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Abstract

Mathematical modeling of pulse width modulation (PWM) is given. For a band-limited, finite energy input

signal, a PWM generation mechanism is investigated in linear and non-linear blocks separately. Following

the common practice, a comparator block with a periodic reference signal is offered as a PWM generator and

different sampling methodologies are discussed. For natural sampling, where the input signal is compared

to the reference signal directly, lossless sampling conditions are derived. For a sawtooth reference signal, the

convergence characteristics between lossless natural sampling and uniform sampling, where a zero-order hold

(ZOH) block precedes the comparator, are analyzed. For a given input model, the convergence characteris-

tics are tested with simulations and signal to absolute deviation energy for the difference between natural

and uniform sampling is observed for different oversampling levels.

Motivated by the separation of linear and non-linear blocks in PWM generation, a similar method for

the analysis at the reconstruction end is pursued. In this pursuit, continuous-time low-pass filtering, pre-

ceded by oversampling, is analyzed as a linear suboptimal reconstruction mechanism from a PWM signal.

Observing the mapping between input samples and pulse widths, an infinite energy, input-independent,

structural component of a PWM signal is revealed. Manipulating the linear nature of the low-pass filtering,

and equivalent model is proposed to analyze the finite energy, input-dependent component of the PWM

signal separately. Frequency domain analysis for fixed-edge and double-edge PWM orientations and their

corresponding input-dependent components are given. Using the frequency domain representations, per-

formance bounds for low-pass reconstruction of a band-limited, finite energy input signal are derived and

fundamental trade-offs between generator complexity and distortion attenuation capacity are revealed.

Stochastic modeling of PWM processes for independent identically distributed (i.i.d.) pulse widths is

discussed. For a fixed starting model of a PWM process, the violation of wide sense stationarity (WSS)

is observed. By introducing a randomized starting point, independent of the pulse widths and uniformly

distributed over a symbol interval, a WSS PWM process is constructed and its stochastic characteristics are

analyzed. For i.i.d. uniform pulse widths, second moments are simulated revealing a smoothing effect in the

double-edge PWM construction, consistent to the frequency domain analysis.
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Chapter 1

Introduction

Pulse width modulation (PWM) is a time-domain modulation technique which entails embedding the sam-

pled input value into the pulse width of the modulated signal under a bijection defined by the modulator [1].

Scaling the input signal in the span of the PWM generator results in larger pulse widths in the corresponding

symbol interval, making PWM generation a non-linear operation. Commonly, this non-linear operation is

carried out by a comparator circuitry [2, 3]. The comparator construction allows the modulator to adapt

different pulse orientations as well as different sampling methodologies [4]. A PWM generator may adapt

what is called uniform sampling, where in each symbol interval the comparator constructs the modulated

pulse by comparing the reference signal to a fixed sample value, which corresponds to impulse sampling in

the traditional signal processing literature [4, 5].

Alternatively, the PWM generator might compare the input signal to the reference signal directly, which

results in what is called natural sampling where the sample values are determined implicitly and the sym-

metry of the pulses is not guaranteed [4]. As a sampling scheme, natural sampling aims to relax the strict

dependence on sampling instances similar to what is discussed in [6–8] and it allows a functional form of

the level-crossing problem as in [9–11] only for a monotonically changing level. Therefore, natural sampling

allows reduced complexity in the generator end, yet introduces additional requirements on perfect recovery,

making the rate of convergence between natural sampling and uniform sampling an important criterion for

frequency domain analysis of PWM signals.

The time-domain nature of pulse width modulation has allowed these signals to be utilized in power

conversion [12–16], voltage inversion [17–19], audio amplification [20], in addition to optical data storage

and communication [21, 22]. Lately, voltage controlled oscillator (VCO) based Σ∆ converters have utilized

pulse-width modulation to achieve higher-frequency results in analog to digital and digital to digital conver-

sion [23–25]. Given every rising and falling edge instances, the Nyquist sampling theorem ensures perfect

reconstruction of a band-limited, finite energy input signal from its corresponding uniformly sampled PWM

signal [4, 5]. However, the exact rising and falling edge instances are commonly unknown, which motivates

a search for a practical reconstruction mechanism. Furthermore, the Nyquist sampling theorem alone does
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not ensure perfect reconstruction from naturally sampled PWM signals even when all rising and falling edge

instances are known. In various works [20,24,26], continuous-time low-pass filtering is used as a sub-optimal,

linear reconstruction mechanism from PWM signals mainly under sinusoidal excitations. Low-pass filtering

allows efficient reconstruction when the input signal is oversampled by the generator. Therefore, it is possi-

ble to derive fundamental bounds for distortion attenuation in the oversampling factor for different PWM

signals, generated from a band-limited, finite energy input signal, which reveals trade-offs between generator

complexity and distortion attenuation capacity.

In this thesis, we first focus on the mathematical modeling of PWM generation, revealing that even

though it is possible to generate a PWM directly with the comparator construction, the linear and non-

linear operations in PWM generation are separable in analysis. We have further shown that the structures of

those blocks are determined by the reference signal, which also determines the pulse orientation of a PWM

signal. For lossless natural sampling, we have derived conditions on the reference signal, which ensure that

there exists a perfect reconstruction mechanism for pulse width modulation with natural sampling. After

observing that a lossless natural sampling reference signal necessarily defines a lossless uniform PWM gen-

erator, we have turned our attention to convergence characteristics between natural sampling and uniform

sampling for a band-limited, finite energy input signal model. Convergence of natural and uniform sampling

has allowed us to proceed with the frequency domain representation of PWM signals where we have utilized

the separation between linear and non-linear blocks of the PWM generator to discover the structural compo-

nent in every PWM signal. Then, we have isolated the structural component from the information bearing

component of a PWM signal, which has provided an equivalent analysis strategy for PWM signals. Using the

equivalent model for PWM reconstruction, we have derived the frequency domain representation of PWM

signals for a band-limited, finite energy input model, which has allowed us to postulate fundamental bounds

on performance of low-pass reconstruction from PWM signals. With our intuition from PWM generation

as well as the frequency domain representation of PWM signals, we have focused on the stochastic mod-

eling of PWM processes. For a band-limited, WSS input process with independent identically distributed

samples, we postulated a randomized starting point PWM process, which is necessarily WSS. Furthermore,

irrespective of the sampling methodology, we have shown that, with lossless sampling conditions, a WSS

PWM process preserves the input statistics under linear operations depending on the pulse orientation.
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Chapter 2

Problem Formulation

Pulse width modulation is a time domain modulation technique which maps the input samples into the pulse

widths in each symbol interval under a one-to-one mapping. In every symbol interval of a PWM signal, there

exists a fixed point, which determines the structure of the signal. For fixed-edge PWM constructions, pulses

either start from a fixed point, which is called trailing-edge PWM (TEPWM) or they end at a fixed point,

which is called leading-edge PWM (LEPWM). Alternatively, the fixed point might be the mid-point of each

symbol interval, in which case, pulses spread around the fixed point and the signal is called double-edge

PWM (DEPWM). For double-edge constructions, there exists an alternative sampling methodology which

eliminates the fixed point, causing asymmetric pulses in every symbol interval [4]. In this thesis, we do not

analyze the asymmetric PWM constructions.

A PWM generator determines the pulse orientation, which leads to different frequency domain and

stochastic characteristics, which we analyze in the subsequent chapters. However, irrespective of the pulse

orientation, the time difference between the rising edge and falling edge instances in each symbol interval

is determined by an invertible mapping between the symbol interval length and input amplitude range.

Therefore, pulse width in a symbol interval is the reflection of the corresponding input sample under the

defining mapping. In this sense, a PWM generator is a sampler as well as a modulator.

In this chapter, we first model a PWM generator as a mapping between input samples and pulse widths.

Then, we introduce two different sampling mechanisms that a PWM generator may adapt, namely the

uniform sampling and the natural sampling. Following the discussion on sampling mechanisms, we prove

the necessary and sufficient conditions to make lossless sampling using a PWM generator. Then, we introduce

a finite energy band-limited input model and discuss its fundamental characteristics such as the existence

of a finite maximum and its convergence rate in the tail regions. With this input model, we analyze the

convergence characteristics between natural and uniform input samples and their corresponding sampling

instances.
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2.1 Mathematical Model of a PWM Generator

The basic idea behind pulse width modulation is to embed the input samples into the pulse widths in

every symbol interval with an invertible mapping. In other words, ∀n ∈ Z, let tn denote the sequence of

consecutive rising edge and falling edge instances of a PWM signal. With the understanding that ∀n ∈ Z, tn

is a non-decreasing sequence which satisfies [t2n, t2n+1] ⊂ [nTM , (n+ 1)TM ], where TM is the symbol period,

tn defines a PWM signal perfectly:

p(t) =

∞∑
n=−∞

u (t− t2n)− u (t− t2n+1) (2.1)

Where u(t) is the step function, t2n is the subsequence of tn representing rising edge instances and t2n+1

is the subsequence representing falling edge instances of a PWM signal. By the definition of a PWM signal,

there exists an invertible mapping f(·): D(f)→ R(f) = [0, TM ], defining the pulse widths wn:

wn , f(xn) = t2n+1 − t2n (2.2)

Here, xn are input samples ∀n ∈ Z and D(·) denote the domain of a function and R(·) denote the range

of a function. In order to map input samples into pulse widths with a one-to-one mapping, one should

emphasize that D(f) ⊃ R(x(t)), that is, the range of the input signal is a subset of the domain of the

mapping f(·). Furthermore, the range of the mapping is also closed and R(f) = [0, TM ] by construction.

Since f(·) is a one-to-one mapping with a closed range, it follows that D(f) is also closed, which imposes

that a continuous input signal x(t) ∈ L∞(R). At this point, let A = C ‖x‖∞ for some C > 1. In Section

2.2, we propose an input model, for which we derive bounds on A.

With the PWM definition in (2.1) and the input to pulse width mapping in (2.2), a PWM generator is

modeled in three steps:

1. An invertible function f(·) maps the input samples xn ∈ [−A,A] to the pulse widths wn ∈ [0, TM ].

2. The Pulse orientation defines the sequence of rising and falling edge instances tn from the sequence of

pulse widths wn.

3. The sequence of rising and falling edge instances tn generates the PWM signal p(t).

The pulse orientation of a PWM signal determines how tn is constructed from wn by fixing a point in every

symbol interval. On one hand, for TEPWM, the starting point of each symbol interval is fixed, yielding that

t2n = nTM and t2n+1 = nTM + wn and for LEPWM, the end-point of each symbol interval is fixed, which
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leads to t2n = nTM − wn and t2n+1 = nTM . We call TEPWM and LEPWM signals circularly symmetric

signals since in each symbol interval, the pulses of TEPWM and LEPWM are symmetric of each other

around the axis t = (n + 0.5)TM . On the other hand, for DEPWM, each pulse spreads equally around

t = (n+0.5)TM , yielding that t2n = nTM − wn
2 and t2n+1 = nTM + wn

2 . Due to circular symmetry, TEPWM

and LEPWM signals, which we call fixed edge PWM constructions, demonstrate similar characteristics in

Chapter 3 and Chapter 4, which are different from those of DEPWM. These PWM signals have the following

explicit forms:

pTE(t) =

∞∑
n=−∞

u (t− lTM )− u (t− lTM − wn) (2.3)

pLE(t) =

∞∑
n=−∞

u (t− lTM + wn)− u (t− lTM ) (2.4)

pDE(t) =

∞∑
n=−∞

u
(
t− lTM +

wn
2

)
− u

(
t− lTM −

wn
2

)
(2.5)

The mapping between tn and p(t) is commonly realized by a comparator construction with a triangular

reference wave [3, 4, 17, 22, 26]. The comparator construction determines the sampling methodology of the

input signal and the reference signal of the comparator determines the pulse orientation of the PWM signal.

If the input signal x(t) is compared to a periodic reference signal r(t) directly, it is called natural sampling

where the relation between input samples xn and pulse widths wn is given implicitly. If the comparator is

preceded by a zero-order hold (ZOH) block, then it is called uniform sampling and in that case, the input

samples are mapped to pulse widths explicitly. Figures 2.1–2.3 illustrate the generation of uniformly sampled

PWM signals with a triangular reference signal, where output of the ZOH block, denoted by xZOH(t), has

the following structure:

xZOH(t) =

∞∑
n=−∞

x(nTM ) [u(t− nTM )− u(t− (n+ 1)TM )] (2.6)

In the uniform sampling case, for a given construction, the PWM generator constructs the width of

the PWM signal by comparing x(nTM ) with r(t) in every symbol interval [nTM , (n+ 1)TM ]. If a triangular

reference signal is used to generate a uniformly sampled PWM signal, then, f(·) is an affine mapping and

the equation between wn and xn = x(nTM ) is explicit and affine. We allow the following affine mapping to

define the PWM generator and its corresponding reference signals:

wn =
TM
2A

(xn +A) (2.7)
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Figure 2.1: Uniformly Sampled TEPWM Construction

n𝑇𝑀 (𝑛 + 1)𝑇𝑀 (𝑛 + 2)𝑇𝑀

𝑟𝐿𝐸(𝑡)

n𝑇𝑀 (𝑛 + 1)𝑇𝑀 (𝑛 + 2)𝑇𝑀

𝑥(𝑡)

𝐴

−𝐴

0

(𝑛 − 1)𝑇𝑀

𝑤𝑛 𝑤𝑛+1 𝑤𝑛+2

𝑝𝐿𝐸(𝑡)
𝑇𝑀 𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟

ZOH

Figure 2.2: Uniformly Sampled LEPWM Construction

The mapping f(x) = TM
2A (x+A) is an affine mapping, which is invertible and continuous. We allow the

domain of the mapping D(f) = [−A,A], then, R(f) = [0, TM ] since f(·) is continuous. Allowing tTM = t

mod TM , the sawtooth reference signals for different PWM constructions, which provide the mapping in

(2.7), are as follows:

rTE(t) =
2A

TM
tTM −A (2.8)

rLE(t) = A− 2A

TM
tTM (2.9)

rDE(t) =


4A
TM

tTM −A if tTM <
TM
2

3A− 4A
TM

tTM if tTM ≥
TM
2

(2.10)

As an alternative to uniform sampling, the generator complexity can be reduced in the expense of

implicitly determined input samples by adapting natural sampling instead. Figures 2.4–2.6 illustrate PWM

generation using natural sampling. In the natural sampling, the intersection point between the input signal
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n𝑇𝑀 (𝑛 + 1)𝑇𝑀 (𝑛 + 2)𝑇𝑀

𝑝𝐷𝐸(𝑡)
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𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟 𝑤𝑛 𝑤𝑛+1 𝑤𝑛+2

ZOH

Figure 2.3: Uniformly Sampled DEPWM Construction

and the reference signal in each symbol interval determines the corresponding pulse width as a result of the

following implicit equation:

r(wn) = x(nTM + wn) (2.11)

In the uniform sampling, the ZOH block ensures the existence and uniqueness of the intersection point in

every symbol interval since xZOH(t) = x(nTM ), ∀t ∈ [nTM , (n+ 1)TM ]. However, in the natural sampling, a

unique intersection point does not necessarily exist in every symbol interval. With the understanding that

a PWM generator is inherently a sampler, we now establish the framework to propose the lossless sampling

conditions for a PWM generator.

Until this point, the nature of PWM generation has only imposed that the input signal x(t) ∈ L∞(R)

is continuous. This is a necessary condition to ensure one-to-one mapping between input samples and pulse

widths, or equivalently to avoid clipping in the output. However, in order to evaluate PWM generation as

a sampling mechanism, we impose two further conditions:

1. The input signal is band-limited: x(t) ∈ BL [−Ω0,Ω0].

2. The input signal is finite energy: x(t) ∈ L 2(R).

The first condition follows from conventional sampling theory as in [5, 27, 28] and provides us with the

framework to reconstruct the signal from the samples, xn = f−1(wn). In other words, if pulse widths wn

were given to the reconstruction mechanism, the first condition would be enough to reconstruct the original

signal. However, the reconstruction mechanism only has p(t) and it is not always possible to recover wn

perfectly from the PWM signal, which leads us to impose the latter condition. In Chapter 3, we analyze

the performance of continuous time low-pass filtering as a suboptimal reconstruction mechanism from PWM

signals where we show that the distortion energy due to low-pass filtering is bounded for a finite energy

input signal.
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Figure 2.4: Naturally Sampled TEPWM Construction
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Figure 2.5: Naturally Sampled LEPWM Construction

Once x(t) ∈ BL [−Ω0,Ω0], we let Ω0 = π
T , which yields that T is the Nyquist sampling period for

the band-limited input signal. As we will show in Chapter 3, the distortion energy due to suboptimal

reconstruction diminishes in the oversampling factor M . Therefore, for any PWM signal, we define the

symbol interval, TM , as the oversampling period:

TM =
T

M
(2.12)

A PWM generator is not a sampler in the conventional sampling sense, because ∀n, the input samples

are mapped to separation times between rising edges t2n and falling edges t2n+1 rather than the amplitude

of the sampled signal. Therefore, the symbol interval of a PWM signal, which is determined by the period

of the reference signal, is the sampling period in the mainstream sampling theory. With this understanding,

Theorem 2.1.1 establishes the necessary and sufficient conditions for lossless natural sampling using a PWM
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Figure 2.6: Naturally Sampled DEPWM Construction

generator:

Theorem 2.1.1. Let a finite energy band-limited signal x(t) of band-width [−Ω0,Ω0], with Ω0 = π
T , be

compared to a periodic triangular reference signal r(t) = 2A
Tr
tTr −A, where tTr = t mod Tr. Then,

1. ‖x‖∞ ≤ A ensures the existence of an intersection point in [nTr, (n+ 1)Tr], ∀n ∈ Z.

2. Allowing A = C ‖x‖∞ for a finite constant C ≥ π
2 , period of the reference signal, Tr, satisfying the

Nyquist sampling condition for the band-limited signal x(t) ensures uniqueness of the existence point.

These two conditions together allow the input signal to be lossless (Nyquist) naturally sampled.

Proof. For the first requirement, we first observe that in every symbol interval [nTr, (n + 1)Tr], r(t) ∈

[−A,A], since r(t) is periodic, the range of the reference signal R {r(t)} = [−A,A]. Then ‖x‖∞ ≤ A allows

R {x(t)} ⊂ R {r(t)}. Since in each symbol interval, r(t) monotonically spans R {r(t)}, it spans R {x(t)} as

well, which yields the existence of the intersection point.

For the second requirement, we first prove that a band-limited finite energy signal is necessarily bounded.

The proof follows from the Cauchy-Schwarz inequality. First, let us observe the inverse Fourier transform:

x(t) =
1

2π

∞∫
−∞

X(jΩ)ejΩt dΩ =
1

2π

Ω0∫
−Ω0

X(jΩ)ejΩt dΩ

Taking the absolute value yields:

|x(t)| = 1

2π

∣∣∣∣∣∣
Ω0∫
−Ω0

X(jΩ)ejΩt dΩ

∣∣∣∣∣∣ ≤ 1

2π

Ω0∫
−Ω0

∣∣X(jΩ)ejΩt
∣∣ dΩ =

1

2π

Ω0∫
−Ω0

|X(jΩ)| dΩ
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Then, the Cauchy-Schwarz inequality on the last integral yields that |x(t)| is bounded by the following:

|x(t)| ≤
√

2Ω0

2π

√√√√√ Ω0∫
−Ω0

|X(jΩ)|2 dΩ

Since x(t) is finite energy, EX = 1
2π

Ω0∫
−Ω0

|X(jΩ)|2 dΩ and Ω0 = π
T ,

|x(t)| ≤
√
EX
T

Therefore, x(t) ∈ L∞(R). The rest of the proof is by contradiction. Assume that ∃t1 6= t2 ∈ [0, Tr] such

that x(t1) = r(t1) and x(t2) = r(t2). Without loss of generality allow t1 < t2, which yields that r(t1) < r(t2).

Then, by the mean value theorem, ∃t3 ∈ [t1, t2] such that:

dx

dt

∣∣∣∣
t3

=
x(t2)− x(t1)

t2 − t1
=
r(t2)− r(t1)

t2 − t1
=

2A

Tr
(2.13)

Now, we show that 2A
Tr

>
∥∥dx
dt

∥∥
∞, which will conclude the contradiction. This follows from the inverse

Fourier transform of the dx
dt :

∣∣∣∣dxdt
∣∣∣∣ =

∣∣∣∣∣∣ 1

2π

Ω0∫
−Ω0

jΩX(jΩ)ejΩt dΩ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

2π

Ω0∫
−Ω0

ΩX(jΩ)ejΩt dΩ

∣∣∣∣∣∣
On a compact interval I, two continuous functions f(·) and g(·) satisfy:∫

I

f(x)g(x) dx ≤ max
x∈I
|g(x)|

∫
I

g(x) dx

Therefore, ∣∣∣∣dxdt
∣∣∣∣ ≤

∣∣∣∣∣∣ 1

2π

Ω0∫
−Ω0

Ω0X(jΩ)ejΩt dΩ

∣∣∣∣∣∣
Since ‖x‖∞ is bounded, ∣∣∣∣dxdt

∣∣∣∣ ≤ Ω0 |x(t)| ≤ Ω0 ‖x‖∞

Since Ω0 = π
T , the Nyquist sampling period is T . Therefore,

2A

Tr
=

2C ‖x‖∞
Tr

≥
π ‖x‖∞
Tr

= Ω0 ‖x‖∞

(
T

Tr

)
≥
∥∥∥∥dxdt

∥∥∥∥
∞

(
T

Tr

)

Since Tr satisfies the Nyquist sampling condition, Tr ≤ T , but then
(
T
Tr

)
≥ 1, yielding that ∃t3 such that

dx
dt

∣∣
t3
>
∥∥dx
dt

∥∥
∞, which is a contradiction. Therefore, the intersection point in each symbol interval is unique.

Finally, one-to-one mapping between the lossless uniform samples and the intersection points in every symbol

10
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Figure 2.7: No Intersection between Input Signal and Reference Signal in the Symbol Interval [2Tr, 3Tr]

interval yields that r(t) ensures lossless natural sampling.

One should emphasize that even though Theorem 2.1.1 uses (2.8) as the reference signal, the results

apply for reference signals in (2.9) and (2.10) as well. The first lossless sampling condition ensures that there

is no clipping of the input signal, which is equivalent to the existence of the intersection points between r(t)

and xZOH(t) for uniform sampling and between r(t) and x(t) for natural sampling, as opposed to what is

illustrated in Fig. 2.7. The latter condition imposes that there is a one-to-one correspondence between input

samples and pulse widths, or equivalently, the uniqueness of the intersection point in each symbol interval

as opposed to what is illustrated in Fig. 2.8. With the oversampling factor M ≥ 1, our mapping in (2.7)

and with the understanding that A = C ‖x‖∞ for some C ≥ π
2 , lossless sampling conditions are satisfied,

which yields that ∀n ∈ Z, ∃wn [0, TM ], unique such that (2.11) holds.

We conclude this section with two important remarks on the nature of PWM signals. First, even when

the input signal, x(t) ∈ L 2(R), the corresponding PWM signal is not finite energy, that is, p(t) /∈ L 2(R),

since it carries a DC component that the mapping in (2.7) introduces. In other words, if perfect recovery is

done from a PWM signal, the recovered signal w(t) = f(x(t)), and w(t) /∈ L 2(R) due to the DC component

from f(·). This causes p(t) to not converge uniformly to 0 in pulse energy, which yields that the frequency

domain representation of p(t) is not well defined without impulsive components. This fact motivates us

to propose a separation approach in Chapter 3, which allows us to separate finite energy input dependent

11
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Figure 2.8: Non-unique Intersection between Input Signal and Reference Signal in a Symbol interval

components from infinite energy structural components.

The second remark is closely related to the reason for using a continuous time low-pass filter as a

suboptimal reconstruction mechanism. Even though the input signal is band-limited, the PWM signal is

necessarily not band-limited, which makes the sampling of the PWM signal an inherently faulty operation.

However, the distortion due to the sampling of the PWM signal manifests itself in a unique way; sampling a

PWM signal is equivalent to quantization of the input signal. In this thesis, we postulate the performance

bounds on suboptimal reconstruction from uniformly sampled PWM signals in the so-called best case,

which entails using a continuous time low-pass filter as the reconstruction mechanism, therefore, we will not

introduce any quantization effect.

In Section 2.2, we propose an input model, which satisfies the input signal requirements of this section.

Then, we derive bounds on its fundamental characteristics, which we use to investigate the convergence

characteristics between uniform sampling and natural sampling. We show that as the input signal, x(t)→ 0,

the uniform samples and natural samples converge to each other as the difference between their sampling

instances converges to a finite constant, which defines the infinite energy, input independent, structural

signal component that we separate in Chapter 3.

12



2.2 Convergence of Uniform and Natural Sampling

As the input model for our analysis, we propose an input signal x(t) ∈ SN , where SN is an N -dimensional,

orthogonal, band-limited signal space spanned by the basis functions φk(t) = sinc (Ω0(t− kT )) for k ∈

[0, N − 1]:

x(t) =

N−1∑
k=0

ckφk(t) (2.14)

where, Ω0 = π
T , yielding that x(t) ∈ BL[−Ω0,Ω0]. Furthermore, sinc(x) = sin(x)

x thus, the basis functions

satisfy:

〈φk, φl〉 =

∞∫
−∞

φk(t)φl(t) dt = δk−l (2.15)

where δk−l is the Kronecker delta function. In order to ensure that x(t) ∈ L2(R), it is necessary to have

c = [c0, .., cN−1]T satisfy ‖c‖∞ ≤ ∞, which follows from SN being a signal space. Yet, we further impose

a normalization condition which ensures that ‖c‖∞ = 1, this condition normalizes the amplitude bounds

which would otherwise depend on ‖c‖∞. We should emphasize here that (2.14) represents a wide variety of

practical signals; any band-limited and finite energy signal can be projected onto SN and represented as in

(2.14) within an minimum square error after normalization.

The input signal in (2.14) is an element of an N -dimensional space spanned by {φk}N−1
k=0 , and ∀k ∈ Z,

|φk(t)| ≤ 1
|t| , ∀t ∈ R. Since the input signal model is not symmetrical, we define the right-hand side tail of

x(t) to start at t = NT and the left-hand side tail to end at t = −T . We upper-bound the input signal in the

tail regions as a function of t, which allows us to characterize the convergence between uniform and natural

samples. Yet first, we postulate an upper bound on maxt∈R |x(t)|, which is constant in t and is necessary

for reference signal construction:

Lemma 2.2.1. The input signal x(t) as defined in (2.14) is absolutely upper-bounded ∀N <∞:

max
t∈R
{|x(t)|} ≤


1 if N = 1

4
π

∑N
2

k=1
1

2k−1 if N ≥ 2 and N is even

4
π

(∑N+1
2

k=1
1

2k−1 −
1

2N

)
if N ≥ 3 and N is odd

(2.16)

Proof. Since x(t) ∈ L 2(R), ∃ ‖x‖∞ ≤ ∞. Therefore, we first construct the coefficient sequence c such that

max {|x(t)|} is achievable. It follows from the case where N = 1 that the maximum is only achievable on

the boundary of c, that is |ck| = 1, ∀k ∈ [0, N − 1]. We further observe that for N = 2, x = [1, 1]
T

has

a maximum of x(t) at t = T
2 . Since we investigate the L∞ norm for the input signal, the polarity of the

13



coefficient vector is not significant. In other words, the positive construction such as x = [1, 1]
T

provides

a maximum and we emphasize that without loss of generality, the reversed polarity coefficient vector such

as x = [−1,−1]
T

, would result in the same absolute maximum. Then, we observe the alternating series

structure of the basis functions and construct the coefficient set to superpose the same sign tail components

in a single interval. Since arg maxt∈R {φk(t)} = kT , ∀k ∈ [0, N − 1], the following construction achieves the

maximum:

1. For N = 1, let c0 = 1. Then, x(0) = 1 and ∀c0 ∈ [−1, 0), max {x(t)} = x(0) = c0 < 0.

2. For N = 2, let c = [1, 1]T . Then, arg maxx(t) = T
2 and max {x(t)} = 4

π .

3. For N = 2k + 1 and k ∈ N, Then,

c =


[1, ..., 1, 1, ..., 1,−1]T if k is odd

[−1, ..., 1, 1, ...,−1, 1]T if k is even

with, arg max {x(t)} = (N−2)T
2 .

4. For N = 2k + 2 and k ∈ N. Then,

c =


[−1, 1, ..., 1, 1, ..., 1,−1]T if k is odd

[1,−1, ..., 1, 1, ...,−1, 1]T if k is even

with, arg max {x(t)} = (N−1)T
2 .

The cases where N = 1 and N = 2 initiate the symmetric structure of the coefficient vector. Then, we allow

that for N = 3, c = [1, 1,−1]T , that is, we initiate the alternating structure from the right hand side.

In the region t ∈ [0, T ], sinc(Ω0(t−2T )) > 0, yielding that ∃t̂ ∈ [0, T ]: x(t̂) ≥ 4
π . Since basis functions are

symmetrical, adding φ2(t) preserves the maximum achieving point, yielding that t̂ = arg max {x(t)}. The

same construction applies for any transition except for the fact that the symmetrical construction merely

shifts arg max {x(t)} by T as proposed in the construction. Therefore, the mathematical induction concludes

that the proposed construction for the coefficient vector achieves the maximum for the input signal. Then,

we show that the given construction, which achieves the absolute maximum for x(t) is upper-bounded by

(2.16) for any given N . Since the construction is symmetrical for N even, the absolute maximum has the
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following form:

max
t∈R
{|x(t)|} = A = 2

N
2∑

k=1

∣∣∣∣sinc

(
Ω0

(2k − 1)T

2

)∣∣∣∣ = 2

N
2∑

k=1

∣∣∣∣sinc

(
(2k − 1)π

2

)∣∣∣∣
Using the definition of the basis functions yields that and noting that

∣∣sin (nπ2 )∣∣ = 1, ∀n:

= 2

N
2∑

k=1

∣∣∣∣∣∣
sin
(

(2k−1)π
2

)
Ω0

(2k−1)T
2

∣∣∣∣∣∣ ≤ 2

N
2∑

k=1

∣∣∣∣∣ 1
(2k−1)π

2

∣∣∣∣∣ =
4

π

N
2∑

k=1

1

(2k − 1)

Then, (2.16) follows from disturbing the symmetry by an additive shifted basis function, which concludes

the proof.

As discussed in Section 2.1, a PWM generator can sample a signal with no loss provided that the input

signal range lies within the range of the reference signal within a positive multiplicative factor C ≥ π
2 .

Lemma 2.2.1 provides a model for the case where the input signal is absolutely upper-bounded, thus, it is

possible to analyze lossless sampling. Next, we propose an upper bound for the tail regions, which is required

for our analysis on the convergence natural sampling and uniform sampling.

Lemma 2.2.2. The input signal x(t) as defined in (2.14) is upper-bounded by |x(t)| ≤ N
Ω0(t−(N−1)T ) for

t > NT and |x(t)| ≤ N
|Ω0t| for t ≤ −T .

Proof. The proof begins with the input signal definition:

|x(t)| =

∣∣∣∣∣
N−1∑
k=0

ck sinc (Ω0 (t− kT ))

∣∣∣∣∣
By the triangle inquality over a finite sum, we get:

|x(t)| ≤
N−1∑
k=0

|ck| |sinc (Ω0 (t− kT ))|

Since |sinc(x)| ≤ 1
x ,∀x ∈ R and Ω0 > 0:

|x(t)| ≤
N−1∑
k=0

|ck|
|Ω0 (t− kT )|

=
1

Ω0

N−1∑
k=0

|ck|
|t− kT |

∀k ∈ Z, we restrict |ck| ≤ 1, which yields that:

|x(t)| ≤ 1

Ω0

N−1∑
k=0

1

|t− kT |
(2.17)

On the right-hand side tail, (2.17) is a finite sum of positive, monotonically increasing elements ∀t ≥ NT .

Therefore, we can use the largest element bound, which is the last element, k = N − 1:

|x(t)| ≤ N

Ω0 (t− (N − 1)T )
= Br(t) (2.18)
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On the left-hand side tail, (2.17) is a finite sum of positive and monotonically decreasing elements ∀t ≤ −T .

Therefore, we can still use the largest element bound, which is the first element, k = 0. In that case:

|x(t)| ≤ N

Ω0 |t|
= Bl(t) (2.19)

With Lemma 2.2.2, the framework for the convergence problem is now established. Next, we use these

upper bounds to find the maximum value of a natural sample in each sampling interval and postulate

a geometrical approach to find the worst-case absolute separation between natural samples and uniform

samples, which is:

∆x = |xU [n]− xN [n]| (2.20)

We further show the convergence between natural sampling instances and uniform sampling instances mo-

tivates the separation principle that we discuss in the Chapter 3. It follows from the mapping in (2.7):

∆t =

∣∣∣∣tn − nT

M

∣∣∣∣ =
TM
2A
|x(tn) +A| (2.21)

The intersection point of an arbitrary band-limited signal and a line equation does not necessarily have

a closed-form expression, which is the main difficulty in analyzing the natural sampling. Furthermore,

approximating the intersection point requires imposing a restriction on the signal derivative [4]. However,

since the lossless sampling criteria ensure that there is only one intersection point in each sampling interval,

imposing any further conditions on the input structure is unnecessary. Therefore, we upper-bound the input

signal magnitude in the tail regions rather than approximating the input signal at a given instant. Lemma

2.2.3 establishes this geometrical framework.

Lemma 2.2.3. Let a continuous, finite energy, band-limited signal s(t) be bounded absolutely by some

positive, monotonic, convergent upper bound B(t) in its tail regions. Given that the signal is sampled with

some Ts that satisfies the lossless sampling conditions, the maximum deviation between the uniform samples

sU [n] = s(nTs) and natural samples sN [n] = s(tn) = r(tn) is bounded by:

|sU [n]− sN [n]| ≤ B(t̂n) +B (nTs) (2.22)

where t̂n satisfies B(t̂n) = r(t̂n). Furthermore, if s(t) has the form in (2.14) and Ts = T
M for some positive
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integer M , the bound can be improved as follows:

|sU [n]− sN [n]| ≤ max
{∣∣B(t̂n)−B (nTs)

∣∣ , ∣∣B(t̂n)
∣∣} (2.23)

And the corresponding deviation between sampling instances is bounded by:

tn − nTs ≤ t̂n − nTs (2.24)

Proof. In a sampling interval t ∈ [nTs, (n+ 1)Ts], the nth natural sample point is the unique intersection

point of the sawtooth reference signal, r(t), and the input signal, s(t), where the nth uniform sample is the

value of the input signal at the beginning of the sampling interval, at t = nTs. Since B(t) is monotonic, in

each symbol interval, ∃t̂n such that B(t̂n) = r(t̂n). Furthermore, |s(t)| ≤ B(t) in tail regions, which yields

that in tail regions, −B(nTs) ≤ s(nTs) and s(tn) ≤ s(t̂n). Therefore,

|sN [n]− sU [n]| ≤
∣∣∣∣ max
t∈[nTs,(n+1)Ts]

s(t)︸ ︷︷ ︸
B(t̂n)

− min
t=nTs

s(t)︸ ︷︷ ︸
−B(nTs)

∣∣∣∣

Furthermore, because of monotonicity of the reference signal, for any possible instant, t̂n, we know that

t̂n ≥ tn ≥ nTs. Therefore,

tn − nTs ≤ t̂n − nTs

However, when the sampling period is chosen as TM = T
M , the input model in (2.14) allows that in each

symbol interval @t0 : s(t0) = 0. In other words, in each symbol interval the sign of the input signal remains

the same, which allows that the maximum deviation between uniform and natural samples is bounded either

by
∣∣B(t̂n)−B (nTs)

∣∣ or by
∣∣B(t̂n)− 0

∣∣, which yields that:

|sU [n]− sN [n]| ≤ max
{∣∣B(t̂n)−B (nTs)

∣∣ , ∣∣B(t̂n)
∣∣} (2.25)

Lemma 2.2.3 provides B(tx) and tx as upper bounds for quantities sN [n] and tn, which are otherwise

known implicitly for an arbitrary signal. Then, by defining ξn , t̂n− nT
M and allowing ∆n , (n− (N − 1)M),

intersection of (2.8) and (2.18) yields that ξn is the positive solution to the following equation:

ξ2
n + ξn

(
TM∆n −

TM
2

)
−
(
NTM
2AΩ0

+
T 2
M∆n

2

)
= 0
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Finding the discriminant and postulating the positive root yields that ξn has the following form:

ξn =
1

2

√(TM∆n +
TM
2

)2

+
2NTM
AΩ0

−
(
TM∆n −

TM
2

)
Then, we can see that limn→∞ ξn = TM

2 , which would look contradictory without our intuition from

comparator construction: From the affine nature of the reference signal and from the fact that limt→∞ x(t) =

0, we can see that limt→∞ r(x(t)) = r(limt→∞ x(t)) = TM
2 . Therefore, the deviation between uniform sample

instances and natural sample instances are absolutely bounded by ξn, which converges to TM
2 :

tn −
nT

M
→ TM

2
(2.26)

Consequently, we can observe that natural sampling instances and uniform sampling instances do not

converge to each other. However, for a given signal, the deviation between natural and uniform sampling

instances converges to a finite constant, TM
2 , which diminishes with oversampling factor M .

Using the upper bound on the natural sampling instances, we can postulate an upper bound for the

natural sample in a sampling interval t ∈ [nTM , (n+ 1)TM ]. As Lemma 2.2.3 indicates, that upper bound

is xN [n] ≤ Br(t̂n). Let,

∆̃n = ∆n +
1

2M
=

(
n+ 0.5

M
− (N − 1)

)
With this notational simplicity, the upper bound for natural samples are given as follows:

x(tn) ≤ AM

[√
∆̃2
n +

2N

AMπ
− ∆̃n

]
(2.27)

Using Lemma 2.2.3, the upper bound for uniform samples are found from x
(
nT
M

)
≤ Br

(
nT
M

)
, which has

the following form:

x

(
nT

M

)
≤ N

π∆n
(2.28)

Therefore, for an input signal of the form in (2.14), we can upper-bound the deviation between natural

samples and uniform samples as follows:

|xU [n]− xN [n]| ≤ max

{[
AM

(√
∆̃2
n +

2N

AMπ
− ∆̃n

)
− N

π∆n

]
, AM

[√
∆̃2
n +

2N

AMπ
− ∆̃n

]}
(2.29)

Since ∆n is a function of n we can see that the natural samples and uniform samples converge to each other

with O
(

1
n

)
. In Section 2.3, we justify our results with simulations.
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2.3 Simulation Results

For our simulations, we have investigated the behavior of natural and uniform samples for the given input

model in (2.14) with N = 10 degrees of freedom with coefficients ck chosen symmetrically alternating such

that the absolute maximum is achieved as proven in Lemma 2.2.1. We have set the input signal frequency

to 10 KHz and traced the signal behavior over 600 cycles. Our simulations focus on demonstration of three

fundamental convergence characteristics. First, we observe the energy in the absolute deviation of natural

samples from uniform samples in order to observe the effect of the oversampling factor M to propose worst-

case deviation scenario for the subsequent simulations. Then, we simulate the worst-case deviation between

sampling instances and the corresponding deviation between natural and uniform samples and demonstrate

the performance of the proposed upper bounds.

The energy in the absolute deviation function, denoted by ED is the energy in the signal which is

d[n] , |xU [n]− xN [n]| and it depends on the oversampling factor M . Since the input signal is of finite

energy and bounded derivative, the following aspects are expected:

1. The energy in the absolute deviation is finite.

2. The energy in the absolute deviation diminishes in the oversampling factor M within a multiplicative

constant.

In Chapter 3, we show that the energy of d[n] is given by ED = TM
∑∞
n=−∞ |d[n]|2, which we have used to

simulate the energy in the deviation function, ED, and compare it to the uniformly sampled input signal

energy, EX . As (2.29) indicates, in the tail regions, the deviation energy diminishes in O
(

1
M

)
within a

constant factor due to the non-tail region. And Fig. 2.9 illustrates when signal-to-deviation energy (SDR)

is defined as SDR = 10 log
(
EX
ED

)
, the performance increases in oversampling factor with O (log (M)).

Therefore, the Nyquist sampling case, where M = 1 is the worst-case deviation case for lossless natural

sampling.

In addition to the choice of ck maximizing the absolute signal value, we simulate the Nyquist sampling

case so that the validity of the bounds are tested for the worst-case deviation. Figure 2.10 indicates that

the upper bound in (2.29) captures the convergence characteristics of the natural and uniform samples

successfully at the worst-case deviation and illustrate that natural and uniform samples converge in O
(

1
n

)
.

For the difference between sampling instances, our simulations justify an important observation, which is

the basis of our analysis in Chapter 3; as Fig. 2.11 indicates, the effect of the affine mapping imposed by the

reference signal r(t) manifests itself as a difference of T
2M between uniform and natural sampling consistent

to (2.21).
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Figure 2.9: Signal to Absolute Deviation Energy vs. Oversampling

The difference between natural samples and uniform samples indicates that for the input signal x(t) = 0,

the corresponding PWM signal is a 50% duty cycle square wave, which occurs due to the construction of the

PWM signal. In the Chapter 3, we motivate this understanding further and propose an approach to isolate

this structural component.
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Figure 2.10: Convergence of Natural and Uniform Samples
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Chapter 3

Frequency Domain Analysis

We have shown that a PWM generator can be analyzed in linear blocks and a non-linear block separately.

On one hand, the linear blocks consist of the mapping between input samples, xn, and pulse widths, wn,

and the choice of pulse orientation, which maps wn to rising and falling edge instances, tn. On the other

hand, the non-linear block is the generation of the PWM signal p(t) from tn. Even though the comparator

construction carries out these operations at once, in analysis, separability of these blocks is preserved in the

choice of the reference signal. Furthermore, the sampling methodology changes the sampling instances and

sample values, but with a lossless sampling reference signal, perfect reconstruction is possible both natural

and uniform sampling, which motivates us to question the availability of a similar separation between linear

and non-linear blocks in the reconstruction end. Under the lossless sampling conditions in Theorem 2.1.1,

a PWM generator with comparator construction can be treated as a lossless sampler. If the reconstruction

mechanism has the information on every instance that the PWM signal changes state, namely the sequence tn

of rising edge and falling edge instances, then, inverse of the affine mapping f(·), which is defined by the PWM

generator can be applied to time difference between every consecutive rising edge and falling edge, which

results in perfect recovery of the sampled input values. However, such information is not necessarily available

in real-life applications, which motivates us to analyze the performance of an alternative reconstruction

mechanism. We investigate the performance of continuous time low-pass filtering as a suboptimal, linear

reconstruction mechanism for a PWM signal generated from an oversampled input signal. In this chapter,

we first introduce a separation principle, where we separate the infinite energy no-information bearing

structural component from the finite energy information bearing PWM component, which we name variation

signal. Then, we postulate an equivalent model to analyze the low-pass reconstruction from a PWM signal,

which involves using the finite energy variation signal instead of the infinite energy PWM signal. Using

the equivalent model and frequency domain representation of the information bearing signal component, we

derive performance bounds on low-pass reconstruction as a function of the oversampling factor.

22



3.1 Separation Principle

A PWM generator modifies the input signal by imposing f(xn) = wn, ∀n ∈ Z, where f(·) is necessarily

an invertible mapping. Thus, an ideal reconstruction mechanism must impose f−1(·) on the output to

recover x(t) exactly, which leads to two different interpretations of the PWM generation and reconstruction

processes. On one hand, one could consider PWM generation as a sole comparator block, as we discussed

in Chapter 2, and apply f−1(·) to the output of the reconstruction. Equivalently, a PWM generator can be

modeled as a comparator with a scaled reference signal preceded by f(·) and for low-pass reconstruction,

the structural component can be separated from the PWM signal before the reconstruction.

As we have shown in Chapter 2, sampling methodology changes the sampling instances and corresponding

samples. However, when lossless sampling conditions are observed, these operations are convergent. As

the oversampling factor increases, natural and uniform samples converge to each other, where the deviation

between sampling instances converge to fixed constant; TM2 . Therefore, in Chapter 3, we derive the frequency

domain representations and low-pass reconstruction characteristics of uniformly sampled PWM signals with

different pulse orientations. In other words, we allow (2.7) to define the relation between xn and wn explicitly.

The DC component introduced by the mapping in (2.7) manifests itself as an infinite energy structural

component in the resulting PWM signal. The structural components for different pulse orientations are

given as follows:

sTE(t) =

∞∑
n=−∞

u (t− nTM )− u
(
t− nTM −

TM
2

)
(3.1)

sLE(t) =

∞∑
n=−∞

u

(
t− nTM +

TM
2

)
− u (t− nTM ) (3.2)

sDE(t) =

∞∑
n=−∞

u

(
t− nTM +

TM
4

)
− u

(
t− nTM −

TM
4

)
(3.3)

A PWM generator as defined in Chapter 2, results in the signal components in (3.1)-(3.3) when the input

signal x(t) = 0, ∀t, therefore, a PWM signal deviates from these signals depending on the input amplitude.

Furthermore, for each pulse orientation, signals (3.1)-(3.3), which we denote as s(t) without loss of generality,

have the following properties:

1. s(t) is a 50% duty cycle square wave which is of infinite energy.

2. s(t) has harmonic components at Ω = 0,±MΩ0,±3MΩ0, . . .

3. s(t) is input independent, thus, it is entirely structural.
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ZOH ≷

r(t) ∈ [−A,A]

x(t) p(t)

Figure 3.1: Original Uniformly Sampled PWM Generation

+

A

×

T
2AM

ZOH ≷

r(t) ∈ [0, TM ]

x(t) w(t) p(t)

Figure 3.2: Equivalent Uniformly Sampled PWM Generation

On the generation side, since (2.7) is an affine mapping, a uniformly sampling PWM generator can be mod-

eled either as in Fig. 3.1 or equivalently, as in Fig. 3.2, where the reference signal is scaled to span [0, TM ]

instead of [−A,A] since in the equivalent case input of the ZOH block is w(t) = f(x(t)) ∈ [0, TM ]. The

equivalent model for the PWM generator follows directly from our discussion Chapter 2.

On the reconstruction side, low-pass filtering is proceeded by f−1(·). For developing an equivalent recon-

struction strategy, we first emphasize that continuous-time low-pass filtering is a linear operator, therefore,

it is possible to eliminate the DC component in the output before the low-pass filtering by eliminating the

signal component corresponding to the DC component in p(t). Our observation on the structural signal

component reveals that s(t) is the DC dependent component. Furthermore, only harmonic component of

s(t) in the frequency band [−Ω0,Ω0] is the harmonic at Ω = 0, which is the DC component. Therefore, the

linear reconstruction mechanism allows us to construct an equivalent reconstruction mechanism by elimi-

nating s(t) before filtering and changing the scaling factor, consequently, the following two reconstruction

mechanisms are equivalent.

1. First, low-pass filter the signal, then apply f−1(t) = 2Aw(t)
TM

w(t)−A to the output signal.

2. First, separate the 50% duty cycle square wave, which corresponds to the DC component TM
2 , then

apply low-pass filter with the gain of 2A.

Figure 3.3 represents the original reconstruction mechanism and Fig. 3.4 represents the equivalent

reconstruction mechanism. The separation approach allows us to manipulate the linear nature of the recon-

struction mechanism to isolate the signal dependent component entirely, which has a well-defined frequency

domain representation. We allow v(t) = p(t) − s(t), which we name the variation signal, to denote the

information bearing part of a PWM signal. Here, v(t) represents the variation of a PWM signal from its
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LPF
Cut-off: Ω0

Gain: TM

×

2A
TM

+

−A

p(t) ŵ(t) x̂(t)

Figure 3.3: Original Input Reconstruction

+

−s(t)

LPF
Cut-off: Ω0

Gain: 2A

p(t) v(t) x̂(t)

Figure 3.4: Equivalent Input Reconstruction

square wave and it has the following form for fixed-edge PWM signals:

vTE(t) =

∞∑
n=−∞

u

(
t− nTM −

TM
2

)
− u (t− nTM − wn) (3.4)

vLE(t) =

∞∑
n=−∞

u (t− nTM + wn)− u
(
t− nTM +

TM
2

)
(3.5)

On the other hand, for DEPWM, the variation signal is a sum of trailing-edge and leading-edge components

of half width in each symbol interval, which is as follows:

vDE(t) =

∞∑
n=−∞

u
(
t− nTM+

wn
2

)
−u
(
t− nTM+

TM
4

)
+

∞∑
n=−∞

u

(
t− nTM−

TM
4

)
−u
(
t− nTM−

wn
2

)
(3.6)

In Section 3.2, we use these signals to derive the frequency domain representation of the signal dependent

component of a PWM signal which eventually allows us to formulate performance bounds on low-pass filtering

as a suboptimal reconstruction mechanism from PWM signals.

3.2 Frequency Domain Representations of PWM Signals

Variation signals as defined in (3.4)-(3.6) are finite energy signals with pulse energies converging to 0 uni-

formly, therefore, they have clearly defined frequency domain representations. Allowing F {·} to denote

the Fourier transform operator, the frequency domain representation of these information bearing signals

are found next. We isolate the band-limited input signal components in the frequency domain of the vari-

ation signal, which allows us to evaluate the performance of low-pass filtering. We begin our analysis with

fixed-edge PWM constructions.
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3.2.1 Frequency Spectra of Fixed-Edge PWM Constructions

For trailing-edge PWM construction, in each symbol interval, the input amplitude information is preserved

in the variation from the mid-point nTM + TM
2 . One should emphasize here that even though a variation

signal is the only signal-dependent component of a PWM signal, it is not a PWM signal. The frequency

domain representation of the variation signal for TEPWM is given as follows:

VTE (jΩ) = F {vTE(t)} =

∫ ∞
−∞

vTE(t)e−jΩt dt

=

∫ ∞
−∞

[ ∞∑
n=−∞

u

(
t− nTM −

TM
2

)
− u (t− nTM − wn)

]
e−jΩt dt (3.7)

As n → ∞, the energy of the pulses in the nth symbol interval converges uniformly to 0. Therefore, the

order of integration and summation operations can be changed:

VTE =

∞∑
n=−∞

∫ ∞
−∞

[
u

(
t− nTM −

TM
2

)
− u (t− nTM − wn)

]
e−jΩt dt

Fixing n and passing to the integral limits yield that:

VTE (jΩ) =

∞∑
n=−∞

∫ nTM+
TM
2

nTM+wn

e−jΩt dt =
1

jΩ

∞∑
n=−∞

e−jΩnTM
[
e−jΩwn − e−jΩ

TM
2

]

Utilizing (2.7), VTE(jΩ) reduces to the following:

VTE (jΩ) =
TM
2A

e−jΩ
TM
2

∞∑
n=−∞

xne
−jΩTM(n+ xn

4A ) sinc

(
Ω
TMxn

4A

)
(3.8)

The complex exponential terms can be rearranged to construct a more intuitive form:

VTE (jΩ) =
TM
2A

e−jΩ
TM
2

∞∑
n=−∞

xne
−jΩnTMCn (jΩ) (3.9)

Here, Cn (jΩ) is defined as follows:

Cn (jΩ) = sinc

(
Ω
TMxn

4A

)
e−jΩ

TMxn
4A (3.10)

One should observe that C(0) = 1. Therefore, by allowing,

Cn(jΩ) = 1 + En(jΩ) (3.11)
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In [−Ω0,Ω0], one can utilize Maclaurin series expansion to absolutely upper-bound En(jΩ), ∀n ∈ Z. There-

fore, the signal-dependent component of a PWM signal can be reduced to the following:

VTE (jΩ) =
TM
2A

e−jΩ
TM
2

∞∑
n=−∞

xne
−jΩnTM +

TM
2A

e−jΩ
TM
2

∞∑
n=−∞

xne
−jΩnTMEn (jΩ) (3.12)

TEPWM construction shifts the signal components by TM
2 and the input signal can be recovered from

the first component perfectly by low-pass filtering [5]. However, low-pass reconstruction cannot eliminate

the signal component that depends on En (jΩ). Therefore, we refer to the second component as low-pass

distortion component. Next, we proceed with the frequency domain analysis of LEPWM, which proves itself

to be very similar to that of TEPWM because of their circularly symmetric construction.

Leading-edge PWM construction differs from TEPWM construction by choice of the fixed point in each

symbol interval. Thus, the circular symmetry between LEPWM and TEPWM signals leads to change of

polarity in shift and the distortion component in the frequency domain. The analysis begins similar to that

of TEPWM:

VLE (jΩ) =

∫ ∞
−∞

vLE(t)e−jΩt dt

=

∫ ∞
−∞

[ ∞∑
n=−∞

u (t− nTM + wn)− u
(
t− nTM +

TM
2

)]
e−jΩt dt

The energy in the pulses of vLE(t) converges uniformly to 0, allowing us to change the order of summation

and integration:

VLE (jΩ) =

∞∑
n=−∞

∫ nTM−wn

nTM−
TM
2

e−jΩt dt

Rearranging the terms in the same way for that for TEPWM and utilizing (2.7) yield that:

VLE (jΩ) =
TM
2A

ejΩ
TM
2

∞∑
n=−∞

xne
−jΩTM(n− xn4A ) sinc

(
Ω
TMxn

4A

)
(3.13)

Therefore, the circular symmetry between time-domain signals manifests itself as a polarity change in

the shift and in the distorting component, yielding C ∗n (jΩ) instead of Cn (jΩ):

VLE (jΩ) =
TM
2A

ejΩ
TM
2

∞∑
n=−∞

xne
−jΩnTMC ∗n (jΩ) (3.14)
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Since the conjugation operation preserves the amplitude, we follow our definition in (3.11), which yields that

for LEPWM, the input-dependent component can still be isolated:

VLE (jΩ) =
TM
2A

ejΩ
TM
2

∞∑
n=−∞

xne
−jΩnTM +

TM
2A

ejΩ
TM
2

∞∑
n=−∞

xne
−jΩnTME ∗n (jΩ) (3.15)

Next, we investigate the frequency domain representation of vDE(t) and observe the main changes, which

will lead us to slightly modify our approach in the performance analysis.

3.2.2 Frequency Spectrum of Double-Edge PWM Construction

Different from fixed-edge PWM constructions, the symmetric structure of DEPWM construction allows two

information bearing pulses to arise in each symbol interval, one of which is a leading-edge variation signal and

the other one is a trailing-edge variation signal. As (3.6) indicates, the leading-edge and trailing-edge pulses

never interfere with each other, yielding that the variation signal of a DEPWM signal can be represented as a

superposition of leading-edge and trailing-edge components of half widths, which create a distinct frequency

domain representation. Since the energy of these pulses converges uniformly to 0 without any overlap, the

energy of their sum converges uniformly as well. Therefore, VDE(jΩ) has the following structure:

VDE (jΩ) =

∫ ∞
−∞

vDE(t)e−jΩt dt

Uniform convergence in pulse energy allows changing the order of summation and integration, then for

a fixed n, the pulses may pass to the integration limits, yielding that:

VDE (jΩ) =

∞∑
n=−∞

∫ nTM−
TM
4

nTM−wn2
e−jΩt dt+

∞∑
n=−∞

∫ nTM+wn
2

nTM+
TM
4

e−jΩt dt

Therefore, the frequency domain representation of the variation signal of a DEPWM signal is the super-

position of frequency domain representations of leading-edge and trailing-edge components, only scaled in

frequency:

VDE(jΩ) =
TM
4A

e−jΩ
TM
4

∞∑
n=−∞

xne
−jΩnTMCn

(
j

Ω

2

)
+
TM
4A

ejΩ
TM
4

∞∑
n=−∞

xne
−jΩnTMC ∗n

(
j

Ω

2

)
(3.16)

Isolating the common terms allows us to investigate further:

VDE(jΩ) =
TM
4A

∞∑
n=−∞

xne
−jΩnTM

[
e−jΩ

TM
4 Cn

(
j

Ω

2

)
+ ejΩ

TM
4 C ∗n

(
j

Ω

2

)]
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Recalling that Cn(Ω) = 1 + En(Ω), ∀n the summation becomes separable:

VDE(jΩ) =
TM
4A

∞∑
n=−∞

xne
−jΩnTM

[
e−jΩ

TM
4 + ejΩ

TM
4

]
+
TM
4A

∞∑
n=−∞

xne
−jΩnTM

[
e−jΩ

TM
4 En

(
j

Ω

2

)
+ ejΩ

TM
4 E ∗n

(
j

Ω

2

)]

Using Euler’s formula and collecting complex conjugate terms together provide a more intuitive form:

VDE(jΩ) =
TM
2A

∞∑
n=−∞

xne
−jΩnTM cos

(
ΩTM

4

)
︸ ︷︷ ︸

Blurred signal component

+
TM
2A

∞∑
n=−∞

xne
−jΩnTMNn (jΩ)︸ ︷︷ ︸

Distortion component

(3.17)

Here the distorting component now has the following form:

Nn (jΩ) =
1

2
<
{
e−jΩ

TM
4 En

(
j

Ω

2

)}
(3.18)

As (3.17) indicates, DEPWM construction makes the input component in the reconstructed signal blurry,

in the sense that when low-pass filtered, the reconstructed signal is shifted forward and backward by TM
4

and normalized. The blurring effect introduces an additional distortion, which we analyze in Section 3.3.

With the frequency domain representation of double-edge PWM signals, we conclude our analysis on the

frequency domain representation of PWM signals. One should emphasize that if we were to embrace the

impulsive frequency domain representation in this analysis, we would have the harmonic components due to

s(t) in the frequency domain representation of p(t), which would only add the DC component in low-pass

filtering. In Section 3.3, we investigate the performance of low-pass filtering as a suboptimal reconstruction

mechanism.

3.3 Performance of Low-Pass Reconstruction

In this section, we derive the performance bounds on low-pass reconstruction from PWM signals using the

reconstruction model in Fig. 3.4, with an ideal low-pass filter as given below:

H(jΩ) =


2A if |Ω| ≤ Ω0

0 if |Ω| > Ω0

(3.19)

Equivalently, in this section, we sometimes refer to this filter as H(jΩ) = 2A1 {|Ω| ≤ Ω0}, which is

merely a notational difference. We apply this filter to v(t) to investigate the distortion energy due to
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low-pass filtering and compare it to the signal energy for different PWM constructions at various levels

of oversampling. Allowing x̂(t) to be the reconstructed signal, our objective is to first express x̂(t) in the

following form:

(v ∗ h)(t) = x̂(t) = x(t) + d(t) (3.20)

Here ∗ denotes the convolution operator and d(t) is bounded in energy. Then, we investigate the signal-to-

distortion energy as defined below:

SDR =
EX
ED

(3.21)

The energy in the input signal is denoted by EX and it is given by EX =
∞∫
−∞
|x(t)|2 dt. The same applies

for the distortion energy calculations as well. However, we have the frequency domain representation of

the reconstructed signal, which includes the frequency domain representation of the sampled signal x[n] =

x(nTM ). Therefore, the following form is useful for our energy calculations.

EX =

∞∫
−∞

|x(t)|2 dt = TM

∞∑
n=−∞

|xn|2 (3.22)

The relation in (3.22) is a well-known result, yet it has significant importance in our analysis. Therefore, we

outline the proof.

Proof. We begin with the energy of the continuous-time signal, Rayleigh’s identity yields that:

∞∫
−∞

|x(t)|2 dt =
1

2π

∞∫
−∞

|X(jΩ)|2 dΩ (3.23)

Similarly, allowing ω = ΩTM , the discrete-time Fourier transform of xn = x (nTM ) is given as follows:

X
(
ejω
)

=

∞∑
n=−∞

x[n]e−jωn (3.24)

Then, the Rayleigh’s identity for discrete-time Fourier transform pairs imposes that

∞∑
n=−∞

|x[n]|2 =
1

2π

π∫
−π

∣∣X (ejω)∣∣2 dω (3.25)
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This allows us to reduce the problem statement into the following:

∞∫
−∞

|x(t)|2 dt = TM

∞∑
n=−∞

|x[n]|2 ⇐⇒
∞∫
−∞

|X(jΩ)|2 dΩ = TM

π∫
−π

∣∣X (ejω)∣∣2 dω (3.26)

Once the sampling period is TM , we can represent X(ejω) as follows [5]:

X(ω) =
1

TM

∞∑
k=−∞

X

(
j
ω

TM
− j 2πk

TM

)
=

1

TM

∞∑
k=−∞

X (jΩ− j2MΩ0k) (3.27)

Then, we proceed with the energy calculations:

π∫
−π

|X(ω)|2 dω =
(1)

1

TM

π
TM∫

− π
TM

|X(jΩTM )|2 dΩ =
(2)

1

TM

MΩ0∫
−MΩ0

|X(jΩ)|2 dΩ =
(3)

1

TM

Ω0∫
−Ω0

|X (jΩ)|2 dΩ (3.28)

The first equality follows from change of variables ω = ΩTM , the limits in the second equality follow from

Ω0 = π
T and the integral argument follows from (3.27) and the final equality follows from x(t) being band-

limited to Ω0, which concludes our proof.

Next, we utilize the frequency domain representations of variation signals to derive the performance

bounds on the distortion energy for different PWM constructions for various levels of oversampling. Our

analysis further reveals fundamental trade-offs between generator complexity and distortion attenuation

capacity.

3.3.1 Distortion Energy Bounds for Fixed-Edge PWM Constructions

The frequency domain representation of the variation signals in (3.12) and (3.15) indicate that variation

signals for fixed-edge PWM constructions can be represented as a sum of the input component X
(
ejω
)

and

a low-pass distortion component. Furthermore, (3.9) indicates that fixed-edge PWM constructions introduces

a time shift of TM
2 . Without loss of generality let us first observe TEPWM. After the delay is eliminated,

X̂(jΩ), the signal reconstructed by the low-pass filter H(jΩ) = 2A1 {|Ω| ≤ Ω0}, has the following form:

X̂TE(jΩ) = VTE(jΩ)H(jΩ)ejΩ
TM
2

=
TM
2A

∞∑
n=−∞

xne
−jΩnTMH(jΩ) +

TM
2A

∞∑
n=−∞

xne
−jΩnTMEn(jΩ)H(jΩ)
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Since x(t) has bandwidth Ω0 and it is oversampled, X(jΩ) = TMX
(
ejΩTM

)
1 {|Ω| ≤ Ω0} [5]. Therefore,

low-pass filtering yields that:

X(jΩ) =
TM
2A

∞∑
n=−∞

xne
−jΩnTMH(jΩ)

This allows us to represent the reconstructed signal as the input signal and a distortion component:

X̂TE(jΩ) = X(jΩ) +DTE(jΩ)

Here, the distortion component for TEPWM, DTE(jΩ) is defined as:

DTE(jΩ) =
TM
2A

∞∑
n=−∞

xne
−jΩnTMEn(jΩ)H(jΩ) (3.29)

Allowing that for LEPWM, the shift in the output is eliminated by X̂LE(jΩ) = VLE(jΩ)H(jΩ)e−jΩ
TM
2 ,

low-pass filtering results only in a change of polarity in the distortion component, which is defined as follows:

DLE(jΩ) =
TM
2A

∞∑
n=−∞

xne
−jΩnTME ∗n (jΩ)H(jΩ) (3.30)

With a well-defined distortion component for low-pass filtering, now we turn our attention to upper-

bounding the energy in D(jΩ):

ED =
1

2π

∫ ∞
−∞
|D(jΩ)|2 dΩ

Applying the definition of the low-pass filter H(jΩ) yields that the distortion energy in the pass band is

given as follows:

ED =
1

2π

∫ Ω0

−Ω0

∣∣∣∣∣TM
∞∑

n=−∞
xne
−jΩnTMEn(jΩ)

∣∣∣∣∣
2

dΩ

Since v(t) is of finite energy, the argument of the summation converges in energy, which allows us to apply

the triangle inequality:

ED ≤
1

2π

∫ Ω0

−Ω0

(
TM

∞∑
n=−∞

∣∣xne−jΩnTMEn(jΩ)
∣∣)2

dΩ (3.31)

At this point, we upper-bound |En(jΩ)| on Ω ∈ [−Ω0,Ω0], which will allows us to postulate the same

distortion bounds for TEPWM and LEPWM since |En(jΩ)| = |E ∗n (jΩ)|. First, let us observe the structure
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of the distorting component:

En(jΩ) = sinc

(
Ω
TMxn

4A

)
e−jΩ

TMxn
4A − 1 (3.32)

Therefore, |En(jΩ)| has the following explicit form:

|En(jΩ)| =

√(
sinc

(
ΩTMxn

4A

))2

− 2 sinc

(
ΩTMxn

2A

)
+ 1 (3.33)

Using the Maclaurin series expansion of |En(jΩ)|, we can upper-bound |En(jΩ)| in Ω ∈ [−Ω0,Ω0] :

|En(jΩ)| ≤
∣∣∣∣ΩTxn4AM

∣∣∣∣ (3.34)

This allows us to upper-bound the energy in the distortion component. The first step is to isolate the

input energy term:

ED ≤
1

2π

∫ Ω0

−Ω0

(
TM

∞∑
n=−∞

|xn|
∣∣∣∣ΩTxn4AM

∣∣∣∣
)2

dΩ =
T 2

32π(AM)2

(
TM

∞∑
n=−∞

|xn|2
)2 ∫ Ω0

−Ω0

Ω2 dΩ

Using (3.22) for EX yields that the distortion energy diminishes with O
(
M2
)
:

ED ≤
πΩ0E

2
X

48(AM)2
(3.35)

The corresponding signal-to-distortion ratio is:

SDR =
EX
ED
≥ 48(AM)2

πΩ0EX
(3.36)

We had already shown that since TEPWM and LEPWM signals are circularly symmetric to each other,

their frequency domain representations are similar. Now, we have proven that their low-pass reconstruction

performances are indeed bounded by identical bounds. Next, we investigate the low-pass reconstruction

characteristics of DEPWM signals, which will reveal a fundamental trade-off between generator complexity

and distortion attenuation.
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3.3.2 Distortion Energy Bound for Double-Edge PWM Construction

Different from the fixed-edge PWM constructions, DEPWM introduces what we call the blurring effect to

X
(
ejΩTM

)
, which yields an additional distortion component in the output:

X̂(jΩ)DE = VDE(jΩ)H(jΩ)

= X(jΩ) cos

(
ΩT

4M

)
+DLP (jΩ)

Allowing B(jΩ) ,
[
cos
(

ΩT
4M

)
− 1
]

to express the blurring effect, the distortion components can be separated

as follows:

X̂(jΩ) = X(jΩ) +DB(jΩ) +DLP (jΩ) (3.37)

The distortion component due to the blurring effect is given by:

DB(jΩ) =
TM
2A

∞∑
n=−∞

xne
−jΩnTMB(jΩ)H(jΩ) (3.38)

The distortion due to low-pass reconstruction is:

DLP (jΩ) =
TM
2A

∞∑
n=−∞

xne
−jΩnTMNn (jΩ)H(jΩ) (3.39)

Then, the total distortion is DDE(jΩ) , DB(jΩ) +DLP (jΩ), where, allowing the distortion energy due

to the blurring effect to be EB and distortion energy due to low-pass filtering to be ELP , the total distortion

ED is bounded as follows [29]:

ED ≤ 2 (EB + ELP ) (3.40)

Therefore, we first evaluate EB and ELP separately, then we use (3.40) to upper-bound total distortion

energy. We begin with the distortion energy due to blurring:

EB =
1

2π

∞∫
−∞

|DB(jΩ)|2 dΩ =
1

2π

Ω0∫
−Ω0

∣∣∣∣∣TM
∞∑

n=−∞
xne
−jΩnTMB(jΩ)

∣∣∣∣∣
2

dΩ =
1

2π

Ω0∫
−Ω0

|X(jΩ)B(jΩ)|2 dΩ

Since the integration is on a compact set and X(jΩ) and B(jΩ) are both continuous functions, we can

upper-bound EB as follows:

EB ≤ max
Ω∈[−Ω0,Ω0]

|B(jΩ)|2EX = |B(jΩ0)|2EX
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Therefore,

EB ≤
∣∣∣1− cos

( π

4M

)∣∣∣2EX ≤ π4

210M4
EX (3.41)

Here the last step follows from the Maclaurin series expansion of cos
(
π

4M

)
. The last step clearly emphasizes

that the distortion due to the blurring effect diminishes with O
(
M4
)
. Next, we analyze the distortion energy

due to low-pass filtering.

The main distinction between DEPWM construction and the fixed-edge PWM constructions is the atten-

uation of low-pass reconstruction error, which comes from the bound on the distorting component Nn(jΩ).

Otherwise, the distortion energy analysis is identical to the TEPWM and LEPWM cases up to equation

(3.31). Therefore, we first upper-bound |Nn(jΩ)|, in the region Ω ∈ [−Ω0,Ω0].

|Nn (jΩ)| = 1

2

∣∣∣∣<{e−jΩTM
4 En

(
j

Ω

2

)}∣∣∣∣
=

∣∣∣∣sinc

(
TMxn

8A
Ω

)
cos

((
Txn
8AM

+
TM
4

)
Ω

)
− cos

(
TM
4

Ω

)∣∣∣∣
At this point, the problem is reduced to postulating an upper bound using Maclaurin series expansion

with the lowest order of xn being 1. This is a requirement arising from the fact that x(t) is not necessarily

an L 1(R) signal. Since sinc
(
TMxn

8A Ω
)

is an even function, in the region Ω ∈ [−Ω0,Ω0], one could observe

that cos
((∣∣TMxn

8A Ω
∣∣+ TM

4

)
Ω
)
≤ cos

((
TMxn

8A Ω + TM
4

)
Ω
)
, yielding that:

|Nn (jΩ)| ≤
∣∣∣∣sinc

(∣∣∣∣TMxn8A

∣∣∣∣Ω) cos

((∣∣∣∣TMxn8A

∣∣∣∣+
TM
4

)
Ω

)
− cos

(
TM
4

Ω

)∣∣∣∣ (3.42)

Using Maclaurin series expansion, (3.42) can be reduced to the following polynomial xn with no constant

term, as required:

|Nn (jΩ)| ≤ Ω2

(
2

3

(
TMxn

8A

)2

+

∣∣∣∣T 2
Mxn
32A

∣∣∣∣
)

(3.43)

The rest follows with the same steps as those after (3.31).

ELP ≤
π3

45 · 210

Ω0(A+ 3)2

(AM)4
E2
X (3.44)

Therefore, the total distortion energy is bounded by:

ED ≤
π3

45 · 29

Ω0(A+ 3)2

(AM)4
E2
X + 2

∣∣∣1− cos
( π

4M

)∣∣∣EX (3.45)
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In a more compact form, we have:

ED ≤
π4

29M4

[
Ω0(A+ 3)2

45πA4
E2
X + EX

]
(3.46)

and the corresponding compact signal-to-distortion ratio is given as follows:

SDR =
EX
ED
≥ 29M4

π4
[

Ω0(A+3)2

45πA4 EX + 1
] (3.47)

Although DEPWM construction introduces a blurring effect, it attenuates the low-pass reconstruction error

substantially for high oversampling factors, revealing a trade-off between distortion attenuation and generator

complexity.
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Chapter 4

Stochastic Analysis

In this chapter, we first postulate a stochastic model of a PWM random process with independent identically

distributed (i.i.d.) pulse widths. Then, we observe that due to the affine nature of the PWM generator, one

could use the pulse width process as input statistics without loss of information. Following the PWM process

model, we show that a PWM process generated from a wide sense stationary (WSS) pulse width process

is not necessarily WSS due to the fixed starting point of the PWM process model. Then, by postulating a

random starting point on a symbol interval, we show that it is possible to make a PWM process WSS. We

finalize this chapter with simulations for different PWM constructions where pulse widths are i.i.d. uniformly

distributed.

4.1 Fixed Starting Point Model for PWM Processes

For the stochastic analysis of a PWM signal, first, let a WSS generator process W define i.i.d. pulse widths

Wk for the kth pulse of the PWM process P . Under the lossless sampling conditions given in Chapter 2,

for any PWM generator, there exists an invertible mapping f(·) between input samples and pulse widths,

therefore, the generator process W can be thought as a PWM generator operating over a WSS input process

X. Therefore, we can model the input statistics as the pulse width generator process W instead of the input

process X, with the understanding that ∀k, P {0 ≤Wk < TM} = 1, where TM is the symbol interval. Then,

for given pulse width statistics, PWM processes with different pulse orientations are defined as follows:

PTE(t) =

∞∑
k=−∞

1 {kTM < t < kTM +Wk} (4.1)

PLE(t) =

∞∑
k=−∞

1 {kTM −Wk < t < kTM} (4.2)

PDE(t) =

∞∑
k=−∞

1

{
kTM −

Wk

2
< t < kTM +

Wk

2

}
(4.3)
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Here 1 {·} denotes the indicator function, thus, P is a continuous time random process for any pulse

orientation. One should observe that for any signal structure, there exists a fixed point at each symbol

interval. For TEPWM, at t = kTM there is always a rising edge, for LEPWM at t = kTM , there is always a

falling edge and for DEPWM t = kTM is a fixed point around which, a pulse with random width is oriented.

Because of this structure, we name the random processes given in (4.1)-(4.3) as fixed starting point PWM

processes, with the understanding that as W → 0, the pulse gets closer to fixed point, thus in that sense, the

pulse starts from that fixed point. One should observe that this structure imposes a strict time dependence

on the process. Therefore, in this chapter, we show that a PWM process with a fixed starting point is not

necessarily WSS. We use the first moment characteristics to observe this behavior. Then, we postulate the

additional conditions on the generator process W and show that such conditions would imply a trivial case.

We first postulate modified versions of the complementary cumulative distribution function for notational

simplicity. Since ∀k ∈ Z, P {0 ≤Wk ≤ TM} = 1 and Wk are i.i.d., the cumulative distribution function

(CDF), F (t) = P {Wk ≤ t}, has the following properties in addition to its universal properties:

1. F (t) = 1, for t ≥ TM .

2. F (t) = 0, for t < 0.

Since the PWM process constructions in (4.1)-(4.3) depend on the complementary CDF of the input statistics,

rather than the CDFs themselves, for notational simplicity, we define Φ(t) = 1 − F (t)) and the following

modified versions:

Φ̂(t) = Φ(t)u(t) =


1− F (t) if t ∈ [0, TM ]

0 otherwise

(4.4)

Φ̌(t) = Φ̂(−t) (4.5)

Φ̃(t) = Φ̂(|t|) = Φ̂(t) + Φ̌(t) (4.6)

Here u(t) = 1 {t ≥ 0} is the step function. With this notational simplicity, we now derive the first

moments for the given signal constructions, we begin with TEPWM:

E [PTE(t)] = E

[ ∞∑
k=−∞

1 {kTM < t < kTM +Wk}

]

=

∞∑
k=−∞

E [1 {kTM < t < kTM +Wk}] =

∞∑
k=−∞

E [1 {0 < t− kTM < Wk}] (4.7)
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The argument of the indicator function has separable impositions, the second of which is deterministic [30]:

E [PTE(t)] =

∞∑
k=−∞

E [1 {t− kTM < Wk}]1 {t− kTM > 0}

By definition, for and event ω ∈ Ω, E [1 {ω}] = P {ω}:

E [PTE(t)] =

∞∑
k=−∞

P {Wk > t− kTM} =

∞∑
k=−∞

Φ (t− kTM )1 {t− kTM > 0}

which is the definition of Φ̂ (t− kTM ). Therefore,

E [PTE(t)] =

∞∑
k=−∞

Φ̂ (t− kTM ) (4.8)

LEPWM and TEPWM are circularly symmetric signals, meaning that in each symbol interval pulses of

trailing-edge pulses and leading-edge pulses are reflections of each other with respect to the mid-point of the

symbol interval. Therefore, LEPWM has very similar characteristics to those of TEPWM:

E [PLE(t)] = E

[ ∞∑
k=−∞

1 {kTM −Wk < t < kTM}

]

=

∞∑
k=−∞

E [1 {−Wk < t− kTM < 0}]

The argument of the indicator function is again separable. Thus,

=

∞∑
k=−∞

E [1 {Wk > −(t− kT )}]1 {t− kTM < 0}

But, this is the definition of Φ̂ (−(t− kTM )) = Φ̌(t− kTM ), yielding that:

E [PLE(t)] =

∞∑
k=−∞

Φ̌ (t− kTM ) (4.9)

On the other hand, for DEPWM, the mid-point of every pulse is fixed, yielding that no rising edge or

falling edge is predetermined. Therefore, DEPWM has distinct stochastic characteristics compared to the

other PWM structures. The first moment of a fixed starting point DEPWM is as follows:

E [PDE(t)] = E

[ ∞∑
k=−∞

1

{
kTM −

Wk

2
< t < kTM +

Wk

2

}]

=

∞∑
k=−∞

P
{
−Wk

2
< t− kTM <

Wk

2

}
=

∞∑
k=−∞

P
{
|t− kTM | <

Wk

2

}
Since ∀k, P {0 ≤Wk < TM} = 1, by the definition of Φ̃(t), the rest follows:

E [PDE(t)] =

∞∑
k=−∞

Φ̃ (2(t− kTM )) (4.10)

As (4.1)-(4.3) indicate, the first moments of the fixed starting point PWM processes as defined in (4.1)-

(4.3) depend on t. Therefore, a PWM process with a fixed starting point is not necessarily WSS. For intuition,
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we inspect a case where the first moments are necessarily constant in time. That is, when Φ(t) = 1, ∀t < TM ,

which is the trivial case where P {Wk = 0} = 1, ∀k. Therefore, we conclude that a PWM process with a

fixed starting point is not WSS. In Section 4.2, we introduce a randomized starting point over a symbol

interval and show that by introducing a randomized starting point the PWM process can be made PWM.

4.2 Randomized Starting Point Model for PWM Processes

In this section, we introduce a randomized starting point Θ = θ, where Θ ∼ Unif[0, TM ] in order to eliminate

the time dependence due to the pulse constructions given in (4.1)-(4.3). Then, the randomized starting point

model for a PWM signal is then given as follows:

PTE(t; θ) =

∞∑
k=−∞

1 {kTM < t− θ < kTM +Wk} (4.11)

PLE(t; θ) =

∞∑
k=−∞

1 {kTM −Wk < t− θ < kTM} (4.12)

PDE(t; θ) =

∞∑
k=−∞

1

{
kTM −

Wk

2
< t− θ < kTM +

Wk

2

}
(4.13)

With the signal definitions in (4.11)-(4.13), we now show that a PWM process with a randomized starting

point is necessarily WSS. Then, we make observations on the stochastic characteristics of different PWM

constructions. However, we should make an important observation before the calculation of moments: Θ

and W are independent of each other. In other words, a PWM generator does not impose a randomized

starting point, but in order to eliminate the time dependence due to the definition of the PWM signal, we

should introduce a randomized starting point.

With this remark in mind, we start our derivations for the first moments of the PWM processes with

randomized starting points. We again begin with TEPWM:

E [PTE(t; θ)] = Eθ
[
EW |θ [PTE(t; θ)]

]
= Eθ

[
EW |θ

[ ∞∑
k=−∞

1 {kTM < t− θ < kTM +Wk}

]]
where the first equality follows from the independence of Θ and W and for a fixed θ:

E [PTE(t; θ)] = Eθ

[ ∞∑
k=−∞

PW |θ {kTM < t− θ < kTM +Wk}

]
Following the derivation for the first moments for the fixed starting point model, we can observe that:

E [PTE(t; θ)] = Eθ

[ ∞∑
k=−∞

Φ̂ (t− θ − kTM )

]
(4.14)
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By the definition of expectation operator,

E [PTE(t; θ)] =

∫ ∞
−∞

fΘ(θ)

∞∑
k=−∞

Φ̂ (t− kTM − θ) dθ

Since Θ ∼ Unif[0, TM ]:

E [PTE(t; θ)] =

TM∫
0

1

TM

∞∑
k=−∞

Φ̂ (t− θ − kTM ) dθ

For a fixed k, we can change the variable of integration by β = t− θ − kTM . Then,

E [PTE(t; θ)] =
1

TM

∞∑
k=−∞

t−kTM∫
t−(k−1)TM

Φ̂ (β) dβ

Therefore,

E [PTE(t; θ)] =
1

TM

∫ ∞
−∞

Φ̂ (β) dβ (4.15)

Since TEPWM and LEPWM are circularly symmetric, derivation for the first moment of the LEPWM

is very similar to that of the TEPWM.

E [PLE(t; θ)] = Eθ
[
EW |θ [PLE(t; θ)]

]
= Eθ

[
EW |θ

[ ∞∑
k=−∞

1 {kTM −Wk < t− θ < kTM}

]]
Following the same steps as those for (4.14) yields that:

= Eθ

[ ∞∑
k=−∞

Φ̌ (t− θ − kTM )

]
Then, applying the change of variables β = t − θ − kTM leads to a similar sum of integrals except for the

argument of the integration:

=
1

TM

∞∑
k=−∞

t−kTM∫
t−(k−1)TM

Φ̌ (β) dβ =
1

TM

∫ ∞
−∞

Φ̌ (β) dβ

Since Φ̂(t) = Φ̌(−t), the integration yields the same expectation as that for TEPWM:

E [PLE(t; θ)] =
1

TM

∫ ∞
−∞

Φ̂ (β) dβ (4.16)

The first moment calculations for the DEPWM differs slightly from the previous PWM constructions.

The derivation is as follows:

E [PDE(t; θ)] = Eθ
[
EW |θ [PDE(t; θ)]

]
= Eθ

[
EW |θ

[ ∞∑
k=−∞

1

{
kTM −

Wk

2
< t− θ < kTM +

Wk

2

}]]
Following the same steps as those for (4.14) yields that:

= Eθ

[ ∞∑
k=−∞

Φ̃ (2(t− θ − kTM ))

]
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Allowing change of variables β = 2(t− θ − kTM ) for the expectation integral yields that:

E [PDE(t; θ)] =
1

2TM

∫ ∞
−∞

Φ̃ (β) dβ (4.17)

This satisfies the finite first moment requirement for the randomized starting point PWM processes to

be WSS and motivates us to derive the second moments of the randomized starting point PWM processes.

The autocorrelation functions are formulated as follows:

RP (t, s) = Eθ
[
EW |θ [P (t; θ)P (s; θ)]

]
(4.18)

We will first outline the mechanics behind the second moment calculations. For each PWM construction,

we first use the fact that Wk are i.i.d. to separate the variation terms and correlation terms. For the

correlation terms, since Wk are i.i.d., we separate the terms depending on the different pulse widths and

apply a change of variables twice to reduce the θ-expectation to an intuitive form. Then, we show that the

variation terms depend on the comparison of given two time instants, which reduces to a function of the

difference between those instances. We begin our derivation with the TEPWM case:

RPTE (t, s) = Eθ

[
EW |θ

[ ∞∑
k=−∞

1 {kTM < t− θ < kTM +Wk}
∞∑

l=−∞

1 {lTM < s− θ < lTM +Wl}

]]
Changing the order of the linear operations, we impose EW |θ [·] first:

= Eθ

[ ∞∑
k=−∞

∞∑
l=−∞

EW |θ [1 {Wk > (t− kTM − θ) > 0}1 {Wl > (s− lTM − θ) > 0}]

]
At this point, we separate the correlation and variation terms in the argument of EW |θ [·].

RPTE (t, s) = Eθ


∞∑

k=−∞

∞∑
k=−∞

k 6=l︸ ︷︷ ︸
Correlation Terms

EW |θ [1 {Wk > (t− kTM − θ) > 0}1 {Wl > (s− lTM − θ) > 0}]︸ ︷︷ ︸
Sc(k,l)


(4.19)

+ Eθ


∞∑

k=−∞

∞∑
l=−∞

k=l︸ ︷︷ ︸
Variation Terms

EW |θ [1 {Wk > (t− kTM − θ) > 0}1 {Wl > (s− lTM − θ) > 0}]︸ ︷︷ ︸
Sv(k,l)=Sv(k)=Sv(l)

 (4.20)

Now, we analyze the correlation terms in (4.19) and the variation terms in (4.20) separately. We begin

with an observation, since Wk are i.i.d., the argument of summation in (4.19), which we denote as Sc(k, l)
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reduces to the following:

Sc(k, l) = EW |θ [1 {Wk > (t− kTM − θ) > 0}1 {Wl > (s− lTM − θ) > 0}]

= EW |θ [1 {Wk > (t− kTM − θ) > 0}]EW |θ [1 {Wl > (s− lTM − θ) > 0}]

Since EW |θ[ω] = PW |θ[ω], ∀ω ∈ Ω:

= PW |θ [1 {Wk > (t− kTM − θ) > 0}]PW |θ [1 {Wl > (s− lTM − θ) > 0}]

But, these terms have already been computed for the first moment calculations in (4.8) and (4.14). Therefore,

the argument of summation reduces to the following:

Sc(k, l) = Φ̂ (t− kTM − θ) Φ̂ (s− lTM − θ) (4.21)

To avoid confusion, we emphasize that (4.21) is the argument of the correlation sum, which holds only

for k 6= l. We continue formulating the correlation terms, which are given as follows:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 = Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Φ̂ (t− kTM − θ) Φ̂ (s− lTM − θ)


Changing the order of the linear operations, we impose Eθ[·] first:

=

∞∑
k=−∞

∞∑
l=−∞

k 6=l

Eθ
[
Φ̂ (t− kTM − θ) Φ̂ (s− lTM − θ)

]
Changing the order of summation, since Θ ∼ Unif[0, TM ]:

=

∞∑
l=−∞

∞∑
k=−∞

k 6=l

∫ TM

0

1

TM
Φ̂ (t− kTM − θ) Φ̂ (s− lTM − θ) dθ

At this point, we postulate a series of meticulous change of variables. We begin with fixing l and proposing

the change of variables by α = θ − (s− lTM ):

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 =
1

TM

∞∑
l=−∞

∞∑
k=−∞

k 6=l, fixed l

∫ TM−(s−lTM )

−(s−lTM )

Φ̂

t− s︸︷︷︸
τ

− (k − l)︸ ︷︷ ︸
n

TM − α

 Φ̂ (−α) dα

Allowing τ = t− s and n = k − l, the expression reduces to the following:

=
1

TM

∞∑
l=−∞

∞∑
n=k−l
n=−∞

k 6=l⇒n 6=0

∫ T−(s−lTM )

−(s−lTM )

Φ̂ (τ − nTM − α) Φ̂ (−α) dα

Since l was fixed, we can change the order of summation again:

=
1

TM

∞∑
n=−∞
n 6=0

∞∑
l=−∞

∫ TM−(s−lTM )

−(s−lTM )

Φ̂ (τ − nTM − α) Φ̂ (−α) dα
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The summation of integrations over any given symbol interval spans the entire real axis, yielding that:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 =
1

TM

∞∑
n=−∞
n 6=0

∫ ∞
−∞

Φ̂ (τ − nTM − α) Φ̂ (−α) dα (4.22)

Since Φ̂(t) = Φ̌(−t):

=
1

TM

∞∑
n=−∞
n 6=0

∫ ∞
−∞

Φ̂ (τ − nTM − α) Φ̌ (α) dα

We can observe that the argument of summation is a convolution integral where the convolution operation

(∗) on functions f(τ) and g(τ) is defined as follows:

(f ∗ g) (τ) ,
∫ ∞
−∞

f(β)g(τ − β) dβ (4.23)

Therefore, the correlation terms of for the autocorrelation function of a TEPWM process reduce to the

following form:

Eθ

 ∞∑
k=−∞

∞∑
k=−∞

k 6=l

Sc(k, l)

 =
1

TM

∞∑
n=−∞
n 6=0

(
Φ̂ ∗ Φ̌

)
(τ − nTM ) (4.24)

Now, we turn our attention to the variation terms, which we denote by Sv(k, l). Since k = l, Sv(k, l) is

a function of n = k = l only and it has the following form:

Sv(k, l) = EW |θ [1 {Wk > (t− kTM − θ) > 0}1 {Wl > (s− lTM − θ) > 0}]

Since n = k = l,

Sv(k, l) = Sv(n) = EW |θ [1 {Wn > (t− nTM − θ) > 0}1 {Wn > (s− nTM − θ) > 0}]

As we have encountered previously, the indicator functions have separable impositions:

Sv(n) = EW |θ [1 {Wn > (t− nTM − θ)}1 {Wn > (s− nTM − θ)}]

× 1 {(t− nTM − θ) > 0}1 {(s− nTM − θ) > 0}
There are two indicator operations on the random variable Wn and there are two additional deterministic

conditions. Gathering these conditions together yields the following:

Sv(n) = EW |θ [1 {Wn > max {(t− nTM − θ) , (s− nTM − θ)}}]1 {min {(t− nTM− θ) , (s− nTM− θ)} > 0}

= PW |θ {Wn > max {(t− nTM− θ) , (s− nTM− θ)}}1 {min {(t− nTM − θ) , (s− nTM − θ)} > 0}

By the definition of the complementary CDF, Φ(t), this expression further reduces:

Sv(n) = Φ (max {(t− nTM− θ) , (s− nTM− θ)})1 {min {(t− nTM − θ) , (s− nTM − θ)} > 0} (4.25)
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With the structure given in (4.25), we can formulate the variation terms for the autocorrelation function

of a TEPWM process:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

= Eθ

[ ∞∑
n=−∞

Φ (max {(t− nTM − θ) , (s− nTM − θ)})1 {min {(t− nTM − θ) , (s− nTM − θ)} > 0}

]
Changing the order of the linear operations, we impose the expectation first:

=

∞∑
n=−∞

TM∫
0

1

TM
Φ (max {(t− nTM − θ) , (s− nTM − θ)})1 {min {(t− nTM − θ) , (s− nTM − θ)} > 0} dθ

For a fixed n, proposing the change of variables, θ = γ + s− nTM yields that:

=
1

TM

∞∑
n=−∞

−(s−(n+1)TM )∫
−(s−nTM )

Φ (max {(t− s− γ) , (−γ)})1 {min {(t− s− γ) , (−γ)} > 0} dγ

Following the definition τ = t− s, the summation of integrations over every given symbol interval spans

the entire time axis. Therefore,

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

TM

∞∫
−∞

Φ (max {(τ − γ) , (−γ)})1 {min {(τ − γ) , (−γ)} > 0} dγ

=
1

TM

∞∫
−∞

Φ (max {τ, 0} − γ)1 {min {τ, 0} > γ} dγ (4.26)

The expression in (4.26) can be evaluated in two different cases:

1. Let τ > 0. Then, max {τ, 0} = τ and min {τ, 0} = 0, which yields that:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

TM

∞∫
−∞

Φ (τ − γ)1 {γ < 0} dγ =
1

TM

0∫
−∞

Φ (τ − γ) dγ (4.27)

2. Let τ < 0. Then, max {τ, 0} = 0 and min {τ, 0} = τ , which yields that:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

TM

∞∫
−∞

Φ (−γ)1 {γ < τ} dγ =
1

TM

τ∫
−∞

Φ (−γ) dγ

By introducing a change of variables, α = γ − τ , we can construct a more intuitive form:

=
1

TM

0∫
−∞

Φ (−τ − α) dα (4.28)
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As the cases above indicate, (4.26) equals (4.27) of τ > 0 and it equals (4.28). Therefore, we can collect

these two cases into one form:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

TM

0∫
−∞

Φ (|τ | − γ) dγ =
1

TM

∞∫
|τ |

Φ(α) dα (4.29)

Gathering the correlation terms in (4.24) and the variation terms in (4.29) yields in the autocorrelation

function of a randomized starting point TEPWM process, which is given as follows:

RPTE (τ) =
1

TM

 ∞∑
n=−∞
n 6=0

(
Φ̂ ∗ Φ̌

)
(τ − nTM ) +

∞∫
|τ |

Φ(α) dα

 (4.30)

For a randomized starting point LEPWM process, the second moment characteristics are identical to

those of TEPWM and the mechanics for computing the second moment of LEPWM is very similar to those

for TEPWM. Therefore, we merely emphasize the differences between the steps for computing the second

moment of LEPWM and those for TEPWM. We begin with the separation of variance and correlation terms:

RPLE (t, s) = Eθ

[
EW |θ

[ ∞∑
k=−∞

1 {kTM −Wk < t− θ < kTM}
∞∑

l=−∞

1 {lTM −Wl < s− θ < lTM}

]]

= Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

+ Eθ

[ ∞∑
n=−∞

Sv(n)

]

With the understanding that for LEPWM:

Sc(k, l) = EW |θ [1 {Wk > − (t− kTM − θ) > 0}1 {Wl > − (s− lTM − θ) > 0}] (4.31)

Sv(n) = EW |θ [1 {Wn > − (t− nTM − θ) > 0}1 {Wn > − (s− nTM − θ) > 0}] (4.32)

Since Wk are i.i.d. for k 6= l, the correlation terms in (4.31) are in the following form:

Sc(k, l) = Φ̌ (t− kTM − θ) Φ̌ (s− lTM − θ)

Then, following exactly the same steps between (4.21) and (4.22) yields that:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 =
1

TM

∞∑
n=−∞
n 6=0

∫ ∞
−∞

Φ̌ (τ − nTM − α) Φ̌ (−α) dα (4.33)
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Since Φ̂(t) = Φ̌(−t), we can postulate a convolution intergral form:

=
1

TM

∞∑
n=−∞
n 6=0

∫ ∞
−∞

Φ̌ (τ − nTM − α) Φ̂ (α) dα

Since convolution is a symmetric operator, the correlation terms for TEPWM and LEPWM processes have

the same structure, as given below:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 =
1

TM

∞∑
n=−∞
n 6=0

(
Φ̌ ∗ Φ̂

)
(τ − nTM ) (4.34)

The computation of variation terms are similar to what we have done for the TEPWM case. We begin

with a separation of impositions:

Sv(n) = EW |θ [1 {Wn > − (t− nTM − θ)}1 {Wn > − (s− nTM − θ)}]

× 1 {(t− nTM − θ) < 0}1 {(s− nTM − θ) < 0}

As one could expect, the reversed polarity in the rising and falling edge instances of the LEPWM process

with respect to the TEPWM process, results in a different form than that in (4.25):

Sv(n) = PW |θ {Wn >max {− (t− nTM− θ) ,− (s− nTM− θ)}}1 {max {(t− nTM− θ) , (s− nTM− θ)} < 0}

= PW |θ {Wn > −min {(t− nTM− θ) , (s− nTM− θ)}}1 {max {(t− nTM− θ) , (s− nTM− θ)} < 0}

Sv(n) = Φ (−min {(t− nTM− θ) , (s− nTM− θ)})1 {max {(t− nTM− θ) , (s− nTM− θ)} < 0} (4.35)

Then, applying the same computational steps between (4.25) and (4.26) on (4.35) for LEPWM, yields

that:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

TM

∞∫
−∞

Φ (γ −min {τ, 0})1 {max {τ, 0} < γ} dγ

Expanding the cases for τ > 0 and τ < 0 yields the identical variance characteristics to those of TEPWM:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

TM

∞∫
|τ |

Φ (γ) dγ (4.36)

Therefore, the second moment of a randomized starting point LEPWM has the following form:

RPLE (τ) =
1

TM

 ∞∑
n=−∞
n 6=0

(
Φ̌ ∗ Φ̂

)
(τ − nTM ) +

∞∫
|τ |

Φ (γ) dγ

 (4.37)
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Similar to every analysis that we have conducted hitherto, compared to fixed edge PWM processes, the

DEPWM process has different second moment characteristics as well. Although the mechanics behind the

computation of the second moment are similar to those for TEPWM and LEPWM, we observe a set of

unique behaviors, which we emphasize next. We begin the derivation with the separation of correlation and

variation terms:

RPDE (t, s)= Eθ

[
EW |θ

[ ∞∑
k=−∞

1

{
kTM−

Wk

2
<t−θ< kTM +

Wk

2

} ∞∑
l=−∞

1

{
lTM−

Wl

2
<s−θ< lTM +

Wl

2

}]]

= Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

+ Eθ

[ ∞∑
n=−∞

Sv(n)

]

where for DEPWM, the correlation terms Sc(k, l) and the variation terms Sv(n) are indicator functions on

random variables only and are as follows:

Sc(k, l) = EW |θ [1 {Wk > 2 |t− kTM − θ|}1 {Wl > 2 |s− lTM − θ|}] (4.38)

Sv(n) = EW |θ [1 {Wn > 2 |t− nTM − θ|}1 {Wn > 2 |s− nTM − θ|}] (4.39)

Since Wk are i.i.d. for k 6= l, (4.38) is separable, which yields that:

Sc(k, l) = Φ (2 |t− kTM − θ|) Φ (2 |s− lTM − θ|)

One should observe here that there are no deterministic impositions either in correlation or in variation

terms. Therefore, the sum of the correlation terms has a distinct form:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 = Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Φ (2 |t− kTM − θ|) Φ (2 |s− lTM − θ|)


Imposing the expectation first yields that:

=

∞∑
k=−∞

∞∑
l=−∞

k 6=l

Eθ [Φ (2 |t− kTM − θ|) Φ (2 |s− lTM − θ|)]

Since Θ ∼ Unif[0, TM ], the expectation definition yields that:

=

∞∑
k=−∞

∞∑
l=−∞

k 6=l

TM∫
0

1

TM
Φ (2 |t− kTM − θ|) Φ (2 |s− lTM − θ|) dθ
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For a fixed l and remaining loyal to the definitions of τ = t−s and n = k− l, we allow α = 2(s− lTM−θ),

yielding that:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 =

∞∑
l=−∞

∞∑
n=−∞
n 6=0

2(s−lTM )∫
2(s−(l+1)TM )

1

2TM
Φ
(

2
∣∣∣τ − nTM − α

2

∣∣∣)Φ (|α|) dα

Changing the order of summation and imposing the definition of Φ̃(t) = Φ(|t|) yield that:

=
1

2TM

∞∑
n=−∞
n 6=0

∞∫
−∞

Φ̃(2(τ − nTM )− α)Φ̃(α) dα

Since the integral in the summation argument is a convolution integral, we can formulate the sum of corre-

lation terms as follows:

Eθ

 ∞∑
k=−∞

∞∑
l=−∞

k 6=l

Sc(k, l)

 =
1

2TM

∞∑
n=−∞
n 6=0

(
Φ̃ ∗ Φ̃

)
(2(τ − nTM )) (4.40)

With the correlation terms formulated, we turn our attention to the variation terms. We again start

with separable impositions.

Sv(n) = EW |θ [1 {Wn > 2 |t− nTM − θ|}1 {Wn > 2 |s− nTM − θ|}]

∀n ∈ Z, there are two conditions on a single random variable. Therefore,

= EW |θ [1 {Wn > 2 max {|t− nTM − θ| , |s− nTM − θ|}}]

= PW |θ {Wn > 2 max {|t− nTM − θ| , |s− nTM − θ|}}

Applying the definition for the complementary CDF:

Sv(n) = Φ (2 max {|t− nTM − θ| , |s− nTM − θ|})

Therefore, the sum of all variation terms has the following form:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
= Eθ

[ ∞∑
n=−∞

Φ (2 max {|t− nTM − θ| , |s− nTM − θ|})

]
(4.41)

Applying the change of variables θ = s− nTM − γ
2 for a fixed n and then applying the summation on all n

yields that:

Eθ

[ ∞∑
n=−∞

Sv(n)

]
=

1

2TM

∞∫
−∞

Φ (max {|2τ − γ| , |γ|}) dγ
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𝛾

𝜏
𝜏 = 𝛾

max 2𝜏 − 𝛾 , 𝛾 = |𝛾|

max 2𝜏 − 𝛾 , 𝛾 = |2𝜏 − 𝛾|

max 2𝜏 − 𝛾 , 𝛾 = |𝛾|

max 2𝜏 − 𝛾 , 𝛾 = |2𝜏 − 𝛾|

Figure 4.1: Outcome Regions of max {|2τ − γ| , |γ|} over γ, τ

At this point, a meticulous effort for simplification is necessary. The analysis starts with the evaluation

of max {|2τ − γ| , |γ|} over τ, γ ∈ R. As Fig. 4.1 indicates:

max {|2τ − γ| , |γ|} =


|γ| if 0 < τ < γ or γ < τ < 0

|2τ − γ| otherwise

(4.42)

Utilizing (4.42), we can formulate the integral separately for τ > 0 and τ < 0:

∞∫
−∞

Φ (max {|2τ − γ| , |γ|}) dγ =


τ∫
−∞

Φ (|2τ − γ|) dγ +
∞∫
τ

Φ (|γ|) dγ if τ > 0

τ∫
−∞

Φ (|γ|) dγ +
∞∫
τ

Φ (|2τ − γ|) dγ if τ < 0

Applying the change of variables α = 2τ − γ yields:

=


2
∞∫
τ

Φ (|α|) dα if τ > 0

2
τ∫
−∞

Φ (|α|) dα if τ < 0

Since both of the integrations depend on the absolute value of the limits, the main integral reduces to a

simple form ∀τ ∈ R:
∞∫
−∞

Φ (max {|2τ − γ| , |γ|}) dγ = 2

∞∫
|τ |

Φ (α) dα
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With this simplification, the second moment of a randomized starting point DEPWM process is as follows:

RPDE (τ) =
1

TM

1

2

∞∑
n=−∞
n6=0

(
Φ̃ ∗ Φ̃

)
(2(τ − nTM )) +

∞∫
|τ |

Φ (α) dα

 (4.43)

As (4.30), (4.37) and (4.43) indicate, the second moments of a PWM process with a randomized starting

point, as defined in (4.11)-(4.13) are functions of time difference τ only. Furthermore, their first moments,

as derived in (4.8)-(4.10), are constant in time. Therefore, a PWM process with a randomized starting point

is necessarily WSS. In Section 4.3, we demonstrate the accuracy of our results with simulations.

4.3 Simulation Results

In this section, we demonstrate that the second moments formulations are accurate for the case where the

pulse widths are independent and uniformly distributed, that is, Wk ∼ Unif[0, TM ], where TM = 200 seconds.

First, we postulate the autocorrelation functions using (4.30), (4.37) and (4.43). For uniform distribution,

we have the following complementary CDF and its modified versions:

Φ(t) =


1 if t < 0

1− t
TM

if t ∈ [0, TM ]

0 if t > TM

Φ̂(t) =


1− t

TM
if t ∈ [0, TM ]

0 otherwise

Φ̌(t) =


1 + t

TM
if t ∈ [−TM , 0]

0 otherwise

Φ̃(t) =


1−

∣∣∣ t
TM

∣∣∣ if |t|∈ [0, TM ]

0 otherwise

Since Φ̂(·), Φ̌(·) and Φ̃(·) are given above, we can compute the autocorrelation functions given in (4.30),

(4.37) and (4.43). First, we need the convolutions
(

Φ̂ ∗ Φ̌
)

(·) and
(

Φ̃ ∗ Φ̃
)

(·), which are given below:

(
Φ̂ ∗ Φ̌

)
(τ) =


1
6

(
|τ |3−3|τ |+2

)
if |τ |∈ [0, 1]

0 otherwise

(4.44)

(
Φ̃ ∗ Φ̃

)
(τ) =



1
6

(
3|τ |3−6|τ |2+4

)
if |τ |∈ [0, 1]

1
6 (2− |τ |)3

if |τ |∈ [1, 2]

0 otherwise

(4.45)
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Figure 4.2: Comparison between Simulation and RPTE (τ)

With the results in (4.44) and (4.45), we have the exact representation for the autocorrelation functions

for the TEPWM and LEPWM cases. As (4.30) and (4.37) indicate, RPTE (τ) = RPLE (τ) and they are given

as follows:

RPTE (τ) = RPLE (τ) =

∞∑
n=−∞

qn (τ − nT )1 {nT ≤ τ ≤ (n+ 1)T} (4.46)

where, qn(τ) is defined as:

q0(τ) =
−1

6

((
|τ |
T

)3

− 6

(
|τ |
T

)2

+ 6

(
|τ |
T

)
− 3

)

qn 6=0(τ) =
1

6

(
3

(
|τ |
T

)2

− 3

(
|τ |
T

)
+ 2

) (4.47)

In the simulations, we have used an unbiased discrete estimator for autocorrelation functions RPTE (τ)

and RPLE (τ) with T = 200 and we have traced the behavior over 10 cycles. As shown in Fig. 4.2 and Fig.

4.3, the simulation results are consistent to the autocorrelation functions given in (4.46) and (4.47). For

DEPWM case, the autocorrelation function has the following compact form:

RPDE (τ) =

∞∑
n=−∞

rn (τ − nT )1 {nT ≤ τ ≤ (n+ 1)T} (4.48)
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Figure 4.3: Comparison between Simulation and RPLE (τ)

where, for notational simplicity we let τ̃ , |τ |−T
T , and then, rn(τ) is defined as:

r0(τ) =


−2τ̃3 − 3

2 τ̃
2 + 1

3 if |τ |≤ T

2

2
3 τ̃

3 + 5
2 τ̃

2 − 2τ̃ + 2
3 if

T

2
≤ |τ |≤ T

(4.49)

rn 6=0(τ) =


8
3 (τ̃ + 1)

3 − 2 (τ̃ + 1)
2

+ 1
3 if |τ |≤ T

2

− 8
3 τ̃

3 − 2τ̃2 + 1
3 if

T

2
≤ |τ |≤ T

(4.50)

With the same estimator that we used for the TEPWM and LEPWM cases, we have set T = 200 and

traced the behavior over 10 cycles. As shown in Fig. 4.4, the simulation results are consistent with the

autocorrelation function as given in (4.48)-(4.50).
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Figure 4.4: Comparison between Simulation and RPDE (τ)
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Chapter 5

Conclusion

In this thesis, we have analyzed fundamental properties of a pulse width modulated signal, a classical example

among time-domain signals. In this endeavor, we have first analyzed the generation of PWM signals, focusing

on the linear and non-linear mappings separately and searching for a foundation to analyze the structural

components, which cause a PWM signal to be of infinite energy even when it is generated from a finite

energy input signal. In order to analyze the frequency domain representation of the most general PWM

case, we have first derived lossless sampling conditions and analyzed the convergence characteristics between

natural and uniform sampling. With that intuition, we have chosen low-pass filtering as a linear, suboptimal

reconstruction mechanism and proposed an equivalent model to isolate the structural component of the

PWM signal at the reconstruction end. Using the frequency domain representation of the signal dependent

components of a PWM signal, we have analyzed the performance of low-pass filtering as a function of the

oversampling factor, which allowed us to reveal a trade-off between generator complexity and distortion

attenuation. After the frequency domain analysis we have turned our attention to stochastic modeling of

PWM processes, where we have introduced a randomized starting point to preserve wide-sense stationarity

of the input signal and analyzed the stochastic characteristics of the WSS model. The notable details in this

sequence of analysis are presented next.

The mathematical modeling of PWM generation entails linear mappings, which consist of the mapping

between input samples and pulse widths in addition to the mapping from pulse widths to rising and falling

edge instances, and a non-linear mapping where the PWM signal is generated from the rising and falling edge

instances. Provided that lossless sampling conditions are satisfied, a comparator with a periodic reference

signal can generate a PWM signal, from which perfect reconstruction of the band-limited finite energy input

signal is possible. We have shown that if the period of the reference signal satisfies the Nyquist criterion

and it spans the input signal range with a factor C ≥ π
2 , then natural sampling is lossless. These conditions

have allowed us to compare uniform sampling and natural sampling as two lossless sampling operations and

motivated us to investigate their convergence characteristics. We postulated a continuous, finite energy,

band-limited input signal model from a finite-dimensional signal space to ensure convergence to zero in
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tail regions. For lossless sampling, we derived bounds for absolute deviation between natural and uniform

samples and the corresponding sampling instances. The bounds on convergence characteristics indicated

that the uniform and natural samples converge to each other in O
(

1
n

)
where the energy in the absolute

deviation signal diminishes in the oversampling factor M , within a constant. We further observed that the

affine mapping that the sawtooth reference signal imposes manifested itself as a constant difference between

natural and uniform sampling instances, which motivated the separation approach that we have proposed.

Then, we have observed that the comparator construction introduces a DC offset to the input signal

which manifests itself as a square wave in the modulated signal. Isolating the square wave has allowed us

to analyze frequency domain representations of different PWM constructions. Analyzing the deviation from

the square wave, which is the information-bearing part of the PWM signal, we have uncovered that low-pass

reconstruction introduces a pass-band distortion which diminishes quadratically in the oversampling factor.

We have further shown that fixed-edge PWM constructions introduce a time shift of half the symbol interval

to the output signal where DEPWM construction makes the input signal blurry by shifting the output signal

to right and left by a delay of a quarter of the symbol interval and then normalizing. Nevertheless, despite the

additional distortion due to the blurring effect, distortion due to low-pass filtering in DEPWM construction

has proven to be diminishing substantially faster in the oversampling factor. In fact, distortion energy due

to the low-pass reconstruction of a DEPWM signal diminishes in the oversampling factor as O
(
M4
)
, where

the distortion energy of other constructions diminish in the oversampling factor as O
(
M2
)
. Therefore, we

have observed that there is a trade-off between generator complexity and distortion attenuation for different

PWM constructions under low-pass demodulation.

Finally, for different pulse orientations, we have analyzed the stochastic characteristics of a PWM process

with independent identically distributed pulse widths. We have first analyzed the characteristics of a PWM

process with a fixed starting point and we have shown using first moment calculations that it is not WSS.

Then, we have proposed a randomized starting point model for a PWM process, where we have imposed

a random variable, independent of the pulse widths and uniformly distributed on a symbol interval as the

starting point of the PWM process and shown that a PWM process with a randomized starting point and

i.i.d. pulse widths are necessarily WSS. We have further shown that the autocorrelation function of a

PWM signal can be represented as a superposition of linear operations over the complementary cumulative

distribution functions of pulse widths, which are defined by the input signal under an invertible mapping.

56



References

[1] H. Black, Modulation Theory, ser. Bell Telephone Laboratories series. Princeton, NJ: Van Nostrand,
1953.

[2] R. J. Watts, “Pulse width modulation,” U.S. Patent 2,556,457, June 12, 1951.

[3] G. Buja and G. Indri, “Improvement of pulse width modulation techniques,” Electrical Engineering
(Archiv fur Elektrotechnik), vol. 57, no. 5, pp. 281–289, 1975.

[4] Z. Song and D. V. Sarwate, “The frequency spectrum of pulse width modulated signals,” Signal
Processing, vol. 83, no. 10, pp. 2227–2258, 2003. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0165168403001646

[5] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice-Hall Englewood Cliffs,
1989, vol. 2.

[6] Y.-C. Jenq, “Perfect reconstruction of digital spectrum from nonuniformly sampled signals,” Instru-
mentation and Measurement, IEEE Transactions on, vol. 46, no. 3, pp. 649–652, 1997.

[7] R. G. Wiley, “Recovery of bandlimited signals from unequally spaced samples,” Communications, IEEE
Transactions on, vol. 26, no. 1, pp. 135–137, 1978.

[8] P. Marziliano and M. Vetterli, “Reconstruction of irregularly sampled discrete-time bandlimited signals
with unknown sampling locations,” Signal Processing, IEEE Transactions on, vol. 48, no. 12, pp. 3462–
3471, 2000.

[9] H. Alasti, “Non-uniform-level crossing sampling for efficient sensing of temporally sparse signals,” IET
Wireless Sensor Systems, vol. 4, no. 1, pp. 27–34, 2013.

[10] U. Grunde and M. Greitans, “Advanced level-crossing sampling method,” in Telecommunications Forum
(TELFOR), 2011 19th. IEEE, 2011, pp. 797–800.

[11] K. M. Guan and A. C. Singer, “Opportunistic sampling of bursty signals by level-crossing-An in-
formation theoretical approach,” in Information Sciences and Systems, 2007. CISS’07. 41st Annual
Conference on. IEEE, 2007, pp. 701–707.

[12] C. Henze, H. Martin, and D. Parsley, “Zero-voltage switching in high frequency power converters using
pulse width modulation,” in Applied Power Electronics Conference and Exposition, 1988. APEC’88.
Conference Proceedings 1988, Third Annual IEEE. IEEE, 1988, pp. 33–40.

[13] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice.
John Wiley & Sons, 2003, vol. 18.

[14] A. M. Trzynadlowski, S. Legowski, and R. Lynn Kirlin, “Random pulse-width modulation technique
for voltage-controlled power inverters,” International Journal of Electronics, vol. 68, no. 6, pp.
1027–1037, 1990. [Online]. Available: http://dx.doi.org/10.1080/00207219008921243
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