferation of JEG-3 human 

choriocarcinoma cells in culture (138) or hepatocellular carcinoma cells in culture (133). These 

results could indicate that IL-17 has a differential effect on cell proliferation depending on the 

cell type it interacts with. 

 We then tested the effect of IL-17 treatments on cell motility parameters of migration and 

invasion. The 100ng/ml treatment had a significant positive effect on the endometriotic (12Z) 

cell migration at 24 hours post treatment as compared to the vehicle treated controls. IL-17 has a 

similar effect on rheumatoid arthritis synoviocyte migration (139) and hepatocellular carcinoma 

cells in culture (133). None of the other doses tested (10ng/ml, 1ng/ml or 10pg/ml) had an effect 

on the endometriotic cells. Moreover, the IL-17 treatment had no effect on the endometrial 

(Ishikawa) cells at any of the treatment levels or time-points. Another property of cell motility is 

the invasive capacity of the cell. IL-17 has been shown to enhance the invasive ability of 

hepatocellular carcinoma cells in culture (133) and JEG-3 choriocarcinoma cells in culture (138). 

Our cell invasion assay also showed us a similar result. The two high doses of 100ng/ml and 

10ng/ml increased endometriotic (12Z) cell invasion through a basement membrane-like 

membrane at 24 hours post treatment, but had no effect on the endometrial (Ishikawa) cells.  

This differential effect of IL-17 on endometrial and endometriotic cells in culture was a 

very interesting finding. Then again, eutopic and ectopic stromal cells from patients have been 

shown to exhibit differential properties with regards to their proliferative and motility parameters 
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(136). Hence we decided to assess whether the IL-17 receptor (IL-17R) expression levels were 

contributing to this differential effect observed. The IL-17R family comprises of five subunits, 

IL-17RA-IL-17RE, that act as homo- or heterodimers depending on the IL-17 ligand interaction. 

We concentrated on the IL-17RA subunit as this is a common receptor for most IL-17 ligand 

subunits and is ubiquitously expressed. Moreover, this receptor subunit is involved in the main 

response to IL-17A that occurs in epithelial and fibroblast cells (46). Our results showed that the 

IL-17R had a near equal expression level in both our cell types. This was even more intriguing as 

it confirmed our previous hypothesis that the cytokine had a differential effect depending on the 

cell type it interacted with. This differential effect could be explained by the involvement of 

another IL-17R subunit or a shared receptor subunit (such as the gp130 for IL-6R) in this 

interaction. It could be further explored by evaluating the expression of the other known IL-17R 

subunits in both cell types.   

 This differential effect is not confined to cell motility. It has been shown that the process 

of EMT, which is important for cell migration and invasion, is inherently differently regulated in 

endometrial and endometriotic cells (140). We wanted to evaluate whether IL-17 could add to 

this differential effect on EMT in our cell types. Upon treatment with the 100ng/ml dose of IL-17 

for 24 hours, the endometriotic (12Z) cells showed an elongated fusiform appearance with the 

presence of dendritic processes. This is a common morphology acquired by cells that are actively 

undergoing the EMT process (109,139). The endometrial (Ishikawa) cells showed this change 

only with the TNFα (positive control) treated group. Moreover, we did not observe any 

differences in the typical EMT protein marker expression. The cytokeratin (epithelial marker) 

expression was seen only in the endometrial (Ishikawa) cells and not in the endometriotic (12Z) 

cells, even though both cell types are established epithelial cell lines. On the other hand, both cell 
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types expressed vimentin (mesenchymal marker), irrespective of the treatment dose or time-

point. Earlier studies have also shown similar results wherein they observed functional effects 

but none on EMT markers (133,139). Our findings on the EMT marker expression could also be 

explained by the fact that we used immortalized cell lines that have undergone the EMT process 

and hence possibly retain some of their mesenchymal markers acquired during that 

transformation (141). This also indicates that we need to evaluate some other protein markers 

that play a role in EMT related cell motility, such as Snail, Slug and Twist, among others.  

With our results thus far, we observed that IL-17 had a functional effect on cell motility 

but did not alter the typical EMT marker expression. Thus we wanted to assess the signaling 

pathway of choice for the functional effect seen. The Nuclear Factor κB (NFκB) pathway is 

considered the classical pro-inflammatory signaling pathway as it is induced by inflammatory 

cytokines and in turn enhances the expression of pro-inflammatory genes and factors (142). IL-

17 is known to activate a highly pro-inflammatory program of gene expression via activation of 

the NFκB pathway. It does this by causing phosphorylation of the IκB molecule (an inhibitor of 

the NFκB molecule) which then activates the canonical NFκB pathway (46). Our immunoblot 

experiments to assess the phosphorylated form of IκBα (pIκBα) were inconsistent with regards to 

acquiring the band of choice. On further discussion with other labs that had had a similar 

problem visualizing the pIκBα protein, we decided to see if the total IκBα protein showed any 

reduction in its expression as compared to GAPDH (as loading control). In spite of our failure 

with visualizing the pIκBα protein, we were able to observe a consistent and sustained effect of 

IL-17 on the total protein expression. In the endometriotic (12Z) cells, all the IL-17 doses 

seemed to increase the total IκBα protein expression at 15 minutes post treatment and this 

expression then dropped over time to its lowest at 24 hours post treatment. In the endometrial 
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(Ishikawa) cells, the total IκBα protein expression seemed to drop at 15 minutes post treatment 

but came back to the original levels by 60 minutes and stayed elevated at 24 hours post 

treatment. Unfortunately, none of these changes were statistically significant.  

Due to our problems with visualizing the pIκBα protein and the not so significant results 

with the total IκBα protein immunoblots, we decided to assess the nuclear translocation of p50 

and p65 subunits, which are components of the NFκB pathway. Previous research has shown that 

treatment with IL-17 causes these subunits to move into the nucleus and induce the downstream 

signaling that eventually leads to cell motility and EMT effects (133,143). Our results with the 

detection of the p65 subunit revealed that treatment with IL-17 at the highest dose of 100ng/ml 

caused an enhanced cytoplasmic expression of p65 as detected by the fluorophore in the 

endometriotic (12Z) cells, but we did not observe a significant nuclear translocation of the 

protein. The endometrial (Ishikawa) cells did not show any effect on the p65 expression post IL-

17 treatment. A different treatment time-point, either a 12 hour or 36 hour time-point, might help 

us better understand whether the cytoplasmic increase in p65 was in fact preceding the nuclear 

translocation of the protein or was a remnant of its activity. Overall our data did not give us 

significant proof that the IL-17 treatment was causing activation of the NFκB pathway in our 

uterine cell types. This could be explained by the fact that IL-17 is considered a weak NFκB 

activator and usually has a stronger pro-inflammatory effect secondary to TNFα activation of the 

NFκB pathway (144).    

It could also be indicative that IL-17 could be acting via a different signaling pathway in 

our uterine cells. It has been suggested that IL-17 activates extracellular signal-regulated protein 

kinase (ERK) which in turn up-regulates other pro-inflammatory factors (41,44). MAPK 

pathways are some of the most common signaling pathways associated with cell motility, 
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survival and differentiation (50). In fact treatment of endometriotic stromal cells with IL-17 

caused an immediate increase in the phosphorylation of P42/44 MAPK (ERK1/2) (137). Our 

results showed an increase in the ERK 1/2 phosphorylation in the endometriotic (12Z) cells when 

they were treated with the two higher doses of IL-17 (100ng/ml and 1ng/ml) but not with the 

lower doses (1ng/ml and 10pg/ml). This increase in pERK 1/2 peaked at 60 minutes post 

treatment and decreased to the original levels by 24 hours post treatment. The endometrial 

(Ishikawa) cells showed an increase in pERK 1/2 but this effect was variable at each treatment x 

time-point interaction and hence not consistent. This enhanced pERK 1/2 and MAPK activation 

could explain the increased migration and invasion capabilities of the endometriotic (12Z) cells 

that we have observed with our cells. As it has been shown earlier that IL-17 induced  ERK 1/2 

activation is responsible for enhanced migration and invasion of cervical cancer cells (143) and 

p38 MAPK activation is responsible for enhanced migration and invasion of nasopharyngeal 

cells (145). In fact in the baboon model of endometriosis, they assessed the gene expression of 

different signaling pathways and their components and found that the ERK/MAPK pathway was 

dysregulated which was thought to be responsible for the increased MMP activity that helped in 

lesion establishment and invasion (146). The ERK 1/2 pathway activation is also linked to 

enhanced EMMPRIN and MMP expression in ovarian carcinomas (147).       

And because it is well known that enhanced MMP activity is needed for cell migration 

and invasion, we decided to focus on the upstream factors that regulate MMP activity. One such 

pro-inflammatory factor that upregulates MMPs which in turn degrade basement membrane 

proteins thus allowing cells to invade into surfaces is the Extracellular Matrix Metalloproteinase 

Inducer (EMMPRIN) (89). EMMPRIN plays an important role in reproductive processes as it 

plays a role physiological endometrial remodeling and is also thought to aid in ectopic lesion 
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establishment (86). Moreover, it has been proposed that EMMPRIN interacts with other proteins 

to affect tumor cell invasion and metastasis (148). Hence we wanted to see if IL-17 had an effect 

on the EMMPRIN expression in our cell types and if this could be correlated to the functional 

effects observed. Interestingly, we observed that all the doses of IL-17 (100ng/ml, 10ng/ml, 

1ng/ml and 10pg/ml) enhanced the EMMPRIN expression at 15 minutes, which peaked at 60 

minutes and decreased by 24 hours post treatment in the endometriotic (12Z) cells. This 

concurred with earlier findings from our lab that pro-inflammatory cytokines enhance the 

EMMPRIN expression in endometrial cells and in turn increase the MMP expression (149). The 

MMP-inducing function of EMMPRIN is thought to depend on the level of glycosylation of the 

extracellular N-terminal Ig domain, which is increased on exposure to inflammatory signals 

(79,80). We could suppose that is how IL-17 acts on enhancing the EMMPRIN expression in the 

endometriotic cells in culture.  

The endometrial (Ishikawa) cells did not show similar response to IL-17 treatment. But it 

has been shown that eutopic endometrium from baboons that have endometriotic lesions express 

increased EMMPRIN expression in their eutopic endometrium (88) as compared to disease free 

controls. Hence we decided to assess the relation between IL-17 expression and EMMPRIN 

expression in eutopic endometrial biopsy sections taken from patients with endometriosis. 

Overall there was a positive correlation in about 90% of the patient samples tested. Patients with 

a high IL-17 expression showed an increased expression of EMMPRIN in their stromal as well 

as glandular compartments whereas patients with moderate IL-17 expression had an enhanced 

stromal expression but EMMPRIN was not expressed in their glands. This could suggest that 

elevated IL-17 levels increase the epithelial cell expression of EMMPRIN, which we saw with 

our cell culture experiments as well (though our endometrial cells did not respond to IL-17 



98 
 

treatment). In the patients who showed a negative correlation, we could assume other factors are 

activating MMP production for establishment of endometriotic lesions. Cytokines are known to 

enhance MMP activity in human endometrial fibroblasts through processes that do not involve 

increases in EMMPRIN (150). Moreover, IL-17 has been shown to increase MMP expression in 

human periodontal ligament fibroblasts but not have any effect on EMMPRIN expression in 

these cells (151).      

Overall our data suggests that the pro-inflammatory environment produced by elevated 

IL-17 levels activates EMMPRIN expression and both these factors either in coordination or on 

their own act on induction of the MAPK pathway, which in turn regulates the functional effects 

we observed with our cell culture experiments. As research in the area of IL-17 regulated 

EMMPRIN expression is scarce, our data could be one of the first to show a positive correlation 

between the two pro-inflammatory factors. It would be interesting to assess the actual process by 

which IL-17 regulates EMMPRIN expression. Cytokines are known to enhance the sequestration 

of EMMPRIN in microvesicles released by human uterine fibroblast cells (149). Moreover, it is 

known that protease laden exosomes, released by tumor cells, aid in tumor invasion and 

metastasis (152). Hence it would be interesting to evaluate the exosome production and 

EMMPRIN sequestration therein as an effect of IL-17 on endometrial and endometriotic cells.   
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FIGURES and TABLES 

 

 

 

Figure 4.1. IL-17 has no effect on the proliferation of endometrial (Ishikawa) and 

endometriotic (12Z) cells in culture. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses ranging from 2 pg/ml 

to 100 ng/ml. Effect on cell proliferation was assessed by cell tritiated thymidine incorporation 

and cell count assays. (n=3, p>0.05).      
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Figure 4.2. IL-17 positively affects migration of endometriotic (12Z) cells but has no effect 

on the migration of endometrial (Ishikawa) cells in culture. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

and 100 ng/ml. Cell migration was assessed at 0, 6, 12 and 24 hours post treatment. Graphs 

represent actual percent area the cells migrated as compared to the 0 hour starting point. (n=3, 

p<0.05)   
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Figure 4.3. IL-17 has a positive effect on the invasive capability of endometriotic (12Z) cells 

but has no effect on the endometrial (Ishikawa) cells in culture.  

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

and 100 ng/ml. Cell invasion through a basement membrane-like membrane was assessed at 24 

hours post treatment. Graphs represent the cell counts for the invading cells evaluated from five 

separate random fields for each treatment. (n=3, p<0.05)    
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Figure 4.4. IL-17-Receptor expression in both endometrial (Ishikawa) cells and 

endometriotic (12Z) cells is similar. 

Cell lysates collected from endometrial and endometriotic cells grown in 2% FBS containing 

medium were used for immunoblot estimation of the IL-17 receptor. THP-1 monocyte cell line 

was used as a positive control for receptor expression. Receptor expression on the immunoblot 

was normalized to GAPDH expression in the respective samples. (n=3, p>0.05) 
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Figure 4.5. Morphological evaluation of EMT: IL-17 treatment shows a fusiform 

morphology with dendritic processes in the endometriotic (12Z) cells but has no effect on 

the endometrial (Ishikawa) cells. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

10 ng/ml and 100 ng/ml. Cell morphology was assessed at 0, 6, 12 and 24 hours post treatment. 

Only the 0 hour and 24 hour images are shown here as the 6 and 12 hour treatments did not show 

any change in morphology. All images collected at 10X magnification. (n=3) 
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Figure 4.6. IL-17 had no significant effect on the cytokeratin protein expression. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

10 ng/ml and 100 ng/ml. Cell lysates collected at 0, 15 min, 60 min and 24 hours post treatment 

were processed by immunoblotting techniques and probed for cytokeratin protein expression. 

Bands obtained for each treatment x time-point combination were normalized to GAPDH 

expression for respective treatment x time-point combination. Lanes 1-6 are samples from 

endometriotic 12Z cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 

ng/ml, IL-17 1 ng/ml and IL-17 10 pg/ml. Lanes 7-12 are samples from endometrial Ishikawa 

cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml 

and IL-17 10 pg/ml. (n=3, p>0.05)   
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Figure 4.7. IL-17 had no significant effect on the vimentin protein expression. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

10 ng/ml and 100 ng/ml. Cell lysates collected at 0, 15 min, 60 min and 24 hours post treatment 

were processed by immunoblotting techniques and probed for vimentin protein expression. 

Bands obtained for each treatment x time-point combination were normalized to GAPDH 

expression for respective treatment x time-point combination. Lanes 1-6 are samples from 

endometriotic 12Z cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 

ng/ml, IL-17 1 ng/ml and IL-17 10 pg/ml. Lanes 7-12 are samples from endometrial Ishikawa 

cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml 

and IL-17 10 pg/ml. (n=3, p>0.05)   
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Figure 4.8.A. IL-17 had no significant effect on the total IκBα protein expression. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

10 ng/ml and 100 ng/ml. Cell lysates collected at 0, 15 min, 60 min and 24 hours post treatment 

were processed by immunoblotting techniques and probed for total IκBα protein expression. 

Bands obtained for each treatment x time-point combination were normalized to GAPDH 

expression for respective treatment x time-point combination. Lanes 1-6 are samples from 

endometriotic 12Z cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 

ng/ml, IL-17 1 ng/ml and IL-17 10 pg/ml. Lanes 7-12 are samples from endometrial Ishikawa 

cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml 

and IL-17 10 pg/ml. (n=3, p>0.05)   
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Figure 4.8.B. IL-17 had no significant effect on the total IκBα protein expression. 

Densitometric analysis of immunoblot shown in figure 4.6.A. Immunoblot bands obtained for 

each treatment x time-point combination were normalized to GAPDH expression for respective 

treatment x time-point combination. Treatment groups 1-6 are samples from endometriotic 12Z 

cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml 

and IL-17 10 pg/ml. Treatment groups 7–12 are samples from endometrial Ishikawa cells treated 

with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml and IL-17 10 

pg/ml. (n=3, p>0.05)   
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Figure 4.9. IL-17 enhanced the cytoplasmic expression of p65 subunit in the 100ng/ml IL-

17 treated endometriotic (12Z) cells but had no effect on the endometrial (Ishikawa) cells.   

Endometrial and endometriotic cells were treated with recHuIL-17 at 10 pg/ml, 1 ng/ml, 10 

ng/ml and 100 ng/ml. Immunofluorescence techniques were utilized to visualize p65 subunit 

movement within the cells. All images were obtained at 60x magnification. (n=3)   
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Figure 4.10.A. IL-17 increased phosphorylation of MAPK (ERK 1/2) in endometriotic 

(12Z) cells but had no specific effect in the endometrial (Ishikawa) cells. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

10 ng/ml and 100 ng/ml. Cell lysates collected at 0, 15 min, 60 min and 24 hours post treatment 

were analyzed by immunoblotting technique and probed for pMAPK and total MAPK protein 

expression. pMAPK bands for each treatment x time-point combination was normalized to its 

respective total MAPK band. Lanes 1-6 are samples from endometriotic 12Z cells treated with 

vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml and IL-17 10 

pg/ml. Lanes 7-12 are samples from endometrial Ishikawa cells treated with vehicle control, 

recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml and IL-17 10 pg/ml (n=3, p<0.05) 

 

 

A 



110 
 

 

 

Figure 4.10.B. IL-17 increased phosphorylation of MAPK (ERK 1/2) in endometriotic 

(12Z) cells but had no specific effect in the endometrial (Ishikawa) cells. 

Densitometric analysis of immunoblot shown in figure 4.8.A. phospho-MAPK bands obtained 

for each treatment x time-point combination were normalized to total-MAPK expression for 

respective treatment x time-point combination. Treatment groups 1-6 are samples from 

endometriotic 12Z cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 

ng/ml, IL-17 1 ng/ml and IL-17 10 pg/ml. Treatment groups 7-12 are samples from endometrial 

Ishikawa cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 

1 ng/ml and IL-17 10 pg/ml (n=3, p<0.05) 
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Figure 4.11.A. IL-17 increased EMMPRIN expression in endometriotic (12Z) cells but had 

no specific effect in the endometrial (Ishikawa) cells. 

Endometrial and endometriotic cells were treated with recHuIL-17 doses of 10 pg/ml, 1 ng/ml, 

10 ng/ml and 100 ng/ml. Cell lysates collected at 0, 15 min, 60 min and 24 hours post treatment 

were analyzed by immunoblotting technique and probed for EMMPRIN protein expression. 

EMMPRIN bands for each treatment x time-point combination were normalized to their 

respective GAPDH band. Lanes 1-6 are samples from endometriotic 12Z cells treated with 

vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml and IL-17 10 

pg/ml. Lanes 7-12 are samples from endometrial Ishikawa cells treated with vehicle control, 

recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml and IL-17 10 pg/ml (n=3, p<0.05) 
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Figure 4.11.B. IL-17 increased EMMPRIN expression in endometriotic (12Z) cells but had 

no specific effect in the endometrial (Ishikawa) cells. 

Densitometric analysis of immunoblot shown in figure 4.9.A. EMMPRIN bands obtained for 

each treatment x time-point combination were normalized to GAPDH expression for respective 

treatment x time-point combination. Treatment groups 1-6 are samples from endometriotic 12Z 

cells treated with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml 

and IL-17 10 pg/ml. Treatment groups 7-12 are samples from endometrial Ishikawa cells treated 

with vehicle control, recHuTNFα, IL-17 100 ng/ml, IL-17 10 ng/ml, IL-17 1 ng/ml and IL-17 10 

pg/ml (n=3, p<0.05) 
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Figure 4.12. Elevated IL-17 expression is positively correlated to elevated EMMPRIN 

expression in eutopic endometrial biopsy specimens collected form patients with 

endometriosis. 

Endometrial biopsies collected from patients during the secretory phase of their menstrual cycles 

were evaluated using immunohistochemistry for IL-17 and EMMPRIN expression. (n=54) 
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Experimental Endpoints Endometrial cells 

(Ishikawa cells) 

Endometriotic cells 

(12Z cells) 

Cell Proliferation No Effect No Effect 

Cell Migration No Effect Increased  

Cell Invasion No Effect Increased 

IL-17 Receptor Expression Similar Similar 

EMT Morphology No Effect Fusiform with dendritic processes  

(100 ng/ml, p<0.05) 

Cytokeratin Expression No Effect Not Expressed 

Vimentin Expression No Effect No Effect 

Total IκBα Expression No Effect No Effect 

p65 Subunit Nuclear 

Sequestration 

No Effect Increased cytoplasmic expression  

at 24 hours (100 ng/ml) 

pMAPK Expression No Effect Increased at 60 min  

(100 ng/ml and 10 ng/ml; p<0.05) 

EMMPRIN Expression No Effect Increased at 60 min  

(100 ng/ml and 10 ng/ml; p<0.05)  

 

Table 4.1. Functional and protein expression end points in endometrial and endometriotic 

cells. 

A differential effect of IL-17 treatment was observed with respect to migration and invasion in 

endometrial and endometriotic cells in culture. This effect was not due to a differential IL-17R 

expression as receptor expression was similar in both cell types. IL-17 treatment did not induce 

the hallmark NFκB signaling pathway but instead caused activation of the alternative MAPK 

signaling pathway in the endometriotic cells. Overall, IL-17 treatment did not have any effect on 

the endometrial cells. 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTION 

 

Endometrial receptivity is a complex phenomenon dependent on the precise synchronization 

of multiple factors that control structural changes in the endometrium in response to changes in 

circulating steroid hormones and a delicate leukocyte and cytokine equilibrium. It is therefore 

important to understand the immunological factors involved in implantation and early pregnancy, 

particularly in reproductive pathologies that may result in infertility. Endometriosis is one such 

condition which not only has a debilitating and inflammatory effect but is also estimated to 

account for up to 30-50% of otherwise unexplained infertility. Evidence suggests that the 

increased concentrations of certain growth factors and/or cytokines in the peritoneal fluid of 

patients with endometriosis induce establishment and proliferation of the endometrial implants, 

and also may inhibit early reproductive events.  It has been shown that both pro-inflammatory 

and immune tolerance factors co-exist at the maternal-fetal interface in a normal pregnancy. An 

imbalance between these factors leading to immune dysregulation in the reproductive tract of 

women with endometriosis may have a profound impact on the outcome of implantation and 

pregnancy. A key feature of endometriosis is inflammation, which involves an overproduction of 

cytokines, chemokines, prostaglandins and metalloproteinases. Hence our hypothesis was that 

presence of endometriotic lesions promotes a pro-inflammatory environment leading to shifts in 

the T-helper cell profiles and related cytokine milieu in the eutopic endometrium during the 

window of implantation (WOI).  
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Our summarized findings and future directions are as follows: 

High Treg and low Th17 cell ratio in the eutopic endometrium is predictive of receptivity  

We characterized alterations in lymphocyte cell populations in the endometrium and assessed 

whether the shift from an anti-inflammatory to a pro-inflammatory phenotype in the eutopic 

endometrium was associated with infertility. We found that patients with a high Treg and low 

Th17 cell population had a better chance at conceiving. In fact patients with a consistently and 

significantly high pro-inflammatory Th17 cell count maintained their infertile status. The ratio of 

the Treg to Th17 cells was a better indicator of fertility status as compared to the individual cell 

counts. Patients with a ratio less than 3 did not get pregnant. We also showed that laparoscopic 

intervention for ectopic lesion excision provided a boost to the anti-inflammatory cells and 

increased the chance of pregnancy in subsequent cycles. Moreover, the IL-17 expression was 

elevated in both the glandular and stromal compartments of the endometrium and had a strong 

inverse correlation to the Treg:Th17 ratio.     

IL-17 promotes migration and invasion of endometriotic cells via the induction of EMT 

We studied the effect of IL-17 on endometrial and endometriotic cells in culture to explore the 

consequences of an altered pro-inflammatory microenvironment on eutopic endometrial cells and 

on the processes involved in the establishment of ectopic endometriotic lesions. Though IL-17 

had no effect on the proliferation of these cell types, it did have a significantly positive effect on 

the migration and invasion of the endometriotic cells but not the endometrial cells. This 

differential effect could be explained by specific interaction of this ligand with different cell 

types or the involvement of shared receptors, because the IL-17R was expressed at similar levels 
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in both cell types. Furthermore, the endometriotic cells underwent EMT-like morphological 

changes with fusiform shape and dendritic filaments when they were treated with IL-17. But the 

cytokine had no such effect on the endometrial cells. Unfortunately, we did not see any marked 

differences in the traditional EMT protein marker end-points. But it was interesting that IL-17 

triggered the MAPK signaling pathway instead of its traditional NFκB pathway in our cell types.  

IL-17 possibly regulates and/or synergizes with EMMPRIN expression in endometriotic cells but 

not in the endometrial cells       

EMMPRIN is known to be involved in inflammatory processes and also plays an important role 

in matrix breakdown and cell motility. We characterized the EMMPRIN expression in the 

eutopic endometrium collected from the patients with endometriosis-related infertility. Our 

results show a positive direct correlation between the IL-17 and EMMPRIN expression in the 

eutopic endometrium. Our in vitro experiments with IL-17 showed an increase in EMMPRIN 

expression in the endometriotic cells but not in the endometrial cells. This interaction could also 

explain the induction of the MAPK pathway observed as both IL-17 and EMMPRIN are known 

to induce pro-inflammatory events via this signaling pathway. 

We conclude that this project has increased our understanding of how a specific immune 

cell niche regulates endometrial receptivity and also plays a role in ectopic lesion establishment. 

Future experiments should focus on further elucidation of this effect on eutopic and ectopic cell 

function. 

1. Our novel finding with the boosting effect of laparoscopic intervention should be 

pursued by increasing the sample size for patients with endometriosis related 

infertility in each group.  Other studies have also shown promising results with 
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endometrial biopsy related boosting effects, which we did not observe in our patient 

set. This could be used as a therapeutic modality in patients undergoing IVF 

treatment.  

2. Because laparoscopy is invasive (though minimally), alternate methods to induce the 

boosting effect could be explored. Use of a fallopian tube contrast agent has shown a 

similar effect possibly by leakage into the peritoneal cavity. Use of a less 

inflammatory flushing solution in a similar manner could possibly provide the desired 

effect. 

3. MUC proteins are important during the implantation process. Loss of mucins in a 

controlled manner on the luminal epithelium is necessary for embryo implantation. 

Elevated IL-17 is known to increase mucin expression in lung epithelium. It would be 

interesting to see if the mucin expression in the eutopic endometrium of patients with 

elevated IL-17 expression is altered and whether this is associated with the infertility 

seen.  

4. The IL-17 family of receptors has multiple subunits that act as homo- or 

heterodimers. As our in vitro experiments showed a differential effect with regards to 

cell motility, it would be beneficial to assess the role of a shared receptor in bringing 

about this effect. 

5. The experimental techniques utilized to assess NFκB pathway involvement were not 

very conclusive in our study. It would be beneficial to confirm these findings with 

alternate and possibly more accurate techniques such as the Luciferase assay. 
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6. Alternatively, this could also be tested by conducting microarray analyses of IL-17 

treated cells to evaluate changes in expression of genes involved in the pro-

inflammatory NFκB pathway. 

7. As our data show the involvement of MAPK signaling pathway, it would be prudent 

to assess how exactly this pathway is involved with the effects seen on cell motility. 

In addition, MAPK is also involved with cell survival. Endometriotic cells undergo 

changes that make them “resistant” to apoptosis. It would be interesting to see 

whether IL-17 treatment via the MAPK pathway confers this “resistance” to 

apoptosis. 

8. Endometriotic lesion establishment involves attachment before invasion of cells takes 

place. Co-culture experiments with endometriotic and mesothelial cells would help us 

evaluate whether IL-17 could enhance the attachment and invasion of endometriotic 

cells into a mesothelial monolayer. This experiment could then be conducted in a 3-D 

co-culture system and true invasion of cells into the matrix could be evaluated. 

9. Our experiments showed an enhancement of EMMPRIN expression in IL-17 treated 

cells. It would be good to evaluate whether downstream factors such as MMPs are 

also induced as a result of this. Moreover, IL-17 treatment following knock-down of 

EMMPRIN in cells could help elucidate whether the effect seen in the presence of 

EMMPRIN is also seen with it absent. 

10. IL-17 is known to increase the expression of other inflammatory factors such as IL-6 

which then has a positive feedback loop effect as IL-6 is needed for Th17 cell 

differentiation. IL-6 activity is enhanced manifold when its trans-signaling pathway is 

induced. This can occur due to shedding of the membrane bound receptor into a 
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soluble receptor. One interesting experiment could be to assess whether EMMPRIN 

can cause shedding of this receptor thus enhancing the pro-inflammatory effect 

overall. 

11. Prospective inhibitors of factors involved in the inflammatory signaling pathways 

discussed, could be tested in the future, for clinical use in patients with endometriosis 

related inflammation, pain and/or infertility. 

 

All of these and many more such ideas could help elucidate the role of IL-17 in producing the 

pro-inflammatory microenvironment in the uterine cells. This knowledge would help us better 

understand endometriosis related immune dysregulation.  
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CHAPTER 6 

MATERIALS AND METHODS 

 

Chemicals and Reagents 

Dulbecco’s Modified Eagle’s Medium (DMEM F/12) (Cat#11039-047; Invitrogen), penicillin-

streptomycin (Cat#30002CI; Corning), and L-glutamine (Cat#25005CI; Corning) were 

purchased from Life Technologies/ThermoFisher Brand. Fetal Bovine Serum (FBS Premium) 

(Cat#S11150) was purchased from Atlanta Biologicals. Recombinant human IL-17, recombinant 

human TNFα, recombinant EGF, recombinant IL-6 were purchased from R&D Systems (Refer 

Appendix B for details). Tritiated thymidine ([
3
H] thymidine) was purchased from PerkinElmer. 

Precise Protein Gels (Cat#PI25244), BupH Tris/Hepes/SDS Running buffer (Cat#PI28398), 

Restore Western Blot Stripping Buffer (Cat#PI21059), SuperSignal West Pico 

Chemiluminescent Substrate (Cat#PI34080), Pierce ® BCA protein assay kit (Cat#23225), 

Immobilon-P PVDF membrane (Cat#IPVH00010; Millipore), hydrogen peroxide (Cat#H325-

100), xylene (Cat#X5-4), were purchased from ThermoScientific Fisher Brand. Mayer’s 

Hematoxylin solution (Cat#MHS32), Triton X-100 (Cat#X100), Ponceau S solution 

(Cat#P7170) were purchased from Sigma. Fluorophore antibodies (refer Appendix B for details), 

Image-IT Signal FX Enhancer (Cat#I36933), DAPI (Cat#D3571), Prolong Gold (P36930) were 

purchased from Invitrogen. DAKO Target Retrieval Solution pH 9.0 (Cat#S236784) was 

obtained from DAKO. Ibidi dishes (Cat#80826) were purchased from Ibidi, paraformaldehyde 

(Cat#15710) from Electron Microscopy Sciences, Precision Plus Protein All Blue Standards 

(Cat#1610373) from Biorad and antibodies were obtained from Abcam, Cell Signaling 

Technology and Santa Cruz Biotechnology Inc (refer Appendix B for details).  
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Cell culture 

Endometrial and endometriotic epithelial immortalized/transformed cell lines were used for all 

cell culture experiments. Ishikawa endometrial epithelial cells were used as representative 

eutopic endometrial epithelial cells and were obtained from Dr. Bruce Lessey (South Carolina). 

The 12Z endometriotic epithelial cells were used as representative ectopic endometriotic 

epithelial cells and were obtained from Dr. Asgi Fazleabas (Michigan State University). These 

cells were cultured in DMEM/F-12 medium containing 2% heat inactivated FBS, 1% L-

glutamine and 1% penicillin-streptomycin. Cells were cultured on plastic culture dishes at 37
o
C 

in a humidified atmosphere of 5% CO2. All experimental replicates were restricted to passage 

number 52-54 for 12Z cells and split number 9-11 for Ishikawa cells. 

 

Cell Proliferation Assay: Cell counts 

Cells were cultured in flasks, washed once with 1x PBS to remove dead cells before dissociation 

with 0.25% Trypsin in 0.53mM EDTA for 5 minutes for the 12Z cells and 12-15 minutes for the 

Ishikawa cells at 37
o
C. Dishes were checked for cell detachment, then 2% heat inactivated FBS 

containing medium was added for enzyme inactivation. Cell suspensions were centrifuged at a 

100 RCF for 5 minutes, supernatant was removed, and cell pellets were resuspended in 2% heat 

inactivated FBS containing medium. A 10ul aliquot of this cell suspension was placed on two 

separate chambers of a hemocytometer for cell counts under an inverted bright field microscope. 

To evaluate proliferation, 10000 cells of each cell type were plated separately in each well of a 

96 well plate and allowed to grow for 24 hours. Cells were then treated with serum free medium, 

vehicle control (0.1% BSA/PBS), recombinant EGF (100 pg/ml), IL-6 (200 pg/ml) and IL-17 
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(100 ng/ml, 10 ng/ml, 1 ng/ml, 100 pg/ml, 10 pg/ml, 5 pg/ml, and 2 pg/ml). Cells were 

trypsinized and counted 48 hours post treatments. Three experimental replicates were conducted 

for each cell line.   

 

Cell Proliferation Assay: Thymidine Incorporation Assay  

Thymidine incorporation assays were also used to evaluate proliferation of endometrial and 

endometriotic epithelial cells in response to different treatments. Cells were plated in 96 well 

plates as described above and allowed to grow for 24 hours. Cells were then treated with serum 

free medium, vehicle control (0.1% BSA/PBS), recombinant EGF (100 pg/ml), IL-6 (200 pg/ml) 

and IL-17 (100 ng/ml, 10 ng/ml, 1 ng/ml, 100 pg/ml, 10 pg/ml, 5 pg/ml and 2 pg/ml). Twenty 

four hours after treatments were added, cells were labeled with 0.01uCi/ul tritiated thymidine in 

20 ul medium. After additional 24 hour incubation, cells were trypsinized in 100ul of 0.25% 

Trypsin-EDTA and transferred into 96 well polyethylene terephthalate sample plates (Cat#1450-

401; Perkin Elmer). One hundred microliters of scintillation fluid were then added to each well 

and mixed well with the cell suspension. Plates were sealed using sealing tape and quantified in a 

Wallac Microbeta liquid scintillation counter. Three experimental replicates were carried out per 

cell line.    

 

Cell Migration Assay 

Migration of endometrial and endometriotic epithelial cells was evaluated using the Radius
TM

 

24-well cell migration assay kit (Cat#CBA-125; Cell Biolabs, Inc.). Both cell types were plated 

in the culture wells provided in the kit at a density of 75,000 cells per well in five hundred 

microliters of medium and allowed to proliferate for 24 hours, when they reached 80% 
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confluency.  The gel insert in the center was then removed using the gel removal solution 

provided in the kit. Cells were then washed and treated with medium only, vehicle control (0.1% 

BSA/PBS), recombinant TNFα (15 ng/ml) or recombinant IL-17 (100 ng/ml, 1 ng/ml and 10 

pg/ml). Cell migration over time was evaluated by imaging wells at 0, 6, 12, and 24 hours post 

treatment. Images thus obtained were analyzed by Wimasis Image Analysis, Germany for area 

covered by cells.        

 

Cell Invasion Assay 

Invasion of endometrial and endometriotic epithelial cells through a basement membrane-like 

structure was evaluated using the CytoSelect 
TM

 24-well Cell Invasion Assay (Basement 

Membrane, Colorimetric Format, Cat#CBA-110; Cell Biolabs Inc.). Cell suspensions of both cell 

types were prepared with 250,000 cells in 500ul of medium. Treatments prepared and 

administered were medium only, vehicle control (0.1% BSA/PBS), recombinant TNFα (15 

ng/ml) and recombinant IL-17 (100 ng/ml, 1 ng/ml and 10 pg/ml). Cell suspensions with added 

treatments were plated onto the inserts in each well provided in the kit. Five hundred microliters 

of 10% FBS-containing medium were added to the lower well of each invasion plate. Cells were 

incubated for 24 hours at 37
o
C in 5% CO2 atmosphere. The medium from the inserts was then 

carefully aspirated. The insides of the inserts were carefully wiped with the cotton swabs 

provided in the kit. Inserts were then transferred to a clean well in the plate and incubated in the 

Cell Stain Solution provided for 10 minutes at room temperature. The inserts were then gently 

washed in MiliQ purified water and allowed to dry. Cells on the underside of the insert from five 

random fields were counted under high magnification for each treatment group. The inserts were 

then transferred to a clean empty well in the plate and treated with Extraction solution provided 
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in the kit for 10 minutes on an orbital shaker. One hundred microliters of each sample were 

transferred to a 96-well microtiter plate and optical density was measured at 560nm in a plate 

reader.       

 

Patient Endometrial Biopsy Samples 

Patients who came with the primary complaint of Unexplained Infertility (UI) or 

unexplained Recurrent Pregnancy Loss (uRPL), to Dr. Bruce Lessey’s clinic were included in 

this study. These women were between 18-40 years of age and had not received any treatment 

for their fertility issues prior to undergoing the biopsy. Endometrial biopsies were collected 

during the mid- to late-secretory phase (specifically 7 days post LH surge) from the middle front 

or back region of the uterine body (not close to the cornua). A subset of these patients underwent 

laparoscopic excision of endometriotic lesions before the endometrial biopsy sample was 

collected. The samples were processed in Dr. Lessey’s laboratory for histological analysis and 

we received tissue sections on coated glass slides. These tissue sections were assessed for Treg 

and Th17 cell numbers as well as for the cytokine Interleukin 17 expression. The results were 

correlated with the fertility status of these women to ascertain potential markers for uterine 

receptivity and positive pregnancy outcome. In order to keep the study completely unbiased, I 

was blind to the patient history and/or categorization. The results of the immunohistochemistry 

analyses were sent to Dr. Lessey and he conducted the statistical analysis.     

 

Immunohistochemistry 

Immunohistochemistry was performed on paraffin embedded human eutopic endometrial tissue 

sections to detect Treg and Th17 cells, IL-17 cytokine and EMMPRIN expression. Antibodies 
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against FoxP3 (Treg cell transcription factor), RORγt (Th17 cell transcription factor), IL-17 

(Th17 specific cytokine) and anti-human EMMPRIN were used for this purpose. After 

deparaffinization and rehydration of sections, antigen retrieval was performed by incubating the 

sections in 1X DAKO Target Retrieval solution (pH 9.0) at 97-99
o
C for 20 minutes and then 

cooled to room temperature. Quenching of endogenous peroxidase activity was performed (for 

IL-17 and EMMPRIN only) by incubating the slides in 0.3% hydrogen peroxide solution in 

methanol for 15 minutes at room temperature. Non-specific binding was blocked using 5% 

normal horse serum (for FoxP3), 5% normal rabbit serum (for RORγt), 5% normal goat serum 

(for IL-17) or 5% normal rabbit serum (for EMMPRIN) in 1% BSA/PBST at room temperature 

for 30 minutes. The sections were then incubated with 10ug/ml of mouse anti-human FoxP3, 

5ug/ml of rat anti-human RORγt, 2ug/ml of rabbit anti-human IL-17 or 1ug/ml goat anti-human 

EMMPRIN in 1% BSA/PBST at 4
o
C overnight. The sections were washed 3 times for 5 minutes 

each with PBST and then incubated with biotinylated horse anti-mouse IgG, biotinylated rabbit 

anti-rat IgG, biotinylated goat anti-rabbit IgG or biotinylated rabbit anti-goat IgG diluted 1:200 

with 1% BSA/PBST for 45 min at room temperature for FoxP3, RORγt, IL-17 and EMMPRIN 

respectively. Indirect detection was performed by incubation of sections with avidin-biotinylated 

peroxidase complex (Reagents A and B in Vectastain Elite ABC Kit), reacted with 0.6 mg/ml 3, 

3’-Diaminobenzidine (DAB; Cat#AC11209; Fisher) in Tris-HCl buffer and finally 

counterstained with Mayer’s hematoxylin nuclear stain. The slides were then dehydrated, 

mounted with cover-slip and kept overnight for drying. Negative control sections were treated 

with non-specific IgG at similar concentration for each primary antibody. Stained sections were 

scanned using a Nanozoomer 2.0HT (Hamamatsu) and these digital images were used for 

quantification of FoxP3 and RORγt positive cells in the endometrial sections and H-Score 
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analysis of IL-17 and EMMPRIN expression. Quantitation and scoring were carried out in a 

blinded fashion to avoid any bias. The results thus obtained were then compared to the fertility 

history for each patient to determine potential correlation. 

 

Immunofluorescence Microscopy 

Cells were grown in 8-chamber Ibidi dishes and allowed to proliferate for 48 hours. Cells were 

then treated with vehicle control (0.1% BSA/PBS), recombinant TNFα (15 ng/ml) or 

recombinant IL-17 (100 ng/ml, 10 ng/ml, 1 ng/ml and 10 pg/ml) for 0, 60 minutes and 24 hours. 

Cells were washed with 1x PBS between each step in the entire procedure. Cells were fixed at 

the respective time-points with 4% paraformaldehyde for 30 minutes at room temperature, and 

then permeabilized in 0.5% Triton X-100 for 15 minutes. Cells were then incubated in ultra-cold 

methanol for 15 minutes at -20
o
C. Blocking of non-specific activity was carried out with Image-

IT
TM

 FX Signal Enhancer for 30 minutes. Cells were then incubated with 1 ug/ml of anti-human 

p65 antibody for 2 hours at 37
o
C. After further PBS washes, cells were incubated in a 1:200 

dilution of anti-rabbit Alexa Fluor 568 conjugated secondary antibody for 1 hour at 37
o
C. Cells 

were then incubated in 10ug/ml DAPI for 15 minutes at room temperature. Prolong Gold was 

added to each well and allowed to cure in the wells for 24 hours at room temperature. Dishes 

were kept at 4
o
C in the dark till imaging was conducted with Zeiss LSM700 microscope.       

 

Collecting Cell Lysates for Immunoblotting 

Total cell lysates from endometrial and endometriotic epithelial cells that had received various 

treatments in specific experiments were collected in 1x RIPA buffer (50 mM Tris-HCl pH 8, 150 

mM NaCl, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% Sodium Dodecyl Sulphate) with 
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cOmplete Mini EDTA-free Protease Inhibitor Cocktail Tablets (Roche). Cells were kept in 1x 

RIPA buffer on ice for 30 minutes, lysates were then collected into Eppendorf tubes and 

centrifuged at 12,000 RPM at 4
o
C for 15 minutes to remove nuclear and cell debris. Supernatants 

were then transferred to fresh Eppendorf tubes for further processing. Lysates were kept on ice 

throughout the entire harvest procedure.    

 

Immunoblotting 

BCA protein assays were performed on cell lysates to determine total protein concentrations for 

all samples. Ten micrograms of total protein for each sample were loaded onto 4-20% gradient 

Tris-HEPES-SDS Precast Polyacrylamide Mini gels and run for 1 hour at 90V. Proteins thus 

separated were transferred to Polyvinylidene Fluoride membranes. Membranes were stained for 

5 minutes with Ponceau S stain to check for proper transfer of proteins onto the membranes. 

Membranes were then incubated in 5% non-fat dry milk in TBST (20 mM Tris base, 150 mM 

NaCl, 0.1% Tween-20, pH 8.0) for 1 hour at room temperature to block non-specific activity. 

Membranes were then incubated in the respective primary antibody at 4
o
C overnight according 

to specific conditions for each primary antibody. Membranes were probed for phospho-IκBα, 

total- IκBα, EMMPRIN, cytokeratin, vimentin, phopho-MAPK, and MAPK (refer Appendix B 

for details). After 3 washes with TBST, membranes were incubated in a 1:10,000 dilution of 

respective HRP-conjugated secondary antibody (refer Appendix B for details) for 60 minutes at 

room temperature. After further washes with TBST, the membranes were incubated in the 

SuperSignal West Pico Chemiluminescent Substrate for 6 minutes. Membranes were then 

visualized for protein bands using ImageQuant LAS4000. Membranes were first probed with 

phosphorylated protein antibodies, then stripped using Restore western blotting stripping buffer 
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for 15 minutes at room temperature and reprobed with antibody against the total protein. 

GAPDH was used as a loading control for all other proteins probed. 

            

Densitometric Analysis of Immunoblots 

To quantify changes in protein expression in response to treatment over time, images obtained 

using the ImageQuant LAS4000 were analyzed using the image analysis software. Proteins of 

interest were measured by drawing a rectangle around the bands and obtaining numerical values 

for optical density of the band thus selected. Measurement of bands for the phosphorylated 

protein was normalized to measurements for total protein bands. Other protein bands were 

normalized to GAPDH bands.    

 

Statistical Analysis 

The n value for each experiment is mentioned in the figure legend. Results are expressed as 

Mean ± SEM.  Experimental variability between treatments and time-points was determined by 

conducting the Shapiro-Wilk test for normality on obtained data. Parametric ANOVA, Student’s 

t-test or linear regression analyses were conducted (as needed) using SAS (9.0). Significant 

differences between groups were detected by post hoc analyses using Tukey’s or Bonferroni’s 

test (as appropriate). Statistical significance was set as P<0.05.    
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APPENDIX A 

LIST OF ABBREVIATIONS 

 

Cell lines  

 

12Z :- Immortalized Human Epithelial Endometriotic cell line 

 

22B :- Immortalized Human Stromal Endometriotic cell line 

 

JEG-3 :- Human Placenta Choriocarcinoma cell line 

 

THP-1 :- Human Monocytic cell line 

 

Reagents 

 

DMEM/F12 :- Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 

 

FBS :- Fetal Bovine Serum 

 

DAB :- 3, 3`- Diaminobenzidine 

 

H2O2 :- Hydrogen Peroxide 

 

PBST :- Phosphate Buffered Saline with Tween 20 

 

recHuEGF :- recombinant Human Epidermal Growth Factor 

 

recHuIL-17 :- recombinant Human Interleukin 17 

 

recHuIL6 :- recombinant Human Interleukin 6 

 

recHuTNFα :- recombinant Human Tumor Necrosis Factor alpha 

 

Pathological conditions 

 

EMT :- Epithelial to Mesenchymal Transition is a biologic process that allows a polarized 

epithelial cell, which normally interacts with the basement membrane to undergo multiple 

biochemical changes that enable it to lose cell polarity and cell-cell adhesion, and gain migratory 

and invasive properties.  

 

MET :- Mesenchymal to Epithelial Transition is a reversible biological process that involves 

the transition from motile, multipolar or spindle-shaped mesenchymal cells to planar arrays of 

polarized epithelial cells.  
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RPL, RM or RSA is defined as 3 consecutive pregnancy losses prior to 20 weeks from the last 

menstrual period. 

 

RPL :- Recurrent Pregnancy Loss  

 

iRPL :- idiopathic Recurrent Pregnancy Loss 

 

uRPL :- unexplained Recurrent Pregnancy Loss 

 

RSA :- Recurrent Spontaneous Abortion 

 

URSA :- unexplained Recurrent Spontaneous Abortion 

 

RM :- Recurrent Miscarriage 

 

Factors involved with pathways 

 

Act1:- NFκB Activator 1  NFκB activating protein; Act1 associates with and activates IκB 

kinase (IKK), leading to the liberation of NF-κB from its complex with IκB. 

 

cAMP :- cyclic adenosine monophosphate  a second messenger important in many biological 

processes. 

 

CAPN7 :- Calpain 7  Calpains are ubiquitous, well-conserved family of calcium-dependent, 

cysteine proteases. 

 

CCL2 :- Chemokine (C-C motif) ligand 2  CCL2 is a small cytokine that belongs to the CC 

chemokine family. CCL2 recruits monocytes, memory T cells, and dendritic cells to the sites of 

inflammation produced by either tissue injury or infection. 

 

COX2 :- Cyclooxygenase 2  an enzyme that is responsible for formation of important 

biological mediators such as prostaglandins, prostacyclin and thromboxane. 

 

ERK :- Extracellular-Signal-Regulated Kinases  widely expressed protein kinase intracellular 

signaling molecules that are involved in functions including the regulation of meiosis, mitosis 

and post-mitotic functions in differentiated cells. 

 

IGFBP1 :- Insulin-like Growth Factor-binding Protein 1  serves as a carrier protein for IGF. 

 

IgG :- Immunoglobulin isotype G Most abundant antibody isotype found in blood circulation; 

synthesized and secreted by plasma B cells. 

 

IκB :- Inhibitor of NFκB  a protein that inactivates the NF-κB transcription factors and keeps 

them sequestered in the cytoplasm. 
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IKK :- IκB kinase  The IκB kinase enzyme complex is part of the upstream NFκB signal 

transduction cascade. 

 

IKKα :- IκB kinase alpha catalytic subunit of IκB kinase. 

 

IKKβ :- IκB kinase beta  catalytic subunit of IκB kinase. 

 

LH :- Luteinizing Hormone  is a hormone produced by gonadotrophs in the anterior pituitary; 

it triggers ovulation in females and stimulates Leydig cell production of testosterone in males.  

 

MAPK :- Mitogen-activated Protein Kinases  specific protein kinases that are involved in 

cellular responses to stimuli and hence regulate proliferation, differentiation, cell survival etc.  

 

MMP :- Matrix Metalloproteinase  are zinc-dependent proteases that are capable of degrading 

extracellular matrix proteins, and are also thought to play a major role in cell behaviors such as 

proliferation, migration, differentiation, and apoptosis etc. 

 

mRNA :- messenger Ribonucleic acid  a large family of ribonucleic acid molecules that 

convey genetic information from DNA to the ribosome, where they specify the amino acid 

sequence of the protein products of gene expression.  

 

NFκB :- Nuclear Factor Kappa-light-chain-enhancer of activated B cells  is a protein complex 

that controls transcription of DNA, is involved in cellular responses to stimuli, plays a key role in 

regulating the immune response to infection by regulating cytokine production and cell survival. 

 

p50 :- Protein subunit of NFκB transcription factor complex 

 

p65 :- Protein subunit of NFκB transcription factor complex 

 

PDGF :- Platelet Derived Growth Factor  growth factor or protein that regulates cell growth 

and plays important role in angiogenesis. 

 

PI3K :- Phosphoinositide 3-Kinase  a family of related intracellular signal transducer enzymes 

involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival 

and intracellular trafficking, which in turn are involved in cancer. 

  

PRA :- Progesterone Receptor A  

 

PRB :- Progesterone Receptor B 

 

PRL :- Prolactin  is a protein secreted from the pituitary gland that is best known for its role in 

milk production in the female; but also plays an essential role in metabolism and regulation of 

the immune system. 

 

TRAF6 :- Tumor Necrosis Factor Receptor Associated Factor  a signal transducing protein 

that is involved in regulation of NFκB signaling and activation of MAP Kinases. 
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TIMP-2 :- Tissue Inhibitor of Metalloproteinases 2  encoded proteins that are natural 

inhibitors of matrix metalloproteinases, and can also directly suppress proliferation of endothelial 

cells. 

  

Raf1 :- Rapidly Accelerated Fibrosarcoma  is an enzyme that is a “gatekeeper” of the ERK 

pathway. 

 

Immune cells and related factors 

 

CD4 :- Cluster of Differentiation 4  a glycoprotein found on the surface of immune cells such 

as T helper cells, monocytes, macrophages, and dendritic cells  

 

CD25 :- Cluster of differentiation 25  a type I transmembrane protein present on activated T 

cells, activated B cells, some thymocytes, myeloid precursors, and oligodendrocytes that 

associates with CD122 to form a heterodimer that can act as a high-affinity receptor for IL-2. 

 

FoxP3 :- Forkhead Box P 3  a protein involved in immune system responses, it appears to 

function as a transcription factor in the development and function of Treg cells. 

 

IL-17 :- Interleukin 17  a cytokine that acts as a potent mediator of inflammation and attracts 

monocytes and neutrophils to the site of inflammation. 

 

RORγt :- RAR-related orphan receptor gamma t  is a transcription factor with essential 

functionality in the immune system for lymphoid organogenesis, and promoting thymocyte 

differentiation into pro-inflammatory T helper 17 (Th17) cells. 

  

TCR :- T cell receptor  is a molecule found on the surface of T lymphocytes that recognizes 

antigens bound to major histocompatibility complex molecules. 

 

TGFβ :- Transforming Growth Factor beta is a protein that plays an important role in 

proliferation, cellular differentiation and other functions in most cells. 

 

Th1 :- T helper 1  Th1 helper cells are the host immunity effectors against intracellular 

bacteria and protozoa. The main effector cells of Th1 immunity are macrophages as well as CD8 

T cells, IgG B cells, and IFN-γ CD4 T cells.  

 

Th2 :- T helper 2  Th2 helper cells are the host immunity effectors against multicellular 

helminths. The main effector cells are eosinophils, basophils, and mast cells as well as IgE B 

cells, and IL-4/IL-5 CD4 T cells.  

Th-17 :- T-helper 17  Th-17 helper cells mediate host immunity against extracellular bacteria 

and fungi. Its main effector cytokines are IL-17a, IL-21, and IL-22. The main Th17 effector cells 

are neutrophils as well as IgM/IgA B cells, and IL-17 CD4 T cells. The key Th17 transcription 

factors are STAT3 and RORgt.  



150 
 

Treg :- T-regulatory  The regulatory T cells, formerly known as suppressor T cells, are a 

subpopulation of T cells which modulate the immune system, maintain tolerance to self-antigens, 

and abrogate autoimmune disease. 

 

iTregs :- inducible Treg  also known as adaptive regulatory T cells. They develop outside the 

thymus under a variety of conditions. iTregs are non-redundant and essential for tolerance at 

mucosal surfaces, yet their mechanisms of suppression and stability are unknown. 

 

nTregs :- natural /naïve Treg  Natural regulatory T cells develop in the thymus and express 

the transcription factor Foxp3. They are required for systemic immunological tolerance.  

 

uNK :- uterine Natural Killer  a type of cytotoxic lymphocyte critical to the innate immune 

system. Since pregnancies involve two individuals who are not tissue matched, successful 

pregnancy requires the mother's immune system to be suppressed. Uterine NK cells are thought 

to be important cells in this process. They are in the NK cell subset, potent at cytokine secretion, 

but with low cytotoxic ability and relatively similar to peripheral NK cells.  

 

Miscellaneous abbreviations  

 

WOI :- Window of Implantation  The receptive phase of the endometrium of the uterus is 

usually termed the "implantation window" and lasts about 4 days. The implantation window 

follows around 6-7 days after the peak in LH levels. The implantation window is characterized 

by changes to the endometrium cells, both structurally and in the composition of its secretions. 

 

ANOVA :- Analysis of Variance is a collection of statistical models used to analyze the 

differences between group means and their associated procedures (such as "variation" among and 

between groups) and are useful in comparing three or more variables for statistical significance. 

 

QRT-PCR :- Real Time Polymerase Chain Reaction  is a laboratory technique of molecular 

biology based on PCR technology, which enables amplification, detection and simultaneous 

measurement of targeted DNA products generated during each cycle of PCR process.  
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APPENDIX B 

LIST OF ANTIBODIES AND RECOMBINANT PROTEINS USED 

 

Recombinant Proteins Catalog number Final Concentration  Company 

Recombinant EGF  236-EG-200 100pg/ml R & D Systems 

Recombinant TNFα 210-TA-010 15 ng/ml R & D Systems 

Recombinant IL-17 7955-IL-025 100 ng/ml to 10 pg/ml  R & D Systems 
 

 

Primary Antibody 

[Clone] 

Catalog 

number 

Dilution  

[Application] 

Company 

Mouse Anti-Human FOXP3 

[236A/E7] 

ab20034 10 ug/ml [IHC] abcam 

Rat Anti- Human/Mouse RORγt  

[AFKJS-9] 

14-6988 5 ug/ml [IHC] eBioscience 

Rabbit Anti- Human IL-17  

[H-132] 

sc-7927 2 ug/ml [IHC] Santa Cruz 

Biotechnology 

Goat Anti-Human EMMPRIN sc-9754 1 ug/ml [IHC] Santa Cruz 

Biotechnology 

Rabbit Anti-Human IL-17RA   5503 1:1000 [WB] Cell Signaling 

Rabbit Anti-Human p65 ab16502 1 ug/ml [IF] abcam 

Mouse Anti-Human phospho-IκBα  

[5A5] 

9246 1:1000 [WB] Cell Signaling 

Rabbit Anti-Human IκBα (total) 9242 1:1000 [WB] Cell Signaling 

Mouse Anti-Human EMMPRIN  

[HIM6] 

555961 1:2000 [WB] BD 

Biosciences 

Rabbit Anti-Human/Mouse 

Cytokeratin-19  

[EP1580Y] 

ab52625 1:1000 [WB] abcam 

Goat Anti-Human Vimentin AF2105 1:200 [WB] R & D Systems 

Rabbit Anti- Human phospho-MAPK  

[D13.14.4E] 

4370 1:1000 [WB] Cell Signaling 

Rabbit Anti-Human MAPK 9102 1:1000 [WB] Cell Signaling 

Mouse Anti-Human GAPDH  

[1D4] 

NB300-221 1:1000 [WB] Novus Bio 

Rabbit Anti-Human MMP2  

[H-76] 

sc-10736 1:500 [WB] Santa Cruz 

Biotechnology 
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Secondary 

Antibodies 

Catalog number  

[Kit] 

Dilution 

[Application] 

Company  

Biotinylated Horse 

Anti-Mouse IgG  

PK-6102 

[Vectastain Elite ABC 

Kit Mouse IgG] 

1:200 [IHC] Vector Labs 

Biotinylated Rabbit 

Anti-Rat IgG 

PK-6104 

[Vectastain Elite ABC 

Kit Rat IgG] 

1:200 [IHC] Vector Labs 

Biotinylated Goat 

Anti-Rabbit IgG 

PK-6101 

[Vectastain Elite ABC 

Kit Rabbit IgG] 

1:200 [IHC] Vector Labs 

Biotinylated Rabbit 

Anti-Goat IgG 

PK-6105 

[Vectastain Elite ABC 

Kit Goat IgG] 

1:200 [IHC] Vector Labs 

Anti-Rabbit HRP-

conjugated IgG 

7074S 1:10,000 [WB] Cell Signaling 

Anti-Mouse HRP-

conjugated IgG 

7076S 1:10,000 [WB] Cell Signaling 

Anti-Goat HRP-

conjugated IgG 

ab6885 1:10,000 [WB] abcam 

 

 


