
c© 2015 Xiaobo Dong

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158311228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

POWER OF d CHOICES FOR LARGE-SCALE
BIN PACKING: A LOSS MODEL

BY

XIAOBO DONG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor R. Srikant

ABSTRACT

A system with N parallel servers is considered in our thesis. Each server

consists of B units of a resource and jobs arrive at this system according

to a Poisson process. Each job stays in the system for an exponentially

distributed amount of time. Moreover, each job may request different units

of the resource from the system. Our goal is to understand how to route

arriving jobs to the servers to minimize the probability that an arriving job

does not find the required amount of resource at the server, i.e., the goal is

to minimize blocking probability. Our motivation arises from the design of

cloud computing systems in which the jobs are virtual machines (VMs) that

request resources such as memory from a large pool of servers. In our thesis,

we consider power-of-d-choices routing, where a job is routed to the server

with the largest amount of available resources among d ≥ 2 randomly chosen

servers. We consider a fluid model that corresponds to the limit as N goes to

infinity, and use numerical methods to approximate the blocking probability.

Moreover, we also show the simulation for the system.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First, I thank my advisers, Prof. R. Srikant and Prof. Lu, for their guidance

and support. I also thank Xie who taught me many aspects of queueing

theory. Most importantly, I thank my parents for their unconditional love

without which I would not have studied abroad.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 REVIEW . 6
2.1 Supermarket Model . 6
2.2 Knowing Nothing about the Server 13

CHAPTER 3 MAIN RESULT . 15

CHAPTER 4 CONCLUSION . 24

REFERENCES . 26

v

LIST OF TABLES

3.1 The blocking probability for the power-of-two-choices pol-
icy with B = 50 at different load. 22

vi

LIST OF FIGURES

1.1 The annual revenue growth of cloud-based IT service 2
1.2 High-level representation of our model 4

2.1 Simplified version of the loss model 8
2.2 M/M/1 queue . 9
2.3 Markov chain for an M/M/1 queue 9
2.4 State i in the Markov chain 11
2.5 Markov chain for M/M/B/B loss model 13

3.1 The internal state i in the Markov chain 16
3.2 The Markov chain of our model 19
3.3 Updated Markov chain for our model 20
3.4 The simulation results for different arrival rates 22
3.5 The simulation results for different capacities with different

scaling methods . 23

4.1 The Markov chain for two different jobs 25

vii

CHAPTER 1

INTRODUCTION

Widespread adoption of cloud services, particularly public cloud services,

is driving the demand for cloud equipment among cloud-based IT service

providers. For example, Amazon Elastic Compute Cloud (Amazon EC2) [1]

is a virtual machine service that provides resizable compute capacity in the

cloud. Another prominent company named its virtual machine the Google

Cloud Platform which is a set of modular cloud-based services that allow you

to create anything from simple websites to complex applications [2]. Azure [3]

is Microsoft’s cloud platform; it is a growing collection of integrated services

including compute, storage, data, networking, and APP that enable users

to move faster and do more. This list of virtual machines is by no means

exhaustive, it is provided as a representation of growing ubiquity of cloud

computing. Figure 1.1 [4] shows the tremendous compound annual revenue

growth of cloud-based IT service.

With the motivation that cloud-based IT service becomes more and more

ubiquitous, we believe that cloud computing optimization will play an impor-

tant role in the future. One of the key procedures or steps in cloud computing

is the load balancing, that is the special case of resources allocation, where

the processors in cloud computing are resources to be allocated. For ex-

ample, in Amazon EC2, the strategy used is called Elastic Load Balancing

that automatically distributes incoming application traffic across multiple

Amazon EC2 instances in the cloud. It enables the users to achieve greater

levels of fault tolerance in the applications, seamlessly providing the required

amount of load balancing capacity needed to distribute the application traf-

fic. Therefore, we have a very clear view of the advantages of using a good

load balancing strategy. Regardless of the commercial expression, load bal-

ancing in the cloud computing provides an efficient solution to various issues

residing in cloud computing environment setup and usage. In general, load

1

Figure 1.1: The annual revenue growth of cloud-based IT service

balancing distributes workloads across multiple computing resource, such as

computers, a computer cluster, network links, central processing units or disk

drives. Load balancing aims to optimize resource use, maximize throughput,

minimize response time, and avoid overload of any single resource. Before

discussing a complicated system, we consider a simple and traditional sce-

nario of the bin packing problem, which has been considered in earlier work

[5]. Suppose that n balls are placed into n bins, and the goal is to have the

number of balls in a bin with the most balls as small as possible. It is obvious

that the optimal solution is 1, but in order to achieve the optimal solution

we need to record the bins which have already been occupied, i.e. whenever

there is a ball, we put it into the empty bin. However, for simplicity, we can

place each ball into a bin chosen independently and uniformly at random,

which totally gets rid of the record list. Then from the result in [5] with high

probability, the maximum load in any bin is approximately logn
log logn

. Suppose

instead that each ball is placed sequentially into the least full of d bins cho-

sen independently and uniformly at random. The work in [5] has also shown

that the maximum load is then only log logn
log d

+ O(1) with high probability.

Thus, with only one more choice for a ball, the result leads to an exponential

2

improvement. The bin packing problem is a static problem, where the balls

never leave the bin once they arrive. What we are interested in or what a

real virtual machine problem looks like is a dynamic problem, where a job

arrives in a server and stays in the server for processing for a while, and then

leaves the server. With the idea of bin packing problem in mind, we will use

the idea in our problem.

Now let us simply and intuitively discuss the model. The model that we

consider in our thesis is a cloud computing system with N parallel servers,

and each server consists of B units of a resource. Jobs arrive at this system

according to a Poisson process, and each job stays in the system for an expo-

nentially distributed amount of time. Each job may request different units

of the resource from the system. If the job selects a server that does not

have adequate available resources to support the job, the job will be dropped

without service permanently. Whenever there is a dropped job, the system

may request the data from the disk again or even wait for finishing that job

to process the next task, such that it will increase the system delay or require

extra cost of the energy. Therefore, the goal is to understand how to route

arriving jobs to the servers to minimize the probability that an arriving job

does not find the required amount of resources at the server, i.e., the goal

is to minimize blocking probability. The motivation for this problem arises

from the design of cloud computing systems in which the jobs are virtual

machines (VMs) that request resources such as memory from a large pool

of servers. And we believe this problem will play an important role in the

future. Figure 1.2 demonstrates the model we are presenting.

There exists a very intuitive strategy that whenever there is an arriving

job, it will join the server with the smallest load, i.e., the load with the largest

available resource in the server. If there are even resources among several

servers, the job will select one of the servers uniformly at random. This is

an optimal strategy in the sense that in theory joining the server with the

largest amount of the available resource may achieve the best performance.

However, it is not optimal in the sense that in the real system each query of

a server may slow down the speed of processing. Basically, whenever there

is a query of a server, the server has to pause the current process and send

the information of the resource to the central system which selects a server

3

Figure 1.2: High-level representation of our model

for a job. However, in the real system, there are thousands of the servers,

so that searching through all the servers for the smallest load is impractical.

Finding the server with smallest load may take a lot of time, and result in a

tremendous performance delay.

Since the price of knowing all the information of the servers is very high,

it is obvious to consider the scenario of knowing nothing about the servers.

In this case, the central system does not query any information from the

servers. Thus, the only work it can do is to randomly select a server for all

the arriving jobs. Randomly selecting a server totally gets rid of querying

the information about a server, and at least this strategy improves the delay

performance. However, the performance is not as good as we expected, and

a detailed analysis will be shown in Chapter 3. Here we can give a very intu-

itive and brief explanation. The key idea comes from the fact that separating

a stream of Poisson arrival uniformly at random into N different streams,

and each stream is still a Poisson stream. With this fact, each server will

act as an M/M/s/s queue, where the queueing system has s servers and no

buffer. And the performance of the overall system is closed to one M/M/s/s

queue.

Inspired by the bin packing problem, we consider power-of-d-choices rout-

ing, where a job is routed to the server with the largest amount of the avail-

able resource among d ≥ 2 randomly chosen servers. Now the scenario

switches from knowing all the information or knowing nothing to knowing

partial information of the servers. Obviously, in the blocking probability

4

sense knowing partial information cannot defeat knowing all the information.

However, it is much more practical than knowing all the information. On

the other hand, knowing partial information definitely has a greater advan-

tage than knowing nothing in the blocking probability sense. The power-of-d

strategy seems to be mediocre, but such a mediocre strategy has a very fa-

vorable performance both in practice and in theory. For simplicity, we will

consider the case that all the jobs use one unite of resource and the central

system just selects two candidates from all the servers for each arriving job,

i.e., d = 2.

This thesis is organized as follows. In Chapter 2, we will first review a

model called the supermarket model in [5] and also analyze the random-

choose-one strategy. In the supermarket model, we will present a fluid limit

analysis, and give a flavor of the idea of the fluid limit analysis. In Chapter

3, we will define the system and explain the notation at the beginning. Then

we will represent our fundamental result, the analysis and the simulation

results. In Chapter 4, we conclude our thesis with potentially further analysis

improvement and future work.

5

CHAPTER 2

REVIEW

The review section contains two parts. In the first part, the supermarket

model which is introduced in early work [5] and [6] will be discussed and

then an analysis using the idea of fluid limits will be provided. The model

inspired us so much that we choose to present this model at the beginning of

this chapter. The second part will contain the analysis of one of the cases in

the model we mentioned in Chapter 1 that the arriving jobs know nothing

about the servers.

2.1 Supermarket Model

The differences between the supermarket model and our model are the fol-

lowing:

(1) In the supermarket model, each server has a queue that the arriving

jobs or customers can stay in to wait for the service. However, in our

model each server has a certain amount of the resource and there is no

queue in the server. Therefore, if a job joins the server without enough

of the resource, the job will be dropped without service. Therefore, we

call our model the loss model.

(2) The goal for the supermarket model is to minimize the overall delay

of the system. However, in the loss model, the number of servers we

selected is very small and negligible, and the waiting time for getting

the load information of a server is negligible. Therefore, a delay in

performance will not be considered in the loss model. Indeed, the

performance criterion for the loss model we considered is the blocking

probability.

6

In Chapter 1, we discussed the bin packing problem, where a ball never

leaves the bin or box once it arrives. That is a static problem. The super-

market model is a dynamic version of the bin packing problem.

Now let us consider the following dynamic model:

Description: There are N servers in the system. Customers arrive as a

Poisson stream of rate Nλ, where λ < 1. We allow each customer to

choose d of servers independently and uniformly at random from the

N servers. The customer waits at the server currently with the fewest

customers (ties being broken arbitrarily). Moreover, customers who

come first are served first, and the service time for each customer is

exponentially distributed with mean 1.

This model can be used to represent many systems in real life. Among all

the systems in real life, the supermarket model is one of the most represen-

tative. This model can vividly describe the customers and cashiers in the

supermarket, which is where the name orginates. Whenever you finish shop-

ping in one of your favorite supermarkets, you would like to find the cashier

you expect has the shortest waiting time. As an individual, you definitely do

not want to spend excessive time in the waiting line. As a whole system or

a whole supermarket, the owner is concerned about the overall system per-

formance, like the accumulative waiting time for all of the customers. Now

we are interested in the owner’s benefit; that is the expected waiting time

for all of the customers in the supermarket. Moreover, in general, waiting

time spent in the system in equilibrium is a natural measure of a system

performance.

Now consider the system we are exploring. In the description of the system,

we know the average arrival rate for each queue is λ < 1, and the average

service rate for each queue is 1. From the basic queueing theory knowledge,

it is trivial to have the conclusion that the expected number of customers

per queue remains finite in equilibrium. Furthermore, we assume that the

time for customers to move to a server is 0, and the service rate is the same

at each server.

It is obvious to see that the optimal strategy for each customer in theory is

to select the cashier with the shortest line. Still, it is practical in some small

markets, such that finding the shortest line is doable. However, as you may

7

Figure 2.1: Simplified version of the loss model

have experienced, looking through all the lines to find the shortest one may

take a lot of time in a large supermarket. Therefore, normally, what we did

is to randomly select a portion of the cashiers. Then we selected the cashier

with the shortest line among the portion. In the supermarket model, there

still are different strategies.

(1) The customers obtain all the information about the cashiers.

(2) The customers just obtain the information about their favorite (ran-

domly selected) portion of the cashiers.

(3) The customers have no information about the cashiers.

Now let us consider the scenario that each customer does not have any

information about the cashiers. Therefore, what a customer can do is ran-

domly select one of the cashiers and join the line to wait. In this case, a

customer randomly selects one cashier, i.e., d = 1. A very useful fact is given

below referred from [7].

FACT 1 Assume that N(t) is a Poisson process. We can generate K ran-

dom process N1(t), ..., NK(t) as follows: when there is an arrival accord-

ing to N(t), make it an arrival process Nk(t), with probability pk, where
K∑
k=1

pk = 1. Then, N1(t), ..., NK(t) are independent Poisson processes

with parameters λp1,, λpK , respectively.

8

Then we know the fact that a Poisson stream with rate nλ randomly

selected with probability p from the arrival is still a Poisson process with

rate pnλ. Therefore, the arrival Poisson stream can be split into independent

Poisson streams for each server. Therefore, each server itself is a simple

M/M/1 queue as in Figure 2.2.

Figure 2.2: M/M/1 queue

Further, we know that the M/M/1 queue can be modeled as a Markov

chain as shown in Figure 2.3.

Figure 2.3: Markov chain for an M/M/1 queue

Let q(t) denote the number of customers in the system, which forms a time-

homogeneous continuous time Markov chain. Let π(n) be the steady-state

probability that there are n customers in the system. Note that Pij = 0 if

j 6= i−1 or i+1 and the inter-arrival times and service times are exponential,

so the transition rate matrix Q is given by

Qij =


λ if j = i+ 1

µ if j = i− 1

−λ− µ if j = i

0 otherwise

We know that stationary distribution π (where the bold π represents a vector

with size of n+ 1) satisfies the following condition

πQ = 0

9

Then it is equivalent to have

π(1) = ρπ(0)

π(2) = ρπ(1) = ρ2π(0)

...

π(n) = ρπ(n− 1) = ρnπ(0)

where ρ = λ
µ
. Since we know

∞∑
n=0

π(n) = 1, we have

π(0)
∞∑
n=0

ρn = 1

Since we know that λ < 1 and µ = 1, then ρ < 1. Therefore, we have

∞∑
n=0

ρn =
1

1− ρ

which yields

π(n) = ρn(1− ρ)

Then the mean number of customers in the system is given by:

L =
∞∑
n=0

nπ(n) =
ρ

1− ρ

And the expected waiting time can be obtained by the following Little’s law

referred from [7]:

FACT 2 The long-term average number of customers in a stable system L is

equal to the long-term average effective arrival rate λ multiplied by the

average time a customer spends in the system W or expressed: L = λW.

Thus, the expected waiting time for d = 1 is 1
1−ρ .

In the first case, the customers obtain all the information about the cashiers.

Indeed, this is not practical, so we will totally ignore this case.

Now we have the expected waiting time in the third case that the customers

have no information about the cashiers. Then let us consider the case that the

customers have the information about their favorite portion of the cashiers.

10

For simplicity, let us consider the case where the customers just know the

information about randomly selected cashiers, i.e., d = 2.

For d = 2, it is difficult to analyze the system, where the length of one

queue can affect the distribution of the length of the other queues. Our

analysis is mainly based on [5]. We focus on one of the servers (i.e. server

1), and let i denote the number of jobs in server 1. Then we can have the

following Markov chain in Figure 2.4, where λi is a function that depends

on many things, like whether server 1 is selected, and if the other selected

server has more jobs than server 1.

Figure 2.4: State i in the Markov chain

Now we will analyze the d = 2 case using the mean-field approach. In

the mean-field approach, we analyze the system as n goes to infinite. There-

fore, we can make a reasonable assumption about the pairwise independence

among those n servers. Let πi denote the probability that a server has i jobs

and let si denote the probability that a server has at least i jobs.

P ∗ = P (routing to server 1, when it has i packets)

=
n∑
j=2

P (server 1 and server j selected)×(
1

2
P (server j has i packets) + P (server j has more than i packets)

)
=

2

n
(
1

2
πi +

∞∑
k=i+1

πk)

=
2

n

(
1

2
(si − si+1) + si+1

)
=

1

n
(si + si+1)

11

Therefore, we can get

λi = nλP ∗ = λ(s+ si+1)

Using the local balance equation on the Markov chain, we have

λiπi = πi+1

(si + si+1)λ(si − si+1) = (si+1 − si+2)

λ(s2i − s2i+1) = (si+1 − si+2)

Solving the recursive equation, we have

sn = λ
2n−1
2−1 = λ2

n−1

The expected queue length is given by

E[Q] =
∞∑
i=1

iπi =
∞∑
i=1

i(si − si+1) =
∞∑
i=1

si

By Little’s law, the expected waiting time is

E[W] =

∞∑
i=1

λ2
i−1

λ
=
∞∑
i=1

λ2
i−2

Lemma 1 For λ ∈ [0, 1], T2(λ) ≤ c2(log T1(λ)) for some constant c2. T1 de-

notes the expected waiting time in the random-choose-one system, i.e. T1(λ =
1

1−λ) and similarly T2 denotes the expected waiting time in the random-choose-

two system.

Then

lim
λ→1−

T2(λ))

log T1(λ)
=

1

log 2

Given by Lemma 1.1, the expected waiting time is

E[W]→
log 1

1−λ

log 2
as λ→ 1

12

Compared with the case d = 1, where T1 = 1
1−λ , the expected waiting time

decreases exponentially.

2.2 Knowing Nothing about the Server

Now let us consider the scenario of knowing nothing about the servers. In

this case, the central system does not query any information from the servers.

Thus, the only work it can do is randomly select a server for all the arriving

jobs. Using Fact 1, we know for each server the stream of arriving jobs is a

Poisson process. Therefore, like the case in the supermarket model, we can

draw a conclusion on each server that each server acts as an M/M/B/B loss

model. And again, B is the amount of the resource in each server.

Consider an M/M/B/B loss model, where the queueing system has s servers

and no buffer. We are interested in the blocking probability, i.e., the proba-

bility that an arriving job is blocked and lost due to the fact that there is no

resource available to support the job. As in the case of the M/M/1 queue,

the number of customers in the M/M/B/B queue evolves as a Markov chain,

and is shown in Figure 2.5. The transition rates can be derived as in the case

of the M/M/1 queue. Next, we will derive the stationary distribution π of

the number of customers in the system for the M/M/B/B loss model.

Figure 2.5: Markov chain for M/M/B/B loss model

Next, we will derive the stationary distribution of the number of jobs in a

server for the M/M/B/B loss model. According to the local balance equation,

13

we have that

π(1) = ρπ(0)

π(2) =
1

2
ρπ(1)

π(3) =
1

3
ρπ(2)

...

π(B) =
1

B
ρπ(B − 1)

Thus, for 0 ≤ n ≤ B, we have

π(n) =
ρn

n!
π(0)

where, as before, ρ = λ
µ

Using the fact that
B∑
k=0

π(k) = 1, we obtain

π(0) =
1

B∑
k=0

ρk

k!

and

π(n) =
ρn

n!

B∑
k=0

ρk

k!

Thus, the probability that an arriving job is blocked and lost due to the fact

that there is no resource available to support the job is given by

π(B) =
ρB

B!

B∑
k=0

ρk

k!

We will present our main results in Chapter 3.

14

CHAPTER 3

MAIN RESULT

Let us review the system. We consider a system of N parallel servers. Each

server has B units of a resource. Jobs arrive at the system according to a

Poisson process with rate Nλ, and each job requires 1 unit of a resource and

stays in the system for an exponentially distributed amount of time with

mean µ = 1. Each arriving job is routed to a server according to a routing

policy and requires zero-delay service. If the selected server has sufficient

resources to accommodate the arriving job, the job will be processed imme-

diately. Otherwise the job is blocked, i.e., it leaves the system immediately

without being served. The goal is to study the blocking probability of the

power-of-d-choices routing: under this routing scheme, upon each job arrival,

d servers are selected uniformly at random and the job is routed to the least

loaded of the servers (the one with the least amount of resource used). If

none of the selected servers has a sufficient amount of the resource, then the

arriving job is blocked and lost. There are three different scenarios:

(1) The arriving job knows the information about all of the servers. When-

ever there is an arriving job, it will join the server with the least load,

i.e., with largest available resource among all of the servers. If there are

even loads among several servers, the job will select one of the servers

uniformly at random.

(2) The arriving job knows the information about a portion of the servers.

Whenever there is an arriving job, it will be assigned to d number of

servers selected uniformly at random among all of the servers. Then,

the job will join the server with the largest available resource among

these d servers. If there is an even number among several servers, the

job will select one of the servers uniformly at random.

(3) The arriving jobs know nothing about the servers. Whenever there

15

is an arriving job, it will join one of the servers selected uniformly at

random among all of the servers.

In Chapter 2, we analyzed the third case of the model using the traditional

queueing theory. Now let us consider the third case of the model in the fluid

limits sense.

First consider one of the internal state i of the continuous time Markov

chain (CTMC) as shown in Figure 3.1.

Figure 3.1: The internal state i in the Markov chain

Let q(t) denote the number of customers in the system, which forms a

time-homogeneous continuous time Markov chain. Let πn be the steady-

state probability that there are n customers in the system. For the state i,

we have the local balance equation:

λπi = (ı + 1)µπi+1

and we know that the service rate µ = 1 in our model. Moreover, we intro-

duce a helper function

p(x) = πB−x
√
B

and

x =
B − i√
B

Therefore, we have

πi = p(x)

16

Now let us scale the arrival rate λ, which is motivated by earlier analysis of

loss models in [8], [9] as follows

λ = B − γ
√
B

Then the local balance equation can be rearranged as

(B − γ
√
B)p(x) = (B − x

√
B + 1)p(x− 1√

B
) (3.1)

where the last term above by the definition of p(x) and x is

p(x− 1√
B

) = πB−
√
BB−i−1√

B

= πi+1

Now by rearranging Equation (3.1), we have

Bp(x)−Bp(x− 1√
B

) = γ
√
Bp(x)− (x

√
B − 1)p(x− 1√

B
) (3.2)

Then divide
√
B on both sides of Equation (3.2), and we get

√
B
(
p(x)− p(x− 1√

B
)
)

= γp(x)− (x− 1√
B

)p(x− 1√
B

) (3.3)

p(x)− p(x− 1√
B

)
1√
B

= γp(x)− (x− 1√
B

)p(x− 1√
B

) (3.4)

As B →∞, we have

dp(x)

dx
= (γ − x)p(x)

Then rearrange the above equation, and we get

dp(x)

p(x)
= (γ − x)dx (3.5)

Now integrate Equation (3.5) on both sides, we have

ln p(x) + C = γx− x2

2

17

where C is some constant. Then

p(x) = C1e
γx−x2

2

where C1 = eC , and C1 can be determined by solving the equation,

∞∫
x=0

C1e
γx−x2

2 = 1

and

C1 =
1

∞∫
x=0

eγx−
x2

2

For the blocking probability, we are interested in πB, and we know x = B−i√
B
.

Then

πB = p(0) = C1 =
1

∞∫
x=0

eγx−
x2

2

(3.6)

From Chapter 2, we know the blocking probability is

π(B) =
ρB

B!

B∑
k=0

ρk

k!

And Equation (3.3) is a fluid approximation of it in a heavy traffic scaling of

λ = B − γ
√
B.

Now let us consider the second case in our model. The arriving job knows

the information about a portion of the servers. Whenever there is an arriving

job, it will be assigned to d number of servers selected uniformly at random

among all of the server. Then, the job will join the server with the largest

available resource among these d servers. If there are even resources among

several servers, the job will select one of the servers uniformly at random.

For simplicity, let us consider the case d = 2. Since the number of servers

is very large, we can assume the pairwise independence among the servers.

Let π = (π0, π1, ...πB) be the probability of occupancy of a server. Because

of the symmetry, each server should have the same probability of occupancy.

Without loss generosity, let us consider server 1. Then we can establish the

18

following Markov chain shown in Figure 3.2.

Figure 3.2: The Markov chain of our model

In order to calculate π, we need to find λ0, λ1,...,λB−1. And λi is given by

the following:

λi = NλP (server 1 is selected
∣∣it has i objects in it)

First consider the term P (server 1 is selected
∣∣it has i objects in it) :

P (server 1 is selected
∣∣it has i objects in it) =

P (server 1 is chosen and the other server has more than i objects) +

1

2
P (server 1 is chosen and the other also has i objects)

=
N − 1(

N
2

) (B∑
j=i+1

πj +
1

2
πi
)

=
2

N

(B∑
j=i+1

πj +
1

2
πi
)

Let si = P (the number of objects is more than i) =
B∑
j=i

πj. Then we have

P (server 1 is selected
∣∣it has i objects in it) =

2

N
(si+1 +

1

2
(si − si+1))

=
2

N
(
1

2
(si + si+1))

=
1

N
(si + si+1)

19

Therefore,

λi = Nλ
1

N
(si + si+1) = λ(si + si+1)

Now the Markov chain can be represented as shown in Figure 3.3

Figure 3.3: Updated Markov chain for our model

Given the local balance equation, we have

λ(si + si+1)πi = (i+ 1)µπi+1 for i ∈ {0, 1, ..., B − 1}

Since πi = si − si+1 for i ∈ {0, 1, ..., B − 1}, then we have:

λ(si + si+1)(si − si+1) = (i+ 1)µ(si+1 − si+2) for i ∈ {0, 1, ..., B − 2}

λ(sB−1 + sB)(sB−1 − sB) = Bµ(sB)

Define ρ = λ
µ
, and we can simplify the above recursive equations to be

s0 = 1

(s2i − s2i+1)ρ = (i+ 1)(si+1 − si+2) for i ∈ {0, 1, ..., B − 2}

(s2B−1 − s2B)ρ = BsB

20

For the heavy traffic, we scale λ = B − γ
√
B, x = B−i√

B
, and define g(x) = si.

Then the recursive equation becomes

λ(s2i−2 − s2i−1) = (i− 1)(si−1 − si)

(B − γ
√
B)(g2(x+

2√
B

)− g2(x+
1√
B

)) = (B − x
√
B − 1)(g(x+

1√
B

)− g(x))

divided by B on both side and let B →∞

(1− γ√
B

)
dg2(x)

dx
= (1− x√

B
− 1

B
)
dg(x)

dx

dg2(x)

dx
= g′(x) since B →∞

2g
dg(x)

dx
= g′(x)

The result is:

g′(x) = 0 or g(x) =
1

2

Given by the result above, we can expected the heuristic distribution of

si should be 1 at the beginning and kept 1 for amount of time and then

suddenly jumps to 0 and remains 0 forever. In order to check our heuristic,

we numerically solve the recursive equation and also simulate the stochastic

system and calculate the distribution for si. The graph in Figure 3.4 shows

our numerical result and simulation result.

Note: There is an equilibrium tail distribution for the case d = 2 with

server capacity B = 50 at three different loads. The values for the stationary

point are obtained numerically by solving the recursive equation. Simulation

results are from a finite system with N = 500.

Now we have shown that the stochastic system can be approximated by

the fluid model. Then the blocking probability pd can be approximated by

the solution of the fixed point equation. The numerical result has been shown

in Table 3.1.

Moreover, as we have shown in the previous analysis of the fluid limits,

we use a square root gap in the heavy traffic limit, i.e., λ = B − γ
√
B. We

also do the simulation on the log gap, i.e., λ = B − γ logB, and make a

comparison of the numerical result and simulation result both for the square

root gap and the log gap.

21

Figure 3.4: The simulation results for different arrival rates

Table 3.1: The blocking probability for the power-of-two-choices policy with
B = 50 at different load.

ρ = λ/B Fluid limit

0.6 0
0.8 0
0.84 0.0000
0.88 1.873× 10−25

0.9 5.229× 10−13

0.92 8.240× 10−7

0.94 7.854× 10−4

Figure 3.5 shows the blocking probability for the power-of-two-choices al-

gorithm with B−λ =
√
λ and B−λ = 2 log λ, both by solving the recursive

equation above numerically and by simulating a finite system with N = 1000.

Note that the y-axis is in log scale. We can see that even for small B, the

blocking probability Pb exhibits qualitatively different behavior in these two

regions: with log λ load gap, Pb decays exponentially; while for
√
λ load gap,

Pb decays much faster. For B = 30, Pb is of order 10−10 with
√
λ load gap. It

requires very long simulation time in order to observe a blocking event. We

simulated around 1010 arrivals and no job blocking was observed for B ≥ 30.

22

Figure 3.5: The simulation results for different capacities with different
scaling methods

23

CHAPTER 4

CONCLUSION

In our thesis, we considered a loss model for the virtual machine assignment

problem in a cloud system. The overall goal is to study how to route arriving

jobs to the servers in order to minimize the probability that an arriving job

does not find the required number of resources in the system. Using the fluid

model approach, we showed that when arrivals are routed to the least utilized

of d randomly selected servers, the blocking probability decays exponentially

or doubly exponentially. This is a substantial improvement over the random

policy.

In our analysis, we just demonstrate the case that all the jobs use the same

amount of a resource. For further consideration, we could consider the case

in which we can have more than one type of job. Further, the underline

system can form a two-dimensional Markov chain as shown Figure 4.1.

Figure 4.1 shows the state transition rate diagram for one of the servers

with B units of a resource and two types of job arrivals. We can use some

mathematical tools to form a one-dimensional recursion equation for it. Fur-

ther, some other scenarios have partially been considered in [10].

24

Figure 4.1: The Markov chain for two different jobs

25

REFERENCES

[1] “Amazon EC2,” http://aws.amazon.com/ec2/.

[2] “Google App Engine,” https://cloud.google.com/appengine/docs?csw=
1.

[3] “Azure,” http://azure.microsoft.com/en-us/.

[4] “Roundup Of Cloud Computing Forecasts And Market Esti-
mates,” http://www.forbes.com/sites/louiscolumbus/2015/01/24/
roundup-of-cloud-computing-forecasts-and-market-estimates-2015/.

[5] M. Mitzenmacher, “The power of two choices in randomized load bal-
ancing,” Ph.D. dissertation, University of California, Berkeley, 1996.

[6] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, “Queueing
system with selection of the shortest of two queues: An asymptotic
approach,” Probl. Peredachi Inf., vol. 32, no. 1, pp. 20–34, 1996.

[7] R. Srikant and L. Ying, Communication Networks: An Optimization,
Control, and Stochastic Networks Perspective. Cambridge University
Press, 2014.

[8] A. A. Borovkov, Stochastic Processes in Queueing Theory. Springer,
1976.

[9] W. Whitt, “Heavy-traffic approximations for service systems with
blocking,” AT&T Bell Laboratories Technical Journal, vol. 63, no. 5,
pp. 689–708, 1984. [Online]. Available: http://dx.doi.org/10.1002/j.
1538-7305.1984.tb00102.x

[10] Y. L. Q. Xie, X. Dong and R. Srikant, “Power of d choices for large-scale
bin packing: A loss model,” ACM SIGMETRICS, 2015.

26

