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ABSTRACT

Interference is an important factor that limits the rates that can be achieved

by mobile users in a cellular network. Interference management through co-

operation has emerged as a major consideration for next-generation cellular

networks. In this thesis, we focus on the downlink of a sectored hexagonal cel-

lular network, under the assumption of local interference i.e., the interference

at each user is only due to transmitters in neighboring sectors. We explore the

potential degrees of freedom (DoF) gain in this network under constraints on

the cooperation between base-stations. The constraints that we consider are

the cooperation order M , and the average backhaul load B, which denote the

maximum and the average number of transmitters, respectively, that jointly

transmit any message. We first study the DoF gains in a scenario where

mobile receivers can be associated to any neighboring cell but no cooperative

transmission is allowed, and derive bounds on the maximum achievable per

user DoF for orthogonal schemes. We then show that by combining cooper-

ative transmission with flexible message assignment to the transmitters, it is

possible to achieve a per user DoF strictly greater than that without cooper-

ation. The proposed cooperative transmission scheme does not require extra

backhaul capacity, as it uses a smart assignment of messages to transmitters

to meet an average backhaul load constraint of one message per transmitter.

The schemes presented are simple zero-forcing beamforming schemes that

require linear precoding over a single time/frequency slot (one-shot). Similar

schemes are proposed which achieve a per user DoF greater than half with a

minimal increase in the backhaul load. These results are derived for networks

with intra-cell interference and networks without intra-cell interference.
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CHAPTER 1

INTRODUCTION

There has been a rapid growth in the usage of wireless networks in the past

few years. In a cellular network, interference due to neighboring cells is a

major factor that limits the rates of users. Cooperation among base stations

or mobile users in the cellular network has emerged as one of the important

technologies for managing interference [1].

Figure 1.1: A sectored cellular network with three sectors per cell. Each
sector is surrounded by six neighboring sectors, out of which two belong to
the same cell.

In this thesis, we focus on the downlink of a two-dimensional hexagonal

sectored cellular network shown in Figure 1.1. It is assumed that the inter-

ference is local, i.e., interference at each receiver (user) in a sector is only due

to neighboring sectors. The network can be modeled as a two-dimensional

locally connected interference network as shown in [2]. We consider two sce-

narios, networks without intra-cell interference, i.e., sectors that belong to

the same cell do not interfere, and networks with intra-cell interference. The

proposed schemes for interference management are evaluated using the de-

grees of freedom (DoF) criterion. The degrees of freedom criterion provides
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a preliminary way of characterizing the capacity of a network, as the number

of interference-free channels in the network at a high signal-to-noise ratio

(SNR).

In interference management without cooperation, a per user DoF (PUDoF)

of half can be achieved, using the asymptotic interference alignment scheme

in [3]. Interference alignment is a precoding scheme that achieves this PUDoF

by aligning the interference at each receiver into approximately half the di-

mensions, leaving the remaining dimensions for transmission of the desired

signal. However, this PUDoF value is approached by coding over an imprac-

tically large number of symbol extensions (time/frequency slots).

In this model, we look at potential DoF gains using cooperative transmis-

sion. The transmitters (base stations) in the downlink cooperate by means of

sharing messages through a backhaul network. Complete cooperation among

all the transmitters can be used to achieve a PUDoF of one, but at the cost of

overloading the backhaul network. Hence, we are interested in understanding

the gains in the PUDoF that are achievable under partial cooperation. The

finite capacity of the backhaul network is modeled by two cooperation con-

straints M and B, that reflect the maximum and average transmit set size,

respectively, where the transmit set size refers to the number of transmit-

ters at which a message is available. Coding schemes under the cooperation

constraint B are relevant in practical scenarios, as the transmit set size is

allowed to vary across messages while maintaining an average backhaul load.

The proposed downlink interference management schemes rely on a flexible

design of the cellular backhaul, that takes into account the topology of the

network, to make decisions about associating mobile receivers to cells. The

flexible backhaul design is augmented to include cooperative transmission,

and to show that DoF gains can be achieved through a minimal increase in

the backhaul capacity. All of our proposed schemes are single-shot schemes

and do not require any symbol extensions. The notion of topological robust-

ness is discussed for the proposed schemes, to guarantee a minimum DoF,

irrespective of the strength of the interference links.

The DoF gain achieved by cooperative transmission using local message

sharing was studied and characterized for Wyner’s linear interference net-

works in [4], [5], [6] under the maximum transmit set size cooperation con-

straint. This was extended to linear networks with possible link erasures in

[7]. Flexible backhaul design for linear interference networks was considered
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in [8], where it was shown that DoF gains can be achieved in large linear net-

works without requiring an increase in the average transmit set size. In this

thesis, we extend the work of [8] to hexagonal cellular interference networks.

Cooperation between base station receivers in the uplink was considered

in [2]. The cooperation between base station receivers is through the ex-

change of decoded messages over the backhaul network. It was shown that

practical interference alignment schemes can achieve the optimal degrees of

freedom in the uplink using cooperation between receivers. The advantage

of the message passing framework of [2] is that it does not require analog sig-

nal sharing over the backhaul unlike traditional approaches for cooperative

uplink reception.

Another approach for managing interference in the cellular downlink through

cooperative transmission was introduced in [9], where transmitting base sta-

tions cooperate by exchanging quantized dirty paper coded signals. However,

implementing this approach can face practical challenges as each transmitter

only gets its message after a series of preceding transmitters have encoded

their messages; this will either require significant delay requirements or re-

quire coding over multiple time slots. Further, under this setting, the only

way for messages to be delivered to transmitters through a centralized con-

troller is for the controller to be aware of channel state information.

It is finally worth mentioning that while the schemes of [9] and [2] are

designed for multiple antenna systems and require extra backhaul capacity

to support the sharing of messages, the proposed scheme in this thesis is for

single antenna systems and employs an assignment of messages to transmit-

ters that attains a better DoF gain for similar backhaul loads. We envision

a novel paradigm where the message passing framework of [2] for the uplink

is complemented by our proposed approach for the downlink.
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CHAPTER 2

SYSTEM MODEL AND NOTATION

Consider a network with K users. Assume that each transmitter and receiver

has a single antenna. The signal Yi at receiver i is given by

Yi = HiiXi +
∑
j∈Ni

HijXj + Zi, (2.1)

where Xj denotes the signal transmitted by transmitter j under an average

transmit power constraint P , Zi denotes the additive white Gaussian noise

at receiver i, Hij denotes the channel gain coefficient from transmitter j

to receiver i, and Ni denotes the set of interferers at receiver i. Channel

coefficients that are not identically zero are assumed to be drawn from a

continuous joint distribution. Channel state information is assumed to be

available at all transmitters.

2.1 Linear Interference Network

Consider the downlink of the linear cellular model presented by Wyner. In

this model, the cells are located on an infinite linear equi-spaced grid and each

transmitter is associated with a single user. In the asymmetric Wyner model,

each user observes interference from a preceding transmitter, while in the

symmetric Wyner model, each receiver observes interference from a preceding

and a succeeding transmitter. This setting may be extended to define a

locally connected linear interference network with connectivity parameter L.

Here, L denotes the number of dominant interferers per user, where each user

observes interference from dL
2
e preceding transmitters and bL

2
c succeeding

transmitters. An asymmetric Wyner model corresponding to L = 1 and a

symmetric Wyner model corresponding to L = 2 are shown in Figure 2.1.

The channel coefficients corresponding to a locally connected linear channel
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model are as follows:

Hi,j is not identically 0 iff i ∈ [j − bL
2
c, j + dL

2
e].

Figure 2.1: Locally connected linear interference networks are shown with
the number of users K = 5. The transmitter corresponding to cell i is
denoted by Ti and the user (receiver) by Ri. In (a), a Wyner model with
L = 1 is shown. In (b), a symmetric Wyner model with L = 2 is shown.

2.2 Hexagonal Cellular Network

Consider a hexagonal cellular network with three sectors per cell as shown

in Figure 2.2(a). Each user is associated with a single sector. It is assumed

that the intended message to a user is transmitted by a single transmitter. A

local interference channel model is assumed, where the interference at each

receiver is only due to the base stations in the neighboring sectors. We first

consider the scenario where it is assumed that sectors belonging to the same

cell do not interfere with each other. This is motivated by the fact that the

interference power due to sectors in the same cell is usually far lower than

the interference from out-of-cell users located in the sector’s line of sight.

We then relax this assumption and consider both intra-cell and out-of-cell

interference at each receiver.
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Figure 2.2: (a) Cellular network and (b) interference graph. A sectored
cellular network with three sectors per cell. Each sector is surrounded by
six neighboring sectors, out of which two belong to the same cell.
Interference due to sectors of the same cell are denoted by blue arrows and
the red arrows indicate out-of-cell interference. In (b), each vertex denotes
a transmitter-receiver pair belonging to a sector. An edge between vertices
denotes an interfering link. The dotted lines in (b) represent interference
between sectors belonging to the same cell.

2.2.1 Interference Graph

The cellular model is represented by an undirected interference graphG(V,E)

shown in Figure 2.2(b) where each vertex u ∈ V corresponds to a transmitter-

receiver pair corresponding to a particular sector. An edge e ∈ E between two

vertices u, v ∈ V corresponds to interference between the transmit-receiver

pairs i.e., the transmitter at u causes interference at the receiver correspond-

ing to v and vice versa. We note that each sector is surrounded by six

neighboring sectors, out of which two belong to the same cell. The dotted

lines denote interference between sectors that belong to the same cell. Hence

we see in the interference graph that each vertex is connected by an edge

to six other vertices, out of which two belong to the same cell (indicated by

dotted lines). For any node a, the transmitter, receiver and intended mes-

sage corresponding to the node are denoted by Ta, Ra and Wa. We consider

K-user networks where
√
K is an integer, and nodes are numbered as in

Figure 2.2(b). In the figure,
√
K = 6. We study the performance in the

asymptotic limit of the number of users and hence we make this assumption

on the value of
√
K can be made to simplify the analysis.
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2.3 Message Assignment

Let [K] denote the set {1, 2, ..., K}. For any user i ∈ [K], Wi denotes the

message associated with user i and Ti denotes the transmit set of Wi i.e., Ti
contains the indices of all transmitters at which Wi is available. A particular

message assignment is denoted by {Ti}i∈[K]. We use message assignment

strategies to define the transmit sets for a sequence of K-user channels. For

a particular message assignment, M denotes the maximum transmit set size

and is also referred to as cooperation order, while B denotes the average

transmit set size,

M = max
i
|Ti|, (2.2)

B =

∑
|Ti|
K

. (2.3)

We use Ri to denote the set of indices of received signals that are connected

to transmitter Ti.

2.4 Zero-Forcing Transmit Beamforming

(Interference Avoidance)

In this thesis, we consider only zero-forcing (ZF) transmit beamforming

schemes. In these schemes, the transmit signal Xi at transmitter Ti is given

by

Xi =
∑
`:i∈T`

Xi,`, (2.4)

where Xi,` only depends on message W`. Further, it is assumed that each

message is either not transmitted or allocated one degree of freedom. For

every user j ∈ [K], let Ỹj = Yj − Zj, where Yj is given in (2.1). For the

case where Wj is not transmitted I(Ỹj;Wj) = 0 and for the case where Wj is

transmitted interference-free, Ỹj is completely determined from Wj. In any

ZF scheme, a receiver Rj is active iff I(Ỹj;Wj) > 0. Note that if Rj is active,

I(Ỹj;Wi) = 0,∀i 6= j.
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2.5 Capacity and Degrees of Freedom

Let P be the average transmit power constraint at any transmitter, and letWi

denote the alphabet for Wi. The rates Ri(P ) = log|Wi|
n

are achievable if and

only if the error probabilities of all messages can simultaneously be arbitrarily

small for large n, using an interference avoidance scheme. A DoF tuple

(d1, d2, . . . , dK) is achievable using an interference avoidance scheme, if for

every P > 0, there exists an achievable rate tuple (R1(P ), R2(P ), . . . , RK(P ))

such that

di = lim
P→∞

Ri(P )

logP
,∀i ∈ [K]. (2.5)

Sum DoF corresponding to an achievable DoF tuple is given by
∑

i∈[K]

di. Sum

DoF denotes the total number of interference-free sessions that can be sup-

ported in a multi-user channel at a high signal-to-noise ratio (SNR). If D
denotes the closure of the set of all achievable DoF tuples, then ηL for a

locally connected channel with connectivity L is defined as

ηL = max
D

∑
i∈[K]

di. (2.6)

For a K-user channel, we define ηL(K,M) and ηavgL (K,B) as the maximum

achievable ηL over all possible message assignments satisfying the constraints

(2.2) and (2.3) respectively. We define the following asymptotic quantities

which capture how ηL scales with K.

τL(M) = lim
K→∞

ηL(K,M)

K
(2.7)

τ avgL (B) = lim
K→∞

ηavg(K,B)

K
(2.8)
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CHAPTER 3

LINEAR INTERFERENCE NETWORKS

Most of the prior work on characterizing DoF for cellular networks focuses on

linear interference networks, and in particular, the Wyner model described in

Section 2.1. Recall that for a locally connected K-user channel with connec-

tivity L, each transmitter is connected to bL
2
c preceding and dL

2
e succeeding

receivers. We define an equivalent (K − x)-user channel that is used in the

rest of this chapter, where x = bL
2
c. We silence the first x transmitters,

deactivate the last x receivers, and relabel the transmit signals to obtain the

(K − x)-user channel, where transmitter j is connected to receivers in the

set {Ri : i ∈ {j, j + 1, ..., j + L}} as shown in Figure 3.1. Note that the

new channel model gives the same value of τL(M) as the original one, since

x = o(K). More precisely, we consider the following channel model:

Hi,j is not identically 0 iff i ∈ [j, j + 1, . . . , j + L].

3.1 Traditional Interference Management

We start by exploring the limits of a traditional approach for interference

management for the case of no cooperation, without the restriction to the

considered class of interference avoidance schemes. It is assumed that each

message Wi, i ∈ [K] is assigned to the transmitter Ti with the same index.

We restate the following lemma from [6],

Lemma 1. For the case of no cooperation, if Ti = {Tj}, then di + ds ≤ 1,

∀s ∈ Rj, s 6= i.

The linear L connected channel as well as the hexagonal model introduced

in Chapter 2, can be divided into groups of two transmitter-receiver pairs
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Figure 3.1: In (a), a locally connected channel model with number of users
K = 5 and connectivity parameter L = 2 is shown. In (b), the new
equivalent model for the network in (a) is shown.

each, such that the transmitter of one user is connected to the receiver of

the other. Note that each message Wi, i ∈ [K] is assigned to the transmitter

Ti with the same index. Applying Lemma 1 to each group, it is easy to see

that the PUDoF of the network cannot exceed 1
2

in this scenario.

Hence, using a traditional approach for interference management, the asymp-

totic per user DoF is at most 1
2
. Further, it can be shown that this DoF value

can only be approached in the limit of the length of symbol extension, i.e.,

by coding over a large number of time/frequency slots as in the asymptotic

interference alignment scheme [3].

3.2 Flexible Message Assignment

Unlike the scheme described in Section 3.1, where each message has to be

assigned to the transmitter with the same index, we explore a flexible cell

association approach in this section. We assume that a message need not

be assigned to the transmitter with the same index. An example is first

discussed to demonstrate that this leads to DoF gains.
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3.2.1 Example

Consider the asymmetric Wyner model (L = 1) and consider the case of no

cooperation (M = 1). Let W1 be available at the first transmitter, W3 be

available at the second transmitter, and deactivate both the second receiver

and the third transmitter. Then it is easily seen that messages W1 and W3

can be received interference-free at their corresponding receivers. Moreover,

the deactivation of T3 splits this part of the network from the rest of the

network and the same scheme can be repeated by assigning W4,W6 to the

transmitters T4,T5, respectively, and so on. Thus, 2 degrees of freedom can

be achieved for each set of three users, thereby, achieving an asymptotic

PUDoF of 2
3
. The described message assignment is depicted in Figure 3.2.

Figure 3.2: Flexible association of W3 to T2 achieves a PUDoF of 2
3
,

without any cooperation in an asymmetric Wyner network. The red boxes
represent deactivated nodes.

3.3 Achievable Schemes Using Cooperation

We present schemes that use cooperative transmission with flexible message

assignment. Even though the average backhaul load constraint B is more

relevant to practical applications, the cooperation order M simplifies the

combinatorial aspect of the problem, and solutions under constraint M can

be used to provide solutions under constraint B. The following theorem from

[6] gives a simple message assignment strategy under the cooperation order

M , which is later proved to be optimal under interference avoidance schemes.

Theorem 1. The following lower bound holds for the asymptotic PUDoF of
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a locally connected interference network with connectivity parameter L,

τL(M) ≥ 2M

2M + L
.

Figure 3.3: The message assignment is shown for the network with L = 2.
A PUDoF of 2

3
is attained using cooperation constraint M = 2. The red

boxes represent deactivated nodes.

Proof. Let the network be divided into subnetworks consisting of 2M + L

consecutive transceivers. The last L transmitters in each subnetwork are

deactivated to eliminate inter subnetwork interference. It suffices to show

that sum DoF of 2M can be achieved in each subnetwork. Consider a scheme

in which the messages WM+1,WM+2, ...,WM+L are not transmitted and the

remaining messages are sent interference-free. The users in the subnetwork

are further divided into two clusters. Cluster A1 consists of the first M users

and cluster A2 consists of the last M users, denoted by the following subsets

of [2M + L],

A1 = [M ],

A2 = {L+M + 1, L+M + 2, ..., L+ 2M}.

Messages are assigned so there is no interference between sets A1 and A2 as

follows,

Ti =

{i, i+ 1, ...,M}, ∀i ∈ A1,

{i− L, i− L− 1, ...,M + 1}, ∀i ∈ A2.

12



The message assignment for L = 2 and M = 2 is depicted in Figure 3.3.

The strategy for transmitting messages of users in A1 interference-free

is demonstrated for W1. The first receiver does not observe interference

from any transmitter and hence the message W1 is encoded into X1,1. The

interference seen at receiver R2 due to W1 needs to be canceled, and X2,1 is

designed as

X2,1 =
−H2,1

H2,2

X1,1.

The beams Xi,1 where i ∈ {3, . . . ,M} are designed in a similar fashion to

cancel the interference caused by W1 at receivers Ri, where i ∈ {3, . . . ,M}.
Thus, we achieve a sum DoF of 2M among every consecutive 2M + 1 users

in the network.

The proposed schemes are zero-forcing beamforming schemes, which do not

require precoding over more than one time/frequency slot (one shot). Note

that in the coding scheme of Theorem 1, some messages are not transmitted,

so that the remaining messages can be sent interference-free. Fairness can

be maintained in the allocation of the available DoF over all users, through

fractional reuse in the system by deactivating different sets of receivers in

different sessions, e.g., in different time or frequency slots.

The maximum transmit set size constraint M is not met tightly for all

messages in the message assignment scheme presented in Theorem 1. We

therefore consider the average backhaul constraint in which the transmit set

size is allowed to vary across the messages, while maintaining an average

transmit set size of B. We present a theorem from [8], for the asymmetric

Wyner model, which uses the achievable schemes in Theorem 1.

Theorem 2. The following lower bound holds for the asymptotic PUDoF for

a Wyner network over all achievable schemes

τ avg(B) =
4B − 1

4B
.

The achievable scheme involves dividing the network into subnetworks of

consecutive 4B users. The last transmitter in each subnetwork is silenced to

eliminate inter subnetwork interference. The message W2B+1 is not transmit-

ted. The first 2B messages are transmitted similar to the scheme for messages

in A1 in the proof of Theorem 1 with M = 2B, while the last 2B−1 messages
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are sent similar to the scheme for messages in A2 with M = 2B − 1. It can

be verified that this strategy satisfies the average backhaul load constraint

of B and achieves a PUDoF of 4B−1
4B

. This scheme was shown to be optimal

over all achievable schemes in [8].

It can be verified that under the average backhaul load constraint B = 1,

i.e., without requiring extra backhaul capacity, a PUDoF of greater than half

can be achieved for L ≤ 6 in a similar fashion, using combinations of schemes

designed for different values of M .

Although we assume availability of all channel coefficients at every trans-

mitter in the network, the schemes presented in this section require only local

channel state information, i.e., each node need only be aware of the channel

coefficients between itself and its neighbors.

Figure 3.4: Message assignments are shown for the asymmetric Wyner
network. In (a), a PUDoF of 3

4
is attained with B = 1 and in (b), a PUDoF

of 7
8

is attained with B = 2.

3.4 Irreducible Message Assignments

In order to find an upper bound on τL(M), we need to consider all possible

message assignments for interference avoidance schemes. In this section, we
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discuss the notion of irreducible message assignments. A message assignment

is irreducible if no element can be removed from any transmit set without

decreasing the sum rate.

For a message Wi and a fixed transmit set Ti, construct a graph GWi,Ti in

which an edge exists between vertices x, y iff

x, y ∈ Ti,

|x− y| ≤ L.

Vertices corresponding to transmitters that are connected to receiver Ri

are called marked vertices. We restate the following lemma and its corollary

from [6].

Lemma 2. For any k ∈ Ti such that the vertex k in GWi,Ti is not connected

to a marked vertex, removing k from Ti does not decrease the sum rate.

Corollary 1. Let Ti be an irreducible message assignment and |Ti| ≤ M ,

then ∀k, k ∈ Ti only if the vertex k in GWi,Ti lies at a distance that is less

than or equal to M − 1 from a marked vertex.

3.5 DoF Upper Bounds

In this section, we discuss upper bounds that show the optimality of the

achievable schemes from Theorem 1. For each transmitter in Ti, we as-

sume that Wi contributes to the transmit signal of transmitter i, i.e., ∀j ∈
Ti, I(Xj,Wi) > 0; otherwise transmitter Tj can be removed from Ti. For

a set S, let VS denote the set of indices for active receivers connected to

transmitters with indices in S. We restate the following lemma from [6] for

interference avoidance schemes.

Lemma 3. For any message Wi, the number of active receivers connected to

at least one transmitter carrying the message is no greater than the number

of transmitters carrying the message,

|VTi | ≤ |Ti|.

Among the |Ti| transmit signals carrying Wi, one transmit signal is de-

signed to send message Wi to the intended receiver Ri, and the remaining
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|Ti|−1 signals cannot be designed to cancel Wi at more than |Ti|−1 receivers.

The following theorem from [6] provides an upper bound on PUDoF using

Lemma 3 and the concept of irreducible message assignments, that shows

the optimality of the achievable schemes discussed in Theorem 1.

Theorem 3. The following lower bound holds for the asymptotic PUDoF of

a locally connected interference network with connectivity parameter L, under

restriction to zero-forcing transmit beamforming schemes,

τL(M) ≥ 2M

2M + L
.

Proof. We show that in any set S of 2M + L consecutive users, a DoF of

only 2M can be attained. For a user i ∈ [S], let Ui be the set of active users

in S with an index j > i. Similarly, let Di be the set of active users in S

with an index j < i. Assume that S has at least 2M + 1 active users, then

there is an active user in S that lies in the middle of a subset of 2M + 1

active users in S. Let this middle user have index i for the rest of the proof.

Let smin and smax be the users in S with minimum and maximum indices,

respectively, i.e., smin = min{s : s ∈ S} and smax = max{s : s ∈ S}, we then

consider the following cases.

Case 1: Wi is transmitted from a transmitter that is connected to the

receiver with index smin. It follows from Lemma 2 that VTi ⊇ Di ∪ i, and

hence, |VTi | ≥M + 1, which contradicts Lemma 3, as |Ti| ≤M .

Case 2: Wi is being transmitted from a transmitter that is connected to

the receiver with index smax. It follows from Lemma 2 that VTi ⊇ Ui ∪ i, and

hence, |VTi | ≥M + 1, which again contradicts Lemma 3.

Case 3: There is no transmitter in Ti that is connected to any of the

receivers with indices smin and smax. It follows from Lemma 2 that all the

receivers connected to transmitters carrying Wi belong to S. At least L+ |Ti|
receivers in S are connected to one or more transmitters in Ti, and since S

has at least 2M + 1 active receivers, any subset of L+ |Ti| receivers in S has

at least |Ti|+ 1 active receivers, which is a contradiction to Lemma 3.
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CHAPTER 4

NETWORK WITH NO INTRA-CELL
INTERFERENCE

We extend the results of linear interference networks to hexagonal sectored

cellular networks. In this chapter, we focus on the case with no interference

between sectors belonging to the same cell. The interference graph is shown

in Figure 4.1. The connectivity is fixed for this network, and we drop L in the

notation τL, and use τ to denote the maximum PUDoF under appropriate

constraints.

Figure 4.1: Interference graph for the case of no intracell interference. Each
sector is surrounded by four neighboring out-of-cell sectors.
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4.1 Flexible Cell Association

In this section, we explore a flexible cell association approach in which each

message can be assigned to only one transmitter, but this transmitter can

be chosen as any transmitter connected to the message’s desired destination.

We formally study this scenario by imposing the maximum transmit size

constraint M = 1. We characterize lower and upper bounds for the maximum

achievable per user DoF. Note that when M = 1, an interference avoidance

scheme is just an orthogonal scheme (e.g., TDMA).

Theorem 4. The following bounds hold under restriction to orthogonal schemes

for the PUDoF, as the number of users goes to infinity, with flexible cell as-

sociation and no cooperation,

1

3
≤ τ(M = 1) ≤ 3

7
.

Proof. Lower Bound: The network can be divided as in Figure 4.2 into dis-

joint, fully connected triangles. In each triangle, by deactivating nodes 1 and

2 as shown in Figure 4.2, it is easy to see that a PUDoF of 1
3

is achieved.

Figure 4.2: Division of network into triangular subnetworks. In each
triangle, we note that by deactivating nodes 1 and 2 (in red), we obtain
non-interfering triangles and a per user DoF of 1

3
is achieved.

Upper Bound: Consider the division of the network into disjoint fully con-

nected triangles as shown in Figure 4.3. For any orthogonal coding scheme,
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we note that any fully connected triangle in the network is in one of the

following states:

State 0 (inactive triangle): All transmitters and receivers in the triangle

are inactive.

State 1 (self-serving triangle): Exactly one transmitter in the triangle sends

a message to exactly one receiver within the triangle. None of the other

transmitters or receivers can be active in this triangle.

State 2 (serving triangle): At least one transmitter in the triangle serves a

receiver in another triangle and there are no active receivers in the triangle.

State 3 (served triangle): At least one receiver in the triangle is served by

a transmitter in another triangle and there are no active transmitters.

For the triangles in state 1 and state 0, the number of active receivers is

bounded by the number of triangles, i.e., one-third of the number of users.

For every transmitter c that is active in a triangle Sc in state 2, there

exists a neighboring receiver b in a different triangle Sb in state 3 that is

being served by it and a neighboring node a in another different triangle Sa,

whose transmitter and receiver are both inactive.

We now consider the following cases:

Case 1: Sa is in state 2 or 3. The remaining neighbors of a, b, c are the

nodes in their own triangles. We now know that da + db + dc ≤ 1, because

receivers Ra and Rc are inactive. Further, because none of the nodes a, b and

c have other neighbors except in their own triangles, there is no overcounting

when we repeat this procedure to obtain DoF bounds on other similar sets

of users.

Case 2: Sa is in state 1. Suppose in Sa, there is a node a2 which serves itself.

Then there is another inactive node in Sa which may form a group similar to

a, b, c with its neighbors from different triangles, say b1, c1. We note that these

two groups are disjoint. Therefore, among the seven nodes (Sa∪{b, c, b1, c1}),
there are at most three active receivers. Suppose Sa does not contain a self-

serving node. Then a is the only node with inactive transmitter and receiver

in Sa, and among the five nodes (Sa∪{b, c}), we attain a sum DoF of at most

two.

Case 3: Sa is in state 0. Then in the set of the five nodes (Sa∪{b, c}), we

attain a sum DoF of at most one.

For any scheme, the network can be rearranged into a combination of

disjoint groups of three, five and seven users, and PUDoF for each group is
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at most 3
7
. It follows that τ ≤ 3

7
holds asymptotically for any choice of cell

associations and interference avoidance schemes.

Figure 4.3: Division of network into triangular subnetworks. Transmitter c
in triangle Sc in state 2 (serving triangle) serves a neighboring receiver b in
a different triangle Sb in state 3 (served triangle). The neighboring node a
in another different triangle Sa is inactive. If Sa is in state 1 (self-serving)
and a2 serves itself, then a1, b1, c1 may form a group similar to a, b, c.
Among the seven nodes (Sa∪{b, c, b1, c1}), at most three receivers are active.

4.2 Flexible Message Assignment with Cooperation

We now consider cooperative transmission with flexible message assignment,

first under the cooperation order M , and then use these results to propose

schemes that achieve per user DoF gains under constraints on the average

backhaul load B.

4.2.1 Cooperative Transmission Lower Bounds

We first present a lower bound on the PUDoF under cooperation order M = 2

and then for particular values of M , where M = 5`+ 6,∀` ∈ N ∪ {0}.
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Theorem 5. Under the cooperation order M = 2, the following lower bound

holds on the PUDoF, as the number of users goes to infinity,

τ(M = 2) ≥ 4

9
.

Proof. Consider division of the network into subnetworks of nine nodes as

shown in Figure 4.4. In each subnetwork, we have two blocks, one consisting

of six nodes (nodes 1, 2, 3, 4, 5, 6 in Figure 4.4) and the other consisting

of three nodes (nodes 7, 8, 9 in Figure 4.4). Note that deactivating the

nodes 7, 8, 9 eliminates interference between subnetworks. Hence we present

Figure 4.4: Division of cellular network into subnetworks consisting of nine
nodes each. By deactivating three sectors belonging to a cell (red nodes) in
each subnetwork, interference between subnetworks is eliminated. Each
subnetwork consists of six active nodes that form a triangle.

a coding scheme for each subnetwork separately. We treat the triangular

block of six nodes as a linear network shown in Figure 4.5, T2 = {1},T3 =

{1, 2},T4 = {5},T5 = {5, 6} and messages W1,W6 are not sent. Transmitters

T3,T4 and receivers R1,R6 are deactivated. Since the transmitters are aware

of the channel state information, the messages W2,W3,W4,W5 can be sent

without any interference through zero-forcing linear beamforming, similar to

the scheme in Theorem 1. Thus η ≥ 4 and τ(M = 2) ≥ 4
9

and we note that

for this scheme, the average backhaul load B = 2
3
.

Theorem 6. Under the cooperation order M , where M = 5`+6, ∀` ∈ N∪{0},
the following lower bound holds on the PUDoF, as the number of users goes
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Figure 4.5: The subnetwork is shown as a linear network and the message
assignment in the linear network is shown for M = 2. Ti,Ri denote the
transmitter and receiver associated with the sector containing user i, and
Wi denotes the intended message for user i. The red boxes indicate that the
corresponding transmitter/receiver is deactivated.

to infinity,

τ(M) =
5M

6M + 9
.

Proof. We first prove the result for ` = 0 and M = 6 and then extend

this scheme to higher values of `. We consider the network division shown

in Figure 4.4 and consider each subnetwork separately. In the block of six

nodes, if each message is available at all the transmitters, then by the use of

simple linear transmit beamforming, we obtain a sum DoF of 6 thus giving

τ(M = 6) ≥ 2
3
. Note that for this scheme, the average backhaul load on the

network B = 4.

For a general case with ` ≥ 1, consider subnetworks of size 9 + 6`. The

case ` = 2 is shown in the Figure 4.6. We have two kinds of units here -

one block of nine nodes as in the previous case and ` blocks containing six

nodes each. Note that by deactivating the transmitters of three nodes corre-

sponding to the block containing nine nodes (as before) and one transmitter

each corresponding to each block of six nodes, the interference between sub-

networks can be eliminated. Hence in each block, by simple linear transmit

beamforming, τ(M) = M
6`+9

= 5M
6M+9

can be attained. We note that for

this scheme, B = 5M2

6M+9
which equals 4 for M = 6. Note that for the case

5`+ 6 < M < 5(`+ 1) + 6, τ = max{5`+6
6`+9

, M
6`+9
}.
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Figure 4.6: Division of cellular network into subnetworks for M = 11. Here
` = 2 and each subnetwork consists of a block containing nine nodes and
two blocks containing six nodes each. The red nodes indicate deactivated
nodes in a block.

We now show, through the result in Theorem 7, how a smart choice for

assigning messages to transmitters, aided by cooperative transmission, can

achieve scalable DoF gains through an interference avoidance coding scheme.

In particular, we show a lower bound on the achievable PUDoF greater than

the 3
7

upper bound of the case without cooperation, without the need for an

extra backhaul load.

Theorem 7. Under the average backhaul constraint B = 1, the following

lower bound holds on the PUDoF, as the number of users goes to infinity,

τ avg(B = 1) ≥ 7

15
.

Proof. Consider the message assignment strategy from Theorem 6 with B =

4 and τ ≥ 2
3
, and the message assignment strategy from Theorem 5 with

B = 2
3

and τ ≥ 4
9
. A convex combination in the ratio 9 : 1 of these schemes

gives us B = 1 and a PUDoF of 7
15

for the entire network.

In the achievable scheme in Theorem 5, we have B = 2
3

and a PUDoF of
4
9
. Since B < 1, we can have a scheme which achieves a greater PUDoF by

overloading the network, and combining these schemes gives us τ(B = 1) ≥
7
15

. By combining a flexible backhaul design and cooperative transmission,
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we achieve a PUDoF very close to 1
2

through simple interference avoidance.

Theorem 8. Under the average backhaul constraint B = 2, the following

lower bound holds for the asymptotic PUDoF,

τ avg(B = 2) ≥ 8

15
.

Proof. Consider the message assignment strategy from Theorem 6 with B =

4 and τ ≥ 2
3
, and the message assignment strategy from Theorem 5 with

B = 2
3

and τ ≥ 4
9
. A convex combination in the ratio 2 : 3 of these schemes

gives us B = 1 and a PUDoF of 8
15

for the entire network.

Theorem 9. Under the average backhaul constraint B = 3, the following

lower bound holds for the asymptotic per user DoF,

τ avg(B = 3) ≥ 3

5
.

Proof. Consider the message assignment strategy from Theorem 6 with B =

4 and τ ≥ 2
3
, and the message assignment strategy from Theorem 5 with

B = 2
3

and τ ≥ 4
9
. A convex combination in the ratio 3 : 7 of these schemes

gives us B = 1 and a per user DoF of 8
15

for the entire network.

The schemes discussed in this section are one-shot zero-forcing beamform-

ing schemes that require only local channel state information, i.e., each node

only needs to be aware of the channel coefficients between itself and its neigh-

bors. Also, some messages are being sent interference-free while a few mes-

sages are not being transmitted. A sense of fairness is maintained among all

users through fractional reuse in the system, by deactivating different sets of

receivers in different sessions, e.g., in different time or frequency slots.

The insights obtained from the result of Theorem 7 are expected to hold

even when some of the users in the considered cellular network are absent.

As we are considering the average transmit set size constraint, allowing for

a flexible backhaul design with cooperative transmission can still achieve

significant DoF gains. This is because the backhaul resources corresponding

to missing users can be used to facilitate the interference management for

the remaining users.
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4.2.2 Cooperative Transmission Upper Bound

In order to obtain a converse for τ avg(B), we need upper bounds on τ(M)

for higher values of M . As a first step, we derive a bound on τ(M = 2).

Theorem 10. Under the maximum transmit set size constraint M = 2, the

following upper bound holds for the asymptotic PUDoF, under restriction to

interference avoidance schemes,

τ(M = 2) ≤ 3

4
.

Figure 4.7: Division of the network into subnetworks of six nodes.
Subnetworks of 12 nodes (nodes numbered 1 through 12) are also
considered, which consist of two blocks.

Proof. The interference graph can be divided into blocks containing six nodes

as shown in Figure 4.7. We first show that among nodes 1, 2, 3, 4, 5 (in the

Figure 4.7) in each subnetwork, at most 4 degrees of freedom can be achieved.

Each block is in one of the following states:

State A1: At least one of the transmitters {T1,T2,T3,T5,T6} is active.

Each transmitter in the set is connected to at least three receivers and for

Lemma 3 to hold, one of the receivers must be deactivated.

State A2: None of the transmitters {T1,T2,T3,T5,T6} is active. Then the

message W2 cannot be transmitted to R2. In both the states, DoF in each

subnetwork is at most 5.

Now consider the division of the network into subnetworks, where each

subnetwork consists of twelve nodes consisting of two blocks discussed before,

as shown in Figure 4.7. Let C and D denote the subnetworks containing nodes

numbered 1 through 6 and 7 through 12, respectively.
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Case 1: Both C and D are in state A2. Then messages W2,W8 cannot be

transmitted. Note that the messages W5,W7 in this scenario can be carried

only by T4 and hence at most one receiver among R5,R7 can be active, from

Lemma 3. In this scenario, a DoF greater than 9 cannot be attained.

Case 2: Block C is in state A1 and block D in state A2. Then message W8

cannot be transmitted. If any of the transmitters {T5, T2, T6} are active,

then at least two receivers in block C must not be active and a DoF of at

most 9 is attained. Suppose that none of the transmitters {T5, T2, T6} is

active. Note that message W7 can be transmitted only by T4 or T5 and in

any case, at most one receiver among R5,R7 can be active. Since we have

assumed that T2,T6 are inactive, for R6,R9 to be simultaneously active, T3

must be active, in which case one among R3,R2 is not active. Hence a DoF

greater than 9 cannot be attained in this scenario as well.

Case 3: Block C is in state A2 and block D in state A1. Then message W2

cannot be transmitted. If any of {T7, T8, T9,T11} are active, then at least

two receivers in block D cannot be active and a DoF of at most 9 is attained.

Suppose none of the transmitters in the set {T7, T8, T9, T11} is active.

Then T12 has to be active. Then at least one receiver among R8,R9,R12

is not active and similar to the previous case, at least one receiver among

R5,R7 must not be active. Hence, a DoF greater than 9 cannot be attained

in this scenario.

Case 4: Both blocks are in state A1. If any transmitters among {T2,

T5, T7, T8} is active, then a DoF of at most 9 is attained. Also if T11

is active, then for any transmitter active in block C, a DoF greater than

9 cannot be achieved. Suppose T9 is active in D and T1 in C, a DoF of

at most 9 is attained. Note that only T4 can transmit W7 and hence one

among the receivers R4,R5,R7 must be inactive. If T6 or T9 is active, two

additional receivers must be inactive and hence a DoF greater than 9 cannot

be attained. If T3 and T12 are active simultaneously then we cannot achieve

a DoF greater than 9. So the only possibility of attaining DoF greater than

9 is when T1,T12 are active. This is possible only when R5 and R9 are the

only inactive receivers in C and D, and T1 transmits W2, T12 transmits W8

and T4 transmits W7. In this case note that either T6′ or T9′ transmits W4

and in the subnetwork containing the 12 nodes numbered 1′ through 12′,

three receivers among {R2′ ,R3′ ,R6′ ,R8′ ,R9′ ,R12′} must be inactive. If any

transmitter among {T2′ , T5′ , T7′ , T8′ , T11′} is active, we have a DoF of at
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most 8. Otherwise at least one among R4′ ,R5′ ,R7′ is inactive leading to a DoF

of at most 8 in this subnetwork. Hence, in the two combined subnetworks,

τ ≤ 3
4
.

4.3 Robustness Analysis

We now discuss the notion of topological robustness defined in [2]. An achiev-

able scheme is robust with respect to a particular network topology, if its

performance does not depend on the existence of interference. Most of the

present cellular networks are designed such that the interfering links are weak.

In some of our proposed schemes, we use the interfering crosslinks to trans-

mit messages. We want to ensure that the same PUDoF can be achieved,

even if some of the crosslinks are missing. We want our proposed schemes

to be robust to the topology of the network i.e., under any configuration of

interfering links.

We show that the results from Section 4.2 hold even when some of the

crosslinks are missing.

Theorem 11. Under the average backhaul constraint B = 4, the following

lower bound holds for the asymptotic PUDoF, under any configuration of

interfering crosslinks,

τ avg(B = 4) ≥ 2

3
.

Proof. We consider the network division in Figure 4.4 and show that in each

subnetwork containing nine nodes, if some of the crosslinks are missing, we

can still achieve a PUDoF of 2
3
, for B = 4, as in Theorem 6. In the achiev-

able scheme used in Theorem 6, each transmitter in the block of six nodes

knows all the other messages. If any of the crosslinks are missing, we modify

the transmit beams accordingly to cancel interference due to the existing

crosslinks, for any possible configuration of the missing crosslinks.

Theorem 12. Under the average backhaul constraint B = 2
3
, the following

lower bound holds for the asymptotic PUDoF, under any configuration of

interfering crosslinks,

τ avg(B =
2

3
) ≥ 4

9
.
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Proof. Consider the network division and the achievable scheme used in The-

orem 5. We show that in each subnetwork consisting of nine nodes, if any

of the crosslinks are missing, we can still achieve a PUDoF of 4
9
, for the case

B = 2
3
, as before. In each subnetwork, only the crosslinks in the block of six

nodes can affect the DoF.

In the interference graph, each edge represents interference in both direc-

tions. We consider the two crosslinks that represent an edge, separately. Let

the links be numbered in the following way. From a node i, the crosslink to

node (i− 1)mod6 is ia, and the crosslink to node i + 1mod6 is ib, as shown

in Figure 4.8. We use i′ to represent the edge between nodes i and i+1mod6

i.e., i′={ib,(i+1mod6)a}. We refer to the achievable scheme of Theorem 5

with M = 2, as scheme 1. Starting with node 1, the links 1b, 2b, 5a, 6a should

not be missing for the scheme to achieve a PUDoF of 4
9
. Similarly, starting

with node 2, scheme 1 can be used as long as links 2b, 3b, 6a, 1a are not

missing. Note that any node can start with the number 1. Let scheme 1.i

represent scheme 1 starting from node i, such that the links ib, (i+1mod6)b,

(i+4mod6)a, (i+5mod6)a are not be missing.

Figure 4.8: In (a), we consider the two-directional edges between every two
nodes in the triangular subnetwork. From each node i, the crosslink to
node (i− 1)mod 6 is ia and to node i+ 1mod 6 is ib. In (b), we consider
separation of the subnetwork into subnetworks when few crosslinks are
missing.

If any of the links are missing, then the block of six nodes exists in any of

the following three states:

State S1: The interference graph of the block can be split into two or more

components.
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State S2: The interference graph of the block cannot be split into smaller

components and does not contain a cycle.

State S3: The interference graph of the block contains a cycle.

Consider the block in state S1. Suppose it contains two components. The

possible cases are as shown in Figure 4.8(b). In case A, we may deactivate

the nodes 4, 5 in the second block. In case B, we may deactivate nodes 2 and

4 to achieve the DoF. In case C, we may deactivate nodes 2, 4 to achieve the

required DoF. There are no crosslinks used to transmit intended messages

in the schemes of cases B and C, and therefore if any other crosslinks are

missing, there is no effect on the DoF. In case A, crosslinks are present only in

the block containing two nodes, and if any of them are missing, the same DoF

can be achieved with a smaller average transmit set size. Note that more

components are obtained by removing crosslinks from the two component

case.

Consider a block in state S2, and suppose that we deactivate nodes 2 and

4. Among nodes 5, 6, if there are crosslinks present, the required message

is made available at the other transmitter, and if any of the crosslinks is

missing, the same DoF can be achieved with a smaller average transmit set

size.

Let the block be in state S3. Note that none of {1′, 2′, 3′, 4′, 5′, 6′} is miss-

ing. If four or more links are missing, there exist at most two elements in

{1′, 2′, 3′, 4′, 5′, 6′} which have both crosslinks present. If they are adjacent to

each other say 1′, 2′, we may deactivate the common node 2 and the central

node 5 in the remaining part. This results in two sets containing two nodes

such that each set has only one crosslink each, so that we can attain a DoF

of 2 in each set, with B = 2
3

in the subnetwork. If they are at a distance of

one, say 1′, 3′, then consider the set in between, say 2′ which contains 2b and

3a. Consider the set of nodes 2, 3 and the network after deactivating nodes

1 and 4. We again have two sets containing two nodes such that each set has

only one crosslink each as in the previous case.

If three links are missing, there exist three elements in {1′, 2′, 3′, 4′, 5′, 6′}
that have both crosslinks present. Suppose these elements are {1′, 3′, 5′} or

{2′, 4′, 6′} i.e., every other element in the set {1′, 2′, 3′, 4′, 5′, 6′}. Without loss

of generality, assume they are {1′, 3′, 5′} and the corresponding missing links

belong to one each among {2b, 3a}, {4b, 5a} and {6b, 1a}. If the missing

links are {3a, 5a, 1a} or {2b, 4b, 6b}, we may use the schemes 2 and 3 (see
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Figure 4.9: Scheme 2 is used when crosslinks from T3 to R2, T5 to R4, T1

to R6 are missing. Scheme 3 is used when crosslinks from T2 to R3, T4 to
R5, T6 to R1.

Figure 4.9). When the missing links are {2b, 4b, 6a}, {2b, 5a, 6b}, {2b, 5a, 6a},
{3a, 4b, 6b}, {3a, 4b, 6a}, {3a, 5a, 6b}, we may use the schemes 1.5, 1.3, 1.3,

1.2, 1.6, 1.2 respectively. If the elements of the set {1′, 2′, 3′, 4′, 5′, 6′} are

consecutive, assume they are 4′, 5′, 6′ and the corresponding missing links

belong to one each among {1b, 2a}, {2b, 3a} and {3b, 4a}. We have eight

possibilities among which {1b, 2b, 3b}, {1b, 2b, 4a}, {1b, 3a, 4a}, {2a, 2b, 3b},
{2a, 3a, 3b}, {2a, 3a, 4a} use scheme 1.5, 1.3, 1.3, 1.6, 1.6, 1.1 and {1b, 3a, 3b},
{2a, 2b, 4a} use scheme 4 and scheme 5 respectively (see Figure 4.10). If only

two of them are consecutive, without loss of generality let the consecutive

ones be 1′, 2′ and the other can be either 4′ or 5′. We may deactivate the

common node 2 and the central node among the remaining, which is node

5. This results in two sets containing two nodes such that each set has only

one crosslink, so that we can attain a DoF of 2 in each set, with B = 2
3

in

the subnetwork.

If two links are missing, there exist two elements among {1′, 2′, 3′, 4′, 5′, 6′}
that have only one crosslink. Suppose they are at a distance two from each

other. Let them be 1′, 4′ and deactivate nodes 3, 6, so that we end up with
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two sets containing two nodes, such that each set has only one crosslink, so

that we can attain a DoF of 2 in each set, with B = 2
3

in the subnetwork.

If they have a distance one, let them be 1′, 3′. Then one crosslink each from

the sets {1b, 2a}, {3b, 4a} is missing. If 2a is missing, scheme 1.1 may be

used and if 1b is missing then scheme 1.4 may be used. If they are adjacent,

let them be 2′, 3′. Then one crosslink each from the sets {2b, 3a}, {3b, 4a} is

missing. If 3a is missing then we may use scheme 1.1, and if 2b is missing, we

may use scheme 1.4 to achieve the required DoF under the given constraint.

If one of the links is removed, let the node at transmitter connected to the

link be T4, then using scheme 1.4 we are done.

Figure 4.10: Scheme 4 is used when crosslinks from T1 to R2, T3 to R2, T3

to R4 are missing. Scheme 5 is used when crosslinks from T2 to R1, T2 to
R3, T4 to R3.
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CHAPTER 5

NETWORK WITH INTRA-CELL
INTERFERENCE

In this chapter we consider interference between the sectors belonging to the

same cell. The interference graph is as shown in Figure 5.1

Figure 5.1: Interference graph for the case of intra-cell interference. Note
that each sector sees interference from six neighboring sectors.

5.1 Flexible Cell Association

Similar to the case of no intra-cell interference, we first study the case of

flexible cell association, by imposing the cooperation order M = 1 and char-

acterizing lower and upper bounds for the maximum achievable PUDoF.
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Theorem 13. The following bounds hold for the asymptotic PUDoF, un-

der restriction to orthogonal schemes, with flexible cell association and no

cooperation, as the number of users goes to infinity,

1

3
≤ τ(M = 1) ≤ 2

5
.

Proof. Lower Bound: Considering a division of the network into triangles,

and by deactivating two nodes in each triangle as shown in Figure 5.2, it

is easy to see that a PUDoF of 1
3

is achieved, similar to the case with no

intra-cell interference.

Figure 5.2: Division of network into triangular subnetworks. We note that
by deactivating the upper nodes in each triangle, a per user DoF of 1

3
is

achieved.

Upper Bound: Consider the division of the network into disjoint fully con-

nected triangles, as shown in Figure 4.3. For any orthogonal coding scheme,

we note that any fully connected triangle in the network is in one of the

following states:

State 0 (inactive triangle): All transmitters and receivers in the triangle

are inactive.

State 1 (self-serving triangle): Exactly one transmitter in the triangle sends

a message to exactly one receiver within the triangle. None of the other
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transmitters or receivers can be active in this triangle.

State 2 (serving triangle): At least one transmitter in the triangle serves a

receiver in another triangle, and there are no active receivers in the triangle.

State 3 (served triangle): At least one receiver in the triangle is being

served by a transmitter in another triangle, and there are no active trans-

mitters.

Figure 5.3: Division of the network into triangular subnetworks. Node c in
triangle Sc in state 2, serves neighboring receiver b in a different triangle Sb

in state 3. One neighboring node a in Sb is inactive due to this
transmission, which results in PUDoF of 2

5
.

For the triangles in state 1 and state 0, the number of active receivers is

bounded by the number of triangles, i.e., one-third of the number of users.

For every transmitter c that is active in a triangle Sc in state 2, there

exists a neighboring receiver b in a different triangle Sb in state 3 that is

being served by it. Furthermore, there exists exactly one neighboring node

a in either Sb or Sc, whose transmitter and receiver are rendered inactive

owing to this transmission.

We now consider the following cases:

Case 1: There is another neighboring transmission (from c′ to b′) between

a triangle containing node a and a neighboring triangle, which requires node

a to be inactive. In this case, we have two transmissions among five nodes,

giving a PUDoF of 2
5
.
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Case 2: No other transmission between a triangle containing a and another

triangle results in node a being deactivated. Then we group a, b, c into a

triangle of type state 1 with PUDoF of 1
3
.

For any scheme, the network can be rearranged into a combination of

disjoint groups of three and five users, such that the PUDoF for each group

is at most 2
5
. It follows that τ ≤ 2

5
holds asymptotically for any choice of cell

associations and interference avoidance schemes.

5.2 Flexible Message Assignment with Cooperation

In this section, we propose interference avoidance schemes that use flexible

assignment with cooperative transmission, under a cooperation order M ,

and use these schemes in an appropriate combination to obtain a scheme

that satisfies an average backhaul load B.

5.2.1 Lower Bounds

Theorem 14. Under the maximum transmit set size constraint M = 3, the

following lower bound holds for the PUDoF, as the number of users goes to

infinity,

τ(M = 3) ≥ 5

12
.

Figure 5.4: Division of cellular network into subnetworks containing twelve
nodes each. In each subnetwork, seven nodes are deactivated (red nodes),
and using linear beamforming, the remaining seven messages are sent
interference-free.

Proof. Consider the division of cellular network into non-interfering subnet-

works containing twelve nodes each as shown in Figure 5.4. Within each
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subnetwork, seven nodes are deactivated in a way that leads to further sub-

division into non-interfering blocks of two and three nodes, within each sub-

network. Using zero-forcing linear beamforming, with M = 2 in the block of

two nodes and M = 3 in the block of three nodes, five of the messages are

sent interference-free, leading to a PUDoF of 5
12

with B = 13
12

.

In Theorem 15, we present an interference avoidance coding scheme that

uses a smart message assignment, aided by cooperative transmission, to

achieve scalable DoF gains. Note that the lower bound on the achievable

PUDoF is greater than the 2
5

upper bound of the case without cooperation,

without the need for extra backhaul load.

Theorem 15. Under the average backhaul constraint B = 1, the following

lower bound holds for the PUDoF, as the number of users goes to infinity,

τ avg(B = 1) ≥ 11

27
>

2

5
.

Proof. Consider the message assignment strategy from Theorem 13 with B =
1
3

and τ ≥ 1
3
, and the message assignment strategy from Theorem 14 with

B = 13
12

and τ ≥ 5
12

. A convex combination in the ratio 1 : 8 of these schemes

gives B = 1 and a PUDoF of 11
27

for the entire network.

In the achievable scheme in Theorem 13, we have B = 1
3

and a PUDoF of
1
3
. Since B < 1, we can have a scheme that achieves a greater PUDoF by

overloading the network and combining these schemes gives us τ(B = 1) > 2
5
.

Theorem 16. Under the average backhaul constraint B, the following lower

bound holds for the PUDoF, as the number of users goes to infinity,

τ avg(B) ≥ 2B

3(B + 1)
.

Proof. Consider the scenario where we deactivate every third row of nodes in

the graph as shown in Figure 5.5. Then we are left with blocks of two rows

out of which we deactivate a column (set of two nodes) periodically after

B nodes. Considering a repeating block of 2B nodes, we see that by linear

transmit beamforming with M = 2B, a PUDoF of 2
3

B
B+1

can be achieved.
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Figure 5.5: Division of the network into subnetworks.

As in the previous chapters, the proposed schemes are one-shot zero-

forcing beamforming schemes. In these schemes, some messages are being

sent interference-free while few messages not being transmitted. Fairness is

maintained by deactivating different sets of receivers in different sessions,

e.g., in different time or frequency slots.

Robustness: All the achievable schemes discussed in this chapter involve

dividing the network into non-interfering subnetworks, in which all the mes-

sages are known at all the transmitters. If some of the interfering cross

links are missing, the transmit beams can be designed taking the missing

interference links into account, so that the same PUDoF can be achieved,

while satisfying the same average backhaul load constraint. Hence, all the

achievable schemes discussed in this chapter are topologically robust.

5.2.2 Upper Bound

In order to obtain a converse for τ avg(B), we need upper bounds on τ(M)

for higher values of M . As a first step, we derive a bound on τ(M = 2).

Theorem 17. Under the maximum transmit set size constraint M , the fol-

lowing lower bound holds for the asymptotic PUDoF, under restriction to

interference avoidance schemes,

τ(M = 2) ≤ 14

19
= 0.73.
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Proof. Consider two concentric hexagons with a total of 19 nodes as shown in

Figure 5.6. The inner hexagon consists of seven nodes, out of which we refer

to the one at the center of the hexagon as the central node. For Lemma 3 to

hold, VTi
≤ 2. We show that a sum DoF greater than 14 cannot be attained

among the 19 nodes. If any of the inner hexagon transmitters is active, then

at least five receivers must be deactivated and our claim holds. Assume

none of the inner hexagon transmitters are active. Then the central receiver

cannot be active. If none of the outer hexagon transmitters are active, then

the inner hexagon receivers cannot be active and our claim holds. For every

outer transmitter that is active, and transmitting to an inner receiver, at

least one receiver per transmitter is deactivated, and the sum DoF cannot be

larger than 14. In all cases, the sum DoF does not exceed 14 in the concentric

hexagons.

Figure 5.6: Division of the network into hexagonal subnetworks. The
central node is colored by red.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Interference management is crucial for meeting the increasing demand for

data rates in a cellular network. In this thesis, we focused on interference

management using cooperative transmission in the downlink of a cellular

network. Using the DoF criterion, we analyzed the capacity gain achieved

through cooperative transmission in cellular networks of practical signifi-

cance.

We studied a two-dimensional hexagonal sectored cellular network under

both the assumptions of intra-cell interference and no intra-cell interference.

We showed that one-shot linear beamforming schemes can be used to achieve

DoF gains in large networks. The proposed schemes rely on a flexible de-

sign of the cellular backhaul, which takes into account the topology of the

network to make decisions about associating mobile users to transmitters.

The schemes use cooperative transmission to cancel interference, through an

assignment of messages to transmitters that requires minimal or no extra

backhaul capacity. We also discussed the robustness of the schemes, as some

of the schemes rely on the interfering links for communication.

In [2], the DoF gains that can be achieved in the uplink was studied us-

ing interference alignment and cooperation between base station receivers

through the exchange of decoded messages over the backhaul link. We be-

lieve that the insights drawn from the results in this thesis can lead to a novel

design for interference management schemes for the cellular downlink, while

the message passing framework of [2] is used in the uplink.

The results derived in this thesis can be extended to other two-dimensional

networks with higher connectivity and also to networks where the nodes have

multiple antennas. We need upper bounds on the PUDoF under constraints

on the cooperation order M , in order to find upper bounds on the PUDoF un-

der constraints on the average backhaul load B, for all interference avoidance

schemes.
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Our thesis assumes the availability of perfect channel state information

(CSI) at the base station transmitters. The performance of the proposed

schemes can be analyzed when perfect CSI is not available at the transmitters

and also for practical values of signal-to-noise ratio (SNR). We believe that for

practical SNR values, the message assignment of our proposed schemes can

be used in combination with precoding schemes that maximize the signal-to-

interference noise ratio (SINR) at the receiver, to approach the rates promised

by the DoF analysis in this thesis.
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