
 
 

 

 

 

 

NEW MODEL-DATA FIT INDICES FOR ITEM RESPONSE THEORY (IRT):  

AN EVALUATION AND APPLICATION 

 

 

 

 

 

 

BY 

 

LIWEN LIU 

 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Psychology 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2015 

 

 

 

 

Urbana, Illinois 

             

 

Doctoral Committee:  

 

Professor Fritz Drasgow, Chair 

  Professor Hua-hua Chang 

  Professor Brent Roberts 

  Assistant Professor Nichelle Carpenter 

  Associate Professor Daniel Newman 

 

 



 
 

ii 
 

ABSTRACT 

I reviewed the recently developed limited-information model fit statistics by Maydeu-

Olivares and colleagues (e.g., Maydeu-Olivares & Joe, 2005; Maydeu-Olivares & Liu, 2012; Liu 

& Maydeu-Olivares, 2014) and conducted a simulation study to explore the properties of these 

new statistics under conditions often seen in practice. The results showed that the overall and 

piecewise fit statistics were to some extent sensitive to misfit caused by multidimensionality, 

although the limited-information fit statistics tended to flag more item pairs as misfit than the 

heuristic fit statistics. I also applied the fit statistics to three AP
®
 exams, one personality 

inventory, and a rating scale used in organizational settings. Although a unidimensional IRT 

model was expected to fit the Physics B Exam better than the English Literature Exam, the 

average piecewise fit statistics showed no such difference. The fit statistics also suggested that a 

more advanced IRT model should be fitted to the self-rated personality inventory. Finally, the fit 

statistics seemed to be effective in detecting misfit caused by data skewness. 

 

 

 

 

 

 

 

 



 
 

iii 
 

TABLE OF CONTENTS 

INTRODUCTION ………………………………………………………………………………. 1 

METHOD …………………………………………………………………………………….... 24 

RESULTS ……………………………………………………………………………………… 30 

DISCUSSION ………………………………………………………………………………….. 53 

CONCLUSION ………………………………………………………………………………… 63 

REFERENCES …………………………………………………………………………...……. 64 

TABLES ……………………………………………………………………………………..… 68 

FIGURES ……………………………………………………………………………………... 110 

APPENDIX A: INTERNATIONAL PERSONALITY ITEM POOL (IPIP) ………………… 128 

APPENDIX B: COUNTER-PRODUCTIVE WORK BEHAVIOR (CWB) SCALE ……...… 130 

 

 

 

 

 

 



 
 

1 
 

INTRODUCTION 

Item response theory (IRT) is becoming the psychometric model of choice for analyzing 

large-scale assessments due to its statistical strengths. For example, classical test theory statistics 

are sample dependent, which means their values are determined by both the specific items 

included in a test and the specific group of examinees who take the test. By contrast, IRT item 

and examinee parameters are invariant across subpopulations (Embretson & Reise, 2000). That is, 

item parameters do not depend on the specific group tested, and ability score estimates can be 

computed from different sets of items for which properties are known. This allows researchers to 

conduct rigorous tests of item bias across groups and to compute test scores for computerized 

adaptive tests. Therefore, IRT can be a very useful approach for test analysis, especially on large-

scale assessments.  

The statistical strength of IRT is however based on important mathematical assumptions, 

and these assumptions must be rigorously examined. Moreover, even if the usual assumption of 

unidimensionality is met, model-data fit still needs to be evaluated to see whether the IRT model 

used to fit the data can describe the data well. Therefore, checking model assumptions and 

assessing model-data fit are important procedures to justify the use of IRT models.  

There are numerous approaches to assessing model fit, and they are generally categorized 

into two groups: (a) directly checking the fundamental assumptions of IRT such as 

unidimensionality and local independence, and (b) examining the fit between observed scores 

and model predicted scores, which indicates whether the unidimensionality and local 

independence assumptions are violated (Swaminathan, Hambleton, & Rogers, 2007). In this 

paper I focused on the model-data fit approaches in the second group. To be specific, I reviewed 
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the literature on the recently developed limited-information fit statistics and the traditional 

heuristic fit statistics. I also conducted several studies to compare the performance of these fit 

statistics. 

IRT Assumptions and Models 

There are two fundamental assumptions of the most common IRT models: 

unidimensionality and local independence (Embretson & Reise, 2000). The IRT model is said to 

be unidimensional if the minimum dimension of the latent trait is one. One should always 

evaluate the dimensionality of the data before proceeding to perform IRT analyses. Local 

independence means that conditioned on an examinee’s ability, item responses should be 

statistically independent. That is, controlling for an examinee’s ability, the probability that the 

examinee answers one item correctly should not correlate with the probability of a correct 

response to another item. 

There are numerous IRT models for binary responses (i.e., dichotomous) or responses 

with multiple categories (i.e., polytomous). For multiple choice (MC) items with either correct or 

incorrect answers, the three-parameter logistic model (3PLM; Birnbaum, 1968) is usually used:  

                                  𝑃(𝑢𝑖 = 1|𝜃 = 𝑡) =  𝑐𝑖 + 
1−𝑐𝑖

1+exp[−1.7𝑎𝑖(𝑡−𝑏𝑖 )],
                                           (1) 

where ui is the response of the examinee with ability level   to item i, ai is the item 

discrimination parameter, bi is the item difficulty parameter, ci is the “pseudo-guessing” 

parameter, and 1.7 is a scaling constant. The 3PLM is appropriate for cognitive ability tests when 

examinees with low ability levels can occasionally respond correctly to difficult items by 
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guessing. When guessing is not a concern, such as for personality data, a two-parameter logistic 

model (2PLM) can be used due to its simplicity and some evidence of model fit: 

               𝑃(𝑢𝑖 = 1|𝜃 = 𝑡) =  
1

1+exp[−1.7𝑎𝑖(𝑡−𝑏𝑖 )],
                                           (2) 

which is the 3PLM when the pseudo-guessing parameter is zero. 

For items with multiple ordered categories, Samejima’s Graded Response Model (SGRM; 

Samejima, 1969) is a popular choice. It uses two-parameter logistic response functions to model 

the probability of selecting option k on item i  

𝑃(𝑣𝑖 = 𝑘|𝜃 = 𝑡) =  
1

1 + exp[−1.7𝑎𝑖(𝑡 − 𝑏𝑖,𝑘 )]
 −  

1

1 + exp[−1.7𝑎𝑖(𝑡 − 𝑏𝑖,𝑘+1 )] ,
                  (3) 

where vi  is the examinee’s response to the polytomous item i, k is the response option of item i 

selected by the examinee, ai is the item discrimination parameter, bik is threshold parameter for 

option k, and 1.7 is a scaling constant. 

Traditional Approaches to Assessing the Model-Data Fit of IRT Models 

 Model-data fit can be evaluated by various goodness-of-fit indices, which all focus on the 

agreement between observed and predicted responses. Historically, the chi-square test of 

goodness of fit is probably the most frequently used index for such comparisons. The Pearson χ
2
 

statistics can be written as 

𝑋2 = ∑
[𝑂𝑖 (𝑘)− 𝐸𝑖 (𝑘)]

2

𝐸𝑖(𝑘)

𝑠
𝑘=1 ,                                                           (4) 
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where s is the number of options for an item, Oi (k) is the observed frequency of endorsing option 

k, and Ei (k) is the expected frequency of option k under the dichotomous or polytomous IRT 

model. The expected frequency of a correct response to an individual item can be written as  

𝐸𝑖(𝑘) = 𝑁 ∫ 𝑃(𝑣𝑖 = 𝑘 |𝜃 = 𝑡) 𝑓(𝑡)𝑑𝑡 ,                                         (5) 

where ( )f t is the probability density function of the latent trait. 

Although the chi-square goodness of fit seems to be the most natural method to assess the 

agreement between observed and expected responses, it has some important limitations. For 

example, the chi-square statistic is sensitive to sample size and the test at the individual item 

level is insensitive to certain types of model misfits (Van den Wollenberg, 1982). To address 

these problems, Drasgow and colleagues developed an improved method of computing the χ
2
 

statistics: the adjusted χ
2
 statistic divided by its degree of freedom (df). As the χ

2
 statistics for 

individual items allow compensation between local misfits, they are also computed for item pairs 

and triples. The expected frequency for an item pair in the (k, k’)
th

 cell of the two-way 

contingency table for item i and i’ can be computed as 

𝐸𝑖,𝑖′(𝑘, 𝑘
′) = 𝑁 ∫ 𝑃 (𝑣𝑖 = 𝑘 |𝜃 = 𝑡) 𝑃 (𝑣𝑖′ = 𝑘

′|𝜃 = 𝑡) 𝑓(𝑡)𝑑𝑡,                         (6) 

and the observed frequencies are counted in each cell. A similar procedure can be performed for 

item triplets using a multiway contingency table. These expected frequencies are combined with 

the observed frequencies to produce a χ
2
 statistic. To ensure the singles, doubles, and triples χ

2
 

statistics are comparable across different sample sizes, they are adjusted to what would be 

expected in a sample size of 3000 and then divided by their degrees of freedom: 

Adjusted χ3000
2 = [𝑑𝑓 + 3000(χ2 − 𝑑𝑓) 𝑁⁄ ]/𝑑𝑓.                                               (7) 
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Drasgow, Levine, Tsien, Williams and Mead (1995) suggested that values of adjusted χ
2
/df 

smaller than 3.0 indicate good model-data fit.  

However, there are a few limitations of the adjusted chi-square statistic as well. Recently, 

a problem was detected in a simulation study which showed that adjusted χ
2
/df statistics were 

affected by the sample size used for estimation, and negative values may be obtained after an 

adjustment to a sample size of 3000 (Guo, Tay, & Drasgow, 2010). This problem is especially 

prominent in small samples. Therefore, the adjusted χ
2
/df statistics should be applied to large 

data sets with sample sizes of 3000 or more. Moreover, like many other methods for checking 

model-data fit for IRT models, these approaches have been based on heuristics and, consequently, 

lack distribution theory to inform us as to what is a “large” misfit versus inconsequential misfit. 

For example, a major problem with the adjusted χ
2
/df is that it does not follow a chi-square 

distribution and this approach does not account for the number of parameters estimated. 

Although dividing the chi-square statistic by its degree of freedom tries to address the number of 

parameters issue, it is still a heuristic adjustment.  

Another common approach to assessing model-data fit is the likelihood-ratio statistic. 

The likelihood-ratio statistic can be written as: 

𝐺2 =  2∑ 𝑂𝑖 (𝑘) log
𝑂𝑖 (𝑘)

𝐸𝑖(𝑘)

𝑠
𝑘=1                                                       (8) 

When the model holds, the likelihood-ratio statistic has an asymptotic chi-square distribution. 

Otherwise, χ
2 

and G
2 

statistics can have very different values (Agresti, 2002). Moreover, when 

the expected frequency in each cell is smaller than 5, χ
2 

and G
2 

statistics do not have the expected 

Type I error rates under their asymptotic distribution. Although both statistics are affected by 

such sparseness of the contingency table, χ
2 

is less affected than G
2 

(Koehler & Larntz, 1980).  
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To overcome the problems caused by the sparseness of a contingency table, three 

approaches have been proposed: pooling cells, resampling methods, and limited information 

methods (Maydeu-Olivares & Joe, 2006; Maydeu-Olivares, 2013). Pooling cells is the most 

intuitive approach such that reducing the number of cells in a contingency table automatically 

increases the expected frequency in most if not all the cells. However, to obtain a statistic with 

the appropriate asymptotic reference distribution, pooling must be performed before the model is 

fitted. Secondly, empirical sampling distributions of the goodness-of-fit statistics can be 

generated with a resampling method (e.g., bootstrapping) to produce supposedly trustworthy p-

values. However, mixed results have been found on the accuracy of p-values for the χ
2 

and G
2 

statistics obtained by resampling methods (e.g., Tollenaar & Mooijaart, 2003; von Davier, 1997). 

Moreover, the resampling method can be very time-consuming if the fit of multiple models 

needs to be obtained for comparison purposes. Finally, Maydeu-Olivares and colleagues 

introduced a variety of new model-fit statistics that are based on limited information methods. 

This approach is similar to pooling cells a priori by using lower-order margins, such as univariate 

and bivariate probabilities and proportions. Their p-values were found to be accurate even for 

very large models with very small sample sizes. Compared with the heuristic approaches, these 

new statistics have the degrees of freedom correctly determined and the correct sampling 

distribution to examine model-data fit. A detailed review of these new statistics is provided in the 

next section. 

Full- and Limited- Information Statistics for Overall Fit 

Full-Information Statistics 
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χ
2 

and G
2  

are considered full-information statistics because they use all the information in 

the contingency table to test the model. That is, the discrepancy between estimated probabilities 

and sample proportions is examined for every cell. The following notations are used throughout 

this section:  n is the number of items, K is the number of response categories for each item, and 

N is the sample size. The observed N responses to these items can generate a contingency table 

with C = K
n
 cells. Let p and π denote the C dimensional vectors of observed proportions and 

expected probabilities, respectively; and let π(θ) indicate that π has some parametric form that 

depends on q parameters, θ, estimated from the data. To test the null hypothesis H0: π = π(θ) 

against the alternative hypothesis H1: π ≠ π(θ), Pearson’s chi-square statistic can be evaluated in 

its matrix form: 

𝑋2 = 𝑁 (𝐩 − 𝛑̂)′𝐃̂−1(𝐩 − 𝛑̂),                                                   (9) 

where 𝛑̂ and 𝐃̂ denote π(θ) and D = diag(π(θ)) evaluated at the parameter estimate, 𝛉̂, 

respectively. When 𝛉̂ is the maximum likelihood (ML) estimator, χ
2 

asymptotically follows a 

chi-square distribution with C – q – 1 degrees of freedom. The chi-square statistic can be used 

for an overall evaluation of all items in a test, but at least three items are required for 

dichotomous models to maintain a positive degree of freedom. For example, for a pair of 

dichotomous items, C = 4; but if the 2PLM is used, q = 4. As a result, χ
2 

for the item pair is 

meaningless due to the negative degrees of freedom (i.e., 4 – 4 – 1). 

When 𝛉̂ is not estimated using the ML estimator or any asymptotically optimal estimator, 

the chi-square distribution is not the correct reference distribution for χ
2 

(Maydeu-Olivares & Liu, 

2012).
  
Instead, the 𝑀𝑛 statistic introduced by Maydeu-Olivares and Joe (2005) has the same 

reference distribution as Pearson’s χ
2 

for non-optimal estimators. 𝑀𝑛 can be written as  
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𝑀𝑛 = 𝑁 (𝐩 − 𝛑̂)
′𝐔̂(𝐩 − 𝛑̂),    𝐔 = 𝐃−1 − 𝐃−1∆(∆′ 𝐃−1 ∆)−1 ∆′ 𝐃−1            (10) 

where ∆ =  
𝜕𝛑(𝛉)

𝜕𝛉′
 is a C × q matrix of derivatives of the probability of each response pattern with 

respect to each of the model parameters. 𝑀𝑛 = χ
2
 for the ML estimator; otherwise 𝑀𝑛< χ

2
. 

Similar to χ
2
, testing with the 𝑀𝑛 statistic must involve at least item triplets for dichotomous 

models and item pairs for polytomous models to maintain a positive degree of freedom. 

 In addition to the overall fit assessment, 𝑀𝑛 can also be used to examine piecewise fit for 

item pairs and triples, as long as its degree of freedom is positive. By contrast, χ
2 

should not be 

applied to such subtables because it has an asymptotic chi-square distribution only when the 

parameter estimates are optimally estimated from data in that subtable rather than from data in 

the entire table. Therefore, for assessing the source of misfit by examining data in subtables, 𝑀𝑛  

is preferred to χ
2 

(Maydeu-Olivares & Liu, 2012). 

Limited-Information Statistics 

 The dimension C of observed proportions and expected probabilities depends on the 

number of cells, which further depends on the number of items and the number of categories for 

each item because C = K
n
. Even for binary data, the number of cells equals 2

n 
and it does not 

require many items before the 2
n
 contingency table becomes too sparse even with a reasonable 

sample size (e.g., N = 500). To solve the problem caused by sparseness in the contingency table, 

Maydeu-Olivares and Joe (2005) proposed a family of statistics relying on the limited-

information method, which focuses only on the information contained in the lower-ordered 

margins of the contingency table. Different from the full-information estimation which uses 

observed proportions and expected probabilities in each cell, limited-information estimation uses 

only the lower-order moments such as the univariate and bivariate moments. In this way, the 
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frequency in each cell is aggregated, which reduces sparseness. Full-information statistics, on the 

other hand, use all moments up to the order n, which is equivalent to using information in each 

cell. 

The following example demonstrates the difference in the information summarized from 

the contingency table with full- versus limited-information methods. Suppose Y1 and Y2 are the 

responses of two items each with a dichotomous outcome (i.e., 0 or 1). The responses then yield 

a 2 × 2 contingency table: 

 Y2 = 0 Y2 = 1 

Y1 = 0 𝜋00 𝜋01 

Y1 = 1 𝜋10 𝜋11 

 

For the full-information method, the table can be characterized by the cell probabilities π′ = (π00, 

π01, π10, π11). By contrast, the limited-information method summarizes the information from 

the contingency table with the univariate 𝜋1̇
′  = (𝜋  1 

(1), 𝜋  2 
(1)) and bivariate 𝜋2̇

′  = (𝜋  1    2
(1)(1)) 

probabilities as follows.  

 Y2 = 0 Y2 = 1  

Y1 = 0    

Y1 = 1  𝜋  1    2
(1)(1)

 𝜋  1 
(1)

 

  𝜋  2 
(1)
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The elements of 𝜋1̇
′ and 𝜋2̇

′ are univariate and bivariate moments if the variables are 

binary, because Pr(Y = 1) = E(Y) and Pr(Yi = 1, Yj = 1) = E(Yi Yj). They are also moments for 

polytomous items when the indicator variables are used to denote each category except the zero 

category (see the next section for more details). When all items have the same number of 

categories, K, there are n(K – 1) univariate moments 𝜋1̇
′ and (

𝑛
2
)(K – 1)

2 
bivariate moments 𝜋2̇

′.  

The relationship between the moments 𝝅̇ and cell probabilities π can be written as  

𝝅̇  = Tnc π                                                                   (11) 

where Tnc is a (C – 1) × C matrix of 1’s and 0’s. The (C – 1)-dimensional vector 𝝅̇ includes its 

joint moment, 𝝅̇′ = (𝝅̇𝟏
′ , 𝝅̇𝟐

′ , …, 𝝅̇𝒏
′ ), where 𝝅̇𝟏

′  = (𝜋̇1, 𝜋̇2, … , 𝜋̇𝑛)′,   𝝅̇𝟐
′  is the (

𝑛
2
)-dimensional 

vector of the bivariate moment with elements E(Yi Yj) = Pr(Yi = 1, Yj = 1) = 𝜋̇𝑖𝑗, and so on, up to 

𝝅̇𝒏 = Pr(Y1 = … = Yn = 1). For the 2 × 2 contingency table illustrated above, the relationship 

between the C – 1 vector of moments 𝛑𝒏 and cell probabilities π can be written as: 

(

𝜋  1 
(1)

𝜋  2 
(1)

𝜋  1    2
(1)(1)

) = 

(

 
 
 

0 1 0 1 
 

0 0 1 1 
 

0 0 0 1 )

 
 
(

𝜋00
𝜋10
𝜋01
𝜋11

)                                                (12) 

T can be partitioned based on the partition of 𝝅̇ in (11): 

(

 
 
 

𝜋̇1
𝜋̇2
.
.
.
𝜋̇𝑛)

 
 
 

 = 

(

 
 
 

𝐓𝒏𝟏
𝐓𝒏𝟐
.
.
.
𝐓𝒏𝒏)

 
 
 

 π                                                             (13) 
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Then, the vector of joint moments up to order of r ≤ n, denoted by 𝝅𝒓 = (𝝅̇𝟏
′ , 𝝅̇𝟐

′ , …, 𝝅̇𝒓
′ )’, can be 

written as 

𝝅𝒓 = 𝐓𝒓 π                                                                   (14) 

where 𝐓𝒓 = (𝐓𝒏𝟏
′ , … , 𝐓𝒏𝒓

′ )’ . Let p and 𝐩̇ denote the vector of observed cell proportions and the 

vector of sample joint moments, respectively. According to Maydeu-Olivares and Joe (2005), for 

a random sample of size N from the multivariate Bernoulli distribution, 

√𝑁 (𝐩̇ −  𝝅̇) = T √𝑁 (p – π).                                                (15) 

The multivariate central limit theorem (Rao, 1973, p. 128) implies  

√𝑁 (p – π) 
𝑑
→ N(0, Γ),                                                      (16) 

where Γ = D – 𝛑𝛑′ and D = diag(π). According to the delta method (Agresti, 1990, p. 579), it 

follows from (16) that  

√𝑁 (𝐩̇ −  𝝅̇) 
𝑑
→ N(0, Ξ),               Ξ = T Γ 𝐓′.                              (17) 

 Finally, let 𝐩𝑟 be the vector of sample moments up to order r, with dimension s = s(r) = 

∑ (
𝑛
𝑖
)𝑟

𝑖=1 . Then we have 

√𝑁 (𝐩𝑟 − 𝛑𝑟) 
𝑑
→ N(0, 𝚵𝑟),               𝚵𝑟 = 𝐓𝑟Γ𝐓𝒓

′.                                 (18) 

This leads to the overall Mr statistic for both the dichotomous and polytomous models, r = 1, 

2, …, n, which can be written as  

𝑀𝑟 = 𝑁 (𝐩𝑟 − 𝛑̂𝑟)
′ 𝐂̂𝑟 (𝐩𝑟 − 𝛑̂𝑟),    𝐂𝑟 = 𝚵𝑟

−1 − 𝚵𝑟
−1 𝚫𝑟 (𝚫𝑟

′  𝚵𝑟
−1𝚫𝑟 )

−1𝚫𝑟
′ 𝚵𝑟

−1          (19) 
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where 𝐩𝑟 are the sample moments up to order r, NΞr is their asymptotic covariance matrix as 

shown in (17), and 𝛑̂𝑟 are the expected moments. 𝚫𝑟 = (𝜕𝝅𝒓(𝜽))/𝜕𝜽
′is the matrix of 

derivatives of the moments with respect to the model parameters. When r = 2, M2 is a weighted 

average of the residuals in all bivariate tables that involve the univariate and bivariate 

probabilities. M2 is asymptotically distributed as chi-square with a df of n(K–1) + n(n–1)/2(K –

1)
2
 – q.  

 As can be seen, {𝑀𝑟} is a family of test statistics based on residuals up to the r-variate 

margins with members of {𝑀1, 𝑀2,… ,𝑀𝑛}. 𝑀1 is a quadratic form in univariate residuals, 

whereas 𝑀2 is a quadratic form in univariate and bivariate residuals, and so on, up to 𝑀𝑛. 𝑀𝑛 is a 

full information statistic that can be written as      

𝑀𝑛 = 𝑁 (𝐩̇ − 𝝅̇)
′ 𝐂̂𝑛 (𝐩̇ − 𝝅̇),                                                  (20) 

where 𝐩̇ is the vector of the sample joint moments and 𝝅̇ =  𝝅𝒏. Maydeu-Olivares and Joe (2005) 

show that 𝑀𝑛 can be alternatively written as a quadratic form in the cell residuals as in (10).  

Choice of Test Statistics 

 The M2 statistic is just one of the test statistics that use the quadratic form to test the 

overall goodness-of-fit with only the bivariate information. Alternatively, a quadratic form 

statistic can be constructed as: 

𝑄 = 𝑁 (𝐩2 − 𝛑̂2)
′ 𝐖̂ (𝐩2 − 𝛑̂2),                                                  (21) 

where 𝐖̂ is a real symmetric weight matrix that depends on the model parameters but converges 

in probability to some constant matrix: 𝐖̂
𝑝
→  𝐖. For the ML estimator, the asymptotic 
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distribution of the univariate and bivariate residual moment 𝐩2 − 𝛑̂2 is asymptotically normal 

with mean zero and covariance matrix  

∑𝟐 = 𝚵𝟐 − 𝚫2  𝐼
−1 𝚫2

′                                                           (22) 

where 𝚫2  = (𝜕𝝅𝟐(𝜽))/𝜕𝜽
′ is the matrix of derivatives of the univariate and bivariate moments 

with respect to the parameter vector θ, and 𝑁𝚵𝟐 is the asymptotic covariance matrix of the 

univariate and bivariate sample moment 𝐩2. 𝑰−𝟏 divided by the sample size is the asymptotic 

covariance matrix of the item parameter estimates 𝜽̂, and 𝑰 is the information matrix. In general, 

the asymptotic distribution of Q is a mixture of independent chi-square variates (Maydeu-

Olivares, 2013). When 𝐖̂ is chosen so that  

∑𝟐𝐖∑𝟐𝐖∑𝟐 = ∑𝟐𝐖∑𝟐                                                    (23) 

Q is asymptotically chi-square distributed with degrees of freedom equal the rank of 𝐖∑𝟐 (Rao, 

1973, p.188).  

There are two ways to choose 𝐖̂ to satisfy (23). One approach is to construct a weight 

matrix such that ∑𝟐 is a generalized inverse of 𝐖. That is, 𝐖 satisfies 𝐖∑𝟐𝐖 =  𝐖. This 

approach is illustrated in the 𝑀2 statistic which can be alternatively written as 

𝑀2 = 𝑁 (𝐩2 − 𝛑̂2)
′ 𝐂̂2 (𝐩2 − 𝛑̂2),     𝐂2 = 𝚫2

(𝑐)
(𝚫2
(𝑐)′
 𝚵2 𝚫2

(𝑐)

 
)−1𝚫2

(𝑐)′
       (24) 

where 𝚫2
(𝑐)′
𝚫2 = 𝟎.  

 Another way to satisfy (23) is to construct a weight matrix such that 𝐖 is a generalized 

inverse of ∑𝟐. That is, ∑𝟐𝐖∑𝟐 = ∑𝟐. This approach leads to the choice 𝐖̂ =  ∑̂2
+ and the 

statistic  
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𝑅2 = 𝑁 (𝐩2 − 𝛑̂2)
′ ∑̂2

+ (𝐩2 − 𝛑̂2).                                           (25) 

which was proposed by Reiser (1996, 2008) for binary data. The degrees of freedom of 𝑅2 equal 

rank (∑2
+∑2) = rank (∑2). 

 Between these two statistics, 𝑀2 is preferred over 𝑅2 due to its computational advantages. 

𝑀2 does not require the computation of the asymptotic covariance matrix of the parameter 

estimates. Instead, only the diagonal elements of the information matrix are needed to obtain the 

standard errors of the parameter estimates. By contrast, 𝑅2 is more computationally intensive to 

obtain its degree of freedom, which depends on the rank of ∑2. In practice, the rank of ∑̂2 can be 

estimated by eigendecomposition. As a result, the p-value of 𝑅2 will depend on how many 

eigenvalues are numerically judged to be zero. However, in IRT applications where numerical 

integration is involved, it may be difficult to determine exactly how many eigenvalues are zero 

when some of them are very close to zero (Maydeu-Olivares & Joe, 2008). 

 Another way to obtain an overall goodness-of-fit statistic using a weight matrix in the 

quadratic form Q is to adjust the test statistic by its asymptotic mean and variance so that the 

asymptotic distribution of the adjusted test statistic can be approximated by a chi-square 

distribution. This approach was introduced by Bartholomew and Leung (2002) and further 

developed in Cai, Maydeu-Olivares, Coffman, and Thissen (2006). To be specific, the 

distribution of Q can be approximated by a 𝑏𝑋𝑎
2 distribution. The first two asymptotic moments 

of Q are  

𝜇1 = 𝑡𝑟(𝐖∑𝟐), 𝜇2 =  2𝑡𝑟(𝐖∑𝟐)
2.                                            (26) 
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When a and b are solved and 𝜇1 and 𝜇2 are evaluated at the parameter estimates, the mean and 

variance corrected Q statistic can be written as: 

 𝑄̅ =  
𝑄

𝑏
= 

2𝜇̂1

𝜇̂2
 𝑄,                                                            (27) 

which has an approximate reference chi-square distribution with degrees of freedom 

𝑎 =
2 𝜇̂1

2

𝜇̂2
 .                                                                 (28) 

Alternatively, Asparouhov and Muthen (2010) suggested that it is possible to define 

another mean and variance corrected 𝑄̿ that has the same degrees of freedom as 𝑀2 (i.e., df2 = 

n(K–1) + n(n–1)/2(K –1)
2
 – q) rather than estimate the degrees of freedom as in (28). This 

statistic can be written as 𝑄̿ =  𝑎∗ + 𝑏∗𝑄, where 𝑎∗ and 𝑏∗ are chosen so that the mean and 

variance of 𝑄̿ are df2 and 2df2, respectively. The 𝑄̿ statistics can be written as follows after 𝑎∗ 

and 𝑏∗ are solved: 

𝑄̿ =  𝑄√
2𝑑𝑓2

𝜇̂2
+ 𝑑𝑓2 − √

2𝑑𝑓2𝜇̂1
2

𝜇̂2
.                                              (29) 

Results from Asparouhov and Muthen (2010) showed that there was a negligible difference in 

the p-values obtained from 𝑄̅ and 𝑄̿. Note that mean and variance corrected statistics also require 

the computation of an estimate of ∑𝟐 (for 𝜇1 and 𝜇2), which is the asymptotic covariance matrix 

of the bivariate residual moments. Therefore, from a computational perspective, 𝑀2 is still 

preferable to these mean and variance corrected statistics. 

Testing Models for Large and Sparse Ordinal Data 
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As n and especially K increase, the number of summary statistics in M2 becomes too large 

for computation. Therefore, the information summarized from the multinomial table needs to be 

further reduced. A natural choice of statistics in this case is the means and cross-products of the 

multinomial variables ignoring the multivariate nature of the multinomial variables. This 

summary statistic can be expressed by the means and cross-products of indicator or dummy 

variables of the multinomial table instead of the residual 𝐩2 − 𝛑̂2 (Joe & Maydeu-Olivares, 

2010). For example, suppose Yi and Yj are two multinomial variables with three categories each 

(i.e., k = 0, 1, 2). Yi and Yj can each be denoted by the indicator variables Ii,1, Ii,2, and Ij,1, Ij,2, 

respectively, as follows: 

Yi Ii,1 Ii,2 Yj Ij,1 Ij,2 

0 0 0 0 0 0 

1 1 0 1 1 0 

2 0 1 2 0 1 

 

The summary statistics in M2 are the sample means of these indicator variables and the sample 

cross-products of indicator variables from different variables. The means and cross-products can 

be summarized as follows: 

E[Ii,1] = Pr(Yi = 1), E[Ii,1, Ij,1] = Pr(Yi = 1, Yj = 1) 

E[Ii,2] = Pr(Yi = 2), E[Ii,1, Ij,2] = Pr(Yi = 1, Yj = 2) 

E[Ij,1] = Pr(Yj = 1), E[Ii,2, Ij,1] = Pr(Yi = 2, Yj = 1) 

E[Ij,2] = Pr(Yj = 2), E[Ii,2, Ij,2] = Pr(Yi = 2, Yj = 2)                            (30) 
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As can be seen, the summary statistics in M2 are the univariate and bivariate proportions that do 

not include the category zero. In general, the sample means of these indicator variables and the 

sample cross-products of indicator variables from different variables can be expressed as:   

κi = E[Yi] = 0 × Pr(Yi = 0) + … + (Ki – 1) × Pr(Yi = Ki - 1),                         (31) 

κij = E[Yi Yj] = 0 × 0 × Pr(Yi = 0, Yj = 0) + … + (Ki – 1) × (Kj – 1) × Pr(Yi = Ki – 1, Yj = Kj – 1) (32). 

For the previous example, 

κi = E[Yi] = 1 × Pr(Yi = 1) + 2 × Pr(Yi = 2), 

κj = E[Yj] = 1 × Pr(Yj = 1) + 2 × Pr(Yj = 2), 

κij = E[Yi Yj] = 1 × 1 × Pr(Yi = 1, Yj = 1) + 1 × 2 × Pr(Yi = 1, Yj = 2) + 2 × 1 × Pr(Yi = 2, Yj = 1) + 2 

× 2 × Pr(Yi = 2, Yj = 2).                                                   (33) 

Note that the quantities in (33) are simply a linear function of those in (30). Therefore, the 

sample means and cross-products of variables coded as {0, 1, …, Ki} in (33) are a further 

reduction of the sample univariate and bivariate proportions in (30). Furthermore, in the binary 

case (33) reduces to (30). 

Let κ̂ = κ (θ̂) be the statistic that depends on the model parameters and is evaluated at 

their estimates and let k be the sample counterpart of (33). A quadratic-form statistic similar to 

M2, 𝑀𝑜𝑟𝑑, can be formed:  

𝑀𝑜𝑟𝑑 = 𝑁 (𝐤 − 𝛋̂)
′ 𝐂̂𝑜𝑟𝑑 (𝐤 − 𝛋̂),    𝐂𝑜𝑟𝑑 = 𝚵𝑜𝑟𝑑

−1 − 𝚵𝑜𝑟𝑑
−1  𝚫𝑜𝑟𝑑 (𝚫𝑜𝑟𝑑

′  𝚵𝑜𝑟𝑑
−1 𝚫𝑜𝑟𝑑 )

−1𝚫𝑜𝑟𝑑
′ 𝚵𝑜𝑟𝑑

−1  (34) 

where NΞord is the asymptotic covariance matrix of the sample means and cross-products k, 

∆𝒐𝒓𝒅 is the matrix of derivatives of the population means and cross-products κ with respect to the 
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model parameters θ, and  𝐂𝑜𝑟𝑑 is evaluated at the parameter estimates. The sample statistics used 

in 𝑀𝑜𝑟𝑑 are k = (𝐲̅′, 𝐜′)′, the n sample means 𝑦̅, and the n(n − 1)/2 cross-products c = vecr 

(Y’Y/N). Here Y denotes the N × n data matrix and vecr() denotes an operator that takes the 

lower diagonal of a matrix (excluding the diagonal) and stacks it in a column vector. When all 

variables are binary, 𝑀𝑜𝑟𝑑 reduces to M2. 𝑀𝑜𝑟𝑑 follows an asymptotic chi-square distribution 

with dford = n(n+1)/2 – q for any consistent estimator. This means that 𝑀𝑜𝑟𝑑 cannot be used when 

the number of categories is large and the number of item is small due to the lack of degrees of 

freedom. Thus, for ordinal data, if the model involves a large number of items and categories per 

item, 𝑀𝑜𝑟𝑑 must be used because M2 cannot be calculated. On the other hand, when the number 

of categories is large and the number of items is small, 𝑀𝑜𝑟𝑑 cannot be used due to a lack of 

degrees of freedom. 

Piecewise Assessment of Fit 

 After the overall fit of a model is examined, it is important to perform a piecewise 

goodness-of-fit assessment. If the overall model fit is poor, a piecewise fit assessment might be 

able to suggest where the problem is. Even if the overall model fit is good, a piecewise fit 

assessment can still help identify the parts that fit less well. 

 Many overall model fit statistics can be used for piecewise fit assessment when they are 

applied to bivariate tables of item pairs. For example, the bivariate Pearson’s χ
2 

statistic can be 

computed for each bivariate subtable: 

𝑋𝑖𝑗
2 = 𝑁 (𝐩𝒊𝒋 − 𝛑̂𝑖𝑗)

′
𝐃̂𝑖𝑗
−1 (𝐩𝒊𝒋 − 𝛑̂𝑖𝑗).                                       (35) 
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For a subtable of items i and j each with K categories, 𝐩𝒊𝒋 is the K
2
 vector of observed bivariate 

proportions; 𝛑̂𝑖𝑗 = 𝜋𝑖𝑗 (𝛉̂𝑖𝑗) is the vector of the expected probabilities that depend on the qij 

parameter estimates, 𝛉̂𝑖𝑗, in the bivariate table and Dij = diag(𝛑̂𝑖𝑗). Although it seems natural to 

refer 𝑋𝑖𝑗
2  to a chi-square distribution with dfij = K

2
 − qij −1, Maydeu-Olivares and Joe (2006) 

showed that the asymptotic distribution of the subtable 𝑋𝑖𝑗
2  is stochastically larger than this 

reference distribution. This means that referring 𝑋𝑖𝑗
2  to a chi-square distribution with dfij may lead 

to rejecting well-fitting items. Instead, the 𝑀𝑖𝑗 statistic was shown to be asymptotically 

distributed as a chi-square with dfij degrees of freedom: 

𝑀𝑖𝑗 = 𝑋𝑖𝑗
2 − 𝑁 (𝐩𝒊𝒋 − 𝛑̂𝒊𝒋)

′
𝐃̂𝒊𝒋
−𝟏 ∆̂𝒊𝒋 (∆̂𝒊𝒋

′ 𝐃̂𝒊𝒋
−𝟏∆̂𝒊𝒋)

−𝟏∆̂𝒊𝒋
′ 𝐃̂𝒊𝒋

−𝟏(𝐩𝒊𝒋 − 𝛑̂𝒊𝒋),               (36) 

where Δij denotes the matrix of derivatives of the bivariate probabilities 𝜋𝑖𝑗 with respect to the 

parameters involved in the bivariate table, 𝛉̂𝑖𝑗. 

 As an alternative way to correct 𝑋𝑖𝑗
2 , the distribution of 𝑋𝑖𝑗

2  can be approximated by a 𝑏𝑋𝑎
2 

distribution (Maydeu-Olivares, 2013; Liu & Maydeu-Olivares, 2014). The first two asymptotic 

moments of 𝑋𝑖𝑗
2  are 

𝜇1 = 𝑡𝑟(𝐃̂𝒊𝒋
−𝟏∑̂𝑖𝑗), 𝜇2 =  2𝑡𝑟(𝐃̂𝒊𝒋

−𝟏∑̂𝑖𝑗)
2
.                                       (37) 

Similar to the mean and variance corrected chi-square statistic for the overall fit assessment, the 

mean and variance corrected 𝑋̅𝑖𝑗
2  statistic for item pairs in a subtable can be written as: 

𝑋̅𝑖𝑗
2 = 

𝑋𝑖𝑗
2

𝑏
= 

2𝜇̂1

𝜇̂2
𝑋𝑖𝑗
2                                                             (38) 

which has an approximate reference chi-square distribution with degrees of freedom 
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𝑎 =
2 𝜇̂1

2

𝜇̂2
                                                                    (39) 

Again, it is possible to define an alternative mean and variance corrected 𝑋𝑖𝑗
2  which has 

dfij = K
2
 − qij −1 degrees of freedom (Asparouhov & Muthen, 2010). This statistic can be written 

as 𝑋̿𝑖𝑗
2 = 𝑎∗ + 𝑏∗𝑋𝑖𝑗

2  , where 𝑎∗ and 𝑏∗ are chosen so that the mean and variance of 𝑋̿𝑖𝑗
2  are dfij 

and 2dfij, respectively: 

𝑋̿𝑖𝑗
2 = 𝑋𝑖𝑗

2  √
2𝑑𝑓𝑖𝑗

𝜇̂2
+ 𝑑𝑓𝑖𝑗 − √

2𝑑𝑓𝑖𝑗𝜇̂1
2

𝜇̂2
  ,                                        (40) 

When the model parameters have been estimated by maximum likelihood using the full table, 

∑𝑖𝑗= diag(𝜋𝑖𝑗) − 𝜋𝑖𝑗 𝜋𝑖𝑗
′ − ∆𝑖𝑗(𝐼

−1)𝑖𝑗 ∆𝑖𝑗
′                                        (41) 

multiplied by sample size is the asymptotic covariance matrix of the cell residuals for the pair of 

items i and j. (𝐼−1)𝑖𝑗 denotes the rows and columns of the information matrix corresponding to 

the item parameters involved in the subtable for variables i and j.  

 Similarly, a bivariate subtable counterpart of the overall statistic proposed by Reiser 

(1996, 2008) can be written as: 

𝑅𝑖𝑗 = 𝑁 (𝐩𝒊𝒋 − 𝛑̂𝑖𝑗)
′
∑̂𝑖𝑗
+  (𝐩𝒊𝒋 − 𝛑̂𝑖𝑗).                                          (42) 

The degrees of freedom of 𝑅𝑖𝑗 are given by the rank of ∑𝑖𝑗, which can be estimated from the data 

as the number of eigenvalues of ∑̂𝑖𝑗 which are nonzero. For example, 10
-5

 was suggested as a 

cutoff when the rank of ∑̂𝑖𝑗 and of ∑̂2 were estimated (Liu & Maydeu-Olivares, 2014). 
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 A drawback of 𝑀𝑖𝑗 is that it cannot be used with dichotomous item pairs due to lack of 

degrees of freedom (Maydeu-Olivares & Liu, 2012). The 𝑋̅𝑖𝑗
2  statistic can be used with binary 

data because its degrees of freedom are estimated, unless the estimate is exactly zero. Moreover, 

Maydeu-Olivares and Liu (2012) suggested that z-statistics for univariate and binary residuals 

provide a useful approach for dichotomous models. The univariate and bivariate residuals are the 

sums of the cell residuals. A z-statistic is obtained by dividing these univariate and bivariate 

residuals by their standard errors to identify the source of misfit. The standardized bivariate 

residuals for binary item pairs can be written as: 

𝑧𝑖𝑗 =
𝑝𝑖𝑗− 𝜋̂𝑖𝑗

𝑆𝐸(𝑝𝑖𝑗− 𝜋̂𝑖𝑗)
=
𝑝𝑖𝑗− 𝜋̂𝑖𝑗

√
𝜎̂𝑖𝑗
2

𝑁
⁄

=
𝑝𝑖𝑗− 𝜋̂𝑖𝑗

√
𝑣𝑒𝑐𝑑𝑖𝑎𝑔(∑̂𝑖𝑗)

𝑁
⁄

                                           (43) 

where ∑𝑖𝑗= diag(𝜋𝑖𝑗) − 𝜋𝑖𝑗 𝜋𝑖𝑗
′  − ∆𝑖𝑗(𝐼

−1)𝑖𝑗 ∆𝑖𝑗
′ ,  𝜋𝑖𝑗 = Pr(Yi = 1, Yj = 1), 𝑝𝑖𝑗 is its corresponding 

proportion, and (𝐼−1)𝑖𝑗 can be approximated in different ways. For multinomial models 

estimated with the maximum likelihood method, one way to approximate this matrix is to use the 

expected information matrix 

𝐼𝐸 = ∆
′D ∆ ,                                                                (44) 

where D = diag(π) is a diagonal matrix of all pattern probabilities, and ∆ =  
𝜕𝛑(𝛉)

𝜕𝛉′
 is a C × q 

matrix of derivatives of all possible response pattern probabilities with respect to the item 

parameters. The expected information matrix can only be computed for small models, because π 

is of dimension C and Δ is of dimension C × q, which becomes too large for computation as the 

size of the model increases.      
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Another way to approximate the matrix is to use the cross-product (XPD) information 

matrix 

𝐼𝑋𝑃𝐷 = ∆𝑂
′ 𝑑𝑖𝑎𝑔(𝒑𝑂 / 𝝅𝑂

2  )∆𝑂 ,                                             (45) 

where 𝒑𝑂 and 𝝅𝑂 denote the proportions and probabilities of the 𝐶𝑂 observed patterns and ∆𝑂 is 

the 𝐶𝑂 × 𝑞 matrix of derivatives of the patterns with respect to the model parameters. In models 

involving a large number of possible patterns, the matrices involved in the XPD information 

matrix are smaller than those involved in the expected information matrix. Moreover, the 

dimension of the vectors in (45) does not increase as a function of test length. Therefore, the 

covariance matrix of the item parameters of larger models can be approximated if the XPD 

information matrix is used instead of the expected information matrix. A third way is to use an 

observed information matrix, which requires a second-order derivatives of the pattern 

probabilities with respect to the item parameters in the model: 

𝐼𝑂 = 𝑁∑
𝑝𝑐

(𝜋𝑐 (𝜃))2
𝐶𝑂 
𝑐=1  [

𝜕𝜋𝑐 (𝜃)

𝜕𝜃
 
𝜕𝜋𝑐 (𝜃)

𝜕𝜃′
− 𝜋𝑐 (𝜃) 

𝜕2𝜋𝑐 (𝜃)

𝜕𝜃𝜕𝜃′
] =  𝐼𝑋𝑃𝐷 −  𝑁∑

𝑝𝑐

𝜋𝑐 (𝜃)

𝐶𝑂 
𝑐=1  

𝜕2𝜋𝑐 (𝜃)

𝜕𝜃𝜕𝜃′
 .   (46) 

The z-statistic can also be extended to polytomous ordinal data as 

𝑧𝑜𝑟𝑑 =
𝑘𝑖𝑗− 𝜅̂𝑖𝑗

𝑆𝐸(𝑘𝑖𝑗− 𝜅̂𝑖𝑗)
=
𝑘𝑖𝑗− 𝜅̂𝑖𝑗

√
𝜎̂𝑖𝑗
2

𝑁
⁄

                                                          (47) 

where 𝜎̂𝑖𝑗
2  = 𝐯𝑖𝑗

′  ∑̂𝑖𝑗 𝐯𝑖𝑗 , with 𝐯𝑖𝑗
′  = (0 × 0, 0 × 1, … 0 × (K ˗ 1), …, (K ˗ 1) × 0, (K ˗ 1) × 1, …, (K 

˗ 1) × (K ˗ 1)), and 𝑘𝑖𝑗 − 𝜅̂𝑖𝑗 = 𝐯𝑖𝑗
′  (𝐩𝑖𝑗 − 𝛑̂𝑖𝑗) is the residual mean cross product. The 

asymptotic distribution of 𝑧𝑜𝑟𝑑 is standard normal, and of 𝑧𝑜𝑟𝑑
2  follows a chi-square distribution 

with 1 df.  
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Maydeu-Olivares and Liu (2012) demonstrated how 𝑀𝑛, M2 and z-statistics can be 

applied to simulation and real data sets. Results from their simulation studies showed that the 𝑀𝑛 

statistic outperformed χ
2 

because the latter over-rejected the model for small sample sizes. For 

the piecewise fit analysis, the simulation results in Liu and Maydeu-Olivares (2014) showed that 

the z-statistic has better Type I error rates and more power than the mean and variance adjusted 

χ
2
 statistics in (38) and (40), and the 𝑅𝑖𝑗 statistics in (42) for both binary and ordinal data when 

the observed information in (46) is used for computation. But if cross-product information matrix 

in (45) is used, then the mean and variance adjusted χ
2
 is recommended.  

Due to the relatively small sample sizes of Maydeu-Olivares and Liu’s (2012) real data 

sets (N < 900), the empirical performance of these statistics remains unknown in the context of 

large-scale assessments. Therefore, the first purpose of this study is to compare the performance 

of these new overall and piecewise statistics and the traditional heuristic model fit approaches, 

and see whether these new statistics are superior to previous approaches. Also, the applications 

of the limited-information fit statistics have mostly focused on data from educational settings. In 

the current study, their performance on real data from organizational settings is also evaluated. 

 

 

 

 

 

 



 
 

24 
 

METHOD 

Simulation Study 

In the simulation study, I examined the performance of both the traditional heuristic and 

limited-information fit statistics when they detected multidimensionality in data. To be specific, I 

simulated item responses in the mixed-format exams where items in different test sections loaded 

on correlated but different factors. For example, most AP
®
 exams are mixed-format tests 

consisting of a multiple choice (MC) section and a constructed response (CR) section. While 

examinees can choose one best answer from a list of options provided by the MC items, they 

need to “construct” their responses to the open-ended essay questions in the CR section. 

Accordingly, the MC items are usually scored dichotomously as right or wrong (i.e., 1 or 0), 

whereas as the CR items are scored polytomously with multiple categories from 0 to the 

maximum score possible for each item. Although the mixed application of MC and CR items 

brings many psychometric and practical advantages, it raises important questions such as 

whether the two test sections measure the same latent ability and whether it is appropriate to use 

a unidimensional IRT model to simultaneously analyze data from the two test formats. To 

answer these questions, I examined whether the existence of a CR section affected the overall fit 

of the entire exam and the piecewise fit of the MC items when the MC and CR items either 

shared one common factor or loaded on their own format factor respectively. 

Therefore, the simulation study was conducted with four factors manipulated. First, I 

used four sample sizes, 200, 500, 1000 and 3000, for examinees. Secondly, I varied the test 

length by including 10, 20, and 40 MC items. Thirdly, whether the test had a CR section or not 

was manipulated. Finally, I manipulated whether the IRT model fit the data or not by generating 
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one-dimensional and two-dimensional data. The combination of these four factors led to 48 

simulation conditions in total. In each condition, 100 replications were conducted. The average 

detection of model misfit was compared across different conditions by descriptive statistics such 

as means and standard deviations of the model fit statistics across replications. The detection 

rates were also reported as type I error rates for the unidimensional models and as power for the 

multidimensional models. 

The 2PL and SGR item parameter estimates from real exams were used for the simulation 

of MC and CR item responses. For the simulation of MC items, I used item parameter estimates 

from the AP
® 

2011 Calculus AB exam. The 2PL model showed excellent fit for the 45 MC items 

according to the means of the adjusted χ
2
/df statistics for item pairs (Mean = 1.70) and triples 

(Mean = 1.86) (Windsor, Jeon, Cao, & Drasgow, 2013). I removed five items with low a-

parameters and large b-parameters (i.e., items that very few students answered correctly) and 

kept the item parameters of the other 40 items in the pool for simulation. For the simulation of 

the CR item responses, I used item parameter estimates from the 2010 US History AP
®
 exam 

(Wang, Drasgow, & Liu, 2013). In the original exam, there were five CR questions and the 

highest score possible for each question was 9. Prior to the item parameter estimation, the ten 

categories (0 to 9) were collapsed into five (0 to 4) to facilitate the model data fit analysis. The 

means of the adjusted χ
2
/df statistics showed marginal fits for the SGR models for item pairs 

(Mean = 3.47) but good fit for triples (Mean = 2.13). For the purposes of this simulation study, 

the item parameter estimates appeared adequate. 

The two-dimensional data were generated to evaluate the power of the fit statistics to 

detect misspecified models. The item parameters for simulation were the same sets of item 

parameters as in the unidimensional data. For those conditions with only MC items, the first half 
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of the MC items were simulated to measure the first dimension while the second half of the MC 

items were simulated to measure the second dimension. The latent trait distribution was bivariate 

normal with a zero mean and unit variance. The latent trait correlation was set to 0.7, reflecting a 

moderate level of multidimensionality. For conditions with both MC and CR sections, items 

from each section loaded on one dimension. The latent trait correlation between the two sections 

was also set to 0.7. 

Applications to Real Data 

AP
®
 Exams. I analyzed data from three 2012 AP

®
 exams, each with a random sample of 

about 20000 examinees. Previous research has shown that different AP
®
 exams have different 

latent structures of the MC and CR sections (Wang et al., 2013). For some tests, the MC and the 

CR questions essentially shared one common factor and a unidimensional model provided an 

excellent fit (e.g., Calculus Exam). Other tests, however, were less unidimensional due to the 

different material tested by MC and CR items, and thus fit a bifactor model better (e.g., English 

Language Exam). As a result, if item parameters were estimated simultaneously for the two 

sections under the assumption of unidimensionality, I expected greater model misfit for exams 

that fit a bifactor model than those that fit a unidimensional model. To examine this effect, I 

evaluated model fit for data with different levels of unidimensionality based on the disattenuated 

correlation between the MC and the CR responses. To be more specific, I analyzed the Physics B 

Exam which was found to be the most unidimensional (r = 0.96), the English Literature Exam 

which was found to be the least unidimensional (r = 0.77), and the World History Exam whose 

disattenuated correlation was intermediate (r = 0.89-0.91; Wang et al., 2013). 
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International Personality Item Pool (IPIP). Model fit statistics for the SGR model 

were calculated for the International Personality Item Pool (IPIP; Goldberg, 1999). There were 

10 items in each of the Big Five personality dimensions. Respondents were asked to rate each 

item on a 4-point Likert scale, where 1 = “Strongly Disagree”, 2 = “Disagree”, 3 = “Agree”, and 

4 = “Strongly Agree”. Two conditions were examined in the original study: faking and honest 

(Cao, Tay, Luo, & Drasgow, 2014). In the faking condition, respondents were asked to imagine 

as if they were “applying for a job that you want very much”, so they should “select the response 

that will make you look like the best job applicant”. In the honest condition, respondents were 

told that their “answers will be used for research purposes only”, so they should “answer the 

questions as honestly as possible”. Participants were recruited from a large crowdsourcing 

Internet marketplace. A total of 947 subjects were included in the analyses, with 458 subjects in 

the faking condition and 489 subjects in the honest condition. The mean adjusted χ
2
/df statistics 

for item doubles and triplets suggested that the SGR model did not fit well for Emotional 

Stability and Openness, but fit adequately for Extraversion, Agreeableness, and 

Conscientiousness. The mean adjusted χ
2
/df statistics also showed that the item response data 

from the honest condition fit the SGR model better than the item responses from the faking 

condition for Extraversion and Emotional Stability, but not for Conscientiousness, Agreeableness, 

and Openness (Cao et al., 2014).   

Counterproductive Work Behavior (CWB) Scale. Model fit statistics for the SGR 

model were also calculated for a performance rating scale that is commonly seen in 

organizational settings. Employees (N = 449) from classes at a large southwestern university 

provided self-ratings of their CWB using the 19-item Bennett and Robinson (2000) measure, 

which reflects both interpersonal deviance (CWB-I; α = .88) and organizational deviance (CWB-
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O; α = .88) dimensions (Carpenter, 2013). The CWB-I scale included 7 items and the CWB-O 

scale included 12 items. Respondents were asked to indicate on a 7-point Likert scale the extent 

to which they had engaged in each of the behaviors described in the scales in the last year. The 

scale anchors were as follows: 1 (never), 2 (once a year), 3 (twice a year), 4 (several times a 

year), 5 (monthly), 6 (weekly), and 7 (daily). Options 6 and 7 were collapsed into one option in 

the IRT analysis, because very few respondents said that they engaged in CWB behaviors "daily".  

Results from confirmatory factor analysis showed that a two-factor model reflecting 

CWB-I and CWB-O fit better than a one-factor model. The fit indices were: CFI (Comparative 

Fit Index) = 0.92, TLI (Tucker Lewis Index) = 0.91, SRMR (Standardized Root Mean Square 

Residual) = 0.075, and RMSEA (Root Mean Square Error of Approximation) = 0.120 for the 

two-factor model; and CFI = 0.86, TLI = 0.84, SRMR = 0.092, and RMSEA = 0.162 for the one-

factor model (Carpenter & Cao, 2013). Therefore, IRT analyses should be performed on these 

two subscales separately. Both the CWB-I and CWB-O scales showed good fit for the SGR 

model based on the mean adjusted χ
2
/df statistics (CWB-I: Mean = 1.32 for item pairs, and Mean 

= 2.34 for item triples; CWB-O: Mean = -0.66 for item pairs, and Mean = 0.76 for item triples) 

based on the suggested cutoff value of 3.0 (Carpenter & Cao, 2013). 

Analysis 

Script files of MATLAB and R (R Core Team, 2014) were used to automate the 

simulation process. For the simulated data, the dimensionality was known so the dimensionality 

check was skipped. For each replication, response data were simulated using MATLAB, and 2PL 

and SGR item parameters were estimated simultaneously by MULTILOG (Thissen, Chen, & 

Bock, 2003). Because the overall model fit statistics usually are computationally intensive and 
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provide less information than piecewise model fit assessment, especially for large models, only 

the most powerful and least computationally intensive M2 statistic was calculated for each model 

with the FlexMIRT software (Cai, 2012). Piecewise model fit statistics were calculated for 

dichotomous items using the R code from Liu and Maydeu-Olivares (2014). The piecewise fit 

statistics were not examined for polytomous items when they were included in the model, 

because the purpose of the simulation study was to evaluate whether the existence of the 

polytomous items affected the overall fit and the pairwise fit for the dichotomous items. Finally, 

the heuristic adjusted χ
2
/df statistics were calculated for item pairs and triples with the 

FORSCORE program (Williams & Levine, 1993). 

For the real data sets, I first checked the dimensionality of the data to justify the use of 

IRT models by conducting a principal component analysis with varimax rotation in SPSS. If the 

scree plot showed a strong dominant factor, then it was concluded that the data were sufficiently 

unidimensional for IRT analysis (Drasgow & Parsons, 1983). FlexMIRT (Cai, 2012) was used to 

estimate item parameters and to obtain overall M2 statistics for the entire model. Piecewise fit 

statistics, 𝑋̅𝑖𝑗
2 , 𝑅𝑖𝑗, and 𝑧𝑖𝑗 were calculated for the dichotomous item pairs, and 𝑀𝑖𝑗, 𝑋̅𝑖𝑗

2 , 𝑅𝑖𝑗, and 

𝑧𝑜𝑟𝑑 were calculated for polytomous item pairs with Liu and Maydeu-Olivares’ (2014) R code. 

The adjusted χ
2
/df statistics for item pairs and triplets were obtained from the FORSCORE 

program (Williams & Levine, 1993). 
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RESULTS 

Simulation 

Overall fit statistics M2. Table 1 shows the means, standard deviations and detection 

rates of the overall M2 statistics across 100 replications in the 48 conditions, as well as the critical 

values of chi-square statistics at p = .05 with their corresponding df for the model in the first 

column. When all MC items were simulated to load on one factor (i.e., “One factor, MC items 

only” in Table 1), the M2 statistics showed no misfit for the unidimensional model as expected. 

None of the means of the M2 statistics were larger than the chi-square critical values at the p 

= .05 level. The values of the mean M2 statistics increased as the model became larger with more 

MC items included when the sample size was fixed. But when the number of items in the model 

was fixed, both the means and standard deviations of the M2 statistics remained almost the same 

across different sample sizes. The detection rates (i.e., type I error rates here) were all around 

0.05, ranging from 0.01 to 0.09. The results were similar for the conditions in which both the MC 

items and the five CR items were simulated to load on one factor (i.e., “One factor, MC and 5 

CR items” in Table 1). Note that in the conditions where both MC and CR items were included 

in the model, M2 statistics were reported for the entire model (i.e., MC and CR items) rather than 

just for the MC items. 

When MC items were simulated to load on two different factors (i.e., “Two factors, MC 

items only” in Table 1), the M2 statistics generally detected misfit for unidimensional models 

when the sample size was at least 500 at the p = .05 level. When the sample size was 200, the M2 

statistics often failed to reach statistical significance at p = .05 for small models with only 10 MC 

items, with a mean of 37.78 with 35 df.  This result was confirmed by the low power rate of only 
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0.11 when both the sample size and the model size were small. Different from the one-factor 

model conditions, the means and standard deviations of M2 statistics increased as the sample 

sizes became larger, especially when the sample sizes increased from 1000 to 3000. This 

corresponded to an increase in power when either the sample size or the model size became 

larger. When the sample size was 3000, the detection rate was 100%. The results were mostly 

similar for conditions in which the MC and CR items were simulated to reflect two separate 

factors (i.e., “Two factors, MC and 5 CR items” in Table 1). Again, M2 statistics often failed to 

detect misfit when the sample size was 200 and the number of item was 10. When the model 

became larger, misfit was detected frequently even when the sample size was as small as 200. 

The detection rates were larger than 80% when the sample size was at least 500 and were 100% 

when the sample size was at least 1000, regardless of the model size. In summary, M2 statistics 

were able to reliably detect violations of the unidimensionality assumption for small to medium-

sized models when the sample size was at least 500. If the sample size was smaller than 500, a 

larger model was required to detect misfit. Like most statistics, the power of M2 statistics 

increases with larger samples sizes. 

Piecewise adjusted χ
2
/df statistics for item pairs. Table 2 shows the means and 

standard deviations of the adjusted χ
2
/df

 
statistics for 100 replications across all MC item pairs. 

Again, the pairwise fit statistics were calculated for MC items only, because the CR items were 

included only for the purpose of examining whether their existence, either on the same or 

different dimensions of the MC items, would influence the model fit of MC items. As a result, 

only in the “Two factors, MC items only” conditions in Table 2 was a unidimensional model fit 

to multidimensional MC item responses; because in the “Two factors, MC and CR items” 

conditions, model fit was evaluated only for the unidimensional MC items. In the conditions 
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where both MC and CR items were included, the item parameters from both sections were 

estimated simultaneously and then the parameter estimates of the MC items were used to 

evaluate the model fit of the MC items. Therefore, I expected the statistics to indicate worse fit in 

the “Two factors, MC items only” conditions than in other conditions. As the adjusted χ
2
/df

 

statistics were adjusted to what would be expected in a sample size of 3000, negative values 

were obtained for smaller sample sizes.  

As Table 2 shows, the mean adjusted χ
2
/df

 
statistics increased with larger sample sizes in 

all conditions, whereas the standard deviations decreased. When the sample size was only 200, 

the mean and standard deviations of the statistics were almost the same across different models 

in all conditions. When the sample size was 500 or larger, the “Two factors, MC items only” 

conditions had the largest mean and standard deviations, as expected. The difference became 

even more obvious when the sample size increased to 1000 and 3000. 

When data were simulated with the unidimensional model (i.e., either MC items only or 

MC items with CR items), the means and standard deviations of the statistics remained almost 

the same for the same sample size when different numbers of MC items were included in the 

model. When the data were simulated to reflect two latent factors (i.e., either MC items only or 

MC items with CR items), there were more fluctuations in the means and standard deviations 

across different models with the same sample size, especially when the model was small and 

sample size was as large as 1000 or 3000.  

Finally, the fit for the “Two factors, MC and CR items” conditions was better than the 

multidimensional conditions but worse than the unidimensional conditions. The difference 

became more obvious as the sample size increased, but especially so in small models with only 
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10 items. This probably was because when the parameter estimates were calibrated 

simultaneously with both MC and CR items in the model, the accuracy of the parameter 

estimates of the MC items was affected by the multidimensional structure of the data. However, 

when the model was large with 40 MC items, the impact from the five CR items on the other 

dimension was not as large as when the model was small with only 10 MC items. 

In summary, adjusted χ
2
/df

 
statistics for item pairs were, to some extent, sensitive to the 

multidimensionality in the data, especially when the sample size was large. None of the pairwise 

statistics exceeded the suggested cutoff value of 3.0, even in the “Two factors MC items only” 

conditions. This is because this rule of thumb is generally not applied to relatively small samples 

as studied here, and was developed in the context of cross-validation samples. 

Piecewise 𝑿̅𝒊𝒋
𝟐  statistics for item pairs. Table 3 shows the descriptive statistics and 

detection rates of the mean 𝑋̅𝑖𝑗
2  statistics for 100 replications across MC item pairs. The df for the 

bivariate 𝑋̅𝑖𝑗
2  estimated in each replication was approximately 1.0 on average, which corresponds 

to a critical value of 3.84 under a chi-square distribution. For chi-square distributed statistics, the 

mean of the statistics (across the 100 replications here) should be their df and the variance 

(across the 100 replications here) should equal two times the df.  Therefore, when the model 

holds (as in the one-factor models), it is expected that the mean across all item pairs is close to 

1.0; whereas the mean should diverge from 1.0 when the model does not hold (as in the two-

factor models). Similar to the adjusted χ
2
/df

 
statistics, it is expected that the fit is better for the 

one-factor model conditions than for the two-factor model conditions.  

The descriptive statistics were almost the same across all of the one-factor model 

conditions, whether a CR section was included or not: the mean 𝑋̅𝑖𝑗
2  statistics across all item pairs 
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were all very close to 1.0 and the standard deviations across item pairs were no larger than 0.17 

across all sample sizes and models. The type I error rates were all around 0.050. As expected, 𝑋̅𝑖𝑗
2  

was larger in the two-factor conditions than in the one-factor conditions. When only the 

multidimensional MC items were examined, the mean 𝑋̅𝑖𝑗
2  fit statistics were all larger than 1.0. 

While the mean 𝑋̅𝑖𝑗
2  fit statistics remained relatively stable for different models with the same 

sample size, they increased as the sample size became larger. The detection rates increased from 

0.07 for a sample size of 200 to 0.30 for a sample size of 3000, but the model size did not seem 

to affect detection rates when the sample size was fixed. Similar results were found for the two-

factor models with both MC and CR items included when the model was small with only 10 or 

20 MC items. When the model had 40 items, the 𝑋̅𝑖𝑗
2  fit statistics remained around 1.0 across all 

sample sizes as in the unidimensional models. Again, this probably is because when the number 

of MC items was small, the parameter estimates were more likely to be influenced by the other 

latent factor represented by the CR items if the items from both sections were calibrated 

simultaneously. Overall, in very few two-factor conditions did the mean 𝑋̅𝑖𝑗
2   statistics exceed the 

critical value of 3.84, even for a sample size of 3000, which was confirmed by the low power 

across all conditions. Therefore, an even larger sample size might be required for 𝑋̅𝑖𝑗
2  to detect 

moderate multidimensionality in small to medium models. 

Piecewise 𝑹𝒊𝒋 statistics for item pairs. The results for the 𝑅𝑖𝑗  statistics were similar to 

those for the 𝑋̅𝑖𝑗
2   statistics, except that there were more fluctuations in the descriptive statistics 

(see Table 4). As the df was estimated to be approximately 2.0 on average, the mean 𝑅𝑖𝑗  statistics 

should be close to 2.0 across all item pairs in the one-factor models, but diverge from 2.0 in the 

two-factor models. As Table 4 shows, the mean 𝑅𝑖𝑗  statistics across all item pairs in the model 
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remained around 2.0 across different models and sample sizes for one-factor model conditions. 

The type I error rates also showed more fluctuations compared with those for the 𝑋̅𝑖𝑗
2   statistics, 

but they were still mostly around 0.050. When only MC items were simulated to be 

multidimensional, the mean 𝑅𝑖𝑗 statistics were larger than those in the one-factor model 

conditions, and increasingly diverged from 2.0 as the sample size became larger. The power rates 

were slightly lower than those for the 𝑋̅𝑖𝑗
2   statistics, ranging from approximately 0.05 for a 

sample size of 200 to 0.28 for a sample size of 3000. This was also the case for the two-factor 

models with both MC and CR items when the model was small with only 10 MC items. When 

the two-factor model had at least 20 items, the impact caused by the multidimensional structure 

could hardly be detected by the mean 𝑅𝑖𝑗  statistics. Only in one condition where the model was 

small and the sample size was large did the mean 𝑅𝑖𝑗 statistics exceed the critical value of 5.99 

under a chi-square distribution with a df of 2. The power rates were mostly quite low in all 

conditions. 

Piecewise adjusted 𝒛𝒊𝒋 statistics for item pairs.The descriptive statistics for 𝑧𝑖𝑗 statistics 

are shown in Table 5. When MC items were fit to a unidimensional model, the means of the 

𝑧𝑖𝑗  statistics were approximately zero and the standard deviations were approximately 0.1 across 

different numbers of MC items and sample sizes. The ranges of the 𝑧𝑖𝑗 statistics were all within 

0.6. The results were very similar for the conditions in which both MC and CR items loaded on 

one factor. The type I error rates were all around 0.050 for the unidimensional conditions. In 

conditions where MC items reflected two latent factors, the means were still around zero, but the 

standard deviations were much larger than those in the one-factor conditions, ranging from 0.67 

to 1.75. The range of the 𝑧𝑖𝑗 statistics was as large as 6.0 for a multidimensional model with 40 
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MC items and a sample size of 3000. Therefore, the 𝑧𝑖𝑗 statistics for some item pairs had large 

absolute values when the data did not fit the unidimensional model. Larger means and standard 

deviations were also found in the conditions where MC and CR items loaded on two factors, but 

only in the smaller models with 10 or 20 MC items. Therefore, like 𝑋̅𝑖𝑗
2  and 𝑅𝑖𝑗 statistics, the 𝑧𝑖𝑗 

statistics could also detect the misfit in the MC items caused by the simultaneous parameter 

estimation of both MC and CR items that loaded on two different dimensions, at least in small 

models. While other statistics detected misfit caused by dimensionality by having larger means, 

𝑧𝑖𝑗 statistics did so by having more items with extremely values indicated by the larger standard 

deviations. Similar to the 𝑋̅𝑖𝑗
2  and 𝑅𝑖𝑗 statistics, the power for the 𝑧𝑖𝑗 statistics remained low 

between 0.05 to 0.30 in most of the conditions. 

To further explore the relationships between these pairwise fit statistics, I examined the 

correlations among these mean statistics when they detected misfit in multidimensional MC item 

pairs (i.e., “Two factors, MC items only” conditions) across different models and sample sizes 

(see Table 6). The absolute values of the 𝑧𝑖𝑗 statistics were obtained to correlate with other 

statistics, so a larger correlation coefficient reflected a closer correspondence between two 

statistics. The correlation coefficients were all significant at either the p = .01 or p = .05 level 

(two-tailed), except the ones between adjusted χ
2
/df and 𝑅𝑖𝑗 statistics when both the models (i.e., 

10 or 20 MC items) and the sample sizes (N = 200) were small. The correlation coefficients were 

all moderate to large when the sample size was at least 500. When the sample size reached 3000, 

all fit statistics correlated at approximately .90 or larger in all models. Across all models and 

sample sizes, the adjusted χ
2
/df statistics tended to correlate the highest with 𝑋̅𝑖𝑗

2 , but the other 

two statistics, especially 𝑅𝑖𝑗, had lower correlations with these two χ
2
-related statistics. But 
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overall, there seemed to be a close correspondence among these pairwise fit statistics when 

misfit was detected for multidimensionality, especially when the sample size was large. 

Piecewise fit statistics for item triples. Table 7 shows the means and standard 

deviations of the adjusted χ
2
/df

 
statistics across MC item triples for 100 replications. Similar to 

the adjusted χ
2
/df

 
statistics for item pairs, the fit statistics were for MC item triples only. The 

descriptive statistics were all very similar across models and sample sizes in the one-factor 

conditions, whether CR items were included or not. When the sample size was 200, the mean 

adjusted χ
2
/df

 
statistics remained almost the same across item triples in all conditions. When the 

sample size was at least 500, the means and standard deviations of the adjusted χ
2
/df

 
statistics 

were larger in the “Two factors, MC items only” conditions than other conditions. The 

differences became even larger as the sample sizes increased. When the MC and CR items 

loaded on their respective factor, the descriptive statistics were similar to those in the 

unidimensional models across different sample sizes except when the model included only 10 

MC items. In summary, the adjusted χ
2
/df

 
statistics for item triples were also sensitive to misfit 

for multidimensionality, although again the rule of thumb did not seem to apply to small sample 

sizes. 

Due to the computational complexity, Mn
 
statistics were calculated for only item triples in 

small models with 10 MC items (see Table 8). The means were almost comparable across 

different models and sample sizes in all conditions. The standard deviations increased as the 

sample sizes became larger, and were comparable in all conditions except for the “One factor, 

MC only” conditions when the sample size was 3000. The detection rates in all conditions were 

around 0.050, whether the model was unidimensional or multidimensional. Therefore, the Mn
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statistics for item triples did not seem to be very effective in detecting the misfit caused by 

multidimensionality in small models with only 10 MC items. 

To compare the performance of the adjusted χ
2
/df

 
statistics for item triples and Mn 

statistics, I examined the correlation coefficients of the two statistics across four sample sizes in 

the “Two factors, MC items only” conditions. The correlation coefficients were .417 (p < .001) 

for 200 examinees, .322 (p < .01) for 500 examinees, -.053 (p = .564) for 1000 examinees, 

and .057 (p = .537) for 3000 examinees. Therefore, there seemed to be a moderate 

correspondence between the two statistics when the sample size was small (N = 200 or 500), but 

the relationship was not significant when the sample size was large (N = 1000 or 3000).  

AP
®
 Exams 

 Physics B. Among the 20000 examinees whose item responses were obtained from the 

College Board, 17244 answered all questions and thus their responses were included in the 

analyses. The Physics B Exam had 70 MC items and 7 CR items. Item 26 of the MC section was 

not scored, so test analyses were performed on the remaining 69 MC items and the 7 CR items. 

For the 7 CR items, item 1 and item 5 had 16 categories (i.e., 0 - 15) and the other five items had 

11 categories (i.e., 0 - 10). To facilitate the IRT and model fit analyses, the 11 or 16 categories 

were collapsed into 5 categories (i.e., 0 - 4) based on the aggregated frequency of each category.  

Although the scree plot in Figure 1 showed potential second and third factors from results 

of the principal component analysis, the first factor was dominant so the item responses were 

deemed sufficiently unidimensional for IRT analysis (Drasgow & Parsons, 1983). The 

parameters of the 69 MC and 7 CR items were then estimated simultaneously. As Table 9 shows, 

most parameter estimates were within the normal ranges, except that MC items 15 and 23 had 
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extremely low a-parameters and large b-parameters. This indicates that very few examinees 

answered these two questions correctly, because the items were either extremely difficult or 

miskeyed.  

The overall fit of the 76 items was evaluated by the M2 statistic, which was 36300.07 

with a df of 4538 (p < .0001). The overall assessment showed a severe misfit, probably because it 

is almost impossible to find exact fit for a large model with so many variables even for well-

fitting items. Next, various piecewise model-fit statistics were examined for the MC items. The 

heuristic adjusted χ
2
/df statistics were calculated for a random sample of 69 MC item pairs and 

23 triples. The adjusted χ
2
/df statistics was not calculated for all item pairs and triples due to the 

large number of all possible combinations. The 2PL model showed excellent fit for the MC items: 

the mean adjusted χ
2
/df statistics were 1.318 (SD = 0.525) for item pairs and 1.620 (SD = 0.501) 

for item triples. Only one item pair (i.e., items 49 & 60) and one item triple (i.e., items 45, 49 & 

60) had an adjusted χ
2
/df ratio slightly larger than 3.0. Contrary to the result from the overall fit 

statistic, the adjusted χ
2
/df statistics indicated that the 2PL model fit the MC items well on 

average. 

As there were too many possible item triples for 76 items (i.e., 70300), Mn statistic was 

not calculated for such a large model. Instead, piecewise fit was assessed by the 2346 bivariate 

fit statistics for the 69 MC items (see the descriptive statistics in Table 12). The 𝑋̅𝑖𝑗
2  statistics had 

a mean of 11.326 and a standard deviation of 39.887. As the median was only 4.752, there 

apparently were extreme values for some item pairs. For example, the 𝑋̅𝑖𝑗
2  statistics for item 6 

and 7 was as large as 1550.142. The second and third largest were 624.790 for item 2 and 3, and 

571.454 for item 3 and 8. The skewness was also demonstrated in the histogram in Figure 2. Out 
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of the 2346 MC item pairs, 11 had 𝑋̅𝑖𝑗
2  statistics larger than 100. Slightly less than half (i.e., 1067 

pairs) showed acceptable fit at the p = .05 level. The skewness pattern was similar for the 𝑅𝑖𝑗 

statistics as shown in Figure 3, but the average statistics were larger (i.e., Mean = 146.877) and 

the values were even more dispersed (i.e., SD = 461.009). The majority of the item pairs (i.e., 

83.97%) showed misfit to some extent according to the 𝑅𝑖𝑗 statistics. The largest value was 

9657.265 for item 38 and 44 (df = 2, p < .001). However, the 𝑋̅𝑖𝑗
2  statistics for this pair was 1.216 

(df = 0.988, p = .267). Also, all the item pairs with the largest 𝑅𝑖𝑗 statistics were not the ones 

with the largest 𝑋̅𝑖𝑗
2  statistics. Therefore, there did not seem to be an exact correspondence 

between the 𝑅𝑖𝑗 and  𝑋̅𝑖𝑗
2  statistics. Finally, across the 2346 𝑧𝑖𝑗 statistics, the mean was -0.477 

and the standard deviation was 3.455. The largest value of the 𝑧𝑖𝑗 statistics was 37.468 for items 

6 and 7, and the smallest value was -13.831 for items 15 and 16. About 55.54% of the item pairs 

(1303 out of 2346) had 𝑧𝑖𝑗 statistics that were significant at the p = .05 level. As Figure 4 shows, 

most 𝑧𝑖𝑗 statistics were around 0.0 and were within the range of -10.0 to 10.0.  

In summary, the heuristic adjusted χ
2
/df statistics suggested that the 2PL model fit the 

MC items well, but the other piecewise fit statistics showed much worse fit when calculated for 

all possible combination of item pairs. The 𝑋̅𝑖𝑗
2  and 𝑧𝑖𝑗 statistics both suggested that item 6 and 7 

was the most problematic pair, whereas the results given by 𝑅𝑖𝑗 statistics were less consistent 

with the results from the other two. The M2 statistics showed severe misfit for the overall fit 

assessment, but it was not clear whether this result was due to a real misfit of the model or 

simply the fact that the model was large.  

 World History. The World History Exam had 70 MC items and 3 CR items. Originally 

the CR items had 10 categories (i.e., 0 - 9), but they were collapsed into 5 categories (i.e., 0 - 4) 
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to facilitate the IRT and model fit analyses. The final sample size was 15914. The scree plot in 

Figure 5 showed a dominant first factor that justified the IRT analysis. As Table 10 shows, no 

extreme b-parameters were found but the a-parameter of item 60 was only 0.041. Most b-

parameters were smaller than zero, which means the items were somewhat easier for the test-

takers who were able to answer all the questions.  

The M2 statistic for the 73 items was 12437.36 with a df of 3230 (p < .0001). Again it 

was expected that the overall fit might not be good for large models even with well-fitting items. 

The adjusted χ
2
/df statistics for a random sample of 72 pairs and 26 triples showed excellent fit 

of the 2PL model for the MC items: the means were 1.067 (SD = 0.465) for item pairs and 1.233 

(SD = 0.335) for item triples. Only two item pairs (i.e., items 31 & 36; items 58 & 60) had 

adjusted χ
2
/df statistics slightly larger than 3.0. Therefore, the adjusted χ

2
/df statistics indicated 

that the 2PL model fit the MC items well. 

Piecewise fit was assessed by the 2415 bivariate fit statistics for the MC items (see Table 

12). For the 𝑋̅𝑖𝑗
2  statistics, the mean was 5.271 and the standard deviation was 34.022. The largest 

value was 1633.313 for item 58 and 59. The second and the third largest were 132.596 for item 

66 and 67, and 129.608 for item 57 and 60. All other values were smaller than 100. The median 

of 2.243 and the histogram in Figure 6 suggested the existence of extreme values. Out of 2415 

MC item pairs, 1616 (66.92%) showed acceptable fit at the p = .05 level. The 𝑅𝑖𝑗 statistics had a 

relatively large mean of 93.573, standard deviation of 215.550, and extreme values such as 

3457.431 for items 19 and 29. The majority of 𝑅𝑖𝑗 statistics were significant at the p = .05 level. 

Again the correspondence of the extremely large values between the 𝑅𝑖𝑗 and  𝑋̅𝑖𝑗
2  statistics was 

not close, although the distributions of the two statistics across 2415 item pairs were both 
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positively skewed (see Figure 7). Finally, the mean of the 𝑧𝑖𝑗 statistics was -1.233 and the 

standard deviation was 2.369. The largest value of 𝑧𝑖𝑗 statistics was 39.045 for items 58 and 59, 

and the smallest value was -8.322 for items 18 and 58. About 54.20% of the item pairs (1309 out 

of 2415) had 𝑧𝑖𝑗 statistics that were not significant at the p = .05 level. The histogram in Figure 8 

shows that most 𝑧𝑖𝑗 statistics clustered around zero and fell in the range of -10.0 and 10.0.  

Similar to the results of the Physics B Exam, the heuristics adjusted χ
2
/df statistics 

suggested a much better fit than the other pairwise fit statistics or the overall fit statistic. The 𝑋̅𝑖𝑗
2  

and 𝑧𝑖𝑗 statistics detected the same item pair (i.e., item 58 and 59) to have extremely large values, 

whereas the 𝑅𝑖𝑗 statistics agreed to a lesser extent with these two statistics. Finally the M2 

statistics seemed to always show severe misfit when the model was large. 

English Literature. The English Literature Exam had 55 MC items and 3 CR items. The 

original 10 categories (i.e., 0 - 9) of the CR items were collapsed into 5 categories (i.e., 0 - 4). 

The final sample size was 17243. The scree plot in Figure 9 confirmed that item responses were 

sufficiently unidimensional for IRT analysis. No extreme item parameter estimates were found in 

Table 11.  

The M2 statistic for the 58 items was 19443.39 with a df of 2135 (p < .0001). The 2PL 

model again showed excellent fit for the MC items: the mean adjusted χ
2
/df statistics were 1.265 

(SD = 0.970) for 57 randomly selected item pairs and 1.492 (SD = 0.696) for 21 randomly 

selected item triples. Only two item pairs (i.e., items 13 & 20; items 48 & 51) had an adjusted 

χ
2
/df statistic between 5 and 7. Piecewise fit was assessed by the 1485 bivariate fit statistics for 

the MC items. The mean was 10.504 and the standard deviation was 77.581 for the 𝑋̅𝑖𝑗
2  statistics. 

The largest values were 2572.416 for item 38 and 39 and 1118.211 for item 13 and 14. Out of 
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1485 MC item pairs, 924 (62.22%) showed acceptable fit at the p = .05 level. The 𝑅𝑖𝑗 statistics 

had a mean of 59.543 and a standard deviation of 158.214. The largest value was 2580.048 for 

item 38 and 39. Although this pair had the largest 𝑋̅𝑖𝑗
2  statistics value as well, the correspondence 

between the 𝑅𝑖𝑗 and  𝑋̅𝑖𝑗
2  statistics for the other pairs with extreme values was not very close. 

Again, the distributions of the 𝑋̅𝑖𝑗
2  and 𝑅𝑖𝑗 statistics were both positively skewed as shown in 

Figure 10 and 11. Across the 1485 MC item pairs, the mean was -0.429 and the standard 

deviation was 3.275 for the 𝑧𝑖𝑗 statistics. The largest value was 50.812 for items 38 and 39, and 

the smallest value was -11.816 for items 53 and 55. More than half of the item pairs (873 out of 

1485 or 58.79%) had 𝑧𝑖𝑗 statistics that were not significant at the p = .05 level and most 𝑧𝑖𝑗 

statistics were within the range of -10.0 and 10.0 (see Figure 12). All three statistics suggested 

that item pair 38 and 39 had the most serious misfit among all item pairs.  

In summary, the heuristic adjusted χ
2
/df statistics had similar means and standard 

deviations for the randomly selected item pairs and triples across the three AP
®

 Exams. 

According to the suggested cutoff value, the data fit the models well for all three exams. The fit 

was slightly better for the World History exam than the English Literature Exam, followed by the 

Physics B Exam. This is not consistent with our expectation that the Physics B Exam should fit a 

unidimensional model better than the other two exams. All other pairwise statistics were more 

sensitive to misfit than the adjusted χ
2
/df statistics with more item pairs flagged as misfit. The 𝑅𝑖𝑗 

statistics had the most extreme values and rejected most of the item pairs. Based on the 

percentage of item pairs flagged as misfit, the Physics B Exam again showed worse fit than the 

other two exams. The M2 statistics showed misfit for all three exams, presumably due to the large 

model and sample sizes. However, as M2 statistics all had different degrees of freedom, it is 

difficult to compare overall fit directly across different exams. 
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To examine why the model misfit was not found to be different across the three exams as 

expected, I ran a series of post-hoc confirmatory factor analyses to check the structure of the data. 

I fit unidimensional, two-factor, and bifactor models to the data and examined the fit indices 

such as the Comparative Fit Index (CFI), the Tucker Lewis Index (TLI) and the Root Mean 

Square Error of Approximation (RMSEA). As Table 13 shows, all three exams had good fit for 

all three models based on the recommended cutoff in Hu and Bentler (1999): CFI ≥ .95, TLI 

≥ .95, and RMSEA ≤ .06. For all three exams, the bifactor model showed slightly better fit than 

the unidimensional and two-factor models, especially for Physics B and English Literature 

exams. This probably is because the bifactor model is more flexible and has more free 

parameters estimated to accommodate the specificities in the data. Therefore, although previous 

research (Wang et al., 2013) suggested that AP
®
 Exams had different level of unidimensionality, 

the difference was not large based on the results from the confirmatory factor analysis. Perhaps 

this is the reason why the fit indices for the unidimensional IRT models were also found to be 

similar across the three exams. 

International Personality Item Pool (IPIP). 

Figures 13 to 17 showed the scree plots of the 10 IPIP items in both honest (upper panel) 

and faking (lower panel) conditions across all five dimensions. In general, one dominant factor 

emerged in all conditions. A potential second factor was suggested in the faking condition for 

Agreeableness and in the honest condition for Conscientiousness. But in both cases the second 

factor was relatively weak such that the first eigenvalue accounted for about 2.5 times the 

variance of the second one (i.e., 31% for the first eigenvalue and 12-13% for the second one). 

Therefore, the data were sufficiently unidimensional for IRT analyses in all conditions.  
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 Table 14 shows the means, standard deviations, and parameter estimates from the SGR 

model of IPIP items in both the honest and faking conditions. Across all five dimensions, the 

item means were higher in the faking conditions than in the honest conditions, except for item 6 

of Agreeableness, and item 8 and 9 of Openness. The instructions to fake seemed to work 

because respondents did tend to endorse higher categories for each item. In both conditions, the 

a-parameter estimates were moderate to large and the threshold parameters were mostly within 

the normal range. The first threshold parameters of a few items, such as item 2 of Emotional 

Stability and items 1, 8, and 9 of Openness, had values smaller than -4.0 in either the honest or 

faking condition, because very few respondents endorsed the lowest categories of these items. 

The threshold parameters also tended to be smaller in the faking conditions than the 

corresponding parameters in the honest conditions. Even the largest threshold parameters were 

smaller than zero for more than half of the items in the faking condition of all dimensions except 

Extraversion. Again this confirms that in the faking conditions respondents endorsed higher 

categories as instructed, which makes the threshold parameters lower than they should have been.  

 For the model fit analyses, I first evaluated the overall fit by examining the M2 statistics. 

Then I compared the M2 statistics between the data from the honest and faking conditions to see 

which data fit the SGR model better. I also examined the means of the piecewise statistics across 

item pairs to compare model fit between the two conditions. For adjusted χ
2
/df, 𝑀𝑖𝑗, 𝑋̅𝑖𝑗

2 , and 𝑅𝑖𝑗 

statistics, smaller values indicated a better fit. For 𝑧𝑜𝑟𝑑 statistics, I calculated their means from 

the absolute values of the original 𝑧𝑜𝑟𝑑 statistics to reflect how the values deviate from the mean 

zero. The smaller the means of the absolute values for 𝑧𝑜𝑟𝑑 statistics, the better the fit on average 

for the entire scale. 
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Fit Statistics for Agreeableness. The overall M2 statistic for Agreeableness was 2227.34 

(df = 395, p < .0001) in the honest condition. Because no respondent endorsed the first category 

of item 2, the M2 statistics could not be calculated for the full scale in the faking condition due to 

the different numbers of categories for each item. Instead, I excluded item 2 from the scale in 

both conditions to compare the overall fit. When the second item was removed from scale for the 

model fit analysis, M2 statistics were 2056.25 (df = 315, p < .0001) for the honest condition and 

1592.55 (df = 315, p < .0001) for the faking condition. Therefore, when item 2 was excluded 

from the fit analyses, the overall fit was better for the faking condition than for the honest 

condition, although in both conditions the overall fit was less than acceptable.  

Tables 15 and 16 show the pairwise fit statistics in the honest and faking conditions, 

respectively. Again, item 2 was excluded from the analysis in the faking condition, so no 

piecewise fit statistics were calculated for item pairs that involved item 2 (shown as NA in Table 

16). In both conditions, almost all item pairs showed misfit at the p = .05 level. When the fit 

statistics between the two conditions were compared, the fit was better for the honest condition 

than the faking condition based on the means of the following χ
2
-related fit statistics across item 

pairs: adjusted χ
2
/df = 5.97, 𝑀𝑖𝑗 = 44.47 (df = 7), and 𝑋̅𝑖𝑗

2  = 53.04 (mean df = 8.90) for the honest 

condition; and adjusted χ
2
/df = 12.13, 𝑀𝑖𝑗 = 51.76 (df = 7), 𝑋̅𝑖𝑗

2  = 65.08 (mean df = 8.84) for the 

faking condition. For 𝑅𝑖𝑗 and 𝑧𝑜𝑟𝑑 statistics, the pattern was reversed: the fit was better for the 

faking condition (𝑅𝑖𝑗 = 105.06, mean df = 12.78; 𝑧𝑜𝑟𝑑 = 2.21) than the honest condition (𝑅𝑖𝑗 = 

159.81, mean df = 12.51; 𝑧𝑜𝑟𝑑 = 3.95). Therefore, while adjusted χ
2
/df, 𝑀𝑖𝑗 and 𝑋̅𝑖𝑗

2  fit statistics 

suggested a better fit for the honest condition, other pairwise fit statistics and the overall fit 

statistics showed the fit was better for the faking condition. 
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To examine whether the absence of item 2 in the faking condition but not in the honest 

condition might affect the fit statistics, I also evaluated the pairwise fit statistics in the honest 

condition without item 2. The statistics all increased, but the results did not reverse the previous 

conclusion: adjusted χ
2
/df = 8.53, 𝑀𝑖𝑗 = 49.07 (df = 7), 𝑋̅𝑖𝑗

2  = 57.09 (mean df = 8.90), 𝑅𝑖𝑗 = 

128.33 (mean df = 12.42), and 𝑧𝑜𝑟𝑑 = 3.98. 

 Fit Statistics for Conscientiousness. The overall M2 statistics for Conscientiousness were 

1582.02 (df = 395, p < .0001) in the honest condition and 1471.42 (df = 395, p < .0001) in the 

faking condition. Similar to Agreeableness, the overall fit was not good but better in the faking 

condition than in the honest condition. Table 17 and 18 show the piecewise fit statistics for the 

45 item pairs in the honest and faking conditions respectively. The majority of the item pairs 

showed misfit at the p = .05 level in both conditions. Consistent with the results of the overall fit, 

the pairwise fit was also better for the faking condition (adjusted χ
2
/df = 0.12; 𝑀𝑖𝑗 = 18.84, df = 7; 

𝑋̅𝑖𝑗
2  = 24.85, mean df = 9.32; 𝑅𝑖𝑗 = 45.70, mean df = 14.00; and 𝑧𝑜𝑟𝑑 = 0.92) than the honest 

condition (adjusted χ
2
/df = 4.11; 𝑀𝑖𝑗 = 37.14, df = 7; 𝑋̅𝑖𝑗

2  = 44.00, mean df = 8.91; 𝑅𝑖𝑗 = 71.29, 

mean df = 12.80; and 𝑧𝑜𝑟𝑑 = 1.71). Therefore, both the overall and pairwise fit statistics 

suggested that data from the faking condition had a better fit than data from the honest condition 

for the Conscientiousness scale. 

 Fit Statistics for Extraversion. Unlike Agreeableness and Conscientiousness, the overall 

fit for Extraversion was better in the honest condition (M2 = 1628.41, df = 395, p < .0001) than in 

the faking condition (M2 = 2654.00, df = 395, p < .0001). The mean piecewise fit statistics also 

fully supported this result: adjusted χ
2
/df = 5.30, 𝑀𝑖𝑗 = 36.22 (df = 7), 𝑋̅𝑖𝑗

2  = 43.09 (mean df = 

9.18), 𝑅𝑖𝑗 = 84.48 (mean df = 14.20) and 𝑧𝑜𝑟𝑑 = 1.28 for the honest condition; and adjusted χ
2
/df 
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= 11.92, 𝑀𝑖𝑗 = 54.33 (df = 7), 𝑋̅𝑖𝑗
2  = 63.61 (mean df = 9.07), 𝑅𝑖𝑗 = 99.66 (mean df = 13.24), and 

𝑧𝑜𝑟𝑑 = 2.61 for the faking condition. Therefore, both the overall and pairwise statistics showed 

that the fit was better for the honest condition than for the faking condition. 

 Fit Statistics for Emotional Stability. The overall M2 statistics for Emotional Stability 

were 1763.24 (df = 395, p < .0001) in the honest condition and 1642.84 (df = 395, p < .0001) in 

the faking condition. Therefore, the overall fit was worse for the honest condition than for the 

faking condition. The mean piecewise statistics showed comparable fit for the two conditions: 

adjusted χ
2
/df = 7.04, 𝑀𝑖𝑗 = 47.66 (df = 7), 𝑋̅𝑖𝑗

2  = 55.53 (mean df = 9.03), 𝑅𝑖𝑗 = 80.35 (mean df = 

14.11) and 𝑧𝑜𝑟𝑑 = 1.85 for the honest condition; and adjusted χ
2
/df = 7.11, 𝑀𝑖𝑗 = 45.54 (df = 7), 

𝑋̅𝑖𝑗
2  = 52.90 (mean df = 9.71), 𝑅𝑖𝑗 = 56.01 (mean df = 14.51), and 𝑧𝑜𝑟𝑑 = 1.51 for the faking 

condition. While adjusted χ
2
/df suggested that the fit was slightly better for the honest condition, 

all others suggested the opposite. But the differences in the statistics of the two conditions were 

quite small except for 𝑅𝑖𝑗. Therefore, as the overall and most of the piecewise statistics showed, 

the fit was only slightly better in the faking condition than in the honest condition for the 

Emotional Stability scale and the fit statistics were almost comparable in the two conditions. 

 Fit Statistics for Openness. The overall M2 statistics for Openness were 1927.43 (df = 

395, p < .0001) in the honest condition and 1260.34 (df = 395, p < .0001) in the faking condition. 

Again, the fit was better for the faking condition than for the honest condition. The mean 

piecewise statistics supported that the data from the faking condition showed a better fit than 

data from the honest condition, except for the 𝑧𝑜𝑟𝑑 statistics: adjusted χ
2
/df = 7.41, 𝑀𝑖𝑗 = 32.75 

(df = 7), 𝑋̅𝑖𝑗
2  = 43.21 (mean df = 8.83), 𝑅𝑖𝑗 = 135.40 (mean df = 12.49) and 𝑧𝑜𝑟𝑑 = 1.85 for the 

honest condition; and adjusted χ
2
/df = 6.64, 𝑀𝑖𝑗 = 28.99 (df = 7), 𝑋̅𝑖𝑗

2  = 36.32 (mean df = 8.81), 
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𝑅𝑖𝑗 = 91.74 (mean df = 13.02), and 𝑧𝑜𝑟𝑑 = 1.98 for the faking condition. Again the differences in 

these statistics were small, and both the overall fit and the majority of the pairwise fit statistics 

suggested that the fit was better in the faking condition than in the honest condition. 

 As the overall and pairwise fit statistics showed misfit for items in both honest and faking 

conditions, it is important to explore whether the misfit is caused by the violation of the 

unidimensionality assumption or the by the misuse of the SGR model. Therefore, a series of 

post-hoc confirmatory factor analyses were conducted to examine the fit for a unidimensional 

model across all personality dimensions and conditions. Fit indices in Table 25 suggested that 

the fit for a unidimensional model was marginal to acceptable for item-level categorical data 

across the personality dimensions and conditions, with the honest conditions of 

Conscientiousness and Openness showing notable problems. Item responses from the faking 

condition had a better fit for the unidimensional model than those from the honest condition 

except for Extraversion and Agreeableness, which is mostly consistent with the results from the 

fit statistics for the SGR model. Interestingly, although the fit for a unidimensional model was 

good to excellent for the faking conditions of Conscientiousness (CFI = 0.983, TLI = 0.978, 

RMSEA = 0.082) and Emotional Stability (CFI = 0.991, TLI = 0.989, RMSEA = 0.062), the fit 

for the SGR model for these two conditions was still less than acceptable (see Table 18 and 

Table 22). This suggests that the misfit is might be  caused more by the misspecification for the 

SGR model than by the misfit for the unidimensional model. Therefore, although the assumption 

of unidimensionality was generally met for the IRT analysis, it appears that an alternative IRT 

model is needed to fit the personality data better than the SGR model. 

 In summary, the overall M2 statistics showed severe misfit for both conditions across all 

five dimensions. Because the model was not large, this result suggested that the SGR model did 
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not fit the personality data well. Contrary to the expectation, the overall fit was better for the 

faking condition than for the honest condition across all dimensions except Extraversion. The 

results from the pairwise statistics also partially supported this conclusion, such that the averaged 

fit across item pairs was clearly better for the faking condition for Conscientious and was almost 

comparable across two conditions for Emotional Stability and Openness. Therefore, although an 

increase in item means was observed for almost all items, faking did not change the underlying 

psychological process that respondents went through to fill out the personality inventory which 

was reflected by the fitted model.   

Counterproductive Work Behavior (CWB) Scale. 

 Figure 18 shows the scree plots for the 7 CWB-I and 12 CWB-O items, respectively. In 

the upper panel, the scree plot of 7 CWB-I items showed a dominant first factor. The first 

eigenvalue accounted for 56.15% of the total variance. The scree plot for the CWB-O items, on 

the other hand, showed a secondary factor, although the first factor was still dominant. The first 

eigenvalue accounted for 44.51% of the total variance, which is much larger than the 13.28% 

accounted for by the second eigenvalue. Therefore, it is concluded that the responses to the 

CWB-I and 12 CWB-O items were sufficiently unidimensional for IRT analyses. The internal 

consistency was .875 for the CWB-I scale and .876 for the CWB-O scale. 

Descriptive statistics and parameter estimates for each of the 7 CWB-I and 12 CWB-O 

items are shown in Table 26. The means were all below 2.0 for a scale of 0 to 5, which means the 

data were positively skewed. The values of the a-parameters were all moderate to large, showing 

good discriminating properties. The b-parameters were mostly positive and had large values, 
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which confirmed that the responses were positively skewed. These results were consistent with 

those obtained from the original analyses in Carpenter and Cao (2013). 

The overall M2 statistics were 682.83 (df = 518, p < .0001) for CWB-I scale and 2259.74 

(df = 1638, p < .0001) for CWB-O scale, which indicate less than acceptable fit. Piecewise 

statistics were examined for the items that fit less well. For the 21 item pairs in the CWB-I scale 

(see Table 27), 7 pairs had adjusted χ
2
/df statistics larger than 3.0 (Mean = 1.23, SD = 5.04). The 

𝑀𝑖𝑗 statistics (Mean = 30.15, SD = 9.56) identified 6 pairs with misfit at the p = .05 level: item 

pairs (1, 2), (1, 3), (1, 4), (1, 5), (4, 6), and (4, 7). The 𝑋̅𝑖𝑗
2  statistics (Mean = 37.23, SD = 14.02) 

detected one more pair (i.e., item 1 and 6) than the 𝑀𝑖𝑗 statistics. The 𝑅𝑖𝑗 statistics (Mean = 

54.61, SD = 18.71) found the most pairs of misfit items (12 in total) while 𝑧𝑜𝑟𝑑 statistics (Mean = 

-0.41, SD = 1.01) detected the least (only one). The results from all piecewise fit statistics in 

Table 27 were quite consistent. Item pairs involved item 1 were flagged by at least three fit 

statistics, so were item pairs (4, 6) and (4, 7). Therefore, items 1 and 4 seemed most likely to be 

the source of misfit. In general, the 𝑅𝑖𝑗 statistics tended to flag more pairs of misfit items than 

other statistics while 𝑧𝑜𝑟𝑑 statistics was the opposite. 

The pattern was less consistent across the piecewise fit statistics for the 66 items pairs in 

the 12-item CWB-O scale (see Table 28). Overall, the adjusted χ
2
/df statistics (Mean = -0.65, SD 

= 3.37) detected 12 pairs, the 𝑀𝑖𝑗 statistics (Mean = 30.75, SD = 8.56) 18 pairs, the  𝑋̅𝑖𝑗
2  statistics 

(Mean = 41.04, SD = 10.96) 38 pairs, and the 𝑧𝑜𝑟𝑑 statistics (Mean = 1.69, SD = 1.68) 28 pairs. 

The 𝑅𝑖𝑗 statistics (Mean = 75.78, SD = 48.68) found almost all pairs to have misfit (59 out of 66). 

Item pairs that were flagged by all five statistics were: (1, 9), (2, 4), (2, 8), (2, 11), (4, 5), (4, 8), 

and (8, 11). Therefore, the problematic items were most likely to be items 2, 4, 8 and 11.  
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In conclusion, the two CWB scales both showed severe overall misfit, probably due to 

the positive skewness of the data. Pairwise fit statistics suggested that items 1 and 4 in the CWB-

I scale, and items 2, 4, 8, and 11 in the CWB-O scale might be the source of the misfit. 

Interestingly, these 6 misfit items were the items with the highest item means in their scales, 

which means the misfit items were actually the items with less positively skewed data. However, 

perhaps the rest of the more skewed items dominated the model for the entire scale, which made 

the less skewed items fit less well. A content review of these items showed that the deviant 

workplace behaviors described in some of these 6 items did seem more frequent than those 

described in items with more extreme means. For example, two of these items were, “Made fun 

of someone at work” (CWBI-1) and “Spent too much time fantasizing or daydreaming instead of 

working” (CWBO-2). These two behaviors seem less severe and more commonly encountered 

compared with the more serious ones such as “Acted rudely toward someone at work” (CWBI-6) 

and “Taken property from work without permission” (CWBO-1). Therefore, it is not surprising 

that some of the items that describe less severe CWB had higher means than others simply 

because of their higher base rates. Moreover, a previous study (Robinson & Bennett, 1995) 

mapped various deviant workplace behaviors along two dimensions: interpersonal versus 

organizational, and minor versus serious. This provides further empirical evidence that the few 

items describing less severe CWB might function differently from those with more extreme 

means and thus were detected by the fit statistics. 
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DISCUSSION 

In this paper, I conducted a simulation study and several analyses on real data to compare 

the performance of the heuristic adjusted χ
2
/df statistics and the recently developed fit statistics 

that are based on the limited-information method. Results from the simulation studies showed 

that the overall M2 statistic was sensitive to misfit caused by multidimensionality across different 

sample sizes and models except when both the model and the sample size were small. The 

average adjusted χ
2
/df statistics across item pairs also suggested better model-data fit in the one-

factor conditions than in the two-factor conditions when the sample size was at least 1000. But in 

no conditions did the adjusted χ
2
/df statistics exceed the suggested cutoff value of 3.0 to flag any 

misfit item pairs. The patterns were similar for pairwise fit statistics that are based on the 

limited-information method: the 𝑋̅𝑖𝑗
2 , 𝑅𝑖𝑗, and 𝑧𝑖𝑗 statistics all showed worse fit in the two-factor 

conditions than in the one-factor conditions, but the detection rates were quite low and the mean 

statistics rarely exceeded the critical value of the chi-square (with its corresponding df) or 

standard normal (two-tailed) distributions at the p = .05 level even in the two-factor conditions. 

All four pairwise statistics (i.e., the adjusted χ
2
/df, 𝑋̅𝑖𝑗

2 , 𝑅𝑖𝑗, and 𝑧𝑖𝑗 statistics) examined here 

showed consistent results when detecting misfit, indicated by the moderate to large correlation 

coefficients among the four, especially when the sample size was large. The adjusted χ
2
/df and 

𝑋̅𝑖𝑗
2  statistics had the closest correspondence, whereas the 𝑅𝑖𝑗 statistics correlated the least with 

other fit statistics. The 𝑅𝑖𝑗 statistics also seemed to be the least stable with large extreme values. 

Similar to the pairwise adjusted χ
2
/df statistics, the mean adjusted χ

2
/df statistics for item triples 

also indicated that responses from the one-factor conditions fit better than those for the two-

factor conditions; but again none of the statistics exceed 3.0. The Mn statistic, on the contrary, 
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was not very effective in detecting misfit at least for small models with 10 dichotomous items. 

The correspondence was also quite low between the two piecewise statistics for items triples. 

In summary, the results from the simulation study suggested that M2 was a powerful 

statistic in evaluating overall fit. All pairwise fit statistics were sensitive to the misfit caused by 

the moderate multidimensionality in the response data, although either the sample size or the 

effect size (i.e., level of multidimensionality) needed to be larger for the limited-information 

statistics to be significant at the p = .05 level or for the heuristic adjusted χ
2
/df statistics to be 

larger than the suggested cutoff value. Results from all pairwise fit statistics also showed 

consistent patterns: the fit was the best in the one-factor conditions and the worst in the “Two-

factor, MC only” conditions. While it is conceivable that the “Two-factor, MC only” conditions 

showed the worst fit because responses in these conditions were multidimensional, it is 

interesting to notice that the fit was worse than the one-factor conditions in the “Two-factor, MC 

and CR” conditions where the MC item responses were actually unidimensional. Perhaps, due to 

the concurrent estimation of the MC item parameters with the CR item parameters that were 

manipulated to load on a different factor, the parameter estimates of the MC items were 

“contaminated” by this second factor and thus caused the worse fit. The misfit was even more 

obvious when the number of MC items was small and the sample size was large. This probably 

was because when the number of MC items was small compared with the number of CR items 

(which was held constant in the simulation), the parameter estimation of the MC items was 

influenced to a larger extent by the different factor of the CR items. When the number of MC 

items was large, such influence was minimal and all pairwise fit statistics were almost the same 

as those in the one-factor conditions. Finally, due to the computation limitation the piecewise fit 

statistics for item triples were examined only for the smallest models with 10 MC items. 
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Therefore, the inconsistent results should be interpreted with caution. However, piecewise fit 

statistics for item triples tend to become less useful as the model becomes larger for two reasons. 

First, there are too many combinations of all possible triplets to calculate fit statistics for all of 

them. Secondly, when the source of misfit needs to be detected, it takes more time to spot the 

problematic items by examining triplets than pairs. 

In addition to evaluating the performance of the overall and piecewise fit statistics in the 

simulation study, I also applied the fit statistics to real data to solve practical problems. The first 

application was to the three AP
®
 Exams, which were found to have different levels of 

unidimensionality across test formats in the past. By evaluating overall and piecewise fit 

statistics, I expected to find better fit for the more unidimensional exams and worse fit for the 

less unidimensional exams. The overall M2 statistics showed severe misfit for all three exams, 

probably because each exam had approximately 50 to 70 test items in the model and the sample 

sizes were quite large. Due to the different degree of freedom for the M2 statistic in each exam, 

overall fit among the three exams could not be compared directly. Instead, I examined the mean 

fit statistics across all MC item pairs in the three exams. The adjusted χ
2
/df statistics showed 

good fit for MC items pairs in all three exams. The limited-information pairwise fit statistics 

flagged more item pairs as misfit than the adjusted χ
2
/df statistics in each exam. Contrary to 

expectation, the MC items in Physics B Exam actually had a slightly worse fit than the MC items 

in the other two exams based on the limited-information pairwise fit statistics. The results from a 

post-hoc confirmatory factor analysis showed that the fit indices for both unidimensional and bi-

factor models did not differ much across the three exams; all the fits were excellent. Therefore, 

the three exams did not necessarily have different levels of unidimensionality as a previous study 
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(Wang et al., 2013) suggested. This might explain why the fit was almost comparable across all 

three exams. 

The other two applications focused on misfit detection of the overall and pairwise fit 

statistics for polytomous IRT models. Overall and average pairwise fit were compared between 

honest and faking conditions for the Big Five personality traits. Because faking good in 

responding to a personality inventory could potentially increase item and scale means, change 

the item response distribution, or even change the underlying response process, it was expected 

that the item responses should fit the IRT model better in the honest condition than in the faking 

condition if the personality inventory was developed in a way to reflect the latent trait based on 

the honest rather than distorted responses. The results from the overall and piecewise fit analyses 

showed that item responses did not fit the most popular polytomous model in either condition. 

The overall fit indicated that the SGR model could not accurately describe the data, and many 

item pairs were flagged as having misfit by the piecewise fit statistics. Moreover, item responses 

did not fit the model better in the honest condition than in the faking condition. In fact, the 

overall fit was better for the faking condition in four dimensions and the piecewise fit statistics 

were clearly better in the faking condition for Conscientiousness. Therefore, the expectation that 

item responses from the honest condition should fit better because they should reflect the correct 

model was probably overly simplified. While a more accurate model is needed to describe item 

responses from personality inventory in general, it is also important to understand respondents’ 

underlying process of faking good and to examine how faking affects the item responses and 

their model fit. 

The last application focused on the misfit detection of positively skewed ordinal data. 

Given the relatively small models in this application, the misfit detected by the overall fit statistic 
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should be at least partially due to the positive skewness of the data in both CWB scales. The 

pairwise fit assessment revealed a few items that seemed to cause the large values in some item 

pairs. Interestingly, these “problematic” items were actually items describing less extreme 

behaviors and thus with less skewed responses in each scale. Perhaps these items did not fit the 

specified model that was dominated by items with more extreme responses and thus stood out as 

misfit items.  

Based on the results from the simulation and real data applications, I concluded that both 

the new limited-information statistics and the heuristic adjusted χ
2
/df statistics should be 

considered when examining model-data fit for IRT analysis. The overall M2 statistic is effective 

in detecting misfit caused by multidimensionality in small to medium-sized models. However, 

when the sample sizes and/or the model are large, M2 statistics almost always reject the model 

even for well-fitting items. This is conceivable because it is almost impossible to find exact fit 

for all possible response patterns from a large number of items. When the M2 statistic becomes 

“too powerful”, average piecewise fit statistics can be examined for overall assessment instead. 

For example, the adjusted χ
2
/df statistics are to some extent sensitive to misfit caused by 

multidimensionality. However, when the sample size is smaller than 3000, the average adjusted 

χ
2
/df statistics for item pairs and triples almost never exceed the suggested cutoff value for data 

with moderate multidimensionality. Other pairwise fit statistics are more effective in detecting 

misfit item pairs. Results from all pairwise fit statistics including the adjusted χ
2
/df statistics are 

highly consistent, except for 𝑅𝑖𝑗 when the model and/or sample size is small. This is consistent 

with the conclusion in Liu and Maydeu-Olivares (2014) that the 𝑅𝑖𝑗 statistic tends to have large 

sampling variance due to the computation process of its component. Finally Mn statistics does not 

seem to detect misfit effectively in small models. The adjusted χ
2
/df statistics for item triples can 
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be an alternative if needed, although the interpretation of misfit for item triples is usually less 

straightforward than that for item pairs.  

Implications 

 The current study has several theoretical and practical implications. First, the study 

provided a thorough review of both the heuristic and the limited-information fit statistics. Based 

on the literature, the limited-information fit statistics are more statistically rigorous and thus are 

expected to show superior performance to the heuristic statistics that have unknown sampling 

distribution. Secondly, the performance of these two types of fit statistics was compared in a 

simulation study. Although all piecewise fit statistics showed consistent results when detecting 

multidimensionality, limited-information fit statistics tended to have higher power than the 

heuristic fit statistics in general. Lastly, these two types of fit statistics were applied to three 

large-scale assessments and two rating scales in organizational settings. The real data 

applications suggested that the overall fit statistics based on limited information method should 

be used with caution because they tended to reject well-fitting items.  

 A few recommendations can be provided based on the results from the current study. 

Both the overall M2 fit statistic and the averaged adjusted χ
2
/df statistics across item pairs/triplets 

can be examined for overall fit assessment. When the model is not large (i.e., with fewer than 40 

items), the overall M2 fit statistic can distinguish well-fitting items from those that fit less well. 

But when the model is large, it is very difficult to observe exact fit for a large number of possible 

response patterns and thus the M2 fit statistic seems to always reject the fitted model. When the 

sample size is larger than 3000, the overall fit of the data can also be assessed by evaluating the 

average adjusted χ
2
/df statistics for item pairs and triples. But when the sample size is smaller 
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than 3000, the average adjusted χ
2
/df statistics are usually not effective in detecting misfit based 

on the suggested cutoff value. While the pairwise adjusted χ
2
/df statistics can also be used to 

detect item pairs that fit less well than others, the pairwise fit statistics based on limited-

information method are more effective especially when the sample size is small. Consistent with 

the conclusion in Liu and Maydeu-Olivares (2014), statistics that utilize information matrix (e.g., 

𝑋̅𝑖𝑗
2 , 𝑅𝑖𝑗, and 𝑧𝑖𝑗 or 𝑧𝑜𝑟𝑑) have more power to detect misfit caused by multidimensionality and 

thus flagged more item pairs in the real data sets than those that do not require the computation 

of the information matrix (e.g., 𝑀𝑖𝑗). Among these more powerful statistics, 𝑅𝑖𝑗 statistics tend to 

have large sampling variance and thus are more likely to reject well-fitting items due to random 

error. Liu and Maydeu-Olivares (2014) recommended 𝑧𝑖𝑗 or 𝑧𝑜𝑟𝑑 statistics based on their type I 

error rate and power when the observed information matrix is used (as in Mplus; Muthén & 

Muthén, 2012). Moreover, it is easier to compare 𝑧𝑖𝑗 or 𝑧𝑜𝑟𝑑 statistics across item pairs because 

𝑋̅𝑖𝑗
2  statistics tend to have slightly different degrees of freedom estimated for each item pair. 

Finally, piecewise fit statistics for item triples are not only less useful than the pairwise fit 

statistics, but are also more computational intensive to calculate for all possible item triplets 

when the model is large. Therefore, pairwise fit statistics are recommended to detect problematic 

items that are involved in misfit item pairs.  

 What should researchers or practitioners do when they find model misfit? Here are a few 

procedures to follow, depending on the characteristics of the items and the scales. If item pairs 

with extremely large values of fit statistics are detected in the piecewise fit assessment, a content 

review of these problematic item pairs should be performed by the subject matter experts (SMEs). 

If the content of these problematic item(s) is confirmed to be different from others (i.e., misfit 

caused by multidimensional data structure) or to be repetitious among item pairs (i.e., misfit 
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caused by local dependency), the problematic item(s) should be removed to reassess the model 

fit if the scale is long (e.g., more than 10 items). If the scale is already very short (e.g., fewer 

than 10 items), removing items might cause a loss of measurement accuracy of the scale. Thus, 

the problematic item(s) should be revised and reevaluated with new data. Oftentimes, however, it 

is not clear even to the SMEs why items or item pairs show misfit. In this case, item removal has 

to rely entirely on statistics. Again if a scale is long, it is recommended that problematic items or 

item pairs be removed from the scale and model fit reassessed. If any improvement is detected in 

fit statistics, it is then confirmed that removing the problematic items was appropriate. When no 

extreme fit statistics are found across all item pairs, it is hard to tell which item pairs cause the 

problem. Instead, it is highly likely that the data cannot be accurately described by the fitted 

model in general. In this situation, it is recommended that the data should be fitted with a new 

statistical model, such as a multidimensional IRT model or a bifactor model.  

Limitations & Future Directions 

 The current study has some limitations that need to be addressed in future research. For 

the simulation study, it would be ideal if conditions with skewed item responses could be 

included in the analyses. As we can see in the real data applications, both positively and 

negatively skewed data seemed to show misfit to some extent. However, it is not completely 

certain that the misfit was caused by the skewness because there could be many other unknown 

factors such as local dependency that influenced the fit in the real data. With more control of the 

data structure, results from simulation studies would show us a clearer picture of how skewness 

affects misfit detection by both types of the fit statistics. In addition, more replications in each 

condition might improve the accuracy of the descriptive statistic, power, and type I error rate of 
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the limited-information fit statistics. When faster computers with larger memory capacity 

become available, it is recommended that 500 to 1000 replications be conducted.  

 For overall fit assessment for large models, discrepancies between the true and fitted 

models can almost always be detected, especially with large model and sample sizes. Therefore, 

it might not be necessary or even useful to examine exact fit. Rather, approximate fit, which is 

concerned with “whether the approximation provided by the fitted model is good enough”, 

should be evaluated to solve the over-rejection problem (Maydeu-Olivares & Joe, 2014). For 

example, in the applications to the three large-scale assessments, the overall M2 fit statistics 

showed severe misfit (p < .0001) for models with about 70 items and sample sizes of about 

20000. However, the approximate fit index, RMSEA, was only 0.02 for Physics B and English 

Literature, and 0.01 for World History. Based on the suggested cutoff of 0.05 as close fit in 

Maydeu-Olivares and Joe (2014), the 2PL and SGR models showed a close to excellent fit for 

the item responses. Therefore, in future applications both exact and approximate fit for overall fit 

assessment in IRT analyses should be examined to avoid over-rejecting well-fitted models, 

especially when the model includes many variables and the sample size is large. 

Finally, it would be interesting to develop limited-information fit statistics for more 

advanced IRT models such as the ideal point model. As the ideal point model is becoming more 

and more widely used in the psychometric analysis of personality inventories (e.g., Drasgow, 

Chernyshenko, & Stark, 2010), it is important to extend the limited-information statistics to the 

fit assessment for this more mathematically sophisticated model. For example, in the application 

to IPIP data of the current study, the SGR model did not fit the data well in either the honest or 

faking conditions. This means an alternative model is needed for item responses to personality 

inventory in general. In the original study (Cao et al., 2014), the averaged heuristic fit statistics 
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across item pairs and triples showed a better or at least comparable fit for the ideal point model 

than for the dominance model in both the honest and faking conditions for all five dimensions. If 

the limited-information fit statistics are available for the ideal point model, they can be applied 

together with the heuristic fit statistics to personality inventory or attitude rating scales to 

produce additional empirical evidence for model fit/misfit.  
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CONCLUSION 

Model-data fit assessment is an important step in the IRT analysis to ensure that the 

results are interpretable and trustworthy. An overall fit assessment should be evaluated first and 

then piecewise fit analysis can be conducted to detect the item pairs that fit less well. In spite of 

their limitations, both the heuristic fit statistics and the limited-information fit statistics provide 

important information about misfit detection. Researchers and practitioners should choose the fit 

statistics that possess the best psychometric properties for their data, and examine the model-data 

fit before they proceed to interpret their results, revise their scale or items, or search for a new 

model to fit the data.  
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TABLES 

Table 1. Means, standard deviations (in parentheses), and detection rates of M2 statistics for 100 

replications. 

One factor, MC items only 

 Sample Size (Number of Examinees) 

Model Size 200 500 1000 3000 

10MC, df = 35 

 𝑋.05
2 = 49.80 

35.21 (7.83) 

0.05 

35.61 (8.20) 

0.04 

34.20 (7.43) 

0.03 

35.78 (8.95) 

0.09 

20MC, df = 170 

 𝑋.05
2 = 201.42 

168.51 (19.03) 

0.06 

170.23 (18.24) 

0.05 

169.73 (17.30) 

0.02 

166.89 (17.59) 

0.01 

40MC, df = 740 

 𝑋.05
2 = 804.40) 

743.59 (34.88) 

0.04 

740.31 (33.52) 

0.05 

747.39 (38.65) 

0.07 

737.71 (36.20) 

0.02 

One factor, MC and 5 CR items 

 Sample Size (Number of Examinees) 

Model Size 200 500 1000 3000 

10 MC, df = 390 

 𝑋.05
2 = 437.05) 

396.78 (27.63) 

0.10 

388.83 (26.11) 

0.03 

393.36 (30.14) 

0.08 

392.36 (26.16) 

0.04 

20 MC, df = 725 

 𝑋.05
2 = 788.75 

731.73 (35.79) 

0.02 

725.66 (42.15) 

0.05 

728.13 (37.11) 

0.04 

723.69 (41.88) 

0.07 

40 MC, df = 1695 

 𝑋.05
2 = 1791.89 

1709.00 (60.04) 

0.08 

1704.50(54.46) 

0.03 

1698.50 (66.77) 

0.10 

1692.20 (59.88) 

0.05 

Two factors, MC items only 

 Sample Size (Number of Examinees) 

Model Size 200 500 1000 3000 

10MC, df = 35 

 𝑋.05
2 = 49.80 

37.78 (9.51) 

0.11 

56.52 (14.25) 

0.65 

56.73 (12.92) 

0.71 

113.22 (21.46) 

1.00 

20MC, df = 170 

 𝑋.05
2 = 201.42 

201.80 (23.76) 

0.45 

244.89 (28.31) 

0.94 

366.24 (48.21) 

1.00 

685.28 (69.46) 

1.00 

40MC, df = 740 

 𝑋.05
2 = 804.40) 

867.40 (51.95) 

0.89 

1074.30 (86.34) 

1.00 

1409.00 (126.09) 

1.00 

2745.90 (183.72) 

1.00 

Two factors, MC and 5 CR items 

 Sample Size (Number of Examinees) 

Model Size 200 500 1000 3000 

10 MC, df = 390 

 𝑋.05
2 = 437.05) 

425.15 (35.79) 

0.33 

474.78 (36.61) 

0.86 

603.49 (54.50) 

1.00 

851.25 (72.77) 

1.00 

20 MC, df = 725 

 𝑋.05
2 = 788.75 

810.45 (52.21) 

0.63 

918.00 (51.91) 

1.00 

1139.50 (73.30) 

1.00 

2048.50 (125.51) 

1.00 

40 MC, df = 1695 

 𝑋.05
2 = 1791.89 

1806.80 (73.45) 

0.56 

1959.80 (80.62) 

1.00 

2208.70 (99.20) 

1.00 

3247.10 (130.12) 

1.00 

Note. The detection rate is the type I error rate for the unidimensional models (the top two 

conditions in Table 1) and the power for the multidimensional models (the bottom two 

conditions in Table 1) 
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Table 2. Means and standard deviations (in parentheses) of mean adjusted χ
2 

/ df
 
statistics for 

100 replications across MC item pairs. 

One factor, MC items only 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -10.866 (0.696) -3.728 (0.246) -1.393 (0.111) 0.213 (0.042) 

20 -10.776 (0.669) -3.632 (0.248) -1.328 (0.113) 0.220 (0.037) 

40 -10.564 (0.784) -3.566 (0.240) -1.272 (0.124) 0.239 (0.039) 

Two factors, MC items only 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -10.543 (0.626) -3.060 (0.470) -0.962 (0.295) 0.681 (0.238) 

20 -9.910 (0.844) -2.977 (0.475) -0.543 (0.418) 0.919 (0.407) 

40 -9.787 (0.852) -2.868 (0.446) -0.602 (0.451) 0.899 (0.368) 

One factor, MC and CR items 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -10.618 (0.555) -3.602 (0.233) -1.253 (0.097) 0.248 (0.042) 

20 -10.416 (0.622) -3.576 (0.230) -1.275 (0.118) 0.244 (0.038) 

40 -10.484 (0.786) -3.540 (0.243) -1.273 (0.118) 0.244 (0.039) 

Two factors, MC and CR items 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -9.817 (0.626) -3.107 (0.274) -0.841 (0.264) 0.469 (0.148) 

20 -10.150 (0.684) -3.414 (0.247) -1.199 (0.145) 0.291 (0.063) 

40 -10.457 (0.825) -3.517 (0.234) -1.269 (0.118) 0.247 (0.039) 
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Table 3. Descriptive statistics of mean 𝑋̅𝑖𝑗
2  statistics for 100 replications across MC item pairs. 

 
 One factor, MC only One factor, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

 

10 MC 

Items 

Mean 1.061 1.040 0.992 1.027 1.016 0.965 1.018 1.020 

SD 0.159 0.144 0.149 0.148 0.153 0.134 0.115 0.167 

MAX 1.383 1.456 1.281 1.350 1.298 1.332 1.358 1.420 

MIN 0.785 0.792 0.652 0.732 0.636 0.686 0.817 0.717 

Type I Error 0.055 0.056 0.049 0.052 0.054 0.046 0.053 0.051 

 

20 MC 

Items 

Mean 1.008 1.011 1.008 0.986 1.035 1.009 1.024 1.014 

SD 0.121 0.147 0.151 0.140 0.137 0.144 0.133 0.146 

MAX 1.384 1.561 1.609 1.369 1.431 1.441 1.359 1.426 

MIN 0.667 0.691 0.659 0.661 0.693 0.706 0.721 0.657 

Type I Error 0.048 0.051 0.050 0.047 0.053 0.049 0.052 0.051 

 

40 MC 

Items 

Mean 1.024 1.015 1.021 1.009 1.022 1.017 1.013 1.012 

SD 0.137 0.149 0.151 0.138 0.146 0.142 0.145 0.143 

MAX 1.571 1.568 1.535 1.540 1.478 1.599 1.527 1.562 

MIN 0.635 0.635 0.639 0.593 0.665 0.639 0.661 0.668 

Type I Error 0.050 0.050 0.052 0.050 0.051 0.051 0.050 0.051 

 
 Two factors, MC only Two factors, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

 

10 MC 

Items 

Mean 1.175 1.715 1.670 3.343 1.450 2.213 3.573 7.383 

SD 0.233 0.732 0.489 1.449 0.318 0.728 2.409 3.681 

MAX 1.904 4.553 2.943 8.622 2.090 4.393 11.973 17.109 

MIN 0.859 0.954 1.023 1.821 0.903 1.106 1.374 2.719 

Power 0.065 0.124 0.130 0.317 0.105 0.187 0.327 0.641 

 

20 MC 

Items 

Mean 1.213 1.464 2.176 4.075 1.131 1.205 1.346 1.749 

SD 0.232 0.334 0.803 2.051 0.166 0.197 0.303 0.535 

MAX 2.139 2.812 5.561 12.393 1.782 1.913 2.833 3.466 

MIN 0.767 0.926 1.090 1.273 0.735 0.748 0.792 0.726 

Power 0.075 0.108 0.187 0.391 0.065 0.075 0.090 0.138 

 

40 MC 

Items 

Mean 1.187 1.464 1.915 3.747 1.033 1.045 1.027 1.062 

SD 0.204 0.382 0.665 1.804 0.143 0.140 0.143 0.159 

MAX 1.852 3.964 6.722 11.700 1.465 1.509 1.506 1.591 

MIN 0.713 0.802 0.847 1.208 0.658 0.681 0.692 0.658 

Power 0.070 0.103 0.158 0.363 0.052 0.054 0.052 0.056 

Note. The mean of df is approximately 1 in all conditions. 𝑋(1).05
2 = 3.84. The type I error rates 

and power are based on the averaged detection rates across all item pairs in the model. 
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Table 4. Descriptive statistics of mean 𝑅𝑖𝑗 statistics for 100 replications across MC item pairs. 

 
 One factor, MC only One factor, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

 

10 MC 

Items 

Mean 1.548 1.518 1.717 1.947 2.610 1.983 2.216 2.474 

SD 0.355 0.366 0.426 0.442 1.290 0.504 0.665 0.661 

MAX 2.704 2.658 2.625 2.953 7.245 3.171 4.184 4.334 

MIN 0.959 0.912 1.005 1.063 1.095 0.960 0.975 1.123 

Type I error 0.042 0.038 0.045 0.044 0.060 0.054 0.062 0.068 

 

20 MC 

Items 

Mean 2.101 2.182 2.411 2.129 1.881 2.383 2.523 2.426 

SD 0.765 0.698 0.781 0.550 0.504 0.784 0.700 0.595 

MAX 6.080 6.600 4.665 4.807 4.270 6.135 6.726 5.383 

MIN 1.157 1.077 0.939 1.300 1.056 1.091 1.158 1.241 

Type I error 0.052 0.054 0.062 0.044 0.041 0.063 0.066 0.060 

 

40 MC 

Items 

Mean 2.933 2.718 2.328 2.530 2.283 2.167 2.990 2.719 

SD 0.985 1.036 0.686 0.532 0.882 0.682 1.039 0.637 

MAX 13.872 9.139 6.904 6.963 19.309 8.298 9.859 6.261 

MIN 1.054 0.939 1.149 1.087 1.088 0.901 1.171 1.023 

Type I error 0.087 0.079 0.055 0.065 0.055 0.049 0.083 0.072 

 
 Two factors, MC only Two factors, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

 

10 MC 

Items 

Mean 1.575 2.352 2.100 4.167 1.873 2.952 4.133 8.757 

SD 0.457 0.817 0.506 1.503 0.441 1.056 2.531 3.913 

MAX 2.917 5.480 3.234 9.180 2.834 5.647 12.476 18.265 

MIN 0.984 1.229 1.187 2.152 1.085 1.229 1.552 3.066 

Power 0.043 0.086 0.076 0.234 0.072 0.152 0.223 0.558 

 

20 MC 

Items 

Mean 1.941 2.718 3.140 5.120 2.030 2.222 2.143 3.036 

SD 0.745 0.793 1.109 2.131 0.663 0.748 0.485 0.750 

MAX 6.460 6.302 7.943 13.072 5.790 6.220 4.831 5.688 

MIN 1.020 1.426 1.316 1.571 0.955 0.959 1.231 1.025 

Power 0.053 0.083 0.128 0.280 0.053 0.058 0.054 0.089 

 

40 MC 

Items 

Mean 2.516 3.187 3.346 5.394 3.116 2.787 2.432 2.187 

SD 0.667 1.072 0.985 2.034 1.399 0.896 0.638 0.417 

MAX 7.041 8.535 8.096 13.338 25.493 8.227 6.015 4.076 

MIN 1.255 1.054 1.285 1.541 1.299 1.011 1.041 0.976 

Power 0.076 0.113 0.124 0.280 0.085 0.077 0.058 0.040 

Note. The mean of df is approximately 2 in all conditions. 𝑋(2).05
2 = 5.99. The type I error rates 

and power are based on the averaged detection rates across all item pairs in the model. 
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Table 5. Descriptive statistics of mean 𝑧𝑖𝑗
 
statistics for 100 replications across MC item pairs. 

 
 One factor, MC only One factor, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

 

10 MC 

Items 

Mean 0.023 0.000 0.001 -0.007 0.018 -0.004 -0.018 -0.001 

SD 0.106 0.109 0.118 0.107 0.091 0.084 0.097 0.105 

MAX 0.161 0.298 0.316 0.207 0.175 0.175 0.243 0.237 

MIN -0.285 -0.292 -0.246 -0.268 -0.207 -0.160 -0.199 -0.218 

Type I error 0.055 0.056 0.049 0.052 0.054 0.046 0.052 0.052 

 

20 MC 

Items 

Mean 0.048 0.032 0.016 0.010 0.007 0.003 -0.011 0.002 

SD 0.100 0.085 0.102 0.099 0.092 0.097 0.103 0.104 

MAX 0.300 0.268 0.309 0.268 0.279 0.267 0.268 0.242 

MIN -0.204 -0.245 -0.229 -0.211 -0.293 -0.269 -0.243 -0.356 

Type I error 0.046 0.051 0.051 0.047 0.052 0.050 0.052 0.051 

 

40 MC 

Items 

Mean 0.071 -0.019 0.002 -0.024 0.065 -0.038 0.015 0.009 

SD 0.102 0.105 0.103 0.097 0.099 0.097 0.102 0.101 

MAX 0.398 0.283 0.287 0.244 0.369 0.237 0.311 0.351 

MIN -0.227 -0.311 -0.295 -0.318 -0.291 -0.362 -0.339 -0.270 

Type I error 0.051 0.051 0.051 0.050 0.050 0.051 0.050 0.051 

 
 Two factors, MC only Two factors, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

 

10 MC 

Items 

Mean 0.007 0.048 0.025 0.024 0.627 1.014 1.459 2.422 

SD 0.313 0.839 0.775 1.543 0.209 0.291 0.633 0.689 

MAX 0.718 1.603 1.313 2.749 1.044 1.720 3.266 4.004 

MIN -0.425 -0.965 -0.901 -1.859 0.158 0.453 0.601 1.294 

Power 0.066 0.125 0.130 0.316 0.104 0.180 0.326 0.639 

 

20 MC 

Items 

Mean 0.027 0.024 -0.020 0.010 0.263 0.398 0.530 0.780 

SD 0.438 0.684 1.072 1.751 0.137 0.153 0.210 0.259 

MAX 1.031 1.343 2.041 3.298 0.648 0.821 1.320 1.513 

MIN -0.692 -0.930 -1.760 -2.673 -0.077 0.025 0.082 0.102 

Power 0.075 0.108 0.186 0.390 0.066 0.075 0.088 0.130 

 

40 MC 

Items 

Mean 0.056 -0.051 -0.011 -0.033 0.150 0.045 0.125 0.199 

SD 0.421 0.670 0.949 1.645 0.111 0.105 0.103 0.111 

MAX 0.926 1.610 2.362 3.077 0.464 0.446 0.404 0.577 

MIN -0.722 -1.285 -1.687 -2.931 -0.169 -0.310 -0.208 -0.125 

Power 0.070 0.104 0.157 0.360 0.053 0.054 0.052 0.055 

Note. The type I error rates and power are based on the averaged detection rates across all item 

pairs in the model. 
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Table 6. Correlations among mean adjusted χ
2
/df, 𝑋̅𝑖𝑗

2 , 𝑅𝑖𝑗 and 𝑧𝑖𝑗
 
statistics for 100 replications across multidimensional MC item pairs. 

N = 200 above the main diagonal  

N = 500 below the main diagonal 

N = 1000 above the main diagonal  

N = 3000 below the main diagonal 

10 MC Adj. χ
2 

/ df 𝑋̅𝑖𝑗
2  𝑅𝑖𝑗 𝑧𝑖𝑗 10 MC Adj. χ

2 
/ df 𝑋̅𝑖𝑗

2  𝑅𝑖𝑗 𝑧𝑖𝑗 

Adj. χ
2 

/ df 1 .368* -.115 .443** Adj. χ
2 

/ df 1 .816** .565** .752** 

𝑋̅𝑖𝑗
2  .906** 1 .627** .437** 𝑋̅𝑖𝑗

2  .964** 1 .873** .918** 

𝑅𝑖𝑗 .718** .877** 1 .329* 𝑅𝑖𝑗 .894** .959** 1 .854** 

𝑧𝑖𝑗 .869** .935** .834** 1 𝑧𝑖𝑗 .946** .979** .960** 1 

 

N = 200 above the main diagonal  

N = 500 below the main diagonal 

N = 1000 above the main diagonal  

N = 3000 below the main diagonal 

20 MC Adj. χ
2 

/ df 𝑋̅𝑖𝑗
2  𝑅𝑖𝑗 𝑧𝑖𝑗 20 MC Adj. χ

2 
/ df 𝑋̅𝑖𝑗

2  𝑅𝑖𝑗 𝑧𝑖𝑗 

Adj. χ
2 

/ df 1 .742** .075 .524** Adj. χ
2 

/ df 1 .973** .785** .915** 

𝑋̅𝑖𝑗
2  .940** 1 .406** .721** 𝑋̅𝑖𝑗

2  .978** 1 .840** .960** 

𝑅𝑖𝑗 .404** .462** 1 .450** 𝑅𝑖𝑗 .937** .974** 1 .852** 

𝑧𝑖𝑗 .793** .871** .516** 1 𝑧𝑖𝑗 .955** .975** .968** 1 

 

N = 200 above the main diagonal  

N = 500 below the main diagonal 

N = 1000 above the main diagonal  

N = 3000 below the main diagonal 

40 MC Adj. χ
2 

/ df 𝑋̅𝑖𝑗
2  𝑅𝑖𝑗 𝑧𝑖𝑗 40 MC Adj. χ

2 
/ df 𝑋̅𝑖𝑗

2  𝑅𝑖𝑗 𝑧𝑖𝑗 

Adj. χ
2 

/ df 1 .699** .253** .397** Adj. χ
2 

/ df 1 .963** .672** .900** 

𝑋̅𝑖𝑗
2  .949** 1 .463** .634** 𝑋̅𝑖𝑗

2  .990** 1 .764** .947** 

𝑅𝑖𝑗 .402** .517** 1 .275** 𝑅𝑖𝑗 .909** .926** 1 .771** 

𝑧𝑖𝑗 .762** .873** .597** 1 𝑧𝑖𝑗 .968** .976** .925** 1 

Note. There are 45 MC pairs for a 10-MC model, 190 MC pairs for a 20-MC model, and 780 MC pairs for a 40-MC model. 

** indicated the correlation coefficient was significant at the p = .01 level (two-tailed). 

* indicated the correlation coefficient was significant at the p = .05 level (two-tailed).  
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Table 7. Means and standard deviations (in parentheses) of mean adjusted χ
2 

/ df
 
statistics across 

MC item triples for 100 replications. 

One factor, MC items only 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -7.761 (0.639) -2.459 (0.252) -0.768 (0.113) 0.425 (0.041) 

20 -7.992 (0.874) -2.330 (0.239) -0.676 (0.108) 0.437 (0.037) 

40 -7.628 (4.932) -2.284 (1.979) -0.610 (1.003) 0.461 (0.334) 

Two factors, MC items only 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -7.359 (0.582) -1.541 (0.356) -0.206 (0.243) 1.053 (0.202) 

20 -6.791 (0.967) -1.460 (0.444) 0.369 (0.435) 1.371 (0.417) 

40 -6.625 (5.550) -1.359 (2.561) 0.276 (1.554) 1.338 (0.815) 

One factor, MC and CR items 

Number of 

 MC items 

Number of Examinees 

200 500 1000 3000 

10 -7.658 (0.719) -2.317 (0.221) -0.606 (0.098) 0.468 (0.042) 

20 -7.396 (0.773) -2.345 (0.278) -0.622 (0.110) 0.465 (0.036) 

40 -7.524 (4.973) -2.252 (2.002) -0.613 (1.004) 0.466 (0.337) 

Two factors, MC and CR items 

Number of  

MC items 

Number of Examinees 

200 500 1000 3000 

10 -6.632 (0.541) -1.845 (0.230) -0.315 (0.140) 0.627 (0.082) 

20 -7.225 (0.807) -2.149 (0.224) -0.557 (0.122) 0.491 (0.043) 

40 -7.492 (5.003) -2.225 (2.019) -0.611 (1.000) 0.468 (0.337) 
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Table 8. Descriptive statistics of mean Mn
 
statistics for 100 replications across 10 MC item 

triples. 

 One factor, MC only One factor, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

Mean 1.023 1.023 1.066 1.119 0.862 0.906 0.979 1.299 

SD 0.135 0.161 0.344 0.490 0.190 0.170 0.259 1.055 

MAX 1.324 1.616 3.986 5.449 1.341 1.490 2.050 10.621 

MIN 0.712 0.672 0.678 0.782 0.432 0.522 0.565 0.565 

Type I Error 0.054 0.051 0.053 0.055 0.034 0.037 0.039 0.062 

 Two factors, MC only Two factors, MC and CR 

N 200 500 1000 3000 200 500 1000 3000 

Mean 1.007 1.015 1.032 1.223 0.899 0.921 0.984 1.383 

SD 0.135 0.192 0.263 0.832 0.141 0.153 0.231 0.814 

MAX 1.404 2.118 2.748 6.966 1.411 1.465 1.835 8.567 

MIN 0.627 0.602 0.602 0.654 0.592 0.493 0.574 0.710 

Power 0.051 0.050 0.047 0.049 0.039 0.041 0.047 0.078 

Note. The type I error rates and power are based on the averaged detection rates across all item 

triplets in the model. 
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Table 9. Parameter estimates for the 69 MC and 7 CR items of the Physics B Exam. 

MC Item a b MC Item a b MC Item a b 

1 0.763 -1.186 24 0.552 0.010 48 0.803 0.778 

2 0.787 -0.707 25 0.319 2.381 49 0.534 0.356 

3 0.777 -0.461 27 0.773 0.107 50 0.305 1.471 

4 0.741 -0.659 28 0.344 1.444 51 0.642 0.272 

5 0.458 -2.683 29 0.650 -1.250 52 0.632 0.323 

6 0.807 -1.420 30 0.565 -0.606 53 0.578 -0.410 

7 0.513 -0.540 31 0.484 0.226 54 0.327 -1.181 

8 0.626 -0.051 32 0.662 0.175 55 0.470 -0.357 

9 0.355 2.322 33 0.432 1.343 56 0.289 2.602 

10 0.451 -0.518 34 0.356 0.348 57 0.424 0.961 

11 0.470 -0.184 35 0.467 -0.845 58 0.353 0.810 

12 0.492 0.133 36 0.682 -0.942 59 0.604 1.522 

13 0.779 -0.368 37 0.815 -1.037 60 0.511 0.361 

14 0.328 1.976 38 0.652 1.221 61 0.242 -0.416 

15 0.131 4.230 39 0.647 0.311 62 0.598 2.506 

16 0.381 0.148 40 0.365 1.793 63 0.370 1.373 

17 0.331 0.280 41 0.484 0.163 64 0.389 0.235 

18 0.538 0.083 42 0.443 0.970 65 0.528 1.761 

19 0.502 0.568 43 0.353 1.126 66 0.525 0.066 

20 0.748 -0.923 44 0.387 1.738 67 0.425 1.856 

21 0.496 -0.973 45 0.510 0.101 68 0.504 -0.263 

22 0.574 -0.856 46 0.527 -0.101 69 0.392 0.879 

23 0.160 2.998 47 0.384 -0.429 70 0.388 1.113 

 

CR Item a b1 b2 b3 b4 

1 1.222 -1.243 -0.454 0.491 1.180 

2 1.466 -1.041 -0.260 0.562 1.212 

3 1.018 -0.850 -0.001 0.819 1.762 

4 0.801 -1.552 -0.581 0.231 1.034 

5 1.303 -1.228 -0.346 0.336 1.144 

6 0.835 -0.910 -0.073 1.128 2.538 

7 1.105 -1.384 -0.203 0.785 1.752 

Note. 1.702 is not included in the a-parameters of MC and CR items. 
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Table 10. Parameter estimates for the 70 MC and 3 CR items of the World History Exam. 

MC Item a b MC Item a b MC Item a b 

1 0.865 -0.981 25 0.642 -1.356 49 0.668 -1.140 

2 0.714 -1.503 26 0.648 -1.067 50 0.358 0.276 

3 0.535 -0.803 27 0.487 -1.244 51 0.482 -1.804 

4 0.320 -1.067 28 0.258 2.382 52 0.764 -0.558 

5 0.453 -1.703 29 0.335 0.426 53 0.702 -2.029 

6 0.617 -1.027 30 0.442 -0.863 54 0.350 0.164 

7 0.594 -0.302 31 0.434 -0.062 55 0.830 -1.378 

8 0.568 -0.323 32 0.554 -0.535 56 0.539 -0.421 

9 0.705 -2.097 33 0.693 -1.447 57 0.115 1.856 

10 0.441 -2.852 34 0.916 -1.450 58 0.808 -0.964 

11 0.597 -1.298 35 0.565 -1.409 59 0.611 -0.347 

12 0.482 -0.956 36 0.702 -1.522 60 0.041 1.554 

13 0.446 0.892 37 0.274 -1.668 61 0.235 -0.260 

14 0.404 0.744 38 0.600 -1.276 62 0.518 -0.738 

15 0.421 0.314 39 0.952 -0.970 63 0.289 -1.551 

16 0.492 -0.334 40 0.814 -1.717 64 0.615 -0.117 

17 0.418 0.907 41 0.558 -2.154 65 0.609 -0.907 

18 0.599 -0.462 42 0.652 -1.143 66 0.768 -1.557 

19 0.587 -0.488 43 0.192 -2.407 67 0.353 0.186 

20 0.414 -2.268 44 0.855 -1.281 68 0.498 -0.840 

21 0.468 -0.205 45 0.739 -0.677 69 0.388 -0.579 

22 0.616 -1.200 46 0.646 -0.740 70 0.552 -0.347 

23 0.551 -0.296 47 0.935 -0.856    

24 0.765 -0.545 48 1.032 -0.864    

 

CR Item a b1 b2 b3 b4 

1 0.719 -1.830 -0.577 0.869 2.471 

2 0.761 -1.150 -0.193 0.516 1.837 

3 0.934 -0.487 0.197 0.777 1.790 

Note. 1.702 is not included in the a-parameters of MC and CR items. 
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Table 11. Parameter estimates for the 55 MC and 3 CR items of the English Literature Exam. 

MC Item a b MC Item a b MC Item a b 

1 0.756 -2.427 20 0.479 0.116 39 0.533 -0.038 

2 0.651 -0.352 21 0.790 -0.750 40 0.875 -0.788 

3 0.610 0.939 22 0.895 -1.459 41 0.393 -1.133 

4 0.430 0.411 23 0.482 -0.393 42 0.461 -0.776 

5 0.429 -0.626 24 0.574 -1.703 43 0.222 0.551 

6 0.615 0.667 25 0.443 -0.631 44 0.314 0.208 

7 0.332 0.950 26 0.316 0.923 45 0.709 0.185 

8 0.313 -0.629 27 0.653 0.068 46 0.336 -0.130 

9 0.370 -1.723 28 0.416 -1.363 47 0.983 -1.681 

10 0.727 0.074 29 0.402 -1.520 48 0.321 -2.179 

11 0.363 -1.184 30 0.358 0.251 49 0.277 0.153 

12 0.541 2.073 31 0.661 0.973 50 0.528 -1.542 

13 0.480 0.229 32 0.894 -0.305 51 0.442 -0.435 

14 0.364 0.305 33 0.471 -0.827 52 0.301 0.538 

15 0.249 0.825 34 0.443 0.293 53 0.488 -0.411 

16 0.576 -0.635 35 0.486 0.488 54 0.277 -0.513 

17 0.313 0.774 36 0.820 -1.145 55 0.504 -1.443 

18 0.341 1.588 37 0.780 -0.618    

19 0.630 -1.198 38 0.576 0.403    

 

CR Item a b1 b2 b3 b4 

1 0.801 -1.720 -0.716 0.465 1.532 

2 0.626 -1.454 0.001 1.321 2.561 

3 0.682 -1.623 -0.399 0.670 1.707 

Note. 1.702 is not included in the a-parameters of MC and CR items. 
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Table 12. Fit statistics for MC item pairs in the three AP
®
 Exams. 

 Physics B (2346 pairs)  

Statistics 𝑋̅𝑖𝑗
2  𝑅𝑖𝑗 𝑧𝑖𝑗 

Mean 11.326 146.877 -0.477 

SD 39.887 461.009 3.455 

Min 0.000 0.000 -13.831 

Max 1550.142 9657.265 37.468 

Median 4.752 37.152 -0.624 

Number (%) of misfit (p < .05) 1279 (54.52%) 1970 (83.97%) 1303 (55.54%) 

 World History (2415 pairs) 

Statistics 𝑋̅𝑖𝑗
2  𝑅𝑖𝑗 𝑧𝑖𝑗 

Mean 5.271 93.573 -1.233 

SD 34.022 215.550 2.369 

Min 0.000 0.000 -8.322 

Max 1633.313 3457.431 39.045 

Median 2.243 41.327 -1.338 

Number (%) of misfit (p < .05) 799 (33.08%) 2097 (86.83%) 1106 (45.80%) 

 English Literature (1485 pairs) 

Statistics 𝑋̅𝑖𝑗
2  𝑅𝑖𝑗 𝑧𝑖𝑗 

Mean 10.504 59.543 -0.429 

SD 77.581 158.214 3.275 

Min 0.007 0.003 -11.816 

Max 2572.416 2580.048 50.812 

Median 2.109 24.713 -0.657 

Number (%) of misfit (p < .05) 561 (37.78%) 1188 (80.00%) 612 (41.21%) 

Note. The df was estimated to be approximately 1 for 𝑋̅𝑖𝑗
2 ; and 1, 2, or 3 for 𝑅𝑖𝑗 statistics. 
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Table 13. Fit indices of confirmatory factor analyses for unidimensional, two-factor, and bi-

factor models of AP
®
 Exams. 

Exam Model CFI TLI RMSEA (90% CI) 

 

Physics B 

Unidimensional 0.958 0.956 0.023 (0.023, 0.024) 

Two-factor 0.959 0.958 0.023 (0.023, 0.023) 

Bi-factor 0.973 0.972 0.019 (0.019, 0.019) 

 

World History 

Unidimensional 0.981 0.980 0.015 (0.015, 0.015) 

Two-factor 0.981 0.980 0.015 (0.015, 0.015) 

Bi-factor 0.989 0.988 0.011 (0.011, 0.012) 

 

English Literature 

Unidimensional 0.942 0.940 0.026 (0.025, 0.026) 

Two-factor 0.950 0.948 0.024 (0.023, 0.024) 

Bi-factor 0.968 0.965 0.019 (0.019, 0.020) 

Note: CFI = Comparative Fit Index; TLI = Tucker Lewis Index; RMSEA = Root Mean Square 

Error of Approximation; CI = Confidence Interval. 
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Table 14. Descriptive statistics and parameter estimates for International Personality Item Pool (IPIP) items the honest and faking 

conditions. 

Agreeableness 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

1 2.127 0.785 0.949 -2.511 -1.430 0.547 1 2.467 0.794 0.878 -2.672 -2.012 -0.527 

2 2.119 0.671 0.973 -3.081 -1.545 0.843 2 2.567 0.554 1.612 -4.848 -2.074 -0.355 

3 2.105 0.863 0.528 -3.851 -1.469 0.567 3 2.790 0.512 1.385 -2.969 -2.159 -1.207 

4 2.160 0.700 1.898 -2.055 -1.319 0.500 4 2.353 0.704 1.798 -2.128 -1.543 0.054 

5 1.967 0.775 1.248 -2.210 -0.942 0.860 5 2.443 0.676 1.040 -2.941 -2.060 -0.167 

6 2.097 0.678 1.161 -2.652 -1.397 0.807 6 1.969 0.752 0.629 -3.457 -1.471 1.327 

7 1.963 0.757 1.108 -2.363 -1.014 0.962 7 2.539 0.638 1.204 -2.856 -2.094 -0.411 

8 2.000 0.615 1.228 -2.724 -1.304 1.231 8 2.363 0.684 1.531 -2.335 -1.683 0.057 

9 2.072 0.703 1.461 -2.244 -1.218 0.768 9 2.156 0.689 1.379 -2.304 -1.485 0.641 

10 1.825 0.661 0.687 -3.580 -1.093 2.100 10 2.487 0.614 1.454 -2.893 -1.922 -0.185 

Conscientiousness 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

1 1.706 0.699 0.727 -3.289 -0.531 2.134 1 2.679 0.545 1.627 -2.994 -2.169 -0.689 

2 1.582 0.828 1.284 -1.711 -0.120 1.414 2 2.511 0.669 1.123 -3.157 -1.976 -0.353 

3 2.213 0.627 0.664 -4.381 -2.422 0.871 3 2.784 0.452 1.587 -3.299 -2.570 -1.020 

4 1.881 0.782 0.910 -2.554 -0.863 1.195 4 2.705 0.597 1.736 -2.512 -1.950 -0.883 

5 1.496 0.798 1.011 -1.850 0.015 1.855 5 2.593 0.600 1.969 -2.543 -1.949 -0.432 

6 1.626 0.839 1.130 -1.779 -0.275 1.416 6 2.575 0.681 1.361 -2.579 -1.908 -0.581 

7 2.006 0.694 0.789 -3.174 -1.438 1.272 7 2.483 0.653 1.021 -3.056 -2.330 -0.205 

8 2.049 0.735 0.696 -3.543 -1.476 1.066 8 2.693 0.556 1.200 -3.511 -2.333 -0.849 

9 1.763 0.711 0.820 -2.775 -0.787 1.867 9 2.563 0.589 1.365 -3.257 -2.175 -0.359 

10 1.979 0.638 0.735 -3.720 -1.523 1.597 10 2.547 0.598 1.062 -3.391 -2.511 -0.343 

Extraversion 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

1 1.169 0.830 1.066 -1.067 0.580 2.238 1 1.545 0.886 0.570 -2.449 -0.150 2.054 

2 1.551 0.903 1.444 -1.402 -0.015 1.176 2 1.985 0.810 0.913 -2.585 -1.006 0.830 

3 1.778 0.774 0.967 -2.312 -0.683 1.456 3 2.619 0.577 1.382 -3.231 -2.110 -0.545 
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Table 14 (cont.). Descriptive statistics and parameter estimates for International Personality Item Pool (IPIP) items the honest and 

faking conditions. 

Extraversion 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

4 1.380 0.806 1.319 -1.458 0.220 1.723 4 2.225 0.715 1.271 -2.629 -1.445 0.372 

5 1.684 0.796 1.347 -1.795 -0.411 1.379 5 2.350 0.667 1.595 -2.649 -1.587 0.099 

6 1.900 0.747 0.944 -2.705 -0.915 1.239 6 2.390 0.646 1.281 -2.840 -1.924 0.068 

7 1.450 0.894 1.509 -1.161 0.019 1.444 7 2.250 0.746 1.157 -2.520 -1.518 0.272 

8 1.157 0.790 0.818 -1.363 0.787 2.618 8 1.663 0.862 0.693 -2.516 -0.330 1.533 

9 1.454 0.818 1.159 -1.488 -0.020 1.872 9 1.976 0.770 0.866 -2.517 -1.305 1.074 

10 1.141 0.852 1.204 -0.935 0.615 1.980 10 2.068 0.766 1.250 -2.355 -1.111 0.627 

Emotional Stability 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

1 1.446 0.868 1.469 -1.289 0.074 1.493 1 2.582 0.637 2.289 -2.454 -1.637 -0.473 

2 1.838 0.717 0.658 -3.232 -1.103 1.939 2 2.283 0.639 0.643 -4.156 -2.831 0.602 

3 1.072 0.753 0.934 -1.164 1.009 2.646 3 1.925 0.853 0.685 -3.389 -0.795 0.892 

4 1.385 0.825 0.741 -1.758 0.177 2.414 4 2.176 0.859 0.750 -2.600 -1.719 0.339 

5 1.777 0.764 0.933 -2.445 -0.615 1.519 5 2.615 0.617 1.795 -2.486 -1.917 -0.557 

6 1.756 0.835 1.796 -1.623 -0.431 1.047 6 2.667 0.580 1.884 -2.703 -1.896 -0.692 

7 1.562 0.819 1.227 -1.609 -0.188 1.627 7 2.436 0.682 1.504 -2.608 -1.746 -0.124 

8 1.791 0.841 1.557 -1.749 -0.460 1.007 8 2.677 0.614 1.895 -2.529 -1.809 -0.795 

9 1.703 0.815 1.589 -1.742 -0.341 1.181 9 2.667 0.591 1.922 -2.477 -1.920 -0.709 

10 1.719 0.850 1.342 -1.754 -0.379 1.147 10 2.621 0.627 1.779 -2.445 -1.907 -0.594 

Openness 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

1 2.099 0.717 0.664 -4.069 -1.657 0.937 1 2.537 0.606 1.362 -3.032 -2.036 -0.321 

2 2.039 0.784 0.881 -2.655 -1.260 0.808 2 2.560 0.625 1.210 -2.877 -2.190 -0.443 

3 2.203 0.765 0.978 -2.916 -1.400 0.341 3 2.281 0.695 0.913 -3.113 -1.945 0.314 

4 2.041 0.785 0.931 -2.512 -1.240 0.794 4 2.414 0.699 1.067 -2.856 -1.926 -0.107 

5 2.172 0.626 1.227 -2.993 -1.599 0.704 5 2.690 0.520 1.564 -3.301 -2.277 -0.722 

6 2.207 0.764 0.958 -2.816 -1.494 0.352 6 2.575 0.630 1.209 -2.873 -2.142 -0.518 
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Table 14 (cont.). Descriptive statistics and parameter estimates for International Personality Item Pool (IPIP) items the honest and 

faking conditions. 

Openness 

Honest Mean SD a b1 b2 b3 Faking Mean SD a b1 b2 b3 

7 2.193 0.606 0.894 -3.936 -1.960 0.790 7 2.719 0.559 1.720 -2.634 -2.016 -0.881 

8 1.777 0.808 0.747 -2.800 -0.610 1.447 8 1.541 0.880 0.307 -4.198 -0.146 3.442 

9 2.196 0.660 0.624 -4.586 -2.285 0.829 9 2.152 0.699 0.717 -3.299 -2.070 0.842 

10 2.171 0.666 1.572 -2.573 -1.332 0.547 10 2.669 0.572 1.850 -2.506 -2.064 -0.674 

Note. The a-parameters do not include the scaling constant of 1.702. 
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Table 15. Piecewise fit
 
statistics for IPIP Agreeableness item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 5.55 36.80 7 0.00 62.40 9.02 0.00 188.73 12 0.00 -6.27 0.00 

1 3 10.45 26.69 7 0.00 36.99 9.22 0.00 371.94 14 0.00 -1.92 0.05 

1 4 16.00 80.27 7 0.00 87.54 8.91 0.00 225.85 12 0.00 -6.62 0.00 

1 5 10.54 67.50 7 0.00 78.45 9.05 0.00 153.36 12 0.00 -4.94 0.00 

1 6 8.71 50.60 7 0.00 58.61 8.86 0.00 166.25 12 0.00 -4.32 0.00 

1 7 14.38 46.56 7 0.00 52.59 9.00 0.00 118.48 12 0.00 -4.14 0.00 

1 8 5.15 98.32 7 0.00 111.98 8.96 0.00 248.75 12 0.00 -6.31 0.00 

1 9 8.73 68.18 7 0.00 76.86 8.97 0.00 201.38 12 0.00 -6.66 0.00 

1 10 5.19 70.70 7 0.00 88.03 9.25 0.00 194.80 14 0.00 -5.97 0.00 

2 3 1.72 18.04 7 0.01 26.10 9.05 0.00 372.47 14 0.00 -3.36 0.00 

2 4 3.31 20.62 7 0.00 24.88 8.79 0.00 448.64 13 0.00 -5.00 0.00 

2 5 5.12 44.16 7 0.00 49.98 8.87 0.00 125.86 12 0.00 -3.65 0.00 

2 6 1.37 15.21 7 0.03 23.24 8.72 0.00 218.61 12 0.00 -4.65 0.00 

2 7 20.77 42.89 7 0.00 64.24 8.79 0.00 110.70 12 0.00 -0.25 0.81 

2 8 -3.33 15.42 7 0.03 18.11 8.75 0.03 86.78 12 0.00 -1.20 0.23 

2 9 1.51 12.73 7 0.08 24.33 8.77 0.00 108.53 12 0.00 -2.20 0.03 

2 10 3.40 28.92 7 0.00 35.14 9.03 0.00 83.96 13 0.00 -0.73 0.46 

3 4 1.79 20.35 7 0.00 28.45 8.93 0.00 95.65 13 0.00 -3.82 0.00 

3 5 9.82 33.59 7 0.00 39.29 9.07 0.00 75.92 13 0.00 -1.95 0.05 

3 6 1.23 13.96 7 0.05 21.68 8.91 0.01 175.05 13 0.00 -2.69 0.01 

3 7 7.95 31.46 7 0.00 36.15 9.05 0.00 199.68 13 0.00 -3.32 0.00 

3 8 1.63 24.45 7 0.00 29.11 8.96 0.00 161.45 13 0.00 -1.98 0.05 

3 9 3.67 21.82 7 0.00 30.19 8.97 0.00 120.66 13 0.00 -4.18 0.00 

3 10 1.59 28.62 7 0.00 32.03 9.30 0.00 175.59 15 0.00 -1.96 0.05 

4 5 6.47 85.03 7 0.00 93.37 8.88 0.00 287.68 12 0.00 -7.17 0.00 

4 6 8.64 28.54 7 0.00 38.34 8.55 0.00 85.75 12 0.00 -3.40 0.00 

4 7 12.60 89.23 7 0.00 100.28 8.82 0.00 213.95 12 0.00 -6.82 0.00 

4 8 8.45 46.77 7 0.00 51.69 8.70 0.00 136.32 12 0.00 -4.20 0.00 

4 9 12.88 126.79 7 0.00 135.43 8.67 0.00 150.64 12 0.00 -5.16 0.00 
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Table 15 (cont.). Piecewise fit
 
statistics for IPIP Agreeableness item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 1.51 41.09 7 0.00 47.20 9.02 0.00 257.05 14 0.00 -5.02 0.00 

5 6 3.20 39.76 7 0.00 49.84 8.79 0.00 121.80 12 0.00 -5.69 0.00 

5 7 16.43 35.48 7 0.00 56.65 8.82 0.00 112.72 12 0.00 -1.21 0.23 

5 8 -1.81 50.60 7 0.00 59.15 8.86 0.00 128.25 12 0.00 -5.75 0.00 

5 9 2.20 76.25 7 0.00 83.96 8.89 0.00 155.51 12 0.00 -6.04 0.00 

5 10 2.61 65.06 7 0.00 75.75 9.12 0.00 148.52 13 0.00 -5.37 0.00 

6 7 6.84 26.28 7 0.00 38.35 8.73 0.00 152.28 12 0.00 -5.34 0.00 

6 8 6.41 47.36 7 0.00 51.28 8.62 0.00 68.84 11 0.00 -2.67 0.01 

6 9 7.50 41.21 7 0.00 45.64 8.64 0.00 84.19 12 0.00 -3.52 0.00 

6 10 -0.07 16.25 7 0.02 18.81 8.93 0.03 75.59 13 0.00 -3.23 0.00 

7 8 0.85 31.43 7 0.00 42.18 8.80 0.00 83.49 12 0.00 -4.91 0.00 

7 9 11.44 66.13 7 0.00 71.24 8.81 0.00 101.39 12 0.00 -4.16 0.00 

7 10 3.09 48.05 7 0.00 52.47 9.06 0.00 107.99 13 0.00 -3.49 0.00 

8 9 3.92 49.92 7 0.00 55.64 8.70 0.00 96.85 12 0.00 -2.72 0.01 

8 10 6.88 32.84 7 0.00 40.57 8.96 0.00 93.99 13 0.00 -1.01 0.31 

9 10 2.25 39.02 7 0.00 42.60 9.00 0.00 99.71 13 0.00 -2.94 0.00 

Mean 5.97 44.47 7.00 0.01 53.04 8.90 0.00 159.81 12.51 0.00 3.95* 0.05 

SD 5.08 24.87 0.00 0.02 26.07 0.16 0.01 83.22 0.78 0.00 1.79* 0.15 

Max 20.77 126.79 7.00 0.08 135.43 9.30 0.03 448.64 15.00 0.00 -0.25 0.81 

Min -3.33 12.73 7.00 0.00 18.11 8.55 0.00 68.84 11.00 0.00 -7.17 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 16. Piecewise fit
 
statistics for IPIP Agreeableness item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 NA 

1 3 24.72 49.92 7 0.00 65.73 8.93 0.00 79.55 13 0.00 -1.70 0.09 

1 4 23.25 105.92 7 0.00 141.15 9.44 0.00 297.81 14 0.00 -4.34 0.00 

1 5 24.31 42.91 7 0.00 67.62 9.44 0.00 77.93 14 0.00 -1.43 0.15 

1 6 13.70 43.94 7 0.00 63.33 9.66 0.00 93.40 15 0.00 -5.14 0.00 

1 7 44.72 93.23 7 0.00 117.39 9.28 0.00 126.54 14 0.00 -2.33 0.02 

1 8 16.61 87.80 7 0.00 97.45 9.44 0.00 114.63 13 0.00 -5.35 0.00 

1 9 11.63 103.68 7 0.00 120.82 9.51 0.00 122.61 13 0.00 -4.62 0.00 

1 10 16.21 51.29 7 0.00 66.01 8.88 0.00 95.57 14 0.00 -4.55 0.00 

2 3 NA 

2 4 NA 

2 5 NA 

2 6 NA 

2 7 NA 

2 8 NA 

2 9 NA 

2 10 NA 

3 4 0.09 35.32 7 0.00 41.60 8.30 0.00 104.19 13 0.00 -0.65 0.52 

3 5 8.36 25.47 7 0.00 29.06 8.48 0.00 30.76 12 0.00 -0.24 0.81 

3 6 9.92 14.49 7 0.04 31.73 8.77 0.00 67.75 13 0.00 -2.46 0.01 

3 7 14.71 16.84 7 0.02 27.53 8.25 0.00 47.17 12 0.00 0.45 0.65 

3 8 -0.41 31.27 7 0.00 47.24 8.39 0.00 91.19 12 0.00 -3.57 0.00 

3 9 6.44 22.99 7 0.00 44.49 8.54 0.00 193.95 12 0.00 -1.55 0.12 

3 10 0.28 13.75 7 0.06 18.31 7.81 0.02 49.20 12 0.00 -0.36 0.72 

4 5 4.71 60.97 7 0.00 65.59 8.99 0.00 145.83 13 0.00 -1.54 0.12 

4 6 11.25 31.16 7 0.00 37.32 9.10 0.00 61.52 13 0.00 0.19 0.85 

4 7 12.37 108.34 7 0.00 119.14 8.82 0.00 117.74 12 0.00 -2.82 0.00 

4 8 2.99 89.56 7 0.00 114.68 8.93 0.00 406.59 13 0.00 -1.85 0.06 

4 9 10.59 40.79 7 0.00 48.61 8.85 0.00 64.66 12 0.00 1.03 0.31 
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Table 16 (cont.). Piecewise fit
 
statistics for IPIP Agreeableness item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 4.27 28.00 7 0.00 35.68 8.38 0.00 62.34 12 0.00 -0.89 0.37 

5 6 21.04 63.34 7 0.00 71.36 9.19 0.00 84.54 14 0.00 -2.77 0.01 

5 7 34.42 53.64 7 0.00 70.60 8.79 0.00 89.43 13 0.00 0.11 0.91 

5 8 8.38 61.70 7 0.00 71.07 8.98 0.00 87.83 12 0.00 -2.86 0.00 

5 9 2.95 67.25 7 0.00 80.78 9.05 0.00 86.27 12 0.00 -2.54 0.01 

5 10 3.43 41.86 7 0.00 47.08 8.43 0.00 73.57 13 0.00 -2.61 0.01 

6 7 15.67 33.92 7 0.00 45.22 9.07 0.00 73.47 14 0.00 -3.47 0.00 

6 8 15.77 42.82 7 0.00 51.56 9.09 0.00 130.81 13 0.00 -0.34 0.74 

6 9 18.88 40.45 7 0.00 56.19 9.07 0.00 78.39 12 0.00 2.05 0.04 

6 10 13.65 39.20 7 0.00 47.58 8.62 0.00 89.02 13 0.00 -2.56 0.01 

7 8 8.42 99.91 7 0.00 116.10 8.83 0.00 154.87 12 0.00 -4.84 0.00 

7 9 5.19 77.28 7 0.00 91.28 8.90 0.00 101.13 12 0.00 -2.76 0.01 

7 10 -0.92 26.63 7 0.00 30.12 8.25 0.00 66.09 13 0.00 -2.62 0.01 

8 9 12.99 69.13 7 0.00 77.16 8.88 0.00 83.62 12 0.00 -0.70 0.48 

8 10 12.09 34.45 7 0.00 62.83 8.31 0.00 76.84 12 0.00 -1.88 0.06 

9 10 4.02 14.06 7 0.05 23.35 8.42 0.00 55.28 12 0.00 -0.41 0.68 

Mean 12.13 51.76 7.00 0.00 65.08 8.84 0.00 105.06 12.78 0.00 2.21* 0.22 

SD 9.66 27.77 0.00 0.01 31.32 0.42 0.00 69.10 0.82 0.00 1.51* 0.30 

Max 44.72 108.34 7.00 0.06 141.15 9.66 0.02 406.59 15.00 0.00 2.05 0.91 

Min -0.92 13.75 7.00 0.00 18.31 7.81 0.00 30.76 12.00 0.00 -5.35 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 17. Piecewise fit
 
statistics for IPIP Conscientiousness item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 1.66 31.97 7 0.00 34.43 8.87 0.00 57.90 13 0.00 0.04 0.97 

1 3 7.78 18.82 7 0.01 36.15 8.90 0.00 53.17 12 0.00 3.69 0.00 

1 4 5.81 30.53 7 0.00 33.89 8.97 0.00 60.98 13 0.00 1.31 0.19 

1 5 -1.55 21.85 7 0.00 24.32 8.96 0.00 35.90 13 0.00 1.43 0.15 

1 6 17.33 133.96 7 0.00 148.88 8.98 0.00 189.09 13 0.00 -3.12 0.00 

1 7 -2.79 16.28 7 0.02 17.65 8.93 0.04 27.16 13 0.01 2.02 0.04 

1 8 -1.51 59.69 7 0.00 64.68 9.01 0.00 85.53 13 0.00 -0.35 0.73 

1 9 4.42 15.60 7 0.03 31.09 8.95 0.00 52.47 13 0.00 3.72 0.00 

1 10 0.94 29.09 7 0.00 33.27 8.93 0.00 40.33 13 0.00 1.99 0.05 

2 3 6.71 34.76 7 0.00 40.96 8.82 0.00 82.91 12 0.00 -1.50 0.13 

2 4 4.78 17.00 7 0.02 23.10 8.70 0.01 59.00 13 0.00 2.93 0.00 

2 5 3.62 43.43 7 0.00 49.00 8.85 0.00 81.17 13 0.00 -0.70 0.48 

2 6 12.34 40.54 7 0.00 57.43 8.47 0.00 194.96 13 0.00 3.71 0.00 

2 7 -1.89 10.72 7 0.15 12.30 8.80 0.18 33.83 13 0.00 1.39 0.16 

2 8 6.53 26.90 7 0.00 35.51 8.84 0.00 68.64 13 0.00 0.25 0.80 

2 9 5.06 45.21 7 0.00 53.76 8.94 0.00 92.34 13 0.00 -3.24 0.00 

2 10 -1.28 11.78 7 0.11 17.32 8.86 0.04 48.77 13 0.00 -1.31 0.19 

3 4 4.02 31.63 7 0.00 37.30 8.92 0.00 71.28 12 0.00 1.14 0.26 

3 5 1.24 16.33 7 0.02 18.89 8.90 0.02 34.28 12 0.00 -0.40 0.69 

3 6 8.98 73.07 7 0.00 82.13 8.91 0.00 114.95 12 0.00 -2.90 0.00 

3 7 -0.16 26.63 7 0.00 30.94 8.87 0.00 38.79 12 0.00 2.16 0.03 

3 8 4.50 38.66 7 0.00 40.98 8.95 0.00 63.64 13 0.00 0.59 0.56 

3 9 4.90 25.91 7 0.00 28.78 8.93 0.00 48.56 12 0.00 -0.04 0.97 

3 10 7.14 17.28 7 0.02 24.95 8.87 0.00 34.23 12 0.00 2.30 0.02 

4 5 6.26 66.62 7 0.00 73.43 8.99 0.00 114.22 13 0.00 -1.19 0.23 

4 6 10.54 36.49 7 0.00 43.54 8.82 0.00 63.62 13 0.00 1.22 0.22 

4 7 -0.07 28.34 7 0.00 35.33 8.96 0.00 86.92 13 0.00 -0.69 0.49 

4 8 11.56 29.72 7 0.00 36.74 8.95 0.00 72.85 13 0.00 3.14 0.00 

4 9 7.89 47.37 7 0.00 55.30 9.02 0.00 84.69 12 0.00 -2.34 0.02 
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Table 17 (cont.). Piecewise fit
 
statistics for IPIP Conscientiousness item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 -0.96 29.29 7 0.00 34.34 8.95 0.00 63.77 13 0.00 0.23 0.82 

5 6 9.66 119.31 7 0.00 126.30 8.92 0.00 153.23 13 0.00 -1.10 0.27 

5 7 0.04 18.89 7 0.01 21.92 8.95 0.01 36.43 13 0.00 -1.21 0.23 

5 8 0.10 58.90 7 0.00 67.11 9.01 0.00 104.55 13 0.00 -1.77 0.08 

5 9 4.82 22.05 7 0.00 29.61 8.96 0.00 39.01 13 0.00 0.86 0.39 

5 10 5.92 29.09 7 0.00 31.79 8.92 0.00 44.26 13 0.00 0.48 0.63 

6 7 7.28 78.89 7 0.00 87.82 8.92 0.00 114.24 13 0.00 -1.82 0.07 

6 8 4.88 26.06 7 0.00 28.98 8.94 0.00 54.17 13 0.00 0.29 0.77 

6 9 4.06 76.94 7 0.00 92.21 9.02 0.00 146.40 13 0.00 -4.83 0.00 

6 10 4.11 76.00 7 0.00 88.00 8.95 0.00 124.81 13 0.00 -2.87 0.00 

7 8 2.25 17.63 7 0.01 22.90 8.98 0.01 42.61 13 0.00 -0.68 0.50 

7 9 0.86 14.23 7 0.05 21.95 8.93 0.01 34.00 13 0.00 1.95 0.05 

7 10 -0.42 8.33 7 0.30 13.66 8.89 0.13 18.27 13 0.15 2.75 0.01 

8 9 6.21 47.80 7 0.00 52.09 9.03 0.00 69.70 13 0.00 -0.46 0.64 

8 10 0.18 9.81 7 0.20 15.74 8.96 0.07 27.50 13 0.01 2.59 0.01 

9 10 1.00 11.84 7 0.11 23.41 8.92 0.01 43.00 13 0.00 2.32 0.02 

Mean 4.11 37.14 7.00 0.02 44.00 8.91 0.01 71.29 12.80 0.00 1.71* 0.26 

SD 4.29 27.11 0.00 0.06 28.83 0.09 0.03 40.85 0.40 0.02 1.17* 0.30 

Max 17.33 133.96 7.00 0.30 148.88 9.03 0.18 194.96 13.00 0.15 3.72 0.97 

Min -2.79 8.33 7.00 0.00 12.30 8.47 0.00 18.27 12.00 0.00 -4.83 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 18. Piecewise fit
 
statistics for IPIP Conscientiousness item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 -3.57 8.09 7 0.32 12.11 9.19 0.22 14.36 14 0.42 -0.53 0.59 

1 3 -4.61 4.71 7 0.70 7.33 8.25 0.53 25.16 13 0.02 -0.03 0.98 

1 4 -4.73 9.71 7 0.21 12.40 9.38 0.22 20.25 14 0.12 -0.28 0.78 

1 5 2.24 15.97 7 0.03 30.88 8.98 0.00 45.65 13 0.00 0.98 0.33 

1 6 3.85 23.74 7 0.00 42.60 9.40 0.00 46.77 14 0.00 -1.25 0.21 

1 7 -4.84 7.48 7 0.38 16.38 9.25 0.07 18.96 14 0.17 -0.63 0.53 

1 8 -4.99 11.79 7 0.11 14.02 9.00 0.12 17.87 13 0.16 -0.78 0.43 

1 9 -3.92 12.25 7 0.09 13.91 8.83 0.12 17.87 13 0.16 0.44 0.66 

1 10 -5.48 7.68 7 0.36 10.64 9.12 0.31 13.82 14 0.46 -0.38 0.70 

2 3 -4.32 5.43 7 0.61 7.33 8.80 0.58 45.78 14 0.00 -1.45 0.15 

2 4 5.41 19.39 7 0.01 28.96 9.87 0.00 37.01 15 0.00 -0.25 0.80 

2 5 -1.20 20.72 7 0.00 24.62 9.53 0.00 31.71 14 0.00 -0.62 0.54 

2 6 11.26 43.19 7 0.00 49.22 9.84 0.00 51.35 15 0.00 -1.81 0.07 

2 7 -0.98 34.53 7 0.00 42.31 9.66 0.00 44.46 15 0.00 -2.17 0.03 

2 8 -1.24 12.23 7 0.09 13.89 9.45 0.15 15.01 14 0.38 -1.02 0.31 

2 9 1.85 27.14 7 0.00 36.27 9.31 0.00 43.70 14 0.00 -1.91 0.06 

2 10 -4.39 18.89 7 0.01 20.79 9.54 0.02 23.22 15 0.08 -1.71 0.09 

3 4 -2.13 21.48 7 0.00 26.99 8.93 0.00 30.28 13 0.00 -0.90 0.37 

3 5 0.60 12.37 7 0.09 22.16 8.62 0.01 49.64 13 0.00 -0.34 0.74 

3 6 2.68 5.54 7 0.59 18.94 9.00 0.03 29.68 14 0.01 -2.04 0.04 

3 7 -4.85 6.52 7 0.48 14.38 8.84 0.10 28.60 14 0.01 -0.56 0.57 

3 8 -2.71 6.53 7 0.48 12.93 8.58 0.14 24.38 13 0.03 -0.87 0.38 

3 9 -3.62 3.84 7 0.80 6.47 8.44 0.64 22.35 13 0.05 0.01 0.99 

3 10 -3.27 7.24 7 0.40 14.47 8.72 0.10 26.09 13 0.02 -0.54 0.59 

4 5 0.35 14.76 7 0.04 18.45 9.71 0.04 24.94 14 0.04 -0.05 0.96 

4 6 4.12 47.98 7 0.00 55.52 10.09 0.00 54.47 15 0.00 -2.00 0.05 

4 7 -4.73 20.00 7 0.01 27.01 9.94 0.00 32.72 15 0.01 -1.34 0.18 

4 8 1.02 20.52 7 0.00 24.01 9.65 0.01 26.75 14 0.02 -0.55 0.59 

4 9 -3.38 21.76 7 0.00 28.98 9.55 0.00 32.47 14 0.00 -0.65 0.51 
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Table 18 (cont.). Piecewise fit
 
statistics for IPIP Conscientiousness item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 -3.88 7.87 7 0.34 10.55 9.83 0.38 26.50 15 0.03 -1.11 0.27 

5 6 19.50 60.04 7 0.00 74.31 9.76 0.00 77.51 14 0.00 -1.27 0.20 

5 7 -0.30 15.23 7 0.03 21.08 9.57 0.02 26.78 14 0.02 0.46 0.64 

5 8 -0.49 27.04 7 0.00 32.16 9.34 0.00 184.08 14 0.00 -0.58 0.56 

5 9 -1.04 16.52 7 0.02 19.96 9.16 0.02 470.75 14 0.00 0.64 0.52 

5 10 -1.66 23.49 7 0.00 28.23 9.46 0.00 50.40 14 0.00 0.00 1.00 

6 7 0.29 17.70 7 0.01 20.15 9.87 0.03 24.23 15 0.06 -1.35 0.18 

6 8 -0.56 23.54 7 0.00 25.97 9.66 0.00 28.79 14 0.01 -1.87 0.06 

6 9 8.16 42.59 7 0.00 54.88 9.51 0.00 54.83 14 0.00 -1.86 0.06 

6 10 5.27 33.19 7 0.00 38.04 9.78 0.00 43.18 15 0.00 -2.10 0.04 

7 8 1.02 26.58 7 0.00 32.79 9.48 0.00 37.45 14 0.00 -0.90 0.37 

7 9 16.66 19.78 7 0.01 33.01 9.25 0.00 47.78 14 0.00 1.54 0.12 

7 10 3.41 23.03 7 0.00 25.16 9.55 0.00 28.29 15 0.02 -0.53 0.60 

8 9 -4.51 9.64 7 0.21 12.00 9.11 0.22 17.97 13 0.16 -0.25 0.80 

8 10 1.12 16.71 7 0.02 20.60 9.37 0.02 24.36 14 0.04 -0.67 0.51 

9 10 -2.00 13.40 7 0.06 15.60 9.19 0.08 18.42 14 0.19 -0.14 0.89 

Mean 0.12 18.84 7.00 0.15 24.85 9.32 0.09 45.70 14.00 0.06 0.92* 0.45 

SD 5.37 12.11 0.00 0.22 14.12 0.42 0.16 69.16 0.67 0.11 0.64* 0.30 

Max 19.50 60.04 7.00 0.80 74.31 10.09 0.64 470.75 15.00 0.46 1.54 1.00 

Min -5.48 3.84 7.00 0.00 6.47 8.25 0.00 13.82 13.00 0.00 -2.17 0.03 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 19. Piecewise fit
 
statistics for IPIP Extraversion item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 1.36 20.62 7 0.00 24.33 9.19 0.00 45.97 14 0.00 -1.53 0.13 

1 3 0.40 11.35 7 0.12 14.00 9.22 0.13 28.77 14 0.01 0.76 0.45 

1 4 -2.04 68.46 7 0.00 81.49 9.13 0.00 132.57 14 0.00 0.35 0.73 

1 5 -2.12 4.59 7 0.71 9.31 9.14 0.42 56.35 14 0.00 -0.94 0.35 

1 6 4.14 45.27 7 0.00 54.09 9.25 0.00 99.38 14 0.00 -0.97 0.33 

1 7 -2.12 21.38 7 0.00 35.22 9.05 0.00 69.39 14 0.00 3.76 0.00 

1 8 3.44 6.10 7 0.53 7.93 9.19 0.56 34.00 14 0.00 0.44 0.66 

1 9 1.65 3.95 7 0.79 11.57 9.09 0.25 39.62 14 0.00 3.27 0.00 

1 10 1.93 14.41 7 0.04 18.51 9.21 0.03 36.96 14 0.00 -2.16 0.03 

2 3 5.00 26.78 7 0.00 32.16 9.23 0.00 74.22 15 0.00 -1.39 0.16 

2 4 17.16 62.02 7 0.00 68.17 9.15 0.00 90.60 13 0.00 0.66 0.51 

2 5 0.41 12.73 7 0.08 14.81 9.12 0.10 48.53 14 0.00 0.27 0.78 

2 6 -1.26 41.60 7 0.00 65.43 9.17 0.00 124.84 15 0.00 3.82 0.00 

2 7 0.23 46.48 7 0.00 57.83 9.22 0.00 90.28 14 0.00 -2.44 0.01 

2 8 -4.08 25.13 7 0.00 28.45 9.19 0.00 48.58 14 0.00 -0.03 0.97 

2 9 5.72 8.97 7 0.25 11.00 9.15 0.29 33.30 13 0.00 -0.16 0.87 

2 10 1.74 19.20 7 0.01 23.88 9.20 0.01 483.39 15 0.00 0.23 0.81 

3 4 7.72 88.63 7 0.00 95.45 9.22 0.00 127.13 14 0.00 -0.89 0.37 

3 5 2.57 8.25 7 0.31 24.85 9.13 0.00 66.95 15 0.00 3.12 0.00 

3 6 18.38 60.23 7 0.00 65.92 9.29 0.00 94.35 15 0.00 -0.01 1.00 

3 7 6.48 26.55 7 0.00 30.13 9.17 0.00 35.30 15 0.00 1.11 0.27 

3 8 2.55 14.46 7 0.04 22.89 9.29 0.01 40.57 14 0.00 -2.30 0.02 

3 9 4.06 17.63 7 0.01 20.92 9.20 0.01 36.87 14 0.00 -0.51 0.61 

3 10 20.34 32.96 7 0.00 37.78 9.29 0.00 50.11 15 0.00 -1.63 0.10 

4 5 1.17 51.29 7 0.00 55.56 9.13 0.00 89.39 14 0.00 -0.17 0.86 

4 6 4.96 74.67 7 0.00 82.47 9.20 0.00 125.31 14 0.00 2.00 0.05 

4 7 6.01 112.26 7 0.00 121.31 9.16 0.00 178.56 14 0.00 -0.71 0.48 

4 8 6.17 47.97 7 0.00 53.38 9.16 0.00 93.27 14 0.00 1.11 0.27 

4 9 4.74 51.26 7 0.00 55.16 9.12 0.00 83.96 14 0.00 0.17 0.86 
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Table 19 (cont.). Piecewise fit
 
statistics for IPIP Extraversion item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 10.00 31.99 7 0.00 37.42 9.19 0.00 73.96 14 0.00 0.74 0.46 

5 6 2.08 63.56 7 0.00 68.91 9.18 0.00 105.90 15 0.00 0.79 0.43 

5 7 9.25 16.85 7 0.02 23.85 9.05 0.00 63.95 14 0.00 2.44 0.01 

5 8 9.12 39.18 7 0.00 52.93 9.18 0.00 98.07 14 0.00 -2.17 0.03 

5 9 13.19 28.66 7 0.00 32.62 9.11 0.00 66.07 14 0.00 -0.33 0.74 

5 10 -0.28 37.51 7 0.00 41.41 9.18 0.00 107.61 15 0.00 0.20 0.84 

6 7 1.78 52.31 7 0.00 59.80 9.23 0.00 99.06 15 0.00 0.17 0.86 

6 8 0.58 17.14 7 0.02 20.74 9.27 0.02 45.13 14 0.00 1.62 0.11 

6 9 4.52 23.02 7 0.00 29.81 9.19 0.00 55.01 14 0.00 2.19 0.03 

6 10 -2.80 62.67 7 0.00 70.11 9.29 0.00 122.40 15 0.00 -0.39 0.70 

7 8 12.87 56.65 7 0.00 68.85 9.18 0.00 81.00 14 0.00 -1.32 0.19 

7 9 6.17 22.97 7 0.00 24.58 9.10 0.00 73.93 14 0.00 0.77 0.44 

7 10 7.86 25.26 7 0.00 28.38 9.17 0.00 35.87 14 0.00 0.29 0.77 

8 9 20.44 18.96 7 0.01 34.58 9.14 0.00 61.29 14 0.00 4.07 0.00 

8 10 17.71 54.21 7 0.00 61.05 9.23 0.00 79.00 14 0.00 -1.16 0.25 

9 10 9.19 53.94 7 0.00 59.98 9.20 0.00 74.73 14 0.00 -1.89 0.06 

Mean 5.30 36.22 7.00 0.07 43.09 9.18 0.04 84.48 14.20 0.00 1.28* 0.39 

SD 6.20 23.79 0.00 0.18 25.10 0.06 0.11 68.48 0.50 0.00 1.09* 0.33 

Max 20.44 112.26 7.00 0.79 121.31 9.29 0.56 483.39 15.00 0.01 4.07 1.00 

Min -4.08 3.95 7.00 0.00 7.93 9.05 0.00 28.77 13.00 0.00 -2.44 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 20. Piecewise fit
 
statistics for IPIP Extraversion item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 33.31 85.64 7 0.00 93.48 9.36 0.00 99.50 14 0.00 -2.74 0.01 

1 3 7.31 15.31 7 0.03 21.64 8.89 0.01 36.42 13 0.00 -2.81 0.00 

1 4 17.68 48.06 7 0.00 52.66 9.31 0.00 84.24 15 0.00 -3.35 0.00 

1 5 9.56 28.23 7 0.00 38.10 9.04 0.00 53.55 14 0.00 -1.57 0.12 

1 6 44.30 89.54 7 0.00 107.78 9.27 0.00 133.96 14 0.00 -5.14 0.00 

1 7 8.45 30.50 7 0.00 38.20 9.32 0.00 96.67 15 0.00 -0.94 0.35 

1 8 28.48 72.90 7 0.00 80.66 9.39 0.00 100.53 14 0.00 -4.01 0.00 

1 9 13.53 27.89 7 0.00 48.69 9.43 0.00 83.85 14 0.00 0.52 0.61 

1 10 27.90 63.52 7 0.00 72.40 9.35 0.00 99.73 14 0.00 -4.84 0.00 

2 3 -0.59 6.28 7 0.51 11.96 8.78 0.20 20.05 12 0.07 -1.44 0.15 

2 4 12.24 80.06 7 0.00 88.57 9.13 0.00 97.81 13 0.00 -1.30 0.19 

2 5 -0.63 124.53 7 0.00 139.18 9.01 0.00 181.43 13 0.00 -3.25 0.00 

2 6 10.24 61.52 7 0.00 68.01 9.07 0.00 74.78 13 0.00 -0.47 0.64 

2 7 -0.29 27.00 7 0.00 32.83 9.26 0.00 67.35 13 0.00 -1.73 0.08 

2 8 18.87 47.15 7 0.00 56.57 9.19 0.00 61.85 13 0.00 0.33 0.74 

2 9 27.54 65.17 7 0.00 76.15 9.35 0.00 112.36 13 0.00 -3.04 0.00 

2 10 9.59 40.04 7 0.00 50.12 9.14 0.00 63.96 13 0.00 -0.52 0.60 

3 4 -1.22 23.19 7 0.00 26.84 8.68 0.00 81.44 13 0.00 -2.17 0.03 

3 5 14.55 36.82 7 0.00 40.54 8.20 0.00 58.61 12 0.00 -1.50 0.13 

3 6 0.82 20.90 7 0.00 23.07 8.54 0.00 30.25 12 0.00 -0.92 0.36 

3 7 6.65 27.15 7 0.00 34.54 8.65 0.00 86.39 13 0.00 -1.29 0.20 

3 8 14.22 33.64 7 0.00 47.79 8.80 0.00 68.53 12 0.00 -3.78 0.00 

3 9 4.87 26.76 7 0.00 31.39 8.85 0.00 49.85 12 0.00 -3.64 0.00 

3 10 0.91 36.38 7 0.00 42.43 8.75 0.00 92.94 12 0.00 -2.62 0.01 

4 5 -4.22 86.04 7 0.00 94.26 8.94 0.00 128.60 13 0.00 -3.68 0.00 

4 6 8.10 41.59 7 0.00 46.18 8.97 0.00 59.13 14 0.00 -1.35 0.18 

4 7 1.64 67.89 7 0.00 78.30 9.24 0.00 160.65 14 0.00 -3.81 0.00 

4 8 9.05 33.41 7 0.00 40.75 9.11 0.00 55.12 14 0.00 -0.60 0.55 

4 9 16.37 70.61 7 0.00 80.13 9.32 0.00 108.56 13 0.00 -4.40 0.00 
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Table 20 (cont.). Piecewise fit
 
statistics for IPIP Extraversion item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 8.70 47.54 7 0.00 54.85 9.06 0.00 68.28 13 0.00 -1.90 0.06 

5 6 1.00 76.79 7 0.00 82.83 8.80 0.00 114.99 13 0.00 -3.03 0.00 

5 7 21.43 54.61 7 0.00 65.08 8.74 0.00 87.57 13 0.00 -1.46 0.14 

5 8 20.24 90.32 7 0.00 110.64 9.02 0.00 163.60 13 0.00 -5.37 0.00 

5 9 13.12 34.42 7 0.00 48.07 8.99 0.00 66.72 13 0.00 -2.17 0.03 

5 10 2.17 137.92 7 0.00 149.08 9.02 0.00 209.73 13 0.00 -4.44 0.00 

6 7 0.09 53.56 7 0.00 64.21 9.16 0.00 167.47 14 0.00 -3.72 0.00 

6 8 19.64 46.71 7 0.00 51.33 9.08 0.00 54.89 13 0.00 -1.43 0.15 

6 9 10.36 57.52 7 0.00 70.22 9.27 0.00 101.39 13 0.00 -4.82 0.00 

6 10 18.35 44.08 7 0.00 56.41 9.03 0.00 60.30 13 0.00 -2.33 0.02 

7 8 7.71 33.05 7 0.00 39.35 9.26 0.00 114.25 14 0.00 -2.79 0.01 

7 9 10.76 32.08 7 0.00 44.04 9.28 0.00 72.91 14 0.00 -1.42 0.16 

7 10 -1.77 80.64 7 0.00 91.65 9.29 0.00 158.87 13 0.00 -4.35 0.00 

8 9 29.87 93.69 7 0.00 101.63 9.35 0.00 116.32 13 0.00 -3.90 0.00 

8 10 18.27 47.89 7 0.00 60.25 9.13 0.00 78.88 13 0.00 -1.07 0.29 

9 10 17.23 96.38 7 0.00 109.37 9.37 0.00 400.52 14 0.00 -5.37 0.00 

Mean 11.92 54.33 7.00 0.01 63.61 9.07 0.00 99.66 13.24 0.00 2.61* 0.13 

SD 10.56 28.41 0.00 0.07 30.22 0.26 0.03 60.85 0.74 0.01 1.47* 0.20 

Max 44.30 137.92 7.00 0.51 149.08 9.43 0.20 400.52 15.00 0.07 0.52 0.74 

Min -4.22 6.28 7.00 0.00 11.96 8.20 0.00 20.05 12.00 0.00 -5.37 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 21. Piecewise fit
 
statistics for IPIP Emotional Stability item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 0.61 45.37 7 0.00 49.89 9.07 0.00 53.49 15 0.00 0.48 0.63 

1 3 14.23 11.29 7 0.13 39.06 8.96 0.00 88.87 14 0.00 4.34 0.00 

1 4 9.79 70.86 7 0.00 81.31 9.01 0.00 96.87 14 0.00 -3.38 0.00 

1 5 1.05 46.47 7 0.00 53.11 9.09 0.00 97.86 15 0.00 0.80 0.42 

1 6 5.77 67.89 7 0.00 74.05 8.96 0.00 85.07 13 0.00 -0.07 0.94 

1 7 8.07 61.96 7 0.00 69.97 9.11 0.00 104.98 14 0.00 -3.23 0.00 

1 8 -0.54 24.58 7 0.00 33.14 9.08 0.00 42.85 14 0.00 -2.36 0.02 

1 9 4.59 49.03 7 0.00 52.30 9.04 0.00 82.61 14 0.00 -1.94 0.05 

1 10 4.79 35.55 7 0.00 41.78 9.10 0.00 46.68 14 0.00 -3.41 0.00 

2 3 1.46 17.02 7 0.02 20.22 9.09 0.02 26.66 14 0.02 0.48 0.63 

2 4 11.52 28.58 7 0.00 39.84 9.11 0.00 48.42 14 0.00 2.43 0.02 

2 5 4.17 26.76 7 0.00 29.26 9.16 0.00 57.63 15 0.00 0.71 0.48 

2 6 7.17 57.49 7 0.00 61.36 9.00 0.00 77.19 15 0.00 -0.29 0.77 

2 7 6.93 49.50 7 0.00 58.18 9.11 0.00 70.91 15 0.00 -2.57 0.01 

2 8 3.23 47.92 7 0.00 51.79 9.03 0.00 71.05 15 0.00 -0.69 0.49 

2 9 5.18 79.97 7 0.00 87.64 9.05 0.00 113.13 15 0.00 -2.30 0.02 

2 10 6.96 46.25 7 0.00 48.87 9.08 0.00 51.71 15 0.00 -0.92 0.36 

3 4 0.69 20.57 7 0.00 23.06 9.01 0.01 31.08 13 0.00 -0.29 0.77 

3 5 4.02 45.66 7 0.00 48.89 9.08 0.00 83.08 14 0.00 -0.67 0.50 

3 6 -0.47 28.63 7 0.00 31.46 8.97 0.00 64.23 14 0.00 -2.75 0.01 

3 7 7.36 19.58 7 0.01 26.94 9.06 0.00 43.91 14 0.00 -3.78 0.00 

3 8 2.58 14.35 7 0.05 17.50 9.00 0.04 29.32 14 0.01 -2.27 0.02 

3 9 1.48 25.41 7 0.00 28.36 9.00 0.00 65.16 14 0.00 -3.08 0.00 

3 10 -1.46 17.38 7 0.02 19.46 9.02 0.02 33.21 14 0.00 -1.74 0.08 

4 5 3.90 52.20 7 0.00 58.10 9.09 0.00 78.89 14 0.00 -0.66 0.51 

4 6 15.46 89.07 7 0.00 98.26 8.96 0.00 124.69 13 0.00 -4.17 0.00 

4 7 9.32 98.14 7 0.00 105.74 9.02 0.00 117.05 14 0.00 -1.20 0.23 

4 8 6.06 47.20 7 0.00 50.64 8.95 0.00 55.14 13 0.00 -1.53 0.13 

4 9 11.01 59.88 7 0.00 68.95 8.98 0.00 101.66 14 0.00 -3.45 0.00 
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Table 21 (cont.). Piecewise fit
 
statistics for IPIP Emotional Stability item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 42.29 81.96 7 0.00 121.25 8.96 0.00 178.55 14 0.00 4.35 0.00 

5 6 3.13 46.96 7 0.00 52.51 9.02 0.00 111.25 15 0.00 0.40 0.69 

5 7 5.15 78.98 7 0.00 87.59 9.12 0.00 124.51 15 0.00 -1.41 0.16 

5 8 6.26 40.17 7 0.00 49.41 9.06 0.00 76.27 14 0.00 -0.43 0.67 

5 9 8.29 42.23 7 0.00 46.47 9.05 0.00 97.18 15 0.00 1.01 0.31 

5 10 8.29 56.90 7 0.00 62.16 9.08 0.00 141.61 15 0.00 0.83 0.41 

6 7 -1.06 37.38 7 0.00 42.41 9.05 0.00 59.83 14 0.00 -2.03 0.04 

6 8 -1.40 30.51 7 0.00 33.42 8.97 0.00 59.88 14 0.00 -0.50 0.62 

6 9 23.35 115.00 7 0.00 128.86 8.89 0.00 145.64 13 0.00 0.91 0.36 

6 10 1.65 23.07 7 0.00 26.34 9.03 0.00 33.64 14 0.00 -2.32 0.02 

7 8 37.01 50.09 7 0.00 96.29 8.88 0.00 224.26 14 0.00 6.08 0.00 

7 9 6.95 33.09 7 0.00 37.10 9.06 0.00 68.02 14 0.00 -1.82 0.07 

7 10 3.06 80.98 7 0.00 86.79 9.05 0.00 84.87 14 0.00 -1.41 0.16 

8 9 8.25 43.85 7 0.00 46.51 8.97 0.00 44.28 13 0.00 0.13 0.90 

8 10 2.45 63.15 7 0.00 72.12 8.97 0.00 73.94 14 0.00 -0.71 0.48 

9 10 8.19 35.77 7 0.00 40.52 9.06 0.00 48.64 13 0.00 -3.05 0.00 

Mean 7.04 47.66 7.00 0.00 55.53 9.03 0.00 80.35 14.11 0.00 1.85* 0.27 

SD 8.50 23.33 0.00 0.02 26.69 0.06 0.01 39.90 0.64 0.00 1.39* 0.29 

Max 42.29 115.00 7.00 0.13 128.86 9.16 0.04 224.26 15.00 0.02 6.08 0.94 

Min -1.46 11.29 7.00 0.00 17.50 8.88 0.00 26.66 13.00 0.00 -4.17 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 22. Piecewise fit
 
statistics for IPIP Emotional Stability item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 0.42 13.61 7 0.06 17.73 9.53 0.05 31.80 15 0.01 0.73 0.46 

1 3 2.45 18.33 7 0.01 21.59 9.64 0.01 31.37 15 0.01 -0.34 0.73 

1 4 18.68 56.56 7 0.00 64.23 9.84 0.00 64.57 15 0.00 -2.72 0.01 

1 5 5.65 38.57 7 0.00 43.18 9.58 0.00 49.84 14 0.00 -1.16 0.24 

1 6 3.00 78.40 7 0.00 86.47 9.27 0.00 91.04 14 0.00 -1.12 0.26 

1 7 8.20 63.18 7 0.00 69.41 9.71 0.00 67.66 14 0.00 -0.51 0.61 

1 8 -0.25 61.23 7 0.00 78.22 9.75 0.00 87.07 14 0.00 -1.93 0.05 

1 9 0.71 52.78 7 0.00 58.13 9.46 0.00 61.38 14 0.00 -1.17 0.24 

1 10 -2.75 63.82 7 0.00 73.20 9.71 0.00 71.94 14 0.00 -1.26 0.21 

2 3 5.56 23.47 7 0.00 25.49 9.50 0.00 25.85 15 0.04 -0.53 0.60 

2 4 24.35 35.79 7 0.00 58.86 9.69 0.00 59.76 15 0.00 -0.68 0.50 

2 5 0.65 45.49 7 0.00 55.85 9.61 0.00 60.18 15 0.00 -0.84 0.40 

2 6 -3.81 11.58 7 0.12 14.19 9.42 0.13 22.32 14 0.07 -0.78 0.44 

2 7 4.56 36.80 7 0.00 57.20 9.62 0.00 58.73 15 0.00 -0.97 0.33 

2 8 0.69 16.38 7 0.02 22.04 9.80 0.01 26.35 15 0.03 -0.63 0.53 

2 9 -3.57 18.50 7 0.01 21.73 9.56 0.01 31.35 14 0.00 0.09 0.93 

2 10 -2.63 4.50 7 0.72 6.40 9.70 0.76 10.45 15 0.79 0.23 0.82 

3 4 15.71 51.43 7 0.00 62.36 9.79 0.00 60.19 15 0.00 -2.22 0.03 

3 5 6.14 22.69 7 0.00 26.75 9.71 0.00 37.82 15 0.00 -0.56 0.58 

3 6 10.83 29.17 7 0.00 34.17 9.53 0.00 41.04 14 0.00 -1.84 0.07 

3 7 10.75 28.42 7 0.00 33.21 9.69 0.00 35.84 15 0.00 0.07 0.94 

3 8 4.75 27.73 7 0.00 35.96 9.91 0.00 40.90 15 0.00 -2.35 0.02 

3 9 4.02 18.95 7 0.01 22.83 9.67 0.01 27.90 14 0.01 -0.97 0.33 

3 10 5.40 19.62 7 0.01 21.97 9.81 0.01 23.79 15 0.07 -1.16 0.24 

4 5 18.59 44.65 7 0.00 53.66 9.92 0.00 55.28 15 0.00 -2.79 0.01 

4 6 26.06 89.90 7 0.00 98.69 9.71 0.00 98.28 14 0.00 -2.62 0.01 

4 7 23.07 65.90 7 0.00 73.26 9.93 0.00 70.89 15 0.00 -2.88 0.00 

4 8 15.18 58.59 7 0.00 66.13 10.11 0.00 63.96 15 0.00 -3.66 0.00 

4 9 8.10 30.66 7 0.00 37.71 9.87 0.00 41.42 14 0.00 -2.78 0.01 
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Table 22 (cont.). Piecewise fit
 
statistics for IPIP Emotional Stability item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 30.61 102.18 7 0.00 114.96 10.01 0.00 106.26 15 0.00 -3.00 0.00 

5 6 -1.62 41.12 7 0.00 49.02 9.47 0.00 53.70 14 0.00 -2.28 0.02 

5 7 -1.97 40.09 7 0.00 45.49 9.83 0.00 59.48 15 0.00 -0.93 0.35 

5 8 9.44 62.38 7 0.00 70.27 9.87 0.00 65.76 14 0.00 -2.19 0.03 

5 9 8.31 48.76 7 0.00 53.73 9.62 0.00 53.84 14 0.00 -1.67 0.10 

5 10 -0.81 45.73 7 0.00 51.80 9.83 0.00 71.27 15 0.00 -1.75 0.08 

6 7 7.71 98.86 7 0.00 108.72 9.60 0.00 108.78 14 0.00 -1.57 0.12 

6 8 12.42 59.01 7 0.00 67.10 9.60 0.00 70.57 14 0.00 -2.56 0.01 

6 9 4.72 58.55 7 0.00 64.95 9.34 0.00 67.80 14 0.00 -2.16 0.03 

6 10 3.09 63.24 7 0.00 69.33 9.56 0.00 71.39 14 0.00 -1.55 0.12 

7 8 16.03 56.71 7 0.00 64.88 10.00 0.00 61.99 15 0.00 -1.15 0.25 

7 9 -0.60 56.72 7 0.00 66.48 9.76 0.00 67.32 14 0.00 -1.44 0.15 

7 10 4.27 96.30 7 0.00 107.08 9.95 0.00 102.24 15 0.00 -1.50 0.13 

8 9 10.91 25.18 7 0.00 29.32 9.72 0.00 32.01 14 0.00 -1.55 0.12 

8 10 7.96 50.98 7 0.00 56.96 9.95 0.00 56.29 15 0.00 -1.95 0.05 

9 10 -1.20 16.95 7 0.02 19.88 9.70 0.03 22.60 14 0.07 -0.95 0.34 

Mean 7.11 45.54 7.00 0.02 52.90 9.71 0.02 56.01 14.51 0.02 1.51* 0.26 

SD 8.33 23.93 0.00 0.11 26.15 0.18 0.11 23.63 0.50 0.12 0.87* 0.26 

Max 30.61 102.18 7.00 0.72 114.96 10.11 0.76 108.78 15.00 0.79 0.73 0.94 

Min -3.81 4.50 7.00 0.00 6.40 9.27 0.00 10.45 14.00 0.00 -3.66 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 23. Piecewise fit
 
statistics for IPIP Openness item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 -2.36 19.97 7 0.01 22.78 9.03 0.01 69.71 13 0.00 0.80 0.42 

1 3 6.63 19.95 7 0.01 29.27 9.05 0.00 49.67 13 0.00 -2.82 0.00 

1 4 -1.95 13.23 7 0.07 14.55 8.99 0.10 64.67 13 0.00 -1.43 0.15 

1 5 -0.09 17.42 7 0.01 20.03 8.70 0.02 42.11 12 0.00 -1.49 0.14 

1 6 -2.40 30.19 7 0.00 35.01 9.05 0.00 59.18 13 0.00 -1.89 0.06 

1 7 -1.93 9.17 7 0.24 15.18 8.56 0.07 23.25 12 0.03 1.21 0.23 

1 8 64.94 48.73 7 0.00 165.87 8.99 0.00 304.69 13 0.00 8.34 0.00 

1 9 -0.30 13.99 7 0.05 19.47 9.10 0.02 23.61 13 0.03 -1.96 0.05 

1 10 6.84 21.56 7 0.00 29.00 8.62 0.00 75.86 12 0.00 -3.35 0.00 

2 3 7.45 28.37 7 0.00 36.23 9.15 0.00 138.73 13 0.00 -1.90 0.06 

2 4 38.51 49.48 7 0.00 102.52 8.96 0.00 209.17 13 0.00 5.41 0.00 

2 5 10.52 86.11 7 0.00 95.61 8.85 0.00 135.71 12 0.00 -1.60 0.11 

2 6 0.46 20.46 7 0.00 25.39 9.13 0.00 107.48 13 0.00 0.32 0.75 

2 7 17.28 44.93 7 0.00 60.49 8.62 0.00 82.65 12 0.00 3.07 0.00 

2 8 6.70 18.05 7 0.01 20.55 9.14 0.02 31.09 13 0.00 0.59 0.56 

2 9 2.00 21.85 7 0.00 24.64 9.18 0.00 46.96 13 0.00 -0.24 0.81 

2 10 19.44 67.75 7 0.00 78.24 8.73 0.00 116.88 12 0.00 -2.05 0.04 

3 4 -0.62 36.75 7 0.00 42.02 9.07 0.00 167.05 13 0.00 -2.43 0.02 

3 5 2.79 19.56 7 0.01 23.81 8.68 0.00 60.07 12 0.00 -1.42 0.16 

3 6 39.25 52.63 7 0.00 98.39 8.89 0.00 198.43 13 0.00 3.81 0.00 

3 7 9.44 37.89 7 0.00 48.06 8.68 0.00 101.01 12 0.00 -2.80 0.01 

3 8 7.92 28.49 7 0.00 32.96 9.16 0.00 88.16 13 0.00 -1.97 0.05 

3 9 -2.54 7.38 7 0.39 11.84 9.09 0.23 22.04 13 0.05 0.64 0.52 

3 10 11.08 26.06 7 0.00 34.92 8.37 0.00 60.79 12 0.00 -0.46 0.64 

4 5 5.67 49.31 7 0.00 59.31 8.79 0.00 122.50 12 0.00 -3.50 0.00 

4 6 1.82 38.99 7 0.00 43.42 9.07 0.00 151.40 13 0.00 -1.92 0.06 

4 7 7.81 37.44 7 0.00 39.07 8.60 0.00 56.76 12 0.00 -0.96 0.34 

4 8 9.29 28.84 7 0.00 31.39 9.10 0.00 122.13 13 0.00 -1.46 0.15 

4 9 -0.84 23.46 7 0.00 27.84 9.12 0.00 36.79 13 0.00 -0.13 0.90 
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Table 23 (cont.). Piecewise fit
 
statistics for IPIP Openness item pairs in the honest condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 0.58 39.17 7 0.00 43.11 8.64 0.00 99.29 12 0.00 -2.65 0.01 

5 6 0.08 28.11 7 0.00 32.94 8.75 0.00 86.92 12 0.00 -1.58 0.11 

5 7 6.51 50.81 7 0.00 52.46 8.32 0.00 95.78 12 0.00 0.14 0.89 

5 8 5.41 29.51 7 0.00 31.97 8.81 0.00 195.01 13 0.00 -0.31 0.76 

5 9 -0.55 23.67 7 0.00 26.42 8.81 0.00 48.99 12 0.00 -0.68 0.50 

5 10 21.68 30.10 7 0.00 50.07 7.97 0.00 98.92 11 0.00 2.79 0.01 

6 7 8.26 37.72 7 0.00 47.47 8.70 0.00 93.96 12 0.00 -2.49 0.01 

6 8 5.47 42.29 7 0.00 55.03 9.18 0.00 165.63 13 0.00 -3.15 0.00 

6 9 -1.54 16.72 7 0.02 21.49 9.13 0.01 40.76 13 0.00 -0.21 0.84 

6 10 -0.39 26.44 7 0.00 29.89 8.49 0.00 68.58 12 0.00 -0.90 0.37 

7 8 9.30 33.31 7 0.00 38.19 8.66 0.00 122.16 13 0.00 1.04 0.30 

7 9 0.01 27.00 7 0.00 32.68 8.72 0.00 53.28 12 0.00 -1.80 0.07 

7 10 7.25 70.58 7 0.00 78.55 8.24 0.00 1986.03 12 0.00 -2.31 0.02 

8 9 -1.60 17.70 7 0.01 19.79 9.19 0.02 38.48 13 0.00 0.32 0.75 

8 10 9.74 56.46 7 0.00 62.82 8.73 0.00 79.02 12 0.00 -2.32 0.02 

9 10 0.21 26.05 7 0.00 33.65 8.65 0.00 51.74 12 0.00 0.38 0.70 

Mean 7.41 32.75 7.00 0.02 43.21 8.83 0.01 135.40 12.49 0.00 1.85* 0.26 

SD 12.58 16.46 0.00 0.07 28.58 0.28 0.04 284.82 0.54 0.01 1.51* 0.30 

Max 64.94 86.11 7.00 0.39 165.87 9.19 0.23 1986.03 13.00 0.05 8.34 0.90 

Min -2.54 7.38 7.00 0.00 11.84 7.97 0.00 22.04 11.00 0.00 -3.50 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 
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Table 24. Piecewise fit
 
statistics for IPIP Openness item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 -4.58 35.53 7 0.00 39.95 8.52 0.00 120.70 13 0.00 -1.68 0.09 

1 3 0.47 11.72 7 0.11 23.34 8.65 0.00 172.34 13 0.00 -3.12 0.00 

1 4 -2.45 18.83 7 0.01 26.51 8.67 0.00 89.61 13 0.00 -1.89 0.06 

1 5 -2.97 14.82 7 0.04 18.80 7.66 0.01 108.48 12 0.00 -0.12 0.90 

1 6 -1.11 27.32 7 0.00 31.54 8.53 0.00 98.78 13 0.00 -1.19 0.23 

1 7 -1.30 12.53 7 0.08 19.76 8.49 0.01 86.42 13 0.00 -0.19 0.85 

1 8 19.79 37.62 7 0.00 41.08 8.75 0.00 98.24 14 0.00 -1.92 0.05 

1 9 7.70 49.99 7 0.00 54.08 8.72 0.00 119.01 13 0.00 -1.56 0.12 

1 10 -2.81 13.54 7 0.06 20.77 8.46 0.01 131.33 13 0.00 -0.41 0.68 

2 3 3.33 26.28 7 0.00 34.14 9.05 0.00 93.12 13 0.00 -4.11 0.00 

2 4 23.76 31.22 7 0.00 55.63 9.01 0.00 80.23 13 0.00 0.47 0.64 

2 5 -2.96 11.18 7 0.13 19.31 8.11 0.01 26.37 12 0.01 -1.33 0.18 

2 6 3.51 23.08 7 0.00 25.74 8.93 0.00 28.13 13 0.01 -1.26 0.21 

2 7 1.30 25.53 7 0.00 29.98 8.88 0.00 38.20 13 0.00 -0.82 0.41 

2 8 21.36 34.75 7 0.00 39.67 9.17 0.00 49.13 14 0.00 -3.18 0.00 

2 9 6.00 43.38 7 0.00 49.16 9.12 0.00 56.70 13 0.00 -2.36 0.02 

2 10 -0.88 29.67 7 0.00 45.35 8.96 0.00 101.61 13 0.00 -2.23 0.03 

3 4 2.20 53.66 7 0.00 60.26 9.18 0.00 114.43 13 0.00 -4.90 0.00 

3 5 20.07 29.42 7 0.00 41.74 8.27 0.00 70.05 12 0.00 -3.19 0.00 

3 6 13.10 44.43 7 0.00 48.57 9.05 0.00 92.90 13 0.00 -2.75 0.01 

3 7 7.04 25.79 7 0.00 44.10 9.10 0.00 102.56 13 0.00 -3.97 0.00 

3 8 14.45 35.05 7 0.00 42.94 9.23 0.00 90.19 14 0.00 -0.79 0.43 

3 9 10.88 24.31 7 0.00 42.53 9.15 0.00 66.81 12 0.00 0.72 0.47 

3 10 12.73 36.54 7 0.00 40.85 9.08 0.00 124.28 13 0.00 -2.57 0.01 

4 5 -1.85 5.78 7 0.57 18.07 8.30 0.02 291.91 13 0.00 -2.38 0.02 

4 6 0.96 29.74 7 0.00 32.43 9.10 0.00 38.47 13 0.00 -2.13 0.03 

4 7 -4.53 10.20 7 0.18 15.13 9.09 0.09 28.00 13 0.01 -1.62 0.10 

4 8 15.60 39.31 7 0.00 43.86 9.29 0.00 63.13 14 0.00 -4.06 0.00 

4 9 13.71 76.93 7 0.00 83.88 9.24 0.00 90.75 13 0.00 -3.22 0.00 
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Table 24 (cont.). Piecewise fit
 
statistics for IPIP Openness item pairs in the faking condition. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

4 10 -3.97 12.13 7 0.10 24.91 9.13 0.00 71.27 13 0.00 -2.51 0.01 

5 6 -2.52 15.00 7 0.04 24.40 8.14 0.00 30.42 12 0.00 -1.55 0.12 

5 7 4.57 19.39 7 0.01 21.14 7.93 0.01 23.20 12 0.03 0.48 0.63 

5 8 10.71 18.88 7 0.01 23.88 8.39 0.00 587.79 14 0.00 -2.82 0.00 

5 9 10.98 34.91 7 0.00 45.30 8.35 0.00 69.54 12 0.00 -2.05 0.04 

5 10 22.78 42.55 7 0.00 49.99 7.82 0.00 92.05 12 0.00 1.09 0.28 

6 7 -4.44 24.37 7 0.00 28.72 8.92 0.00 42.69 13 0.00 -1.29 0.20 

6 8 15.30 29.51 7 0.00 35.33 9.19 0.00 51.32 14 0.00 -3.53 0.00 

6 9 6.99 38.76 7 0.00 43.59 9.15 0.00 53.73 13 0.00 -2.28 0.02 

6 10 -2.33 20.95 7 0.00 27.13 8.95 0.00 68.76 13 0.00 -1.53 0.13 

7 8 18.11 34.83 7 0.00 38.85 9.20 0.00 52.40 14 0.00 -2.79 0.01 

7 9 11.18 41.88 7 0.00 50.39 9.17 0.00 68.29 13 0.00 -2.24 0.02 

7 10 3.50 18.30 7 0.01 21.67 8.76 0.01 59.51 13 0.00 -0.30 0.77 

8 9 10.64 31.68 7 0.00 36.65 9.32 0.00 48.32 14 0.00 -0.26 0.80 

8 10 11.36 31.64 7 0.00 35.69 9.19 0.00 70.14 14 0.00 -2.42 0.02 

9 10 13.40 31.77 7 0.00 37.60 9.17 0.00 66.88 13 0.00 -1.74 0.08 

Mean 6.64 28.99 7.00 0.03 36.32 8.81 0.00 91.74 13.02 0.00 1.98* 0.19 

SD 8.40 13.31 0.00 0.09 13.43 0.43 0.01 87.26 0.61 0.00 1.16* 0.27 

Max 23.76 76.93 7.00 0.57 83.88 9.32 0.09 587.79 14.00 0.03 1.09 0.90 

Min -4.58 5.78 7.00 0.00 15.13 7.66 0.00 23.20 12.00 0.00 -4.90 0.00 

*Note. The mean and standard deviation of the 𝑧𝑜𝑟𝑑 statistics were calculated from the absolute values of the original 𝑧𝑜𝑟𝑑 statistics. 

 

 

 

 



 
 

104 
 

Table 25. Fit indices of confirmatory factor analyses for a unidimensional model of International Personality Item Pool (IPIP) items 

the honest and faking conditions. 

Dimension Condition CFI TLI RMSEA (90% CI) 

Agreeableness 
Honest 0.943 0.926 0.121 (0.108, 0.134) 

Faking 0.935 0.917 0.155 (0.142, 0.168) 

Conscientiousness 
Honest 0.886 0.853 0.135 (0.122, 0.148) 

Faking 0.983 0.978 0.082 (0.068, 0.096) 

Extraversion 
Honest 0.949 0.935 0.127 (0.114, 0.140) 

Faking 0.910 0.884 0.154 (0.140, 0.167) 

Emotional 

Stability 

Honest 0.923 0.901 0.179 (0.167, 0.192) 

Faking 0.991 0.989 0.062 (0.047, 0.077) 

Openness 
Honest 0.820 0.768 0.226 (0.214, 0.239) 

Faking 0.955 0.943 0.112 (0.098, 0.125) 

Note: CFI = Comparative Fit Index; TLI = Tucker Lewis Index; RMSEA = Root Mean Square Error of Approximation; CI = 

Confidence Interval. 
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Table 26. Parameter estimates for items in the Counter-productive Work Behavior (CWB) scale. 

Item Mean SD a b1 b2 b3 b4 b5 

CWBI-1 1.904 1.851 1.084 -0.478 0.122 0.438 1.018 1.456 

CWBI-2 0.744 1.204 2.007 0.369 0.889 1.358 1.966 2.400 

CWBI-3 0.770 1.471 1.162 0.744 1.158 1.449 1.701 2.190 

CWBI-4 0.879 1.556 1.577 0.632 0.845 1.126 1.525 1.870 

CWBI-5 0.626 1.238 1.759 0.671 1.102 1.424 1.878 2.273 

CWBI-6 0.835 1.317 1.610 0.351 0.868 1.278 1.699 2.548 

CWBI-7 0.342 0.957 1.828 1.131 1.486 1.863 2.079 2.534 

CWBO-1 0.283 0.909 1.403 1.403 1.830 2.035 2.564 3.036 

CWBO-2 2.051 1.754 0.643 -1.230 -0.061 0.521 1.246 2.106 

CWBO-3 0.194 0.802 1.505 1.791 2.007 2.232 2.489 3.199 

CWBO-4 1.168 1.574 0.994 0.117 0.603 1.025 1.747 2.351 

CWBO-5 1.279 1.494 0.790 -0.318 0.648 1.309 1.917 3.056 

CWBO-6 0.429 0.980 1.213 0.924 1.707 2.090 2.641 3.171 

CWBO-7 0.529 0.964 1.293 0.614 1.285 2.054 2.722 3.709 

CWBO-8 1.022 1.430 0.827 0.153 0.934 1.568 2.163 3.010 

CWBO-9 0.236 0.800 1.385 1.508 1.917 2.257 2.774 3.459 

CWBO-10 0.236 0.872 1.319 1.734 2.007 2.243 2.668 3.115 

CWBO-11 1.205 1.390 0.978 -0.269 0.624 1.224 2.040 2.871 

CWBO-12 0.385 1.014 1.280 1.218 1.623 2.013 2.458 3.113 

Note. N = 449. The a-parameters do not include the scaling constant of 1.702. 
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Table 27. Piecewise fit
 
statistics for CWB-I item pairs. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 10.04 44.38 23 0.00 63.77 25.63 0.00 69.31 34 0.00 0.19 0.85 

1 3 -1.29 36.20 23 0.04 44.42 25.44 0.01 62.94 33 0.00 1.39 0.16 

1 4 13.19 47.35 23 0.00 66.88 25.52 0.00 94.39 34 0.00 1.31 0.19 

1 5 6.99 40.15 23 0.01 57.95 25.50 0.00 72.96 33 0.00 -1.47 0.14 

1 6 5.45 30.14 23 0.15 43.76 25.55 0.01 50.85 33 0.02 -0.66 0.51 

1 7 5.31 28.52 23 0.20 36.43 25.48 0.07 59.94 32 0.00 -2.29 0.02 

2 3 -2.36 27.41 23 0.24 31.88 25.42 0.18 44.29 34 0.11 -0.02 0.99 

2 4 -0.49 27.72 23 0.23 35.84 25.55 0.09 46.55 33 0.06 -1.30 0.19 

2 5 -2.97 19.76 23 0.66 21.35 25.32 0.69 24.08 33 0.87 -0.80 0.42 

2 6 -0.32 32.06 23 0.10 36.12 25.38 0.08 61.43 33 0.00 0.32 0.75 

2 7 -3.15 27.63 23 0.23 30.93 25.22 0.20 41.87 31 0.09 -1.19 0.23 

3 4 -0.94 34.31 23 0.06 36.66 25.40 0.07 53.94 34 0.02 -1.09 0.28 

3 5 -4.95 13.52 23 0.94 15.43 25.31 0.94 30.25 33 0.60 -1.57 0.12 

3 6 -4.68 20.59 23 0.61 22.76 25.43 0.62 29.28 33 0.65 -1.65 0.10 

3 7 -2.92 19.54 23 0.67 26.66 25.18 0.38 40.98 32 0.13 0.67 0.50 

4 5 2.81 26.11 23 0.30 31.84 25.28 0.17 83.41 34 0.00 0.51 0.61 

4 6 7.50 49.23 23 0.00 55.39 25.46 0.00 77.13 34 0.00 -0.38 0.70 

4 7 4.45 38.85 23 0.02 47.20 25.22 0.01 76.21 33 0.00 -0.68 0.49 

5 6 -0.66 28.41 23 0.20 29.73 25.31 0.25 34.32 33 0.40 -1.02 0.31 

5 7 -3.78 18.35 23 0.74 21.68 24.93 0.65 43.31 32 0.09 0.92 0.36 

6 7 -1.37 22.88 23 0.47 25.18 25.17 0.46 49.46 32 0.03 0.18 0.86 

 

Mean 1.23 30.15 23.00 0.28 37.23 25.37 0.23 54.61 33.00 0.15 -0.41 0.42 

SD 5.04 9.56 0.00 0.28 14.02 0.16 0.27 18.71 0.82 0.25 1.01 0.28 

Max 13.19 49.23 23.00 0.94 66.88 25.63 0.94 94.39 34.00 0.87 1.39 0.99 

Min -4.95 13.52 23.00 0.00 15.43 24.93 0.00 24.08 31.00 0.00 -2.29 0.02 
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Table 28. Piecewise fit
 
statistics for CWB-O item pairs. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

1 2 -3.66 24.26 23 0.39 37.18 25.27 0.06 207.36 33 0.00 -0.29 0.77 

1 3 -2.65 31.29 23 0.12 47.54 24.80 0.00 77.05 29 0.00 4.20 0.00 

1 4 -3.21 33.29 23 0.08 43.15 24.86 0.01 89.11 30 0.00 0.57 0.57 

1 5 0.32 22.00 23 0.52 27.81 25.19 0.33 366.72 32 0.00 -0.04 0.97 

1 6 -4.04 28.79 23 0.19 34.80 25.16 0.10 48.37 30 0.02 2.42 0.02 

1 7 -1.62 23.06 23 0.46 26.95 25.31 0.37 48.09 31 0.03 1.46 0.15 

1 8 -0.73 19.72 23 0.66 30.11 25.17 0.23 53.13 31 0.01 0.18 0.86 

1 9 3.40 49.70 23 0.00 60.02 25.08 0.00 78.93 29 0.00 4.25 0.00 

1 10 -2.67 32.33 23 0.09 58.19 25.11 0.00 92.32 30 0.00 4.12 0.00 

1 11 -3.14 24.34 23 0.39 29.40 25.17 0.26 40.26 32 0.15 0.00 1.00 

1 12 -1.34 22.64 23 0.48 30.82 25.22 0.20 36.79 30 0.18 2.76 0.01 

2 3 -1.28 22.94 23 0.46 41.15 25.47 0.03 49.56 32 0.02 -0.35 0.73 

2 4 8.15 61.11 23 0.00 84.17 25.13 0.00 95.85 33 0.00 2.54 0.01 

2 5 3.70 30.99 23 0.12 47.65 25.40 0.00 67.25 34 0.00 3.52 0.00 

2 6 -0.54 20.47 23 0.61 31.60 25.67 0.19 60.04 34 0.00 -1.27 0.20 

2 7 -0.91 28.07 23 0.21 36.10 25.78 0.09 61.27 34 0.00 -0.83 0.41 

2 8 5.27 37.68 23 0.03 62.76 25.41 0.00 85.48 34 0.00 5.31 0.00 

2 9 3.38 31.90 23 0.10 43.97 25.74 0.01 50.87 32 0.02 -0.82 0.41 

2 10 -1.31 39.80 23 0.02 52.07 25.71 0.00 69.89 33 0.00 -0.20 0.84 

2 11 7.58 37.05 23 0.03 55.11 25.36 0.00 87.43 35 0.00 5.64 0.00 

2 12 1.36 30.41 23 0.14 35.45 25.77 0.10 229.85 34 0.00 0.46 0.65 

3 4 -2.49 28.43 23 0.20 38.98 25.08 0.04 77.82 30 0.00 0.41 0.68 

3 5 -0.43 25.54 23 0.32 38.23 25.39 0.05 66.84 31 0.00 0.30 0.77 

3 6 -4.52 25.45 23 0.33 40.72 25.35 0.03 64.46 30 0.00 3.49 0.00 

3 7 -2.19 40.34 23 0.01 47.29 25.53 0.01 70.38 31 0.00 2.00 0.05 

3 8 -0.38 23.85 23 0.41 36.89 25.38 0.07 52.65 31 0.01 -0.32 0.75 

3 9 -3.71 25.56 23 0.32 39.07 25.26 0.04 67.30 29 0.00 3.90 0.00 

3 10 2.57 38.95 23 0.02 58.19 25.28 0.00 98.71 30 0.00 3.63 0.00 

3 11 -3.67 24.13 23 0.40 28.18 25.39 0.32 33.66 32 0.39 0.11 0.91 
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Table 28 (cont.). Piecewise fit
 
statistics for CWB-O item pairs. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

3 12 -5.29 22.03 23 0.52 31.06 25.40 0.20 39.60 30 0.11 2.99 0.00 

4 5 3.03 40.64 23 0.01 56.93 25.03 0.00 99.72 32 0.00 3.64 0.00 

4 6 -2.11 28.39 23 0.20 32.83 25.24 0.14 55.12 31 0.00 1.60 0.11 

4 7 -1.39 35.93 23 0.04 39.32 25.37 0.04 87.41 32 0.00 -0.72 0.47 

4 8 3.92 47.87 23 0.00 53.41 25.08 0.00 73.30 32 0.00 2.10 0.04 

4 9 -2.98 30.95 23 0.12 40.88 25.34 0.03 83.25 30 0.00 0.90 0.37 

4 10 -3.96 23.62 23 0.42 29.89 25.33 0.24 62.10 31 0.00 1.42 0.16 

4 11 4.98 43.70 23 0.01 46.68 25.07 0.01 59.47 33 0.00 0.19 0.85 

4 12 -3.60 7.33 23 1.00 14.01 25.35 0.97 38.83 31 0.16 1.93 0.05 

5 6 -1.09 25.54 23 0.32 45.56 25.57 0.01 69.26 33 0.00 2.26 0.02 

5 7 1.38 29.14 23 0.18 43.23 25.69 0.02 157.60 33 0.00 0.04 0.97 

5 8 -0.79 36.84 23 0.03 42.40 25.37 0.02 66.39 33 0.00 3.21 0.00 

5 9 -1.06 28.27 23 0.21 44.71 25.66 0.01 77.01 31 0.00 1.20 0.23 

5 10 -1.71 19.55 23 0.67 29.72 25.63 0.26 55.46 32 0.01 1.39 0.17 

5 11 2.63 27.84 23 0.22 32.15 25.34 0.16 65.43 34 0.00 3.08 0.00 

5 12 -1.00 36.33 23 0.04 39.64 25.69 0.04 84.39 32 0.00 0.57 0.57 

6 7 -1.73 45.95 23 0.00 51.15 25.75 0.00 81.52 32 0.00 1.77 0.08 

6 8 0.89 28.25 23 0.21 38.78 25.59 0.05 76.89 33 0.00 -0.17 0.87 

6 9 -4.89 29.27 23 0.17 34.82 25.64 0.11 47.03 30 0.02 2.45 0.01 

6 10 -2.76 27.19 23 0.25 39.85 25.64 0.04 59.77 31 0.00 3.94 0.00 

6 11 4.53 33.45 23 0.07 38.42 25.60 0.05 64.04 33 0.00 -0.64 0.52 

6 12 -2.77 22.03 23 0.52 26.89 25.73 0.40 45.36 31 0.05 1.56 0.12 

7 8 7.37 27.40 23 0.24 43.10 25.66 0.02 70.50 33 0.00 2.33 0.02 

7 9 -1.86 34.34 23 0.06 42.12 25.78 0.02 66.36 31 0.00 2.72 0.01 

7 10 -5.36 31.48 23 0.11 38.06 25.81 0.06 63.55 32 0.00 2.81 0.00 

7 11 0.30 20.86 23 0.59 26.11 25.65 0.44 55.04 34 0.01 1.06 0.29 

7 12 -2.03 31.13 23 0.12 41.22 25.89 0.03 69.88 32 0.00 0.29 0.77 

8 9 1.30 24.67 23 0.37 40.05 25.65 0.03 55.08 31 0.00 0.32 0.75 

8 10 -1.35 36.30 23 0.04 46.46 25.62 0.01 68.36 32 0.00 0.82 0.41 
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Table 28 (cont.). Piecewise fit
 
statistics for CWB-O item pairs. 

Item1 Item2 Adjusted χ
2 

/ df 𝑀𝑖𝑗 df p 𝑋̅𝑖𝑗
2  df p 𝑅𝑖𝑗 df p 𝑧𝑜𝑟𝑑 p 

8 11 7.66 44.92 23 0.00 56.71 25.35 0.00 82.06 34 0.00 4.64 0.00 

8 12 -3.12 23.30 23 0.44 30.40 25.67 0.24 56.59 32 0.00 2.37 0.02 

9 10 -2.13 40.44 23 0.01 55.86 25.58 0.00 91.51 30 0.00 3.30 0.00 

9 11 -2.90 26.10 23 0.30 31.66 25.65 0.19 35.12 32 0.32 0.95 0.34 

9 12 -5.47 32.49 23 0.09 42.44 25.68 0.02 49.11 30 0.02 3.80 0.00 

10 11 -4.08 30.65 23 0.13 33.85 25.64 0.13 43.92 33 0.10 1.44 0.15 

10 12 -4.40 34.42 23 0.06 43.94 25.70 0.01 55.74 31 0.00 2.97 0.00 

11 12 -2.20 36.98 23 0.03 40.58 25.69 0.03 62.20 33 0.00 0.17 0.87 

 

Mean -0.65 30.75 23.00 0.23 41.04 25.45 0.10 75.78 31.76 0.03 1.69 0.30 

SD 3.37 8.56 0.00 0.21 10.96 0.25 0.15 48.68 1.45 0.07 1.68 0.35 

Max 8.15 61.11 23.00 1.00 84.17 25.89 0.97 366.72 35.00 0.39 5.64 1.00 

Min -5.47 7.33 23.00 0.00 14.01 24.80 0.00 33.66 29.00 0.00 -1.27 0.00 

 

 

 

 

 

 

 

 

 



 
 

110 
 

FIGURES 

Figure 1. Scree plot for the 69 MC and 7 CR items of the Physics B Exam. 
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Figure 2. Histogram of the 𝑋̅𝑖𝑗
2  statistics for the 69 MC items of the Physics B Exam. 
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Figure 3. Histogram of the 𝑅𝑖𝑗 statistics for the 69 MC items of the Physics B Exam. 
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Figure 4. Histogram of the  𝑧𝑖𝑗 statistics for the 69 MC items of the Physics B Exam. 
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Figure 5. Scree plot for the 70 MC and 3 CR items of the World History Exam. 

 

 

 

 

 

 

 

 

 

 



 
 

115 
 

Figure 6. Histogram of the 𝑋̅𝑖𝑗
2  statistics for the 70 MC items of the World History Exam. 
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Figure 7. Histogram of the 𝑅𝑖𝑗 statistics for the 70 MC items of the World History Exam. 
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Figure 8. Histogram of the  𝑧𝑖𝑗 statistics for the 70 MC items of the World History Exam. 
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Figure 9. Scree plot for the 55 MC and 3 CR items of the English Literature Exam. 
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Figure 10. Histogram of the 𝑋̅𝑖𝑗
2  statistics for the 55 MC items of the English Literature Exam. 
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Figure 11. Histogram of the 𝑅𝑖𝑗 statistics for the 55 MC items of the English Literature Exam. 
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Figure 12. Histogram of the  𝑧𝑖𝑗 statistics for the 55 MC items of the English Literature Exam. 
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Figure 13. Scree plots for the 10 IPIP Agreeableness items in both honest (upper panel) and 

faking (lower panel) conditions. 
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Figure 14. Scree plots for the 10 IPIP Conscientiousness items in both honest (upper panel) and 

faking (lower panel) conditions. 
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Figure 15. Scree plots for the 10 IPIP Extraversion items in both honest (upper panel) and faking 

(lower panel) conditions. 
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Figure 16. Scree plots for the 10 IPIP Emotional Stability items in both honest (upper panel) and 

faking (lower panel) conditions. 

 

 



 
 

126 
 

Figure 17. Scree plots for the 10 IPIP Openness items in both honest (upper panel) and faking 

(lower panel) conditions. 
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Figure 18. Scree plots for the 7 CWB-I (upper panel) and 12 CWB-O (lower panel) items. 
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APPENDIX A: INTERNATIONAL PERSONALITY ITEM POOL (IPIP) (Goldberg, 1992).  

Agreeableness: 

1. I feel little concern for others. (R) 

2. I am interested in people. 

3. I insult people. (R) 

4. I sympathize with others' feelings. 

5. I am not interested in other people's problems. (R) 

6. I have a soft heart. 

7. I am not really interested in others. (R) 

8. I take time out for others. 

9. I feel others' emotions. 

10. I make people feel at ease. 

Conscientiousness: 

1. I am always prepared. 

2. I leave my belongings around. (R) 

3. I pay attention to details. 

4. I make a mess of things. (R) 

5. I get chores done right away. 

6. I often forget to put things back in their proper place. (R) 

7. I like order. 

8. I shirk my duties. (R) 

9. I follow a schedule. 

10. I am exacting in my work. 

Extraversion: 

1. I am the life of the party. 

2. I don't talk a lot. (R) 

3. I feel comfortable around people. 

4. I keep in the background. (R) 

5. I start conversations. 

6. I have little to say. (R) 

7. I talk to a lot of different people at parties. 

8. I don't like to draw attention to myself. (R) 

9. I don't mind being the center of attention. 

10. I am quiet around strangers. (R) 

Emotional Stability: 

1. I get stressed out easily. (R) 

2. I am relaxed most of the time. 

3. I worry about things. (R) 

4. I seldom feel blue. 

5. I am easily disturbed. (R) 

6. I get upset easily. (R) 
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APPENDIX A (cont.): 

7. I change my mood a lot. (R) 

8. I have frequent mood swings. (R) 

9. I get irritated easily. (R) 

10. I often feel blue. (R) 

Openness: 

1. I have a rich vocabulary. 

2. I have difficulty understanding abstract ideas. (R) 

3. I have a vivid imagination. 

4. I am not interested in abstract ideas. (R) 

5. I have excellent ideas. 

6. I do not have a good imagination. (R) 

7. I am quick to understand things. 

8. I use difficult words. 

9. I spend time reflecting on things. 

10. I am full of ideas. 
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APPENDIX B: COUNTER-PRODUCTIVE WORK BEHAVIOR (CWB) SCALE (Bennett 

& Robinson, 2000). 

CWB-I (Interpersonal Deviance) Scale 

1. Made fun of someone at work 

2. Said something hurtful to someone at work 

3. Made an ethnic, religious, or racial remark at work 

4. Cursed at someone at work 

5. Played a mean prank on someone at work 

6. Acted rudely toward someone at work 

7. Publicly embarrassed someone at work 

CWB-O (Organizational Deviance) Scale 

1. Taken property from work without permission 

2. Spent too much time fantasizing or daydreaming instead of working 

3. Falsified a receipt to get reimbursed for more money than you spent on business expenses 

4. Taken an additional or longer break than is acceptable at your workplace 

5. Come in late to work without permission 

6. Littered your work environment 

7. Neglected to follow your boss’s instructions 

8. Intentionally worked slower than you could have worked 

9. Discussed confidential company information with an unauthorized person 

10. Used an illegal drug or consumed alcohol on the job 

11. Put little effort into your work 

12. Dragged out work in order to get overtime 

 

 

 

 


