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ABSTRACT 
 

 Protein folding, the process through which proteins gain their functional structure, can be 
approached from the perspective of many disciplines. Starting with biology, we can probe how 
protein structure relates to function and consider how the fold of a protein interacts with the 
biological environment. From the chemical perspective, we can treat protein folding as a chemical 
reaction and study the thermodynamics and kinetics of the structural transition. With physics, we 
can understand the underlying forces that give rise to protein folding and use theory and simulation 
to describe the protein folding process on an atomic level. This thesis studies protein folding 
through the lens of all three of these fields with two interdisciplinary methodological themes: one at 
the interface of chemistry and physics and the other at the interface of biology and chemistry.  
 In section 1, we study in detail the kinetics of fast-folding reactions following pressure-jump 
perturbation and pair experiment with molecular dynamics simulations. The first chapter is a review 
of the effects of pressure on the structure of biomolecules as well as a brief literature review of 
pressure-probed protein folding kinetics. We see that the methodology to study pressure-jumps is 
generally limited by time-scale—very fast folding is hard to study by pressure—and chapter two 
presents an overview of a fast pressure-jump instrument that meets this challenge. Although this 
instrument was developed by the previous generation of graduate students, several significant 
improvements are summarized in the chapter with a detailed user manual for the instrumentation. 
Closing up the section, we use the fast pressure-jump instrumentation as well as temperature-jump 
instrumentation to study the microsecond pressure and temperature-jump refolding kinetics of the 
engineered WW domain FiP35, a model system for beta sheet folding. With a full complement of 
molecular dynamics experiments mimicking experimental conditions, we show that simulation and 
experiment are consistent with a four-state kinetic mechanism and highlight FiP35’s position at the 
boundary where activated intermediates and downhill folding meet.  
 Section 2 focuses on the interface of biology and chemistry, where we study how the protein 
folding reaction is impacted by immersion in the crowded intracellular environment and explore 
whether perturbations to the intracellular folding landscape can be linked to protein function. A 
review of the forces at play in the intracellular environment and the role that ultra-weak “quinary” 
interactions play inside living cells is presented in chapter 4, which also includes a review of the most 
recent literature studying biomolecular dynamics in their native environments. In chapter 5 we study 
the time-dependence of protein folding inside living cells as probed by live-cell fluorescent 
microscopy. We find that both the rate of folding and the thermodynamic stability of yeast 
phosphoglycerate kinase (PGK-FRET) are cell cycle-dependent, a process strictly regulated in time, 
suggesting that the interplay between the intracellular environment and proteins may impact their 
function. In chapter 6, a new probe to study protein folding in the cell is explored, namely the 
GFP/ReAsH Forster resonance energy transfer (FRET) pair. We show that this FRET pair suffers 
from bleaching artifacts but that directly excited ReAsH is an appealing prospect for studying 
protein folding in living cells on fast and slow time-scales. Finally, chapter 7 builds on the work 
presented in chapter 5 and chapter 6 by seeking a protein candidate whose function and in cell 
folding dynamics are linked. Several constructs of p53, a transcription factor, are explored as 
potential candidates for answering the question of whether protein activity level indeed can correlate 
with stability in living cells.  
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SECTION I: PROTEIN FOLDING UNDER PRESSURE 
 

CHAPTER 1 
PRESSURE PERTURBATION OF PROTEIN STRUCTURE 

  

1.1 MECHANISM OF PROTEIN PRESSURE DENATURATION AND THE 

PRESSURE UNFOLDED STATE 

1.1.1 Pressure-probed folding thermodynamics For over 100 years, it has been known that 

application of high pressures has an effect on protein structure. The discovery was first made by 

observing the coagulation of albumin, from an egg white, under pressure1. Since then, pressure has 

been used, although less popularly than temperature or denaturants, to probe structural transitions in 

proteins and other biomolecules, particularly oligomeric or aggregated proteins.  

 The effect of pressure on a protein’s fold can be understood entirely through Le Chatelier’s 

principle2: at high pressures, the energetically favored structure has the minimum volume. Generally 

speaking, the unfolded state of globular proteins is lower in volume than the folded state which 

gives rise to denaturation at high pressures. 

 The pressure dependence of the free energy of folding, ΔG, is given by:  

€ 

ΔG(P) = ΔG0 + ΔV0(P − Pm ) −
VΔβT
2

(P − Pm )
2  

where ΔV0 is the volume change upon unfolding, Pm is the pressure unfolding midpoint, and ΔβT is 

the change in isothermal compressibility upon unfolding. Thus, while temperature denaturation 

accesses the enthalpy and heat capacity of a protein, a pressure denaturation thermodynamics 

experiment provides information on the volume change upon unfolding as well as the isothermal 

compressibility of the protein. Figure 1 shows a generic phase diagram for temperature and pressure 

denaturation of a protein and the trend in volume change exhibited for both denaturation methods.  
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Figure 1 Temperature pressure phase diagram. Area in light blue shows the region of the phase diagram where the 
protein is folded. The border of the ellipse shows the Tm or Pm of the protein at any pressure or temperature, 
respectively.  
 

1.1.2 The pressure unfolded state The contrast between the dependence of the free energy on 

temperature and the dependence of the free energy on pressure provides some insight into the often 

nuanced effect pressure can have on protein structure. While temperature denatures proteins by 

perturbing both volume and energy, pressure perturbs only volume, making it a somewhat more 

gentle denaturation method that can leave secondary structure behind in the unfolded state. Often, 

the radius of gyration of the pressure-unfolded ensemble is lower than what would be expected for a 

true random coil3.  

 In an extreme example of residual secondary structure in the pressure-denatured state, a 

transcription factor in its pressure denatured state retained its globular structure—thus appearing 

fully folded by NMR measurements—but had its core completely penetrated by water—thus 

appearing completely unfolded by tryptophan fluorescence measurements4. Numerous examples of 

the pressure denatured state showing residual secondary structure, particularly alpha-helical 

structure, have been reported across the literature3,5,6. Indeed, it was shown that the volume change 

of unfolding for an isolated helical peptide is positive, suggesting that in some cases helices are 

stabilized at high pressures7.  

 

1.1.3 Origins of pressure-induced unfolding Until recently8, the origin for the difference in 

volume between the folded and unfolded states of globular proteins (and, thus, the variation in the 

sensitivity of various protein folds to pressure denaturation) was poorly understood. Because protein 
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solutions are not ideal solutions, the change in molar volume upon unfolding is dependent on 

hydration effects as well as changes in volume due to the disruption of internal cavities that exist in 

the folded state. Solvent effects alone, including unfavorable solvation of non-polar groups at high 

pressures driving their packing in the core of the protein9 and changes in the bulk structure of water 

at high pressures10, cannot alone explain the difference in the molar volume between the folded and 

unfolded state2. A recent exhaustive high pressure NMR study of cavity forming mutants of 

staphylococcal nuclease showed that the susceptibility of proteins to high pressure derives mostly 

from the presence of internal cavities in the folded state8. Thus, the general consensus in the 

literature is that the higher the volume of internal cavities in a protein or the higher degree of 

packing defects in the fold, the more susceptible a protein is to pressure denaturation.  

  

1.2 PRESSURE-PROBED PROTEIN FOLDING KINETICS 

 Pressure-probed kinetics can provide useful information about a protein’s transition state 

through measurement of the activation volume, 

€ 

ΔVf
‡ , which is related to the measured pressure-

probed folding rate, kf, by: 

€ 

k f = kme
− pΔV f

‡ /RT  

 where km is the folding prefactor and p is the pressure. The ratio of the folding activation volume 

and the overall volume change of folding, called the “V-value”11, provides an estimate in the change 

in hydration between the unfolded state and the transition state. This measure is essentially the 

pressure analog to the Φ-value and provides a complimentary method to traditional T-jump and 

stopped-flow experiments to understand the nature of the transition-state.  

 Because the molar volume of the transition-state ensemble is higher than the unfolded state 

(or, in other words, the activation volume is very positive), proteins unfold very slowly at high 

pressures and upwards pressure-jumps greatly slow reaction kinetics 12. The slowing of kinetics 

enables use of instrumentation that otherwise would have lacked the time resolution to observe the 

kinetics. For example, the folding of staphylococcal nuclease was measured with site-specific 

precision via upwards pressure-jumps monitored by multi-dimensional NMR13. Here, the rate of 

folding for each individual residue was resolved and used to show that pressure effects on the fold 

are observed in different regions of the protein structure depending on mutant and denaturant 

concentrations—remarkably specific mechanistic insight.  
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1.3 PRESSURE AND PROTEIN AGGREGATION 

 Aside from its obvious utility in studying protein folding from a mechanistic perspective, 

pressure has useful applications in understanding other biomolecules, including nucleic acids14 and 

oligomeric proteins15. One area of active research is pressure’s ability to disaggregate non-productive 

protein aggregates including amyloid fibrils and bacterial inclusion bodies.  

 

1.3.1 Probing amyloid fibrils with pressure Amyloid fibrils are a type of protein aggregate that is 

common across many diseases, particularly neurodegenerative disorders, including Parkinson’s 

Disease, Alzheimer’s Disease, and Huntington’s Disease. Amyloid fibrils are characterized by a beta-

sheet topology that varies depending on the protein sequence that gives rise to the fibril. Until the 

past decade with the expansion of solid-state NMR techniques, amyloid fibrils were not understood 

structurally at the molecular level due to their poor crystallization and incompatibility with solution 

NMR16.  

 Pressure, however, offers an interesting, and relatively straightforward, way to probe the 

general attributes of fibril structure. Because the structural stability of biomolecules to pressure 

denaturation depends on internal cavities, the resistance to pressure denaturation of fibrils can be 

used to probe the packing efficiency of the fibril structure17.  Indeed, the stability of amyloid fibrils 

to application of high pressure is not uniform, reflecting the known diversity of fibril structure. In 

some cases, amyloid fibrils were found most sensitive to pressure denaturation early in the fibril 

formation process before eventually growing over more time resistant to even very high pressures, 

presumably due to internal reorganization that occurs over time and reduces packing deficiencies in 

the fibril structure16,18. In most other cases14, however, amyloid fibrils were found to be very sensitive 

to pressure denaturation, the behavior of hen lysozyme fibrils being typical which shows accelerated 

dissociation under pressures as low as 50 MPa19.  

 Even slight differences in fibril structure, as might be expected between amyloid fibrils 

formed from two mutants of the same protein, give rise to varying resistivity to applied pressure. A 

study on Alpha-Synuclein found that fibrils made from wild-type Alpha-Synuclein were more likely 

to resist denaturation than the mutant varieties that lead to inherited forms of Parkinson’s Disease 

due to structural differences between the two types of fibrils20. This implied that the in cell protease 

machinery was more likely to be able to break up the mutant amyloid fibrils into smaller aggregates 

(which are thought to be more neurotoxic than the full-length fibrils), offering a possible 
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explanation for why those with inherited mutations have a more severe form of Parkinson’s Disease 

than those with sporadic cases.  

 High pressure is also useful to study aggregation kinetics because it can often stabilize 

partially folded intermediates that otherwise would be too transient to observe. Aggregation or 

amyloid formation is often thought to originate from partially folded, off pathway intermediates, and 

high hydrostatic pressure has been proposed as a way to access these intermediates in order to better 

understand the early steps of the amyloid formation21. For example, in the case of transtheyretin, 

high pressure disaggregates fibrils into a partially folded intermediate that reaggregates upon return 

to atmospheric pressure more rapidly than the monomeric protein under aggregation-promoting 

conditions20.   

 

1.3.2 High pressure to purify proteins from inclusion bodies A common problem faced in the 

field of biotechnology are proteins that aggregate in bacterial expression systems. Rather than remain 

soluble in the bacterial cytoplasm, some proteins aggregate and amass into highly insoluble inclusion 

bodies from which purification of the target protein of interest is extremely difficult. The ability to 

purify difficult to express proteins at high yield is of great importance in the pharmaceutical industry, 

particularly as the development of biologics-based drugs becomes more prevalent.  

 Pressure’s ability to disaggregate amyloid fibrils translates to the solubilization of inclusion 

bodies. Some of the first proteins to be folded from inclusion bodies by use of high pressure were 

human growth hormone, lysozyme, and beta-lactamase22. In many cases, very low concentrations of 

GuHCl and hydrostatic pressures of 20 MPa were sufficient to complete break up insoluble 

aggregates, and a return to GuHCl free buffer and atmospheric conditions resulted in complete 

refolding of the protein.   

 

1.4 BRIDGING PRESSURE-JUMP EXPERIMENTS AND SIMULATIONS THROUGH 

LOW DEAD-TIME PRESSURE-JUMP INSTRUMENTATION 

 While simulated temperature-jumps23 and long MD simulations at high temperatures where 

multiple folding and unfolding transitions can be observed24,25 are relatively common place, 

simulations at high pressures26,27 or of pressure-jumps28,29 are rarer, despite the utility of comparing 

pressure-perturbation results with experiment to improve the performance of force fields. The 

reason for the paucity of pressure-jump simulated data is that, until recently, there were no 

experimental reports of pressure-probed kinetics with rates below a millisecond and, thus, no 
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experimental benchmark available for comparison to the simulated data. Although the pressure-

probed kinetics of several protein systems have been thoroughly studied, namely the ankyrin repeat 

protein30,31, staphylococcal nuclease11,13,32,33, and lambda repressor28,34,35, only the lambda repressor has 

a kinetic phase less than a millisecond.  

 The biggest challenge to measure the pressure-induced kinetics of fast folders is 

instrumentation. Figure 2 summarizes the major types of pressure-jump instrumentation and 

highlights the differences in the size of the pressure-jumps the instrumentation is capable of 

administering and the fastest kinetics that can be resolved. The most common strategy to administer 

pressure changes  is through the use of valve-based instrumentation. While this enables large jumps 

in pressure, the dead-time of most electrically-controlled valves or “fast-valves” in figure 2 is on the 

order of 5 milliseconds36. For a downward pressure-jump, this limits the studied proteins to those 

that fold on the order of 10’s of milliseconds.  

 

 

Figure 2 Summary of the three major types of pressure-jump instrumentation. For each method, the ranges of the 
pressure-jump size administered and kinetic rate resolution possible are indicated by the borders of the colored regions. 
Examples of kinetic rates observed for each method type are shown. The references for the various proteins are: 
Staphylococcal nuclease11,32, ankyrin repeat protein30, trp repressor6, lambda repressor28,35, Myosin-ADP binding37, and 
cold shock protein38. Fip35 is the subject of chapter 3 of this thesis.  
 

 One useful strategy to circumvent the time-scale limitations of valve-based instrumentation 

is to employ upwards pressure-jumps. At high pressures, protein folding reactions proceed at a 

much slower rate, so instrumentation dead-time becomes less critical for resolving reaction kinetics. 
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In this case, hand-controlled valves can be used to administer jumps of up to a few hundred bar and 

monitor reaction kinetics with rates as fast as a few seconds (red highlighted area in figure 2). 

Upward pressure-jumps are particularly useful because reactions can proceed so slowly that kinetics 

can be monitored by multi-dimensional NMR, which allows  residue by residue monitoring of 

protein folding transitions13. However, while slowing down the kinetics makes them easier to 

measure, this strategy is incompatible with directly comparing experiment to molecular dynamics 

simulations.  

 Chapter 2 of this thesis describes in detail a burst-membrane based approach to measure fast 

folding kinetics following pressure-drop. As is highlighted in figure 2, burst-membrane based 

instrumentation can access protein folding rates on the order of microseconds. In Chapter 3, this 

instrumentation is used to study the fast folding of FiP35 following pressure-jump and the resulting 

kinetics are directly compared to molecular dynamics simulations of pressure-jumps.  
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CHAPTER 2  
PRESSURE-JUMP INSTRUMENTATION TO STUDY PRESSURE-

PROBED MICROSECOND FOLDING KINETICS 
 

2.1 INTRODUCTION 

 Previously, the Gruebele group developed a burst-membrane based pressure-jump 

instrument that enables very large pressure drops—exceeding 2000 times atmospheric pressure—

with an instrument dead-time of only 1 µs. With such resolution and jump size, the instrument has 

been used to measure the pressure-probed folding kinetics of fast folders including lambda 

repressor28,34,35 and the WW-domain mutant FiP35 (Chapter 3). In the case of Lambda repressor28,35 

and FiP35 (Chapter 3), the resolved pressure-jump kinetics were fast enough to be compared 

directly to molecular dynamics simulations, which is only possible due to the microsecond dead-time 

of the pressure-jump instrumentation. From the original prototype reported in Nature Methods34, a 

number of improvements to the instrumentation were made that enabled greater ease of use and, 

accordingly, higher throughput. Building upon these improvements, the work presented in chapter 3 

represents an approximately 5-fold increase in the number of measurements obtained in a typical 

experimental run. The first section of this chapter summarizes the major instrument improvements 

and provides rationale for why they were needed. The remaining sections provide a detailed 

overview of assembly and operation of the pressure-jump instrumentation. Appendix D includes a 

troubleshooting guide for users which covers all major (and minor) problems encountered over the 

past 5 years.  

 

2.2 IMPROVEMENTS MADE TO THE PRESSURE-JUMP INSTRUMENTATION 

2.2.1 Laser stability Originally, the pressure-jump apparatus was mounted onto the optical table 

that is shared by the Ti:Saph laser, which provides (see section 2.4) the excitation source for 

fluorescence detection of protein folding. In order for the laser signal to be frequency tripled to 

tryptophan’s 280 nm excitation maximum and to effectively trigger signal collection on the scope, 

the laser is mode-locked with a pulse train at 80 MHz. The stability and reliability of this mode-lock 

can be perturbed by shocks to the optical table. 

 The pressure drop instrumentation for jumps greater than 1000 bar delivers a significant 

shock to the table that often perturbs the mode-lock enough to interfere with signal collection. 

Several strategies were employed to avoid this problem including mounting the pressure-jump 
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apparatus onto a piece of shock absorbing honeycomb steel and attaching this breadboard to the 

optical table with shock absorbing rubber feet. While this was effective, the limited lifetime of the 

rubber feet (<1 year) made this approach non-sustainable.  

 The solution that has proved most effective in the long term is mounting the pressure-jump 

instrument to its own pedestal separate from the optical table. This pedestal is firmly mounted to the 

concrete floor via screws and the only connections between the shock-producing pressure-jump 

instrument and the optical table are flexible wires and a pmt light-guide. By mechanically isolating 

the pressure-jump assembly from the sensitive optical equipment, large jumps can now be accessed 

(as high as 3000 times atmospheric pressure), without laser disruption.  

 

2.2.2 Signal corruption One persistent problem with the pressure-jump instrument has been 

random electrical noise evident in the fluorescent signal. This typically manifests itself as large 

baseline rolls in the signal that appear right around the jump. Many different hypothesis for the 

origin of this signal corruption were tested and ruled out including: 1) Contamination of the 

fluorescence signal by stray light from sparks (which occur when the membrane breaks), 2) 

Mechanical oscillation of the pressure-jump assembly causing the laser path length through the 

sample to change, 3) Mechanical disruption of the laser signal, and 4) Electrical artifacts from the 

capacitor bank discharge travelling to electrical equipment through the metal optical table. 

Ultimately, it was determined that the problem arises from electrical interference originating from 

the extremely large capacitor bank discharge partially through the air and partially through the 

electrical connections. The PMT appears to be exquisitely sensitive to these random electrical 

signals. The best strategies to combat this kind of electrical interference are to a) use the Faraday 

cage around the capacitor bank and P-jump assembly, b) ensure that the fluorescence signal is 

extremely robust (>100 mV on the scope) so that interference doesn’t overwhelm the signal, and c) 

use signal processing to remove some electrical noise that breaks through the signal. These strategies 

are discussed in detail in Appendix D.  

 

2.2.3 Equipment changes A number of changes were made to the equipment used throughout the 

instrument including the materials of the pressure fitting, the method the sample cavity is machined 

into the sapphire cube and the design of the non-conductive cylinder. These improvements are 

outlined in section 2.3.  

 



	
   10	
  

2.3 PRESSURE-JUMP INSTRUMENT COMPONENTS 

2.3.1 Pressure fitting 

 

 
Figure 3 Pressure fitting showing groove where the O-ring fits and pressurization fluid inlet. The liquid emerges 
through the hole surrounded by the O-ring groove, which is placed above the sample.  
 
What it does: Guides pressurization fluid to sample  

Replacement guidelines: The area around the O-rings becomes corroded due to the electrical discharge 
(which can essentially weld the steel burst membrane to the pressure fitting) and this can lead to O-
ring damage. When O-rings start breaking frequently, it’s time to replace the pressure fitting. These 
shouldn’t need to be replaced more than once a year with typical instrument usage. The SCS 
machine shop makes this part and has a diagram on file. It should be made of steel and then 
hardened. Titanium is also acceptable.   
 
2.3.2 Sapphire cube 
 

 
Figure 4 Sapphire cube with machined sample cavity. The sample cavity typically holds 5-10 µL of sample. The 
diameter of the sample cavity is slightly smaller than the diameter of the o-rings, enabling the bottom o-ring to form a 
seal around the edge of the sample cavity.  
 
What it does: Holds the sample. Sapphire is used because it is strong and optically transparent.  

Replacement guidelines: Sapphire cubes can be used until they break. Even cracked cubes can sometimes 
continue to be used for a long time provided the crack does not cross through the sample cavity. We 
order the sapphire cubes from Esco products and they have the measurements and specification on 
file. The sample hole is machined into the cube by the machine shop. The hole should be smaller in 
diameter than the O-ring and on the strong face of the sapphire. Finding the strong face:  
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 1) Put a polarizer on a flashlight and turn on the flashlight 
2) Set a cube on the polarizer 
3) Hold the other polarizer on top and rotate it.  
4) Watch the top face of the cube. If you have found a strong face, there will be a spectrum 
of many colors visible as you rotate the polarizer. The opposite face will have the same 
spectrum. 
5) A weak face shows no color spectrum. 
  

 
Figure 5 Finding the strong axis of the sapphire cubes. As shown in the above diagram, two polarizers and a flashlight 
can be used to identify the directionality of the crystal so that the strongest axis is used for machining of the sample 
cavity.  
 

2.3.3 Burst membrane 

 

 
Figure 6 Burst membrane. Left membrane has not been used while the right membrane has been used twice, as 
evidenced by the two burst holes. The clean edges of the burst holes indicate that the jump was likely with a low dead-
time.  
 

What it does: Breaks when capacitor charge is delivered and allows the system pressure to drop very 
rapidly.  
 
Replacement guidelines: These can be used twice (put the membrane into the assembly another way so 
that un-burst steel is over the sample cavity). We buy stainless steel shim stock to cut into burst 
membranes from McMaster Carr. One order from McMaster Carr will supply enough membranes 
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for several hundred or more jumps. In a pinch, the SCS machine shop usually has some shim stock. 
5-7 thousands of an inch thick stock can be cut with scissors into membrane sized pieces. These 
thicknesses access the range of jumps from 1000 to 2000 bar. Thicker shim stock can be cut in the 
machine shop with shears. The membrane should be about the width of a cube and 2/3 the length 
of the tongue of the pressure fitting.  
 
2.3.4 Foil 
 

 
Figure 7 Foil used to protect the sample from contamination by pressurization fluid. Visible here is the folded piece of 
aluminum coated Mylar that wraps around a piece of foil.  
 
What it does: Protects the sample from the pressurization fluid and blocks sparks that form when the 
membrane bursts from contaminating the fluorescence signal.  
 
Replacement: These need to be replaced every other jump or so. To make, wrap a piece of aluminum 
coated Mylar around a piece of foil. It helps to wet the Mylar so it sticks to the foil. To restock foil, 
Sigma sells many kinds of foil that can be used for the inner piece. The aluminum wrapped Mylar is 
an emergency blanket (the kind that marathon runners use after races).  
 

2.3.5 Electrode 

 
 
Figure 8 Copper electrode. Tips on either end are sharpened in order to cleanly break the burst-membrane. The double 
ended design allows a single electrode to be used twice before needing to be re-machined.  
 
What it does: Copper electrode with sharpened tips on both sides. Delivers capacitor discharge to 
burst membrane. 
 
Replacement guidelines: These can only be used once per side before they need to be re-machined. The 
end that comes into contact with the burst membrane must be sharp, or the break will not be clean. 
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The machine shop makes this part and can re-furbish old electrodes until they are too short to reach 
from the top of the pressure assembly to the burst membrane. A part diagram is on file at the 
machine shop and the material used is copper.   
 
2.3.6 Non-conductive cylinder  
 

 
 
Figure 9 Non conductive cylinder. This cylinder is seen from the top, where the electrode enters the cylinder before 
making contact with the burst membrane. The groove is meant to enable liquid that escapes during the pressure drop to 
travel away from the electrode.  
 
What it does: Specially treated, heat and pressure resistant piece of ceramic that guides the electrode to 
the burst membrane. As the burst membrane is weakened by the pressure, it pushes up into the 
bottom of the cylinder so the cylinder also determines the size of the hole that is burst in the burst 
membrane.  
 
Replacement guidelines: These can be used for approximately 50 jumps. When the edges of the hole on 
the bottom are no longer sharp, the jump resolution will suffer and its time for the cylinder to be 
replaced. These are ordered from AstroMet and all the information should be on file there. It is 
essential that the bottom of the through hole of the cylinder (where it contacts the burst membrane) 
is sharp and does not have a chamfer. Otherwise, sapphire cubes will break and jump resolution will 
be poor.  
 

2.3.7 O-ring 
What it does: Provides a seal between the pressure fitting and the foil and the pressure fitting and the 
burst membrane.  
 
Replacement guidelines: These last a variable amount of time. Only replace if they are obviously broken 
or pressure is not holding well in the assembly. They are .158 x .02090 o-rings made of fluorocarbon 
from Apple Rubber Products (part number R00158-020-90VTB).  
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2.3.8 High pressure tubing, pressure fitting connector, and nipple 
 

 
Figure 10 High pressure tubing diagram showing the end of the tubing. The nipple is attached via threading on the end 
of the high pressure tubing. The connector to the pressure fitting slides over the nipple, enabling a tight seal to form 
between the pressure-jump instrument and the high pressure tubing.  
 
What it does: Connects pressure generator to the pressure-jump assembly and delivers pressurization 
fluid. 
 
Replacement guidelines: Replace the tubing when it starts functioning poorly. Common problems are 
leaks, usually where the tubing has been bent, and clogs. The tubing can be purchased from High 
Pressure Equipment Company (HiP). Make sure to buy tubing that is rated for at least 3000 bar. The 
channel is machined here to add threads to either end so that the nipple end piece can be attached. 
Nipples and pressure fitting connectors rarely need replacing. 

 

2.4 SAFETY 

2.4.1 Capacitor bank 

The capacitor bank is an electrocution risk. Always make sure to discharge and turn off the capacitor 

before touching anything connected to it. Even if it discharged during the experiment, discharge 
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again (by switching the discharge button) and turn it off before disconnecting the assembly. It is a 

good practice to attach or detach the electrical contacts to the P-jump assembly with one hand. 

Never try to increase the pressure or adjust any aspect of the P-jump assembly when the capacitor 

bank is charged and connected to the assembly!  

 

2.4.2 Laser 

The laser beam moves upwards through the pressure assembly and towards your face, so take care 

when aligning the beam. Always block the beam path when you are working on the pressure 

assembly in case the shutter opens. Always keep the shutter closed (except during alignment), but 

bear in mind that static electricity can (and does) occasionally cause the shutter to spontaneously 

open and close.  

 

2.4.3 Pressure 

A pressure release not initiated by a capacitor discharge as might occur during pressurization is not 

violent but does release a lot of pressurization fluid like a little geyser. When using ethanol as a 

pressurization fluid and working close to the pressure assembly, it’s a good idea to wear glasses or 

goggles. The pressure release with the capacitor discharge generates significant sparks, so no one 

should be near the pressure assembly during an experiment. Keep flammable materials (for example, 

ethanol soaked tissue) away from the pressure assembly.  
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2.5 OPERATION INSTRUCTIONS 

2.5.1 System overview 

 

 

Figure 11 Pressure-jump assembly overview showing parts and their assembly. Figure from ref.34 

 

 

Figure 12 Schematic showing excitation and emission collection geometry relative to P-jump components.  Figure  from 
ref.35   
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2.5.2 Alignment of the laser in the pressure assembly 

1) Get laser aligned, mode locked, and stable. Power from the tripler should be at least 10 mW.  

2) Send the laser through the optics between the shutter and the pressure assembly. Make sure that 

the beam is centered in every mirror and the lens.  

3) Place a card in the empty pressure-jump assembly. Roughly align the laser to be centered where 

the top of the cube will be. Adjust the placement of the lens in the beam path, if necessary, so that 

the beam is focused in the center of the sample cavity.  

4) Put a concentrated tryptophan solution into the sample cavity of the cube and put the cube into 

the mantle and into the assembly. Adjust the alignment using the final mirror so that the beam 

moving through the sample. The beam should be clearly visible in the tryptophan solution.  

5) Check the PMT alignment by ensuring that there is plenty of signal with the tryptophan only 

solution. If the signal is low, check the placement of the pmt light guides both in the assembly and at 

the PMT itself.  

 

2.5.3 Using the pressure generator 

 

 
Figure 13 Hydrostatic pressure generator diagram with part labels. Pressure is read from gauge in center.  
 

1) Make sure reservoir is filled with water or ethanol (either works fine, but if you switch between 

the two the system must be primed completely with the new pressurization fluid).  



	
   18	
  

2) If the shaft is not visible, the system needs to be primed. If the shaft is fully exposed, the system 

is ready to use (in the diagram above, the system is ready to use).  

3) To prime the system: Turn the reservoir valve (valve one) to the fully open position (turn counter 

clockwise until it stops). Turn valve two to the fully closed position (turn clockwise until it stops). 

Turn the pressure wheel counter clockwise until it stops. This fills the pressure generator tubing with 

pressurization fluid from the reservoir. Close valve one and open valve two. The system is primed 

and ready to go.  

4) To pressurize: Make sure valve one is closed and valve two is open. Turn the pressure wheel 

clockwise and watch the outlet to make sure pressurization fluid comes out. Connect the pressure 

assembly and start pressurizing by continuing to turn the pressure wheel clockwise. Watch the gauge 

to monitor pressure.  

5) To pressurize again, repeat steps 3 and 4.  

6) NOTE: watch the shaft carefully. If it is not-visible, it’s time to prime the system. If you turn too 

far, the wheel can come off.  

 

2.5.4 Putting together the pressure assembly and pressurizing  

1) Insert the cube into the mantle (“mantle” is called “mandrel” in the Nature Methods paper) and 

the mantle into the assembly.  

Mantle in lowered position with cube inserted:  

 

 

Figure 14  Assembly step 1.  Cube is inserted with the slot for the pressure fitting clearly visible.  

 

2) Carefully add just enough sample to fill the sample cavity with a pipette (access through the top).  
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3) Raise the mantle about .5 cm, leaving the cube in place. 

 

 

Figure 15 Assembly step 3.  Mantel in raised position to facilitate easy insertion of the pressure fitting.  

 

4) Place the foil carefully into the pressure fitting slot with tweezers. The foil should be slightly 

narrower than the pressure fitting and about 2 or 3 times as long as the width of the cube.  

 

 

Figure 16 Assembly step 4.  Mantel in raised position with foil inserted.  
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5) Make sure the o-rings are in place on the pressure-fitting. Place the burst membrane on top of the 

o-ring on the top of the pressure fitting. 

 

 

Figure 17 Assembly step 5.  Pressure fitting with burst membrane placed on top.  

 

6) Carefully insert the pressure fitting with the burst membrane into the assembly on top of the foil. 

The burst membrane is on top of the tongue of the pressure fitting, as in figure 17. Try not to 

disturb the foil as you insert the pressure fitting. The pressure fitting should go all the way in until 

the round edge of the fitting is flush with the pressure-jump assembly.  

7) Push the mantle all the way down so that the foil comes into contact with the cube. At this point, 

do not shift the pressure fitting or it will dislodge the sample from the cube.  

 

 

Figure 18 Assembly step 7.  Mantle pushed down with pressure fitting inserted.   
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8) Insert the non-conductive cylinder and the metal cylinder. The non-conductive cylinder should 

touch the top of the burst membrane. 

 

 

Figure 19 Assembly step 8. View from the top of the assembly with non-conductive cylinder and metal cylinder inserted 
. 
 

9) Put the top clamp on top of the mantle. Make sure that the hole through the top aligns with the 

hole through the non-conductive cylinder and that the set screw on the side of the top clamp aligns 

with the hole in the copper side of the assembly directly above the pressure fitting. Slide the washers 

and bolts into place and tighten with a wrench. Try to tighten both sides evenly.  

10) Insert the pressurization tubing into the pressure fitting. Tighten using a wrench. System is now 

ready for pressurization.  

 

 

Figure 20 Assembly step 10. Assembly with top clamp tightened and pressure tubing attached.  
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2.5.5 Calibrating burst membranes 

1) When to calibrate: Every time a new non-conductive cylinder is used, when there are significant 

changes in the thickness of the protective foil, or when a different size jump is desired, the system 

needs to be re-calibrated. Occasionally, changing the pressure fitting, pressurization fluid, or cube is 

enough of a perturbation that the system should be recalibrated.  

2) Assemble the pressure-jump assembly and increase the pressure until the membrane breaks. 

There is a stainless steel “cube” which can be used to ensure that no cube breakage occurs during 

calibration.  

3) Note the pressure at which the membrane broke. Repeat this three or more times.  

4) The pressure to pressurize to for a pressure-jump experiment should be 50 bar less then the 

average pressure at which the membrane broke.  

 

2.5.6 Doing a pressure-jump experiment 

1) Assemble the pressure-jump assembly and pressurize to 50 bar less than the average pressure at 

which the membrane broke.  

2) Put the electrode in through the top of the assembly. Make sure it makes contact with the burst 

membrane.  

 

 

Figure 21 Inserting the electrode.   
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3) Secure the electrode into place by tightening the set-screw.   

 

 

Figure 22 Fixing the electrode into place by tightening the set screw.   

 

 4) Attach the capacitor outlet to the electrode. 

 

 
Figure 23 Capacitor outlet attached to the electrode.     
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5) Attach the grounding wire hub to one of the posts. Attach the alligator clips as shown in diagram. 

Pressure fitting, both screws on the bases, and the tall screw posts should be grounded.  

 

 

Figure 24 Assembly with all four grounding wires attached.     

 

5) Turn on capacitor bank. Switch to “charge” and adjust voltage dial to maximum. Wait for voltage 

to read 100 V (or desired voltage) and turn voltage dial down to 0. SAFETY NOTE: DO NOT 

TOUCH PRESSURE-JUMP ASSEMBLY AT THIS POINT BEFORE DISCHARGING 

THE CAPACITOR BANK. 

 

 

Figure 25 Capacitor bank control panel with key controls labeled.   
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 6) Turn PMT on and turn voltage to 640 mV.  

7) Set scope to collection mode to “single” and set trigger to “aux”. Turn scope to PMT channel and 

change time scale to allow for a full 5 ms of data collection.  

8) Press control button to initiate jump. If you hear a snap and a hiss, the capacitor discharged and 

the membrane broke.  

 

2.6 BEFORE BEGINNING EXPERIMENTS ON A NEW PROTEIN 

1) Thoroughly understand the pressure unfolding thermodynamics of the system. If the protein is 

<30 or 40% unfolded at 2000 bar, guanadinium or urea will need to be added to destabilize the 

protein enough to see a significant enough population change over a jump.  

 

2) Make sure there is a robust lifetime change upon unfolding.  This can be accomplished by doing 

lifetime probed thermodynamics in the ISS pressure cell (pressure denaturation) or in the T-jump 

assembly (temperature denaturation). Any protein that has previously been studied by T-jump is 

likely to be a good candidate for P-jump, from a spectroscopic perspective, but success is not 

guaranteed as the pressure denatured state is often different from the temperature denatured state.  

 

3) Consider the concentrations and conditions under which the protein of interest aggregates. 

Typically, concentrations of at least 200 µM are needed for a robust signal in the P-jump instrument.  

 

4) Try to choose proteins whose kinetics are likely to be within a good timescale for the P-jump 

apparatus: τobs greater than 1 µs but less 2 ms.  
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CHAPTER 3 
COMPARING FAST PRESSURE-JUMP AND TEMPERATURE-JUMP 

PROTEIN FOLDING EXPERIMENTS AND SIMULATIONS* 
 

3.1 INTRODUCTION 

 The detailed mechanisms of protein folding reactions are becoming amenable to a direct 

comparison between theory, simulation and experiment.29 FiP35, a 35 residue hybrid of the FBP and 

Pin1 WW domains,39 is a triple stranded beta sheet model protein with a small but well-defined 

hydrophobic core. FiP35 refolds very rapidly, making this WW domain a popular target for folding 

experiments and molecular dynamics (MD) simulation.40  

 Experiments indicate that at its melting temperature FiP35 is an apparent two-state folder, 

while well below its melting temperature it approaches downhill folding with a ‘molecular rate’ 

km=(tm)-1=(0.7-2 ms)-1.41,42 (tm is approximately the time required to cross the transition state region 

on a coarse-grained one-dimensional free energy landscape.42-44) Indeed, a variant of FiP35 (“GTT”), 

whose relaxation time of ≈3.7 ms nearly reaches the molecular time tm, has been experimentally 

characterized and simulated.45 MD trajectories well below Tm are not yet available for direct 

comparison with experiment. Long MD trajectories at Tm reveal a low barrier, consistent with 

experiments at Tm. The computed barrier lies between 1 and 5 kT on a one-dimensional free energy 

surface, depending on the analysis.25,41,42,46 A one-dimensional description is not complete. Markov 

analysis of multiple trajectories near Tm,47 and implicit solvent simulations of the Beta3s peptide48 

(structurally similar to the WW-domain), reveal complex kinetics among multiple short-lived 

intermediates prior to the main activated folding step. Thus the experimentally measured molecular 

time tm probably lumps together into one number a complex network of fast processes whose 0.7-2 

ms time scale collectively accounts for the time required to cross the transition state region on a 

rough free energy landscape. 

 The power of all-atom molecular dynamics (MD) simulations to illuminate protein folding 

experiments remains limited by time scale: It is computationally expensive to integrate the equations 

of motion for tens of thousands of atoms over the complete duration of protein refolding.25 Until 

recently, only temperature-jump-induced kinetics (T-jumps) were quick enough to compare with 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This chapter is adapted with permission from Anna J. Wirth, Yanxin Liu, Maxim Prigozhin, Klaus Schulten, and Martin 
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Society. YL performed all molecular dynamics simulations referenced in this chapter and generated the data shown in 
figures 30 and 31. MP provided instrumentation support to this publication. 	
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single-trajectory simulations.24,49 Now instrumentation improvements have enabled microsecond 

resolution pressure-jump experiments (P-jumps).28,34,35   

 Here we present a unified study of microsecond P-jump and T-jump experiments of FiP35. 

Experiments reveal two distinct microsecond kinetic phases in both types of jumps, but the faster 

phase behaves differently in the P-jump than in the T-jump. We complement the experimental data 

with all-atom MD simulations that fairly closely mimic the actual P- and T-jump experiments: the 

protein is unfolded either by pressure or heat, allowed to equilibrate, and then jumped back to the 

original temperature or pressure, whereupon relaxation is observed. Several P- and T-jump 

trajectories lead to complete refolding of FiP35, allowing us to gather some statistics about 

mechanism. Our modeling using Bayesian analysis of the MD trajectories50 and kinetic master 

equations shows that simulation is in good agreement with the experimentally observed kinetic 

curves. Although some reasonable assumptions have to be made about the fluorescence signal of the 

intermediates, and the agreement thus does not prove the mechanism extracted from the MD 

simulations, our results show that MD can reproduce complex experimental kinetics with multiple 

time scales quantitatively. This is an important step forward in using the combination of experiment 

and simulation to understand protein folding mechanisms in detail. 

 

3.2 METHODS 

3.2.1 Sample preparation FiP35 was expressed and purified as described previously,42 although 

with a slightly different plasmid construction. Briefly, a construct encoding a fusion protein 

consisting of Glutathione-S-transferase (GST), a thrombin cleavage site, and FiP35 was cloned into 

pDream (GenScript). The fusion protein was expressed in BL21(DE3)-Ripl (Agilent) E. coli and 

captured and purified from the cell extract on an immobilized glutathione column according to 

manufacturer’s guidelines (GenScript).  The protein was eluted by 10 mM glutathione in 50 mM 

Tris-HCl pH 8.0 and subsequently dialyzed against 10 mM sodium phosphate buffer.  

 FiP35 was cleaved from the purification tag by overnight incubation with biotinylated 

thrombin (EMD Millipore). Thrombin was removed by incubation with streptavidin-agarose resin 

(EMD Millipore) according to manufacturer’s protocol. FiP35 was purified from cleaved GST via an 

ultra filtration cell with 10 kDa cutoff membrane (Millipore). The purified FiP35 was lyophilized and 

resuspended to a final concentration of 200-400 µM FiP35 with 100 mM sodium phosphate buffer, 

pH 7.0.  
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 Buffer conditions were identical throughout all experiments while concentrations of FiP35 

and GuHCl varied. FiP35’s single tryptophan on the first beta strand (loop or hairpin 1) enabled 

monitoring of folding via fluorescence, in particular the formation of strands 1 and 2. 

 

3.2.2 Pressure thermodynamics The thermodynamics of FiP35 unfolding under pressure were 

measured via fluorimeter (Cary Eclipse, Varian) in a pressure cell (ISS) as described previously.35 The 

sample was placed in a quartz cuvette with a flexible cap to enable pressure transduction and 

inserted into the pressure cell. With a hydrostatic pressure generator (High Pressure Equipment 

Company), the cell was filled with spectroscopic grade ethanol (95.0 %, Acros organics) and 

pressurized up to 250 MPa with 4 minutes equilibration every 10 MPa increase or decrease. A 

custom built stage was used to mount the pressure cell into the fluorimeter.  

 Solutions of 50 or 100 µM FiP35 in 100 mM sodium phosphate buffer pH 7.0 and various 

concentrations of guanadinium hydrochloride (GuHCl) (Sigma) were assayed at room temperature. 

FiP35’s single tryptophan was excited at 280 nm and emission was collected from 290 nm to 500 nm 

at each pressure.  

 Pressure denaturation traces at varying concentrations of GuHCl were analyzed using 

singular value decomposition (SVD). Because intensity is arbitrary across different pressure 

titrations, the 2nd SVD vector (SVD2), which contains contributions from intensity and spectral 

shape change, was normalized by the 1st SVD vector (SVD1), which contains only intensity 

contributions. Plotting SVD2/SVD1 allows all of the pressure titrations to be analyzed together. 

 The unfolding traces were fit globally to a two-state unfolding model: 

 
where Su(P) and Sf(P) are the linear folded and unfolded baselines, and the free energy of folding is 

given by: 

 

Here, ΔVU!F is the volume change of folding, P is pressure, Pm is the midpoint of the denaturation 

transition at 0 M GuHCl, gm is a constant that describes the linear dependence of the free energy on 

GuHCl concentration, and M is the concentration of GuHCl.  
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3.2.3 Temperature thermodynamics The thermodynamics of FiP35 unfolding under temperature 

were measured with a fluorimeter (Cary Eclipse, Varian) in an Agilent temperature controller. 

Tryptophan was excited at 280 nm and emission collected from 290 nm to 500 nm. Solutions of 10 

µM FiP35 in 100 mM sodium phosphate buffer pH 7 and various concentrations of GuHCl were 

assayed and spectra were analyzed by SVD as described in the previous section.  

The temperature-probed unfolding traces were fit globally to a two-state model analogously 

to the pressure-probed thermodynamics: 

 
where Su(T) and Sf(T) are the linear folded and unfolded baselines, and the free energy of folding is 

given by: 

 
where g1 is a constant describing the linear temperature dependence of the free energy, T is the 

temperature, Tm is the unfolding midpoint at 0 M GuHCl, gm is a constant describing the linear 

dependence of the free energy on GuHCl concentration, and M is the GuHCl concentration.  

 

3.2.4 P-jump and T-jump kinetics Pressure-jump kinetics were measured as described 

previously34,35 with a home-built fast pressure drop apparatus capable of pressure drops up to 250 

MPa and a dead time of about a microsecond. A solution of 300 µM FiP35 in 100 mM phosphate 

buffer pH 7.0 and various concentrations of GuHCl was placed into a hemispheric sample cavity 

machined on the face of a sapphire cube (Esco Products). Hydrostatic pressure was applied by a 

pressure generator (High Pressure Equipment Company) through a pressure fitting to pressurize the 

sample, isolated from the pressurization fluid by a piece of Mylar coated aluminum foil. A capacitor 

bank discharge delivered by a sharpened copper electrode burst a 0.007’’ stainless steel membrane, 

weakened by the applied pressure, dropping the sample from 165 MPa to atmospheric pressure in 

about a microsecond.  

 Tryptophan fluorescence lifetime decays were probed every 12.5 ns before, during, and after 

the jump by a mode-locked Ti:Sapphire laser (KMLabs) that was frequency-tripled to 280 nm with a 

commercial tripler (CSK Optronics). Tryptophan fluorescence was passed through a B370 band-

pass filter, collected via a PMT (R7400U-03, Hamamatsu), and digitized by an oscilloscope 

(DPO7254) at a sampling period of 100 ps per point for 5 ms total data collection time. Two to 
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three jumps were collected for each GuHCl concentration and, to improve signal to noise, 50 decays 

were binned in each jump before analysis. Plots shown throughout the text are further smoothed 

after analysis to 5 µs per point.  

 FiP35 was jumped to the same final thermodynamic state in T-jumps as in P-jumps (figure 

26a) enabling direct comparison of the measured kinetics. Temperature-jumps from 18°C to 23°C 

were carried out by a Surelite Q-switched Nd:YAG laser (Continuum) Raman-shifted to 1.9 µm and 

sent through a 50/50 beam splitter such that the sample is heated from two sides. The starting 

temperature was held constant by a temperature controller (Lake Shore 330, Lake Shore 

Cryotronics) and the size of the jump was measured by comparing the tryptophan decay at the end 

of the jump to tryptophan decays measured at equilibrium at various temperatures.  

 300 µM FiP35 in 100 mM sodium phosphate buffer pH 7.0 and varying concentrations of 

GuHCl samples or 200 µM tryptophan for jump calibration were held in fused silica cuvettes for the 

experiments. Tryptophan fluorescence was excited and collected as described in the previous 

section. 50 decays were binned in each jump before analysis, as in pressure-jump experiments.  

 

Figure 26 Experimental scheme and kinetic traces. a) Temperature and pressure were jumped to the same final 
condition, thus allowing their rates to be compared. At low GuHCl concentration, both observed kinetic rates monitor 
predominantly refolding kinetics. b) Two representative P-jump traces at 0 M or 5 M GuHCl. Both traces have been 
binned to 5 μs intervals. Blue curves show double exponential fits to the experimental data. Red curves are the kinetics 
from a ‘two parallel intermediates’ master equation model (model IV in figure 5a) populated with rates from MD 
trajectories. Simulated kinetics are scaled to account for the viscosity difference between simulated and experimental 
water, and the 5 M GuHCl is also scaled by the experimental k0 M/k5 M ratio of rate coefficients (see SI methods).   
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3.2.5 Kinetics data analysis The change in tryptophan lifetime reflects changes in the probed 

tryptophan’s surrounding environment as the protein unfolds and is a more reliable observable than 

overall  fluorescence intensity as it is immune to slight fluctuations in laser intensity. Chi analysis51 is 

applied to quantify the change in lifetime over the course of the jump. The lifetime as a function of 

time, S(T), is decomposed into a linear combination of the lifetime before the jump, f1, and the 

lifetime at the end of the jump, f2, such that:  

 
c(t) is defined as the normalized c1(t): 

χ(t) = c1(t)
c1(t)+ c2 (t)

  

c(t) thus ranges from 1 at the beginning of the jump to 0 at the end of the jump (figure 26b).  

 In T-jump experiments, a slow linear baseline due to photo-bleaching were fit and 

subtracted off. For P-jump experiments, portions of the kinetic traces with large amplitude random 

noise were removed and excluded entirely from analysis (See figure 61). For both P-jump and T-

jump experiments, the kinetic signal expressed as c(t) was fit to a double-exponential : 

χ(t) = y0 + A1e
− t /τ1 + (1− A1)e

− t /τ 2  

For P-jump experiments, all replicates (2-3 jumps per GuHCl concentration) were fit to a double-

exponential individually and the fitted parameters averaged together to get single values for A1, τ1, 

and τ2 for each GuHCl concentration. For T-jump experiments, two traces were binned together 

before each averaged pair was individually fit to double-exponentials.  

The folding prefactor in the Arrhenius equation depends inversely on solvent viscosity and, 

consequently, the observed folding rate also shows viscosity dependence. High concentrations of 

GuHCl impart higher solvent viscosity, so observed folding rates from both pressure- and 

temperature-jump experiments were viscosity-corrected. Relative viscosities of GuHCl solutions to 

water,52 νr, were used to correct for the folding rate decrease:53 

 
Thermodynamic parameters from the global fits were used to calculate the free energy at the 

final equilibrium state after both temperature-jumps and pressure-jumps: 23°C, 0.1 MPa, and various 

GuHCl concentrations. The temperature-jump final state was chosen to match the final 
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thermodynamic state after pressure-jump. With the fitted observed folding rate, kobs, from kinetics 

experiments, the approximate folding and unfolding rates (approximate because FiP35 is not a two-

state folder) were calculated for each GuHCl concentration: 

 
where Keq is given as: 

 
The thermodynamic parameters from the pressure-probed unfolding were used to calculate folding 

and unfolding rates for pressure-jumps and those from the temperature-probed unfolding were used 

for temperature-jump calculations. However, at the equilibrium conditions (room temperature and 

atmospheric pressure), the free energies from the temperature and pressure-probed thermodynamics 

were very close: -17 kJ/mol (temperature) vs. -16 kJ/mol (pressure).  

3.2.6 Molecular dynamics simulations Molecular dynamics simulations, described in detail in 

Appendix A, were performed in explicit solvent using the TIP3P water model54 and the 

CHARMM22* force field for the protein.55 The structure of the WW domain (FiP35 mutant, 

residues 4 to 38) from the protein data bank (PDB code 2F21)39 was placed in a cubic box of 10,232 

water molecules and neutralized with 6 sodium ions and 9 chloride ions employing VMD.56 All 

simulations were carried out with periodic boundary conditions in a constant particle number, 

temperature, and pressure ensemble (NPT). Starting from the native state of the protein, two types 

of simulations were performed: P-jump and T-jump. Unfolding simulations were performed using 

NAMD57, and refolding simulations were performed on the Anton Platform.58,59 Data analysis and 

figure rendering were done using VMD.56 

 In a P-jump simulation, pressure was increased from 0.1 MPa to 900 MPa in 0.3 µs at a rate 

of 0.9 MPa/300 ps, followed by a 1-µs high-pressure equilibrium simulation (P = 900 MPa) and a 

pressure-drop simulation in which pressure was jumped downward from 900 MPa  to 0.1 MPa in 0.3 

µs at a rate of -0.9 MPa/300 ps. The temperature was maintained at T = 325 K through the P-jump 

simulation. In a T-jump simulation, the pressure was maintained at P = 0.1 MPa throughout the 

simulation and the system was heated up to 400 K for 1 µs between the initial 100-ns equilibrium 

simulation and the final refolding simulation, both at T = 325 K. To generate multiple refolding 
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trajectories, the pressure or temperature unfolded state was equilibrated for an additional 200 ns 

respectively, during which the structures were taken at t = 0 ns, 100 ns, and 200 ns to continue the 

P-jump and T-jump simulations at ambient conditions. The simulated and experimental P-jumps are 

in the same direction, although the denaturation pressure is higher in simulations to facilitate rapid 

unfolding. Note that both P- and T-jump simulations leave the WW domain under strong refolding 

conditions, as is also the case in the experiments (T=23 °C, P=0.1 MPa), although the simulated and 

experimental T-jumps are in opposite directions. 

 

3.2.7 Bayesian rates analysis of MD data and kinetic mechanism simulation Our main focus 

here is on comparing the novel P-jump experiments and simulations. We started with a Bayesian 

analysis50 to estimate from the P-jump MD simulations the rate coefficients connecting the unfolded 

state to intermediate states and intermediate states to the native state. This strategy is particularly 

useful when MD trajectories that do not show a transition are present in the data set and enables 

inclusion of this data in the estimation of transition rates.   

 Briefly, Bayes rule states that the probability of a model corresponding to a given data set, or 

the posterior probability density, can be derived from the probability of the model to generate the 

given data. The posterior probability density depends on the prior probability density or the state of 

knowledge about the model given previous data. Taking a uniform distribution as the prior 

probability density (or assuming no prior knowledge of the model) and specifically treating a two-

state transition model, the probability that the two state kinetic model with rate k corresponds to the 

molecular dynamics data set is given by:  

� 

pU (k |D,X,I) =
θ n+1

n!
kn exp[−kθ ]  

where Θ is the total simulation time, n is the number of simulations where a folding transition 

occurred, and k is the rate. The total simulation time is calculated by summing the time to the 

folding transition in each simulation. For simulations where no transition occurred, the folding time 

is the length of the simulation. The expectation value and variance of the distribution are given by: 

� 

k U =
n +1
θ
,var(k)U =

n +1
θ 2  

 The total folding times, values of n, and calculated rates and variance are summarized in 

table 11. To calculate the overall folding time for the pressure and temperature-jump simulations, 
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FiP35’s folding to the native state is approximated as a two-state transition. For the pressure-jump 

simulations, the forward folding rates to the two intermediates and from the intermediates to the 

native state were calculated by approximating each of the intermediate forming transitions and the 

intermediate to native state transitions as separate two-state reactions. Because the P-jump 

simulations (and the experiments) were carried out under conditions strongly favoring the native 

state, we assume that reverse rate coefficients are negligible. 

 To assess whether the rates and models observed in the pressure-jump simulations were 

consistent with experimental data, we performed kinetic simulations. Four different kinetic models 

(figure 27) that are minimally consistent with experiment and simulation (i.e. they can yield a double 

exponential decay) were solved populated with transition rates from the MD simulations by 

numerically solving the differential rate equations. The time depended of the concentration of each 

species was simulated for 100 µs with a time resolution of 0.01 µs.  

 

 
Figure 27 Summary of tested kinetic models and outcomes.  
  

 Various signal functions were also tested. Because the tryptophan residue of FiP35 is located 

between strand 1 and strand 2, it is reasonable to assume that all measureable signal in our 

experiment arises from the formation of the loop 1 intermediate or the native state. Thus, signal 

functions of the following form were evaluated:  

� 

S(t) = cIL1[IL1](t) + cN [N](t)  
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where [IL1] and [N] are the time dependent concentrations of the loop 1 intermediate and the native 

state, respectively. Their coefficients, CIL1 and CN, were varied from 0 to 1 in intervals of .01 such 

that: 

� 

cIL1 + cN =1 

 To test model and signal function combinations, each signal function was compared to 

experimentally generated data. To account for the disparity between simulated folding rates and 

experimental folding rates, the simulated data was scaled. To determine the scaling factor, the 

previously determined in silico folding rate of FiP35 on the Anton computer25 was compared to the 

experimentally determined FiP35 folding rate at the same temperature.42 As our simulations were 

performed with the same force field on the same super-computer as the previous in silico studies, this 

calculation should provide a robust link between simulation and experimental time-scales. In 

previous simulations,25 FiP35 gave a folding time of 10 µs at the in silico melting temperature. At the 

experimentally determined melting temperature, ~44 K below the in silico melting temperature, 

FiP35 folds in 27 µs.42 This gives a scaling factor of 3.7, in relatively close agreement with the 26 

scaling factor necessary to account for the lessened viscosity of the TIP3 water model.60  

 Since the P-jump experiment is carried under conditions strongly favoring the native state, 

our kinetic simulation assumes reverse rates are negligible. To account for the decrease in rate due to 

perturbation of the energy landscape by GuHCl as well as the change in solution viscosity at high 

concentrations of GuHCl, the simulation was further scaled for comparison to experiment. In this 

case, the scaling factor was obtained by taking the ratio of the rate from the 0 M GuHCl pressure-

jump experiment and the viscosity uncorrected rate from the 5 M GuHCl jumps. This yielded a 

scaling factor of 38.7.  

 To assess each model and the various signal functions for each model, each simulated kinetic 

trace was fit to a double exponential. The fitted fast phase amplitude, fast phase rate, and slow phase 

rate were compared to those obtained from experiment via a scoring function: 

� 

Score =
k fast,obs − k fast,sim

k fast,obs

⎛ 

⎝ 
⎜ ⎜ 
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⎠ 
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⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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+
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The lowest scoring signal functions for each model were used to report the model’s overall closeness 

to experimental data.  
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3.3 RESULTS 

3.3.1 FiP35 is thermodynamically stable to temperature and pressure denaturation Unfolding of 

FiP35 with pressure, temperature and denaturant (GuHCl) was measured by monitoring 

fluorescence from its single tryptophan residue. FiP35 unfolds reversibly up to 90 °C at 

concentrations ≤ 50 µM42 and up to 210 MPa at ≤ 100 µM (figure 62). At the highest pressures and 

temperatures used in kinetics experiments, no concentration dependence of the thermodynamics 

were observed and FiP35 was fully reversible at a concentration of 300 µM (figure 63). When FiP35 

is destabilized, its activation barrier increases, and its unfolding can be fitted approximately to a two-

state model, yielding its melting temperature and pressure (figure 28). FiP35 has an extremely stable 

fold: with no added GuHCl, the pressure unfolding midpoint is ≈680 MPa (table 26).   

 

 

Figure 28 Pressure and temperature thermodynamics with global fits. Y-axis is the ratio of component 2 and 1 from the 
singular value decomposition (SVD), which corresponds to wavelength shift. 
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 g1  or ΔVu!f Tm  or Pm gm (kJ mol-1  M-1) 
Pressure 3.00 ± 0.25 mL mol-1   677.0 ± 34 MPa 3.783 ± 0.16  
Temperature 0.3039 ± 0.0068 kJ mol-1  K-1 362.7 ± 0.44 K 3.265 ± 0.11  

Table 1 Thermodynamics. Values are derived from global fits and errors are fit uncertainties.  
 

Due to FiP35’s deviations from two-state behavior, fitted melting temperatures vary 

depending on how the fluorimeter data is analyzed. Here, singular value decomposed (SVD61) 

fluorescence spectra plotted versus temperature give a melting temperature close to 90 °C. When the 

same data is expressed as an integrated fluorescence intensity versus temperature, the fitted melting 

temperature is 75 °C, consistent with previous measurements.41,42 Here we use SVD to analyze the 

spectra in order to avoid intensity contributions to the signal, which in our pressure thermodynamics 

instrumentation can contain artifacts (see figure 62).  

 

3.3.2 P- and T-jump kinetics are bi-exponential Pressure-drop-induced refolding kinetics were 

measured at various GuHCl concentrations using a home-built apparatus that delivered a 165 0.1 

MPa downward P-jump at 23 °C with an instrument dead time of about 1 µs.34 To compare P- and 

T-jump folding kinetics, 5 °C T-jumps were performed from 18 to 23 °C, the same final state as the 

P-jumps (figure 26a). In both P- and T-jumps, the reaction was monitored by tryptophan 

fluorescence lifetime.42 

 Both T- and P-jump kinetics reveal a faster kinetic phase (≈6 µs for T-jump, ≈30 ms for P-

jump; tables 2 and 3, figures 61 and 64) and a slower kinetic phase (200-500 µs; tables 2 and 3, 

figures 61 and 64). The ‘slow’ P-jump phase is much faster than the previously observed millisecond 

P-jump refolding of l6-85, which was attributed to pressure-induced trapping in a highly helical non-

native state.35 There is no evidence of such millisecond traps in pressure-induced refolding of FiP35, 

making it attractive for full-atom simulations of complete refolding.  

 

[GuHCl] 
(M) 

%A1 τ1 (µs) τ1 (µs), viscosity 
corrected 

τ2 (µs) τ2 (µs), viscosity 
corrected 

3.5 34.1 ± 0.9 12.7 ± 7.7 11.3 ± 6.8 218 ± 54 193 ± 48 
3 50.8 ± 5.2 13.6 ± 3.0 11.6 ± 2.6 398 ± 42 340 ± 36 
4 32.6 ± 3.6 22.2 ± 6.0 17.4 ± 4.7 452 ± 24 355 ± 19 
5 47.3 ± 3.3 30.0 ± 4.4 21.2 ± 3.1 727 ± 69 513 ± 48 

Table 2 Pressure-jump kinetics. Errors are standard error (standard deviation of the mean). 
 
 
 
 
 

→
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[GuHCl] (M) %A1 τ1 (µs) τ1 (µs), viscosity 
corrected 

τ2 (µs) τ2 (µs), viscosity 
corrected 

3 77.7 ± 1.0 7.52 ± .78 6.42 ± .64 276 ± 21 235 ± 18 
3.5 68.6 ±  1.1 7.48 ± .36 6.14 ± .29 269 ± 11 221 ± 9.0 
4 59.2 ± 1.3 7.07 ± .69 5.55 ± .54 310 ± 18 244 ± 14 
4.5 50.7 ± 1.1 8.70 ± .51 6.50 ± .38 368 ± 12 275 ± 8.9 
5 49.8 ± 1.0 8.68 ± .43 6.13 ± .30 427 ± 7.5 302 ± 5.3 

 Table 3 Temperature-jump kinetics. Errors are standard error (standard deviation of the mean).  
 

3.3.3 The slow kinetic phase is similar between perturbation methods The slow kinetic phase in both 

T- and P-jump is consistent with being FiP35’s activated refolding phase. Both experiments in low 

or 0 M GuHCl and 23 °C are under conditions strongly favoring the native state. Kinetic and 

thermodynamic data were combined in a two-state analysis to extract folding and unfolding rates for 

the slow phase, an approximation given the observation of an additional fast phase (discussed 

below). The chevron plot in figure 29a shows that the denaturant dependence of both folding and 

unfolding rates is similar for T- and P-jump kinetics, although T-jump-probed folding rates are 

somewhat faster. All assayed GuHCl concentrations are below the GuHCl titration midpoint of 

FiP35,62 resulting in the expected decrease in the folding rate and increase in the unfolding rate with 

increasing GuHCl concentration. 

 Linear extrapolation of the activated folding rates versus GuHCl concentration yields 

activated folding rate coefficients kf of (56 µs)-1 for P-jump and (52 µs)-1 for T-jump at 23 °C in the 

absence of denaturant. A P-jump of FiP35 without denaturant (figure 26b and 65) yielded a fitted 

folding rate coefficient of (29.5 µs)-1, within measurement error of the extrapolation (figure 29a). 

The T-jump activated rate was previously measured only above 60 °C,42 where kf≈(20 µs)-1 is faster 

than our value of (52 µs)-1 at 23 °C. The previous measurements cover a wide temperature range 

above 60 °C,42 and their extrapolation to room temperature in absence of GuHCl agrees well with 

our current measurements at room temperature extrapolated to 0 M GuHCl. 

 

3.3.4 The fast kinetic phase differs between perturbation methods Unlike the slow phase, the fast 

kinetic phase of FiP35 behaves differently after T- and P-jump (figure 29b, 29c). Like the slow 

phase, the P-jump fast rate decreases as GuHCl concentration increases, even after viscosity 

correction (figure 2b); its amplitude shows no obvious trend when the GuHCl concentration is 

changed (figure 29c). In contrast, the fast T-jump rate has no GuHCl concentration dependence, 

even after viscosity correction (figure 29b), and its amplitude clearly increases when FiP35 is 

stabilized by removing denaturant (figure 29c). In addition, the T-jump fast phase also has a rate (6 
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µs)-1 at 23 °C that is about 2-3 times faster than the P-jump fast phase and approaches the folding 

“speed limit”63 previously measured for FiP35 in the (0.7-2 µs)-1 range between 60-85 °C.41,42  

 

 

Figure 29 Experimental kinetics summary. a) Chevron plot illustrating the GuHCl dependence of the slow phase 
folding and unfolding rates. Rates are linearly extrapolated without viscosity correction.64 Error bars include fit error 
from thermodynamic values and standard error from averaging kinetic fit parameters. b) Observed, solvent viscosity 
scaled relaxation rate of the fast phase for T- and P-jump (k in units of s-1, ln is the natural logarithm, error is standard 
error). c) The percentage of the amplitude corresponding to the fast phase. For both b) and c), error is standard error 
from averaging fitted values across multiple experimental traces.  

 

3.3.5 FiP35 completely refolds in several P- and T-jump simulations We ran six long single-trajectory 

all-atom MD simulations for FiP35 to provide mechanistic information to complement experiment. 

Two types of simulations of unfolding were performed, high temperature and high pressure, 
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followed by a jump to ambient conditions where refolding ensued. Three refolding trajectories for 

each denaturation type were obtained yielding over 70 microseconds of refolding trajectories in total. 

 The P-jump simulations mimic the experimental protocol. A pressure of 900 MPa, which 

exceeds the experimentally determined unfolding midpoint, was used to unfold the protein. During 

the unfolding process, hairpin 2 lost its native structure first, followed by the denaturation of hairpin 

1, as shown in figures 66a and 67a. Across the three refolding simulations (figures 30 and 68), the 

protein refolded into the native state in 4 µs, 12.5 µs, and 17.5 µs.  

 

 

Figure 30 Structural characterization of the refolding trajectories following P-jump, at T=325 K and P= 0.1 MPa, from 
the pressure-denatured state. Cα-RMSD values have been calculated relative to the crystal structure (PDB:2F21).39 
Hairpin 1 contains residues 11 to 25 and hairpin 2 contains residues 22 to 33. Structures under the legend show the 
native structure, a hairpin 1 formed (or loop 1) intermediate, and a hairpin 2 formed (or loop 2) intermediate. The full 
length Cα-RMSD values are calculated using residues 7 to 35. Bottom: Highlights of the folding transitions. Inset 
structure in the first folding transition is a misfolded mirror image structure (see main text).  

 

 Two different folding mechanisms were observed in the simulations, with one simulation 

folding through hairpin 2 first, and the other two through hairpin 1 first. The persistence of the 

hairpin 2-containing structure (representative structures shown in figure 30 under the legend) for 

several microseconds before refolding to the native state may arise from the formation of a mirror 

image conformation where hairpin 1 begins to form on the wrong side of hairpin 2 (inset structure 
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in bottom panel of figure 30)—a kinetic trap arising from the energetic similarity between the native 

state and the mirror image conformation that has been observed theoretically and experimentally in 

symmetrical proteins.65   

 T-jump simulations were also performed. A high temperature of 400 K was used to simulate 

temperature denaturation of FiP35 (figures 66b and 67b). The protein unfolded in 50 ns by losing 

both hairpins almost simultaneously. Upon return to room temperature, the protein folded to its 

native state in 0.5 and 6 µs, hairpin 2 first. In one simulation, FiP35 formed hairpin 2 in 19 µs but 

failed to fold in 27 µs of simulation (figures 31 and 69). Note that while the simulation is a 

downward T-jump and the experiment upward, the experimental final condition, as in the P-jump, is 

under conditions very strongly favoring the native state (23 °C, far below previous experimental 

studies carried out at 50+ °C). 

 

 

Figure 31 Structural characterization of the refolding trajectories following T-jump, at T=325 K and P= 0.1 MPa, from 
the temperature-denatured state. Cα-RMSD values have been calculated relative to the crystal structure (PDB:2F21).39 
Hairpin 1 contains residues 11 to 25 and hairpin 2 contains residues 22 to 33. The full length Cα-RMSD values are 
calculated using residues 7 to 35. Bottom: Highlights of the folding transitions.  
 

3.3.6 Kinetic modeling suggests a parallel four-state folding mechanism following P-jump The P-

jump simulations revealed two paths to the native state following pressure-jump: folding through 

hairpin 1 first or hairpin 2 first. We used Bayesian analysis of the molecular dynamics trajectories 
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and kinetic master equations to determine the kinetic mechanism that best matches both MD 

simulation and experiment. Four kinetic models (summarized in figure 27 and 32) were tested.  

I: Heterogeneous transition state model 

Phi-value analysis has shown that WW-domains can fold through two transition states with 

either loop 1 or loop 2 formed.66  In this kinetic model, FiP35 would fold through either of these 

two transition states through parallel paths. Our molecular dynamics simulations imply that this 

model is unlikely because, particularly in the case of the loop 2 formed structure, we observe 

persistence of the partially folded structures.  

Because this model has no intermediates, the change in concentration of the native state was 

used as the signal function:  

� 

S(t) = [N](t)  

As expected, the model did not closely match experiment giving a score of 29. The fitted values for 

the simulated data are summarized in table 12.  

II: Folding through the loop 2 intermediate 

 In this model, FiP35 folds through a stable loop 2 intermediate and through a parallel path 

to the native state with no intermediate. As in the two transition-state model, the signal function was 

given by the change in concentration of the native state. Because of the similarity of the signal 

functions, this gives very similar results to the two transition state model. The double exponential 

kinetics yielded by the simulation were a poor fit to the experimental data giving a score of 29. The 

fitted values for the simulated data are summarized in table 12.  

III: Folding through the loop 1 intermediate 

 In this model, FiP35 folds through a loop 1 intermediate and through an alternate path to 

the native state with no intermediate. In this case, the signal function was given as a linear 

combination of the concentration of the native state and the loop 1 intermediate: 

� 

S(t) = cIL1[IL1](t) + cN [N](t)  
The scores for each tested signal function are shown graphically in figure 70 The minimum score 

occurred for a signal function with cIL1=0.94 giving a score of 0.14. The fitted parameters for the 

kinetics were thus a close match for the experimental kinetics and are shown in table 12.  

While this model provides an excellent fit to experimentally observed kinetics, it deviates 

substantially from the observed mechanism in MD simulations. In the simulations, one trajectory 

shows a stable loop 2 intermediate, which persists for several microseconds while the loop 1 

intermediate is far more transient in the other two trajectories. This model is not consistent with this 



	
   43	
  

data because it designates the most transient of observed structures an intermediate while the more 

stable observed structure a transition state.  

IV: Folding through both the loop 1 and loop 2 intermediate 

 In this model, FiP35 folds through a loop 1 intermediate and through a parallel path to the 

native state through a loop 2 intermediate. As in case III, the signal function was comprised of 

contributions of both the native state and the loop 1 intermediate. The scores for each tested signal 

function are shown graphically in figure 70. The minimum score occurred for a signal function with 

cIL1=0.95 giving a score of 0.15. This model is thus consistent with experimental data and also 

reflects the observed folding mechanism in MD simulation. figure 26b shows the very close 

agreement between this model (red traces) and the experimental data (black circles).  

 

 

Figure 32 Kinetic models. (a) Mechanisms tested by master equation kinetics and compared with experiment. (b) 
Mechanism describing folding behavior of FiP35 following P-jump that is consistent with both experiment and 
simulation. Forward rates were estimated via Bayesian analysis from MD simulations.50   

 

3.4 DISCUSSION 

 We present here an experimental comparison of T- and P-jump refolding on the 

microsecond time scale and simulate T- and P-jump protocols in all-atom molecular dynamics 

simulations. In particular the P-jump protocol is similar in experiment and simulation, although a 
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higher denaturation pressure was used in the simulation to accelerate unfolding. FiP35 has been 

shown previously to fold following T-jump on a molecular dynamics-friendly timescale.41,42 Unlike 

the only other microsecond folder previously analyzed by P-jump,28,35 lambda repressor, which 

exhibited a slow millisecond phase in addition to a fast phase, we see that P-jump folds FiP35 on a 

microsecond time scale. For the most direct comparison with simulation, we were also able to obtain 

refolding data in the absence of any denaturant where folding occurred with a rate below (30 µs)-1. 

This fast folding behavior makes FiP35, and other fast WW-domain mutants such as GTT,45 

excellent candidates for future P-jump experimental and computational studies.  

 Experimentally, FiP35’s refolding kinetics are bi-exponential when probed by both 

temperature and pressure. The slow phase, on the scale of hundreds of microseconds depending on 

GuHCl concentration, is very similar between T- and P-jump, showing comparable rate dependence 

on denaturant concentration and similar folding and unfolding rates. The fast phase, on the other 

hand, differs between the two perturbation methods.  

 The T-jump fast phase rate at 23 °C (over 50 °C below Tm) approaches the folding speed 

limit, shows no dependence on GuHCl concentration when adjusted for viscosity, and exhibits an 

increase in amplitude as solvent conditions become more stabilizing—the combination of these 

behaviors has been interpreted as a signature of downhill folding.29,42,67 Considering this data and 

previous work demonstrating FiP35’s downhill folding behavior under strongly native state-

promoting conditions,41,42 we assign the fast phase of FiP35 following T-jump as the “molecular” or 

“downhill” phase. No previous simulations are available under these conditions. Downhill kinetics 

occur when the folding barrier along a 1-D free energy profile is very low, so some population exists 

at the barrier top. This barrier-top population reacts promptly after T-jump and is followed 

sequentially by activated folding of population in the unfolded free energy well. Of course, on a 

multi-dimensional free energy surface, such prompt kinetics may correspond to numerous 

transiently populated states, as seen in Markov modeling and other analyses of complex beta sheet 

folding.47,48 

 In contrast, (1) the P-jump fast phase has a slower rate of (11-21 µs)-1; (2) the rate decreases 

more upon addition of GuHCl than expected from increased solvent viscosity, indicating a barrier 

whose height increases with denaturant concentration; and (3) there is no discernible trend in the 

fast phase amplitude. These three behaviors are not consistent with downhill folding. Short-lived 

intermediate(s) on the unfolded side of the main barrier are the simplest explanation, although other 

kinetic scenarios are also possible. 
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 The difference in folding mechanism between pressure and temperature probed folding 

observed experimentally is reflected in the MD simulations, where P-jump showed a more 

heterogeneous folding mechanism than T-jump. Our P-jump folding mechanism—folding through 

either hairpin 1 or hairpin 2—is remarkably consistent with experiment, as demonstrated through 

direct comparison of the kinetic model with the experimental data (Fig. 1b). The mechanism 

allowing both hairpin 1 or hairpin 2 to fold first is generally in agreement with scenarios reported in 

the literature when FiP35 is started in the unfolded state under native conditions.25,46,47,68,69 Markov 

state models proposed a heterogeneous folding mechanism, with one group finding four folding 

paths68, including folding through both hairpin 1 and hairpin 2, and another group finding that 

folding proceeds 70% of the time through hairpin 1 and 30% of the time through hairpin 2.69 

 Although the P-jump refolding trajectories partitioned between two parallel paths, the three 

T-jump trajectories refold exclusively through a mechanism where hairpin 2 was the first one to 

fold. Even the one trajectory that did not fold (Figures 31 and 69) formed hairpin 2 for an extended 

time, but not hairpin 1. Interestingly, the only all-atom MD simulation where FiP35 ultimately 

folded (prior to the work presented here) was interpreted by a folding mechanism where hairpin 1 

exclusively formed first.25 Re-analysis of that data found that 80% of the time hairpin 1 folded first 

and 20 % of the time hairpin 2 was the one to fold first.46 Our work and previous simulation results 

suggest that folding via both paths is very likely following both P-jump and T-jump.  

 Although folding times from T-jump experimental data have been compared to folding 

times from MD simulations,29 pressure perturbation offers an additional constraint through which 

force-fields can be tested. Our combination of computational and experimental results highlight 

three interesting aspects of FiP35’s folding behavior: (1) P-jump refolding is complete in 10s of ms, 

an MD-friendly time scale. (2) When perturbed by temperature and pressure, FiP35 lies in the gray 

zone of the transition between downhill folding and multi-state folding through short-lived 

intermediates. That is, by T-jump the fast phase shows characteristics explained by the breakdown 

of transition state (Kramers) models discussed in detail previously.63 By P-jump, the fast phase has 

characteristics that strongly support a short-lived intermediate—behavior that is reflected in some 

MD simulations.70 (3) MD simulations of the P-jump induced refolding of FiP35 very closely match 

our experiment when the appropriate kinetic model is chosen. This remarkably close agreement 

allows us to assign a parallel kinetic mechanism for FiP35’s folding following pressure drop (Figure 

32b). 
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SECTION II: PROTEIN FOLDING IN LIVING CELLS 
 

CHAPTER 4 
QUINARY PROTEIN STRUCTURE AND THE CONSEQUENCES OF 

CROWDING IN LIVING CELLS* 
 

4.1 INTRODUCTION 

The complexity of the cell—jam-packed with macromolecules, inherently heterogeneous, 

and always dynamic—has led to widespread recognition that in vitro studies of proteins cannot 

always provide physiologically relevant structural and functional information71. The momentum of 

protein science towards probing proteins in their native environments is leading to a departure from 

the canonical protein purification-to-characterization workflow towards more in vivo studies. But 

which aspects of protein structure, folding, and function are most likely to be modulated by the cell, 

by how much, and to what adaptive advantage, if any? 

 With the caveat that living cells are never in equilibrium, thermodynamics tells us "how 

much" modulation is significant: interaction of a protein with its environment must alter occupancy 

of different protein populations significantly.  A disordered protein chain poised to fold from a state 

"U" (unfolded) to a state "F" (folded) upon binding a partner will switch from 80% U to 80% F if 

binding favors "F" over "U" by just 7 kilojoules per mole (kJ/mole).  By comparison, a single 

carbon-carbon bond in one amino acid of that protein requires fifty times more bond enthalpy to 

break.  Teasing apart all the interactions between a protein of interest and the cellular water, ions, 

macromolecules and other co-solutes is difficult. Indeed, studying protein dynamics in vivo at all 

remains challenging. 

The cell has evolved mechanisms to modulate proteins from the energy scale of primary 

structure (~370 kJ/mole amide bond enthalpy) to quaternary structure (20 kJ/mole hemoglobin-

hemoglobin enthalpy increase in normal erythrocytes vs. sickle cells 72).  Biomolecule populations 

depend not just on enthalpy, but also on entropy: reactions producing greater disorder are favored.  

Thus many biomolecular reactions have free energy changes (combining enthalpy and entropy 

effects) of just 10s of kJ/mole.  For example, as strong as amide bonds are, they actually break 

spontaneously in acidic water, releasing about 10 kJ/mole of free energy 73: the broken C-N amide 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This chapter is adapted with permission from Anna J Wirth and Martin Gruebele, BioEssays, 35(11), 984-993, 2013. 
Copyright 2013 John Wiley and Sons.  
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bond is partly made up for by forming N-H and C-OH bonds, and on top of that, the two liberated 

peptides get to move about more randomly. 

 What about even weaker interactions - weaker than two protein surfaces binding or forming 

quaternary structure?  Could such extremely weak interactions play a meaningful role in the cell? 

These transient protein-protein interactions are collectively known as “quinary structure”. Since the 

1980s, quinary structure has been implicated in many cellular processes ranging from cellular 

metabolism 74 to protein translation 75. In a few cases, illustrated in figure 33, the strength of quinary 

interactions has been measured quantitatively in vitro 76. Their strength is difficult to quantify in vitro 

in ways that realistically mimic the interior of cells.  Consequently, quinary structure is an area of 

research where in vivo study is warranted.  Only recently have techniques become available to probe 

these weak transient interactions directly and quantitatively in the cell. With whole cell 

computational modeling now feasible, the potential even exists to bridge computation and 

experiment. 

The aim of this Problems and Paradigms essay is to provide a perspective on when and how 

quinary structure in the cell affects folding and function of biomolecules, and especially proteins. 

First we will review forces at work in the cell.  Then we discuss quinary structure and examples 

where it may play a role. Finally, we will discuss the newest advances in in vivo experimental 

methodology and whole cell modeling and speculate on the future of the field. 

 

 

Figure 33 The interaction free energy for two lambda repressor fragment proteins, derived by us from small angle X-ray 
scattering measurements that look at how much proteins tend to cluster together as their concentration is increased.  
These proteins do not form quaternary structure or tightly bound dimers. Nonetheless, at a center-to-center separation 
R of 3.2 nanometers, the proteins sticking to each other with a small free energy release of 4 kJ/mole. 



	
   48	
  

4.2 FORCES IN THE INTRACELLULAR ENVIRONMENT 

The intracellular environment is highly crowded—macromolecular concentrations reach up 

to 400 grams per liter (or mg/mL) 71. Such crowding by complex mixtures of biological molecules 

contributes only modestly to stabilization or destabilization of proteins, but when proteins interact 

very weakly to begin with, the consequences of crowding likely play an important role.  We briefly 

review here how crowding, 'stickiness' of the cytoplasm, hydrodynamic forces, and water dynamics 

manifest themselves from the macromolecular to the cellular level. 

 

4.2.1 How does macromolecular crowding affect protein-protein interactions and protein 

folding through the excluded volume effect?  Rather than arising from attractive intermolecular 

interactions, the excluded volume effect depends on the size and concentration of molecules 

crowding the solution. In figure 33, at about 4.2 nanometers, the two proteins 'touch': a third protein 

simply could not squeeze through between them.  If they separate by less than the diameter of the 

third protein, it will still not fit through, and the volume between the pair is excluded.  Only when 

they separate by enough (pair on the right) is the volume between the two proteins no longer 

excluded.  

 The main consequence of excluded volume is that the larger and less ordered form of a 

protein or protein complex—such as the unfolded state or a non-associated dimer—is entropically 

disfavored due to the lack of available space 77. Figure 34a demonstrates how the more compact 

state of a protein is favored under crowded conditions. The excluded volume for a given protein in 

solution is defined as any region that protein’s center of mass cannot occupy 78. As the radius of 

gyration of a protein increases (such as would occur from a transition from the folded to unfolded 

state) the excluded volume increases, and the apparent protein concentration in the left-over 

accessible volume is greater than the actual concentration.  

 The energetic consequences for protein folding are summarized in figure 34b. As more 

volume is excluded, the unfolded state has no place to fit and becomes less stable, and the unfolded 

protein crosses the barrier more easily and thus folds more rapidly. This behavior is entirely driven 

by the entropy term in the free energy relation.  Likewise, a compact protein complex is favored 

over the separated protein monomers - unless the leftover volumes between crowding molecules are 

so small that the complex just can't fit. 
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Figure 34 The excluded volume and its energetic consequences. A) The compact, folded state of a protein has less 
excluded volume than the less-ordered unfolded state even though the size and concentration of crowders is the same. 
The excluded volume (green) is defined as any region of space that the protein’s center of mass cannot occupy. The 
apparent protein concentration is greater for the unfolded state. B) Increasing crowding decreases the stability of the 
unfolded state, and decreases the activation barrier for folding. C) Experimentally measured free energy of folding ΔGfold 
for FRET-labeled yeast phosphoglycerate kinase (PGK) as macromolecular crowding is increased. The protein is 
stabilized as crowding increases, illustrating the net stabilization of the folded state due to the excluded volume effect 79. 
ΔGfold is calculated at a reference temperature of 37 °C. 
 

 The role of crowding on protein structure and stability has been studied extensively in vitro 

and in silico, and experiment verifies the predictions of theory 79-83. The role that the excluded 

volume effect plays in biological reactions in general was recently reviewed 84. In the heterogeneous 

environment of the cytoplasm, a given protein will be subject to a wide range of excluded volumes 

of different shapes.  

An approximate free energy range for the effect can be assigned based on experimental and 

theoretical results. A computational study found that at high crowder concentration, the excluded 

volume effect increased the stability of the folded state by about 1-6 kJ/mole and protein-protein 
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interactions by 2.5-8.5 kJ/mole 85. Similarly, in a model of a bacterial cell, it was found that the 

stabilization of the folded state in the crowded cytoplasm due to the excluded volume effect was 

about 4-8 kJ/mole and for protein-protein interactions 4-5 kJ/mole 86. Experimentally, the folded 

state of FRET-labeled yeast phosphoglycerate kinase was stabilized by 2 kJ/mole when 200 mg/mL 

Ficoll were added to the solution (figure 34c) 79.  

 

4.2.2 Can the 'stickiness' of the cytoplasm modulate  protein-protein interaction and protein 

folding in a sequence dependent manner? The excluded volume effect predicts size-specific 

effects, but there are also sequence-specific effects. Non-specific interactions between proteins in 

the crowded cellular environment, either through electrostatics (due to charges) or hydrophobicity 

(mainly the protein's effect on solvent water disorder), make proteins stick to each other or other 

macromolecules.  This makes the apparent viscosity of the cytoplasm larger than bulk water's 

viscosity 87. 

 The diffusion coefficient depends inversely on solution viscosity. Consequently, most 

experimental efforts to measure cytoplasmic viscosity have relied on diffusion measurements 88. This 

effort is hampered, however, by anomalous diffusion—basically a time-dependent diffusion 

coefficient—which abounds in the cell due to non-uniformity of the environment 89. In one striking 

example that highlights the challenges of using translational diffusion to directly measure 

cytoplasmic viscosity, the translational diffusion of chromosomes has been shown to be sensitive to 

the metabolic activity level of the cell 90. 

 Rotational diffusion, on the other hand, has been shown to be almost exclusively sensitive to 

localized intermolecular interactions 91. Nuclear Magnetic Resonance (NMR) spectroscopy is highly 

sensitive to the tumbling of molecules (and thus can extract the rotational diffusion coefficient). 

Wang et al. found that rotational diffusion coefficients for a test protein varied widely between 

solutions containing inert crowders, which only increase the excluded volume, and those containing 

protein crowders, which can stick non-specifically to the protein of interest 91. Another group used a 

whole cell NMR approach to measure the rotational diffusion of three globular proteins in E. coli 

cells and found that although the proteins studied had similar size and fold, they showed 

significantly different rotational diffusion 87. This result suggests that stickiness of the cytoplasm is 

sequence-dependent.  

Computation is not far behind. McGufee and Elcock used 'Brownian dynamics' to show that 

specific protein-protein binding interactions were destabilized consistently by cytoplasmic stickiness, 
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while its effect on protein folding varied significantly from about 10 kJ/mole of destabilization to 

the same amount of stabilization 86. MD simulations of proteins in crowded, “sticky”, solutions have 

shown that the enthalpic consequences of many protein-protein interactions may destabilize the fold 

of a protein and cause accumulation of non-native and partially denatured states 92.  The effect of 

specific interactions, on the other hand, are thought to impart general stabilization to a protein fold 
93.  

 

4.2.3  What happens when water and other molecules get dragged around by proteins inside 

the cell? Hydrodynamic interactions arise from collisions between macromolecules and solvent 

molecules and affect the kinetics of protein-protein binding. At physiological temperature, collisions 

with water molecules impart energy fluctuations of ±0.04 kJ/mole to a average-size protein. This 

may seem like a small effect, and when these collisions between solute and solvent are completely 

random, they give rise to the familiar Brownian motion. 

 In a crowded environment, however, motions of particles are correlated, and collisions 

between protein and solute can result in non-random motion. Figure 35 illustrates how 

hydrodynamic interactions influence the binding of two proteins. As a protein moves towards its 

partner, the water molecules between the two proteins must be pushed out of the interfacial region, 

carrying away energy. Some of those displaced water molecules will also bump into the partner 

protein, pushing it away. Together, these two hydrodynamic effects slow down the kinetics of 

protein-protein binding 94.  

 

	
  
Figure 35 Cartoon depiction of the effect of hydrodynamic interactions on the kinetics of bimolecular association. (1) 
As one protein (purple) moves towards its binding partner (green), it displaces the water molecules between the two 
proteins. (2) The water molecules must move from the region between the proteins and reorganize (red arrows). (3) 
Some water molecules are displaced towards the binding partner (orange arrows) and push the binding partner away. (4) 
This hydrodynamic repulsion further slows the kinetics of association.  
 

(1) 

(2) 

(3) (4) 
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 The energetic magnitude of hydrodynamic interactions on proteins—i.e. the reduction or 

increase of the transition state barrier due to hydrodynamic interactions—is again relatively small. 

Theory predicts that rates of association should decrease by less than 30% depending on the surface 

charge of the molecules in question 95. Simulations also have explored the role that hydrodynamic 

interactions can play in protein folding and protein-protein association kinetics. Frembgen-Kesner 

and Elcock showed that the association rate of proteins decreased by 30-80% in the presence of 

hydrodynamic interactions 96. The same researchers also found that inclusion of hydrodynamics 

increases the folding rate of proteins 1.5-3 fold, corresponding to at most 3 kJ/mole 97. Moving 

towards simulating hydrodynamic effects in cytoplasmic models is extremely challenging. However, 

Ando et al. found that inclusion of hydrodynamic interactions in a model E. coli cytoplasm along 

with the excluded volume effect replicated the experimentally measured translational and rotational 

diffusion of GFP 98. 

 

4.2.4 Is there any bulk water left inside the cell? Water often mediates protein-protein 

interactions, or can be thought of as part of the protein structure. Water molecules inside protein 

cavities form on average 3 hydrogen bonds, each providing a stabilization of 2.5 kJ/mole 99. Of 

more interest for water-mediated protein interactions is the intermediate regime between bulk 

solvent water and the “frozen”, long-resident time structural water molecules. This intermediate 

regime is often called the solvent-shell of the protein and consists of water molecules that are 

transiently bound to the protein surface 100, as well as water molecules up to several nanometers 

away whose hydrogen bonds rearrange more slowly than in the bulk due to the influence of the 

protein 101.  Although NMR experiments indicate some presence of bulk-like water 102, THz 

experiments that probe further from protein surfaces indicate that the hydrogen bond 

rearrangement time is retarded up to 2 nm away from protein surfaces 103. At typical packing 

densities in the cell, the separation between macromolecules is only a few nanometers, leaving little 

room for any bulk water inside the cell.  

Figure 36 shows an example of a protein-protein interaction that is mediated by water. 

Transiently bound water molecules have been proposed to mediate recognition during protein-

protein binding and to contribute to the stability of the interaction 104. Experiments have used 

double mutant cycles, which compare the overall loss of stability from binding site mutations that 

remove hydrogen bond donors or acceptors, to elucidate the energetic contribution of water-
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mediated protein interactions to the overall stability of protein complexes. Stabilization, if any, 

ranges from 0 to about 4 kJ/mole 105-107. 

 

	
  
Figure 36 Structure of protease inhibitor domain of the amyloid beta-protein precursor with associated waters (pdb 
1AA 108). The density of water molecules at the dimer interface (highlighted in orange) illustrates a water-mediated 
protein-protein interaction.  
 

4.3 QUINARY STRUCTURE 

4.3.1 Quinary structure is the fifth level of protein structural organization. The hierarchy of 

protein structure and its relation to energy and free energy is shown in figure 37.  Quinary structure 

is the most fleeting, and thus the most likely to be affected by the weak forces acting at the 

macromolecule to cell level.  

 The term quinary structure was introduced by McConkey to define a fifth level of protein 

structural organization: protein-protein interactions that he described as “inherently transient” 75. 

Quinary structure, he argued, could be disrupted by the isolation methods of the time, and 

consequently had not received the recognition they deserved. We discuss quinary structure in terms 

of three criteria: functionality, thermodynamics, and kinetics. 

 The quinary structure terminology is intermittently used in the literature, but in our - and 

others 71 -  opinion it deserves to be explicitly recognized. Any individual quinary interaction may not 

confer a large functional advantage to the cell.  Yet even small differences can serve as the basis for 

evolutionary selection, and a large number of them could add up to a significant advantage.  Indeed, 

many interactions that eventually evolve to tight binding may start out highly transient, while others 

remain weak to be optimal for the cell. 
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 Very low thermodynamic stability has been used as a criterion for quinary structure (i.e. Kd 

values > 1 µM for complex formation 87). However, some interactions have variable affinity. They 

can be extremely weak unless the proper ligand assists the interaction109. Such 'three body' effects 

abound in biology. One particularly important example is the binding of the molecular chaperone 

DnaK to an unfolded protein at low affinity when ATP is bound, but with high affinity following 

hydrolysis of ATP to ADP 110. McConkey does not exclude such variable protein-protein 

interactions from his original definition. One of the examples he gives of quinary structure--

calmodulin binding to actin fibers in interphase cells 111--is a variable affinity protein-protein 

interaction modulated by calcium binding. Thus, in our definition here, quinary structure includes 

constant low affinity protein-protein interactions, as well as the low affinity state of variable affinity 

protein-protein interactions. 

 

	
  
Figure 37 Structural and energy scales (absolute values around 37 °C) in the cell in terms of enthalpy change DH and 
free energy change DG. Enthalpy describes the strength of interactions, while free energy describes which interactions 
are most likely by also including the effect of disorder. For example, amide bonds are very strong, but nonetheless 
hydrolyze in water because new NH and OH bonds are formed and because the two peptide fragments have higher 
disorder. Primary structure 73,112, secondary structure 113,114, tertiary structure 79,115-118, quaternary structure 119,120, and two 
examples of quinary structure 121,122 are shown. PDB structures (in order of appearance): 1EG3 123, 1HHO 124, 1U55 125, 
3BJU 121. 
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 McConkey's definition of "inherently transient" implies rapid kinetics in addition to low 

stability.  Only when both criteria are fulfilled is an interaction "inherently transient."  Consider two 

states: protein dimer, vs two monomers. If  these two states have similar free energy, so neither is 

very stable with respect to the other, their connecting barrier could still be high, trapping the system 

for a long time in one state or the other.  If the two states are connected by a small barrier, but one 

state is much lower in free energy than the other, the system will simply end up in the lower state, 

and no function associated with switching states can occur.  Only when stability and barriers are 

both low, is the system inherently transient. 

 We can use the thermodynamic, kinetic, and functional criteria to define quinary structure as 

inherently transient (none of the states is thermodynamically favored, nor are any two states 

separated by a large barrier that traps population), yet having some functional specificity subject to 

evolutionary selection.  Thus quinary interactions between proteins or other biomolecules must be 

on the order of a few kJ/mole on the free energy scale: larger free energy differences would lock in 

the lowest energy population, and larger barriers would make each state, once formed, rather long 

lived.  This low free energy scale makes quinary interaction subject to modulation by the forces in 

the cell acting on the macromolecular to whole-cell scale, as discussed in the previous section. 

 

4.3.2 What is not a quinary structure?  Interactions between water molecules are fleeting; they 

may even be functionally important. However, there is no functional specificity that can be selected 

by evolution.  Water is just water and cannot evolve like a protein.  Obligatory protein-protein 

interactions are also not quinary structure as they form strongly bound thermodynamically stable 

structures.  An example is the arc repressor dimer, which as a monomer is unstable, but as a dimer 

very stable 109,126. Another  example of an obligatory protein-protein interaction is the intrinsically 

disordered protein P27 that gains structure when it tightly binds and inhibits various Cyclin/Cdk 

complexes throughout the cell cycle 127. These types of interactions will not be classified as quinary 

because they result in tight binding and/or can be assigned to lower levels of protein structure: 

quaternary for the dimerization of the arc repressor and tertiary for the folding of p27. 

 

4.3.3 What is quinary structure and what does it do? Quinary structure has been implicated in a 

number of cellular processes from cell signaling to metabolomics. Its inherent transience allows 

quinary structure to facilitate dynamic spatial organization of macromolecules in the cytoplasm. It 

can facilitate loose groupings of proteins when they are working together, but not otherwise. In 
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other examples, quinary structure can enable a single protein to serve multiple functions depending 

on its binding partner or serve as a dose-dependent molecular switches. Very recent work has 

presented empirical and theoretical evidence that a protein in a specific interaction stabilizes its 

partner’s fold and hypothesizes that the protein interaction network is of critical importance to the 

overall thermodynamic stability of the proteome 93.  

 The most famous and well studied example of quinary structure is the metabolon, a multi-

enzyme complex associated with multi-step metabolic pathways. These pathways produce numerous 

intermediates, ~80% of which have no use in the cell other than to be fed to the next processing 

enzyme. It would be entropically very unfavorable for a cell to support a random distribution of 

these molecules and their processing enzyme throughout the entire cytoplasm 74. Metabolons 

alleviate this problem by “substrate channeling”: intermediates along a metabolic pathway are kept 

from dispersing throughout the cytoplasm because they are passed between enzymes associated into 

quinary structures (thus effectively localizing reactions) 128.  

 The protein biosynthesis pathway is one metabolic process that features such quinary 

structure and is an example of quinary structure providing both spatial organization and enabling 

protein multifunctionality. Aminoacyl-tRNA synthetases, the family of enzymes which  aminacylate 

tRNA molecules, were first observed in the 1980’s to form high molecular weight complexes of 

then-unknown function 129. The multisynthetase complexes appear to play multiple roles depending 

on cellular conditions and since their original discovery have been associated with several processes 

from substrate channeling in protein biosynthesis to cytokine release in the inflammation response 
130. The exact mode of assembly of these complexes is debated, but many of the protein-protein 

interactions in the complex are thought to be quite transient 131.  

 One component of the complex that is involved in quinary structure is the lysl-tRNA 

synthetase (LysRS). Guo et al. showed that the normally dimeric LysRS forms a weakly associated 

(kd~1μM) homotetramer that competes with the formation of the larger multi-synthetase complex 
121. Because release of LysRS from the complex is thought to be a trigger for the proinflammatory 

response, they hypothesize that the competition between these two equilibria allows for LysRS to 

shuttle between two functions. Thus, in this case, quinary structure not only provides a level of 

spatial organization for a metabolic pathway as part of a metabolon but also allows for protein 

multi-functionality. 

 One of the exciting new frontiers of quinary structure is the intracellular formation of 

membrane-free macromolecular structures that arise because of  phase separation 132. Weak 
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association between proteins at sufficiently high concentration has been shown to drive phase 

separation of proteins into a protein-rich and protein-poor liquid phase in vitro 133. Such protein-rich 

droplets behave as a separate liquid phase - that is, they are embedded in but distinct from the 

surrounding cytoplasm, and they can merge with each other to form larger droplets.  These phase-

separated regions without membranes have been observed recently in vivo, first as the P-granules in 

germ-line cells, and most recently in an actin regulatory pathway 134,135. P-granules are an example of 

quinary structure where interactions driving the phase transition derive from transient RNA-protein 

binding 134. 

 The recent observation of phase transitions in actin-signaling associated proteins, is another 

example that relies on transient protein-protein interactions only. Li et al. demonstrated that the SH3 

domain and its ligand, the PRM domain, form liquid droplets in vitro and found that the ability to 

form multivalent associations is necessary for phase separation 135. Moving to the nephrin-NCK-N-

WASP system, a signaling pathway associated with actin stimulation, they showed that this complex 

forms liquid droplets in vivo when nephrin is phosphorylated and that the downstream signaling 

activity sharply increases as phase separation occurs. This example of quinary structure is remarkable 

because it provides  another degree of cytoplasmic structure—one that is far more spatially and 

temporally dynamic than membrane bound organelles.  

 When the phase transition is tied to a downstream response, quinary structure enables a 

dose-dependent, nearly binary switch for the signaling pathway. Only when a sufficient 

concentration of nephrin is phosphorylated will the phase transition occur, but when the threshold 

is reached the transition occurs rapidly thus “turning on” the downstream signaling pathway. Such a 

dose dependent response mediated by quinary structure has also been seen in extracellular signaling 

pathways associated with the immune system 136. 

 In addition to metabolism and signaling, quinary structure can also affect the folding stability 

and kinetics of proteins.  For example, Denos et al. investigated the folding of low concentrations of 

lambda repressor embedded in a crowding matrix of SubL, a thermophilic protein that remains 

stable while lambda repressor is thermally unfolded 53. Protein-protein interaction raises the melting 

temperature of lambda repressor by 13 °C.  This change is large enough that lambda repressor could 

switch from 80% unfolded to 80% folded simply by adding the crowder.  The folding time of 

lambda repressor is less than 100 ms, so this is a highly transient equilibrium.  Some proteins that are 

intrinsically disordered in vitro (IDPs) may undergo a similar equilibrium shift inside cells, promoted 

by only transient interactions137, rather than the tight binding interactions that we exclude (like p27).
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 The key take-home message is that quinary structure abounds in cells, and produces far more 

fine-grained structure inside cells than was originally suspected.  Cells are very far from random 

mixtures of macromolecules. Even in regions that are not bounded by membranes, 

compartmentalization exists. 

 

4.4 LEAVING THE TEST-TUBE BEHIND 

4.4.1 Experimental advances for detecting quinary structure in v ivo  are beginning to yield 

quantitative information on transient protein-protein interaction in its native environment.  

Numerous advances in the past decade have allowed for measurement of protein-protein 

interactions inside cells; these are thoroughly reviewed elsewhere 138. A few standouts have great 

potential to yield useful data on the weakest and more transient protein-protein interactions.   

 For example, a recent solid-state NMR study of frozen cells produced atomic resolution 

protein structural information, and as the technique further develops, protein-protein interactions 

and structural changes of proteins in vivo may be characterized in great detail 139. With improving 

isotopic labeling schemes and pulse sequences, whole cell NMR of living cells also promises to soon 

be applicable to eukaryotic cell types 140. Similarly, mass spectrometry has been used to probe how 

the interior of bacterial cells changes protein stability 141 and could be expanded to eukaryotic cells. 

 Super resolution imaging techniques, which provide imaging capabilities below the 

diffraction limit, have already provided rich information on the co-localization of proteins 142. One 

of the more recent and spectacular improvements to this family of techniques include improved 

temporal and spatial resolution in living cells using STORM in both 2 and 3 dimensions 143. As time 

resolution improves even further, such imaging capabilities will undoubtedly allow direct detection 

of even transiently bound protein complexes. 

 Spatial and temporal patterns of protein stability and folding kinetics modulated by quinary 

structure can now be imaged inside living cells using Fast Relaxation Imaging (FReI).  Ebbinghaus et 

al. review micro-patterned stability of the enzyme phosphoglycerate kinase inside mammalian cells 
144.  Similarly to in vitro observations 145, crowding in the cell increases the average stability of the 

enzyme, but in addition, microenvironments that persist for at least minutes differ in protein stability 

and folding rate, as shown in Fig. 38.  The folding free energy landscape of the protein is modulated 

by several kJ/mole inside the cell.  It remains to be seen whether such modulation has functional 

significance. 
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 NMR, mass spectrometry and imaging techniques are not the only areas in which progress 

has been made. Biochemistry has also offered new solutions for detecting quinary structure in vivo. 

M-track uses a “bait” and “prey” methylation based approach to detect very short-lived interactions 

between proteins in yeast 146. Another technique, PICT, uses a “bait” and “prey” approach paired 

with fluorescence live cell spectroscopy to detect protein-protein interactions in living cells 147. 

 

	
  
Figure 38 Microenvironments with different protein stabilities inside a U2OS cell (thermodynamic data from ref. 144).  
Stability is characterized by the melting temperature Tm, at which 50% of the protein is folded, 50% unfolded.  Stability 
patterns extend from the resolution limit (2 mm) to 10s of mm in size.  The scale bar is 10 mm in length. 

 

4.4.2 How can computation and experiment work together to study quinary structure? Only 

now are simulations of large protein complexes and even whole cells becoming feasible, allowing 

comparison with the new array of experiments probing transient structures inside the cell 86,87,148. By 

combining computation, theory, and experiment we can attempt to dissect how each of the various 

forces at play in the intracellular environment affects a specific protein of interest. For the case of 

excluded volume and cytoplasmic stickiness, theory and experiment are beginning to paint a clear 

picture of how these two effects compete against one another in the cell. Several theoretical studies 

have predicted that attractive interactions between crowders and proteins forming a complex (an 

enthalpic effect) can counteract entropic stabilization of the complex by the excluded volume effect 
149,150. Jiao et al. demonstrated this principle for protein association in mixtures of attractive polymers 

and found that they could tune the stability of a protein complex by using polymers with stronger 

and weaker attractions to the protein of interest 151. Simulation studies have shown that moderate 

attraction between proteins and crowding molecules, on the order of 1 kJ/mole, can counteract the 

excluded volume effect 152. 
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 The competition of stabilizing and destabilizing effects can also be seen in protein folding 

inside cells. Dhar et al. directly measured both protein folding thermodynamics and kinetics in 

U2OS cells 153. Using a FReI, they found that the folded state of yeast phosphoglycerate kinase was 

stabilized by 6.3 kJ/mole in vivo compared to in vitro. On the other hand, Ignatova et al. monitored 

the unfolding of CRABP I in living bacterial cells and found a net destabilization of 0.8 kJ/mole 

compared to in vitro 154. In an update to their original work, the same group found that although 

thermodynamic stability between in vitro and in vivo is not significant, the unfolding rate of CRABP I 

was significantly faster in vivo 155. Philip et al. used a similar FRET construct to directly measure the 

binding dynamics between β-lactamase to its inhibitor in HeLa cells and found that association was 

0.8 to 1.5 kJ/mole destabilized in vivo compared to in vitro 156. These studies highlight a wide range of 

behaviors. The cell can both stabilize and destabilize proteins in a sequence-specific manner. 

Because of this sequence dependence, proteins that are energetically similar in vitro might be quite 

different in vivo. The holy grail for simulation will be to predict from protein sequence the effect that 

the intracellular environment will exert on specific protein-protein interactions and protein folding 

reactions. In particular, as the field of whole cell modeling continues to improve, it may be possible 

to predict the effect that a changing intracellular environment has on complex protein-protein 

interaction networks.  

 

4.5 CONCLUSIONS AND PROSPECTS 

 The energy and distance scales of the forces that arise in the crowded intracellular 

environment are such that we can expect them to influence modestly protein tertiary and quaternary 

structure and to affect significantly quinary structure. The role that quinary structure plays in cell 

signaling, subcellular localization of proteins, metabolomics, and other systems is clearly significant, 

and studying these weak protein-interactions in their native environment will become increasingly 

important if we are to fully understand their role in biology. Experimental and computational 

advances will likely soon make these types of studies more routine and allow for careful 

consideration of how the interplay between intracellular forces and protein structure fits into the 

biology of the cell.  

 One intriguing possibility is to consider that structure could be dynamically tuned by the 

changing microenvironments inside the cell, in a yet unexplored mode of protein regulation. Is it 

conceivable that the physical characteristics of the cytoplasm could change substantially enough 

make quinary structure an important regulatory mechanism inside the cell? 
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 For one cellular process, the cell cycle, it certainly is. During the procession of events leading 

to division into two genetically identical daughter cells, the nucleus dissolves during mitosis and 

dumps its highly charged chromosomes into the cytoplasm. Furthermore, the dry mass of the cell 

throughout the cell cycle under paces cell volume growth as the cell moves towards division, so the 

intracellular protein density may also fluctuate in a cell-cycle dependent fashion 157,158. Finally, Hinde 

et al. measured diffusion across the nucleus and showed that diffusion is limited during certain 

stages of the cell cycle by changing degrees of chromatin compaction 159. This result implies that the 

cell-cycle environment is extremely dynamic.   

 Such a strikingly changing environment during the cell cycle invites speculation that the 

interplay between the physical forces in the cell and quinary structure could be actively exploited by 

the cell for the purposes of process regulation. Indeed, the tightly regulated series of events that 

comprise the cell cycle are controlled by an incredibly complex, and still not fully elucidated, 

network of protein-protein interactions—some of which may be sensitive to environmental 

fluctuation. As more biophysical studies emerge that examine protein structure and protein-protein 

interactions across dynamic cellular processes, the possibility of new types of protein regulation can 

be explored and the in vivo structure-function relationship completely understood.  

 In the following section, protein folding in vivo will be studied across a dynamic process, the 

mammalian cell cycle (chapter 5). Chapter 6 discusses the development of a GFP-ReAsH FRET pair 

for studying protein folding, a potentially less disruptive dye to study intracellular folding reactions. 

Finally, chapter 7 discusses early work in characterizing the folding of p53, a cell-cycle related 

protein, inside living cells.  
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CHAPTER 5  
TEMPORAL VARIATION OF A PROTEIN FOLDING ENERGY 

LANDSCAPE IN THE CELL* 
 

5.1 INTRODUCTION 

Like all chemical reactions, protein folding is dependent on its environment.  Solvation, pH, 

crowding and ionic strength are just a few of the well-documented factors that affect the stability 

and folding rates of proteins in the test tube.84,160,161  Nonetheless, the energy landscape traversed by 

proteins during folding is usually considered to be constant in time, unless subject to artificial 

modulation.162 Yet inside the cell the environment is constantly changing in time.  The prime 

example is the cell cycle itself163, when the cell undergoes drastic changes in internal morphology 

between periods of quiescence and cell division. Here, we use protein stability and folding kinetics to 

probe this time-dependent cytoplasmic environment.  

Here we use the folding reaction of the ubiquitous ATP-producing enzyme 

phosphoglycerate kinase (PGK) to probe the cell cycle of U2OS bone cancer cells in interphase 

(G1/S) and mitosis (prophase/metaphase). PGK is a 415 residue enzyme with two domains in the 

crystal structure,164 although measurements in cells and in Ficoll crowder indicate that it is even more 

compact when folded in the crowded milieu of the cell79. We label the enzyme with two 

fluorophores at the N and C termini, so the thermal stability and folding rate of the resulting PGK-

FRET construct can be detected inside live cells by change in Förster Resonance Energy Transfer 

(FRET) upon thermal unfolding.145  We then combine cell cycle arrest with transient transfection as 

a potentially higher throughput method than cell line generation to look at time-dependent protein 

stability and folding kinetics. By measuring changes of the protein melting temperature and folding 

rate at different times during the cell cycle, we can quantify the temporal variation of the PGK-

FRET energy landscape as the cytoplasmic environment changes.  

We find that mitotic cells increase the stability of PGK-FRET by about 5 kJ/mole relative to 

interphase cells.  We also conclude that the lower viscosity of mitotic cells overcomes a small 

increase of the activation barrier during mitosis, leading to faster folding kinetics in mitotic cells 

relative to interphase cells.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*	
  This chapter is adapted with permission from Anna J Wirth, Max Platkov, and Martin Gruebele, Journal of the 
American Chemical Society, 135(51), 19215-19221, 2013. Copyright 2013 American Chemical Society. MP contributed 
instrumentation support to this publication. 	
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The same trends were observed previously when PGK-FRET was localized to the nucleus 

by a nuclear localization tag.165 It was hypothesized that DNA-protein interaction rather than simple 

crowding (excluded volume) differences might underlie the greater stability of PGK the nucleus. 

Our data is consistent with this earlier proposal, but we show that this scenario cannot by itself 

explain the mitotic-interphase folding rate difference: imaging of PGK-FRET relaxation kinetics in 

DNA-rich and DNA-poor regions of the cell reveals at best a small variation of rate coefficient. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Cell cycle arrest U2OS cells were cultured using standard practices as described in Appendix 

E. Cells were arrested at the G1 and S border of interphase with a double thymidine block:16612 

hours incubation in 2 mM thymidine (Sigma) supplemented DMEM with 1% PS and 10% FBS, was 

followed by 12 hours in thymidine free media, and 12 hours of incubation again with thymidine. 

Cells were arrested in mitosis, between prometaphase and metaphase, by addition of nocodazole166 

(Sigma): 12 hours in DMEM with 1% PS, 10% FBS, and 100 ng/mL nocodazole.  

To assess the degree of cell cycle arrest attained, DNA content in cells, which varies 

predictably in the cell cycle, was quantified by flow cytometry. Cell cultures were fixed in ice cold 

ethanol, treated with RNAase (Invitrogen), and stained with the intercalating dye, propidium iodide 

(Sigma). Propidium iodide fluorescence was quantified in each cell via flow cytometry on a BD LSR 

II with 488 nm excitation and a 695/40 emission filter. Resulting cell count versus fluorescence 

histograms were fit using standard cell cycle analysis algorithms (FCS Express) to derive percentages 

of cells in G1, S, and G2/M phases of the cell cycle. Results for mitotic, interphase, and un-arrested 

cell cultures are shown in figure 39.  
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Figure 39 Flow cytometry verification of cell cycle arrest. Fluorescence intensity of propidium iodide stained DNA in 
each cell is histogrammed for mitotic and interphase arrested cultures and an un-arrested culture. In un-arrested cells 
(bottom panel) first peak corresponds to cells in G1, middle peak corresponds to cells in S, and third peak corresponds 
to cells in G2. Peaks centered at the same intensities in the arrested cultures correspond to the same cell cycle phases. To 
derive percentages of cells in each phase of the cell cycle, the FCS Express fitting cell cycle analysis fitting algorithm was 
used.  
 

5.2.2 Transfection and plasmid constructs. The plasmid  constructed for transfection encoded a 

FRET-labeled, destabilized, enzymatically active yeast phosphoglycerate kinase (PGK) mutant	
  
described previously.145 A destabilized probe protein allows us to assay the folding within a 

temperature range acceptable for cell survival, and well below the melting temperature of the FRET 

labels. The fusion protein consisted of an N-terminal 6 histidine tag, AcGFP1, the destabilized 

Y122W W308F W333F PGK mutant, and mCherry at the C terminus. The fusion protein was 

cloned into the pDream 2.1 vector (Genscript) which contains both a T7 and CMV promoter for 

dual expression in bacterial and mammalian cells. For temperature calibrations, an mCherry-alone 

construct, also in pDream, was used and consisted of an N-terminal 6-histidine tag and mCherry. 	
  

Cells were transfected with 0.6 mg of plasmid per coverslip via Lipofectamine (Invitrogen) 

according to the manufacturer’s protocol. For interphase arrest, cells were transfected during the 12 

hour thymidine-free incubation period. Cells were imaged immediately following the second 12 hour 

thymidine incubation period. For mitotic arrest, cells were transfected 6 hours before addition of 

nocodazole and imaged immediately after 12 hours of incubation with the arresting agent. In both 

cases, the arresting agent was not present during imaging to maintain cell viability during 

experiments.  

 

5.2.3 Measuring protein folding in cells via fast relaxation imaging Fast relaxation imaging has 

been described in detail elsewhere, and is illustrated in figure 40.145 Briefly, the model protein PGK-

FRET consists of PGK sandwiched between a FRET pair: green fluorescent AcGFP1 as a donor at 

the N-terminus, and red fluorescent mCherry as an acceptor at the C-terminus, both with melting 
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points > 70 °C. PGK-FRET has been studied extensively in vitro and in cells, making it a suitable 

model system for cell-cycle-dependent protein folding.145,165 It can change in size from about r=2 nm 

C to N terminal distance in the folded state, to as much as r=17 nm C to N distance upon unfolding 

to a random coil.167 (The actual unfolded state inside cells will be more compact.) These values of r 

are a good match for the Förster distance R0 (~5 nm) of the two chromophores. 

 

 

Figure 40 Schematic of the Fast Relaxation Imaging (FReI) experiment coupled to the cell cycle as a clock. U2OS cells 
divide every 24 hours. At the beginning of gap 1 (G1) or t=0, cells grow. In synthesis (S) or t=12 hours, the genome of 
the cell is duplicated. In gap 2 (G2), the cells continue to grow. In mitosis (M) or t=23 hours, the cell condenses its 
chromosomes, and finally divides into two daughter cells. Cells arrested at the end of G1 and at the beginning of M are 
temporally separated by about 11 hours. Such cells, transfected with PGK-FRET as a probe protein, are imaged to look 
at changes in stability and folding kinetics during the cell cycle (schematic proteins with arrows pointing at G1 and M).  
To probe protein stability and kinetics, a green fluorescent donor label is excited by a 470 nm LED, and green donor as 
well as red acceptor emission are imaged into channels with millisecond time resolution: acGFP (donor) at 505 nm and 
mCherry (acceptor) at 610 nm. The resulting movies of protein thermodynamics or kinetics are collected during 
different parts of the cell cycle. IR heating for temperature-jump kinetics and thermal unfolding titrations is provided by 
a 2200 nm laser.   
 

The donor fluorescence intensity D increases, and the acceptor fluorescence intensity A 

decreases when the protein unfolds because the two fluorescent tags are further apart in the 

unfolded state.  Thus the ratio D/A increases, the FRET efficiency E = [1+(D/A)]-1 decreases, and 
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the difference D-A increases upon unfolding. PGK-FRET, as a consequence of its large fluorescent 

tags, shows slightly different folding stability and kinetics than the unlabeled PGK construct.165 

Therefore all comparisons among different environments are made with the same FRET construct, 

never with wild type PGK. 

U2OS cells expressing our probe protein were imaged on a modified epifluorescent 

microscope, a schematic of which is shown in figure 40. After excitation at 470 nm, emission was 

split into red and green channels and imaged side by side on a CCD camera at 24 frames per second 

(fps) for thermodynamics and 60 fps for kinetics. For Hoechst labeling experiments, the dye was 

excited at 365 nm and resulting 465 nm emission collected in the green channel.  

 

5.2.4 Thermal denaturation experiments Thermal unfolding was used to gauge PGK-FRET 

stability in G1 and M.  The temperature of a cell was raised by laser heating as described 

previously168 and in Appendix E. Briefly, a series of shaped pulses from a 2200 nm laser was coupled 

to a computer-controlled power supply (Thor Labs, LDC340) and a resistive heating stage, set to 

maintain a specific temperature through a PID (Thor Labs, ITC 510). The laser was mounted above 

the microscope stage and focused to a spot about the size of the field of view. At the end of each 

laser pulse, when the temperature had equilibrated, a 2 s video at 24 fps was taken.  

To measure the temperature reached in cells at the end of each step, the temperature 

dependence of the mCherry quantum yield was used. The temperature dependence of the quantum 

yield of mCherry was measured in vitro using recombinantly expressed mCherry (figure 41a). Then, 

cells transfected with mCherry were heated and the intensity loss at each step used to calibrate the in 

cell temperature. 9 interphase and 18 mitotic cells were assayed, and their temperatures at each step 

were averaged (figure 41b). Mitotic cells experienced a greater degree of heating than interphase 

cells, and thus each cell population has its own temperature calibration. This difference in the 

heating rate is likely due to morphological differences between mitotic and interphase cells. 

Interphase cells are fully adhered to the coverslip and in greater contact with the glass, which serves 

as a heat sink. Mitotic cells, on the other hand, are almost completely detached from the glass and 

completely surrounded by the medium, which absorbs 2200 nm radiation.  
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Figure 41 Fast heating thermodynamics temperature calibration. a) mCherry intensity versus temperature measured in 
vitro and corresponding fit used to extract temperature dependence of the mCherry quantum yield. b) Averaged mitotic 
and interphase in cell temperature calibration from mCherry expressing cells. Error bars show two standard deviations 
of the mean. Mitotic and interphase cells experience differential heating and require unique temperature calibration. The 
laser voltage profile is shown in red; as described in the Guo et al. reference in the main text, the spike at the beginning 
of each heating step convolutes with the instrument response to produce a square temperature step. 

 
5.2.5 Thermodynamic data analysis The fluorescence was averaged over the cell area for each 

channel to generate an overall green and red cell intensity for each temperature. The raw donor to 

acceptor ratio for each frame is affected by bleaching. To correct, the initial fast exponential 

bleaching phase, which persists over the first 12 frames, was excluded from analysis. The remaining 

36 frames have a bleaching baseline that is linear and straightforward to correct. The corrected 

intensity trace was then averaged to yield a single red and green intensity for each temperature.  

The thermodynamic signal S(T) was expressed as the ratio of donor and acceptor 

fluorescence intensities D(T) and A(T). A discussion of donor to acceptor ratio as a reaction 

coordinate is included in Appendix B and the thermodynamic analysis is addressed in detail in 

Appendix E. The temperature dependent signal was fit to a sigmoidal signal function after 

normalization165 and the thermodynamic parameters extracted via a two-state model (Appendix E). 

 The major approximation made in this analysis is to treat PGK-FRET as a two state folder 

(two state model). Our criteria were to use the simplest (fewest parameter) model to fit all 

thermodynamic data within measurement uncertainty to yield the most robust relative changes in Tm 

across the cell cycle. Although PGK is a two domain multi-state folder,169,170 in thermal melts PGK-

FRET behaves like an apparent two-state folder.145  Thus, the thermodynamic traces were fitted to a 

simple two-state model assuming linear baselines for the folded and unfolded states to extract the 

most robust thermodynamic parameters, in particular the effective melting temperature (Tm) of the 
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protein. As seen in ref. 165, the baselines arise mostly because of the nearly linear temperature-

dependent chromophore quantum yields, and when they are eliminated by correcting for 

temperature-dependent quantum yield, very similar thermodynamic parameters are obtained. 

 

5.2.6 Kinetic experiments and data analysis In a kinetics experiment (described in detail in 

Appendix E), the cells were heated to 1°C below the average melting temperature of their 

population with a resistive heating element on the stage and the temperature maintained within 0.1 

°C with a PID. Thus, jumps are carried out at constant free energy between the populations rather 

than constant temperature. Five degree temperature-jumps administered by an IR laser enabled 

measurement of relaxation into a new thermodynamic state.  

 Kinetic data analysis is described in detail in Appendix E. Briefly, the fluorescence signal was 

averaged over the entire cell in each frame or over a region of the cell (for DNA-Hoechst 

experiments, see next section). The signal immediately following temperature-jump was expressed as 

the difference between donor and acceptor intensities. 

 Traces consist of a baseline before the jump, an instrument response lag (< 50 ms in figure 

43) that includes the temperature-dependent change of fluorophore quantum yield, and folding 

kinetics. The magnitude of the instrument response was normalized for all traces and baseline 

adjusted to 0 (i.e. S(t=0 s) = 0, where t=0 s is the beginning of the jump), the data truncated to the 

end of the instrument response, and the traces normalized to the end of the jump. All raw data 

traces as well as all scaled folding traces are summarized in figure 42. 

The scaled folding data was fit to a double exponential where the first exponential is a single 

exponential with a positive amplitude and the second is a stretched exponential with a negative 

amplitude: 

€ 

S(t) = S0 + A1e
−k1t + A2e

−(k2t )
β

 

The first exponential is an instrument response that arises from differential rates of temperature 

response between GFP and mCherry and limits the kinetic time resolution. The second stretched 

exponential describes the actual folding kinetics where kobs is the temperature-jump relaxation rate  

and β describes the deviation from two-state folding behavior. For fitting folding kinetics, the value 

of kinst was fixed at the value of the average for each temperature: 7.3 s-1 for jumps from 40.3°C 

(mitotic cells) and 10.8 s-1  for jumps from 37.5°C (interphase cells).  
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Figure 42 Kinetic data before and after normalization. Left panel shows raw data of 3 mitotic and 3 interphase cells 
with sharp, un-resolvable, negative phase exponential instrument response labeled. The temperature-jump is initiated at 
t=0. The right panel shows manipulated data with fluorophore and response and folding trace labeled. Data was 
normalized to top of instrument response, truncated after the instrument response and adjusted so the starting D-aA 
value is 0, and finally normalized to the maximum amplitude of the folding kinetics.  
 

 For figure 45, all mitotic cell traces and all interphase cell traces were averaged and the 

average traces fit as described above. The fluorophore temperature response exponential was 

subtracted from the average data and from the fit to yield single stretched exponential traces with 

fits corresponding to folding data only. The data was then baseline adjusted so that S(t = 0) = 0 and 

normalized to the final amplitude so that S(t = 6s) = 1. 

 

5.2.7 Assessment of measurement heterogeneity To compare the standard deviations of two 

populations of different sizes, a one-tailed F-test was used to test the null hypothesis that the 

standard deviation of the mitotic Tm was equal to the standard deviation of the interphase Tm. The 

ratio of mitotic Tm variance and the interphase Tm variance was 3.53. This is greater than the upper 

bound F-value of 3.19 for a 95% confidence interval and the null hypothesis was rejected. Thus, 

despite sample size differences, the mitotic and interphase standard deviations of the Tm are 

significantly different.  

 

5.2.8 Estimation of free energy contributions to folding rate differences The relative 

contributions of modulations in the free energy landscape (i.e. activation barrier) and the diffusion 

coefficient of the protein chain (i.e. the folding prefactor) were estimated as described previously 

(Dhar et al. 2010 in the main paper). Briefly, the observed folding rate is modeled by the equation, 

valid near Tm: 
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€ 

Kobs(T ≈ Tm ) = k f + ku = 2kme
−ΔG † /RT  

where kf and ku are the folding and unfolding rates, km is the folding pre-factor (which is 

proportional to the intramolecular diffusion coefficient of the protein chain), and ΔG‡ is the 

activation energy. Making the assumptions that 

(1) the phi value for the effects of the intracellular environment is about the same as the average 

for a single mutation, 0.3, and that energy landscape modulation can be described by the phi 

value alone, 

(2) the folding can be described by a two-state model and that the free energy of folding is 

approximately linear with respect to temperature around Tm , and 

(3) the temperature dependence of the folding pre-factor is insignificant over the ΔTm between 

interphase and mitotic cells, 

we can estimate the activation barrier for folding with thermodynamic data as: 

€ 

ΔG† = ΔG0
† + φδg1(T −Tm ) . 

The observed folding rate can then be expressed as: 

€ 

kobs(T,Tm ) = k0(e
−φδg1 (T −Tm ) /RT + e−(φ −1)δg1 (T −Tm ) /RT ) 

where k0 is given as: 

€ 

k0 = 2kme
−ΔG0

† /RT  

We can use this expression of the observed folding rate to evaluate the relative contribution of 

activation energy and prefactor to the observed kinetics. We calculate this in two extremes: 1) 

assuming all energy landscape variation arises from the stability of the unfolded state, Φ = .3 and 2) 

assuming all energy landscape variation arises from the stability of the folded state, Φ = .7. For 

scenario (1):  

Mitotic cells: kobs (T=44.3 °C, Tm=41.1 °C)=4.38 k0 

Interphase cells: kobs (T=41.5 °C, Tm=38.7 °C)=5.32 k0 

 

This result would indicate that interphase cells should show 22% faster folding due to lowering of 

the activation barrier compared to mitotic cells. For scenario (2): 

Mitotic cells: kobs (T=44.3 °C, Tm=41.1 °C)=2.04 k0 

Interphase cells: kobs (T=41.5 °C, Tm=38.7 °C)=2.17 k0 
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This result would indicate that interphase cells should show 7% faster folding then mitotic cells due 

to lowering of the activation barrier. For both cases, we used the measured kobs to calculate k0 values, 

the ratios of which describe the relative magnitude of the diffusion coefficient between mitotic and 

interphase cells.  

 

5.2.9 Identification of DNA rich regions To identify regions of mitotic cells that were rich in 

DNA, cells were imaged under UV excitation after Hoechst staining, a UV excitable intercalating 

dye. Mitotic arrested cells on coverslips were incubated with 3 μg/mL Hoechst 33258 (Invitrogen) 

in OptiMEM minimal media (Gibco) supplemented with 10% FBS and 100 ng/mL nocodazole for 

30 minutes at 37°C and 5% CO2. Cells were rinsed gently two times with PBS (Lonza) before 

imaging. Staining was carried out during the last 30 minutes of nocodazole incubation.   

After a DNA-rich region was identified, the kinetics experiment described in the previous 

subsection was carried out under 470 nm excitation. UV and blue images were aligned by cross-

correlation (figure 43). The overlay was used to identify DNA-rich and DNA-poor regions. Pixels 

corresponding to these two regions were averaged to yield spatially resolved kinetic traces.  

 

 

 
Figure 43 Schematic of the three-color, regional folding experiment. Red and green folding trace, top left panel, is 
acquired under blue excitation (470 nm), before a Hoechst image showing the position of chromosomes is taken 
under UV excitation.  To align the images, the dark region in the GFP/mCherry region corresponding to the position 
of the chromosomes is aligned via cross correlation in the Matlab image toolbox to the image of the chromosomes. 
Masks corresponding to the entire cell, DNA-poor region, and DNA-rich region are generated and the pixels under 
each mask averaged to produce the spatially resolved kinetic traces.  
 

5.2.10 Analysis of spatially resolved kinetic data FReI images an entire column through the cells. 

Due to the thickness of mitotic cells, the signal from the DNA-rich region includes contributions 

from PGK-FRET close to the chromosomes and PGK-FRET in a chromosome-free environment. 

To address this issue we used the known volume of human mitotic chromosomes171 to estimate the 

depth of chromosomes in each mitotic cells and assumed a spherical mitotic cell to estimate the 
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depth of the mitotic cell at each pixel location. The ratio of DNA depth to cell depth, D/C, 

provided a signal to noise threshold for our measurement. Cells with a D/C ratio below 1:6 were 

excluded from analysis.  

The observed DNA-rich signal is given approximately by the following equation: 

   (C / D + 1)SDNA- rich,obs(t) = (C / D)SDNA- free,obs(t) + SDNA,actual (t) , 

where SDNA-rich,obs(t) is the normalized observed signal from the DNA-rich region with fluorophore 

response subtracted out, SDNA-free,obs(t) is the normalized observed signal from the DNA-free region 

with fluorophore response subtracted out, and SDNA,actual(t) is the extrapolated signal from the 

chromosome-containing region only. SDNA,actual(t) was adjusted until the above equation agreed with 

the measured values in the DNA-rich and DNA-free regions. The rate of SDNA,actual(t) that produced 

the closet fit to the experimental data was reported as the folding rate in the DNA rich region. To 

generate the main text figure, the amplitude of each trace was weighted by its signal to noise before 

averaging. The average D/C ratio was then used to simulate SDNA,actual(t) as described above.  

 

5.3 RESULTS 

5.3.1 Harnessing the cell cycle “clock” to measure the time-dependence of the intracellular 

protein folding landscape. Immortalized cell lines, such as the U2OS line used here, constantly 

move through the cell cycle in a strictly time-regulated fashion completing a full cycle every 24 

hours. Figure 39 illustrates the time dependence of this process as studied here. Arresting cells at a 

stage of the cell cycle allows for characterization of the intracellular environment across an entire 

population of cells at a single point in time.  

We used this concept to develop a technique to study the time dependence of an intracellular 

protein folding landscape. Using common molecular biology techniques,166 we arrested cells just 

before DNA synthesis begins, in interphase, which corresponds to t~12 hours relative to the 

beginning of the cell cycle. To access a later time point, t~23 hours, we arrested cells in the early 

stages of mitosis. Degree of arrest attained for both time points was verified by flow cytometry 

(figure 71). We combined this cell-cycle arrest approach with transient transfection to enable 

relatively rapid study of different proteins without the need to generate unique cell lines expressing a 

labeled protein of interest.   
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5.3.2 The thermodynamic stability of PGK-FRET is time-dependent in living cells The 

thermodynamics of PGK-FRET unfolding was measured in the cytoplasm of 18 mitotic cells and 9 

interphase cells (figure 44). Fits of the two data sets yielded 41.3±0.8 °C for mitotic cells and 

38.8±0.6 for interphase cells. PGK-FRET is more stable in mitotic cells, as evidenced by their 

2.5±0.6 °C higher mean effective melting temperature (Tm) compared to interphase cells (table 39).  

The square root of the variance of Tm, which describes the degree of cell-to-cell variation 

rather than relative measurement uncertainty, was 1.5 °C in mitotic cells and 0.9 °C in interphase 

cells, indicating greater cell to cell variation in mitotic cells. The greater heterogeneity of mitotic cells 

(figure 44c) may arise from cell-to-cell differences in cellular structure only present during mitosis. 

Mitosis is a far more morphologically diverse phase than the G1/S border, with varying degrees of 

chromatin compaction or extent of mitotic spindle formation. Heterogeneity differences may also 

rise from the faster time-scale of mitosis. The many morphologically diverse events of mitosis occur 

over the course of an hour, so slight differences in cell cycle timing could produce greater 

heterogeneity.  Interphase cells, on the other hand, experience no dramatic morphological changes 

for many hours, so the exact timing of cell-cycle arrest has less of an effect.  

 

	
  

FIGURE 44 PGK-FRET thermal melts as a function of  the cell cycle in mitotic- and interphase-arrested U2OS cells. 
Larger donor/acceptor (D/A) ratios correspond to unfolded protein. (A) Raw thermodynamic data. Un-normalized, 
baseline un-adjusted mitotic (18 cells) and interphase (9 cells) data is plotted with corresponding two-state fits.  (B) For 
clarity, 9 randomly selected mitotic cells and all 9 interphase cells are displayed and the data is scaled from 0 to 1. The 
highlighted traces are for two cells that exemplify the average behavior of  each cell cycle population. Insets show 
morphology of  an interphase and a mitotic cell. Data is not corrected for temperature dependence of  the Förster 
constant (see SI for corrected data, and a plot in terms of  end-to-end distance R instead of  D/A). (C) Histogrammed 
fitted Tm values for all interphase and mitotic cells showing overlapping populations and greater heterogeneity in mitotic 
cells. Note that some of  this heterogeneity could come from variations in the timing of  the cell cycle arrest. 
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 ΔTm (°C) 

€ 

ΔHU→F  
(kJ mol-1) 

 

€ 

ΔSU→F  
(kJ mol-1 K-1) 

Mitotic  +2.5 ± 0.6 -485 ± 54 -1.54 ± 0.17 
Interphase 0 -665 ± 37 -2.13 ± 0.12 
In vitro -2.5 ± 0.6 -459 ± 201 -1.48 ± 0.65 

Table 4 Effective thermodynamic parameters. All values based on two-state fits. Uncertainty reported is two standard 
deviations of the mean. See Methods for references to the in vitro data. Thermodynamic fits also extracted the effective 
two-state difference in enthalpy and entropy of PGK-FRET unfolding between interphase and mitotic cells. Both the 

Van’t Hoff enthalpy (

€ 

ΔHU→F ) and entropy (

€ 

ΔSU→F ) of folding are greater for PGK-FRET in interphase cells than in 
mitotic cells (table 1).    
 

5.3.3 Compactness of the unfolded state of PGK-FRET is time-dependent. Protein 

compactness over the course of a thermodynamics experiment can be assessed by the D/A ratio 

since r = (D/A)1/6 R0. Below the unfolding temperature, interphase and mitotic cells show a similar 

value of D/A 2.33 ± 0.13 for interphase cells and 2.51 ± 0.17 for mitotic cells (figure 44a). 

However, upon unfolding the maximum D/A of PGK-FRET ranges from 3.1 to 5.5 in mitotic cells, 

but only from 2.9 to 3.6 for interphase cells. This implies that the unfolded state of PGK-FRET is 

more expanded in mitotic cells than in interphase cells, or at least that the FRET labels are less 

crowded. 

 

5.3.4 PGK-FRET folding kinetics varies with cell cycle. Folding/unfolding relaxation kinetics 

traces of PGK-FRET were collected on 3 mitotic cells and 3 interphase cells via 5 °C temperature-

jumps from 1 °C  below their respective Tm (figure 45). The resulting kinetic traces of PGK-FRET 

relaxation were fit to stretched exponentials Signal~exp[-(kt)β] as described in Methods. The 

observed relaxation rate k equals about twice the folding rate for jumps close to the melting 

temperature. The stretching factor β describes the deviation from two-state behavior, or multiple 

populations with different relaxation rates. Mitotic cells showed faster relaxation and a greater 

deviation from two-state folding with a mean k of 0.62 ± 0.04 s-1 and β of 0.84 ± 0.01  compared 

to interphase cells with k of 0.44 ± 0.01 s-1 and a b of 0.95 ± 0.03.  
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Figure 45 Averaged mitotic and interphase kinetic traces. As shown here, the fluorophore temperature response has 
been subtracted from the data and the data normalized. Figure 42 shows raw kinetic data traces for all cells, with the 
fluorophore temperature response included. The T-jump relaxation was fit to yield PGK-FRET relaxation rates k and an 
exponent b that describes deviations from two-state kinetics (see SI). T-jump begins at t=0 s, and higher D-aA means 
more unfolded protein. Mitotic cells (red) show a faster relaxation rate than interphase cells (blue).  
 

To investigate whether the 'kinetic stretching' in mitotic cells is just due to averaging over 

different rates in different parts of the cell, or reflects a change in folding mechanism throughout the 

cell, we examined folding kinetics separately in two different regions of mitotic cells: a DNA-rich 

area whose location was identified by staining with Hoechst 33258 labeling, and the remaining 

DNA-poor region (figures 43 and 46). A difference between DNA-rich and poor regions is also of 

interest because faster folding of PGK-FRET has been observed in the nucleus of interphase cells 

than in the cytoplasm,165 so protein-DNA interaction in mitotic cells, where the nuclear envelope has 

dissolved, could be the reason for the different rates observed in figure 45. The average difference 

between the DNA-rich kinetics (orange points in figure 46, table 5) and DNA-poor kinetics (green 

points in figure 46, table 5) is far too small to account for the faster mitotic kinetics in figure 45. 

When we take into account that the DNA does not occupy the whole column probed by our 

diffraction-limited imaging, the extrapolated DNA-only rate (orange dashed lines in figure 46) is 

22% faster on average in mitotic cells, with a ±24% root-mean-square variation among 5 cells 

measured.  Thus our results are consistent with the earlier proposal that DNA-PGK-FRET 

interaction could speed up folding relaxation kinetics,165 but they cannot account for the mitotic-

interphase difference observed here in figure 45. 
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Figure 46: Spatially resolved kinetics. Normalized kinetics with the temperature response of the fluorophore removed 
for the DNA-rich and DNA-free region data are shown in orange and green. Bold orange traces show the simulated fit 
for the observed DNA-signal, SDNA,obs(t), which contains contributions from PGK-FRET close to and far away from 
DNA in the Z-dimension. Dashed orange lines show the corrected DNA-rich signal, SDNA,act(t). Bold green trace is the 
single exponential fit to the DNA-free region data. Inset shows each cell with Hoechst-stained DNA colored orange.  
 
 

Cell # % difference, observed % difference, extrapolated to chromosomes only 
Cell 1 -3.64 -19.3 
Cell 2 9.96 21.8 
Cell 3 8.85 45.6 
Cell 4 3.21 17.9 
Cell 5 9.62 44.5 

Table 5 Percent difference between DNA and DNA-free region both observed and corrected.  
Percent difference is calculated as 100×(kDNA-kno DNA)/kDNA. 
 

5.3.5 The diffusion coefficient for folding increases during mitosis. Like any chemical reaction 

in a solvent environment, protein folding rates depend on the prefactor and the activation barrier. 

The temperature dependence of the folding rate can be described by the Arrhenius equation: 

€ 

k(T ≈ Tm ) = 2km exp(−ΔG
† /RT)  [1] 

where ΔG† is the free energy barrier for folding and km is the prefactor, which depends on internal 

friction of the polypeptide chain and on the material properties of the solvent, i.e. viscosity.172,173 The 

factor of 2 in equation [1] accounts for the fact that near the Tm, where our experiments are carried 
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out, the observed relaxation rate coefficient is the sum of equal folding and unfolding rate 

coefficients, or k=kf+ku≈2kf. 

A time-dependent energy landscape (barrier) and prefactor (diffusion) can both contribute to 

the observed time-dependent rate of reaction as the cell cycle progresses, and their relative 

contributions can provide insight into the mechanism underlying the rate differences between the 

two populations studied here.   

Using Phi-value analysis,174 we calculated the relative contributions of landscape vs. diffusion 

to the observed folding rates in interphase and mitotic cells. Phi values describe how much the 

activation free energy of a reaction changes when the free energy of the reactant (here: folded 

protein) changes because of a mutation or, in our case, a change in the cellular environment.  For 

example, Φ=1 implies that stabilization of the native state in mitotic cells lowers the activation 

energy by an equal amount whereas Φ=0 implies that stabilization of the native state has no effect. 

The average Phi value for a single point mutation in a protein is 0.3,175,176 and we assume that the 

effects of a changing cellular environment can be approximated by this same Phi value.145 

To assign an upper and lower limit to calculated changes of the activation barrier and 

diffusion coefficient between interphase and mitotic cells, two extreme Phi value scenarios were 

considered. In the first, we assumed that most energy landscape differences between mitotic and 

interphase cells arise from free energy differences in the folded state (Phi=0.7) and in the second, we 

assumed the complement: most changes result from free energy variations of the unfolded state 

(Phi=0.3). Given the structural similarity of the folded states and the structural difference in the 

unfolded states in figure 44b, the latter scenario is more likely. 

In both scenarios, the activation barrier for folding is higher in mitotic cells than in 

interphase cells. In other words, if the activation barrier alone were to control folding rates, PGK-

FRET would fold faster in interphase cells than mitotic cells. Yet, the opposite is observed in figure 

45. This indicates that the prefactor more than makes up for the slightly higher barrier in mitotic 

cells or, in other words, the difference in prefactors indicates that diffusion for the folding reaction 

is 1.5-1.7 times faster in mitotic cells than in interphase cells. 

 

5.4 DISCUSSION 

The lives of cells are dynamic by nature—biomolecule and ion concentrations fluctuate and 

cellular structure is reorganized across many cellular processes—and one must consider whether 

such changes influence the biophysical and chemical properties of the intracellular environment 
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enough to affect the energetics of protein function or folding with respect to time. Ideally, one 

would study such effects in vitro where experiments have improved signal and allow for greater 

manipulation of variables. Unfortunately, the cellular milieu is simply too complex to reconstruct in 

the test tube, at least at this point in time, particularly when one is interested in dynamics. 

The folding free energy landscape of proteins in vivo is influenced by the intracellular 

environment.71,165 To measure the time dependence of a folding landscape, we used living cells as our 

test tube and a biological process, the cell cycle, as our clock. We studied a model protein, FRET-

labeled yeast phosphoglycerate kinase, because its folding both in vitro and in the cell is well 

understood. We found that PGK-FRET is stabilized at a later time in the life of a cell, mitosis, 

compared to an earlier time, interphase. This is the first direct evidence that a protein energy 

landscape can fluctuate over time inside cells.  We also found that our probe protein folds faster 

during mitosis due to an increased prefactor (faster diffusion) overcoming an increased barrier 

(energy landscape). Finally, we found that the rate effects are not associated with protein-DNA 

proximity as previously postulated for PGK localized to the nucleus,165 so the exact mechanism 

behind these changes in stability and folding kinetics remains to be unraveled.  

The time-dependent changes in the folding landscape can be rationalized by three factors: (1) 

Cell cycle-dependent excluded volume, an entropic effect; (2) variation in the interaction between 

PGK-FRET and the intracellular environment, which can make both enthalpic and entropic 

contributions; and (3) changes in the degree of spatial heterogeneity in folding environments. 

To apply these three factors to our data, we will make the assumption that the folded states of PGK-

FRET are similar in mitotic and interphase cells (model in figure 47). This assumption is justified by 

the similar range of D/A values in these two environments (figure 44a).  In contrast, the denatured 

state has a larger average D/A value in mitotic cells than in interphase cells, consistent with a less 

compact denatured state in mitosis than during interphase. 
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Figure 47 Schematic of  proposed time-dependent energy landscape changes. Left panel: Free energy of  PGK-FRET’s 
folded state is similar between interphase and mitotic cells. The difference in thermodynamic stability  arises from the 
greater instability of  the unfolded state in mitotic cells which pushes the equilibrium towards the folded state. The 
activation barrier for folding is higher in mitotic cells. Right panels: Mitotic cells show enthalpic stabilization of  the 
unfolded state, which destabilizes the folded state. However, the unfolded state of  mitotic cells is more ordered than in 
interphase cells, a stabilizing effect for the folded state that overcomes the destabilizing enthalpic effects. 

 

5.4.1 The cellular environment is more crowded than in v i tro , but how do two in-cell 

environments separated by time differ from one another? Three lines of evidence indicate that 

excluded volume (macromolecular crowding) decreases as the cell cycle progresses from interphase 

to mitosis.  First of all, the denatured state becomes less compact as the cell progresses from 

interphase to mitosis, as expected for less crowding. Secondly, the enthalpy and entropy of folding 

during mitosis more closely resemble the in vitro data measured in buffer (table 4). Most compelling 

is the kinetic data. Our Phi value analysis indicates that mitotic cells have slightly higher activation 

barriers for folding and ~ 1.6 times faster intramolecular diffusion than interphase cells, both 

expected for reduced crowding.80,177  Thus, we conclude that mitotic cells are less crowded than 

interphase cells.  The altered cytoskeletal structure, evident in the round shape of mitotic cells could 

be a reason for decreased crowding in mitotic cells. 

 

5.4.2 Usually, increased melting temperatures of proteins are explained by increased 

crowding. If crowding decreases during mitosis but Tm increases (table 4), another factor 

must be responsible.  We believe that increased interaction of the unfolded state with the 

intracellular environment is a good candidate. First of all, the denatured state is less compact during 
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mitosis, giving the unfolded polypeptide chain more opportunity to interact with its environment. In 

table 4, the effective enthalpy of the denatured state is significantly lower during mitosis than 

interphase, consistent with increased binding of the denatured state to macromolecular surfaces, 

solvated ions, or other microstructure in the cell.  (The same is incidentally true in vitro, indicating 

some interaction between FRET labels and PGK.) 

A lower enthalpy of the denatured state alone would tend to decrease Tm during mitosis, so 

it must be offset by entropy. Indeed, in table 4 the effective entropy of the unfolded state is 

significantly lower during mitosis. This is also consistent with increased interactions of the unfolded 

polypeptide chain 'sticking' to other macromolecules in its environment, including the GFP and 

mCherry labels attached to the PGK.  In this scenario, crowding is reduced in the mitotic state, and 

the resulting more extended unfolded state of PGK sticks to other cellular components, decreasing 

its enthalpy, but even more its entropy, thus destabilizing the unfolded state and increasing Tm.   

Favorable enthalpic interactions between a protein’s unfolded state and biomolecules or ions in the 

cell are not without precedent.149,151 For example, a recent molecular dynamics study showed that 

non-specific protein-protein interactions can lead to the accumulation of non-native or partially 

unfolded intermediates, suggesting that the unfolded state is enthalpically stabilized by such 

interactions (the simulations did not address the entropic effect of multiple crowders).92 If the 

unfolded state is less compact in mitotic cells, it may make more such stabilizing interactions (lower 

enthalpy, as observed), while being pinned down more due to such interactions (lower entropy, as 

observed). As another example, a statistical mechanical model150 has shown that attractive 

interactions between protein and crowder can counteract excluded volume effects. And of course, 

many in vitro studies have shown that protein folding enthalpies depend on ionic strength.160 Finally, 

previous in cell studies have shown that the stabilization imparted from moving a protein from in 

vitro to the cytoplasm can vary widely from a net stabilizing effect,153 virtually no effect on 

stability,154,155 and destabilization.156,178 Such protein-specific effects implicate the importance of ionic 

or hydrophobic interactions between a protein and its surrounding environment, which evidence has 

shown are sequence dependent in cells.87 Nonetheless, it is worth pointing out again that the overall 

effect of in-cell crowding on  PGK is stabilizing in both mitotic and interphase cells relative to in 

vitro, and that the balance of enthalpic and entropic contributions plays a role in fine-tuning stability  

as a function of the cell cycle. 
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5.4.3 Some of the effects we observe here are consistent with both energy landscape and 

spatial variations of PGK folding in the cell. For example, consider our measurement of β 

averaged over the whole cell. Kinetics with β<1 might simply reflect spatial averaging over a 

distribution of two-state rate coefficients inside the cell, indicating spatial heterogeneity. In that 

scenario, mitotic cells with smaller β are more spatially heterogeneous than interphase cells. On the 

other hand, the variation of β could also be caused by enthalpic stabilization of unfolded states in 

mitotic cells, as discussed above:  Stabilization of folding intermediates would lead to a departure 

from two-state folding signaled by β<1. In that scenario, mitotic cells could be spatially 

homogeneous, but the energy landscape of the protein has changed towards multi-state folding 

throughout the cell.  The two scenarios are not inconsistent with one another, and both spatial and 

energy landscape variations are likely to exist within the cell. 

To see if we could detect spatial variations of folding during the cell cycle, we measured 

folding kinetics in both DNA-rich and DNA-poor columns within mitotic cells, which have 

dissolved the nuclear envelope, but show condensed nuclear material (figure 46). Previous work has 

shown that PGK-FRET localized to the nucleus of interphase cells is more stable and folds faster 

than in the cytoplasm.165 Therefore it was postulated that nuclear DNA-protein interaction could be 

responsible for faster folding and greater stability. We found that although there is a very weak trend 

towards faster folding close to the mitotic chromosomes, this difference cannot account for the 

faster folding observed in mitotic cells, nor is it as large as that observed between nucleus and 

cytoplasm of interphase cells. Thus, the loss of nuclear compartmentalization results in greater 

spatial homogeneity of the folding environment in mitotic cells than in interphase cells. We 

therefore conclude that the smaller β in mitotic cells is either due to cell cycle variation of the 

folding energy landscape, consistent with our scenario of less crowding and enthalpic stabilization of 

unfolded states in mitotic cells, or if it is due to spatial heterogeneity, the latter must be at the level 

of cellular microstructure below a few mm.  

 

5.5 CONCLUSIONS AND OUTLOOK 

The methodology developed here enables future studies of the time-dependence of the in-

cell folding landscapes of other proteins. Of particular interest in the field of molecular biology is 

the study of cell-cycle related proteins. An intriguing possibility raised by our results is that of 

protein regulation by functional energy landscape or folding energy landscape modulation: could a 
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protein that is active in interphase be thermodynamically stabilized in that phase of the cell cycle and 

destabilized in others, or vice versa? Our results here are of particular importance to proteins with 

transient structural elements such as intrinsically disordered proteins. In these cases, modulations of 

the energy landscape of just ~5 kJ/mol observed here (based on ΔTm in figure 44 and δg1 in table 1, 

ΔΔG=ΔTm δg1) could have dramatic effects on a protein’s structure, stability or function, thanks to 

the amplifying effect of the exponential Boltzmann factor exp[-ΔΔG/RT]. Considering our results, 

these types of proteins may be far more structurally dynamic with respect to time in their native 

cellular environment than expected, especially if the cell poises them near structural transitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   83	
  

CHAPTER 6 

 DEVELOPMENT OF THE GFP-REASH FRET PAIR TO STUDY 
PROTEIN FOLDING* 

 

6.1 INTRODUCTION 

 Since the development of the green fluorescent protein first made it possible image proteins 

inside living cells179-181, an area of active research has been the development of new fluorophores for 

live-cell microscopy. A huge library of fluorescent proteins that can be appended to a protein of 

interest in a fusion construct have been developed covering the spectral range from 424 nm182 to 720 

nm183. Their versatility has enabled their use to study intracellular protein localization and function in 

a wide variety of optically demanding applications, even live-cell super resolution microscopy184. 

 Fluorescent proteins as fluorophores and protein localization tags, however, have their 

drawbacks185. For one, quantum yield and photostability of fluorescent proteins cannot match the 

best small-molecule dyes, which poses imaging limitations. Fluorescent proteins are also not 

necessarily inert when used as tags. Of concern to those that study protein structure or structure-

sensitive processes, fluorescent proteins are large enough to substantially disrupt structure and 

function, as is the case for HSP70 which cannot tolerate N-terminal fluorescent protein fusions186. 

Fluorescent proteins are also known to cause clustering or localization artifacts in living cells, which 

has lead to observation of artificial protein foci formation in bacteria187.  

 A number of strategies to generate fluorescent protein alternatives for live-cell imaging have 

emerged over the years including quantum dot-labeled proteins188, hijacking of native proteins to 

label a protein of interest with dyes189, and using non-native amino-acids as bio-orthogonal handles 

for cell-membrane permeable dyes to bind190. Another somewhat less technically demanding 

approach is to use labeling chemistry that links a cell-permeable dye to a specific, short peptide 

sequence appended to the termini of the protein of interest—essentially taking advantage of the 

ease-of-use of a genetically encoded tag while using a far smaller and less obtrusive fluorophore. The 

first example of this technique was FlAsH191, which was developed in Roger Tsien’s lab.  

 FlAsH is a system that consists of a fluorescein-based dye conjugated to a bi-arsenical motif 

that covalently binds a cysteine rich sequence, CCPGCC (shown in figure 48). Before binding, the 

dye is minimally fluorescent. However, when it binds to the recognition sequence, the structure 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*	
  This work was done in equal collaboration with Hannah Gelman, and it is discussed half in this thesis and half in 
H.G.’s thesis. This work is partially reproduced from Gelman, Wirth, and Gruebele (in preparation). 	
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rigidifies and becomes brightly fluorescent. Following the development of FlAsH, a red fluorescent 

version of the system, ReAsH was developed192.  

 

 

Figure 48 GFP/ReAsH FRET pair. A) ReAsH dye bound to the tetracysteine recognition sequence. In this 
configuration, the dye is rigid and fluorescent. B) Absorbance and fluorescence spectra for GFP and ReAsH. Spectral 
overlap between GFP emission and ReAsH absorption is significant, making the two fluorophores a good FRET pair. 
Spectra were acquired from Invitrogen Life Technologies (ReAsH) and Beckman Dickenson (acGFP1).  
 

 FlAsH and ReAsH have been used successfully in many biological imaging applications 

including ReAsH enabled photo-activation of DAB (an electron microscopy probe) in the Golgi 

apparatus193, genetically encoded calcium indicators194, and FRET-based measurement of the 

activation of a G-protein coupled receptor195. Researchers have also taken advantage of the 

sensitivity of FlAsH and ReAsH labeling reaction efficiency to protein conformation. In one 

example, the tetracysteine recognition sequence was split across two protein domains or between 

two binding partners so that the amount of FlAsH labeling correlated to the amount of folded 

protein or bound complex196. Accessibility of FlAsH or ReAsH binding sites has also been used to 

determine the solvent exposure of specific protein regions in amyloid fibrils197. In some cases, 

FlAsH fluorescence appears to be sensitive to its surrounding environment. Ignatova and coworkers 



	
   85	
  

used the change in FlAsH fluorescence intensity to monitor the unfolding of a model protein in 

living bactera198.  

 ReAsH and FlAsH have also been used in Forster Resonance Energy Transfer (FRET) 

based applications including CFP-FlAsH FRET to monitor a receptor’s activation195, GFP-ReAsH 

FRET to quantify ReAsH labeling in cells199, and FlAsH-ReAsH FRET to monitor alpha-synuclein 

fibril formation200. Figure 48b shows that ReAsH and acGFP1 make an excellent FRET pair with 

robust spectral overlap. Their estimated Ro based on quantum yields and spectral overlap is on the 

order of 6 nm.  

 In this chapter, we discuss the efforts to develop this FRET pair into a useful probe for 

protein folding both in vitro and in living cells. Here, the focus is placed on expression of this 

construct in mammalian U2OS cells while the partnering work in Hannah Gelman’s thesis discusses 

use of this construct in bacterial cells. The main contribution of this work is development of ReAsH 

as a quantitative probe for protein folding both as a FRET acceptor and as a directly excited single 

fluorophore that reports on protein structure. While quantitative interpretation of ReAsH data must 

be approached with caution due to its strong tendency to bleach, our exhaustive characterization of 

the fluorophore pair across a variety of constructs provides a framework to interpret GFP/ReAsH 

data quantitatively both in vitro and in cells for protein folding thermodynamics and kinetics.  

 

6.2 METHODS 

6.2.1 Construct design The three constructs used throughout the experiment are shown in figure 

49. In the dually labeled constructs, FRET serves to monitor the separation between termini, an 

established reaction coordinate that tracks folding for yeast phosphoglycerate kinase (PGK)79. 

Various combinations of acGFP1, PGK, and the tetracysteine binding domain were generated as 

shown in figure 49 to provide full spectral characterization of the acGFP1-ReAsH FRET pair.  

 PGK-tc is a fusion of acGFP1, the destabilized Y122W W308 W333F PGK79,153, and the 

ReAsH tetra-cysteine binding sequence: FLNCCPGCCMEP. The ReAsH binding sequence with 

flanking amino acids is the sequence optimized for binding in mammalian cells199.  GFP-tc is an 

identical construct to PGK-tc but without the internal PGK. Both protein constructs were cloned 

into the pDream 2.1 vector (Genscript) which contains both a T7 and CMV promoter for dual 

expression in bacterial and mammalian cells. For purification, each construct has an N-terminal 6-

histidine tag.  The tetracysteine peptide (tc-peptide) consisted only of the ReAsH binding site 

(FLNCCPGCCMEP).  
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Figure 49 Schematic of the primary constructs used throughout the chapter to characterize the GFP/ReAsH FRET-
pair: PGK-tc, GFP-tc, and tc-peptide (from top to bottom). The major utility of each construct is summarized in the 
figure.  
 

6.2.2 Peptide synthesis and recombinant expression of PGK-tc and GFP-tc The tc-peptide 

was synthesized by GenScript. The peptide was soluble in water and stored at -20 °C at a 

concentration of 1.37 mg/mL per manufacturer’s instructions.  

 GFP-tc and PGK-tc were both expressed recombinantly in bacteria. BL21-DE3-RIPL 

(Agilent) bacteria cells were transformed with the plasmid construct and selected overnight on 

ampicillin plates. Cells were grown under 1 mg/mL ampicillin selection to an OD600 of .6-1 before 

induction with 1 mM IPTG at room temperature. After 12-16 hours induction, cells were spun 

down and resuspended in a lysis buffer consisting of 300 mM NaCl, 50 mM Na2HPO4 and 5 mM 

BME at pH 8.0. Cells were broken via sonication and the cell extract containing soluble protein 

purified. The extract was loaded via FPLC onto a His-trap column (GE Healthcare) and the his-

tagged constructs eluted by a stepped gradient of imidazole.  

 

6.2.3 Cell culture and transfection U2OS cells were cultured as described in Appendix E. Cells 

were transfected via Lipofectamine (Invitrogen) 24 hours prior to ReAsH labeling and imaging with 

2 µg of PGK-tc DNA per 75 cm2 flask. After 4-6 hours of incubation with lipofectamine and DNA, 

cells were trypsinized and split onto coverslips in DMEM supplemented with 10% FBS. At the time 

of ReAsH labeling, cells were 80-90% confluent on the coverslips.  

 

6.2.4 ReAsH labeling In cell ReAsH labeling was carried out according to manufacturer’s 

(Invitrogen) protocols, with some modifications. Cells expressing PGK-tc and adhered to coverslips 
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were rinsed once with Optimem minimal media (Invitrogen) to remove all traces of phenol-red 

containing media. Cells were stained with 1 mL of Optimem minimal media supplemented with 

ReAsH dye (Invitrogen) to a final concentration of 1.75 µM. The labeling reaction was allowed to 

proceed for 1 hour. Cells were washed with 1 mL of Optimem with 250 µM BAL (Invitrogen) twice. 

Following labeling, cells prepared on coverslips as described in Appendix E were imaged 

immediately.  

 In vitro ReAsH labeling is discussed in detail in H. Gelman’s thesis and is a modified version 

of the method described in Ignatova et al.154 Briefly, recombinantly expressed PGK-tc or GFP-tc 

was reduced with BAL and TCEP or BME in degassed buffer for 2 hours. ReAsH dye in 2-10 fold 

excess was added and allowed to incubate for 2 hours while the reaction was monitored via 

fluorimeter. Centrifugal filter units (Amicon) were used to buffer exchange to remove unbound 

ReAsH after the reaction had completed.  

 

6.2.5 Thermodynamics and kinetic measurements For both thermodynamic and kinetic 

measurements, the construct in living cells or in vitro was excited at 470 nm (“blue”) for FRET-

probed folding or at 590 nm (“amber”) for direct excitation of the ReAsH. Imaging was carried out 

for both in vitro and in cell samples as described in Appendix E. For thermodynamic measurements, 

the slide was resistively heated by two resistors and the temperature measured on the slide surface by 

a thermocouple as previously described153. Kinetics measurements were carried out as described in 

Appendix E: at each temperature, a 5 degree jump was initiated by an IR laser and the resulting 

relaxation measured for 6 seconds.  

 In in vitro experiments, kinetics were measured at each temperature for every sample. For in 

vivo measurements, this approach was only tenable in especially bright cells with very robust ReAsH 

labeling due to the tendency of ReAsH to bleach significantly over the course of an experiment with 

no recovery of signal, unlike in vitro experiments where diffusion from outside the field of view 

reduces overall intensity loss significantly. For less bright cells, kinetics were taken only at room 

temperature, two temperatures close to the melting temperature, and one temperature far above the 

melting temperature. This enabled measurement of kinetics without excessive bleaching of the cell.   

 

6.2.6 Fluorimeter thermodynamic melts and analysis Thermodynamics of PGK-tc unfolding 

were measured via fluorimeter (Cary) equipped with a Peltier temperature controller (Agilent), where 

photo-bleaching is significantly less than on the live-cell microscope system. Samples of 2 µM 
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protein or peptide were assayed under blue (480 nm) or amber (590 nm) excitation. To provide a 

close comparison to thermodynamic melts on the live-cell microscope, which collect fluorescence in 

channels, green intensity was taken as the integrated intensity of the spectra from 490 to 550 nm and 

red intensity was taken as the integrated intensity of the spectra from 550 to 750 nm. Signal was 

expressed as the donor to acceptor ratio and fit to a two state thermodynamic model (described in 

Appendix E).  

 

6.2.7 Microscope bleaching correction Baselines arising from irreversible photo-bleaching were a 

significant problem throughout the experiments. For temperature-jump measurements, the last 

second of the jump in each channel (after the kinetics were complete but where a bleaching baseline 

remained) was fit to a line, which was subtracted from the data.  

 Thermodynamics measurements were slightly more complex to correct due to the variation 

of bleaching behaviors at short time-scales (see figure 73) and between different constructs. 

Bleaching behavior could be characterized as either an initial fast exponential decay followed by a 

linear baseline or a 2nd order polynomial: 

Exponential: 

€ 

S(t) = Ao + Ae−t /τbleach +mbleacht  

Polynomial: 

€ 

S(t) = A0 +mbleacht + cbleacht
2

 

 The data were fit to the  function that best described the bleaching and the data corrected so that 

the average value of the trace matched the fitted Ao value.  

 

6.2.8 Kinetics analysis Kinetics were fit to a  double exponential as described in Appendix E:  

€ 

S(t) = yo + A1e
− t /τ1 + A2e

−(t /τ2 )  

Before fitting, the kinetics were corrected for bleaching as described in the previous section. For 

FRET-probed kinetics, the kinetic signal was expressed as D-aA where D and A are the time 

dependent donor and acceptor fluorescence, respectively, and a is the initial donor to acceptor ratio 

at the start of the kinetics. Directly excited kinetics, which consist of only red channel (i.e. acceptor 

channel) fluorescence, were expressed as a normalized red intensity where the intensity before the 

jump was used to normalize.  
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6.2.9 Thermodynamics fitting In most cases, the average donor (acGFP) to acceptor (ReAsH) 

ratio yielded poor thermodynamics either due to bleaching artifacts or due to strong folded and 

unfolded baselines that obscured the folding transition. Using the method outlined in Girdhar et al201 

(referred throughout the thesis as the “thermodynamics from kinetics fit”) the kinetic measurements 

were used to extract folding thermodynamics. The fluorescence signal (either D-aA or normalized 

red intensity, depending on excitation method) in the last second of the jump, after the kinetics 

ended, was averaged. The resulting end of jump signal was plotted versus temperature and fit to the 

following equation to yield the  melting temperature, Tm, and the free energy:  

€ 

A(T) =
−g1ΔTTm

R(T − ΔT /2)2
[Ao +mo(T −Tm )]

x e−g
1 (T −ΔT / 2−Tm ) /R (T −ΔT / 2)

(1+ e−g
1 (T −ΔT / 2−Tm ) /R (T −ΔT / 2))2

  

where ΔT is the size of the temperature-jump and R is the gas constant. Ao and mo are the slope and 

intercept of B(T), which is the difference of the folded and unfolded baselines (as defined for a 

traditional, 2-state thermodynamic fit as discussed in Appendix E). The free energy is given by: 

€ 

ΔG(T) = g1(T −Tm )  

The advantages of using this fitting equation is that it uses fewer parameters than the traditional 

thermodynamics fitting function (discussed in Appendix E) and can extract thermodynamics from 

data whose baselines are ill-defined or obscure the folding transition.  

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Optimization of in v ivo  ReAsH labeling conditions Although the ReAsH dye is non-

fluorescent when unbound from the tetra-cysteine sequence, inside living cells it does show some 

background fluorescence. This background fluorescence is thought to arise from transient binding 

to macromolecules in the cell or through partial covalent linkage to cysteine-rich proteins202. The 

inset of figure 50 shows the background evident in cells that are not expressing the tetracysteine 

tagged construct. While the background itself would not be problematic, it does show a temperature 

dependence (figure 50), which can interfere with interpretation of the fluorescence from the labeled 

construct.  

 One method202 to reduce background fluorescence is to treat cells with excess BAL, a 

reducing agent that competes with ReAsH to bind to the tetra-cysteine sequence, to eliminate non-
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specific covalent linkage to proteins other than the tetracysteine-tagged construct. We found that 

treatment with BAL did not significantly reduce background fluorescence, suggesting that 

background we see in our experiments arises from transient non-covalent binding of ReAsH to 

other macromolecules in the cell. To reduce this background, we added Disperse Blue (Sigma), a dye 

that is spectrally distinct from ReAsH but competes with free ReAsH for transient binding to 

macromolecules. While this approach reduced background fluorescence in the red channel, it 

introduced new fluorescence background into the green-channel under blue excitation, making it 

incompatible with the FRET construct.  

 

 
Figure 50 Unbound ReAsH in living cells shows significant fluorescence background under both blue (indirect) and 
amber (direct) excitation. Plot shows the temperature dependence of the red intensity of cells expressing no tetracysteine 
tag labeled proteins but treated with ReAsH under blue (blue line) or amber (red line) excitation. Inset shows a 
microscope field of view showing a cell transfected with a GFP and ReAsH labeled protein (green arrow) and a cell with 
no transfected protein (red arrow). The non-transfected cell shows significant red background fluorescence due to 
unbound ReAsH, even under blue excitation.   

 

 Thus, the most expedient way to eliminate background fluorescence was to strike a balance 

between adding enough ReAsH dye to ensure robust labeling but not so much dye that there was 

significant amounts of unbound ReAsH in the cell. The amount of ReAsH necessary to achieve this 

balance depends on the number of cells expressing the construct, the expression level of the 

construct in the cells, and the density of cells on the coverslip. Because these three characteristics 

vary slightly from experiment to experiment, there is a range of ReAsH concentrations for PGK-tc 
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in U2OS cells at a cell density (confluence) of 70-90% that produce appropriate labeling levels: 1.25 

μM to 1.75 μM (these are 50-70% the manufacturer’s recommendations for labeling concentrations). 

The best practice to achieve background free labeling is to label coverslips at 3-4 concentrations 

within this range and to choose the lowest concentration that produces an acceptable level of red 

fluorescence. With this approach, we were able to achieve labeling that had a very low or 

unobservable background at the blue excitation intensities used for imaging the FRET-labeled 

construct.  

 

6.3.2 ReAsH shows significant bleaching when excited via FRET from acGFP ReAsH 

containing fusion constructs show significant photo-bleaching under blue excitation, a known 

limitation of FlAsH and ReAsH203. Figure 73 (appendix C) shows the red (acceptor) channel 

fluorescence over time under continuous blue excitation for the PGK-tc and GFP-tc constructs. As 

might be expected, there is a resonance energy transfer efficiency dependence of the ReAsH 

bleaching under blue excitation. Table 6 shows the correlation between D/A ratio, which is inversely 

proportional to FRET-efficiency, and percent intensity loss over a video.  

 

Construct D/A  % intensity loss 
PGK-tc .9 27 
GFP-tc .62 38 

Table 6 Correlation between FRET efficiency and bleaching. FRET efficiency was measured via fluorimeter at 20 °C. 
Percent intensity loss is in the red (donor) channel and is measured on an in vitro sample on the live-cell microscope at 
room temperature. Bound ReAsH to PGK-tc and GFP-tc were excited indirectly via FRET from GFP under 
continuous blue LED illumination (both samples were under identical illumination conditions). Over the 6 second 
video, the percent intensity loss is greater for the GFP-tc construct, which has a lower D/A or higher FRET efficiency.  
 
 Because the donor and acceptor fluorescence are linked through resonance energy transfer, 

the intensity loss in the acceptor channel is coupled to an intensity increase in the donor channel 

(figure 73 in appendix C). As more and more acceptor molecules bleach, there are fewer acceptor 

molecules available for energy transfer from the acGFP donor and, accordingly, the donor 

fluorescence increases creating a positively sloped donor fluorescence over time.  

 The strong photo-sensitivity of the ReAsH dye poses significant imaging challenges. First, 

because the bleaching rate is fast, bleaching during the times when the sample is illuminated but data 

is not recorded, such as during focusing of the microscope, is significant and may need to be 

considered when attempting to make quantitative intensity measurements. Second, tracking the 

change in FRET when such significant bleaching is present and when channel bleaching baselines go 

in opposite directions can be especially difficult. For example, in an intracellular measurement of 
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protein folding using a GFP-ReAsH FRET construct, the depletion of all ReAsH fluorophores in 

the cell due to bleaching results in a lower average red intensity and higher average green intensity. 

This fluorescence signature is difficult to distinguish from the loss of FRET due to expansion of the 

protein structure, as occurs during unfolding. This problem also persists in in vitro samples, although 

to a lesser degree as diffusion within the sample can replenish bleached molecules in the field of 

view. The temperature dependent diffusion rate, which is also protein construct dependent, provides 

additional difficulties in interpreting in vitro data.  

 There are a number of approaches that can be used ameliorate some of these problems. If 

possible, measurements should be made using ReAsH under direct excitation where bleaching is 

more straightforward to interpret. In the case of PGK-tc, the ReAsH dye alone appears to be 

sensitive to the protein folding structural transition (see following sections), which makes this 

approach feasible. Another alternative is to chemically modify ReAsH to reduce bleaching: one 

group has reported that fluorinated ReAsH and FlAsH derivatives can improve photostability 70-

fold203.  

 When FRET-type measurements are necessary, fewer measurements on a single cell should 

be made to avoid bleaching artifacts. For example, rather than performing temperature-jump 

kinetics at a range of temperatures on a single cell, it would be better to perform one or two kinetic 

measurements per cell and to use population level data to generate a full temperature dependence of 

the folding kinetics.  

 

6.3.3 PGK-tc folding thermodynamics and kinetics  in v i tro  and in living cells measured via 

FRET In vitro measurements of PGK-tc folding thermodynamics on the live-cell microscope were 

challenged by ReAsH bleaching, which made average intensities difficult to interpret. Bleaching was 

temperature-dependent and the temperature-dependent recovery from bleaching, due to diffusion 

from areas of the coverslip not within the field of view, made accurate bleaching corrections of 

average intensities non-trivial. Figure 51a shows that the thermodynamics measured on the 

microscope by taking the average intensity at each temperature before a temperature-jump 

experiment—corrected for bleaching as described in the methods section—are difficult to interpret, 

while in the fluorimeter, where little bleaching occurs, thermodynamics are well-defined giving a 

melting temperature of 315 K.  
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Figure 51 In vitro and in cell PGK-tc folding thermodynamics as measured via changes in FRET. a) Donor to acceptor 
ratios from thermodynamic titrations in the fluorimeter and on the live-cell microscope of ReAsH labeled PGK-tc in 
vitro. The average intensity measurement did not produce fittable thermodynamics on the live-cell microscope while on 
the fluorimeter, where bleaching is reduced, the observed thermodynamics fit to a melting temperature of 315 K. b) 
Temperature dependence of the signal at the end of T-jump experiments of in vitro PGK-tc on the live-cell microscope 
with a thermodynamics from kinetics fit. c) Donor to acceptor ratios from thermodynamic titrations on the live cell 
microscope of two cells expressing ReAsH labeled PGK-tc. Although a sigmoidal transition is visible, the lack of an 
unfolded baseline at high temperatures makes fitting thermodynamics difficult. d) Temperature dependence of the signal 
at the end of T-jump experiments of two cells expressing ReAsH labeled PGK-tc with thermodynamics from kinetics fit.  
 

 To circumvent this problem, temperature-jump probed kinetics, where the bleaching 

baseline is clearly distinguishable from the kinetic signal, were used to extract both folding kinetics 

and thermodynamics. Robust temperature-dependent kinetics were observed for PGK-tc in vitro 

(figure 74, in appendix C). Kinetics were bi-phasic with a fast (~2-10 ms) phase, which is discussed 

in the subsequent section, and a second slower phase (τobs~ 1-3 s), the latter of which is close to the 

folding time observed for PGK labeled with acGFP and mCherry. GFP-tc also shows a small, 

negative amplitude phase of comparable time-scale to the slow PGK-tc phase (figure 74 in appendix 

C) that is significantly lower in amplitude to PGK-tc. This may indicate that a small part of the 

observed PGK-tc folding phase arises from a bleaching or other spectral artifact. However, despite 

this minor artifact, plotting the temperature-dependent end of jump signal (figure 51b, table 7) to 

extract the thermodynamics with a thermodynamics from kinetics fit gave well defined 

thermodynamics far more reliably than fitting to the average intensity before the jump. The fits 
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yielded an average melting temperature of 314 ± 1 K, which is a little lower than the fluorimeter 

measurement but consistent with previous measurements for acGFP and mCherry labeled 

PGK79,153,165,168.  

 As with in vitro PGK-tc, the thermodynamics of PGK-tc in living cells expressed as the 

average D/A ratio before the kinetic temperature-jump experiment were not fittable (figure 51c). In 

this case, a sigmoidal transition was visible, but the lack of an unfolded baseline at high temperatures 

made accurate fitting impossible. The same thermodynamics from kinetics approach that was 

applied to in vitro samples was thus used for PGK-tc expressed in living cells and labeled in vivo with 

ReAsH. The observed folding kinetics were bi-phasic, as in vitro. The thermodynamics from kinetics 

fits (figure 51d, table 7) yielded an average melting temperature of 316 ± 0.3 K which, as expected 

from previous studies of acGFP and mCherry labeled PGK, is higher than the in vitro value.  

 From the kinetics measurements, the folding rate for the slow phase was also extracted for 

ReAsH labeled PGK-tc both in vitro and in cell, although the in cell measurements were significantly 

noisier than in vitro due to low ReAsH intensity. The observed folding time for PGK-tc in vitro 

(figure 52a, table 7) at approximately the  average melting temperature was 1.2  ± 0.1 s, which is 

slightly faster than what was observed previously for PGK labeled with acGFP and mCherry79,153,165. 

The in cell folding was not significantly faster or slower than in vitro (within error), although the 

temperature dependence of the rates was not as reproducible as observed in vitro (figure 52b, table 

7).  

 

 
Figure 52 Temperature dependence of the observed folding time for PGK-tc in vitro (a) and in cells (b). Error bars 
shown are fit uncertainties. 
 
 
 
 
 
 



	
   95	
  

 In vitro in cell 
Tm (K) 314 ± 1 316.5± 0.6 
τobs (s) 1.2 ± 0.1  1.5 ± 0.3 

Table 7 FRET-probed PGK-tc thermodynamics and kinetics as measured on the live-cell microscope. Values are 
averages of 2 measurements. Reported error is two standard deviation of the mean. Observed folding time is that 
observed at the average Tm.  
 
 The fast phase, which had the opposite amplitude of the slow-phase, showed a rate for both 

PGK-tc and GFP-tc that ranged from about .1 to .4 s—substantially faster than the expected folding 

rate for PGK-tc. Figure 53 shows the temperature dependence of this rate for both PGK-tc and 

GFP-tc, the latter of which should show no folding kinetics under the temperature ranges studied 

here. The fast phase rate and trend with temperature is nearly identical, within error, between PGK-

tc and GFP-tc, suggesting that this phase does not correspond to a structural transition. Rather, it is 

more likely that it may arise from differential instantaneous temperature responses of the GFP and 

ReAsH fluorophores—such phases have been observed for GFP and mCherry (see chapter 5, 

methods).  

 
Figure 53 Temperature dependence of the observed fast phase folding time for PGK-tc and GFP-tc in vitro. For each 
trace, 2 (for PGK-tc) or 3 (for GFP-tc) individual experiments of the temperature dependence of the thermodynamics 
were averaged together. The uncertainties in both temperature and observed folding rate are the standard error from this 
average.  
  
 Interpretation of the kinetic and thermodynamic data for the FRET-probed transition 

remains challenging due to the bleaching of ReAsH, particularly in the case for cells where at higher 

temperatures the intensity of the ReAsH is extremely low due to a combination of temperature-

dependent intensity loss and photo-bleaching. The small kinetic phases observed in the GFP-tc 

construct also suggest that bleaching artifacts may be convoluted with the kinetic signal of PGK-tc. 
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As will be discussed in section 6.3.4, the sensitivity of the ReAsH dye alone to the overall fold of 

PGK-tc likely also provides an additional convoluting factor into the FRET-probed kinetic and 

thermodynamic signal. Ignoring these confounding factors, however, PGK-tc shows similar 

thermodynamic characteristics both in vitro and in cells to the GFP/mCherry labeled PGK, 

providing evidence that the FRET-probed transition is indeed capturing folding behavior and not 

bleaching artifacts. Kinetically, folding of the PGK-tc construct is faster than the GFP/mCherry 

labeled PGK, which is not surprising given the small size of ReAsH compared to mCherry.  

 

6.3.4 Direct excitation of ReAsH reports on PGK-tc folding ReAsH can also report on the 

folding of PGK-tc through an alternative, non-FRET based mechanism. Under direct excitation 

ReAsH fluorescence emission changes as a function of temperature, showing a trend that cannot be 

explained by simple temperature dependence of the fluorophore.  

 Figure 54a shows the thermodynamics as measured by the average red intensity on the 

fluorimeter. Steep folded and unfolded baselines are observed with a flattened region around PGK-

tc’s melting temperature, which fits to a two-state model with a melting temperature of 314 K. Melts 

of GFP-tc under amber excitation, while exhibiting a decreasing intensity, do not show the same 

thermodynamic features as PGK-tc (figure 54a). The average intensity before the jump at each 

temperature of in vitro PGK-tc on the live cell microscope (figure 54b), shows a similar shape to the 

fluorimeter measurements. Although GFP-tc and the tc-peptide red intensities do not show the 

same nearly linear temperature dependence on the live cell microscope as observed  in the 

fluorimeter, their overall intensity loss is significantly less than PGK-tc.  

 Kinetic measurements on the live-cell microscope under amber excitation were used to 

extract the thermodynamic fitting parameters (figure 54d), as in the previous section for the FRET-

probed structural transition, and the kinetics of the folding transition. Temperature-jump 

experiments yielded negative-phase (or, an increase in intensity) kinetics, which were fit to a single 

exponential. A small, fast positive phase was also observed in the kinetics (figure 75) that was too 

small and fast to fit reliably over all temperatures. The melting temperature from the 

thermodynamics from kinetics fit was 313 ± 2 K, slightly lower than the fluorimeter measurement 

and the FRET-probed thermodynamics. The temperature dependence of the observed folding rate 

was relatively flat (figure 54c), consistent with measurements for the GFP/mCherry labeled PGK168, 

although the observed folding rate of 1.3 ± .1 s was somewhat faster than expected for PGK79.  
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Figure 54 Thermodynamics and kinetics of PGK-tc unfolding monitored on the fluorimeter and live-cell microscope by 
direct excitation of the ReAsH label. a) Average red intensity at each temperature on the fluorimeter. Flat region from 
~310 K to 315 K is the folding transition which fits to a melting temperature of 314K. GFP-tc shows no evidence of 
unfolding over the measured temperature range. b) Average, normalized red intensity before the temperature-jump 
experiment (analogous measurement to the fluorimeter experiments) on the live-cell microscope. Slight curvature of the 
folded and unfolded baselines makes fitting thermodynamics challenging. GFP-tc and the tc-peptide show significantly 
less intensity change over the melt than PGK-tc. c) Fitted folding times for PGK-tc on the live-cell microscope. d) 
Average, normalized, red intensity after the temperature-jump experiment with thermodynamics from kinetics fit. In this 
case, the intensity is normalized by the intensity before the jump.  
 

 Because the folding kinetics are relatively low amplitude, GFP-tc was used as a control to 

ensure that the observed kinetics were not an artifact. Figure 75 shows T-jump experiments of the 

two proteins at room temperature, where no kinetics should be observed, and 40 °C, where the 

maximum amplitude kinetics occur for PGK-tc. GFP-tc shows no sign of any kinetics (on the fast 

or slow time-scale), suggesting that the observed kinetics, both the fast and slow phase, for PGK-tc 

reflect PGK’s unfolding structural transition.  

 The sensitivity of the directly excited ReAsH dye to the overall fold of PGK is not wholly 

unexpected, considering previous work that used an internally placed FlAsH dye to monitor the 

folding of a protein154. In that work, FlAsH gained fluorescence through a mechanism that was not 

completely understood when the protein unfolded, and the dye appeared to report on both local and 

global unfolding. A comparable sensitivity of FlAsH to the protein fold was also noted for a repeat 
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protein204. It is conceivable that FlAsH or ReAsH fluorescence is affected by loss of proximity to 

quenching amino acid residues or by changes in the stiffness of the protein backbone when proteins 

unfold, although this effect is likely to be dependent on the protein studied and the placement of the 

tetra-cysteine recognition sequence. In the case of PGK-tc, it is not clear exactly which kind of 

structural transition the ReAsH probe is reporting on or through which mechanism the ReAsH 

fluorescence changes upon unfolding. The Tm is somewhat lower than the FRET-probed transition. 

 

6.4 CONCLUSIONS 

 Although ReAsH’s small size and cell-permeability make it an appealing fluorophore for 

intracellular folding measurements and other quantitative microscopy applications, the work 

presented here emphasizes that care must be taken to ensure that the ReAsH’s poor photostability 

does not produce misleading artifacts in the data. Of particular challenge are FRET-based 

measurements where the change in energy transfer efficiency is correlated to the change in distance 

between the donor and acceptor. When ReAsH is the acceptor, the cross talk between the donor 

and acceptor as the ReAsH bleaches can lead to misleading signals that mimic the expected signal 

for increased distance between fluorophores. Within the cell, where ReAsH has its greatest utility, 

the situation becomes even more challenging as there is a much smaller reservoir of ReAsH labeled 

proteins to replace those that are inactivated by photobleaching. However, in this chapter, we used 

three constructs—PGK-tc, GFP-tc, and the tc-peptide—to characterize the GFP/ReAsH FRET 

pair and found that, with proper control constructs and data analysis, a GFP/ReAsH construct can 

reliably report on protein folding thermodynamics and kinetics both in vitro and in cells.  

 We also found that direct excitation of ReAsH yields information on protein structure 

through changes in emitted red fluorescence intensity as the surrounding protein environment 

fluctuates in its flexibility. This avenue of direct excitation is particularly appealing because it can 

evade some of the potential pitfalls of phototoxicity observed in the FRET-based system. In order 

to develop directly excited tetra-arsenic dyes as a method to detect protein folding two future 

experiments are proposed:   

 

(1) Development and characterization of FlAsH labeled PGK While PGK-tc labeled with ReAsH 

showed promise in vitro, in cell measurements were very challenging due to the poor 

photophysics of ReAsH. Switching to FlAsH will likely ameliorate many of the intensity 

issues and enable measurement of PGK folding in cells with just a single, small reporter tag.  
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(2) Modulation of the placement of the tetracysteine tag Placement of the ReAsH at an alternate 

termini or internally may probe local structural transitions of PGK. The ability to probe how 

the intracellular environment affects different regions of a protein of interest, both 

thermodynamically and kinetically, is unprecedented and would be a valuable addition to the 

in-cell fluorescence tool-box.   

  

With the possibility of use as both a FRET-based reporter or a single, directly excited fluorophore 

FlAsH and ReAsH have great utility as quantitative fluorescence reporters in living cells. Although 

photo-bleaching must be carefully considered, this chapter presents a general strategy to avoid 

introduction of bleaching artifacts into quantitative data and gives specific insight in how 

GFP/ReAsH can be used to effectively quantify protein structural changes in living cells. As 

advances in fluorescence microscopy bring even more attention to studying the details of protein-

protein interactions and protein folding in the intracellular environment, FlAsH and ReAsH are 

excellent candidates for quantitative measurements.  
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CHAPTER 7 
DEVELOPING CONSTRUCTS TO MEASURE p53 FOLDING INSIDE 

LIVING CELLS 
 

7.1 INTRODUCTION 

7.1.1 p53, “Guardian of the Genome” p53 is a tetrameric transcription factor essential for 

regulation of the anti-tumor response of cells205. Underscoring its importance, p53 has two paralogs 

in vertebrates—p64 and p73—and p53-like proteins are found across many inverterbates206. Often 

called the “Guardian of the Genome” for its role as a tumor suppressor, p53 is mutated in 50% of 

cancerous tumors and is the most frequent genetic anomaly associated with cancer205.   

 Figure 55 shows a very simplified schematic of p53 function and regulation. In response to 

stress such as hypoxia or signs of DNA damage, p53 is activated by a complex pathway of regulatory 

enzymes through phosphorylation or other post-translational modifications of its largely 

unstructured C-terminal domain and through regulatory protein binding to the N-terminal domain. 

Upon activation, p53 translocates into the nucleus where it acts as a transcription factor to 

upregulate the genes for apoptosis, cell cycle arrest, anti-angiogenesis, DNA repair, and others 

related to tumor-suppression. It also upregulates MDM4/MDM2, its primary negative regulators, 

constituting a feedback loop that eventually leads to reduction in its activity. Although the core 

function of p53 is understood, its regulation and ability to facilitate a wide and extremely 

sophisticated range of tumor-suppressor activities, depending on the exact stress and cellular 

conditions, remains an area of active research207.  

 

 
Figure 55 Basic biology of the p53 stress response showing p53 regulation and target gene categories.  
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 p53 also has a role outside of the tumor response that is not necessarily that of a 

transcription factor. The spindle-check point, or the point at mitosis where cells decide whether 

proper chromosome segregation has occurred before cell-division, is p53 dependent, which suggests 

that p53 plays a role in ensuring that DNA is faithfully divided between two daughter cells208.  In 

more recent work, p53 has been shown to localize near the Chromosome Passenger Complex 

(CPC), a protein complex that corrects faulty chromosome-mitotic spindle interactions209. Together, 

this evidence suggests that p53 may exhibit non-transcription factor activity during cell division.   

 

7.1.2 p53 intracellular localization The mechanisms controlling the localization of p53 are 

complex but are thought to rely on a combination of post-translational modification and p53’s 

nuclear localization and export signals, which lie in the C-terminal domain210. For example, in one 

localization mechanism, p53 is ubiquitinated by its negative regulator, MDM2, which leads to 

unmasking of the nuclear export signal and active transport out of the nucleus211.  

 Generally speaking, p53’s localization closely mimics its function. In cells with low stress, 

p53 is located relatively evenly between the cytoplasm and nucleus212. However, in response to stress 

signals, p53 localization skews towards the nucleus where it can act as a transcription factor. In some 

cell-lines, such as fibroblasts, p53 localization is strictly regulated by the cell cycle, and p53 is located 

in the nucleus (or nuclear region) from S phase, or DNA-synthesis, through mitosis213 where it 

serves a non-transcription-factor role209. 

  

7.1.3 Structural biology of p53 p53’s structure can be roughly divided into 3 domains: an N-

terminal “transactivation domain”, the core DNA-binding domain, and the C-terminal domain. The 

transactivation domain is largely unstructured, gaining helical structure only when bound to 

regulatory proteins205, and is largely responsible for p53’s response to regulatory signals. The C-

terminal domain is also mostly unstructured and contains nuclear export and import signals as well 

as the tetramerization domain.  

 The core of p53 is folded and consists of residues 94 to 312. It was first crystallized in 

1994214 and its DNA binding is mediated by its immunoglobulin-like beta-sandwich fold, stabilized 

by a coordinated zinc ion205. The vast majority of cancer mutations occur in this domain either 

leading to thermodynamic destabilization of the fold or disruption of the DNA-binding surface205.  
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 The first observation that fold stability underlies some cancer-causing p53 mutations was the 

discovery of the “temperature-sensitive” p53 mutants, which regain their function and native 

localization only when cells are incubated at lower temperatures215-217. Since then, the folding 

thermodynamics of the wild-type p53 as well as many thermodynamically destabilized cancer causing 

mutations have been assayed.  Generally speaking, p53 unfolds irreversibly upon temperature 

denaturation but reversibly with urea denaturation218, although the temperature-probed 

thermodynamics closely match those measured via urea219. As might be expected, the temperature-

dependent aggregation of p53 is more severe for many of the highly destabilized mutants219. 

Interestingly, the folding thermodynamics of the core domain consisting of residues 94 to 312 are 

nearly identical to that of the full length protein218, making the core a useful probe for p53’s folding 

trends as whole.   

 A few common cancer-causing mutations and an engineered super-stable p53 variant are 

categorized in table 8 with their thermodynamic melting temperatures. Generally speaking, 

mutations in the DNA binding domain—such as R249S, G245S, and R273H —have a relatively low 

impact on the overall stability of p53 and inhibit p53 activity by reducing the protein’s ability to bind 

DNA as a transcription factor. Those mutations that occur in the beta sandwich region (I195T and 

V143A), however, are generally highly destabilizing and abolish p53 activity by reducing the amount 

of folded protein available in the cell at physiological temperature.  

 

Mutation Type of mutant Tm (°C) 
p53C218,219 Wild type core domain 44 
M133L/V203A/N239Y/N268D220,221 Engineered for stability 49 
I195T219 Beta sandwich, highly destabilizing ~38* 
V143A219,220 Beta Sandwich, highly destabilizing ~36* 
R249S219,220 DNA binding domain, mildly 

destabilizing 
40* 

G245S220 DNA binding domain, mildly 
destabilizing 

42* 

R273H220 DNA contact mutation, no 
destabilization 

44* 

Table 8 Thermodynamic stability of various p53 mutants. p53C is the wild type core domain. All mutants listed are 
core-domain mutants. In some cases (indicated with a *), melting temperature was extrapolated based on the measured 
free energy difference between p53C WT and the mutant. Citations to thermodynamic data are in the “mutation” 
column.  
 

7.1.4 p53 is an excellent candidate to test the relationship between fold stability and function 

Considering previous work that has shown that protein folding stability can vary across a cellular 

process such as the cell-cycle222, it is interesting to ask the question of whether protein fold stability 
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may correlate with functional activity. For example, if a protein is highly active in one phase of the 

cell cycle but inhibited in another, could its thermodynamic stability echo that activity? Such 

correlation of thermodynamic stability with function could constitute another level of protein 

regulation where the copy number of viable protein is not just controlled by transcriptional and post 

translational regulation but also by the number of folded, and thus potentially active, protein 

molecules present within the cell. 

 p53 has a number of characteristics that make it a promising candidate for testing this 

hypothesis. First, p53 is known to be thermodynamically unstable and its melting temperature across 

several organisms tracks with physiological temperature206.  This suggests that p53 may have evolved 

to have a certain degree of thermodynamic stability that is essential to its function and regulation. 

With a melting temperature close to physiological temperature, p53 is poised at the point where 

slight perturbations in the cellular environment could have a significant impact on the amount of 

folded protein in the cell. Second, p53’s activity is coupled to the cell-cycle—a process controlled in 

time—and to its subcellular localization. Based on its expected biological activity, table 9 shows a set 

of hypotheses for how thermodynamic stability would vary across time and cellular location if fold 

stability were positively correlated to activity level.  

 

 Nucleus Cytoplasm 
Mitosis n/a More stable 
Interphase More stable Less stable 

Table 9 Hypothesis for thermodynamic stability by location and cell cycle phase correlating with p53’s intracellular 
activity level. In this hypothesis, p53 would be more thermodynamically stable at the times and intracellular locations 
where it is biologically active.   
 
 Although there have been a few efforts to measure p53 thermodynamic stability in cells 

using the amount of expressed protein as a proxy for thermodynamic stability223,224, there have been 

no direct measurements of folding thermodynamics of the protein in living cells. This chapter 

summarizes efforts to develop p53 FRET constructs that can be used to measure p53 

thermodynamic stability in living cells, ultimately with the goal of testing the hypothesis shown in 

table 9. Two constructs that track folding via FRET are explored: one using ReAsH as the acceptor 

and GFP as the donor and another using mCherry as the acceptor and GFP as the donor. We find 

that the best fluorophore pair to pursue in future experiments is GFP/mCherry, which avoids 

excessive aggregation of the protein in living cells.   

 

 



	
   104	
  

7.2 METHODS 

7.2.1 Construct design p53 constructs were designed with a variety of fluorophores and expression 

tags and are summarized in table 10. The core domain of human p53 (not including residues 305-

312, which overlap with the nuclear localization signal), residues 94-304, was sandwiched between 

acGFP1 on the N-terminus and either the tetracysteine recognition sequence199 or mCherry on the 

C-terminus. The core domain was chosen because its folding thermodynamics are nearly identical to 

the folding thermodynamics of the full length protein218, and removal of the nuclear localization 

domains, regulatory protein binding domains, and tetramerization domain ensures that the construct 

will probe only folding in living cells rather than higher order processes. GFP was chosen as the N-

terminal fluorescent protein because GFP-p53 fusion constructs retain their function and native 

localization225. A construct with a Glutathione S Transferase (GST) protein before the GFP to aid in 

purification was also synthesized. All constructs were cloned into pDream (GenScript) for dual 

expression in bacterial and mammalian cells.  

 

Construct Fluorescent label Purpose 
GFP-p53-tc GFP/ReAsH Wild-type p53  
GFP-p53*-tc GFP/ReAsH Destabilized p53 V143A mutant  
GST-GFP-p53-tc GFP/ReAsH GST tag for improved expression 
GFP-p53-mCherry GFP/mCherry Wild-type p53, ReAsH alternative 

Table 10 Table of p53 constructs showing their nomenclature, FRET pairs, and experimental purpose.  
  

 In the construct design, we considered whether the termini of the p53 core domain were 

close enough that energy transfer could occur between acGFP1 and ReAsH (figure 56). The end to 

end distance between the N and C termini of p53 was estimated by the crystal structure of the p53 

core domain226. The distance between residues 96 and 291 is 3.3 nm, leaving 15 residues in our 

construct that did not crystallize in the structure. Assuming these residues are entirely random coil, 

the end to end distance between fluorophores of the folded state would be about 6.5 nm. We 

calculated the Forster distance for acGFP1 and ReAsH as ~6-7 nm, so in the worst case scenario—

assuming random coil structure in the uncrystallized amino acids—the folded state should show 

50% FRET efficiency.  

 With these constructs, we use the donor to acceptor ratio as a proxy for end-to-end distance 

between the termini of the protein. Unfolded proteins have a high donor to acceptor ratio (D/A), as 

the tags are further apart, while folded proteins have a lower D/A reflecting the proximity of the 

two termini. Aggregated proteins are expected to have an even lower D/A as intermolecular FRET 
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between aggregated protein molecules bring fluorophores closer together than the intramolecular 

interaction in the folded state.  

 

 
Figure 56 p53 structure showing dye placement. Red indicates C-terminus and green indicates N-terminus. Distance 
between termini in crystal structure is 3.3 nm. Crystal structure is from ref226 and figure was prepared using VMD. 
 

7.2.2 Protein purification We attempted to express and purify p53 (see section 7.3), using the 

protocol of Mayer et al223 with slight pH and purification strategy modifications due to the altered 

isoelectric point of the fusion construct compared to the core domain of p53. Briefly, cells 

transformed with GFP-p53-tc were grown in BL21 DE3 RIPL cells to an OD600 of .6 in 2xTY 

before induction with 1M IPTG in the presence of 100 μM zinc sulfate (a folding co-factor). Cells 

were spun down and lysed via sonication in a buffer of 50 mM Tris HCl (pH 7.64) and 5 mM DTT. 

Purification was carried out via FPLC over an anion exchange column (HiTrap Q FF, GE), and the 

protein eluted via a gradient of NaCl. Further purification was attempted via affinity 

chromatography using a heparin column (GE).  

 We also attempted to express GST-GFP-p53-tc, although also unsuccessfully. Cells were 

grown in the same way as GFP-p53-tc, spun down, and lysed via sonication in a buffer of 10 mM 

sodium phosphate pH 7.64 and 5 mM DTT. Purification was carried out via FPLC over a reduced 

glutathione column (GSTtrap, GE) and the protein eluted by a single step gradient of reduced 

glutathione.  

  

7.2.3 Live cell imaging and data analysis Live cell imaging thermodynamics experiments were 

carried out by slow resistive heating, as described in Appendix E. Briefly, U2OS cells were 

transfected with GFP-p53-tc, GFP-p53*-tc, or GFP-p53-mCherry DNA at a concentration of 2 µg 
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/10 mL culture. Incubation times were 24 hours for the tetracysteine constructs and 16-26 hours for 

the GFP/mCherry construct. For the tetra-cysteine constructs, cells were stained with ReAsH dye as 

described in Chapter 6.2. Slides were prepared as described in Appendix E, and cells were imaged 

under blue excitation with green and red emission collected simultaneously.  

 At each temperature, a 2 second video at 24 fps was taken. The green and red intensity vs. 

time was corrected for bleaching by subtraction of the linear baseline, and the average intensity used 

to calculate the ratio of donor (green fluorescence) to acceptor (red fluorescence) at each 

temperature. The thermodynamics were fit to a two-state thermodynamic model as described in 

Appendix E.  

 

7.3 RESULTS AND DISCUSSION  

7.3.1 GFP-p53-tc does not fold in bacteria Despite many different expression strategies 

attempted, we were unable to obtain folded GFP-p53-tc from bacteria. GFP-p53-tc was first 

expressed using the protocols of Mayer et al223, which yielded expressed protein (figure 57) that 

purified with two cleavage products. The small amount of full length protein obtained was not 

folded as evidenced by the lack of GFP absorbance/fluorescence, which is known to decrease in 

fusion proteins when the protein of interest is unfolded227. Despite varying induction conditions 

including the concentration of IPTG, the induction temperature, the concentration of ZnSO4, and 

induction times, we obtained no folded full-length protein. Multiple E. coli cell lines including BL21 

DE3 PlyS (Agilent), BL21 DE3 RIPL (Agilent), and C41 (Lucigern) were also tested with no 

obvious improvement. A GST-tagged construct also did not produce folded protein.  

 Considering that GFP-p53 expression has been reported in the literature223, it is likely that 

the addition of the tetra-cysteine tag caused aggregation. The core domain of p53 has 10 cysteines, 

so it is possible that the tetracysteine tag interfered with folding by making non-productive disulfide 

bonds with p53. The core domain of p53 is also a relatively unstable protein with a melting 

temperature of around 44 °C. We have observed that the addition of large fluorophore tags can 

often destabilize the overall protein fold and lead to a few degrees lower melting temperature 

(unpublished data). It is possible that the addition of the GFP tag made the construct too 

destabilized to fold effectively in bacteria, even under reduced temperature induction conditions.  
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Figure 57 SDS-page gel showing a fraction from the anion exchange column containing recombinantly expressed GFP-
p53-tc. In addition to the full length protein, two cleavage products are evident: GFP and p53-tc. Markers in rightmost 
lane are molecular weight standards with labels in kDa. Gel is 10% acrylamide run under reducing conditions and stained 
with Coomassie Brilliant Blue.  
 

7.3.2 Optimization of GFP-p53-tc expression in mammalian cells Despite the challenges of 

expressing GFP-p53-tc in bacteria, the construct expressed in mammalian U2OS cells. A variety of 

DNA transfection amounts and overall DNA-incubation times were tested to find the best 

expression conditions (figure 58). With too much DNA, large inclusion bodies formed in the nuclei 

of the cell suggesting that when protein concentration in the cell is very high, aggregation occurs. 

With too short of a DNA incubation time, fluorescence was generally dim with smaller inclusion 

bodies of aggregated protein spread throughout the cytoplasm. After 24 hours incubation, uniform 

fluorescence was observed for most cells, although it was noted that ~10% of cells showed obvious 

signs of aggregation (which is higher than what is  typically observed for other proteins such as 

PGK-tc). GFP-p53*-tc also expressed in mammalian cells, although with significantly more 

aggregation present—approximately 50% of cells showed signs of aggregation under the least 

aggregation-promoting conditions tested.  

 It is not clear why shorter incubation times with DNA yielded poor fluorescence and 

inclusion bodies. As a comparison, GFP-p53-mCherry showed uniform cell fluorescence at just 16  

hours of incubation with DNA, suggesting that the issues with GFP-p53-tc aggregation arise from 

the tetracysteine tag rather than from intrinsic properties of p53 itself. It is conceivable that upon 

initial expression GFP-p53-tc aggregates, but the mammalian chaperones are able to rectify most of 

the aggregation after sufficient incubation times. This could also explain why GFP-p53-tc does not 

express in bacterial cells, which have fewer folding chaperones than mammalian cells.  
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Figure 58 Green-channel images of U2OS cells expressing GFP-p53-tc with varying DNA incubation times and 
amounts of transfected DNA. At relatively short incubation times, cells are generally dim and show many inclusion 
bodies. With greater than 2 µg DNA transfected and long incubation times, large and very bright inclusion bodies are 
evident in many cells. At 24 hours incubation with 2 µg DNA, the most uniformly fluorescent cells are observed.  
 

7.3.3 Folding monitored by ReAsH p53 folding thermodynamics were measured in living U2OS 

cells for the wild-type, GFP-p53-tc, and the V143A destabilized mutant, GFP-p53*-tc. Of many 

cells measured, only two wild-type and one mutant showed sufficient intensity and lack of visible 

signs of aggregation to assay folding thermodynamics (figure 59a). From this limited sample size, the 

wild type gives an average melting temperature of 39 °C, which is 5 degrees lower than in vitro 

measurements of the core-domain alone219. By the end of the melt, cells showed visible signs of 

aggregation, as is expected for p53 which aggregates at high temperatures218. However, in vitro 

experiments have shown that even though temperature-probed thermodynamics of p53 are not 

reversible, their results are comparable to reversible thermodynamic measurements219. 

 The V143A mutant, which in vitro melts at around 38 °C219, shows a higher melting 

temperature than the WT and the in vitro construct—an unexpected result. This is likely due to the 

tendency of GFP-p53*-tc to aggregate in cells. Even at low temperatures, many cells showed visible 

signs of aggregation and, even the few cells that lacked visible inclusion bodies had extremely low 

initial D/A ratios, a signature of aggregation. Of the cells tested, only one (figure 59a) showed a 
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thermodynamic transition, which was far more stable than expected, a result that is consistent with 

the thermodynamics monitoring disaggregation of inclusion bodies rather than a folding transition.  

 

 
Figure 59 ReAsH probed thermodynamics of GFP-p53-tc and GFP-p53*-tc in living cells a) Temperature dependence 
of the D/A ratio for GFP-p53-tc (black) and GFP-p53*-tc (blue) with two-state thermodynamic fits. D/A is 
proportional to the FRET ratio: high D/A means the fluorophores are far apart and low D/A means the fluorophores 
are close together. GFP-p53*-tc’s high melting temperature and low initial D/A ratio suggest that aggregation may be 
occurring. b) Temperature dependence of red fluorescence intensity of a cell expressing GFP-p53-tc and an adjacent cell 
showing only ReAsH background. The cell with only ReAsH background shows a similar temperature dependence to 
the cell with p53 suggesting that cells showing background may be expressing p53 with a non-fluorescent GFP 
fluorophore.  
 

 Considering the visible signs of aggregation of the V143A mutant and even the WT p53, it 

appears that the tetracysteine tag may be interfering with the measurement of folding 

thermodynamics. Compounding this problem is the behavior of the background fluorescence of 

cells. Figure 59b displays the red intensity of a cell that shows both red and green fluorescence under 

blue excitation—i.e. one that has been transfected with GFP-p53-tc and has had the GFP 

fluorophore form—and another that shows only red fluorescence. The red fluorescence only cell 

should show only a slight monotonic increase in intensity, which is the behavior of the ReAsH 

background under blue excitation (figure 50). However, it shows a nearly identical profile to the 

folding thermodynamics with a sharp drop in intensity at about the melting temperature of the GFP-

p53-tc in cells. It is unclear exactly what causes this unusual background fluorescence, but it is 

possible that only a minority of cells are able to express a fully folded p53 with a fluorescent GFP 

and that many cells contain GFP-p53-tc in a partially folded, partially aggregated, or unfolded state. 

This problematic result lead us to see if an alternative, non-tetracysteine construct may provide more 

easily interpreted fluorescence results.  



	
   110	
  

7.3.4 Folding of GFP-p53-mCherry in mammalian cells With the issues of aggregation noted for 

GFP-p53-tc, a non-tetracysteine construct was also tested where the tetracysteine binding site was 

replaced with mCherry. The construct expressed more readily in mammalian cells with fewer visible 

signs of aggregation than the GFP-p53-tc. After 16-24 hours incubation with DNA, cells showed 

uniform fluorescence throughout the cytoplasm—comparable to other proteins whose folding has 

been assayed in living cells like GFP/mCherry labeled PGK222. However, by the end of the 

thermodynamic titrations all cells showed visible signs of aggregation, consistent with the known 

unfolding behavior of p53 in vitro.  

 GFP-p53-mCherry did not yield reproducible thermodynamics that could be fit to an 

unfolding model. The temperature dependence of the donor to acceptor ratio for the 19 cells that 

were assayed showed four general trends: 1) obvious aggregation at the approximate melting 

temperature of the construct characterized by a sharp decrease in the D/A ratio, 2) clear unfolding 

at the approximate melting temperature of the construct characterized by a sharp increase in the 

D/A ratio, 3) a combination of unfolding and aggregation, or 4) no trend (essentially a flat donor to 

acceptor ratio over the temperatures measured). Figure 60a shows the thermodynamics of unfolding 

for three cells, each a representative example of the first three trends observed in experiments. The 

vast majority of cells showed only very weak thermodynamics with some signs of aggregation (10 of 

14 cells measured). Whether thermodynamics, aggregation, or a combination of the two behaviors 

was observed in any given cell did not correlate with cell brightness ( a rough proxy for the amount 

of protein expressed in the cell), starting donor to acceptor ratio, the amount of time between DNA 

transfection and imaging, or the amount of DNA added. Figure 60b summarizes the measured 

thermodynamics for all assayed cells.  
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Figure 60 GFP-p53-mCherry in living cells. a) Representative cells for the three types of unfolding thermodynamics of 
GFP-p53-mCherry observed in living cells. Increasing D/A ratio indicates unfolding while decreasing D/A ratio 
indicates aggregation. b) Temperature dependence of the donor to acceptor ratio of all measured cells. Traces are 
colored by the day the data was taken (same color = same day). Line character and marker indicates cells that were from 
the same coverslip (same line character = same coverslip, different marker = different cells from same coverslip). 
Legend indicates time between DNA transfection and imaging for each cell.  

 

7.4 CONCLUSIONS AND PROSPECTS 

 It is clear that the biggest hurdle to measurement of p53 folding in living cells, and 

comparing those results to comparable in vitro experiments, is p53’s tendency to aggregate. Although 

a ReAsH labeled construct is appealing due to its small size compared to GFP/mCherry constructs 

and shows some promise in its ability to measure folding thermodynamics, the four cysteines within 

the tag appear to lead to an even stronger tendency to aggregate than p53 already possesses 

intrinsically—generally speaking, it may be that the tetracysteine label may be incompatible with 

aggregation prone or cysteine-rich proteins. It is unlikely that a tetracysteine labeled p53 construct 

can be expressed in bacteria, and without an in vitro construct to provide thermodynamic and kinetic 

behavior baselines, it is difficult to tease out exactly what kinds of structural transitions the in cell 

experiments are measuring. Furthermore, although aggregation is slightly better in U2OS cells than 

in bacteria, the tetracysteine labeled construct shows too many visible signs of inclusion body 

formation even at room temperature to be a reliable indicator in cells. Finally, when the difficult to 

interpret in cell thermodynamics are paired with ReAsH’s tendency to give misleading results due to 

photobleaching (see Chapter 6), it is difficult to imagine a scenario where in cell results with this 

construct could be trusted enough to draw strong conclusions.  

 The GFP/mCherry labeled p53 shows somewhat more promise, at least in terms of 

aggregation tendencies, than the ReAsH labeled version and the well-characterized FRET pair 
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makes result interpretation somewhat more straightforward. However, the construct did not yield 

reproducible or fittable unfolding thermodynamics. The inability of this construct to report 

thermodynamics likely arises from two factors. First, because wild-type p53 folds on a minutes time-

scale228 at physiological temperatures and even slower at room temperature, the amount of time of 

equilibration necessary at each temperature to reach thermodynamic equilibrium may exceed what is 

experimentally feasible. The lack of or very low amplitude thermodynamics of folding observed are 

consistent with a scenario where the system had not fully equilibrated at each temperature. Second, 

the p53 core domain has a handful of amino acids at either termini that are unstructured in the 

crystal structure226 which increases the separation between the two fluorophores. Although the 

termini should be close enough together to give 50% FRET efficiency in the folded state even with 

the unstructured residues (and, the low initial D/A ratios suggest that at least this FRET efficiency is 

achieved), it is possible that with the addition of the fluorescent protein tags the termini are too far 

apart to give a robust change in FRET signal upon unfolding. If this were the case, any unfolding 

thermodynamics would be low amplitude and difficult to measure.  

 A more successful approach may be to use a faster folding p53C mutant and a truncated 

version of the core domain that has less separation between the termini. One promising mutant is 

the p53C*, which was studied in cells with the GFP/ReAsH pair. The p53C* (V143A mutant) 

destabilized p53 mutant folds faster than the wildtype228 and, although it heavily aggregated in cells 

with the tetracysteine label, may perform well with the less aggregation prone GFP/mCherry pair. 

Truncating the core domain to comprise residues 96 to 289, rather than 94 to 312, vastly decreases 

the separation between N and C termini and would give a >90% FRET efficiency of the folded 

state.  

 In summary, this chapter offers a hypothesis for p53’s folding trends in different locations of 

the cell as well as in different stages of the cell-cycle that mirror its biological functionality. From the 

characterization of GFP/ReAsH and GFP/mCherry labeled p53 constructs, we demonstrate that 

the ReAsH tags cause severe aggregation in cell and that the GFP/mCherry fluorophore pair shows 

much more promise. Furthermore, we offer a specific suggestion of a p53 mutant and core domain 

truncation that is a good candidate for a p53 construct that reliably reports on its fold inside living 

cells. With this construct, p53 may yet prove to be a useful protein to study the relationship between 

intracellular protein folding and biological activity level.  
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APPENDIXES AND REFERENCES 
 
 

APPENDIX A 
SUPPLEMENTARY INFORMATION FOR “COMPARING FAST 

PRESSURE-JUMP AND TEMPERATURE-JUMP PROTEIN FOLDING 
EXPERIMENTS AND SIMULATIONS”* 

 
A.1 SUPPLEMENTARY METHODS 

A.1.1 Molecular Dynamics Simulations Molecular dynamics simulations were performed in 
explicit solvent using the TIP3P water model54 and the CHARMM22* force field for protein.55 The 
CHARMM22* force field is a modified version of the widely used CHARMM22 force field with 
CMAP corrections.229-231 It has been employed successfully to simulate folding of a wide range of 
fast folding proteins with both α-helical and β-sheet native topology.24 The structure of the WW 
domain (FiP35 mutant, residues 4 to 38) from the protein data bank (PDB code 2F21)39 was placed 
in a cubic box of 10,232 water molecules and neutralized with 6 sodium ions and 9 chloride ions 
employing VMD.56 The simulated systems, including protein, water molecules, and ions, measured 
68.4 Å in each dimension at T = 325 K and P = 0.1 MPa and contained 31,273 atoms. All 
simulations were carried out with periodic boundary conditions in a constant particle number, 
temperature, and pressure ensemble (NPT). Starting from the native state of the protein, two types 
of simulations were performed: pressure-jump and temperature-jump. In both cases, the simulations 
started with 100 ns equilibrium simulation of the native state and ended with multi-microseconds 
refolding simulation, both at T = 325 K and P = 0.1 MPa. The temperature for ambient conditions, 
325 K, was chosen because it is well below FiP35’s melting temperature and directly comparable to 
previous P-jump simulations.28,35 The difference lies in the denaturing procedure which followed the 
100-ns equilibrium simulation. In a pressure-jump simulation, pressure was increased from 0.1 MPa 
to 900 MPa in 0.3 µs at a rate of 0.9 MPa/300 ps, followed by a 1-µs high-pressure equilibrium 
simulation (P = 900 MPa) and a pressure-drop simulation in which pressure was jumped downward 
from 900 MPa  to 0.1 MPa in 0.3 µs at a rate of -0.9 MPa/300 ps. The temperature was maintained 
at T = 325 K through the pressure-jump simulation. In a temperature-jump simulation, the pressure 
was maintained at P = 0.1 MPa throughout the simulation and the system was heated up to 400 K 
for 1 µs between the initial 100-ns equilibrium simulation and the final refolding simulation, both at 
T = 325 K. To generate multiple refolding trajectories, the pressure or temperature unfolded state 
was equilibrated for an additional 200 ns respectively, during which the structures were taken at t = 
0 ns, 100 ns, and 200 ns to continues the P-jump and T-jump simulations at ambient conditions.  
 
 
A.1.2 Molecular dynamics simulations using NAMD The simulation algorithm and features of 
the NAMD program are described previously.57 The systems to be simulated were first subjected to 
3000 steps of conjugate gradient minimization and equilibrated for 300 ps with harmonic restraints 
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  This appendix is adapted with permission from the supporting information for Anna J. Wirth, Yanxin Liu, Maxim 
Prigozhin, Klaus Schulten, and Martin Gruebele, Journal of the American Chemical Society, 137 (22), 7152-7159, 2015. 
Copyright 2015 American Chemical Society. YL performed all molecular dynamics simulations referenced in this 
appendix and generated the data shown in figures 66, 67, 68 and 69. MP provided instrumentation support to this 
publication. 	
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applied to all the heavy atoms of the protein. The simulation was then continued for 3 ns without 
restraints at a constant pressure of 0.1 MPa using Nosé -Hoover Langevin piston barostat and at a 
constant temperature of 325 K with Langevin damping constant of 5.0 ps-1 . In the subsequent 
simulations, constant temperature was maintained using Langevin dynamics with a damping 
constant of 1.0 ps-1 and multiple time stepping employed with an integration time step of 2.0 fs, 
short-range forces being evaluated every time step and long-range electrostatics evaluated every 
three time steps. All bonds involving hydrogen in the protein were constrained using RATTLE,232 
while the geometries of water molecules were maintained using SETTLE.233 
 Cutoff for short-range nonbonded interactions was 8.0 Å with shifting beginning at 7.0 Å; 
long-range electrostatics was calculated using the particle-mesh Ewald method.234 The cutoff was 
chosen to accelerate the simulation on general purpose supercomputers while maintaining a 
sufficient level of accuracy. Indeed, it is accurate enough to fold two fast folding proteins: villin 
headpiece235 and lambda repressor.236  
 
A.1.3 Molecular dynamics simulations on Anton The refolding simulations were carried out on 
the Anton platform.58,59 Multiple time stepping was employed, with an integration time step of 2.0 fs. 
The Multigrator integration procedure was employed.237 Short-range forces were evaluated every 
time step and long-range electrostatics every three time steps. Cutoff for the short-range nonbonded 
interactions was 14.18 Å, as recommended by the developers of the Anton machine at DE Shaw 
Research. Long-range electrostatics was calculated using the k-Gaussian Split Ewald method238 with 
a 32 × 32 × 32 grid to better suit the Anton machine. All bonds involving hydrogen atoms were 
constrained using SHAKE.239 

 
A.2 SUPPLEMENTARY TABLES 

 
Transition n Θ (µs) 

<k>U (µs)-1 

U ! F, temperature 2 33.8 0.0895 ± 0.052 
U ! F, pressure 3 33.5 0.119 ± 0.059 
U ! IL1, pressure 2 30.7 0.0978 ± 0.056 
U ! IL2, pressure 1 30.7 0.0652 ± 0.046 
IL1! F, pressure 2 0.940 3.19 ± 1.8 
IL2! F, pressure 1 1.88 1.06 ± 0.75 

Table 11 Rates from Bayesian analysis.  
 

Model τfast (µs) τslow (µs) %Afast %Iloop 1 

II: parallel transition states 1  671 2.4 x 10-10 0 
III: loop 2 intermediate 1 671 2.4 x 10-10 0 
IV: loop 1 intermediate 32.7 666 47 94 
V: two parallel intermediates 29.3 654 52 95 

Table 12 Simulation summary. Rates shown are from the double exponential fits to the signal functions that most 
closely match experiment for each model. Amplitude shown is percent of the fitted amplitude that corresponds to the 
fast phase. The percentage of the loop 1 intermediate refers to the composition of the signal function that best matched 
the experimental data where the percentage of the signal function corresponding to the native state is given by 100-
%Iloop 1.  
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A.3 SUPPLEMENTARY FIGURES 
 

 
Figure 61 Pressure-jump kinetics. Data is smoothed and each data point corresponds to 5 µs. Fits are double-
exponential. Gaps in the kinetic traces correspond to regions of high noise that were excluded from analysis, but each 
GuHCl concentration has one trace with no gaps.  
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Figure 62 Pressure thermodynamics reversibility. a) High GuHCl concentration unfolding traces (closed markers) 
expressed as the ratio of SVD2 to SVD1 with refolding traces (open markers). Only high concentration GuHCl traces 
are shown because significant unfolding occurred at these concentrations. b) Fluorescence spectra of the 5M GuHCl 
unfolding trace. First unfolding (dark blue) and last refolding (red) trace are highlighted for comparison. The small 
difference in intensity between red and blue traces is due to intensity fluctuations that occur from pressurization and 
depressurization of the cell. SVD2/SVD1 shows nearly complete reversibility because it reflects wavelength shift 
(intensity component is normalized out).  
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Figure 63 FiP35 reversibility at 300 µM a) Upwards (solid black line) and reverse (red line) pressure titration of 300µM 
FiP35 in 3M GuHCl plotted with a pressure titration of 100 µM FiP35  in 3M GuHCl (dashed black line). No 
concentration dependence of the thermodynamics are observed and the high concentration titration shows complete 
reversibility. b) Upwards (solid black lines) and reverse (red points) temperature titration of 300 µM FiP35 in 3M (circles) 
or 5M (squares) GuHCl plotted with corresponding temperature titrations at 10 µM FiP35 (dashed lines). No 
concentration dependence of the thermodynamics are observed at the low temperatures assayed in kinetics experiments, 
18 to 23 °C, and the high concentration titrations show complete reversibility.  
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Figure 64 Temperature-jump kinetics. Double-exponential fits are shown in red. Traces and fits shown are averages 
over all collected traces (50). Each data point corresponds to 1.25 µs. Only 3 ms of data were analyzed to avoid cooling 
effects at long timescales. A slow linear baseline corresponding to irreversible photobleaching has been removed from all 
traces.  
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Figure 65 Pressure-jump kinetics at 0 M GuHCl. Data is smoothed and each data point corresponds to 5 µs. The 
extremely small population of proteins undergoing transition makes the signal-to-noise ratio very low and only a single 
exponential phase can be fit with reasonable certainty. The red line represents a single-exponential fit with observed time 
constant of 29.5 ± 1 µs (error is fit uncertainty).  
 

 
Figure 66 Structural characterization of the FiP35 unfolding trajectories. Time is in µs. (a) Pressure-jump unfolding 
simulation. (b) Temperature-jump unfolding simulation. Cα-RMSD values have been calculated relative to the crystal 
structure 2F21.39 The pressure is shown as the color background, which varies from 1 bar (white) to 9 kbar (dark gray). 
Hairpin 1 contains residues 11 to 25 and hairpin 2 contains residues 22 to 33. The full length Cα-RMSD are calculated 
using residues 7 to 35. 
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Figure 67 Time evolution of the secondary structure throughout the unfolding trajectories. Time is in µs. (a) Pressure-
jump unfolding simulation. (b) Temperature-jump unfolding simulation. The secondary structure of the crystal structure 
is shown on the left. 

 

Figure 68  Time evolution of the secondary structure for the pressure-jump refolding. 
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Figure 69  Time evolution of the secondary structure for the temperature-jump refolding trajectories. Secondary 
structure is as defined in SI figure 9. 

 

 
 
Figure 70 Score (describing distance between simulated kinetics and experimental kinetics) of all tested signal functions 
for the two best kinetic models. A low score indicates a closer match to experimental data. Signal function is represented 
on x-axis by percentage of the signal function corresponding to the loop 1 intermediate.  
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APPENDIX B 
DONOR TO ACCEPTOR RATIO AS A REACTION COORDINATE FOR 

PROTEIN FOLDING IN LIVING CELLS* 
 

B.1 FRET EFFICIENCY AND PROTEIN FOLDING 
The Förster constant Ro describes the relationship between the FRET efficiency E and the 

end-to-end distance between the donor and acceptor fluorophores, r:  
 

 

   
E = 1

1+ r Ro( )6
= 1

1+ (D / A)
 

  
To the best of our knowledge, no Förster constant for a fluorophore pair has been measured in the 
cell due to the experimental difficulties of determining exactly a distance between a FRET pair in the 
crowded and complex cell environment. Indeed, it is likely that the measured in vitro Ro deviates 
somewhat from the Ro in cell. Consequently, an absolute end-to-end distance between PGK-FRET 
in the cell, folded or unfolded, is not determined from our data.  

To avoid using a distance measure that may be precise but not accurate, the FRET 
efficiency, or the donor to acceptor ratio, is used as a reaction coordinate, a detailed derivation of 
which for two state folding is treated in detail in earlier work165. Briefly, the FRET efficiency of an 
ensemble of entirely folded protein (such as one would expect at room temperature), Efold, is related 
to the end to end distance of the two FRET labels in the folded state. At high temperatures, when 
the protein is completely unfolded, the lower FRET efficiency, Edenatured, reflects the greater distance 
between the two FRET labels. The temperature dependent signal observed during a 
thermodynamics experiment can thus be described, assuming the two-state scenario, as: 

 

€ 

S(T) = f f (T)⋅ E fold + fd (T)⋅ Edenatured  
 

where ff(T) and fd(T) are the fraction of folded and unfolded protein, respectively. Although during a 
thermodynamics experiments an intermediate FRET efficiency between that of the folded and 
denatured state is observed at moderate temperatures, this does not correspond to an intermediate 
distance between the two fluorophores. Rather, it reflects the shifting fractions of folded and 
unfolded protein. Provided the two-state scenario remains true, only two populations of proteins 
exist throughout the entire experiment: one with an efficiency of Efold and the other with an 
efficiency of Edenatured.  

 
B.2 TEMPERATURE DEPENDENCE OF R0 

Although an accurate absolute r cannot be determined from our data, it is very instructive to 
see how R0 is affected by temperature and whether the relative changes in r come out to be 
reasonable based on our experimental data. Such an analysis can show that our main result in 
chapter 5 (relative changes in Tm between interphase and mitosis)  is robust irrespective of whether a 
D/A or a r analysis is used. Therefore we examined whether the temperature dependence of Ro 
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could significantly influence our results, which in the main text are not corrected for temperature 
dependence. The Förster constant is given by: 

 

€ 

Ro
6 =

Q(T)
(n(T))4

9ln(10)κ 2(T)J(T)
128π 5NA

 

 
where Q(T) is the donor quantum yield, n(T) is the refractive index of the medium, k(T) is the 
orientation factor, and J(T) is the overlap of the donor emission and acceptor excitation spectra.  
 J is given by: 
 

€ 

J =
F(v)ε(v)v −4dv∫

F(v)dv∫
 

 
Where F(v) is the donor emission spectrum, e(v) is the acceptor excitation spectrum (expressed as the 
frequency-dependent extinction coefficient) and v is the frequency. We measured the acGFP1 
emission spectrum and the mCherry excitation spectrum at two temperatures using recombinantly 
expressed acGFP1 and mCherry. Figure 71 shows the spectra, normalized for comparison. Over 10 
degrees, the overlap does not change significantly. Assuming the overlap changes linearly with 
respect to temperature, the overlap changes by only 0.046% per degree  and will thus will not be 
considered in the Forster constant temperature correction.  
 

 
Figure 71 Temperature dependence of acceptor excitation and donor emission spectra. Spectra are normalized for 
comparison.  

 
To correct for temperature effects in the donor quantum yield we used the following 

relationship: 
 

€ 

Q(T,°C) =Q0(1− X)
T −25  

 
where Qo is the initial donor quantum yield (0.82, from ClonTech) and X is the temperature 
dependence of the quantum yield (X=0.0095, fits our data such as in figure 2 of ref.153). The 
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temperature dependence of the refractive index of a cell was approximated by the temperature 
dependence of the refractive index of water:240 
 

€ 

η(T,°C)
η(20°C)

=
1.333+10−5[−8.376(T − 20) − .02644(T − 20)2 + 0.00479(T − 20)3]

1.333
 

 
The value of the non-temperature dependent portion of the Ro expression was obtained by using 

the published in vitro Ro value for EGFP and mCherry at 25 °C (5.1 nm), yielding:241 
 

€ 

Ro(T) =
Q(T)
(n(T))4

⋅ 676786  

 
To include the temperature dependence of the Ro in the thermodynamics calculations, the end to 
end distance between probes was expressed as a function of the donor to acceptor ratio D/A: 
 

€ 

r(T) =
D(T)
A(T)

6 ⋅ Ro(T) 

 
r(T) allows us to assess the effect of including temperature dependence in the Förster constant on 
our thermodynamics measurements but does not provide an accurate measure of the PGK-FRET 
end-to-end distance because it relies on the in vitro Ro value, rather than the unknown in-cell R0  
value. 

 
B.3 REACTION COORDINATE CHOICE FOR IN CELL DATA 

Expressing the thermodynamic data from Chapter 5 as r(T) instead of D/A(T) does not 
significantly change the overall results. Thermodynamic signal traces, S(T), for all interphase cells 
and all mitotic cells were averaged at each temperature and expressed as r(T), which includes 
corrections for temperature dependent effects in Ro, or donor to acceptor ratio, which includes no 
temperature dependent corrections and is the form of data used in the main paper. Figure 72 shows 
the plotted data and table 13 shows a comparison of the major thermodynamics parameters 
calculated for each of the two scenarios. Although the shape of the thermodynamic trace and the 
absolute value of the thermodynamic parameters change slightly, the relative difference between 
interphase and mitotic cells for all parameters remains essentially the same. The Tm difference 
between interphase and mitotic cells is -2.12 ± 0.34 °C in the temperature corrected data versus -
2.10 ± 0.52 °C in uncorrected data. Similarly, the difference between interphase and mitotic dg1 is 
479.1 ± 206.8 J mol-1 K-1 in the corrected data versus 522 ± 268 J mol-1 K-1.  Because the true 
temperature dependence of Ro in the cell has not been determined and the above correction involves 
several approximations, the data is better reported without temperature correction as it is in Chapter 
5. All conclusions about the system are drawn from relative differences in thermodynamic 
parameters between interphase and mitotic cells rather than absolute values, so changes in these 
values that may arise from temperature-dependent effects will not change the overall conclusions of 
the paper.  

Although the orientation factor is also likely temperature dependent, we assume an isotropic 
value for k2(t) of 2/3 at all temperatures. At lower temperatures increased cellular viscosity may lead 
to deviations from isotropic behavior, but such a temperature dependence has yet to be measured 
even for in vitro FRET experiments. This temperature dependence should be similar between mitotic 
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and interphase cells, so any error introduced into our calculations from this effect will, like the other 
temperature effects, only affect absolute values and not relative values of main interest here.  

 
 

 
Figure 72 Correcting thermodynamic data by the estimated temperature dependence of the Förster constant. a) Raw, 
uncorrected D/A ratio with corresponding two-state fits. b) Un-normalized temperature-dependence corrected data. 
The signal function is the product of the temperature dependent Forster constant and the 6th root of the D/A ratio and 
corresponds to the estimated inter probe distance. For both graphs, error bars are two standard deviations of the mean 
for the averaging of all cell fluorescence data. 

 
 
 Corrected, 

interphase 
Uncorrected, 
Interphase 

Corrected, 
Mitotic 

Uncorrected, 
Mitotic 

Tm (°K) 312.49 ± .07 311.84 ± .12 314.61 ± .27 313.94 ± .40 
dg1 (J mol-1 K-1) 1839.6 ± 62.8 1715.7 ± 104  1360.5 ± 144 1193.5 ± 164 
Table 13 Temperature corrected (r) vs. uncorrected (D/A) thermodynamic parameters. Although fitted thermodynamic 
quantities are slightly higher in the temperature corrected data, the difference between the mitotic and interphase 
populations is almost identical.  The values for the uncorrected data reported here deviate slightly from those in text 
because the in text values report the average of parameters from individual fits, while these values report the parameters 
of a single fit to averaged raw data. The three methods of analysis show that the differences between mitotic and 
interphase cells are robust to the detailed method of analysis used. 
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APPENDIX C 
SUPPLEMENTARY INFORMATION FOR “DEVELOPMENT OF THE 

GFP-REASH FRET PAIR TO STUDY PROTEIN FOLDING”* 
 

C.1 SUPPLEMENTARY FIGURES 

 

Figure 73 Red or green intensity vs. time under blue of in vitro protein samples on the live-cell microscope showing the 
effect of donor bleaching on acceptor fluorescence. Green channel intensity increases as a result of the significant 
bleaching of the ReAsH fluorophore, which reduces energy transfer. The slope of the green channel intensity is more 
positive for GFP-tc, which has a higher FRET efficiency than PGK-tc.   
 

 
Figure 74 Kinetic traces of PGK-tc (black) and GFP-tc (blue) under blue excitation on the live-cell microscope at 
temperatures close to the melting temperature of PGK-tc. GFP-tc shows no sign of kinetics indicating that the observed 
kinetics for PGK-tc do not arise from bleaching of the ReAsH fluorophore or some other artifact. In this case, the 
folding is probed via FRET and the increase in D-aA indicates that the two fluorophores have moved further apart (i.e. 
the protein is unfolding).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*	
  This work was done in equal collaboration with Hannah Gelman, and it is discussed half in this thesis and half in 
H.G.’s thesis. This work is partially reproduced from Gelman, Wirth, and Gruebele (in preparation). 	
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Figure 75 Selected kinetics traces of GFP-tc (blue) and PGK-tc (black) under amber (direct) excitation at room 
temperature and 40 °C where, for PGK-tc, the maximum folding amplitude occurs. Red intensity has been normalized 
to the starting point and adjusted to facilitate comparison of temperatures. GFP-tc shows no kinetics at either 
temperature while PGK-tc shows a robust folding amplitude close to its melting temperature. The increase in red 
intensity corresponds to PGK-tc unfolding and may arise from dequenching of the ReAsH fluorophore.  
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APPENDIX D 
PRESSURE-JUMP TROUBLE SHOOTING GUIDE 

 
D.1 PROBLEMS WITH ASSEMBLY AND PRESSURIZATION 

1) Slow pressure leak 
Easy fixes that don’t require taking apart everything: 
a) Assembly isn’t tightened enough. Try tightening everything: pressure generator to pressure 
fitting connection and the bolts on top of assembly. 
b) Valve that connects reservoir on pressure generator is not tightened enough. 
Fixes that require taking apart everything: 
a) O-ring on pressure fitting is corroded. Try replacing it.  
b) Sapphire cube is cracked. 
c) Assembly is not put together correctly.  
 

2) Sapphire cube is breaking very often 
 a) Make sure sample hole size on cube is less than the O-ring diameter 

b) Make sure that the non-conductive cylinder’s hole on the bottom does not have a 
chamfer 
c) Ensure that the assembly is properly lined up during assembly. Pressure fitting hole should 
be directly over the sample hole. If this is slightly off center there will be too much 
mechanical stress on the weak edges of the sample cavity.  
d) Make sure that the metal cylinder is in place if you are using the plastic mantle piece.  
e) Don’t tighten the assembly too much or more on one side than the other.  
 

3) Assembly won’t hold pressure at all 
a) Problems with pressure generator 
 -Is valve next to reservoir tightened? 

-Continue trying to increase the pressure. Are there any puddles of liquid forming 
anywhere around the pressure generator? If so, this is where the leak is. Sometimes 
the tubing that connects the pressure generator to the pressure assembly gets leaky 
and needs to be replaced. Sometimes valves go bad or connections can be loose. Try 
tightening the connections or replacing a valve.  
-Is the reservoir empty? Last time the system was filled with pressurization fluid, air 
could have gotten in. Refill the reservoir. Prime the system, expel everything (verify 
that liquid comes out), and then prime again to remove the air bubble.  
-Check for leaks within the pressure generator or very large air-bubbles. Close valve 
one and valve two and turn the pressurization wheel clockwise. The pressure gauge 
should go up and hold pressure. If it doesn’t, there is a leak somewhere in the system 
or an air bubble.  
 

 b) Problems with the assembly 
  -Is everything assembled and tightened? 
  -Is the cube broken? 
  -Are there puddles of liquid forming near the assembly, indicating a leak?  
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D.2 PROBLEMS WITH THE JUMP 
1) Burst membrane doesn’t break with capacitor discharge 
 a) Make sure voltage on capacitor is at least 50 V 
 b) Make sure the electrode is in contact with the burst membrane 

c) Make sure that that the assembly is grounded properly and that the electrode is connected 
to the capacitor.  
d) Re-calibrate the burst membrane to make sure the starting pressure is not too low.  
 

2) Pressure-jumps have a large dead-time (i.e. a tryptophan jump takes >1-3 µs to drop from the 
high pressure state to the low pressure state. This can be determined by counting the number of 
points in the jump. ) 

a) Pressure before jump might be too low. Check again where the burst membrane breaks. 
b) Pressure-jump might be too small. Jumps less 1500 bar are difficult to get to good 
resolution 
c) Non-conductive cylinder might be getting old. Try replacing it (but make sure to re-
calibrate the burst membrane! Often the breaking pressure changes when the non-
conductive cylinder is switched out) 
d) Are the membranes breaking cleanly (clean = hole completely burned through)? If not, 
this is the likely the origin of the low jump resolution. Try increasing the capacitor voltage or 
re-calibrating the burst membrane breaking pressure.  

 
D.3 PROBLEMS WITH SIGNAL 

1) There is not enough (or no) fluorescence signal 
 a) Find out where the problem is occurring: 

-Put a 200 µM tryptophan sample in the cube and put cube in pressure-jump 
apparatus but do not assemble any further. Is there signal? If not, you have either a 
laser problem, a pmt problem, or an alignment problem. 
-Put your protein sample in the cube and put cube in pressure-jump apparatus but 
do not assemble any further. Is there signal? If not, you have a protein sample 
problem.  
-With your sample or tryptophan still in the cube, put in the foil, pressure fitting, and 
burst membrane. Is there signal? If not, you are not doing a good job putting the 
assembly together. A likely (and very common) problem is that you are pushing the 
sample out of the cube when you insert the pressure fitting.  
-Fully assemble the apparatus. Pressurize up to 50 bar. Is there signal? If not, you are 
probably not doing a good job of putting the assembly together. A likely problem is 
that the foil is not adequately protecting the sample and pressurization fluid is  
leaking into the sample cavity. 
 

 b) Laser problems: 
  -Is the laser lasing? 
  -Is the laser mode-locked? 
  -Is tripler power >10 mW? 
  -Is the laser’s wavelength correct (should be 840 nm out of the laser cavity)?  
  -Is the mode-lock stable and is the scope triggering properly? 
  -Is the shutter on? (it shouldn't be open, but needs to be turned on) 
 



	
   130	
  

  
 c) PMT problems 
  -Is the correct filter on the PMT? 
  -Is the light guide correctly mounted in the pressure-jump assembly? 

-Is the light guide on the PMT side mounted to the center of the PMT and is the 
light guide clear of obstruction? 
 

 d) Alignment problems 
  -Is the laser path blocked at any point before the pressure-jump assembly? 

-Put a cube with concentrated tryptophan into the assembly but do not assemble any 
further. Is the laser focused and travelling through the tryptophan solution in the 
cube? You should be able to clearly see the beam path through the tryptophan.  
-Is the laser hitting any of the mirrors or lenses improperly?  
 

2) Signal looks terrible or weird with completely random seeming oscillations and baseline variations.  
a) Is the laser mode-lock stable and the scope triggering properly? Do a jump and collect the 
laser diode signal. A chi analysis should show no variations over time. If there are any, try 
tweaking the laser to improve stability or adjusting placement of the photodiode. 
Occasionally, the force of the jump can destabilize a laser if it is poorly aligned.  
b) Replace the foil. Old foil with thinned out areas can let the light from sparks come 
through. 
c) Make sure that the signal on the scope is at least 100 mV. The more signal there is, the 
less likely it is that electrical interference will make it through.  
d) Is the faraday cage up and closed?  
e) If noise is localized to just a few short periods of time in a data trace, the noise can be 
removed in data analysis. This produces data with time gaps and can be a work around,  
provided multiple traces under the same conditions are taken to supplement the “gapped” 
data.  
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APPENDIX E 
LIVE CELL METHODS AND DATA ANALYSIS 

 
E.1 INTRODUCTION 

 This appendix summarizes the methods used throughout the chapters that describe imaging 
of protein folding thermodynamics and kinetics in living cells and in in vitro samples on the live-cell 
microscope. The Fast Relaxation Imaging (FreI) microscope153 combines an inverted, epifluorescent 
microscope with an IR laser and a resistive heating element to measure protein folding. Two LED 
light sources provide blue or amber excitation and dual channel optics enable simultaneous 
measurement of emitted green and red fluorescence. 
 Typically, a protein of interest is expressed as a fusion sandwiched between a donor 
fluorescent protein (acGFP1) and an acceptor protein (mCherry), although as described in Chapter 
6, alternative fluorophores can be used. U2OS cells are imaged due to their hardiness and size. The 
following describes the sample preparation, thermodynamics and kinetics measurements, and data 
analysis used throughout section II of this thesis. A detailed description of the instrument and its 
optics is reported elsewhere153.  
 

E.2 SAMPLE PREPARATION 
E.2.1 Cell culture Osteosarcoma cells (U2OS, ATCC) were cultured at 37°C and 5% CO2 in 
Dulbecco’s modified Eagle medium (DMEM, Corning Cellgro) supplemented with 10% fetal bovine 
serum (Fisher) and 1% penicillin-streptomycin (PS, Fisher Mediatech). Cells were split at 
approximately 80% confluence either into 75 cm3 tissue culture flasks (BD Falcon) for continued 
growth or onto 1.5 coverslips (Fisher) for imaging.  
 Cells were transfected with a plasmid encoding the fluorescently labeled protein of interest 
via Lipofectamine (Invitrogen). Proteins of interest were cloned into pDream (Genscript), a shuttle 
vector that contains both T7 and CMV promoters for dual expression in bacterial and mammalian 
cells. Depending on the protein, type of experiment, and cell culture conditions, imaging was carried 
out 12-48 hours following transfection.  
 
E.2.2 Preparation of samples for imaging Cells expressing the fluorescently labeled protein of 
interest growing on coverslips were attached to a glass slide with a 120 µm spacer (Grace Bio Labs). 
Between the slide and coverslip was Optimem minimal media (Invitrogen) for dye labeling 
experiments to avoid excessive background fluorescence or Liebowitz medium (Invitrogen) 
supplemented with 30% FBS for other experiments to encourage cell viability.  
 For in vitro experiments, the protein sample at a concentration of 2-4 µM was pipetted into 
the well of a 120 µm spacer (Grace Bio Labs) attached to a glass slide. To aid in focusing the 
microscope, the protein solution is supplemented with fluorescent beads that adhere to the coverslip 
surface. The entire imaging chamber is sealed with a coverslip, as with the cell experiments.  
 
 

E.3 PROTEIN FOLDING MEASUREMENTS 
E.3.1 Thermodynamics Thermodynamics can be measured either via fast laser assisted heating or 
slow resistive heating. In laser assisted heating168, a series of shaped IR laser pulses heat the cell in 
~2 °C increments and, after a brief equilibration period, a video is taken to measure 
thermodynamics. This method is only suitable for relatively fast folding proteins (τobs<5 s) due to the 
short equilibration time between temperature steps. Because a full thermodynamics experiment is 
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complete in about 5 minutes, this approach is particularly useful for measurements where cell-
viability is a concern.  
 A resistive heater mounted to the stage enables an alternative mechanism to measure folding 
thermodynamics. In this case, the temperature is raised through resistive heating and equilibrates ~ 5 
minutes per ~3 °C temperature increase. In this case, a full thermodynamics experiment is complete 
in about an hour.  
 
E.3.2 Temperature-jump kinetics measurements A shaped laser heating pulse (figure 76) heated 
the cells 4-6 °C with a resolution of ~30 ms. A 60 frames per second (fps) video was taken of the 
jump, capturing the kinetics. Temperature before the jump was held constant through resistive 
heating as in slow heat thermodynamics.  
 

 
Figure 76 Temperature-jump profile. Temperature response as measured by mCherry quantum yield in vitro is shown in 
blue. The red line is the IR laser pulse shape.  
 

E.4 PROTEIN FOLDING MEASUREMENTS 
E.4.1 Thermodynamic data analysis At each temperature, the full video was averaged for each 
channel to produce an average green, D(T), and red, A(T), intensity. The temperature dependent 
signal was fit to a sigmoidal signal function after normalization165: 

 
 
 
 
Here, BF(T) and BU(T) are the linear folded and unfolded baselines and fU describes the fraction of 
unfolded protein assuming a two state model: 

 
The free energy of folding is expanded to the first order such that: 

 
where dg1 is a Taylor series expansion coefficients and Tm is the melting midpoint. To the first order, 
the Van’t Hoff Enthalpy at the Tm is thus given as:  

 
and the entropy of folding: 

 
 

€ 

fU =
1

1+ e−ΔGU→F (T ) /RT

€ 

ΔGU→F (T) ≈ δg1(T −Tm )

€ 

ΔHU→F = −δg1Tm

€ 

ΔSU→F = −δg1
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E.4.2 Kinetic data analysis The fluorescence signal was averaged over the entire cell in each frame 
or over a region of the cell. The signal immediately following temperature-jump is expressed as: 
 

€ 

S(t) = D(t) − D(t0)
A(t0)

A(t)  

where A(t0) and D(t0) are initial acceptor and donor intensities, respectively, and A(t) and D(t) are 
time-dependent donor and acceptor intensities. The raw data can be corrected for bleaching by 
subtracting off a linear baseline in the last second of the kinetic signal (when folding kinetics have 
ended)  

The folding signal is generally fit to a double exponential where the first exponential is a 
single exponential with a positive amplitude and the second is a stretched exponential with a 
negative amplitude: 

€ 

S(t) = S0 + A1e
−k1t + A2e

(−k2t )
β

 
The first exponential is often an instrument response that arises from differential rates of 
temperature response between donor and acceptor and limits the kinetic time resolution. The 
second stretched exponential describes the actual folding kinetics where kobs is the temperature-jump 
relaxation rate  and β describes the deviation from two-state folding behavior.  
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