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ABSTRACT

The contributions in this dissertation are towards augmenting and enhanc-

ing the knowledge in power system equivalent modeling, and dynamic mode

estimation. Work related to these respective topics is presented herein in two

parts – (i) Network Based Methods, and (ii) Measurement Based Methods.

The first part focuses on the problem of creating limit preserving equiva-

lents (LPEs). There is a push to develop LPEs for power system intercon-

nections to be used in markets and reliability studies. The equivalents that

exist for these interconnections do not capture thermal limits of equivalent

lines, which results in their transmission limits being significantly different

from the original interconnection limits. Assigning non-infinite and non-zero

limits to equivalent lines is the niche of this work. This is done by consider-

ing an unloaded network, which is operating point independent. A solution

method is developed and discussed, which is capable of assigning lower, best

and upper estimates for equivalent line limits, and is proposed for use towards

developing LPEs.

In the second part, a relatively new method for simultaneous modal anal-

ysis of multiple time-series signals is presented. Here, Dynamic Mode De-

composition (DMD) is successfully applied towards transmission-level power

system measurements in an implementation that is able to run in real-time.

Since power systems are considered as non-linear and time-varying, on-line

modal identification is capable of monitoring the evolution of large-scale

power system dynamics by providing a breakdown of the constituent os-

cillation frequencies and damping ratios, and their respective amplitudes.

The outputs provided by DMD can enable on-line spatio-temporal analyses,

improve situational awareness, and could even contribute towards control

strategies. This work presents the theory of DMD, followed by results and

visualization. It shows that using frequency and voltage data together helps

with precision, while maintaining fast calculation speeds. The key advantage
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of this implementation is its relatively fast computation; for example, it is

able to process each time-window, consisting of 3392 signals with 211 time

points, in 0.185 s. Modal content alarm processing, and efficient wide-area

modal visualization are two proposed on-line applications.

The desire to reduce model-dependency has driven measurement-based

modal identification methods, as an alternative to analyzing linearized system

models. Using this relatively fast DMD algorithm, this work also presents

an interactive modal-identification tool for spatio-temporal analysis of mea-

surement data. The tool can automatically scan through measurements, and

display the values of oscillation frequency and damping ratio, as well as recon-

struct signals. The use of this tool, its options, and visualization capabilities

are illustrated using simulated measurements from an interconnected power

grid.

DMD being a data-driven modeling technique is able to handle large data

sets and has shown fast computation times. The by-products of DMD pro-

vide an understanding of the wide-area spatio-temporal structures in power

systems. Studies based on a large-scale model of an interconnected power

grid are presented, along with visualizations that elucidate the spatial struc-

ture of wide-area dynamics, and their dependency on operating points.
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CHAPTER 1

INTRODUCTION

Voltages, frequencies, power flows, and even locational marginal pricing are

a few of the monitored quantities, or measurements, that can be obtained

from electric power systems. These measurements contain hidden informa-

tion, which could be traced to the physical attributes of an electric grid.

Measurement-driven knowledge about electric power systems can be of value

to power system operators and engineers. Due to the large volume of data

being collected from interconnected power systems, it is likely that some

identifiable characteristics might go unnoticed, or the degree of difference

detected might seem impertinent at one location. This is where the notion

of discovering hidden data, reinforced with concepts from data mining and

wide-area power system modeling, is useful for improving existing practices in

the industry. This thesis uses these concepts to contribute towards enhancing

power system equivalents, and incorporating measurements into the current

planning and operating procedures. This type of work could be thought of as

a form of steganalysis, which is the study of detecting, as reliably as possible,

the presence of hidden data [1], and then investigating it [2].

The spatial structure of interconnected power systems is a fascinating at-

tribute. Figure 1.1 shows one such spatial aspect – the geo-spatial structure

of the North American electric grid. From a graph-theory perspective, the

lines/branches in the transmission and distribution networks can be thought

of as edges, with the vertices being the buses/nodes. Depending on the mod-

eling approach, i.e., bus-bar or node-breaker, the size and complexity of a

power system model can greatly vary, with the latter being more complex.

Regardless of the depth in modeling, the underlying spatial structure is a key

characteristic that defines the power flow solution of a network.

Electrical parameters of transmission lines are a key spatial property of

power systems, just like any electrical circuit. Kron [3] and Ward [4] de-

veloped techniques to mathematically manipulate and produce lower-order
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Figure 1.1: An aerial illustration of the geo-spatial structure of the North
American electric grid. Transmission lines at voltage levels higher than
160 kV have been artificially colored. Adapted from [6].

“equivalent” circuits that preserved certain electrical properties of a net-

work, and hence were useful for implementing fast and reasonably accurate

approximations to large network problems. With the advent of computer

programming in finding solutions to network problems, Sato and Tinney de-

veloped efficient methods for obtaining and modifying the impedance matrix

in their 1963 paper “Techniques for Exploiting the Sparsity of the Network

Admittance Matrix” [5]. Several works in the field of static equivalent mod-

eling and solution techniques are built on the fundamental contributions by

Kron, Ward, Sato and Tinney, who had based their work on identifying and

taking advantage of the spatial structure of networks. Researchers today con-

tinue to develop newer methods for power system equivalents, with the goal

that additional or specific properties can be preserved. Part I of this thesis

focuses on a spatially inspired solution to improve equivalent modeling.

To exploit the structure of a problem/system, it is required that the struc-

ture be known [7]. For example, Figure 1.2 shows the Jacobian matrix struc-

ture for a power flow problem. As seen, it is very sparse, and it is this

sparsity that is taken advantage of during power flow solutions. There is

also a type of equivalent modeling technique that retains the “backbone” of

a power system by aggregating nodes based on their connectivity so that the

2



Figure 1.2: Sparse Jacobian matrix of a power flow.

macro-structure of the system can be preserved. However, the limit values of

equivalent lines are lost while building equivalents. Since limit information

for the equivalent is hidden in the original network, the work in Part I uses

the understanding of spatial structures to assign line limits to the fictitious

lines introduced during the equivalencing process. This allows the notion of

network limits to be preserved in equivalent models.

Until now the discussion was on static attributes and spatial structures.

However, electric grids are not always static. There are thousands of dynamic

components that enable the proper operation and control required in inter-

connected power systems. During changing load patterns, or disturbances

resulting from planned/unplanned events, these components respond, and

hence power systems exhibit dynamic behavior. These dynamic properties

can be modeled by a set of differential-algebraic equations (DAE), succinctly

described as
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ẋ = f(x,y,u), (1.1a)

0 = g(x,y), (1.1b)

where x is the vector of state variables, y is the vector of algebraic variables,

and u is the vector of input variables.

This DAE model is generally nonlinear, both in terms of the first-order dif-

ferential equations in (1.1a) and in terms of the algebraic equations in (1.1b).

For the purpose of modeling in the transient stability time frame, the net-

work is considered to be in quasi-steady state. Here, the interaction of states

and phasor measurements (i.e., Ṽ = |V |∠θ) is less obvious, but does have a

structure. Analogous to a power flow Jacobian in Figure 1.2, the Jacobian

of a DAE model is shown in Figure 1.3. The spatial connectivity of the dy-

namic components with the electrical network can clearly be seen. It is this

spatial connectivity, or rather a weighted version of it, which associates dy-

namic states to measurements of output signals. The notion of participation

factors of states in observed modes present in power system measurements

is well known from a model-driven perspective. The discussion of local and

inter-area modes is also closely related to this.

Not very different is the notion of spatial topology that presents a network

Figure 1.3: Structure of the Jacobian of differential-algebraic equations for
a power system dynamic model.
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view as to how the primary objects become interconnected via the contextual

objects [8]. A DAE model can be thought of as consisting of dynamic objects

that become mutually interdependent, due to an electrical network, which

hence plays a significant role in the overall dynamic behavior of a power

system.

In static equivalent modeling, the dominant contextual features of the elec-

trical network are preserved, and that allows certain steady-state attributes

to be captured in equivalents. These have also been augmented with meth-

ods that retain dynamic properties, hence resulting in dynamic equivalents.

In contrast to model-driven analyses, there is a recent push to utilize high

quality digital measurements that are now available from Phasor Measure-

ment Units (PMUs), Frequency Disturbance Recorders (FDRs), and Digital

Fault Recorders (DFRs), in addition to SCADA (Supervisory Control and

Data Acquisition) measurements. It becomes more interesting to think about

the inverse problem, given measurement signals from interconnected power

systems. It is known that the underlying “context” of the electrical net-

work coupled with the dynamic parameters of components defines dynamic

behavior. However, is it possible to infer certain characteristics of the net-

work and/or some dynamic parameters from wide-area measurements? A

part of this question is tackled in Part II. This work presents a real-time

measurement-driven modal identification technique, which is able to distill

measurement datasets into one part that captures topology and a second

part that captures temporal evolution. It is this separation of the topos

and chronos that allows for fast modal identification and clear visualization.

Various facets of the modal identification problem are discussed, and sup-

ported with studies and visualization of power system dynamic behavior. Of

course, these measurement-driven methods could be augmented/reconciled

with some knowledge from models, and that continues to be a research effort.

For clarity, the work in this thesis is divided into two parts, as each part

tackles a different research problem. However the common theme of steganal-

ysis binds this thesis together. The premise is that there is hidden informa-

tion in power system data, which requires a mix of several approaches to

uncover. The work in this dissertation corroborates this central idea, by uti-

lizing techniques that help preserve or uncover seemingly hidden properties

of large scale electric power systems.
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1.1 Network Based Methods

The thesis begins with a focus on the “spatial” i.e. “network-related” charac-

teristics of power systems. In particular, this part describes how certain key

characteristics of power system networks can be preserved, while generat-

ing their reduced order models, or in other words power system equivalents.

Equivalents of large, interconnected power system networks are commonly

used to perform faster system analyses, such as security assessment, mar-

ket simulations, etc. While creating equivalents, the characteristics to be

preserved are application-specific. However, in general, the characteristics

of interest are usually the ones that impact bulk system analysis and/or

equivalent modeling.

The work presented here is a part of a project titled “Development of

Attribute Preserving Network Equivalents.” Prior work in this area provides

algorithms to retain attributes such as line flows, locational marginal prices,

etc. Similar to these, Part II of this thesis presents novel techniques that

were developed to embed limit information in equivalents so that the physical

constraints of lines are not forgotten, hence preserving the thermal limits of

transmission lines – an important attribute that had not been considered so

far in the literature.

1.2 Measurement Aided Methods

The second part of the thesis seeks to gain a better understanding of both

the spatial and temporal behavior of interconnected power systems. This is

done by implementing measurement-driven methods on power system time-

series, dynamics data, corresponding to transient disturbances. A steganal-

ysis based approach is taken to extract as much information as is detectable

in the measurements. This work is a part of a project titled “Power Grid

Spectroscopy.” It focuses on tackling the inverse problem of understanding

underlying power system behavior solely from measurements.

These measurement-based analysis methods were motivated by the field

of fluid dynamics. The chapters in this part introduce a technique known as

Dynamic Mode Decomposition (DMD), and propose various uses. Although

DMD was first introduced in fluid mechanics, the work presented in this part
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of the thesis presents the first known large-scale application of this fast and

robust technique to power system modal analysis.

While the techniques presented here are based on measurement data, it

does not imply that they are only suitable for model-less applications. It

should be noted that they can be further enhanced by applying them in a

model-augmented framework.
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Part I

Network Based Methods
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CHAPTER 2

LINE LIMIT PRESERVING POWER
SYSTEM BACKBONE EQUIVALENT

Nomenclature

Π = {B, T , {yl∈T }, {Fl∈T }}, Unloaded power system network, consist-

ing of buses, line connectivity, line admittances and line limits

A = Set of all buses to be eliminated from a network

Ek = Set of maximal adjacent buses, to be eliminated during stage k

of line limit calculation, such that
⋃
{Ek} = A and Ei ∩ Ej = ∅,

where i 6= j

C = Set of buses to be eliminated during a stage of line limit calcu-

lation, C ⊆ A
N = Set of lines in the pre-elimination network of a stage of line limit

calculation

S = {Set of pre-elimination neighbor buses of c ∈ C} \ C
H = {l = (u, v) | u, v ∈ S, u 6= v, l ∈ N}
L = {l = (u, v) | u, v ∈ {C ∪ S}, u 6= v, l ∈ {N \ H}}
yl = Admittance of l ∈ L, in pu

Fl = Non-directional line limit of l ∈ L, in MW

W = {w = (u, v) | u, v ∈ S, u 6= v}, Set of non-directional transfers of

interest of a stage of line limit calculation

φwl = Lossless decoupled power transfer distribution factor for line l ∈
L, given transfer w ∈ W , 0 < φwl ≤ 1

Pw = min
l∈L

{
Fl
φwl

}
, Non-directional total transfer capability between

buses in transfer w ∈ W , given only the line limits of l ∈ L,

in MW
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Ñ = Set of lines in the post-elimination network of a stage of line limit

calculation

L̃ = {l = (u, v) | u, v ∈ S, u 6= v, l ∈ {Ñ \ H}}
ỹl = Admittance of l ∈ L̃, in pu

F̃l = Non-directional line limit of l ∈ L̃, in MW

φ̃wl = Lossless decoupled power transfer distribution factor for line l ∈
L̃, given transfer w ∈ W , 0 < φ̃wl ≤ 1

P̃w = min
l∈L̃

{
F̃l

φ̃wl

}
, Non-directional total transfer capability between

buses in transfer w ∈ W , given only the line limits of l ∈ L̃,

in MW

F̃ = {F̃l | l ∈ L̃}, Set of line limits in the post-elimination network of

a stage of line limit calculation

mw =
P̃w − Pw

Pw
, Normalized total transfer capability mismatch for

transfer w ∈ W of a stage of line limit calculation

M = {mw | w ∈ W}, Set of normalized total transfer capability mis-

matches of a stage of line limit calculation

Ψ = [ψwl ] =
[
φ̃wl P

w
]
, for row and column corresponding to w ∈ W

and l ∈ L̃ respectively
Note:

1. During a stage of line limit calculation, if |S| = σ, and if no equivalent

lines are ignored, then in general,
∣∣∣L̃∣∣∣ = |W| = σC2 =

1

2
(σ2 − σ).

2. In the set notations of H, L,W , L̃ the 2-tuple (u, v) is non-directional,

i.e., (u, v) = (v, u).

3. All variables, except Π, A and Ek, have a dependency on the stage of

line limit calculation. This could be denoted by an additional super/sub-

script; however, since the goal is to elaborate on one general stage of

line limit calculation, the super/sub-script has been dropped.

2.1 Steady State Equivalent Modeling

The idea of developing equivalents of larger power system models is not new.

Initially, equivalent models were built to analyze power system interconnec-
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tions, which were computationally too big to be handled by computers of

their time. In addition, not every power system component needed to be

distinctly represented in models of bulk transmission grids; this aggregation

process also enhanced the techniques to build an equivalent. The two names

that come to mind are Kron [3] and Ward [4], who developed the fundamental

methods for building equivalents. Since then, several others have modified

and enhanced their techniques based on engineering insights and heuristics.

Even though computers now are more capable of handling large power sys-

tem cases for off-line analyses, equivalent cases are still useful as they can

provide good intuition and aid in faster calculations. An example is a 36-bus

equivalent of the Northeast Power Coordinating Council area [9]. Although

the attribute preservation type of work being presented in this chapter is

targeted towards building larger equivalents, the work in [9] corroborates the

use of equivalents in long-term economic studies. Preserving attributes will

also improve the reliability of equivalent models, and possibly aid in closer

to real-time applications.

2.1.1 Limit preserving power system equivalent

In an original power system model, line admittances and line thermal limits

are usually known because they correspond to physical lines. While building

an equivalent, buses in a power system are classified into study and external

areas, after which the buses in external areas are eliminated. A method like

Kron reduction [3] can be used to determine the connectivity and line ad-

mittances of the post-elimination unloaded network. However, this network

will contain equivalent lines, which are fictitious and their limits are not

known. Therefore, the notion of transmission limits could be significantly

lost in an equivalent, which would diminish the usefulness of an equivalent

during different loading conditions. This has motivated the idea of creating

limit preserving power system equivalents, so that an equivalent can be used

to study a variety of operating conditions, instead of just one.

The basics of assigning equivalent line limits have been presented in [10].

They involve sequential single bus eliminations, and are based on power

transfer distribution factors (PTDFs) [11, 12]. Equivalent line limits are

found by matching total transfer capabilities (TTCs) between the pre- and

11



post-elimination unloaded networks. However, an exact solution may not al-

ways exist. In previous work [10], upper estimates were determined by using

inequality constraints, and lower estimates were based on discrete minimiza-

tion of a cost function. Although this was able to provide meaningful bounds

on equivalent line limits in smaller networks, its discrete nature caused the

lower estimate to undesirably decline towards zero when eliminating a se-

quence of several buses from a large interconnection network. To design an

algorithm tailored for interconnections, these basics are revisited, and im-

proved upon in Sections 2.3 and 2.4.

In the broader scheme of developing equivalents to represent power system

interconnections, it is not sufficient to just assign line limits to equivalent

lines. Apart from the clever selection of study/external areas, there also

needs to be a method for assigning equivalent bus-injections by “redistribut-

ing” loads and generators from the external areas to the study areas. There is

literature in which such techniques are developed; these need to be enhanced

to support building limit preserving equivalents (LPEs). Ward equivalents

[4] are very often used, which are based on Kron reduction [3] for calculat-

ing equivalent line parameters, and also are capable of reallocating power

injections from external areas to boundary buses. Although an approxima-

tion, the basic Ward injection method is able to produce a power system

equivalent. Several modified Ward schemes have been developed since the

original method in 1949. Other than their subtle differences, the generators

from the external areas usually get split up because their power injections

are reassigned to different boundary buses. Recently developed, the modified

Ward equivalent with an inverse power flow scheme can overcome the afore-

mentioned limitation [13]. This method is suitable for generation planning,

which might require the retention of external generators as individual units.

Another technique is the Radial, Equivalent and Independent (REI) method

[14], which considers a group of adjacent buses to be eliminated, chooses one

of them as a REI bus, moves all generation and load from all the buses in this

group to the REI bus, retains the REI bus, and eliminates the other buses in

the group with Kron reduction. Both the modified Ward and REI methods

are useful for assigning equivalent bus-injections. Such methods have been

applied to develop interconnection equivalents to aid in tasks like generation

planning [15].

The basic Ward, modified Ward and REI techniques all rely on a solved

12



power flow. This implies that the derived equivalent is based on a specific

operating point. To make an equivalent, which is useful for an approxi-

mate loading condition (i.e. a set of operating points), heuristics need to

be used, which can be application specific. Also, available transfer capabil-

ity (ATC) [16] can have both directional and operating-point dependency

[10]. Embedding the operating point in an equivalent is not desirable as it

will restrict its use in simulating other operating points. Moreover, appli-

cations such as optimal and security-constrained optimal power flow (OPF

and SCOPF) conventionally require non-directional line limits [17]. Keeping

these in mind, it is envisioned that an LPE will be built through an LPE

algorithm, which would first require determining the buses to be eliminated.

Once the study/external areas are determined, this LPE algorithm would

find equivalent line limits of an unloaded network, then find the equivalent

bus-injections, and finally reload the equivalent network, resulting in an LPE.

2.1.2 Line limit calculation for equivalent networks

The methods to build equivalents, described earlier, are able to calculate the

electrical parameters of equivalent lines, but are unable to assign line limits to

them. In most commercial software packages, a default limit value of “zero” is

displayed for equivalent lines. This is interpreted by the software as an infinite

capacity for that equivalent line. Intuition tells us that it is impossible for an

equivalent line to have an infinite capacity, especially if it originated from a

sub-network with a finite transmission capacity. Hence, the goal is to assign

meaningful bounds that are less than infinity. Section 2.2 will discuss the

preliminary work from [10]. Next, the development of a quadratic program

formulation is outlined in Section 2.3, first with a 4-bus example, and then

applied to the IEEE 118-bus test system. Section 2.4 discusses results, further

improvements to the general algorithm, computational aspects, and the use

of heuristics to further enhance calculations. Lastly, conclusions and future

work are summarized.
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2.2 Assignment of Limits to Equivalent Lines

In this section, an improved method for calculating line limits for equiva-

lent networks is presented. This technique also involves sequential single

bus eliminations in an order dictated by Tinney scheme 2 [18], and is based

on PTDFs [11, 12]. However, unlike the work in [10], the objective of this

limit preserving network – quadratic program (LPN-QP) formulation – is

to minimize the sum of the square of the mismatch in normalized TTCs of

all transfers of interest between the pre- and post-elimination unloaded net-

works. TTC is used, instead of ATC, to prevent operating point dependency.

The necessity and the development of the LPN-QP formulation is illustrated

with the elimination of one bus from a 4-bus network, after which the for-

mulation is generalized and applied towards the elimination of 56 buses from

the IEEE 118-bus test network.

2.2.1 Elimination of one bus from a 4-bus network

In this example, Bus 1 is eliminated from a 4-bus network (Figure 2.1a) to

create a 3-bus network (Figure 2.1b). The parameters of these two networks

are summarized in Table 2.1. Kron reduction is used to compute the ad-

mittance of equivalent lines (2, 3), (2, 4) and (3, 4), and their limits are to

be calculated. To reiterate, only an unloaded system is being considered to

ensure no operating point dependency. By reducing the limit value of line

(1, 4) from 60 to 20 MW, it is observed that the solution changes from being

(a) 4-bus network (b) 3-bus network

Figure 2.1: Elimination of bus 1 from a 4-bus unloaded network.
(Labels – [R]: Retained, and [E]: Eliminated.)
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exact to non-exact. This example is used to outline the proposed solution

method and the LPN-QP formulation.

In the first step, three sets are identified:

(i) set of lines that become eliminated, L = {(1, 2), (1, 3), (1, 4)},
(ii) set of equivalent lines created, L̃ = {(2, 3), (2, 4), (3, 4)}, and

(iii) set of transfers of interest, W = {(2, 3), (2, 4), (3, 4)}.
Next, the PTDFs, φwl for l ∈ L are calculated, and then together with

line limits, Fl for l ∈ L, the TTCs, Pw for w ∈ W are calculated in (2.1).

While calculating TTCs, only the limits of lines in L are considered, because

it is the goal of every stage of elimination to match the transmission limits

of the equivalent lines with those that become eliminated. Moreover, lines

(2, 3) and (2, 4) will continue to exist and assert their limits in the equivalent

network. Following from this argument, the set of transfers of interest are

between those pairs of buses that the equivalent lines are incident on, i.e.,

W .

P (2,3) = min

{
F(1,2)

φ
(2,3)
(2,3)

,
F(1,3)

φ
(2,3)
(2,4)

,
F(1,4)

φ
(2,3)
(3,4)

}
,

P (2,4) = min

{
F(1,2)

φ
(2,4)
(2,3)

,
F(1,3)

φ
(2,4)
(2,4)

,
F(1,4)

φ
(2,4)
(3,4)

}
,

P (3,4) = min

{
F(1,2)

φ
(3,4)
(2,3)

,
F(1,3)

φ
(3,4)
(2,4)

,
F(1,4)

φ
(3,4)
(3,4)

}
.

(2.1)

Table 2.1: Parameters for 4-bus and 3-bus networks.

4-bus network 3-bus network

Line Line
Admittance limit Admittance limit

Line (p.u.) (MW) Line (p.u.) (MW)

(1, 2) −16.67 100 (2, 3)eq −4.32 ?
(1, 3) −8.33 70 (2, 4)eq −3.70 ?
(1, 4) −7.14 60↘ 20 (3, 4)eq −1.85 ?
(2, 3) −12.50 90 (2, 3) −12.50 90
(2, 4) −10.00 80 (2, 4) −10.00 80

Note: As the limit of line (1, 4) is reduced from 60 to 20 MW, the
solution changes from being exact to non-exact
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min

{
F̃(2,3)

φ̃
(2,3)
(2,3)

,
F̃(2,4)

φ̃
(2,3)
(2,4)

,
F̃(3,4)

φ̃
(2,3)
(3,4)

}
= P (2,3),

min

{
F̃(2,3)

φ̃
(2,4)
(2,3)

,
F̃(2,4)

φ̃
(2,4)
(2,4)

,
F̃(3,4)

φ̃
(2,4)
(3,4)

}
= P (2,4),

min

{
F̃(2,3)

φ̃
(3,4)
(2,3)

,
F̃(2,4)

φ̃
(3,4)
(2,4)

,
F̃(3,4)

φ̃
(3,4)
(3,4)

}
= P (3,4).

(2.2)

Similarly with the post-elimination network, PTDFs, φ̃wl for l ∈ L̃ are

calculated, and together with equivalent line limits, F̃l for l ∈ L̃, the ex-

pressions for post-elimination TTCs are equated to the TTC values from

(2.1). The only unknowns in (2.2) are the F̃l terms. A re-statement of (2.2)

is F̃l = max
{
φ̃wl P

w = ψwl | w ∈ W
}

, for l ∈ L̃, along with the caveat that

every equivalent line limit is a result of a different binding transaction. This

caveat is important because it ensures that (2.2) continues to be satisfied.

When F(1,4) = 60 MW, (2.3) shows the calculated values for Ψ.

Criteria for an exact solution: If the max. value in each column of Ψ (for

each equivalent line) also belongs to different rows of Ψ (for each transfer),

then the equivalent line limits are the max. value in each column of Ψ.

Hence, an exact solution exists for this case, and F̃(2,3)eq = 50.8 MW,

F̃(2,4)eq = 41.4 MW and F̃(3,4)eq = 28.5 MW.

Ψ|[F(1,4)=60 MW] =

 50.8 5.2 19.2

4.8 41.4 18.6

29.9 31.5 28.5

 . (2.3)

However, because equivalent line limits do not “redistribute” themselves

in the same way as equivalent line admittances, an exact solution does not

always exist.

2.3 Quadratic Optimization Method

For that case, (2.2) is normalized with their respective Pw values, and a

mismatch variable, mw, is introduced. This allows each of the equality con-

straints to be relaxed, and creates an artificial feasible region for finding a
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non-exact solution for equivalent line limits. This does not imply that an

exact solution could be somehow uncovered. If a stage of elimination fails

the criteria for an exact solution, it is impossible to find a point in this ar-

tificial feasible region which corresponds to all mismatches being zero. The

next best alternative is to express this as a quadratic program (QP) in (2.4),

which minimizes the sum of the square of the mismatches. This QP in (2.4)

is referred to as the strong formulation.

minimize
F̃(2,3),F̃(2,4),F̃(3,4),

m(2,3),m(2,4),m(3,4)

(
m(2,3)

)2
+
(
m(2,4)

)2
+
(
m(3,4)

)2
,

s.t. m(2,3) = min

{
F̃(2,3)

ψ
(2,3)
(2,3)

,
F̃(2,4)

ψ
(2,3)
(2,4)

,
F̃(3,4)

ψ
(2,3)
(3,4)

}
− 1,

m(2,4) = min

{
F̃(2,3)

ψ
(2,4)
(2,3)

,
F̃(2,4)

ψ
(2,4)
(2,4)

,
F̃(3,4)

ψ
(2,4)
(3,4)

}
− 1,

m(3,4) = min

{
F̃(2,3)

ψ
(3,4)
(2,3)

,
F̃(2,4)

ψ
(3,4)
(2,4)

,
F̃(3,4)

ψ
(3,4)
(3,4)

}
− 1,

F̃(2,3) ≥ 0, F̃(2,4) ≥ 0, F̃(3,4) ≥ 0.

(2.4)

Finding a solution for the strong formulation yields values for F̃l for l ∈ L̃
which are able to preserve the TTC as “best” as possible – this can be

considered as a best-fit estimate. Sometimes it can be of interest to obtain

lower and upper bounds for these limits, and so inequality conditions from

(2.5) or (2.6) can be supplemented with (2.4), to provide a lower estimate or

an upper estimate respectively.

m(2,3) ≤ 0, m(2,4) ≤ 0, m(3,4) ≤ 0. (2.5)

m(2,3) ≥ 0, m(2,4) ≥ 0, m(3,4) ≥ 0. (2.6)

These additional inequality conditions ensure that the solution strictly al-

lows a negative or positive TTC mismatch, hence respectively corresponding

to a lower estimate or an upper estimate. It is possible that best estimate

might be equal to either the lower or the upper estimate in some cases. If

all three estimates are equal, then this is the same as an exact solution as

shown in (2.2), hence allowing this QP to converge on the same answer that
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could be detected by the criteria for an exact solution.

The strong formulation is both non-linear and non-convex. To be able to

solve the LPN-QP formulation, the three equality constraints from (2.4) are

transformed into nine weaker inequality constraints of the form as shown in

(2.7).

F̃l ≥ ψwl (mw + 1) , w ∈ W , l ∈ L̃. (2.7)

These are then combined per equivalent line to form three equality con-

straints of the form shown in (2.8). This equation signifies that, with some

mismatch, each equivalent line limit value will be determined as a conse-

quence of at least one of the transfers in W being limited.

F̃l = max {ψwl (mw + 1) | w ∈ W} , l ∈ L̃. (2.8)

Since each equivalent line has to limit at least one of three transfers, one of

the inequality constraints (for each line) is picked as an equality constraint.

The resulting expression is substituted to yield six inequality constraints (of

the form as shown in (2.9), allowing the LPN-QP formulation to be specified

only in terms of mw. This reduction from six to three decision variables is

desirable because it transforms the problem such that the objective function

has a positive definite coefficient matrix.

ψill
(
mil + 1

)
≥ ψjll

(
mjl + 1

)
, jl ∈ {W \ {il}}, l ∈ L̃. (2.9)

Using the inequality conditions in (2.9), 33 = 27 QPs are formulated and

solved. Depending on the equality conditions assumed for each F̃l, in each of

the 27 cases, the value of F̃l is calculated. Since (2.9) is a weaker formulation

of the equality constraints in (2.4), there is a possibility that one of these 27

weaker QPs could be infeasible, or yield an answer that violates the equality

conditions from the strong formulation in (2.4). Those cases are detected,

and discarded. Then, the sum of square of mismatches is ranked, and the line

limits from the QP with the smallest objective are chosen as the solution.

Given F(1,4) = 20 MW, the criteria for an exact solution are not satisfied.

Therefore, LPN-QP is used to obtain a non-exact solution, which is shown

in Table 2.2. For comparison, the non-exact solution from LPN – Max.

value/Hungarian (LPN-MH) (an older formulation developed in [10] is also
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shown. The first improvement is the ability to find non-exact solutions from

a range of feasible values rather than the just discrete values in Ψ. In this

example there was no difference observed in the upper estimate, but the

values for the lower estimate are different. Two important conclusions can

be made from the comparison of the lower estimates - (i) LPN-QP is able

to find a better solution of line limits than LPN-MH, which reduces the

TTC mismatch, and (ii) LPN-QP always assigns the best value of line limits

required to have the minimum TTC mismatch, which ensures that every

equivalent line captures one or more of the limits of the lines that become

eliminated, other than the mismatch.

The limits from LPN-QP are collectively somewhat larger than the values

from LPN-MH, which is more valuable – getting smaller than necessary lower

estimates could lead to them converging towards zero through successive bus

eliminations, which would still be a lower estimate but would be practically

meaningless. The best estimate is a product of LPN-QP, which previously

could not be obtained from LPN-MH. This is essentially the best-fit solution,

where the sum of square of mismatches is 0.0363, as compared to 0.0576 and

0.0993 corresponding to the lower and upper estimates respectively. In short,

the best estimate is suitable for use in approximate analyses, while the lower

Table 2.2: Equivalent line limits of the 3-bus system: LPN-MH vs.
LPN-QP.

Max. value/Hungarian Quadratic program

Normalized Normalized
Line TTC Line TTC

Line or limit mismatch limit mismatch
Transfer (MW) (%) (MW) (%)

Upper (2, 3) 50.8 0.0 50.8 0.0
estimate (2, 4) 13.8 0.0 13.8 0.0

(3, 4) 19.2 31.5 19.2 31.5

Best (2, 3) N/A N/A 50.8 0.0
estimate (2, 4) N/A N/A 11.7 −15.2

(3, 4) N/A N/A 19.2 11.5

Lower (2, 3) 50.8 −50.4 50.8 0.0
estimate (2, 4) 13.8 0.0 10.5 −24.0

(3, 4) 9.5 0.0 19.2 0.0
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and upper estimates are suitable for conservative and optimistic analyses,

respectively.

2.3.1 Generalizing LPN-QP

The LPN-QP formulation can be solved repeatedly for every stage of single

bus elimination that does not have an exact solution. Lossless decoupled

PTDF is used as an approximation for how power transfers distribute them-

selves over various lines, and a further assumption has been made that the

transfers between first neighbor buses sufficiently capture the line loading

effects due to other transfers that occur over a wider area. Also, only the

limits of the lines getting eliminated in a step need to be considered to cal-

culate pre-elimination TTCs. This, coupled together with considering only

the transfers in W , is being leveraged for the LPN-QP formulation. The

outcome is a formulation of the general LPN-QP as shown in (2.10), termed

as the strong formulation.

minimize
F̃l∈F̃ ,mw∈M

M =
∑

mw∈M

(mw)2,

s.t. mw = min
l∈L̃

{
F̃l
ψwl

}
− 1, w ∈ W ,

F̃l ≥ 0, l ∈ L̃.

(2.10)

This is then transformed into a weaker formulation in (2.11), which is more

convenient to solve.

minimize
F̃l∈F̃ ,mw∈M

M =
∑

mw∈M

(mw)2,

s.t. ψill
(
mil + 1

)
−ψjll

(
mjl + 1

)
≥ 0, jl ∈ {W \ {il}}, l ∈ L̃,

mw + 1 ≥ 0, w ∈ W .

(2.11)

where this is the form of one QP, which belongs to a set of all possible

combinations of {il | l ∈ L̃}, i.e., |W||L̃| combinations. Solving these will

give the best estimate. Inequality conditions from (2.12) or (2.13) can also

be supplemented with (2.11), to calculate a lower or an upper estimate,

respectively.
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mw ≤ 0. (2.12)

mw ≥ 0. (2.13)

To solve, an interior point quadratic program solver from Matlab is used.

The closely related problems are solved efficiently: if the best estimate formu-

lation indicates that certain combinations are only feasible when mw = −1

(i.e., F̃l = 0), then those combinations are discarded while solving the lower

and upper estimates.

Every stage of elimination can potentially yield lower, best and upper es-

timates. If an exact solution exists, then all three estimates will be assigned

same value. From the perspective of developing code, the calculations for

upper and lower estimates can proceed independently of one another during

each step of elimination. Also, these estimates are not mixed-and-matched

with each other. For example, only lower estimates from the previous stage

will be used to calculate the lower estimates for the next stage, and so on.

This allows each estimate to capture inaccuracies within itself, and not prop-

agate to the other estimates. The sequential bus elimination algorithm, with

both LPN-MH and LPN-QP formulations, has been implemented.

2.3.2 Elimination of 56 buses from IEEE 118-bus test network

A 62-bus equivalent network, with equivalent line limits, is created from

the IEEE 118-bus test network. The buses to be eliminated are randomly

selected. Information about generators and loads from the IEEE 118-bus

test system is ignored. Only an unloaded network is utilized to create a limit

preserving network, which will be independent of operating point. The 56

buses to be eliminated are divided into sub-groups in such a way that each

sub-group consists of maximal adjacent buses. In other words, if two buses

being eliminated are adjacent or can be connected via a continuous path of

other buses that are also being eliminated, they are assigned to the same

sub-group. These 56 buses are partitioned into 31 mutually independent

sub-groups.

Sub-groups are of interest because the elimination of a bus from one sub-

group has no effect on the elimination of a bus from another sub-group. How-
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(a) Number of fill-ins each bus-elimination creates.

(b) Root mean square value of normalized TTC mismatch while calculating line
limit upper estimate for each bus-elimination.

(c) Root mean square value of normalized TTC mismatch while calculating line
limit best estimate for each bus-elimination.

(d) Root mean square value of normalized TTC mismatch while calculating line
limit lower estimate for each bus-elimination.

Figure 2.2: Elimination of 56 buses (grouped into 31 non-overlapping sets,
and displayed above in alternating bands of white and gray) from the IEEE
118-bus test network.

ever, within each sub-group, two buses might share a line and this creates a

dependency on the elimination order. As these 31 sub-groups are indepen-

dent, the same results are obtained if all 56 buses are sequentially eliminated,

or eliminated through 31 parallel paths, each with sequential eliminations.

They are essentially the same order of elimination, based on Tinney scheme

2. Figure 2.2a shows the number of fill-ins created in the Y bus during single

bus eliminations within each sub-group. The alternating bands of white and

gray indicate the 31 sub-groups. Due to the Tinney scheme 2 elimination

order, the number of fill-ins increases with the stage of elimination within
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each sub-group.

During each stage of single bus elimination, the rms of normalized TTC

mismatch, rms mw =
√
M/|W|, is recorded. A value of > 0 % indicates

a non-exact solution; Figures 2.2b, 2.2c and 2.2d show the rms mw val-

ues of all 56 single bus eliminations, and from both LPN-MH and LPN-QP

solutions. In these three figures, the numerical labels within sub-groups

E6 = {20, 21, 22, 19} and E8 = {28, 29, 113, 31} correspond to the rms mw

value from LPN-QP. These values indicate that LPN-QP is able to perform

on-par with or better than LPN-MH for every single bus elimination.

It is interesting to observe that some sub-groups yield exact solutions for all

eliminations within their group. This is an ideal scenario where the criteria

for an exact solution are met, and there is no need for more computation

to find non-exact solutions. When there is no exact solution for a single

bus elimination within a sub-group, then all consecutive eliminations will

yield lower, best and upper estimates. For example, within sub-group E8,

elimination of bus 113 yields a lower, best and upper estimate. Thereafter,

elimination of bus 31 yields an exact solution for each of these lower, best and

upper estimates. This does not imply that the lines after the elimination of

bus 31 have unique line limits; they continue to have lower, best and upper

estimates. Only when all single bus eliminations within a sub-group have

exact solutions, do all equivalent lines resulting from the elimination of that

sub-group have unique line limits.

2.4 Discussion and Improvements

As described in Section 2.3.2, the elimination of buses from one sub-group

has no effect on that of another sub-group. Considering one such sub-group,

there still remains an elimination order dependency, unless all single bus

eliminations yield exact solutions. For a single bus elimination, numerical

experiments have shown that disproportionate line limits, or a significantly

different ratio of Fl:yl, for l ∈ L, causes non-exact solution because the line

limits are unable to redistribute themselves in an “exact manner.” This is

the reason for elimination order dependency. To analyze the extent of this

dependency, sub-group E8 is used. As shown in Figure 2.3, the black arrows

show the sequence of single bus eliminations. During sequential elimination,
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with both LPN-MH and LPN-QP formulations, some form error is being

minimized in each single bus elimination. However, it is of greater interest

to minimize any discrepancy in TTCs between the pre- and post-elimination

networks of the overall elimination of E8. Even though the elimination of

bus 113 resulted in an rms mismatch of only 12.78 % for the best estimate

(Figure 2.2c), the accumulation of errors through four single bus eliminations

resulted in an overall rms mismatch of 18.2 % (Table 2.3). Comparing the

overall rms mismatches from sequential eliminations from LPN-QP (7.6 %)

seems to perform on par with LPN-MH (7.6 %) (Table 2.3). A possible

reason for this could be because LPN-QP is locally optimal for each single bus

elimination, and that causes more error build-up. Nevertheless, sequential

single bus eliminations seem to accumulate relatively higher amounts of rms

mismatch, which is undesirable.

2.4.1 Sub-group elimination

Instead of sequential single bus eliminations, sub-group elimination is intro-

duced to circumvent elimination order dependency. As mentioned in Section

2.3.2, if two buses being eliminated are adjacent or can be connected via

a continuous path of other buses that are also being eliminated, they are

assigned to the same sub-group. With reference to the illustration of sub-

group elimination in Figure 2.3, Kron reduction still occurs in stages shown

by the sequence of black arrows, but the calculation of equivalent line limits

is performed as a direct calculation shown by the grey arrow. This saves on

computations within intermediate networks, which were previously needed to

calculate PTDFs and solve LPN-QP formulations. Moreover, equivalent lines

in intermediate networks eventually do not exist in the final post elimination

network, for example equivalent lines (17, 31), (31, 32) and (27, 31). All that

matters is the calculation of equivalent line limits after the elimination of

an entire sub-group. This insight is particularly useful when intermediate

networks have significantly more equivalent lines than the network after the

elimination of a sub-group.

Direct calculation is now used for eliminating sub-group E8. As seen in

Table 2.3, the rms mismatches from a direct calculation are lower than those

from a sequential calculation for both LPN-MH and LPN-QP formulations.
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Figure 2.3: Elimination of buses 28, 29, 113 and 31 from a sub-network of
the IEEE 188-bus test network.
(Black arrow shows sequence of single-node eliminations, and grey arrow
shows direct calculation. Labels – [R]: Retained, and [E]: Eliminated.)

The best estimate’s rms mismatch of 18.2 % is reduced to 3.7 %. This also

yields a case where the rms mismatch values for the lower estimate is the same

from both LPN-MH and LPN-QP (5.0 %). However, the corresponding limit

of equivalent line (27, 32) is 53.2 MW in the former and 48.6 MW in the latter

formulation. This implies that the other two lines are sufficient in enforcing

all three TTCs as long as the limit of equivalent line (27, 32) is ≥ 48.6 MW.

From an unloaded network perspective there is no difference in between the

both answers, but once the network is reloaded, this will result in different

ATC values.

For the IEEE 118-bus network, it takes about 323 seconds to solve for

each (best, lower and upper) estimate of equivalent line limits after elimi-
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Table 2.3: Rms mismatch: direct vs. sequential method.

Max. value/Hungarian Quadratic program

Seqn. Direct Seqn. Direct

Line Line Line Line
limit limit limit limit

Transfer (MW) (MW) (MW) (MW)

(17, 27) 63.5 44.7 63.5 44.7
Upper (17, 32) 170.8 121.8 170.8 121.8

estimate (27, 32) 54.6 53.2 54.6 53.2

rms norm.
39.4 % 5.5 % 39.4 % 5.5 %

TTC mismatch

(17, 27) N/A N/A 56.7 42.6
Best (17, 32) N/A N/A 140.5 121.8

estimate (27, 32) N/A N/A 54.6 50.7

rms norm.
N/A N/A 18.2 % 3.7 %

TTC mismatch

(17, 27) 56.7 40.8 56.7 40.8
Lower (17, 32) 124.3 121.8 124.3 121.8

estimate (27, 32) 54.6 53.2 54.6 48.6

rms norm.
7.6 % 5.0 % 7.6 % 5.0 %

TTC mismatch

nating 56 buses. To build a limit preserving network that is independent

of operating point, the answer from LPN-QP is the most accurate and least

dependent/biased towards any operating point. With this new technique,

LPNgroup (summarized in Algorithm 1 supersedes sequential single bus elim-

ination, and is preferred.

2.4.2 Computational aspects, heuristics and insights

Not only does the LPNgroup algorithm save computation time, but the

worst-case complexity for the direct calculation after elimination of buses

in Ek is the same as sequentially calculating limits for the final single bus

elimination in set Ek. This is because W and L̃ are the same regardless of

C = Ek or C = {last bus to be eliminated from Ek}, for direct and sequen-

tial calculations respectively. It is scalable for large-scale systems because
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Algorithm 1 LPNgroup algorithm for limit preserving network calculation
concurrent sub-group eliminations.
Data: Π, A
Result: Πfinal

1: partition A into E1, . . . , EK
2: initialize N ← T
3: for k = 1 . . . , K do
4: C ← Ek
5: reinitialize S, H, L, W
6: recompute φwl , Pw

7: recompute Ñ , L̃, ỹl after elimination of buses in C
8: recompute φ̃wl , Ψ
9: if criteria for an exact solution is satisfied then

10: F̃l = max{ψwl | w ∈ W}
11: else
12: reformulate problem with LPN-MH or LPN-QP
13: solve LPN-MH or LPN-QP for F̃l
14: end if
15: N ← Ñ
16: end for
17: Πfinal ← {{B \ A}, Ñ , {yl∈Ñ}, {Fl∈Ñ}}

each sub-group calculation is a small or medium-scale problem. In the LPN-

QP formulation there is a concern about generating and solving |W||L̃| QPs,

which can be a large number if external areas have many connections with

the study areas. Research is in progress to better understand the struc-

ture of these QPs, which may lead to a better numerical solution method.

Nonetheless, this is not a show-stopper because these are off-line calculations.

Parallel processing can also be harnessed to solve these mutually independent

QPs. Moreover, LPNgroup can be implemented to tackle each sub-group’s

(E1, . . . , EK) calculation in parallel. In short, highly parallel code can be

implemented to run on dual/quad core CPUs, or even GPUs.

A bottle-neck is the possibility of having too many pre-elimination neigh-

bor buses, i.e., |S| = σ. A small change in σ from 3 to 4 causes a change

in |W| or |L̃| from 3C2 = 3 to 4C2 = 6, which increases the number of

post-elimination PTDF calculations from 32 = 9 to 62 = 36, and finally the

number of QPs generated increases from 33 = 27 to 66 = 46656. This might

seem intimidating, but can be contained with the clever selections external

areas. One heuristic could be selecting external sub-groups such that their
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pre-elimination neighbor buses do not exceed 5. From a practical perspec-

tive, if there is a bus (or group of buses) which is connected to several other

buses (for example > 5), then it might not be a good engineering decision to

eliminate it. This rule might not be applicable in every context, but engi-

neering insights will be valuable towards making a good selection of buses to

eliminate. Ignoring equivalent lines with admittance magnitudes of < 1.0 pu

could also be a useful heuristic. In this case, low admittance lines will sim-

ply be ignored from L̃. In some instances, if all equivalent lines incident at

a particular bus can be ignored, then all transfers including that bus can

also be ignored from W . The formulations of LPN-MH and LPN-QP can be

adjusted accordingly.

Seasonal variations in power flow patterns can diminish the usability of

equivalent line limits for an interconnection equivalent. This is because

power flow patterns in an equivalent heavily rely on the choice of buses that

were eliminated (i.e., external area(s)), and on the method that was used

to redistribute load and generation amongst the retained buses (i.e., study

area(s)). As a heuristic, external area(s) should be determined in a manner

that avoids eliminating transmission lines that participate in seasonal and

relatively large import/export transactions. If this information is available

(based on historical data or experience), it can be used to create an equiva-

lent, resulting in equivalent line limits being more meaningful across different

seasons. Otherwise, seasonal equivalents can be created, each of which may

consist of slightly different study area(s). Nevertheless, it is to be noted that

equivalent line limits, being calculated by the LPNgroup with the LPN-QP

formulation, are operating point independent, because they are based on an

unloaded network.

2.4.3 Key takeaways

LPNgroup with the LPN-QP formulation is being proposed as the preferred

approach. No doubt that there may be significant mismatches in smaller-

scale academic networks, but accuracy will be better for large-scale intercon-

nection equivalents because power rarely flows from one extreme location to

another. The methods developed in the above sections will provide a more

meaningful alternative than assuming infinite equivalent line limits, which
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is currently practiced in the industry. This will ensure that there is some

preservation of transmission limits while developing equivalents. Like exist-

ing methods, there will continue to be a trade-off of accuracy. However, the

goal is to utilize the LPNgroup-LPN-QP method in the broader framework,

to develop an LPE that has equivalent line limits and is usable for a range of

operating points that have similar power flow patterns. Work is in progress to

interweave the LPNgroup-LPN-QP with REI and modified Ward methods,

which will result in equivalents exhibiting lesser sensitivity to their original

operating point and greater preservation of transmission limits. Ultimately,

OPF, SCOPF, other planning analyses and newer real-time applications will

benefit from the development of LPEs.

2.5 Future Work: Top-Down Simplified Method for

Large-Scale Equivalents

Scalability of these type of algorithms is an important concern while assign-

ing equivalent line limits. Even though such calculations would be done in

an off-line manner, the computation time needs to be tractable while dealing

with large-scale power system interconnections. In addition to this, the re-

sults obtained from these algorithms need to have some degree of agreement

with the limits associated with the original system. Based on the analy-

sis and studies presented in this chapter, equivalent line limits tend to be

more meaningful when (i) the range between their upper and lower bounds

is relatively small, and (ii) the lower bound is as large as possible.

As shown earlier in this chapter, the fundamental reason for not having

exact solutions to equivalent line limits is because the lines’ electrical param-

eters do not redistribute themselves in the same ratios as the lines’ thermal

limits. Therefore the choice of buses to retain plays an important role in

ensuring that an equivalent could be meaningful in terms of both its power

flow properties, as well as its transmission limits. The concept of back-bone

equivalent [13] uses this idea to create groups such that they are geographi-

cally distant. Each of these groups can be represented by a single equivalent

bus so that the resulting equivalent network retains the wide-area structure

of the electric grid. This is illustrated in Figure 2.4. The image on the

left shows an original network, and the image on the right shows an equiv-
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Figure 2.4: Illustration of top-down simplified concept.

alent network. In this example, the groups are considered to consist of one

or mode substations. Substations are typically geographically distant, and

hence, also electrically distant. This results in relatively fewer equivalent

lines, which means fewer transmission paths, and hopefully more meaning-

ful equivalent line limits. In contrast to the bottom-up LPNgroup-LPN-QP

method, this would be considered top-down.

Preliminary work has been presented in [19], which illustrates the calcula-

tion of equivalent line limits for the North American Eastern Interconnection.

This paper assumed a heuristic that the equivalent line connecting two buses

in an equivalent network would also limit the TTC between the same two

buses. (This heuristic can be loosely associated with LPN-QP when there is

an exact solution.) The work presented in [19] has shown good computation

times, but requires the inclusion of more heuristics, and better selection of

buses. Work is in progress to improve on the method presented in [19], and

hence scale the limit preserving network algorithm to be applicable towards

an interconnection level system.
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Measurement Aided Methods
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CHAPTER 3

DYNAMIC MODE DECOMPOSITION FOR
REAL-TIME MODAL IDENTIFICATION

3.1 Introduction

Electric power systems are never truly in steady state due to continuous small

load fluctuations. However, control devices are able to keep a system’s oper-

ating point within a narrow band during these small variations in load, which

can be referred to as a pseudo-steady state. Sometimes planned/unplanned

events can cause large perturbations that might result in more oscillatory

behavior, and eventually lead to a new pseudo-steady state. These dynamics

are known to occur in the transient stability time frame. Knowledge about

the dominant oscillation modes characterizes a system’s temporal evolution

and stability attributes [20].

Modal identification from measurements provides information about oscil-

lation frequencies and damping ratios, and their respective amplitudes and

phase. Identifying poorly damped modes can help in tuning control strategies

for better stabilization [20]. In today’s highly interconnected electric grid,

a disturbance originating from one part of the system can affect the entire

system. Moreover, the presence of low-inertia and intermittent renewable

generation units can also result in greater deviation from a desired operating

point. These practical concerns in stability and control motivate the develop-

ment of closer to real-time spatio-temporal awareness of a system’s dynamic

trajectories [21], which can be aided with accurate estimation of modes and

mode shapes from measurements.

Modal estimation can be performed using any type of measurements (am-

bient, ring-down, or probing), and there are methods which are better suited

for each data type (explained in Section 3.2). Ring-down analysis meth-

ods, such as Prony [22], Matrix Pencil (MPM) [23], Eigensystem Realization

(ERA) [24] and Variable Projection (VPM) [24], have been applied to power
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system measurements. However in this chapter, a method known as Dy-

namic Mode Decomposition (DMD), which originated in fluid dynamics in

2008 [25, 26], is implemented for ring-down analysis. First applied to power

systems in [27], this work showed that DMD can be substantially faster than

Prony.

This chapter focuses on the use of DMD for short time-interval modal iden-

tification for a wide-area interconnected power system. This chapter show-

cases DMD’s strength in being able to accommodate a large set of measure-

ment channels, while still remaining computationally fast. This chapter also

shows that if different types of measurement channels are augmented with

each other, it can help strengthen the precision of calculations, and hence

allow a smaller time-window to be used. Before embarking on the details of

DMD, the modal analysis problem is briefly described in Section 3.2, along

with references to relevant past and current work that have been utilized in

the industry. Next, mathematical theory of DMD is detailed in Section 3.3,

followed by Section 3.4, which presents an application of DMD. Results and

spatio-temporal visualization are shown, which convey the wealth of informa-

tion extracted via DMD, so as to inspire its use by power system operators

and in smart grid analytics. A discussion of DMD’s fast computational speed

is presented, and its use for on-line modal content monitoring is proposed.

Benefits of utilizing both frequency and voltage data are presented, followed

by a summary section.

3.2 Problem Statement and Literature Review

If a dynamic model of a power system is available, modal analysis could

be done through the linearization of differential-algebraic equations (DAEs),

representing a system and operating point of interest [28]. Apart from cal-

culating modes, the participation factors (based on the eigenvectors of the

linearized state matrix) reveal the impact of each state on each mode (and

vice-versa). Some modes are affected by several states, and other modes are

only impacted by a few states. Since different states can be associated with

different geographic locations, modes are said to be local or inter-area de-

pending on their geographic extent. Local and inter-area modes have also

been observed in measurement data.
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However, from a practical perspective, model-based modal analysis is chal-

lenging due to the time-varying nature of power systems. Approximate values

can be obtained from calculations using planning models that usually run in

an off-line manner. To reduce the dependency on models, and as an alternate

approach, most measurement-driven modal analysis schemes calculate values

of σi (damping), ωi (angular frequency), ci (amplitude) and φi (phase), and

ultimately seek to reconstruct a signal as a sum of damped sinusoids,

ŷ(t) =
I∑
i=1

cie
σit cos(ωit+ φi), (3.1)

given the measurement signal y(t). Typically this is done for a duration of

time, 0 ≤ t ≤ T . Methods like Prony, MPM, and ERA assume that the signal

is an output of a linear time-invariant system, while VPM in [29] does not

require this assumption, because non-linear basis functions can be chosen as

part of VPM. Nevertheless, a signal can be expressed in terms of eigenvalues,

λi = σi ± jωi. Similar to equation (3.1), a sum of damped sinusoids can be

represented in discrete-time,

ŷ[n] =
J∑
j=1

dj (µj)
n , (3.2)

for n ∈ [0, N ], n ∈ Z, dj ∈ C, µj ∈ C, and where the sample num-

ber, n, and the sampling interval, ∆t are related by the equation n =

t/∆t. Typically, measurements are recorded with evenly-spaced samples,

and therefore, the reconstructed signals in equations (3.1) and (3.2) are

practically equivalent. The number of summation terms in equations (3.1)

and (3.2) are I and J respectively. They satisfy the relationship J − I =

Number of complex conjugate eigenvalue pairs, because terms arising from

complex conjugate pairs of the discrete-time eigenvalues (µj and µj) map to

a single term in the continuous time summation in equation (3.1), i.e.,

dj(µj)
n + dj(µj)

n = cie
σin∆t cos(ωin∆t+ φi). (3.3)

Many methods calculate λi by finding µj from a discrete-time series, and

require the time-series signal(s) to be uniformly sampled. If there are missing

measurements, or signals are being combined from two or more sources, then

interpolation and re-sampling are needed. Some implementations of these
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methods have incorporated an optional pre-processing step for removing the

initial/final/mean value of the signal and/or removing linear or quadratic

trends [30, 31]. Some methods also incorporate the filtering of noise, and

this also has proven useful in improving accuracy in some cases.

Methods like Prony [32], MPM [33, 34], and ERA [35] use a two-step

procedure to first estimate the eigenvalues and then estimate the mode shapes

[36, 37]. The origin of the Prony method can be traced to [32] from the field of

Civil Engineering in 1974, and the work in [22] is the first application to power

system data in 1990. In this method, the number of discrete-time eigenvalues,

J , is specified as an input. The work in [38] clearly outlines the steps, and also

shows its relation to the linear system prediction property. The idea behind

MPM was first presented in the signal processing field, also in 1974 [33, 34],

and appeared in power system literature in 1990 [23]. It is based on singular

value decomposition (SVD) of measurement data, with a threshold applied

to the singular values, and then calculation of µj from an estimated J-order

backward linear prediction filter. ERA originated in aerospace engineering

and was first published in 1985 [35], but its first application in power systems

seems to appear only in 1993 [24]. This method is very similar to DMD,

but obtains µj from the eigen decomposition of A′ = Σ−
1
2 UHY1VΣ−

1
2 , as

opposed to Ã shown later in equation (3.14) (Section 3.3).

Once µj has been calculated using one of the above-mentioned steps, the

second step estimates the amplitudes and phases of the respective modes.

The relation σi + jωi = (ln |µj| + j∠µj)/∆t for −π < ∠µj ≤ π, can be used

to obtain the decay rates and angular frequencies. Thereafter the signal can

be represented as

ŷ(t) =
I∑
i=1

cie
σit[cosφi cos(ωit)− sinφi sin(ωit)]. (3.4)

In the continuous-time domain, there is no requirement for measurement

samples to be equi-spaced. Each measurement point can be expressed as

the sum shown in equation (3.4). By recognizing that the known quantities

are σi, ωi and t, and the unknowns are ci, φi, the reconstruction can be

represented by equation (3.5).
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ŷ = Φβ, (3.5a)

Φ(t,∗)︸ ︷︷ ︸
1×(J+1)

=


[
eσit cos(ωit) eσit sin(ωit)

]T

(2J−2I)×1[
eσit cos(ωit)

]
(2I−J)×1

1


T

, (3.5b)

β︸︷︷︸
(J+1)×1

=


[
ci cosφi ci sinφi

]T

(2J−2I)×1[
ci cosφi

]
(2I−J)×1

c0

 . (3.5c)

An additional unknown, c0, is also added to capture any dc offset present

in the signal(s). This is a linear problem, which can be solved using a least-

squares optimization method,

minimize
β

‖y −Φβ‖2
2 , (3.6)

where the solution is calculated with the pseudo-inverse of Φ, and β is ob-

tained as β = Φ†y. In contrast, VPM [31, 29] recasts the linear least squares

problem in expression (3.6) into a nonlinear least squares problem in (3.7).

β can then be eliminated, and σi and ωi (encapsulated as γ) are allowed to

be decision variables.

minimize
γ

∥∥(I−ΦγΦ
†
γy
∥∥2

2
. (3.7)

This non-linear optimization problem for VPM (expression (3.7)) can be

solved iteratively, with an initial guess of γ. Then the values of β can

be calculated. The work in [31, 29] uses an initial guess from ERA, and

implements a line search method enabled by having a symbolic derivative of

the objective function in (3.7). It is presented in [29] that VPM is superior to

the other three methods as it can better minimize the difference between the

ŷ(t) and y(t). This VPM implementation is also said to give tight control over

the desired solution; however, details of the speed of this iterative algorithm

were not mentioned in [29].

The industry has continued to seek alternatives so as to monitor system dy-

namics more closely, and for maintaining good operating points [39]. Work
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has been done using a system identification approach [40], and also with

ambient measurements [41, 42]. Methods like stepwise-regression [43] have

also been formulated as an add-on to Prony analysis. Newer methods have

been designed to better understand the error bounds in mode estimation

[44], and also provide an understanding of the transfer-function representa-

tion of power systems [45]. Some of these measurement-based methods have

also been tested with measurements taken during probing conditions. The

concept of modal energy trending has recently been used, which utilizes a

combination of frequency-domain and SVD methods [46, 47].

Similar to some other methods, DMD also consists of two steps, first esti-

mating the modal frequency and damping, and then their respective ampli-

tude and phase. One by-product of DMD’s first step is a mapping between

underlying dynamics and measurements, which is strategically used in sim-

plifying the second optimization step (not done in Prony, MPM, and ERA).

An assumption in DMD is an approximately constant linear mapping be-

tween consecutive measurement samples during one time-window. Despite

this assumption, there is a firm theoretical foundation for applying DMD to-

wards analyzing nonlinear power system dynamics [48]. DMD is considered

as a numerical algorithm for finding the modes of the infinite-dimensional

linear Koopman operator, which is defined for any nonlinear system [49].

Koopman modes are closed related to the system modes, and hence DMD

modes accurately represent the system modes [50]. Arnoldi schemes in [51]

and [52] are related to DMD via a similarity transformation [26], and in the-

ory can also estimate Koopman modes; however, they are less robust than

DMD, and hence not suitable for practical implementations. These Arnoldi

schemes have been applied towards power systems [53, 54], but DMD has

only been recently applied in [27].

3.3 Dynamic Mode Decomposition

DMD is inherently an ensemble spectral analysis technique, and therefore

modal identification is done using a multi-signal approach. As shall be shown,

a key advantage in the application of DMD to power systems is its compu-

tational speed. DMD is known to be able to extract coherent structures in

either simulated or real measurements (even with noise) and associate them
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to single oscillation frequencies [50], i.e. modes. DMD requires uniformly

sampled measurements; for this, N + 1 samples are gathered for a time-

window of interest, T[t−T,t], with a sample interval of ∆t and duration of T .

Therefore, T = N∆t. Given M signals, each with N + 1 samples, these

values are cast into a matrix,

Y =
[
y0 y1 . . . yn . . . yN

]
∈ CM×(N+1). (3.8)

For generality, and from the perspective of the DMD algorithm, these mea-

surements could be complex valued. Next, Y is separated into two matrices:

Y0 =
[
y0 . . . yN−1

]
and Y1 =

[
y1 . . . yN

]
. By assuming an ap-

proximately constant linear mapping, A, consecutive measurement samples

can be related by

yn ≈ Ayn−1, for n = [1, N ], n ∈ Z, (3.9)

for a time duration, T , and hence Y1 and Y0 are related by,

Y1 = AY0 + ρηT
N , (3.10)

where ρηT
N is the residual error. The work in [49] and [50] elaborates on the

orthogonality of ρ to the measurement space spanned by the columns of Y0.

Based on the projection theorem, this is the smallest possible error [49].

3.3.1 Estimation of oscillation frequencies and damping ratios

An economy-sized SVD is performed for Y0. Here, U consists of the left sin-

gular vectors or the Proper Orthogonal Decomposition (POD) modes that

contain the spatial structures (referred to as topos), and V that contains the

temporal structures (referred to as chronos) [50, 55]. The title of the paper

in [56] – “On the Hidden Beauty of the Proper Orthogonal Decomposition”

– aptly describes U, which will play an instrumental role in a later stage

(see equations (3.16a)). Out of the N singular values gathered, R non-zero

values are selected based on a user-defined threshold. (From numerical ex-

periments with different systems and dynamic events, this threshold tends

to be dependent on the magnitude of time-constants associated with the dy-

namic models. For practical large-scale systems, this threshold value could
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be tuned over time, and made more robust across a range of operating con-

ditions.) This creates a diagonal matrix Σ with R singular values, and U

and V are altered accordingly. This results in the following:

Y0 = UΣVH, (3.11a)

U =
[
u1 . . . uM

]T

∈ CM×R, and UHU = I, (3.11b)

V =
[
v1 . . . vN

]T

∈ CN×R, and VHV = I. (3.11c)

DMD provides a lower dimensional optimal representation Ã (equation

(3.12)), which is essentially the projection of A onto a POD basis. The

reference in [48] provides details on the implication of this change of basis,

and goes on to establish that an empirical reconstruction of Â is in fact

merely a projection of the actual A in the range of the column span of

Y0. This is logical because only the modes perturbed and contained in the

measurements can be empirically estimated.

Ã = UHAU where Ã ∈ CR×R. (3.12)

By substituting Y0 from (3.11a) into (3.10), while ignoring the residual

term, and with some matrix manipulations, the following is obtained:

Y1 = AUΣVH =⇒ Y1VΣ−1 = AU, (3.13)

which results an expression for AU in (3.13) that can be substituted into

(3.12) to obtain Ã, which is a numerical lower dimensional optimal represen-

tation of the mapping between consecutive measurement snapshots from Y.

The reasons for the optimality of Ã is documented in [48].

Ã = UHY1VΣ−1. (3.14)

Next, the eigen decomposition of Ã = EDµE
−1 provides the discrete-time

eigenvalues, µj, and the eigenvectors, ej. These discrete-time eigenvalues can

be conveniently converted to continuous-time eigenvalues: σi + jωi = λi =

ln(µj/∆t = (ln |µj|+ j∠µj)/∆t for −π < ∠µj ≤ π.
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3.3.2 Estimation of amplitudes and phases of respective
modes

Since Ã is a lower-dimensional representation of the inter-snapshot mapping

of the measurements, it can be said that the dynamics are governed by equa-

tion (3.15a), which has R states. These states are not the same as the states

from a DAE model of a power system, but can be thought of as a set of

hidden states, which the work in [57] alludes to.

xn = Ãxn−1 = Ãnx0 (3.15a)

= E(Dµ)nE−1x0 = E(Dµ)nα. (3.15b)

The initial “state” conditions, x0 are unknown. With a substitution of Ã

into (3.15a), xn, can be represented in terms of an unknown α that is the

initial amplitude of each discrete-time eigenvalue. It should be noted that

α ∈ CR×1, and represents both the amplitude and phase of the continuous

time modes. The beauty of the POD modes contained in U is that they allow

a snapshot of measurements at time point n, i.e., ŷn, to be linearly related

to xn. This plays an instrumental role in linking the two stages of this DMD

implementation [58].

ŷn = Uxn (3.16a)

= UE(Dµ)nα = UEDαdiag[(Dµ)n]. (3.16b)

Further substituting xn from (3.15b) into (3.16a) allows a snapshot of re-

constructed signals, ŷn, to be represented in terms of the unknown diag(Dα =

α. In this way, Y0 can be approximated with the following equation:

Ŷ0 = UEDαVand, (3.17)

which contains R unknowns in the α vector, and where
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Vand =


µ0

1 µ1
1 . . . µN−1

1

µ0
2 µ1

2 . . . µN−1
2

...
...

. . .
...

µ0
R µ1

R . . . µN−1
R

 . (3.18)

This allows the estimation of amplitude and phase to be formulated as a

least squares optimization problem,

minimize
α

‖Y0 −UEDαVand‖2
F, (3.19)

which minimizes the square of the Frobenius norm of the difference between

Y0 and Ŷ0. Similar to Prony, MPM, ERA, and VPM, the optimization

could have been formulated in the continuous time-domain, but with the

availability of evenly-sampled data from devices such as PMUs, FDRs, and

DFRs, a reliable and fast optimization solution method can be utilized in

the discrete-time domain.

minimize
α

J(α) =
∥∥ΣVH − EDαVand

∥∥2

F
. (3.20)

The formulation in expression (3.19) is further modified through a substi-

tution of Y0 from equation (3.11a), which simplifies to the formulation into

expression (3.20). As seen here, the estimation of complex amplitudes, α,

is independent of the POD modes (topos) of Y0. This reinforces the state-

ment in (3.16a), as the problem minimizes the difference between the hidden

states, rather than the measurements themselves. In a way, the optimization

problem in (3.20) is meant to minimize the difference between the weighted-

chronos (in the measurements) and the temporal evolution of the modes.

This objective function can be equivalently represented as

J(α) = αHPα− αHq− qHα + s (3.21a)

where P =
(
EHE

)
◦ (VandVH

and), (3.21b)

q = diag(VandVΣHE), (3.21c)

and s = trace(ΣHΣ). (3.21d)

The derivation of equation (3.21a) from equation (3.20) is based on linear
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algebra manipulations, which are documented in [58]. The optimal value of

α that minimizes J(α) is

α = P−1q (3.22a)

=
((

EHE
)
◦ (VandVH

and

)−1

diag(VandVΣHE), (3.22b)

where M ◦M is the element-wise multiplication of matrices, and M is the

conjugate operation. Having a closed form solution is particularly useful, as

it eliminates the need of iterations and initial conditions.

3.3.3 Signal reconstruction and performance evaluation
metric

Since the application of DMD to power system measurements is intended for

on-line modal identification, signals can also be efficiently reconstructed by

choosing the appropriate rows and columns from matrices that are already

used/calculated in the DMD algorithm. From equation (3.17), it can be

shown that the reconstruction of measurement m and time point n is given by

a summation of the individual modes weighted by their respective amplitudes,

then mapped to R hidden states by the eigenvectors of Ã, and then mapped

via the POD modes to the mth signal. Succinctly, this is

ŷm[n] = uT
m

R∑
r=1

erαr (µr)
n =

R∑
r=1

ŷ(m,r)[n], (3.23)

where

ŷ(m,r)[n] = uT
merαr (µr)

n (3.24)

is the contribution of each mode. This allows for efficient spatio-temporal

slicing and dicing of an array of measurement signals. In addition to lever-

aging DMD for its computational speed (see Section 3.5), it also may be

of interest to compare the accuracy of reconstructed signals across different

time-windows, or evaluate it with different measurements. For this, a nor-

malized version of the optimal value of the objective function in equation

(3.21a) can be utilized as a metric, i.e., Jnorm = J(α)/(RN).
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3.4 Application of DMD

3.4.1 Synthetic measurement data via simulation

Power system operators have faced challenges in deciphering all the data

that is available at control centers. Sensors such as phasor measurement

units (PMUs), frequency disturbance recorders (FDRs) [59], and digital fault

recorders (DFRs) are gathering huge volumes of data, and hence there has

been an evolving need to view more information and less data. In this chap-

ter, a transient stability simulation of an industry-grade dynamic model of

a large-scale interconnected power grid was used to collect frequency mea-

surements at 1696 high-voltage locations spanning a wide-area (Figure 3.1)

but a small portion of the total buses in the system. All load models were

augmented with a Gaussian load noise model (7% standard deviation) with

a low pass filter (τ = 0.5 s) to capture the effect of random load fluctuations,

and hence introduce noise in the measurements. In this simulation a large

Figure 3.1: Spatial visualization of 1696 measurement locations from an
interconnected power grid, with 5 locations labeled.
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Figure 3.2: Frequency measurements from 1696 locations.

perturbation was introduced through the loss of a large generation unit at

t = 1 s, and transient behavior was recorded for 30 s. Figure 3.2 shows

the spread of frequencies at 1696 locations during the fault, with one loca-

tion highlighted. Measurements were gathered at 30 samples/second, which

translated to a raw data rate of about 3.26 Mbits/s. Even though this may

seem reasonable, its spatio-temporal analysis and visualization are challeng-

ing. Practical limits to displaying data at control centers necessitate holistic

measures such as mode frequencies and damping ratios to be tracked during

transient contingencies, which can possibly be incorporated into alarm pro-

cessing. On-line modal identification via DMD can be a way to process such

time-series data, as it seems to be computationally advantageous [27].

The set of measurements gathered from the simulation in Section 3.4.1

is treated as a streaming data source input. The DMD algorithm was im-

plemented in a software code, which accepts this data stream. A trailing

T -second time-window concept was utilized, such that the output data re-

flects the modal content in the prior T seconds of measurements. This time-

window was advanced with a step-size, tstep. The idea of sliding time-windows

is common for speech recognition, where the signal content is time-varying,

and has also been utilized in power systems literature [60]. The power system

measurements being processed in this example originate from a non-linear

time-varying system. Therefore, frequency-domain information is expected

to vary with time. The choice of the window length, T , is application spe-

cific [61] as it presents a trade-off between resolutions in time-domain or

frequency-domain. For power system measurements, this value of T can be
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tuned based on historical knowledge of the approximate system eigenvalues.

In the example being presented here, T = 6 s and tstep = 0.2 s were cho-

sen. However, these are suggested values, which could be modified based

on user preference. In comparison to other moving-window implementations

in power systems literature (e.g. [60]), a much smaller value of tstep could

be used, as DMD is expected to be computationally much faster. This sig-

nificant overlap between consecutive time-windows, and the fast solution of

DMD, is hoped to allow for continual short-interval mode tracking. This is

elaborated on in Sections 3.5 and 5.1.

3.4.2 Results from one time-window

As discussed in Section 3.3, DMD is capable of analyzing multiple signals

simultaneously. In this example, all 1696 measurement signals were ana-

Table 3.1: Modal analysis of frequency measurement at location A during
time-window T[4.0,10.0].

Modes Oscillation frequency (Hz) Damping ratio

1 0.23072 0.10387
2 0.29410 -0.092304
3 0.47078 0.26472
4 0.62376 0.00099628
5 2.4786 0.0069160

Figure 3.3: Measured and reconstructed frequency signals at Location A,
during time-window, T[4.0,10.0].
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Figure 3.4: Plot of damping ratios vs. oscillation frequencies (Hz) at
Location A, during time-window, T[4.0,10.0].

lyzed concurrently for each time-window. Assuming one of those signals,

say at location A, was being monitored, its modal content for time-window

T[4.0,10.0] is summarized in Table 3.1. Listed are some of the modes, where

modes 1-3 are the three most dominant modes observed in this signal. The

time-series frequency measurement in Figure 3.3 shows a zoomed in view of

the highlighted measurement signal from Figure 3.2. Also shown here is the

DMD-based reconstruction of this signal, which is a close match. Quantita-

tively, the optimization residue was Jnorm = 3.12× 10−12, representing the

combined residue of all signal reconstructions in this time-window.

Similar to the observations in [27], DMD is able to perform well and pro-

vides meaningful results. Figure 3.4 is a plot of the damping ratios and oscil-

lation frequencies. Both the size of the dot and the filled shading represent

the rms amplitude of the corresponding modal component. As seen, mode 1

is the dominant ac mode, and hence has the most influence on the frequency

signal at location A. The damping ratios for modes 2 and 4, are negative and

very close to zero, respectively, which could be a cause of concern if they fail

to improve in subsequent time-windows.
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3.4.3 Temporal analysis

Similar to methods like Prony, MPM, and ERA, efficient reconstruction of

time-series signals (see Section 3.3.3) can be done using outputs of DMD.

Table 3.2 shows the modal breakdown of five of the 1696 locations shown in

Figure 3.1, where each column corresponds to one location. The temporal

analysis shown is for time-window T[4.0,10.0], and the modes correspond to

those in Table 3.1. At locations B and C, the effect of mode 1 is clearly

visible in the measurements. In contrast, the contribution of mode 1 to the

measurements at locations D and E is less obvious, but DMD is able to

show that mode 1 is approximately anti-phase at D vs. E. Through DMD,

differences in phase shifts and amplitudes can be efficiently quantified for

multiple signals. It is interesting that mode 5 almost exactly aligns with the

higher frequency oscillation observed in the measurement at location A. This

highly granular information about individual modes’ amplitude and phase, or

their time-series reconstruction could be a distilled input for wide-area control

strategies. As illustrated, all modes have a zero dc value, except for the

exponential components that originate from real eigenvalues. Similar to [27],

no de-trending or removal of dc offsets has been applied to the measurements

in this analysis, which is sometimes otherwise necessary in methods.
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3.4.4 Spatial analysis

In real-time operations, the right information at the right time can be crucial

for operating power systems within desired limits. The true potential of mea-

surement data can be harnessed with real-time computational intelligence,

and DMD might be able to contribute significantly. Since the implementa-

tion of DMD in this chapter seems to meet the speed and accuracy standards

for on-line use, many traditionally off-line analyses could be done closer to

real-time. One example is spatio-temporal visualization of individual mode

amplitudes (i.e., the values in equation (3.24)) via on-line creation of simple

animation. Table 3.3 shows snapshots from such animation. The area shown

corresponds to that from Figure 3.1, and is able to capture wide-area effects

of individual modes. For confidentiality reasons, the absolute value of the

amplitudes have been excluded; however, the snapshots show modal ampli-

tudes varying in time and space. These holistic animations provide a more

intuitive approach than looking at numerical values of modal amplitudes and

phase shifts. For example, the spatial evolution of mode 4 can been seen as

a ripple (or wave) propagating through the entire interconnection. Areas

oscillating against each other at mode 4 frequency are quickly noticeable.

Dominant mode 1 partitions the interconnection into two regions oscillating

against one other. Also seen is the growth of undamped mode 2, and it par-

titions the interconnection into three regions. The faint coloring in the last

row of spatial snapshopts indicates that mode 5 is mainly observed around

location A, and has very small amplitudes elsewhere in the interconnection.

For more practical purposes, modal content triggers/alarms could be used

to automatically create such animation, which could aid in system-wide sit-

uational awareness of dynamic trajectories. The data for creating this ani-

mation is readily available from the matrices used in the DMD calculation,

and animation could be created and destroyed on-the-fly, based on system-

specific modal monitoring criteria. If sufficient resources are available, spatio-

temporal visualization of one or more modes could be continually viewed at

control centers.
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3.5 On-line Modal Content Monitoring

Similar to Figure 3.4, Table 3.4 contains the same type of plots showing the

evolution of modes for three successive time-windows. Once again, both the

size of the dot and the intensity of the fill shading represent the relative rms

amplitudes. Although only one signal is shown here, the current code calcu-

lates the same information for all measurements simultaneously. The analysis

shows that the modal content of measurements varies through time, as well

as the energy content of each mode. Viewed as an animation, the movement

of these dots resembles a root-locus, where some dots merge/split at differ-

ent points in time. As discussed in [27], DMD is known to have shown close

agreement with Prony and Koopman methods. With seemingly negligible

loss in accuracy, the key advantage of DMD is its fast computation. DMD

has already been able to perform in real-time for background/foreground

separation in video [62], and for tumor ablation simulations [63]. In this

chapter, DMD was also able to perform fast on-line calculation of modes and

their complex amplitudes. This amounted to a computation time of 0.105 s

for simultaneous processing 1696 measurements, each with 181 time sam-

ples from a 6 s sliding window. In the current implementation and with the

data set mentioned, modal identification can be repeated every 0.105 s on a

2.7 GHz dual core processor. Advancing the time-window every 0.1 s allowed

the algorithm to run on par with real-time.

In addition to the above-mentioned settings, the software was also eval-

uated by varying the number of measurement signals and the number of

samples in each time-window. Simple timing tests with the current code

showed that the DMD computation time scaled at about O(N3) with re-

spect to the number of samples in the time-window of interest, and at about

O(M) with respect to the number of measurement channels, similar to the

result published in [64]. Given the computational complexity and absolute

time needed to solve, DMD is efficient for modal identification, especially in

being able to accommodate a large number of measurement channels. This

characteristic is further exploited in Section 5.1, to improve precision, with

a low trade-off in computation time.

From the example in Table 3.4, it can be seen that the variation of the

dominant ac mode around 0.2 Hz is in the range of about 0.17-0.23 Hz,

across sliding time-windows separated by 0.2 s. Similarly, its damping ratio
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also varies. This relatively rapid change in the dominant mode calls attention

to some of the limitations of DMD, specifically in terms of the precision and

the practical usefulness of mode values, which seem to be changing rapidly.

An important conclusion in [64] is that the error in DMD is significantly

attributed to the form, quality, and quantity of the input data. One of the

suggested approaches is to incorporate as many measurement channels as

possible, which helps for datasets with poorer signal-to-noise ratios. Prior

work in fluid dynamics has also concluded that measurement locations need

to be widely distributed throughout the system of interest [26], and even bet-

ter if they collectively capture the full phase cycle of the modal constituents

[64]. In an attempt to improve the time-varying precision of DMD results,

the effects of augmenting datasets, and using a slightly longer time-window

are studied in the next chapter.

3.6 Summary

The speed and precision demonstrated by DMD, while utilizing multiple

channels of frequency data, positively demonstrate the usability of DMD in

on-line modal analysis implementations for large-scale power systems from

measurement data, with noise. As a result of this real-time capability, addi-

tional intelligence could be incorporated into existing control center frame-

works used in the industry. Modal content alarm processing could be a

direct consequence of this work, and it is also expected that the outputs of

DMD can be further utilized for a variety of control and stability algorithms.

It is proposed that all transmission-level power system measurements could

be channeled through a DMD-powered modal analysis engine, which would

assign criteria-based modal tags at particular time points and/or certain

measurements. Pertaining to these tags, the most critical spatio-temporal

information could be made available at control centers in an on-line fashion.

All these tags could also be saved with the measurements, and it could save

many man-hours in retrieval of data for post-event analyses.
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CHAPTER 4

AN INTERACTIVE TOOL FOR
MEASUREMENT-DRIVEN MODAL

ANALYSIS OF LARGE-SCALE POWER
SYSTEMS

4.1 Background

Dynamic Mode Decomposition (DMD) is a relatively new method for mea-

surement driven multi-signal modal identification. It originated in the field

of fluid dynamics [26, 50] and has recently been applied to power systems.

DMD has exhibited good accuracy, and significantly faster speed than Prony

[27]. The work in [65] has continued to build on the work in [27], and has

been able to further demonstrate DMD’s computation speed and scalability

in accommodating more measurement signals and higher sampling rates. As

part of ongoing research efforts, an interactive modal analysis tool has been

designed. This tool has been coded in Matlab, and uses DMD to conduct

modal analysis. In this chapter, the focus is on describing the capabilities

built into this tool, and explaining the various user options that are available

in the current version.

Modal analysis is an integral part of dynamic stability assessments. A

system’s temporal evolution and stability attributes can be characterized

by knowing the dominant oscillation frequencies and damping ratios [20].

Power system modal analysis helps accomplish this, and is a task usually

done by dispatchers, planning engineers, and/or operational engineers, for

the purpose of oscillation detection and mitigation [66]. The type of analysis

can be either off-line or on-line depending on the intended use; however,

engineers make use of commercial applications for proper data management

and automated analyses.

These tools have aided engineers in automating their daily tasks, and ul-

timately provide quantitative results to support decision making. There are

various commercial power system analysis software packages that contain

modal analysis tools. Some of these tools are model-driven, while others are
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measurement-driven. Regardless of the approach taken, the two methods

provide information about the mode frequencies, damping ratios and their

respective mode shapes. With these, the impact of each mode on the system’s

dynamic states, or measurement signals, can be understood. This analysis

can also provide an understanding of inter-area or local oscillation modes,

which can be utilized for various control strategies.

In recent years, measurement-driven modal analysis has gained more trac-

tion within the power industry [21]. To address this need, various commercial

software packages such as Phasor Grid Dynamics Analyzer (PGDA) [67] and

PowerWorld Simulator [68] now have modal analysis tools. These tools uti-

lize algorithms such as Prony [22], Matrix Pencil [23], Hankel Total Least

Squares, Yule Waker, Fast Fourier Transforms, and Variable Projection.

Similarly in academia, modal analysis continues to be an active area of re-

search, and there are tools that have been developed in academic institutions.

One example is a tool based on Variable Projection [31] that was recently

developed in partnership with industry. Also, there are several other pub-

lications that have presented improvements in algorithms [47, 44, 43], and

have utilized hybrid methods. MANGO is such a hybrid algorithm, which

aims to provide recommended actions (such as generation re-dispatch or load

reduction) and aid grid operation decision making for mitigating inter-area

oscillations [39].

The tool that will be presented in this chapter utilizes DMD for modal

identification. The purpose of this tool is to illustrate the concepts of modal

analysis in an interactive and visual manner. As shall be shown, spatio-

temporal analysis of modes and their respective amplitudes can be done

relatively quickly, and the outputs of the DMD algorithm make it possible to

slice and dice measurements to better understand their constituent signals.

This chapter gives details on the input file format and user interface, and

provides an example of modal analysis. Also presented are explanations of

customizable user options, and a brief study that emphasizes the importance

of choosing appropriate time-window durations and measurement sampling

rates. Before describing the tool in greater detail, a summary of the DMD

algorithm, along with key references, is presented.

As described in Chapter 3, DMD is a data processing method that can

extract coherent structures with a single frequency from numerical or ex-

perimental data sequences [50]. DMD consists of two parts – (i) estimation
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of discrete-time eigenvalues, and (ii) estimation of complex amplitudes of

respective modes. Since DMD is inherently an ensemble spectral analysis

technique, modal analysis is carried out using a multi-signal approach. The

method described earlier in Chapter 3 is shown below in Algorithm 2. Al-

though not shown in this chapter, DMD utilizes a least-squares optimization

approach [58]. Hence, the optimal value of α given in Algorithm 2 minimizes

the least-squares residue between all the measurement and reconstructed

signals. The tool being described in this chapter utilizes this algorithms to

implement modal identification.

Algorithm 2 DMD.

Data: Y =
[
y0 y1 . . . yN

]
∈ CM×(N+1)

Result: U, E, α, and µ

1: Y0 ←
[
y0 . . . yN−1

]
, and Y1 ←

[
y1 . . . yN

]
Part I Estimation of discrete-time eigenvalues

2: UΣVH ← economy size SVD of Y0, and retain R non-zero singular
values

3: Ã← UHY1VΣ−1

4: EDµE
−1 ← eigen decomposition of Ã

5: µ← diag(Dµ)

Part II Estimation of complex amplitudes

6: α←
((

EHE
)
◦ (VandVH

and)
)−1

diag(VandVΣHE)

Notes:

(i) U,V ∈ CM×R, UHU = I, and VHV = I.

(ii) Ã ∈ CR×R.

(iii) M ◦M represents element-wise multiplication of two matrices.

(iv) Vand =


µ0

1 µ1
1 . . . µN−1

1

µ0
2 µ1

2 . . . µN−1
2

...
...

. . .
...

µ0
R µ1

R . . . µN−1
R

.

56



Figure 4.1: Contents of the input data file.

4.2 Input Data

Although Y is the only required input for the DMD algorithm, a few other

inputs are necessary to make use of all the features contained in the tool that

will presented in Section 4.3. The current version of this tool accepts an in-

put data file in the MAT format. As an example, Figure 4.1 shows M = 1696

measurements, with 30 samples/s, and a total of 901 time samples. From

these values, the tool extracts the relevant Y, based on time time-window

of interest. If the measurement data is in a CSV file format, it should be

straightforward to transform it into the format described below. Geographi-

cal coordinate data is optional, but is needed for spatial visualization.

(i) timeStamps : Time stamps for the measurements

(ii) measMatrix : Time series values of measurements

(iii) measLabels and busNums : Text labels and numbering

(iv) avlbSmplRate: Sampling rate of the measurements series

(v) lats and longs : Latitude-Longitude, or X-Y coordinates

4.3 Interactive User Interface

Figure 4.2 shows a screen-shot of the user interface of the modal analysis tool

that was designed in Matlab and is based on the DMD algorithm. It incor-

porates a spatio-temporal visualization approach in presenting the estimated
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modes and mode shapes from measurement data, as opposed to reading val-

ues of eigenvalues and eigenvectors. As shown here, the user interface consists

of four sections – (i) Summary view of all input signals and time window, (ii)

Zoomed-in view of time-window, (iii) Plot of damping ratio vs. oscillation

frequency, and (iv) Geographic map display of mode amplitudes.

Upon launching this tool in Matlab, users are first presented with an op-

tion to select a main input file, as described in Section 4.2. In addition to

this, users have the capability to customize several options such as (i) the

time-window duration for the analysis, (ii) the sampling rate of the raw mea-

surements, (iii) the signal to monitor and visualize, (iv) the energy-based

thresholds for signal reconstruction, (v) the time horizon for prediction of

signals, (vi) the time-step for the sliding window, and (vii) the choice be-

tween streaming or snapshot mode. These user options are explained later

in Section 4.4. Depending on the choices made, the user interface adapts to

reflect the desired options.

Figure 4.2 shows a screen-shot of the quantitative outputs and visualiza-

tion capabilities, while the tool is in use. In this view, a set of frequency

measurements are being simultaneously analyzed. Although modal analysis

is being performed on all of the input data, only one measurement is being

visualized. The highlighted signal from the summary view is enlarged in the

zoomed-in view, which also provides a reconstruction of the signal, and is

capable of showing the contribution of each individual mode. Predicted and

future values of the signal are also shown. The modal content of the chosen

signal can be quickly deciphered by looking at the plot of damping ratio vs.

oscillation frequency. The color of the dots represents the rms amplitude

of the constituent modes. This area of the tool has a clickable interface,

which allows users to pick a mode to learn more about it. As a mode is se-

lected, the time-series mode constituent is populated in the zoomed-in view,

and the wide-area modal amplitude values are populated in the geographic

map display. With the buttons in the lower-right, it is possible to view the

damped-sinusoid and pure-exponential components (shown in Figure 4.2 of

the signal. The spatial visualization can also play back an animation showing

wide-area time evolutions of modal amplitudes. The tool is also capable of

displaying state/national boundaries, but they have been excluded from this

chapter due to confidentiality reasons associated with the measurement data

being used.

59



This tool was designed so that users could interact with the results and

better understand modal analysis by utilizing its spatio-temporal animation

capabilities. Space limitations in this chapter prohibit the inclusion of more

screenshots; however, the example described in Section 4.5 are supported

with graphics generated by this tool, which will further illustrate its spatio-

temporal visualization capabilities.

4.4 User Options

This tool is a work-in-progress, and is being improved based on feedback

obtained. Despite its minimalistic user-interface, there are several options

that users can customize to adapt the tool for their target measurement

data. Some of these options are listed in Table 4.1, and are described in

this section. As with any analysis involving time-series data, the duration

of time-window and the sampling rate are two settings that users may want

to modify. These two options are made available in this tool, and users can

specify this as a setting for the tool. The window duration can be specified

in seconds, and the sampling rate in samples/s. It should be noted that the

choice of window duration and sampling rate can have a significant impact on

the results and the speed of computation. Some of these issues are discussed

in Section 4.6.

Users can also specify a choice of signal to visualize. This is a cosmetic

option, and only affects the visualization of results. It has no impact on the

underlying DMD algorithm that processes all measurements simultaneously.

Similarly, an energy-based threshold can be specified for the reconstruction

of the signal. This setting controls the number of modes that are presented,

as it may be of practical interest to only see the modes that have a significant

contribution to the signal being visualized. The default value of this setting

is at 99%, which means that the highest energy modes are selected so that

at least 99% of the energy content is captured in the reconstructed signal.

There are two modes available in this tool – (i) streaming mode, and (ii)

snapshot mode. If a particular time-window of measurements is to be an-

alyzed, the snapshot mode could be used. However, the streaming mode

might be a more convenient option while analyzing a new set of measure-

ments. Users can specify the time-step for the sliding time window, which
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Table 4.1: Some user options in the DMD-based modal analysis tool.

# Options

(i) Duration of time-window
(ii) Sampling rate
(iii) Choice of signal to visualize
(iv) Energy based threshold for signal reconstruction
(v) Duration of time-step for sliding window
(vi) Choice between streaming and snapshot modes
(vii) Duration of time-horizon for prediction

will control how often the DMD calculation is repeated.

The tool also provides a prediction of the signal being visualized based

on the modal content of the current time window. Users may specify a

time-horizon for prediction, which will plot the predicted time-series values

along with the actual future measurements. Future measurements are avail-

able since the analysis is being done in an off-line fashion, and this kind of

comparison can help convey the non-linear and time varying aspects of the

measurements. It is expected that prediction and future measurements will

not match as well as the reconstructed signal in the trailing time-window.

4.5 Example

To illustrate the use of this tool, frequency measurements at 1696 high-

voltage locations (a small portion of the total buses in the system, spanning

a wide-area, as shown in Figure 4.3) were collected from a transient stability

simulation of an industry-grade dynamic model of a large-scale intercon-

nected power grid. A Gaussian load noise model (7% standard deviation)

with a low pass filter (τ = 0.5 s) was augmented to all load models to cap-

ture the effect of random load fluctuations, and hence introduce noise in the

measurements. Transient behavior was recorded for 30 s from a simulation

of the loss of a large generation unit at t = 1 s. Measurements were gathered

at 30 samples/second. Figure 4.4 shows the spread of frequencies at 1696

locations during the fault, with location D highlighted. These measurements

were saved in the format described in Section 4.2, and then analyzed with

the modal analysis tool.
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Figure 4.3: Spatial visualization of 1696 measurement locations from an
interconnected power grid, with 1 locations labeled.

First, the input data file was loaded, and location D was selected to be

visualized. A trailing 5 s sliding time window and a time-step of 0.1 s were

specified as user options. This allowed the tool to recompute every 0.1 s,

Figure 4.4: Frequency measurements from 1696 locations, with
measurement from location D highlighted.
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(a) Measured and reconstructed frequency signals.

(b) Plot of damping ratios vs. oscillation frequencies (Hz).

Figure 4.5: Location D, during time-window, T[3.0,8.0].

while considering 5 s of measurements at a time. As the sliding time-window

moved forward in time, the analysis was paused during the trailing time win-

dow at 8 s, i.e., T[3.0,8.0]. For each of these time windows, the tool cumulatively

performed the modal analysis of all measurements, and then displayed the

modal content of the measurement at location D. While using this modal

analysis tool, the reconstructed and the measurement signals are both dis-

played in the zoomed-in view, which is able to visually convey the degree of

their similarity. Figure 4.5a shows such an illustration corresponding to the

measurement at location D. This reconstruction is based on the modes shown

in Figure 4.5b. In the tool, this damping ratio vs. oscillation frequency plot

is located in the lower-right section. For each of the modes displayed, users
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Table 4.2: Modal analysis of frequency measurement at location D during
time-window T[3.0,8.0].

Modes Oscillation
frequency (Hz)

Damping ratio Reconstructed
time-series values

1 0.47574 0.39543

2 0.2552 0.1557

3 0.62619 0.000035526

4 0.86687 0.084713

5 1.0067 0.040246

can click on them to display details about them, and also view their time-

series representation. For this example, a summary of the constituent modes

is presented in Table 4.2. Sparklines show the reconstructed time-series val-

ues at the same scale, where negative values are contained within the grey

regions.

Users can also view the spatio-temporal variations of the modal amplitudes

by first selecting the desired mode and then clicking on the play contours

button. The tool will then display an animation showing the evolution of

wide-area modal amplitudes. Table 4.3 shows some snapshots from such

animation, for the area shown in Figure 4.3. As seen here, the effect of

mode 3 is spatially varying, and areas oscillating against one another are

easily noticeable. The same information could have been presented with

mode shape plots, but the tool presents an animation as a more intuitive

alternative. Using such animation, users can drill down into each mode, and

also drill across to view its wide-area effects.
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Table 4.3: Spatial visualization of mode amplitudes during time-window
T[3.0,8.0] (mode 3 is listed in Table 4.2).

Time Mode 3

t = 3.0 s

t = 3.6 s

t = 4.1 s

Relative Scale: negative zero positive
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4.6 Performance Tests

As with using any software tool, it is important to know its limitations, as

well as have a basic understanding of the input data being analyzed. The

modal analysis tool presented in this chapter empirically estimates oscillation

frequency, damping ratios, amplitude, and phase, and therefore has some

error. The article in [64] provides a more general error analysis for DMD.

However in this section, the focus is on understanding the variations in DMD-

based modal analysis due to windowing effects and sampling granularity. In

addition to these, the computation speed of the tool is also discussed.

4.6.1 Effect of changing duration of time-window

In the earlier example in Section 4.5, a 5 s time-window was used for DMD,

and the modal analysis results were from time window T[3.0,8.0]. The mea-

surement at Location D from the same time-window is shown at the top of

Table 4.4. A natural question would be to wonder about the sensitivity of

these results to small variations in the length of the time-window selected.

As a parametric test, only the end-time of this time window was varied in

steps of 0.1 s between 7.9 to 8.4 s. For each window of modal analysis, the

respective modal content plots are shown in Table 4.4.

As expected, DMD provides different results for the values of modes and

their amplitudes. Although there is seemingly very little difference in the

overall signal if the end-time is varied within 7.9 and 8.4 s, it does lead to

different results. It should be noted that the DMD algorithm simultaneously

optimizes these modes and amplitudes for all the signals being analyzed.

Hence, it cannot be directly concluded that the choice of one time-window is

better than another. However, it is definitely application specific, and needs

to be tuned based on the time-scale of the dynamics being analyzed. The

different time-windows also yield different values of optimization residues.

These numbers (see Table 4.4) indicate how well all reconstructed signals

match the measurements in their respective time-windows. A smaller value

symbolizes a better match.

Focusing on the most dominant mode (i.e., the dot with the darkest color),

it is interesting to quantitatively observe its sensitivity to the changes in the

duration of the time-window. Figure 4.6 shows a plot of the variations in
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Table 4.4: Sensitivity of estimated damping ratios vs. oscillation
frequencies (Hz) of frequency signal measurement at location D (labeled in
Figure 4.3) to variations in duration of time-window.

Frequency measurement (Hz) vs. time (s)

Time-window
(Optimization residue)

Evolution of damping ratios vs. oscillation
frequencies (Hz)

T[3.0,7.9]

(9.84× 10−12)

Time-window
shown above
T[3.0,8.0]

(9.37× 10−13)

T[3.0,8.1]

(3.75× 10−12)

T[3.0,8.2]

(6.09× 10−12)

T[3.0,8.3]

(1.87× 10−12)

T[3.0,8.4]

(6.09× 10−12)
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Figure 4.6: Estimation of oscillation frequency and damping ratio of the
dominant mode, with respect to variations in duration of time window, but
with a fixed sampling interval of 1/30 s.

the oscillation frequency and the damping ratio. The variation in oscillation

frequency is observed to be about 0.06 Hz. In contrast, the variation in

damping ratio is about 0.30.

It is also interesting to observe the shape of the plot shown in Figure 4.6.

The variations in oscillation frequency and damping ratio seem to be opposite

of each other, indicating an underlying trade-off in the estimation of these

two quantities.

4.6.2 Effect of changing sampling rate

The sampling rate of a set of measurements determines the range of oscilla-

tion frequencies that can be observed in the data. The work in [69] discusses

sampling adequacy issues in Prony analysis of power system measurements.

Inspired by this work, the effect of variations in sampling rate in DMD is

explored. For this parametric analysis, time window T[3.0,8.0] is chosen, and

the sampling rate of input measurements is varied.

As expected, the DMD analysis resulted in different mode values (similar

to plots in Table 4.4). Once again, the movement of the dominant mode was

tracked, and the values are shown in Figure 4.7. The negative correlations in
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Figure 4.7: Estimation of oscillation frequency and damping ratio of the
dominant mode, with respect to variations in sampling interval, but with a
fixed time window T[3.0,8.0].

the relative movements of oscillation frequency and damping ratio are also

observed here. However, in contrast to the fluctuation in Figure 4.6, the

variation of damping ratio in Figure 4.7 is within a narrower range of about

0.12.

With this brief analysis using this particular measurement set, it is appar-

ent that there are certain trade-offs in using different lengths of time-window

and down-sampling. Users are encouraged to experiment and choose options

that are best suited for the measurement data. Regardless of the choices in

window length and sampling rate, DMD is able to give very small optimiza-

tion residues between the measurement and reconstructed signals.

4.6.3 Computation speed

The work in both [27] and [65] shows that the DMD algorithm is significantly

faster than methods such as Prony. In this tool, modal analysis can be

performed fairly quickly, and can be done repeatedly using a sliding time-

window approach. For a 6 s time window of 1696 measurements sampled

at 30 samples/s, the tool takes about 0.2 s to calculate and visualize the

reconstruction on a 2.7 GHz dual core processor. The DMD calculation
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takes 0.1 s out of the 0.2 s stated above. Tests showed that the computation

duration varies cubicly with the number of samples and linearly with the

number of measurements. The tool has also been able to perform well with

larger time-windows and more measurements.

4.7 Summary

In contrast to the commercial tools that utilize methods like Prony, Matrix

Pencil and Variable Projection, the tool presented in this chapter utilizes

DMD, which is a fairly new algorithm, and has only very recently appeared

in power systems academic research papers. The key advantage of this tool is

its relatively fast computation. Nevertheless, this DMD-based tool is a work-

in-progress and has room for improvement. The current version of the tool

provides users with a few options that allow some flexibility in the desired

analysis; however, users are advised to exercise caution in interpreting the

results. Future versions of this tool are expected to incorporate more settings

to allow users to concurrently analyze different quantities such as voltages,

angles and frequencies. It is also expected that more options will be added

to enhance the spatio-temporal visualization capabilities of this tool.
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CHAPTER 5

MIXED-MULTI-SIGNAL DMD

In Chapters 3 and 4, only one type of data, i.e., frequency, was used to il-

lustrate the concept of DMD, especially in relation to the spatio-temporal

aspects. In practice, there are a variety of measurement types that are gath-

ered from all parts of interconnected power systems. These could be voltage

angles, voltage magnitudes, line flows, generator outputs, etc. These data

types could also be used in an ensemble manner in a DMD algorithm. De-

pending on the area of coverage of these other measurement channels, it may

also be possible to generate contour plots for them as well. Nevertheless, the

idea is to utilize all (or as many as possible) available measurement channels

as it will help in mutually enhancing the results, and simultaneously process

a large set of channels. This chapter focuses on utilizing voltage magnitude

and frequency data simultaneously. It also goes on to present analyses based

on DMD, which can be augmented with transient stability analyses.

5.1 Augmenting Frequency Measurements with

Voltage Magnitude Measurements

An important conclusion in [64] is that the error in DMD is significantly

attributed to the form, quality, and quantity of the input data. One of the

suggested approaches is to incorporate as many measurement channels as

possible, which helps for datasets with poorer signal-to-noise ratios. Prior

work in fluid dynamics has also concluded that measurement locations need

to be widely distributed throughout the system of interest [26], and even bet-

ter if they collectively capture the full phase cycle of the modal constituents

[64]. In an attempt to improve the time-varying precision of DMD results,

the effects of (i) augmenting datasets, (ii) using longer time-windows, and

(ii) down-sampling are studied in this section. Specifically, the impact on the
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dominant ac mode is illustrated.

With reference to DAE models for transient stability analysis, and par-

ticipation factor analysis [28], voltage magnitude and frequency quantities

could be thought of as different outputs of the same underlying dynamic

system. Hence, time-series voltage magnitude and frequency signals are ex-

pected to contain the same modal constituents, but with different coefficients.

In other words, during a transient contingency, voltage magnitude and fre-

quency readings at the same location may not exhibit much similarity in their

time-domain trend, but still contain varying amounts of the same modal con-

tent. This is illustrated in Figure 5.1, which shows the voltage magnitude

and frequency readings at location A, during the same transient contingency

described in Section 3.4.1.

In an attempt to enhance DMD results, the frequency signals from Section

3.4 are augmented with voltage magnitude signals gathered from the same

transient contingency as the earlier section, at 30 samples/s. Using the same

software code, the DMD analysis is repeated. This time the input data

consists of 3392 measurement channels, with a trailing time-window of T =

6 s, and tstep = 1
30

s. Once again, these are user-defined. The choice of

tstep = 1
30

s is the smallest possible value, and is intentional so that variation

in the dominant ac mode can be studied.

For the frequency signal at location A, Figure 5.2 shows the variation of

the dominant ac mode with time, i.e., the points at t = 10.2 s are calculated

based on a trailing time window T[4.2,10.2]. Since tstep = 1
30

s, there are 31 data

Figure 5.1: Frequency and voltage magnitude channels at Location A,
between 4 and 12 s.
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points in this plot. This can be compared to the dominant ac mode in Table

3.4, which is seen to vary between 0.17-0.23 Hz. By augmenting frequency

with voltage magnitude readings, the dominant mode is now contained in

a narrower band with a standard deviation of 0.0137 Hz. Similarly, the

damping ratios are also contained within a narrower band. This improvement

in precision is practically more useful. In the case of the dominant mode, it

was relatively easy to track visually, or a nearest-neighbor type of algorithm

could be implemented for automated tracking. However, it has been observed

that some eigenvalues bifurcate and rejoin as the system passes through its

dynamic trajectory. Nevertheless, the variation in modes is smoothed out.

In Section 3.4, 1696 measurement channels with 181 time points were pro-

cessed in about 0.105 s. Upon the inclusion of voltage magnitude measure-

ments along with frequency, 3392 measurement channels with 181 time points

were processed in about 0.137 s. The incremental computation time was only

0.032 s.

If a 7 second time-window had been used, i.e., 1696 measurement channels

with 211 time points, it would be processed in about 0.144 s. This would

have incrementally cost 0.039 s extra, which is about the same CPU time

as doubling the number of measurement channels. This goes to show that

if extra measurement channels are available, then they should be included,

especially in the case of augmenting frequency with voltage magnitude data,

Figure 5.2: Variation in oscillation frequency and damping ratio of the
dominant ac mode, using a trailing time window, T = 6 s, and tstep = 1

30
s,

and input data at 30 samples/s.
Standard deviation of oscillation frequency: 0.0137 Hz.
Standard deviation of damping ratio: 0.152.
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as it provides a different“view” of the systems dynamic behavior. Ultimately,

it helps with improving the precision of results, without needing a longer

time-window. Hence, precision of shorter time-interval modal estimation is

improved.

As seen in Figure 5.2, there were some spikes observed in the variation of

frequency and damping ratios. Hence the effect of using a longer time-window

and down-sampling is studied in the following sections.

5.2 Using a Longer Time-Window

Figure 5.3 shows the variation of the dominant ac mode with time, i.e., the

points at t = 11.2 s are calculated based on a trailing time window T[4.2,11.2].

Since tstep = 1
30

s, once again there are 31 data points in this plot. This

can be compared to the dominant ac mode in Figure 5.2. By using a longer

time-window, the frequency variation of the dominant mode is contained in

an even narrower band with a standard deviation of 0.00764 Hz. Similarly,

the standard deviation of the damping ratios decreased from 0.152 to 0.0324.

It should be noted that the mode value variations in time-domain are less

responsive to sudden changes, which may or may not be desired, depending

on the application.

Figure 5.3: Variation in oscillation frequency and damping ratio of the
dominant ac mode, using a trailing time window, T = 7 s, and tstep = 1

30
s,

and input data at 30 samples/s.
Standard deviation of oscillation frequency: 0.00764 Hz.
Standard deviation of damping ratio: 0.0324.
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The computational cost of processing 3392 measurement channels with 211

time points was about 0.185 s. In comparison to the analysis in Figure 5.2,

this helped in smoothing out some variations, but came at an incremental

cost of 0.185− 0.137 = 0.048 s.

5.3 Effects of Down-Sampling

Next, the effect of down-sampling is studied using the same setup as those

in Figures 5.2 and 5.3, but using data at 15 samples/s instead of 30 sam-

ples/s. In general, down-sampling may not be advised in all situations,

especially if higher-frequency oscillations are of interest. However, in the

case of wide-area power system electromechanical oscillations, most of the

frequency-domain content should be in the lower frequency range [20], and

hence down-sampling is a feasible option. In this section, data at 15 sam-

ples/s translates to frequency-domain range of 0 − 7.5 Hz, based on the

Nyquist-Shannon sampling criterion [61].

Figures 5.4 and 5.5, are the counterparts of Figures 5.2 and 5.3, respec-

tively. In both cases, the effect of down-sampling is significant in terms of

reducing the standard deviation of oscillation frequency and damping ratio

of the dominant ac mode. With a 6 second time-window, the smoothing

Figure 5.4: Variation in oscillation frequency and damping ratio of the
dominant ac mode, using a trailing time window, T = 6 s, and tstep = 1

15
s,

and input data at 15 samples/s.
Standard deviation of oscillation frequency: 0.00656 Hz.
Standard deviation of damping ratio: 0.0280.
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Figure 5.5: Variation in oscillation frequency and damping ratio of the
dominant ac mode, using a trailing time window, T = 7 s, and tstep = 1

15
s,

and input data at 15 samples/s.
Standard deviation of oscillation frequency: 0.00682 Hz.
Standard deviation of damping ratio: 0.0286.

effect of the dominant ac mode is more apparent after down-sampling, i.e.,

and order of magnitude less standard deviation. In the case of a 7 second

time-window, down-sampling helps in smoothing variations but within the

same order of magnitude.

For the down-sampled DMD calculations, 3392 measurement channels with

91 time points (6 second time-window) were processed in about 0.0358 s, and

3392 measurement channels with 106 time points (7 second time-window)

were processed in about 0.0473 s. Recall that their 30 samples/s counterpart

analyses took about 0.137 s and 0.185 s per time-window. In specific ap-

plications, such as the study of inter-area oscillations, it may be possible to

down-sample data, without compromising on the accuracy of DMD analyses.

Furthermore, the advantage of using less CPU time can help speed up modal

estimation of archived data, or even real-time data.

5.4 Discussion

DMD has shown good capability in being able to accommodate a large num-

ber of measurement channels. The incremental cost of adding a measure-

ment channel is significantly lower (O(M)) than adding an extra time point

(O(N3)). This is even true when M � N . Figure 5.6 shows a plot of this
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Figure 5.6: Computation times using a 2.7 GHz CPU vs. variations in
number of signals, M , and number of time points, N .

trend. The studies in Section 3.4 and this chapter show the improvement in

tracking of the dominant oscillation mode during the transient contingency,

when voltage magnitude data was augmented with frequency data. Further-

more, the effects of choosing a different time-window and down-sampling

have been studied, along with explanations on the impact on precision, time-

averaging, and frequency-domain content. There are trade-offs associated,

as elaborated earlier.

DMD is inherently an ensemble analysis method, and it is computationally

cheap to incorporate a large number of measurement channels. On the other

hand, using a subset of the measurement channels, which are pre-selected

based on historical information or heuristics, fast modal estimation might be

possible by using methods such as Prony, MPM, or ERA. However, using

many measurement channels helps with noisy data, and also mitigates data

quality issues (as shown in Sections 3.4, this chapter, and [64]). If one of

many signals being used is“bad,” then the effect on modal estimation would

be minimal, as opposed to if data is corrupted in one of a few measurement

channels being used. Another reason for using multiple signals is to be able

to process them in parallel and detect instability in a small number of signals

during their initial unstable growth.

As stated in [64], having measurement channels that capture a full phase
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cycle is helpful for DMD’s performance. In this chapter, augmenting fre-

quency with voltage magnitude signals did help in reducing the rapid change

in modal constituents. Using a longer time window could have also helped in

averaging out the modes and reducing the fluctuations. An example of this

is the work in [27], which utilized time-windows of about 20−40 seconds. So

instead of using longer time-windows, multiple measurement channels of dif-

ferent data types should be used in DMD analyses, if they are available. The

result is better precision, even though a smaller time-window is used (Figure

5.2), and fast modal estimation. By using a smaller time-window, the time-

varying estimates of a dominant mode are less influenced by averaging over

a longer time-window. Also, using multiple channels can help maintain the

quality of modal estimates; therefore, using smaller time-windows would be

sufficient.

In all North American interconnections, PMUs and PMU-like devices are

being installed in large numbers, and communication pipelines are being

commissioned to collect and store this data. Since the computational cost

associated with DMD is low, it may be of interest to process multiple channels

of measurements at data concentrator locations or control centers, and then

broadcast holistic measures such as oscillation frequencies, damping ratios,

and respective amplitudes. In this way, the circulation of raw measurement

data would be reduced, and wide-area closed loop control schemes could be

designed by incorporating the above-mentioned holistic metrics.

As an example, DMD is able to process 3392 measurement channels with

181 time points in 0.137 s. This implies that DMD can be repeated with new

time points as soon as the previous DMD calculation is completed. Once

a particular time-window of measurement channels has been gathered at a

data concentrator, the algorithmic latency of a moving window DMD analysis

would be 0.137 s.

There are other on-line tools which automatically calculate and monitor

the modal content of a collection of power system measurements. DMD is

hoped to be a good addition to the list of such tools, and to be especially

useful for the simultaneous analysis of thousands of measurement channels.

DMD might also prove useful in the case of a series of transient contingencies,

or possibly a cascading failure scenario. Since the “ring-down” time interval

will be relatively short for each consecutive fault, DMD would be able to

accommodate short-time interval data (from many channels), and still give
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good modal estimates in a reasonable computation time. This could be uti-

lized in alarm processing, i.e., to create a new category of modal content

alarms for alerting operators of undesired dynamic conditions. Hence, multi-

ple measurements can be automatically processed in real-time, and operator

attention would only be required when any desired criterion is being violated.

5.5 Spatio-Temporal Results from Frequency and

Voltage Magnitude Data

So far the discussion in this chapter was on the dominant oscillation mode in

the entire system. However during dynamic behavior, the dominant mode in

one part of the system might differ from another location in the same system.

In other words, the amplitude (or the energy content) of a particular mode

can vary based on the location, the fault, and the operating point. Therefore,

for the voltage magnitude and frequency data used in the earlier sections

of this chapter, the collection of dominant modes is shown in Table 5.1.

This is for the time-window of T[4.0,11.0]. The input data sampling rate is at

30 samples/s. Even though the same set of simulated transient contingency

data is used, it should be noted that the estimates of modes are different

from earlier chapters. This is because the time-window used is different, and

also the fact that frequency data has been augmented with voltage magnitude

data. As discussed in the previous sections of this chapter, one of the benefits

observed is the consistency (or precision) of the modes in a sliding time-

window analysis. In this particular time-window, modes 1 and 2 have low

damping ratios, while the damping ratio for mode 3 is significantly greater.

Hence, mode 3 can be considered to be well damped.

Since both frequency and voltage magnitude data have been utilized for

Table 5.1: Modal analysis of frequency and voltage magnitude
measurements during time-window T[4.0,11.0].

Modes Oscillation frequency (Hz) Damping ratio

1 0.19886 0.074679
2 0.31007 0.027697
3 0.40178 0.46923
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the analysis in this chapter, each location is associated with two types of

signals. From a geographic viewpoint, one could imagine two layers of data

associated with the footprint of the system being studied. Modal estimation

with DMD is done simultaneously for all these signals, which expresses each

layer of measurement data as a location-wise sum of several modes. If there

are R modes, then that would correspond to R sub-layers for each layer of

measurement data. Figure 5.2 shows the temporal evolution of two such sub-

layers, which corresponds to modes 1 and 2 from Table 5.1. The contours

shown correspond to the geographic area of the large-scale system.

The series of snapshots shown in Figure 5.2 is from an animation of the

mode amplitudes during time-window T[4.0,11.0]. As seen here, the spatio-

temporal variation of each mode can be observed. The animation of the

frequency layers for both modes is similar to those in Figure 3.3. The spatial

variation of mode amplitudes is gradual in the frequency layer. From a

system-level view, there is a phase difference between the two modes, and this

is expected due to the presence of many dynamic components in the system.

The contour animations associated with the voltage magnitude layer are more

interesting, as they exhibit the inter-area manifestation of modes, but also

show localized effects. The spatial variation in modes is more pronounced in

the voltage layer, which ties in well with the idea that voltage dynamics are

often in localized clusters.

From the perspective of the frequency layer, mode 1 is seen to divide the

system into two areas, and mode 2 divides the system into 3 areas. These

are usually known as inter-area modes. However for each of these modes, the

corresponding voltage layer exhibits different spatial areas. So if an inter-area

mode is observed between a particular set of areas in the frequency layer, the

areas observed in the voltage layer can be different. This indicates that the

amplitude and the phase of a particular mode can be different between the

frequency and voltage magnitude signals measured at the same location.

As discussed in Chapter 3, the animation of modes can be useful for wide-

area visualization. In this section, the voltage magnitude and frequency

layers can be studied similarly, but two sets of animation are needed to

capture the spatio-temporal effect of each mode. These animations could

be viewed independently for each layer, or side-by-side, to understand the

combined effect of each mode on both layers of measurement data.

In addition to the spatio-temporal animation of each mode, the phase of
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Table 5.3: Contours of phase of voltage magnitude w.r.t. frequency,
visualized per mode (modes 1 and 2 are listed in Table 5.1).

Mode 1 Mode 2

Scale: −180◦ 0◦ 180◦

the voltage magnitude w.r.t. to the frequency for each mode is shown in

Table 5.3. The contours here represent a value in degrees. The yellow-red

areas are regions where modal oscillations in voltage magnitude are leading

their frequency counterparts, and the turquoise-blue areas show lagging re-

gions. It is interesting to observe that this phase difference in mode 1 shows

a contour that exhibits some kind of a system-level behavior. A similar con-

tour is also observed in the case of mode 2. The significance of this phase

difference seems to be unexplored in power system literature. At each loca-

tion, the phase difference signifies that the ac voltage waveform amplitude

is compressed the greatest at a slightly different point in time w.r.t to the

maximum compression of its period. However, further research is required

to understand the significance of the relation of this phase difference across

locations.

The analysis showed the use of voltage magnitude and frequency data in

an ensemble manner. However, this framework is extensible to any type

of measurement from an interconnected power system. If the same type of

measurement is available from several locations, then spatio-temporal visu-

alization can be created for those layers of measurement data as well. Even

if there are just a few measurements of a particular type, they should still be

utilized in an ensemble manner to enhance the results of DMD. An example

of this could be real power flow across major transmission lines.
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5.6 Effect of Varying Inter-Area Real Power

Transaction

It is known that the modes observed during a transient contingency are a

function of the operating point of the system. From a system-level per-

spective, the pre-fault real power transactions between balancing authorities

could be thought of as an indicator of a particular operating point. In this

section, the operating point of the large-scale system used earlier is systemat-

ically varied by adjusting the real power transactions between two geograph-

ically distant areas. The two areas considered in this case were located in the

Northwest (NW) and the Southwest(SW) regions of the system. There was a

4632 MW transaction that was present in the base case operating point, from

NW to SW. This value was decreased at 100 MW decrements, and also in-

creased at 100 MW increments. For each of those operating points the same

transient contingency was simulated, i.e., the loss of a large generation unit

in the southern part of the system. From each of the transient contingencies,

voltage magnitude and frequency data were gathered and a DMD analysis

was carried out for the time-window T[4.0,11.0] with data at 30 samples/s. The

aim was to observe the resulting variation in the ∼ 0.2 Hz and ∼ 0.3 Hz

modes of the system.

Figures 5.7 and 5.8 show the variation in modes as the transaction between

NW and SW is varied. The transaction value has an effect on both the oscil-

lation frequency and damping ratio of modes. With respect to the original

Figure 5.7: Variation in oscillation frequency and damping ratio of the
mode around ∼ 0.2 Hz , w.r.t. initial real power transaction.
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Figure 5.8: Variation in oscillation frequency and damping ratio of the
mode around ∼ 0.3 Hz , w.r.t. initial real power transaction.

transaction of 4632 MW, the transaction of 4132 MW (and some others) leads

to better damping ratios of both the modes. However, the variation is not

linear. From a transient stability analysis perspective, such analyses could

be done to understand the effect of operating points on dynamic behavior.

In a planning scenario where different operating points might be tested for

their transient stability response, DMD can be used to better understand

the evolution of modes w.r.t operating points. Since the DMD computation

time would be on the order of a second, compared to the transient stability

simulation on the order of minutes, the incremental computational burden

would be minimal.

5.7 Effect of Using a Different Transient Contingency,

But of Similar Intensity

For consistency reasons, the same transient contingency was utilized for the

simulated measurements in prior sections. To recap, the fault applied was

the loss of a large generation unit in the southern part of the system. Let

this be contingency X. As per the locations labeled in Figure 3.1, location C

is situated in the northeast part of the system. In this location the frequency

signal during contingency X consisted of 3 modes as shown in Figure 5.9.

The circles show the position of the modes, and the color intensity shows the

relative energy content of each mode, in the time-window of analysis.
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Figure 5.9: Plot of damping ratios vs. oscillation frequencies (Hz) at
Location C (frequency signal), during time-window, T[4.0,11.0], during
transient contingency X.

For a second contingency Y, a generation loss of a very similar size was

introduced in the western side of the system. Figure 5.10 shows the modes

observed in the frequency signal at location C. In contingency X, the distur-

bance propagated in the general direction of south to north. In contrast, the

disturbance in contingency Y propagated from West to East. For the same

Figure 5.10: Plot of damping ratios vs. oscillation frequencies (Hz) at
Location C (frequency signal), during time-window, T[4.0,11.0], during
transient contingency Y.
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time-window, the time-domain frequency and voltage signals were signifi-

cantly different between contingencies X and Y. It is interesting to observe

that the modes perturbed at location C were very similar in the case of both

contingencies.

As mentioned earlier, the modal estimates calculated by DMD have been

obtained without the use of de-trending on the raw data. From a dynamic

system theory perspective, the calculated modes could be likened to the

modes of the closed-loop system of equations governing the dynamics.

5.8 Comments and Future Work

The work presented in Chapters 3, 4, and 5 is directly applicable to the re-

sults of any transient stability simulation. In a planning environment values

of frequency, voltage magnitudes, line flows, etc., can be saved for processing

with DMD. As mentioned earlier, DMD is efficient in estimating modes, and

could significantly enhance transient stability analyses, with minimal extra

computation time. Based on the outputs of DMD, several rule-based logic

or heuristics could be applied to simultaneously screen thousands of signals.

Uses of this screening could be to identify regions with low damping ratios,

or to detect unstable oscillation growth. During transient stability analyses

a large volume of data can be generated very quickly, especially while study-

ing interconnections and running multiple contingencies. In those situations

it is prohibitive to store large-quantities of time-series results. Commercial

software packages usually have types of limit-monitoring criteria so that es-

sential information can be selectively saved. The use of DMD along with

modal content monitors is expected to provide an efficient method of screen-

ing large quantities of data, and to save essential plots and contours as shown

in the studies in this chapter.

In an operational environment, modal estimation has been implemented

to analyze ambient data from interconnections. However, a survey of exist-

ing work has not revealed implementation where the calculated modes have

been used for automatic control actions. To inspire this, the use of DMD

for real-time modal content monitoring has been presented in Chapter 3, the

key benefits being the fast computation time and short-time interval modal

estimation. However, to bring modal estimation into a closed-loop control
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framework requires future work. The concept of DMDc (DMD with control)

[70] can be utilized to further extend DMD analysis. It is expected that the

output of DMDc analysis could provide a measurement-driven understand-

ing of the effect of inputs (e.g., generator real power output, or generator

terminal voltage) on the outputs (e.g., frequency, voltage magnitudes) of a

system. Future work is planned to implement DMDc to enhance understand-

ing between inputs and outputs of large-scale interconnected power systems.
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