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Abstract

This thesis presents an investigation by simulation of a unpolarized fermionic unitary gas system composed

of two interacting fermionic species. While these species do not interact amongst themselves, they interact

with each other using a pairwise zero-range delta function potential that has been tuned to unitarity i.e.the

scattering length as = −∞. A path integral Monte Carlo simulation of such a system is performed using

an exact novel zero-range, delta function pair propagator which has been tuned to the unitary limit so that

essentially all interactions amongst the interacting particles are comprised of s-wave interactions. This tuning

in some sense yields the simplest imaginable interacting fermionic system which out to display features

that would apply universally to interacting fermionic particles with particular interest within this field

of study being in understanding the unitary BCS-BEC crossover. Numerical and ergodic challenges to

sampling a divergent approximate path integral are discussed and solutions are proposed, implemented and

explored. This thesis represents a step closer to this understanding by investigating this system with this

novel propagator in a fixed-node path integral Monte Carlo framework and comparing to earlier work.
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Chapter 1

An Introduction to the Physics of
Cold Atom Systems

1.1 Motivating Background and Applications

While the bulk of this thesis concerns the path integral Monte Carlo (PIMC) simulation and study of an

unpolarized fermionic cold atom system in the unitary limit, it is worthwhile to review the origins of the

physics which underlies and justifies this study, what is broadly referred to as “cold atom systems” – a field

of study which has seen tremendous growth over the past two decades. This introductory chapter is intended

as a broad, non-exhaustive overview of the history, applications, and experimental methodology of trapped

cold atom systems; theoretical concerns will be considered in subsequent chapters.

1.1.1 A Historical Introduction

As has already been noted, the past two decades have seen tremendous advancement and growth in advance-

ments, growth and interest in the physics of cold atom systems. Within the physics community, the general

interest in this field has grown so much that it has been termed to be a “third quantum revolution [1],”

which possible hyperbole aside, nonetheless, demonstrates the clear excitement generated by work within

this field. Consequently, adopting a prudent outlook towards this field, it seems very worthwhile to take a

closer look at the particulars of this field, particularly when due consideration is given to the prior relative

sleepiness (in this author’s opinion) of AMO (atomic, molecular, and optical) physics.

The arguable transformation of traditional AMO physics from a peripheral field to a central one within

the physics community has generally followed two great changes. The initial cause of this upsurge of interest

was a technical one and happened in 1995. In that year, a Bose-Einstein condensate (BEC) in dilute atomic

gases was first made [2–4], and ultimately resulted in Nobel prizes for the principle investigators of that

work, Cornell, Wieman and Ketterle. BECs had until 1995 remained an object solely of theoretical curiosity

and were subject to considerable debate in terms of whether or not they were experimentally realizable. The

second great change in AMO physics was a financial one and followed naturally from the first: this field saw

an increase in funding by 26% in inflation adjusted terms from 1995 to 2005 within the United States in
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an era when other physical science funding stayed roughly constant or decreased (significantly in the case

of high energy physics) in those same terms [5]. Thus, this increase in funding naturally brought about a

flurry of activity and brought interest to this specialty from outside its traditional confines [5].

After BECs were first observed, the proverbial flood gates opened, and further stimulated by the afore-

mentioned funding increase, other advances soon followed. To give just a few highlights: the fermionic

corollary to BECs, the Fermi-Dirac condensates (FDCs) were first observed in 1999 by DeMarco and Jin [6],

Feschbach resonances were used to tune interactions between constituent trapped atoms [7, 8]. A pairing

scale gap measurement was performed in 2004 [9], which was soon followed by a measurement of vortices to

identify the superfluid state in 2005 by Zwierlein et. al. [10]. Concurrent with these experimental advance-

ments, modern theoretical work in this now experimentally fertile area soon blossomed due to the possibility

of experimental verification and the funding increase.

However, much of this theoretical work was aimed not so much at the intrinsic possibilities of AMO

type-systems, but at problems in other fields of physics. This was possible because many toy models from

other areas of physics became experimentally accessible due to the technical and experimental advances in

AMO physics, of course, one could argue the converse that these advances happened because other fields

saw potential in cold atom systems to access systems. From either standpoint, the theoretical considerations

of other fields lead naturally to the applications of cold atom systems within the physics community.

1.1.2 Applications of Cold Atom Systems

In this author’s view as has already been alluded to, much of the worked performed within the cold trapped

atom portion of the AMO subfield has ultimately been performed to serve and enhance programs of research

from outside of the AMO specialty with a particular emphasis upon the goals and interests of condensed

matter physics community. This statement is not meant as a criticism, but as a point of departure for

understanding the orientations, inclinations, and motivations of this nascent field.

The growth of this specialty has been something of a windfall for modern condensed matter physics.

Condensed matter physics as a field of inquiry has been severely challenged by the theoretical and, in many

cases experimental, intractability of its modern signature problems. Many of these problems ultimately

stem from many-body theory such as strongly correlated electron systems and result in a cascade of further

complications as in the fermionic pairing of high-temperature superconductivity to give an example. Because

cold atom systems allow experimentalists to deftly tune the interactions among their cold atom particles,

much hope within condensed matter physics that these systems will allow the eventual direct simulation

many of the intractable toy models used in condensed matter physics by means of direct experimentation.
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Specifically, since cold atom systems have tunable interactions which can be made to mimic many of

the idealized relationships and interactions typically imposed upon the toy model systems, they may be

used to physically simulate many of these same models. In essence, these systems are analog quantum

computing devices for the simulation of very specific toy models and can be viewed as the first experimentally

realizable and scalable many-body rung of quantum computing, albeit with the understanding that these

are single use, analog devices. In recent years, observations to this effect have led to serious inquiries into

the computational complexity of model Hamiltonians [11] as well as the full extent and ultimate physical

relevance of underlying toy models within condensed matter and other physical fields of inquiry such as

nuclear or particle physics [12].

A Listing of Applications

Amongst the systems in condensed matter, materials, and chemical physics that have seen applications

and/or interest for study with cold atom systems are [1]:

One-dimensional systems: One dimensional systems are a well-developed and classical area of theoretical

condensed matter physics (CMP) research and feature many exactly solvable models and approaches. In par-

ticular, this area has been a test bed for many developments in theoretical CMP. In particular, Bethe ansatz

and quantum inverse scattering methods have allowed the exact solution of many systems [13], the density

matrix renormalization group has been remarkably effective for the numerical solution of one-dimensional

systems [14], and approximate analytical methods such as conformal field theory and bosonization [15] have

further investigation into otherwise intractable systems and regimes. Nonetheless, many experimental ques-

tions remain and are being addressed by one-dimensional cold atoms gases in particular TonksGirardeau

gases which are repulsive bosonic systems and are interesting due to their superficially counterintuitive prop-

erty of being fermion-like have been studied in experimental detail with cold atoms [16] as they are a system

which is difficult to study experimentally in any other way to compare with theoretical and numerical results.

Phase-transitions in two-dimensional systems: The Mermin-Wagner-Hohenberg theorem predicts that

continuous systems do not exhibit long-range order in temperatures above absolute zero. They do however

allow for possibility of undergoing a transition which decays algebraically instead of exponentially, the

Kosterlitz-Thouless-Berezinskii transition. While said transition has already been observed in a macroscopic

liquid helium system, an atomic scale resolution of the system was not accessible, and had to wait to be

observed in a cold atom gas system [17].

Various perturbations upon spin and Hubbard-type models: Due to the tunability of the interactions

amongst the constituents of cold atom gases, a natural goal has been the experimental detection and ob-
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servation of the various spin and Hubbard-type models which serve as models for condensed matter spin

and strongly correlated systems. Because these models are unsolved even in their most basic form in 2 or 3

dimensions, using cold atom systems to simulate these ”simple” systems is highly desirable [13,15].

Direct observation of anyons and other fractional quantum Hall effect related phenomena: While frac-

tional quantum hall effects are well studied today and have served to even secure a Nobel prize for Laughlin,

Störmer, and Tsui in 1998 [18], many of their correlated effects as well as anyonic excitations remain to

be directly observed. Rotating cold atomic gas states have been suggested to realize and observe various

aspects of fractional quantum hall effects [19].

Realizing systems whose disorder is directly probeable and reproducible: The possibility of experimentally

probing exactly tuned and experimentally reproducible disordered systems is a tantalizing one due to the

importance that disorder plays in the phenomena condensed matter physics. In particular, cold atom systems

have been proposed or used to observe disordering phenomena as diverse as Anderson localization and Bose

glasses. More importantly due to the previously mentioned tunability of the underlying systems, cold atom

systems justify as experimentally realizable the theoretical exploration of potentially novel and unimagined

disordered physical states and regimes.

Quantum computation and topological systems:Amongst the grand goals of modern physics is the con-

struction and physical understanding in detail of a quantum computer as these computational systems are

expected to have significant advantages over classical computers [20]. Unfortunately, realizing quantum

computers using standard quantum states has proven to be difficult due to decoherence [20]. Consequently,

topological states which cannot be locally decohered are of considerable interest. Certain spin systems which

possess topological states are theoretically realizable as cold atom systems and hence there is hope that they

may be eventually realized in these same systems and made to perform quantum computations [21,22].

Superchemistry : Cold atom gas systems also present opportunities for chemistry. Specifically, they allow

the creation and careful control of simple two-body and higher chemical reactions from a controlled intial

state to a controlled final state. Effimov trimers have already been observed in trapped Cs atoms [23] and

further work on the creation of deeply bound molecules has been done by Danzl et.al. [24].

Of course, in order to realize the preceding systems much work both theoretical, and in particular,

experimental will be required to advance the art of the field. Consequently, to fully respect this work, an

introduction to the experimental methodology and its theoretical underpinnings is desirable which is the

subject of the next section. Suffice to say these systems are relevant as experimental probes for many-body

systems because they allow for a hitherto unprecedented degree of tunability of their underlying interactions

and structure.
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1.2 Methods in Cold Atom Systems

In this section, the experimental methods used to create and probe cold atom systems will be presented in

two subsections. The first subsection will qualitatively describe the experimental methods used to create cold

atom systems via optical trapping. The second subsection will present the underlying technical details to

these methods and flesh them out from a physical standpoint. Theoretical approaches to cold atom systems

with an emphasis on those applied to cold fermionic unitary gases will be detailed in a subsequent chapter.

1.2.1 Experimental Methods for Cold Atom Systems: A Qualitative Overview

Trapped cold atom systems are an important means to investigate specific aspects and effects of many-

body quantum statistical mechanics. Due to their tunability, they allow experimentalists to probe physical

regimes that had prior to their development been only investigated from a theoretical standpoint or under

very restricted and system specific conditions. Cold atoms are typically trapped using either magnetic fields

or the external potentials created with laser light.Typically the atoms are cooled using evaporative and laser

cooling. In the evaporative case, the cooling effect works by allowing the atoms to redistribute their energy

amongst themselves so that the fastest and hence most energetic are allowed to escape the trap and carry

their energy away. In the case of laser cooling, an atom is hit by a specially tuned laser beam of photons

which causes the atom to re-radiate a photon of higher energy and thus cool down i.e. slow the atom

in question. These methods have been combined to create systems with temperatures in the nanoKelvin

range. Of particular importance to the scientific viability of these systems are Feschbach resonances between

particles which allow the interaction strength between those same atoms to be tuned utilizing an external

magnetic field. Combining these tuned interactions with clever choices in the trapping laser arrangements,

choice in constituent atoms, and the external magnetic field allows for a wide variety of interesting cold atom

systems to be probed [1].

1.2.2 A Technical Approach to Experimental Methods for Cold Atom Systems

That said many of the technical specifics of cold atom interactions are required for a deeper understanding of

this field. This next section serves to act as a deeper technical description of the experimental methodology

of cold atom systems and draws from unless otherwise cited Pethick and Smith [25] and Pitaevskii and

Stringari [26] 1.

1This subsection closely follows the presentation given by Shenquan Zhou in his thesis [27].
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Methods for Atomic Cooling

Many of the constraints and requirements for atomic cooling are dictated by ultimate requirements of the

underlying traps. Of particular importance for cold atomic systems are the experimental constraints on

magnetic field strength which are much less than 1 T, this results in a constraint on the average energy of

the atoms and hence the temperature. Assuming a 1 T magnetic field requires that in order for the atoms

to be trapped that they be cooled to about a temperature T < µBB ≈ 0.67 K/T ×1T = 0.67K. For optical

traps, the experimental constraints require that the frequency of the trapping laser be chosen away from

atomic resonances. Moreover, due to the energetic shallowness of the optical traps, on the order of a µK,

the atoms must be cooled by other means before trapping [1, 25,26].

As an added complication the effectiveness of these cooling methods are typically applied in a hierarchical

fashion due to the standard tradeoff between efficiency/effectiveness and performance. In this case, Doppler

cooling can cool the most number atoms with the finest control, Sisyphus cooling cools fewer atoms but to

a lower temperature and finally, evaporative cooling can reach temperatures low enough for Bose-Einstein

condensates to form, but is the least efficient of the investigated methods [25].

Doppler Cooling : Doppler cooling is an optical cooling technique which utilizes the Doppler wave effect to

cool atoms. In this method, the atom subject to cooling is effected by two counter-propagating laser beams

of equivalent frequency and intensity. The frequency of these beams are slightly offset from the energy of

electronic transition between an excited state and ground state.

The laser radiation field of the beam can be thought of as exerting a frictional force on the atoms in

a configuration known as optical molasses. In essence, the laser beams are tuned such that a transition

is more likely to occur if the atom in question is moving such that the detuned laser beams’ frequency is

matched with the energy of the related transition by the Doppler shift induced by the atom’s movement. As

this effect occurs in either of the direction’s of the atom’s one dimensional Cartesian movement, it localizes

narrows range of the average kinetic energy of the atom and hence cools the system. The lowest temperature

reachable by this technique is found by balancing the the heating rate with the cooling rate and relating the

resulting momentum’s mean-square value to a diffusive random walk which ultimately allows the decay rate

of the excited state transition state to be related directly to the temperature as,

kT =
~Γi
2
, (1.1)

where Γi is the constant associated with decay transition’s Lorentzian description from excited state |i〉. For

the case of 6Li the, the Doppler cooling temperature floor is 140 µK; for point of comparison in Na it is 480
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µK.

Sisyphus Cooling : Sisyphus cooling while related to and incidentally discovered by analyzing data from

Doppler cooling is a mechanism through which atoms can be cooled using laser beams below the temperatures

expected to be achieved by Doppler cooling. When it was first observed as a byproduct of Doppler cooling,

it was both welcomed since that technique seemed to work better than expected and disquieting because

something was clearly wrong with the underlying analysis of Doppler cooling. Eventually, Sisyphus cooling

was explained by considering the energy lost by moving the atoms through an inhomogeneous laser radiation

field since in effect the laser radiation induces not a constant but an oscillating periodic potential. In effect

the atoms lose kinetic energy by being repeatedly being moved via optical pumping from periodic potential

maximas to lower energy states which obviously decreases kinetic energy and thus temperature resulting in

a thermal energy of about the recoil energy,

ER = kTSisyphys =
~2q2

2m
, (1.2)

where ER describes the energy added to that of the atom after absorbing a photon of momentum ~q. This

results in a cooling effect which can reach temperatures several orders of magnitude less than that of Doppler

cooling which typically range from 0.1 to 1.0 µK.

Evaporative Cooling :

Finally after laser cooling has been applied to cold atom systems, the next and typically final stage of

cooling applied to these systems is evaporative cooling. The method works in essentially the same way

that helium boils off from the earth at ambient temperatures, with a modicum of control provided by

a radiofrequency (RF) induced spin flip which on the atomic spin state which can be used to eject the

heated atoms in question. In essence, evaporative cooling works bleeding atoms with higher than average

energy from the trap. The experimenter allows the atoms to collide and scatter and exchange energy so

that a Boltzmann-Maxwell distribution is achieved. Next because the Zeeman effect in an inhomogeneous

magnetic field causes a resonant frequency dependent upon the position of the atom when a tuned RF pulse

is applied to the system and the internal spin state of an atom is changed from a low-field to a high-field

seeker, the higher energy atoms may be selectively ejected by being more likely to be in higher energy

positions in the magnetic trap. This method can then be applied repeatedly to the same system by tuning

the RF pulse to selectively eject atoms with lower and lower internal energies.

Further complicating this cooling technique are the quantum statistics or wavefunction symmetry of the

particles being cooled. In the case of fermions, the antisymmetry of the particles’ wavefunction prevents
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the collision of the underlying particles so an intermediary particle to help with the energetic rearrangement

must be included in the system, and then once the system of interest is cooled, these helper particles must

be depending on the specific experiment ignored, ejected or have the secondary particles used be the same

fermionic species in a different hyperfine state which themselves must then be ignored, ejected, or transitioned

into the state of actual interest. This secondary form of evaporative cooling is called sympathetic cooling.

Background Data on Atoms Used in Traps

Much current and past experimentation in fermionic cold atom systems have occurred in cold alkali atom

systems such as rubidium, Rb, sodium, Na, and potassium, K. These are neutral atoms containing an

equivalent number of electrons and protons. Due to this equivalence in electrons and protons, it is the

neutron number within the nucleus which determines the particle statistics of this composite atomic system.

Specifically, if the number of neutrons is even, the atom is a boson; if the number of neutrons is odd, it is a

fermion. The table below lists various alkali metals along with experimentally relevant values [25,26]

Table 1.1: Neutral Alkali Metals: This table presents various alkali metals used in optical trapping experi-
ments. Z denotes the proton number, N is the neutron number, I is the nuclear magnetic moment in units
of the nuclear magneton µN = e~/2,p and νtextrmhf is the hyperfine splitting

Isotope Z N I µ/µ N νhf (MHz)

1H 1 0 1/2 2.793 1420
6Li 3 3 1 0.822 228
7Li 3 4 3/2 3.256 804

23Na 11 12 3/2 2.218 1772
39K 19 20 3/2 0.391 462
40K 19 21 4 -1.298 -1286
41K 19 22 3/2 0.215 254

85Rb 37 48 5/2 1.353 3036
87Rb 37 50 3/2 2.751 6835
133Cs 55 78 7/2 2.579 9193

Hyperfine Splitting: An Introduction

The underlying effect used for the trapping and subsequent tuning of the interactions between trapped

atoms is hyperfine splitting. Hyperfine splitting may be described as the collection of effects due to external

electromagnetic field and spin couplings which result in small energetic shifts in the level structure of ions,

atoms, and molecules. These effects are important in cold atom systems as they give experimentalists ways

to manipulate and control systems using external fields. Specifically, because they are so important for the
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performance of cold atom experiments an overview will be given in the following sub-subsections.

Hyperfine Splitting for Alkali Atoms without an External Field

Due to their relatively simplified hyperfine splitting structure, alkali atoms are frequently used in cold atom

systems. This simplified hyperfine structure for alkalis descends from their simple ground state electronic

structure composed of closed shells and a single electron in an s-shell so that electron has an angular

momentum quantum number L = 0 which is important for subsequent investigation. As an example,

starting with the typical ground state electronic configuration of Li a simple alkali atom is 1s22s1. Hyperfine

interactions in this context arise when the electron spin couples to the nuclear spin and the electromagnetic

splitting is particularly strong for alkali metals because the open-shell electron is in an s orbital configuration

has a comparatively high probability of being close to the nucleus. Moreover, since the valence electron has

no angular momentum, it doesn’t induce a magnetic field on the nucleus. Thus, the coupling electron-nuclei

coupling is due solely to the magnetic field caused by the electron spin. The coupling of the electronic spin

S = 1/2 to the nuclear spin I then yields F = ±1/2 for the quantum number F for the total spin, according

to the rules for addition of angular momentum.

The simplest Hamiltonian used to model hyperfine interactions is given by

Ĥhf = AI · J, (1.3)

where A is the system specific hyperfine constant and I and J are the nuclear spin and electronic angular

momentum operators. The terms given in eqn. (1.3) may be expressed in terms of the total angular

momentum operator F = I + J as,

I · J =
1

2
(F (F + 1)− I(I + 1)− J(J + 1)) . (1.4)

For the alkali metals given in table (1.1), the absolute magnitude for the electronic spin, S and electronic

angular momentum J is 1/2 which leads to the evaluation of eqn. (1.3) for splitting between F = ±1/2 is

given as,

∆Ehf = EI+ 1
2
− EI− 1

2
= hνhf = A (I + 1/2) . (1.5)

The values of ∆Ehf for relevant alkali metals are given in the aforementioned table (1.1).
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Hyperfine Splitting for Alkali Atoms with an External Field: The Magnetic Trapping of

Atoms

Within trapped cold atom systems, atoms are typically trapped within external magnetic fields via the

Zeeman effect. Consequently when trapping atoms in an external magnetic field the hamiltonian given by

eqn. (1.3) must be augmented to account for the effects of that same field as,

Ĥhf = AI · J + CJz +DIz, (1.6)

where

C = gµBB, (1.7)

and

D = −µ
I
B, (1.8)

where z is the orientation of the magnetic field, µB = |e|~/2me is the Bohr magneton, and g is the electron

structure factor and is about g = 2 + 2α/π to the leading order term; the effects of nuclear spin are small

and despite being typically neglected are presented here for point of reference and to include effects of the

magnetic field on the nucleus. The energetic contribution of the first perturbative term may then be solved

for as,

〈F,mF |2µBJzB|F,mF 〉 = gLµBmFB, (1.9)

where mF is the eigenvalue of Fz and

gL =
F (F + 2) + J(J + 2)− I(I + 1)

2F (F + 1)
(1.10)

is the Lande factor.

Furthermore, the entirety of eqn. (1.6) may be solved via diagonalization for arbitrary magnetic fields

[25, 26] using a complete set of states denoted by |mI mJ〉, the solution of which will be suppressed here

due to lengthy algebra. Once solved, however, the solution and its description of energy levels and states

serve as a convenient guide to tuning the external magnetic field and optimizing the trap. The depth of a

magnetic trap is determined by the minimum of the Zeeman energy and due to experimental constraints on

magnetic fields are typically on an energy scale much less than 1 K. Thus, the atoms must be cooled prior

to magnetic trapping typically by either evaporative or laser techniques.
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Optical Trapping of Atoms

Optical traps utilize the interaction of atoms with electromagnetic radiation fields typically emitted by lasers

tuned away from resonance and higher than the hyperfine splittings to trap atoms in an external potential.

The Hamiltonian describing this atom-laser field interaction is the dipole approximation,

ĤDipole = −d · E , (1.11)

where E is the electric field operator and d is the dipole operator. Ultimately, using second-order perturbation

theory this dipole interaction causes an energy shift in the ground state as

∆E0 = −1

2
α(ω)〈E2(r, t)〉t (1.12)

where 〈· · · 〉t means the time average and

α(ω) =
∑
i 6=0

|〈i|d · ε̂|0〉|2
(

1

Ei − E0 + ~ω
+

1

Ei − E0 − ~ω

)
(1.13)

is the dynamical polarizability. If the frequency of α(ω) is close to an atomic resonance, it is reasonable to

ignore the non-resonant transitions and reduce eqn. (1.13) to

α(ω)|near resonance ≈
|〈i|d · ε̂|0〉|2

Ei − i~Γi/2− E0 − ~ω
(1.14)

where −i~Γi/2, the finite lifetime due to spontaneous emission of photons, is put in using phenomenological

considerations by allowing the excited state energy to have both real and imaginary terms.

The energy level shift in this formalism is then given by

V0(r) = −1

2
R[α(ω)〈E2(r, t)〉t] (1.15)

where under the previous approximation scheme, the detuning δ the difference between the laser frequency

and the resonant frequency may be defined as

δ = ω − Ei − E0

~
= ω − ωi,0. (1.16)

and red and blue detuning refer to δ < 0 and δ > 0, respectively. The perturbative methodology remains

used to derive these equations remains valid so long as |〈i|d · ε̂|0〉| << ~
√
δ2 + Γi/4, which is typically true
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due to the weak electric fields present in most cold atom experiments.

These atom-laser field interactions allow an experimentalist to create a radiation field with a maximal

intensity in space. Detuning the laser light to the red causes the ground-state atom-laser field potential to

have a spatial mininum in V0(r) which serves as a trap for those atoms. These traps are useful because they

allow atoms to interrogated by both external light interactions and magnetic field potentials. This state

of affairs is convenient since at least for the alkali atoms the ground state is virtually independent of the

magnetic substate, due to the ground state being in an s-orbital state. This independence subsequently allows

the experimentalist to change the magnetic field depending upon the underlying needs of the experiment. An

example is that one may cool the system using an inhomogeneous field and then apply a uniform magnetic

field for the purposes of utilizing Feschbach resonances.
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Chapter 2

Cold Fermi Gases with Attractive
Interactions and the BCS-BEC
Crossover

2.1 Introduction and Overview

Cold fermionic gases with attractive interactions are currently being explored within the context of condensed

matter physics due their ability to mimic many of the fundamental features underlying strongly correlated

electron systems. These systems present, to both experimentalist and theorists, forms of strongly correlated

interactions, which may be considered to be “simplified” from a theoretical standpoint due to the rudimentary

and on/off nature of their interactions, features which are not typical of traditional, experimental condensed

matter interactions. Often, these systems require quantum statistical mechanical analysis, and thus, must

necessarily satisfy certain requirements to be considered within this regime. In the case of cold fermi gases,

the systems are quantum degenerate and thus feature an interparticle separation r0 ∝ ρ−1/d, where ρ is the

density of a d-dimensional system which is comparable to the de Broglie wavelength, λdB =
√

~2/mkbT ,

of the comprised particles which results in a high probability of fermionic particle exchange in their study

and thus requires the inclusion of this phenomenon in their analysis. Within the context of condensed

matter physics, superconductivity and superfluidity in liquid 3He are among the systems which satisfy these

requirements. For this chapter, however, the main subject of interest will be cold fermionic gases at unitary.

From an abstract point of view, binding all of these systems together are their propensity to form

composite bosonic particles due to a weakly attractive interaction that is either innate to the the system

in question or which arises as a composite force due to other excitations. After the formation of these

composite bosons, subsequent macroscopically detectable states, like superfluids, may be formed. Within

this chapter and thesis, two forms of fermionic pairing are being studied strongly bound and weakly bound

pairs. Roughly speaking, a the strongly bound fermionic pair have a spacing which is much less than the

interparticle spacing of the system in question such that these pair may be considered to be a dimer as is

seen in a Bose-Einstein condensate of composite bosons. A weakly bound pair is a little more conceptually

subtle where the composite boson is formed of weakly bound fermionic pairs in position space, although

they can be strongly bound in momentum space [28].
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Within condensed matter physics, it has been of historical interest to understand and probe the regime

in which weakly bound fermionic pair transition to strongly bound pairs both as a function of temperature

and other parameters [29,30]. This thesis will specifically focus upon results related to a temperature based

transition, although results from other orientations such as those seen in the T = 0 BCS variational wave

function will be considered as well. To consider this effect, this chapter is structured as follows: The first

section will present a rudimentary background on quantum mechanics for fermions. The next section will

consider Bose-Einstein condensation bosonic and composite bosonic particles; this will be followed by a

section which describes and derives the BCS theory of superconductivity. Finally, a brief overview of the

crossover between BCS states and Bose-Einstein condensation will be presented, which will be followed by

a more in depth presentation of experimental results and theoretical results related to this crossover.

2.2 Quantum Statistical Mechanics for Fermions

A basic description for non-interacting fermionic statistical mechanics may be begun with the average occu-

pation number for a fermion species given as

f(ε, T ) =
1

eβ(ε−µ) + 1
(2.1)

where ε is the quantum state energy and T is the temperature. β = 1
kBT

and the chemical potential µ is

determined implicitly by

N =

∫
g(ε)f(ε, T )dε, (2.2)

where g(ε) is the density of states as a function of quantum state energy. Moreover this density of states

formalism may be used to calculate other thermodynamic quantities as follows

〈u〉 =

∫
U(ε)f(ε, T )dε (2.3)

where 〈u〉 is a general thermal expectation value and U(ε) is a function which typically combines the density

of states with an estimator for the quantity of interest as a function of energy, ε. Using these expressions with

the standard thermodynamical formalism allows one to calculate any of the quantities typically associated

thermodynamics for fermionic systems so long as one is able to calculate or otherwise has available the

density of states g(ε).
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As an example for a non-interacting, non-relativistic fermionic system of spin S the density of states for

arbitrary dimensions, d, is given by

g(ε) =
(2S + 1)V πd/2(2m)d/2

(2π~)dΓ(d2 )
εd/2−1, (2.4)

which allows the calculation of the Fermi energy εF at T = 0 as

εF =
~2k2

F

2m
=

~2

2m

(
Γ(1 + d

2 )(2π)d

(2S + 1)πd/2
N

V

)2/d

(2.5)

using eqn. (2.2) and the definition of fermi energy as being chemical potential µ at T = 0. Specializing this

equation to 3 dimensions yields

εF3D
=

~2

2m

(
(6π)3

(2S + 1)

N

V

)2/3

. (2.6)

for the Fermi energy and

E0 =

∫ εF

0

εg(ε)dε =
d

d+ 2
NεF (2.7)

for the energy after returning to arbitrary dimension, d, which by definition is the ground state energy. The

grand canonical potential, Φ(T, µ), for this system is

Φ(T, µ) = −2

d
E(T, µ) = kBT

∫ ∞
0

g(ε)ln
(

1− e−
(ε−µ)
kBT

)
dε (2.8)

and the equation of state for this ideal fermi gas is

P (T, µ)V =
2

d
E(T, µ). (2.9)

Naturally, at high enough temperatures the quantum nature of the ideal fermi gas should subside and

one ought to recover the equation of state for the ideal gas. In this case one may rewrite the grand canonical

potential in terms of the fugacity z = eµ/kBT as

Φ ≈ −kBTz
∫ ∞

0

g(ε)e
− ε
kBT dε = −kBTz

V

λthT d
. (2.10)

Using the preceding equation one may perform low order corrections to the equation of state of the ideal
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gas to get

P (T,
N

V
) =

2

d

E(T, NV )

V
=
NkBT

V

(
1 +

NλthT
d

21+d/2(2S + 1)V

)
. (2.11)

The second quantum term is typically quite small for atoms (although not for electrons) at ambient tem-

peratures due to the small value of ~ implicitly present in the thermal wavelength λth. When that term is

allowed to get large however, this term will contribute and deviations from the ideal gas will be observed as

is the case when the volume or temperature tends towards zero.

On a slightly different note useful approximations for the non-interacting fermi gas for the purposes of

comparison may be derived using the Sommerfeld expansion for low temperature [31] and are presented as

follows:

µ(T, V,N) = εF

(
1− π2

12

(
kBT

εF

)2

+ . . .

)
(2.12)

is the first order expression for the non-interacting ideal fermi gas for the chemical potential.

E(T, V,N) =
3

5
NεF

(
1 +

5π2

12

(
kBT

εF

)2

+ . . .

)
(2.13)

is the first order expression for the non-interacting ideal fermi gas for the energy, and

S(T, V,N) = NkB
π2

2

kBT

εF

(
1− π2

24

(
kBT

εF

)2

+ . . .

)
(2.14)

is the first order expression for the non-interacting ideal fermi gas for the entropy.

2.3 Bose-Einstein Condensation of Bosonic and Composite

Bosonic Particles

Within noninteracting bosonic systems, the Bose-Einstein condensate (BEC) arises as the macroscopic man-

ifestation and occupation of a ground single-particle quantum state; in effect, within such systems, all or

some significant fraction of the bosons occupy the same state and such systems in the guise of superfluid

helium represent one of the few macroscopically observable quantum effects available to the (relatively) un-

aided human observer. In order to begin probing this phenomenon, the BEC is typically described in terms
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of the single-particle reduced density matrix formalism [32] as,

ρ1(r, r′) = N
∑
s

ps

∫
dr2r3 . . . rNΨ∗s(r, r2, . . . , rN )Ψs(r

′, r2, . . . , rN ). (2.15)

Eqn. (2.15) defines a positive-definite Hermitian reduced density matrix for the system in question. When the

system is not in a BEC state, the reduced density matrix is said to be diagonally dominant, or concomitantly,

that the off-diagonal terms decay to zero; whereas for a BEC state, the off-diagonal terms are non-zero and

are,

lim
(r−r’)→∞

ρ1(r, r’) = φ∗(r)φ(r’)
N0

V
. (2.16)

which can be considered to be an order parameter for BECs.

An explanation for why eqn. (2.16) may be considered to be an order parameter was given by Onsager

and Penrose [33] who define the signature of off-diagonal long range order in a BEC as being due to a

macroscopically large eigenvalue in the reduced density matrix i.e. the eigenvalue ηi allows ηi/N O(1) as N

gets large, the underlying cause of which may be directly traced to a macroscopic occupation of an underlying

state.

This macroscopic occupation of a single state causes problems when one considers that the macroscopic

occupation of a single state in fermionic systems is forbidden due to the Pauli exclusion principle Fermionic

systems can, however, exhibit BEC through the condensation of composite bosons formed by paired fermions.

This change in theoretical description from simple to composite particles necessitates that the single-particle

reduced density matrix be replaced by a two-body reduced density matrix (2-RDM) to fully capture the

new description. Following Onsager and Penrose, who also considered the case for paired fermions, the

two-particle spin- 1
2 reduced density matrix is given as

ρ2(r1σ1, r2σ2|r′1σ′1, r′2σ′2) =

N(N − 1)
∑
s

ps
∑

σ3···σN

∫
dr3dr4 . . .d rNΨ∗s(r1σ1, r2σ2, . . . , rNσN )Ψs(r

′
1σ
′
1, r
′
2σ
′
2, . . . , r

′
Nσ
′
N ) (2.17)

This new two-particle reduced density matrix (2-RDM), which is antisymmetric under particle exchange,

allows the extension of the Onsager-Penrose criterion The off-diagonal long range order is expressed in the

same where the eigenvalue ηi allows ηi/N O(1) as N gets large except that ηi is now the eigenvalue of a

2-RDM. Moreover, the criteria presented here can be specialized to the fixed-spin case. Considering the

applicability of this formalism to the case presented in this thesis, the two particles in question are different
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particle types one of which may be thought of as spin-up and the other as spin down. That said, this theory,

in effect, describes the off-diagonal long range order for interacting fermionic particles and may be considered

a theoretical probe of the intrinsic bonding strength between the two subject fermions1.

2.4 A Brief Overview of BCS Theory

Having defined a methodology in the prior section for identifying the long range order of composite bosons

comprised of bound fermionic dimers, these bound fermionic dimer systems have been and still are of

considerable interest in the condensed matter physics community since they provide cornerstone subject and

in some sense can be seen as a defining phenomenon for the field. For many interesting phenomena, the BCS

approach to superconductivity has become a definitive theory and used to explain many other phenomena.

In BCS theory, a weak attraction amongst fermions in the fermi sea causes a bound fermionic pair [28] to

disrupt that sea and emerge. The following two-body Schrödinger equation describes this interaction [28],

(
− ~2

2m
∇2

1 −
~2

2m
∇2

2 + λV (1, 2)

)
ψ(1, 2) = Eψ(1, 2), (2.18)

where λ < 0 describes an attractive interaction and V (1, 2) describes a pair interaction with the eigenfunc-

tions and energy values written as,

ψ(1, 2) = φ0(1, 2) +
∑
n 6=0

φn(1, 2)
1

E − En
〈φn|kV |ψ(1, 2)〉 (2.19)

E − En = 〈φ0|λV |ψ(1, 2)〉. (2.20)

For a homogeneous system, the total pair momentum is conserved and may be used to define a helpful

1As an aside, it seems quite likely that these methods may be (and may have been) further extended to incorporate
entanglement and methods to scrutinize bonds.
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coordinate transformation as [28],

P = k1 + k2, k =
1

2
(k1 − k2) (2.21)

R =
1

2
(x1 + x2) , x = x1 − x2 (2.22)

v = mV ~−2 (2.23)

E = ~2κ2m−1 +
1

4
P 2m−1 (2.24)

After applying this set of substitutions to eqns (2.18) and (2.20), the wavefunction becomes [28],

ψ(1, 2) = V −
1
2 eiP·RV −

1
2ψP,k(x) (2.25)

where V is the system volume and the plane-wave function describes the free particle motion of the center

of mass term and ψP,k is the term which describes the interaction. Unlike the pair Schrödinger equation in

free space, this transformation results in a formulation which uses the filled Fermi sea as a frame of reference

so that upon back-substitution in the Schrödinger equation (2.18) yields [28],

ψP,k = eik·x +
λ

(2π)3

∫
Γ

dt3e−t·x 〈t|v|ψP,k〉
κ2 − t2

(2.26)

κ2 − k2 = λV −1〈t|v|ψP,k〉 (2.27)

which are subject to the conditions

1

2
P± t| < kF , Γ = |1

2
P± t| > kF . (2.28)

The pair Schrödinger equation is thus transformed into the Bethe-Goldstone equation which may be

solved in the case when P (a full solution must be typically performed via numerical methods) [28] to

yield [28],

κ2 = k2
F −

m∆

~2
(2.29)
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where ∆ is given by

∆ =
~2k2

F

2m
e
− 4π2

kF |λ|u
2
F (2.30)

with an energy shift for an interacting pair given by

∆E =
~2(κ2 − k2)

m
(2.31)

and u(k) is the Fourier transform of a separable term u(x) associated with the potential which is derived by

considering that V (1, 2) is short-ranged and well approximated as V (1, 2) ≈ u(1)u(2) [28].

The physical interpretation for this preceding stream of equations (2.18, 2.20, 2.24, 2.25, 2.27, 2.28, 2.29,

2.31) begins with the energy shift, ∆E, for the interacting pair, which indicates that a bound Fermi pair

arises within the Fermi sea of this toy two-particle model since by doing so the ground state lowers its overall

energy and leads to the conclusion that fermionic pairing and hence bosonic phenomena can arise within

fermionic systems while making the most minimal of assumptions concerning the interaction amongst the

fermions, namely that an attraction exist.

That this situation was originally derived for a fermionic pair interaction and not for a multiparticle

system is only a temporary inconvenience as the general case of a Fermi gas may be subsequently considered

for an interacting system by using a Bogoliubov transformation to decouple the interactions within the

system.

First the system is presented in a second quantized form in terms of the grand canonical potential

operator because using the thermodynamic potential allows one to consider a system with a mutable number

of particles which is convenient as [28],

K̂ = Ĥ − µN̂

=
∑
k,σ

a†kσakσ(ε0k − µ)− 1

2

∑
k1+k2−k3+k4,σ1σ2σ3σ4

〈k1σ1k2σ2|V |k3σ3k4σ4〉a†k1σ1
a†k2σ2

ak4σ4ak3σ3 (2.32)

where K denotes a momentum states and σ denotes the spin state; V is assumed to be attractive. Canonical

transformations for these states with explicit spin states may be defined as [28],

αk = ukak↑ − vka†−k↓ β−k = uka−k↓ + vka
†
−k↑. (2.33)
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where their commutation relations and the equations relating their constants are given by [28],

{αk, α
†
k′} = {βk, β

†
k′} = δkk′ (2.34)

{akσ, a
†
k′σ′} = δkk′δσσ′ (2.35)

Inverting these relations to the original operators yields [28],

ak↑ = ukαk + vkβ
†
−k a−k↓ = ukβ−k + vkα

†
k (2.36)

where the equation relating the associated c-numbers or constants is

u2
k + v2

k = 1. (2.37)

Applying these relations to the grand canonical potential’s first term with fixed spins given by eqn. (2.32)

yields,

∑
k

(
ε0k − µ

) (
a†k↑ak↑ + a†−k↓a−k↓

)
=

∑
k

(
ε0k − µ

) [
2v2
k +N(a†k↑ak↑) +N(a†−k↓a−k↓)

]
=

∑
k

(
ε0k − µ

) [
2v2
k + (u2

k − v2
k)(α†kαk − β†kβk) + 2ukvk(β−kαk + α†kβ

†
−k)
]

(2.38)

where N denotes normal ordering. The potential energy operator may be re-written in terms of these

canonical transformations as well as

V̂ = −1

2

∑
kk’q

〈kk’|V |k+q,k’-q〉[a†k↑a
†
k’↑ak’-q↑ak+q↑ + a†−k↓a

†
−k’↓a-k’-q↓a-k-q↓]

−
∑
kk’q

〈k-k’|V |k+q,k’-q〉[a†k↑a
†
−k’↓a-k’-q↓ak+q↑], (2.39)

which may be further reduced using the normal ordering formalism. Ultimately, the Hamiltonian in eqn.

(2.32) may be given by the following [28]
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K = U +H1 +H2 +N(V̂ ) (2.40)

U = 2
∑
k

ξkv
2
k +

∑
k,k’

v2
kv

2
k′〈kk’|V̂ |kk’〉 −

∑
k

ukvk∆k (2.41)

H1 =
∑
k

(α†kαk + β†−kβ−k)[(u2
k − v2

k)ξk + 2ukvk∆k] (2.42)

H2 =
∑
k

(α†kβ
†
−k + β−kαk)[2ukvk∆k − (u2

k − v2
k)ξk], (2.43)

where ξk = εk − µ is the energy measured relative to the chemical potential and ∆k is energy gap given by

∆k =
∑
k’

〈k,−k|V̂ |k’,−k’〉uk′vk′ . (2.44)

The various terms of K are physically explained as follows: U ’s first two terms are the Hartree-Fock

ground state energy of an interacting Fermi gas. H1 describes the quasi-particle dispersions and excitations

and H2 is a factor which may be eliminated by judicious choice of the transformation constants uk and vk.

To find the appropriate values for uk and vk so that H1 = 0and K becomes described by a set of oscillators

allow [28], allow

2ξkukvk = ∆k(u2
k − v2

k) (2.45)

and set H2 = 0 so that

K = U +H1 = U +
∑
k

Ek(α†kαk + β†−kβ−k), (2.46)

where Ek =
√

∆k + ξ2
k and is referred to as the quasi-particle dispersion energy. The energy gap ∆k

transforms into a non-linear integral equation given by

∆k =
∑
k’

〈k,−k|V̂ |k,−k〉 ∆k′

2Ek′
. (2.47)

Further steps in the derivation requires the the number of particles and hence the chemical potential µ be

set which is done as

〈N =
∑
kσ

〈O|a†kσakσ|O〉 =
∑
k

(
1− ξk

Ek

)
. (2.48)
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The BCS gap and number equations given by (2.47) and (2.48) respectively are general for interacting

ferminons in the BCS pairing regime of weak attractive interaction and are the fundamental equations

underlying BCS theory.

These equations are typically simplified because in their most common manifestations in electrons in

metal systems the potential is only contributes in a major way in the momentum shell close to the Fermi

surface [28]. The energy gap may then be written as

∆k = ∆0θ(~ωD − |ξk|), (2.49)

where the thickness of the shell is given by the Debye frequency,~ωD, which is limit of the phonons which

give rise to the attractive interaction in the metal system. Assuming ~ωD << εF , ∆0 may be written as

∆0 =
g

2V

∑
k

θ(~ωD − |ξk|)
1√

∆2
0 + ξ2

k

=
g

2

∫
d3k

(2π)3
θ(~ωD − |ξk|)

1√
∆2

0 + ξ2
k

=
gN(0)

2

∫ ~ωD

−~ωD

dξ√
∆2

0 + ξ2

≈ gN(0)ln

(
2~ωD
∆0

)
, (2.50)

where N(0) is the density of states for the energy density at the Fermi surface for a spin projection and

g = 4π~2as
m as the effective interaction. Rearranging these expressions yields

∆0 = 2~ωDe−
1

N(0)g (2.51)

Es − En =
V N(0)∆2

0

2
, (2.52)

where ∆0 is the energy gap and Es−En is the energetic difference between the normal and gapped solution

for the ground state.

This energy gap’s opening gives rise to the instability in the Fermi surface which results in the formation
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of Cooper pairs in the ground state and the BCS variational wave function given by

Ψ0 =
∏
k

uk + vka
†
k↑a
†
−k↑|0〉 (2.53)

(2.54)

= c×
∏
k

1 + ηka
†
k↑a
†
−k↑|0〉 (2.55)

where |0〉 is a vacuum state and uk and vk are functions used in the variational process. Performing a

variational procedure upon the thermodynamic expectation values of this ground state results in the recovery

of gap and number equations identical to those just derived via Bogoliubov transformations.

Rounding out this section are relations for finite temperature quantities related to transition phenomena

for BCS superconductivity. While the precise methodology for performing this is beyond the scope of this

thesis, they are typically found using finite temperature Green functions and T-matrix methods [28].

The gap function for a uniform system at finite temperature is given by the following equation as [28],

∆(T ) =
g

β~
∑
n

∫
d3k

(2π)3

~∆(T )√
(~ωn)2 + E2

k

, (2.56)

where ωn = (2n+1)π/β~ describes the fermionic Matsubara frequencies. Applying the same Debye frequency

cutoff, yields the simplified finite temperature gap equation,

1 =
gN(0)

2

∫ ~ωD

−~ωD

dξ√
∆2 + ξ2

k tanh

√
∆2+ξ2k
2kBT

. (2.57)

Setting ∆ = 0 gives the superconducting transition temperature as [28],

kBTc =
2eγ

π
~ωDe−1/N(0)g ≈ 1.13~ωDe−1/N(0)g, (2.58)

and gap equation for the transition as

∆(T ) = kBTc

(
8

7ζ(3)

)1/2
(

1− T

Tc

1/2
)
. (2.59)

2.5 Introduction to Fermionic Gases and Unitarity

Unitarity or describing a system to be at unitarity or the unitary limit is a phrase or phrasing which defines

a two-component fermionic system with a potential comprised of attractive pairwise interaction system in
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which the interparticle interaction is dominated by s-wave scattering due to the zero-range of the pairwise

interactions and in which the resulting scattering length of that s-wave interaction diverges. In theory, the

unitary limit is applicable to all two-component, short range fermionic systems when they become dilute

enough as the dilution causes the pair interactions to become effectively zero-range upon rescaling. This

interaction rescaling effect, in turn, results in the dominance of the s-wave scattering interaction between

the attractive short-range pair interactions of the fermionic particles [12,34].

Since by definition, a unitary system has a divergent scattering length, ζ, the unitary limit was the subject

of considerable consternation when first derived in the 1950’s as this system counterintuitively possesses a

zero-range interaction with an infinite range effect [12, 34]. Causing further concern, a unitary system

possesses only a single dimensional scale to define it, which within the literature, is typically defined by the

cube root the density n of the system [12]. This single length scale causes considerable difficulty for many of

the standard analytic perturbative techniques in probing the unitary limit due to the lack of an appropriate,

small parameter to work. That said this not to paint the situation as entirely bad from an analytic theory

standpoint as this single dimensional scale has also been a source of strength due to the applicability of

scaling arguments [12]. Nonetheless, due to the theoretical difficulties presented by unitarity, it remains a

limit uniquely well-suited for investigation by computational techniques.

When unitarity was first investigated in the late 1940’s and early 1950’s, it was considered to be little

more than a curiosity for condensed matter systems due to the requirement that the scattering length be

so large that the s-wave interactions dominate the higher order terms. Moreover, searching for such an

effect among the plethora of available condensed matter systems was felt to be nothing more than a fool’s

errand. Consequently, unitarity as a field of investigation was developed in its early years within the nuclear

physics community where by happenstance a dilute neutron gas reveals a unitary interaction amongst its

constituents [34]. The interest of the condensed matter community in unitary fermions only arose when

cold atom systems made experimental realizations of such systems possible due to the tunability of the their

constituent interactions.

2.6 The BCS-BEC Crossover

Naturally, because unitarity involves an attractive interaction among fermions it is natural to consider how

its composite bosonic pairing and resultant Bose-Einstein condensation behaves; moreover, it is important

to note that because the unitary system is so simple from the standpoint of its pairwise interactions that it

offers the possibility to treat this system as a platform for understanding and suggesting avenues of attack for
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more complicated but related systems like high-temperature superconductors. That said, contained within

the classical BCS theory is the germ of understanding for pairing in unitary systems at a microscopic level.

It has long been noted [32,35] that the variational BCS wave function

Ψ0 =
∏
k

uk + vka
†
k↑a
†
−k↑|0〉 (2.60)

(2.61)

= c×
∏
k

1 + ηka
†
k↑a
†
−k↑|0〉 (2.62)

may have its region of applicability extended from weak BCS type coupling to the strong dimer interactions

of the BEC regime by increasing the bare interaction U and observing the evolution of this ground state

wave function. Rewriting eqn. (2.62) as

Ψ0 = c×
∏
k

1 + ηka
†
k↑a
†
−k↑|0〉 = c× exp

(∑
k

ηka
†
k↑a
†
−k↑

)
|0〉 (2.63)

Projecting the preceding onto a N-particle state allows, this expression to be written as

Ψ0 = c×
∑
k

(
ηka
†
k↑a
†
−k↑

)N/2
|0〉 (2.64)

which is a composite bosonic wave function of pair size η due to the the inherent pairing interaction created

by the a†k↑a
†
−k↑. As U is increased, η decreases until a dilute gas of bosonic dimers is reached, while the

remaining unpaired fermionic atoms are increasingly driven towards pairing due to the energetic benefits.

This drive towards pairing results in interesting effects on the chemical potential µ of the underlying system.

While initially within the BCS region µ = εF as the interaction strength U is increased and the system

becomes dominated by bosonic degrees of freedom due to the pairing effect, µ decreases and eventually

becomes negative with the crossover region being described as the transition through µ = 0. From a

temperature dependent standpoint, it is inferred that the system becomes a mixture of free fermionic atoms

and bound fermionic pairs which interact with and mediate interactions between the free fermionic atoms

the relation between which are tuned by the temperature of the system. The underlying specifics with which

superfluidity arises in these remain a subject of continuing interest in this area of study [30, 36]. Finally,

from a microscopic point of view, it is important to investigate and determine the temperature at pairing

and condensation occurs as this is a critical feature of BCS theory as it relates to these systems. Specifically,

it is interesting to consider and will be subject of this thesis whether or not there is a direct observation in
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system simulations of a discontinuous phase transition between the crossover from the BCS weakly paired

regime to the strongly bound BCS regime at some transition temperature Tc.

2.7 Experimental Approaches and Results for Unitary Systems

and the BCS-BEC Crossover

A bifermionic cold atom system may be tuned to display the signature of a system at unitarity and the

BCS-BEC cross regime using the trapping techniques described in the prior chapter in conjunction with

Feschbach resonances. Specifically, the interaction or channel between fermionic atoms may be altered by

tuning an externally applied magnetic field to be close to the aforementioned Feschbach resonance of a

trapped hyperfine species. These interactions between fermionic atoms may give rise to “channels” when

the diagonal of the hyperfine indices for the interaction in question becomes dominant with channel being

‘open’ when for a given energy the particles are free asymptotically at large distance and ‘closed’ when a

bound state appears at that energy.

When elastic scattering in an open channel occurs while energetically close to the bound state of a close

channel, a Feschbach resonance appears. The magnetic moments of atoms in the open and closed channels

are different as a consequence of the difference between the underlying hyperfine indices, which here is

described as ∆µ, where µ is the magnetic moment and not the chemical potential. The resultant change in

energy between these channels is given in reference to non-interacting atoms as [1, 32],

∆E = Eclosed(r→∞)− Eopen(r→∞) = ∆µ ·B. (2.65)

Turning off the field described by B causes the bound state with binding energy |Eb| to hybridize with that

of the open state if |Eb| is close to E = 0 as the off-diagonal terms couple the two channels. If the external

field is turned on but is kept very small so that the detuning parameter δ becomes

δ = ∆E − |Eb| = ∆µ ·B − |Eb|. (2.66)

As |δ| tends towards 0, second order processes between the open and closed channels appear due to the

particles in the open channel scattering from the intermediate state of the closed channel so that the scattering
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length of the particle interaction may be given by

as =
C

−δ
(2.67)

which in effect results in a tunable scattering length as a function of the detuning parameter where C is a

system specific constant. At unitarity when δ → 0 the scattering length becomes divergent and the system

is best modeled as an interaction defined by a pairwise delta function interaction where the adjustable

parameter as →∞.

2.8 Theoretical and Computational Realizations of Cold Atom

and Unitary Systems and the BCS-BEC Crossover

Theoretical approaches to cold atom unitary systems have typically focused upon non-perturbative theoret-

ical methods due to the lack of a small parameter in such systems around which to develop a perturbative

theory. This has particularly been the case for the BCS-BEC crossover transition. Nonetheless perturbative

approaches to the BCS and BEC limits of such systems do exist and will be explored here in the first sub-

section. While mean-field theory is typically inapplicable to these systems from a quantitative perspective

due to the distinct lack of a phase transition in the crossover regime [12], the approach was important in the

formative years in the late 1960’s and early 1970’s of the theoretical study of this field but is not considered

here.

Moving on to the next subsection of this section, Akkineni has previously observed in a related thesis [36]

that most theoretical/analytical approaches to the unitary transition begin with the BCS theory, an example

of which is an approach due to Ohashi and Griffin [37] and may be generally described as an augmented

BCS theory with a Feschbach resonance. This subsection will be followed by a functional integral formalism

presented within [36] and originally by Randeria in [29] as well as a brief overview of lattice-type approaches.

So that, finally the computational methodologies, which in this author’s view have come to dominate this

field will be presented due to their quantitative character, which, at least in principle if not as frequently in

practice, offers the possibility of ab initio-type results. First, an exploration of T = 0 Green’s function Monte

Carlo type studies on unitary systems. This will be followed by a brief investigation of lattice methods until

finally prior work with path integral methods for these systems will be presented.
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2.8.1 Perturbative Approaches

As has already been alluded to for the two limiting cases of the BCS-BEC crossover, perturbative methods

may be applied in either limit. For a Bose-Einstein condensate, the system may be modeled as strongly-bound

bosonic dimers or molecules and free leftover fermions so that further insights into the system may gained

by solving the two-, three-, and four-body problems associated with these constituents so that the various

binding energies and scattering lengths of the bosonic-dimer interaction, the dimer-fermion interaction, and

the dimer-dimer interaction may be found. As a summation of these for the BEC limit, the energy is given

as,

E(nF , nB) = − ~2

mas
nB +

3

5

~2

2m
(6π2)2/3n

5/3
F + fFBnFnB +

1

2
fBBn

2
B (2.68)

where nB is the number of bosonic dimers, nF is the number of free excess fermions and the factors given

by f are couplings which may be determined from the scattering length using few-body methods [38,39] as

fBB =
π~2

m
aBBas ≈

π~2

m
1.2as (2.69)

(2.70)

fFB =
π~2

m
aFBas ≈

π~2

m
3.54as (2.71)

(2.72)

EB =
~2

m
a−2
s (2.73)

where aFB and aBB denote scattering length of a free fermion and bosonic dimer collision and of bosonic

dimer-dimer collision respectively. As one ventures further into the BEC regime these couplings weaken and

the application of perturbative techniques becomes reasonable when applied to the kFas parameter where

kF = (3π2ρ)1/3 and ρ is the particle number density.

Within the BCS regime, a similar weakly attractively interacting plateau may be reached as well where

the scattering length as becomes small and is negative so that a pertubation series in this term becomes

possible with the major caveat that the various infrared singularities associated with BCS instability must

be handled. Complicating the interpretation of these singularities is that the specifics of the underlying

polarized superfluid phases are still unknown even in the weak coupling regime [12] which makes comparing

energies difficult as one needs to know the structure of the IR divergences in order to compare energies.

While many new phases have been proposed it has been observed by Forbes that:

“In principle, the true ground state at finite polarization might be something [very different than previ-
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ously proposed] and if it is separated by a first-order transition from the other states then there might not

even be a perturbative signal in the form of an instability. To truly understand what is happening in these

interesting regimes, one needs a reliable ab initio method or experiment.”

As such a result would allow one to perturbatively approach the BCS regime of a unitary gas experiment.

While other perturbative results on unitary gases exist, in particular an approach due to Son and Nishida

exists based upon using a parameter ε perturbing about the dimension of the system [40]. Specifically since

the 4-dimensional version of the system of Son and Nishida has no transition, this is used as the reference

system and a perturbation in its dimensional term is performed. Unfortunately going to 3 or 2 dimensions

is a perturbation which is not small so it is unclear how applicable these results are.

2.8.2 An Augmented BCS Approach

Non-perturbative approaches must be taken to studying the unitary transition due to the lack of a pertubative

parameter at that transition. As has already been noted by Akkineni, these transitions usually result from

considering the underlying BCS theory. In the work of Ohashi and Griffin [37], a Hamiltonian is formulated

in a BCS-like framework which incorporates the Feshbach resonance as

K =
∑
kσ

(
~2k2

2m
− µ

)
a†kσakσ +

∑
k

(E0
k + 2ν)b†kσbkσ

−U
∑
k,k’

a†k↑a
†
−k↓ak’↓a−k’↑ + gr

∑
kk’[b†k’a−k+ k’

2
↓ak+ k’

2
↑+h.c.]

. (2.74)

This Hamiltonian has been formulated to specifically include the two-channel model which arises as a con-

sequence of the Feshbach resonances and thus incorporates stable dimers as well as the interactions between

the atoms and the dimers. The a†kσ and akσ are the fermionic operators from the first and third terms of the

BCS Hamiltonian. The b†k and bk are the bosonic operators which create and destroy the bound Feshbach

dimers with center of mass momentum k. 2ν denotes the binding energy of the dimers so that the second

terms yields the kinetic and binding energy of those dimers. The system is setup so that the dimers will form

when 2ν ≤ 2εF and will not be able to decay unless 2ν ≥ 0. The fourth term models the dimer-free fermion

interaction and creates and destroys dimers while eating or regurgitating two fermions in the preocess. This

ultimately results in the number operator for the system being described as

N =
∑
kσ

a†kσakσ + 2
∑
k

b†kbk. (2.75)
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2.8.3 A Functional Integral Formalism for Unitary Systems

A functional integral formalism for unitary systems has been summarized and described in [29] for contin-

uum model with the intent to make quantitatively useful approximations to the couplings as a function of

temperature above and below Tc for such unitary systems. Moreover, as of 1996 this formalism allowed its

practitioners by their own statement [29] to recover all previously known results discovered by other methods

and to go beyond them.

The imaginary time functional integral described by the action

S =

∫ β

0

dτ

∫
dxψ̄σ(x)∂tψσ(x) +K (2.76)

where K is given in eqn. (2.74) and x = (x, τ) may be used to describe the partition function Z. The

fermionic interactions may be decoupled by using a Hubbard-Stratonovich transformation which has an

accompanying field ∆(x, τ) so that those fermions may be integrated out to obtain

Z =

∫
D∆D∆̄e−Seff [∆,∆̄] (2.77)

where the effective action is

Seff [∆(x)] =
1

g

∫ β

0

dτ

∫
dx|∆(x)|2 − Tr log G−1[∆(x)] (2.78)

and the inverse Nambu propagator is written as

G−1(x, x′) =

 −∂t +∇2/2m+ µ ∆(x)

∆∗(x) −∂t −∇2/2m

 . (2.79)

The functional integral can now be used to find the static, uniform saddle-points and the fluctuations

about them. ∆ = 0 is the trivial saddle point and remains stable for all couplings even at high temperature,

but becomes unstable below a temperature T0 which is not Tc. T0 may be found by solving

δSeff
δ∆

[∆ = 0] = 0 (2.80)
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to find

1

g
=
∑
k

tanh( ξk
2T0

)

2ξk
, (2.81)

where ξk = εk − µ and εk = |k2|
2m .

In order to use this solution, the ultraviolet divergences must be regulated by replacing the bare value

for g with the low energy limit of the two-body T-matrix. For three dimensional systems, the following

equation defines the regulator

m

4πas
= −1

g
+
∑
|k|<Λ

(2εk)−1 (2.82)

and defines the scattering length as as well. Applying this regulator to eqn. (2.81) results in

− m

4πas
=
∑
k

(
tanh( ξk

2T0
)

2ξk
− 1

2εk

)
. (2.83)

Since there are two unknowns T0 and µ another equation is required to fix the solution. The suggested

equation is N = −∂Ω
∂µ which fixes the chemical potential for a given density. Finding this equation proceeds

by first considering the thermodynamic potential Ω0 = Seff [∆ = 0]/β and solving for the number equation

as,

n = n0(µ, T ) =
∑
k

(
1− tanh(

ξk
2T

)

)
. (2.84)

Solving this equation in weak coupling limit, 1/kFas → −∞ allows the recovery of the BCS results as

µ = εF and T0 = 9e−2 γεF
π e−π/2kF |as| where γ ≈ 1.781. In the strong coupling regime the roles of the

gap and number equations reverse and one uses the gap equation to determine µ and the number equation

to determine T0. This limit results in 1/kFas → ∞, the binding energy of the dimers are Eb = 1/ma2
s,

µ ≈ −Eb/2 and T0 ≈ Eb/2 log(Eb/εf )3/2. Ultimately by numerically solving the preceding equations an

interpretation of T0becomes possible. In essence, T0 describes the pairing scale or the temperature below

which pairing effects become important; for systems above T0 they may as well be described as unbound

interacting fermions without dimer formation.
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2.8.4 Lattice Methods for Unitary Systems

Lattice methods have also been applied to the study of the unitary Fermi gas and its associated phenomena.

Typically, this approach proceeds using an Euclidean time lattice formalism [41–45] under which a lattice

action is created with tunable parameters to find the proper interaction strengths to recreate the phase shifts

in a given periodic box using the Lüscher formula [46],

k cot δk =
1

πL
S(η) (2.85)

η =

(
Lk

2π

)2

(2.86)

S(η) = lim
Λ→∞

(∑
~n

θ(Λ2 − n2)

n2 − η
− 4πΛ

)
. (2.87)

The initial hope was that such lattice approaches would allow practitioners to probe the unitary limit

even at small volumes by very carefully and judiciously tuning the associated parameters of this system.

Unfortunately, this hope arguably did not entirely materialize as most of these results do not agree with

experiment [47]. Moreover, there are issues of agreement for lattice methods with results from few-body

methods [48] which have led Forbes to conclude [12] that current results and the methods used in lattice

method approaches to unitary fermi systems are, “promising in principle [but require more understanding]

before further progress is made.”

2.8.5 Green Function or Diffusion Monte Carlo for Unitary Systems

While Monte Carlo approaches in principle are able to tackle unitary systems, they are hampered by the

infamous fermionic sign-problem due to the antisymmetry of the underlying fermionic system wave function.

That said much work has been performed on these systems using Green function or diffusion Monte Carlo

as ab initio methods due to their ability to probe otherwise inaccessible regimes such a transitions without

approximations or with only minimal assumptions.

From the standpoint of a theoretical approach to the unitary fermi gas, one of the first studies performed

on such systems was by Carlson et. al. in [49, 50] were ground state properties at unitarity were simulated

using fixed node Green function Monte Carlo.

Green function Monte Carlo proceeds by applying a Trotter discretized version of the Boltzmann pro-

jection operator e−τĤ on some initial state Φi(R) that overlaps with the ground state. By integrating over
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Figure 2.1: This plot presents Carlson et. al.’s [49] simulation of the the energy for different systems sizes
at unitarity using the Green function Monte Carlo method.

many time steps of the projection operator, eventually one will be left with just the ground state as the

contributions of all of the other higher excited states will have decayed to zero. This method is typically

performed via a Markov chain process the details of which may be found in [51].

For fixed-node systems, the variational principle applies so that even if one had a correct wave function

with incorrect fermionic nodes the energy calculated with these incorrect nodes would be higher than that

calculated with the true nodes. Consequently, these fixed-node Green function Monte Carlo calculations

represent an upper limit to the the true energy.

In the case of Carlson’s calculations [49,50], antisymmetrized BCS ground state nodes were used and are
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defined by the following trial wave function as

ΨT (R) = A[φ(r↑1 − r↓1)φ(r↑2 − r↓12) · · ·φ(r↑N − r↓N ), (2.88)

where the BCS pairing function is given by

φ(r) =
∑
k

vk
uk
eik·r (2.89)

Eqn. (2.88) is multiplied by a parametrized Jastrow factor to model higher-order particle effects and to

help improve the efficiency and convergence of the Monte Carlo procedure. The free parameters of the

parametrized factors are optimized to minimize the energy and the resultant values associated with the

ground state are calculated with the results being given in Fig. (2.1). The estimated energy per particle for

a system with an even number of particles is E = 0.44(l)εFG and the quasiparticle gap for a system with an

odd number of particles is ∆ = 0.99(3)εFG.

2.8.6 Prior Path Integral Methods for Unitary Systems

Path integral Monte Carlo based approaches to unitary systems seem to have so far come in two forms

either via auxilary field path integral Monte Carlo (AFPIMC) or by restricted node path integral Monte

Carlo (RPIMC) when applied to the unitary fermi gas. The AFPIMC approach results in highly oscillatory

integrals due to the Hubbard-Stratonovich transformation being applied to the fermionic fields being studied.

Consequently, the errors with these methods have been quite large and will not be explored further in this

thesis [12]. The RPIMC methodology does not suffer from these limitations so long as proper nodal forms

are used and that these nodes are recognized as being an uncontrolled approximation being imposed on the

system being considered.

For unitary Fermi gas systems, prior work within the Ceperley group has focused upon RPIMC methods.

In particular the work of Akkineni [36] and Akkineni et. al. [52] focused upon RPIMC approaches to the

unitary Fermi gas by simulating a fermionic system in periodic boundary conditions interacting with a

short-range pair potential defined by the modified Pöschl-Teller potential [52],

v(r) = −2~2

m

µ2

cosh(µr)
(2.90)

where r is the distance between the particle pair in question, µ is a fitting parameter set to µ = 12 and

the system is set to a particle density of 0.238, which stays constant as the number of particles is varied.
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Figure 2.2: This plot compares system energy per particle for 10 and 20 particle systems using BCS nodes.
With the upper inset magnifying the system at low temperature. The lower inset compares energy per
particle for BCS and free particle nodes.

This setup results in an attractive divergent scattering length and hence satisfies the definition of a unitary

system.

The nodes used to restrict the paths of the simulation originate from two sources. Free particle nodes

are used for simulating the system at high temperature and BCS-type nodes are variational optimized at

low temperature and used for pairing. Interpolating between these high and low temperature regime remain

an open problem for this system and arguably for RPIMC methodology as well.

Akkineni simulates many quantities of interest to unitary fermi gas. In particular, he considers the energy

per particle shows good agreement with prior computation. He also simulates pair correlation functions

between the 2 different species of fermion for this system since the different weakly and strongly bound
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Figure 2.3: This plot presents Akkineni’s simulation of the pair correlation function for the two species
of fermions at different temperature through the presumable transition between the 0.67TF and 0.54TF
simulations

pairing regimes should occur as a function of temperature and ought to appear as a function of temperature.

Figure (2.3) shows that upon crossing a presumed Tc the pairing function narrows rapidly and the peak

becomes more pronounced which is thought to be a signature of the system entering the strong pairing

regime. The weak pairing regime in contrast is represented by a broad hump which extends out some radial

distance.

Finally, Akkineni considers the temperature of the transition temperature Tc between the weakly and

strongly paired regimes of the unitary gas, the BCS-BEC crossover. He attempts to probe them using

the both superfluid fraction of the system as a function of temperature (Fig. (2.4)) and as estimated by

comparing the superfluid density as a function of temperature (Fig. (2.5)) for systems of varying sizes
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Figure 2.4: This plot presents Akkineni’s simulation of the superfluid fraction ρs/ρ as function of temperature
for a 20 particle system.

and estimating the Tc ≈ 0.255εF from the crossover region of the plot. It compares relatively well to the

theoretically determined value of Tc = 0.22εF .

2.8.7 A Recent Variational and Diffusion Monte Carlo Approach to the

Unitary Limit

At the end of 2014, an article concerning the application of variational and diffusion Monte Carlo to the

unitary limit by Pessoa, Vitiello, and Schmidt appeared on the arXiv [53]. In this paper, a simulation

of the ground state of the unitary limit of a zero-range fermionic gaseous system using a zero-range delta

function pair potential is presented. Within diffisuion Monte Carlo, an approximate or trial ground state

wavefunction is evolved using the corresponding imaginary-time propagator for the specific Bloch equation
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Figure 2.5: This plot presents Akkineni’s simulation of the superfluid density ρs/ρ as function of temperature
for a 10, 20, 30, and 40 particle system. The intersection of these densities occur at the presumed superfluid
transition temperature of Tc ≈ 0.255εF .

which is defined by the Hamiltonian of the system under investigation. In simulation, the imaginary-time

propagator is approximated using the Lie-Trotter discretization in a fashion similar to that used in path

integral Monte Carlo which will be reviewed in chapter 4. This discretized operator is then used to evolve

the approximate ground state wavefunction which in the paper under consideration is constructed using an

approximate Jastrow-type wavefunction [53] to a state closer to the true ground state by causing the decay

of the portions of the approximate wavefunction that a represented by excited states of the system.

For the part of the unitary DMC paper which concerns diffusion Monte Carlo, the propagator potion of

the diffusion Monte Carlo scheme utilizes the same pair propagator as used in this thesis in chapter 6 for a
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PIMC, which is given here as,

K(r, r′; τ) =
( µ

2π~τ

)3/2

e−
µ|r−r′|2

2~τ +

(
τ~

µ|r||r′|

)( µ

2π~τ

)3/2

e−µ
(|r|+|r′|)2

2~τ . (2.91)

This is a convenient formalism as will be explored later in chapter 5; nonetheless, it will be explored here

as Pessoa et. al.’s methodology for simulating fermionic systems at unitarity in the T = 0 limit. Moreover,

just as will be discussed in chapters 5 and 6 the unitary nature of this simulation presents some challenges

for sampling. In this paper, these are overcome by swapping particle pairings in the trial wavefunction and

by a combined wavefunction-propagator sampling move which is used to roughly cancel the divergence due

to the propagator [53]. Unfortunately, the particular form of this cancelling term does not appear to be

applicable to just a path integral Monte Carlo simulation as it involves selectively tuning pairings in the

trial wavefunction.

The key results at T = 0 obtained by Pessoa et. al. concern the calculated energy per particle, which

is plotted for various system sizes in Fig. (2.6), and the radial distribution or pair correlation functions for

the spin-up, spin-up particles and their interactions in Fig. (2.7) and for the spin-up, spin-down particles

and their interactions in Fig. (2.8) [53].

For all of these simulations, the wavefunction was first variationally optimized and DMC simulations

were performed using BCS-type nodes. Ultimately, an energy of 0.61(2)EFG per particle was calculated

which compared well with the variational upper bound 0.62(1)EFG calculated by Chang et. al. in [54] using

extrapolation. The pair correlation functions show similar agreement. A theoretical result for the free Fermi

gas’s pair correlation function [55]

g↑↑(r) = g↓↓(r) = 1− 9

kF r)4

(
sin(kF r)

kF r
− cos(kF r)

)2

, (2.92)

and plotted in Fig. (2.8) matches closely among like non-interacting particles. The spin-up, spin-down pair

correlation function displays the expected 1
(kF r)2

divergence at r = 0 [53].
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Figure 2.6: This plot from [53] details the calculated ground state energy per particle as a function of system
size. N denotes the total number of particles in the system. Half of the particles are spin-up and the other
half are spin-down. The energy is in units of EFG. The hollow red square energies are calculated with
variational Monte Carlo, the green square energies are calculated with diffusion Monte Carlo, and the blue
asterisk energies are the corresponding free Fermi gas [53].
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Figure 2.7: The plot of a radial distribution or pair correlation function for interaction between spin-up
and spin-down particles in N = 14 system at unitarity. The blue line denotes the pair correlation function
for the free Fermi gas; the results for VMC and DMC are denoted by the green circles and red triangles
respectively [53].
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Figure 2.8: The plot of a radial distribution or pair correlation function for interaction between spin-up
particles in N = 14 system at unitarity. The blue line denotes the pair correlation function for the free Fermi
gas; the results for VMC and DMC are denoted by the green circles and red triangles respectively [53].
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Chapter 3

Review of the Path Integral Approach
to Quantum and Quantum Statistical
Mechanics

3.1 Introduction

In a historical sense, one may argue that the path integral has been (re)-developed multiple times throughout

the twentieth century and its story begins with Bachelier’s work in finance studying stock prices with

Brownian random walks in the early 1900’s [56] and connects straight through to Wiener’s related work on

Brownian path summation in the late 1920’s and 1930’s [57, 58]. This chapter, however, will focus upon

the conventional development of the subject from a physical point-of-view. This standard approach, like

this chapter begins with the heuristic development of the path integral as a summation over the quantum

probability amplitudes associated with classical trajectories, in work initiated by R.P. Feynman as part of

his graduate thesis work on the quantum interpretation of the classical action in the early 1940’s1. This

chapter will then pivot to present the quantum statistical mechanical corollary to Feynman’s path integral

by deriving the quantum mechanical thermal density matrix using its relation to the Feynman path integral.

Both of these formulations will then be mathematically justified using the Lie-Trotter operator-splitting

spliting approach first suggested by E. Nelson in the early 1960’s [59]. This chapter follows the presentation

of this subject matter given in Feynman and Hibbs monograph [60] on the subject, that given by Kleinert

in his massive tome on path integrals [58] as well as several doctoral theses that have covered similar

content [61,62].

3.2 From the Classical Action to the Path Integral

The simplest form of Feynman’s path integral begins by considering the classical transition of a single particle

in one dimension from a point x1 at a time t1 to a point x2 at a time t2. In classical mechanics, the path

taken by this particle is described by the path which minimizes in the variational sense the classical action

1This approach was arguably first suggested by Dirac in his comments concerning the relationship of the classical action to
the quantum propagator.
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S[ẋ(t), x(t); t] which is given by integrating the classical Lagrangian L over time as

S[ẋ(t), x(t); t] =

∫ t2

t1

L(ẋ(t), x(t); t) (3.1)

where the Lagrangian itself is defined as

L(ẋ(t), x(t); t) =
m

2
ẋ(t)2 − V (ẋ(t), xt, t) (3.2)

In classical mechanics the Lagrangian provides a versatile compliment to Hamiltonian mechanics as the

Hamilton’s method is directly related to the Lagrangian by the Legendre transform.

Upon first encounter, this Lagrangian-action approach to classical systems would seem to have no direct

mapping to quantum mechanics. Unlike Hamilton’s approach to classical mechanics, which gave rise to the

Schrödinger equation due to its inherent energy conservation. Due to the lack of an effective Legendre trans-

form for quantum mechanics, the Lagrangian-action approach seems to be quite different as it necessarily

minimizes an action and thus its quantum interpretation is seemingly somewhat muddled [58]. Nonethe-

less, as is frequently the case in early quantum theory, it was Dirac who first noticed/suggested a possible

relation between the classical action, an integrated form of the Lagrangian, and the quantum mechanical

propagator [63]. Namely that

|ψ(t)〉 = e
it
~ Ĥ |ψ〉 ∼ e

i
~S[x,t]. (3.3)

3.2.1 A Heuristic Description of the Path Integral

Building on this observation, Feynman made the intuitive connection between the classical action, the La-

grangian, and their interpretation in quantum mechanics [64,65]. In a classical context, the action describes

the path taken by the particle which minimizes the energy requirement to get from the particle of interest’s

initial coordinates (x1, t1) to its final coordinates (x2, t2). Through a thought experiment where he consid-

ered the meaning of a particle subject to the non-classical rules of quantum mechanics, Feynman realized

that the transition amplitude could be described as the sum of the action functionals given by eqn. (3.3) over

all possible paths. Moreover, letting ~→ 0 allows the recovery the classical path of interest since this limit

minimizes the now non-classical action functional and, thus, provides a direct link between time-dependent

quantum and classical mechanics.

Using the formalism for the quantum amplitude of a path originally recognized by Dirac and given in

eqn. (3.3) and summing over these amplitudes allows the approximate description of the total amplitude

for the transition of a particle from its initial state 1 to its final state 2. In the “infinite limit” such that
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an infinite number of screens are covered by an infinite number of holes, and thus free space is recovered,

the summation of those infinite number of amplitudes associated with the infinite number of possible paths

followed by the particle ought to yield the exact quantum transition amplitude of the particle in question.

Complicating this idealized free-particle situation is reality. If an external potential is added to the

system, then the value of the external potential must be added to the Lagrangian associated with each

point along the path in question so that the potential is accounted for in an appropriate fashion to the total

transition amplitude. The case of multiparticle, interacting systems is handled in a very similar fashion,

except that, paths for each particle must be considered and summed together to recover the transition

amplitude. For the case of calculating a particle with a time-dependent potential, a time-ordering of the

points along the path is required, so that the potentials appropriate time-dependent values are properly

incorporated into the transition amplitudes for the paths in question.

Finally, the determination of the transition amplitude(s) associated with quantum particles whose spin is

directly under consideration using a relativistic techniques are outside the scope of this thesis. Nonetheless,

this case has been studied and in fact along with many other studies comprises the 1969 thesis of Leonard

Schulman [66]. While the technical details may be considered to be generally outside the scope of this thesis,

it is interesting to generally sketch them out here.

Spin was amongst the last quantum observable quantities to be described via path integration as it is an

intrinsically quantum mechanical quantity arising from the interaction of quantum mechanics with special

relativity and thus generally thought in the early years of postwar science to be outside the description of

a methodology intrinsically rooted in classical mechanics. Nonetheless, the particles in question may be

considered to be spinning in the classical sense and these spins may quantized using the logic of the path

integral and thus incorporated into Feynman’s methodological framework. Despite this success, to further

explore the implications of spin in path integration requires the incorporation of special relativity into a

path integral framework, and thus is firmly outside the scope of this thesis.

Before re-stating the insights gained from the preceding thought experiment in a more mathematical

framework, it is interesting to consider the implications of what it actually means to sum paths using the

Dirac functional form given by eqn. (3.3). Inspecting this form it is clear that the action associated with

given particle path yields a value with the same units as ~ (energy·time). Replacing S[(·)] with this value

in eqn. (3.3) yields an arbitrary complex phase.When a summation over a set of these complex phases is

performed, the resulting value associated with quantum amplitude of the transitioning particle(s) from the

initial state to the final state must occur due to the cancellation associated with the infinite number of

oscillations associated with all of the unlikely (high-energy) paths associated with the particle(s).
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While in our heuristic thought experiment this cancellation by phase oscillation does not seem to cause

much of a problem. It seems quite plausible to many, including this author and has, in fact, been used

for many years. It, nonetheless, is not mathematically well-founded because no intrinsic measure capable

of describing the phase cancellation of these paths has been found from a mathematical perspective. This

has led to a great deal of consternation within and without the physics community as well as to much work

within the mathematical physics community. I mention this not throw cold water on this work, but instead

to give a sense of a living science in which may valuable things may be heuristically defined and used, but

which nonetheless are not fully formed from a mathematical perspective.

3.2.2 A Formal Mathematical Presentation of the Heuristic Description of the

Path Integral

Returning to a mathematical description of the heuristic description of the path integral, using Feynman’s

notation, the preceding thought experiments that describe the sum of the quantum amplitudes may be more

precisely stated as follows,

K(2, 1) =
∑

(·) = all paths

1

A
e
i
~S[(·)], (3.4)

where A is the normalization constant in question and K(2, 1) is the quantum probability amplitude2 associ-

ated with a particle transitioning from state 1 to state 2. The probability P (2, 1) is then given by |K(2, 1)|2.

Feynman interprets the integral of the action present in the preceding equation (3.4) to be well described

by a Riemann sum and so discretizes or slices S[(·)] using the Riemann or midpoint rule type quadrature

formula.

Using this primitive Riemann-type discretization gives an action that may described as

S =

M−1∑
j=0

τ

2

(
L
[
∆ q̇(j+1), q(j)

]
+ L

[
∆ q̇(j+1), q(j+1)

])
, (3.5)

where

τ =
it

M
(3.6)

and

∆ q̇(j+1) =
(q(j+1) − q(j))

τ
. (3.7)

2This is the notation used in Feynman and Hibbs [60] and used here for convenience and for review purposes as it is still
used occasionally, particularly for teaching purposes.
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Putting these definitions together gives the final synthesis of the discretized action as

S =

M−1∑
j=0

τ
m

2

(
x(j+1) − x(j)

τ2
+ V (x(j+1))

)
. (3.8)

Inserting this expression into the previously defined framework gives a form for calculating the transition

amplitude that may be discretized in the following fashion,

K(2, 1) = lim
τ→0

1

A

∫
· · ·
∫
e
i
~S[(2,1)]

M−1∏
j=0

dxj
A
, (3.9)

where A = ( 2πi~τ
m )1/2 for the Lagrangian given by eqn. (3.2). Taking the limit of an infinite number of slices

or sweeping everything under the rug if one prefers to be mathematically correct gives the functional form

of the path integral as

K(2, 1) =

∫ State 2

State 1

D[x]e
i
~S[2,1]. (3.10)

3.3 Connecting the Path Integral to the Schrödinger Equation

The N -particle Schrödinger equation may be expressed as,

i~
∂Ψ(X, t)

∂t
= ĤΨ(X, t), (3.11)

where

Ĥ = T̂ + V̂ =

N∑
j=1

P̂ 2

2mj
+ V̂ , (3.12)

and expressing the operators given by eqn. (3.12) in a position basis set yields,

N∑
j=1

−~2

2mj
∇2
j + V (X, t). (3.13)

This equation may be put in a form so that it is comparable to the path integral by solving the time-dependent

part as follows,

i~
∂ψ

∂t
= Ĥψ → |ψ(t)〉 = e

it
~ Ĥ |ψ(t = 0)〉. (3.14)

The factor, e
it
~ Ĥ , is the operator form of the propagator, K(2, 1), and may be considered to time-evolve from

the initial state of the system given here as |ψ(t = 0)〉 at t = 0 to the final state of the system in question,

|ψ(t)〉, where the time of the final state is given by an arbitrary t. Clearly, if the propagator K(2, 1) is
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thought of as a kernel of an integral, the evolution of a quantum state forward to a new time and position

may be expressed in a manner similar to eqn. (3.14). The initial state of the system given here as |ψ(t = 0)〉

at t = 0 to the final state of the system in question, |ψ(t)〉, where the time of the final state is given by an

arbitrary t. Clearly, if the propagator K(2, 1) is thought of as a kernel of an integral, and hence the K, that

evolves a quantum state forward to a new a time and position then it may be expressed in a similar fashion

to eqn. (3.14) as

ψ(x2, t2) =

∫ ∞
−∞

dx1K(x2, x1, t2 − t1)ψ(x1, t1) (3.15)

Using the ansatz suggested by Dirac and given by eqn.(3.3) to propagate the initial state in eqn. (3.15)

forward an arbitrarily short-time,τ , produces,

ψ(x2, t1 + τ) =

∫ ∞
−∞

dx1
1

A
e
i
~ τ(m2

(x(2)−x(1))2

τ2
−V (x(2)) )ψ(x1, t1), (3.16)

where A is a yet underived normalizing constant. Taking advantage of the arbitrarily short-time of evolution

described by τ , it may be assumed that the only paths that will contribute to the path integral are arbitrarily

close to the starting position x1, and hence, x2 may be made arbitrarily close by η to x1, so that x1 = x2−η.

Substituting this relation into the ansatz given by eqn. (3.16) yields

ψ(x1 + η, t1 + τ) =

∫ ∞
−∞

dη
1

A
e
i
~ τ(m2

η2

τ2
+V (x(2)) )ψ(x1, t1) (3.17)

If this equation (3.17) is then expanded in a power series about τ , then a discretized form of the Schrödinger

equation may be recovered and the normalization constant found,

ψ(x1 + η, t1 + τ) + τ
∂

∂t
ψ(x1 + η, t1 + τ) =

∫ ∞
−∞

1

A
e
i
~ τ(m2

η2

τ2
) ×

(
1− iτ

~
V (x2

)
×
(
ψ(x1 + η, t1 + τ) + τ

∂

∂x1
+

1

2
η2 ∂

2

∂x2
1

ψ(x1 + η, t1 + τ)

)
dη. (3.18)

If the right- and left-hand sides of eqn. (3.18) are compared and the various orders of τ matched, then the

following relations are found. The zeroeth order equation furnishes the normalization constant A as

1

A

∫ ∞
−∞

dη
1

A
e
i
~ τ(m2

η2

τ2
) = 1 ⇒ A = (

2πi~τ
m

)1/2. (3.19)

The first order equation yields the relations that ultimately determine the Schrödinger equation as

ψ + τ
∂ψ

∂t
= ψ − iτ

~
V ψ − ~iτ

2m

∂2ψ

∂x2
. (3.20)
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Rearranging this expression and canceling out the various τ ’s gives the time-dependent Schrödinger equation,

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ, (3.21)

as is expected, since with a little thought it is clear that these manipulations are undoing the formal ma-

nipulations that lead from the time-dependent Schrödinger equation to the quantum propagator in operator

form.

3.4 The Significance of the Path Integral

After performing these various mathematical maneuvers one may think,“That this is quite nice and all, but

what can be gained from all of these inexact mathematical niceties?” It is important to recognize that with

this formulation one may completely sidestep the Schrödinger equation meaning that while it is necessarily

equivalent to that older form of quantum mechanics, it is independent of it like Heisenberg’s matrix mechan-

ics. This means that in principle all of the measurable quantities associated with the quantum mechanical

wave equation may be derived in a way completely independent from that formulation without using wave-

functions. For instance, time correlation functions may be expressed in a fashion completely independent

from having to calculate the underlying wavefunctions, which represent the time evolution the operator(s)

of interest’s underlying state(s). In the context of both the computation and the conceptualization of the

underlying physics, this path integral formulation frees the practitioner of the art from having to think

about wavefunctions to thinking directly about the time propagation of observables of interest. Thus, this

methodological change opens up new possibilities for arriving at approximations and answers to physical

problems.

Before continuing, it is worth considering why the path integral is such a powerful formalism: Time

and time again what makes the path integral such a versatile and relatively simple quantum mechanical

object from both an analytical and computational perspective is the iterative use of propagating a state of

interest a short-time using a moderately accurate approximate propagator. That is if one has an approximate

propagator kernel, KApp(2, 1, τ) where 1 and 2 are meant to indicate that this approximate kernel propagates

a state from 1 to 2 over a short-time τ then a propagation from over a much longer time t may be made by

letting τ = t
M and propagating the initial state of the system forward by applying KApp M times so that

|2〉 = KApp(2, 1, t)|1〉 ≈
∫ ∞
−∞
· · ·
∫ ∞
−∞

dxM
M∏
j=1

KApp(xj+1, xj , τ)|1〉. (3.22)
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Thematically, this result encapsulates the power of the path integral approach. Namely, that a very poor

approximation to the quantum propagator may be leveraged to obtain a very accurate approximation to a

much longer time propagation if enough short-time approximations are integrated over. While based upon

the heuristic arguments given so far, it probably quite unclear to the reader how good this approach may

be, and in truth when Feynman first published his derivation of the path integral it was probably unclear

whether or not finite approximations to the path integral would ever be useful outside of a few toy cases.

Fortunately, work in the later part of the 1950’s cleared up much of this uncertainty and showed that the

path integral may be identified with what are referred to as split-operator approaches in applied mathematics

via the Lie-Trotter theorem. Moreover, this approach describes in asymptotic fashion roughly how many

time slices are required to approximate the propagation for a given length of time.

As is always important for new approaches, toy problems are are critical to understanding the flexibility

and naturalness of the path integral formalism. Hence, the sections that follow this one focus on the

derivation of the two most critical toy models in path integrals and indeed the whole of non-relativistic

quantum mechanics, namely the free particle and the harmonic oscillator.

3.5 The Path Integral for the Free Particle

In the case of the free particle, Feynman began his approximation by quite sensibly assuming that the

quantum amplitude would more or less follow the trajectory of the classical path from a coordinate (x0, 0)

to (xM , t) with a classical trajectory xcl(t) = x0 + t
M (xM −x0). This results in a classical action for the free

particle being

Scl(t) =
m

2

(
(xM − x0)

t

)2

, (3.23)

in the classical limit of ~→ 0. Returning to quantum mechanics, the path integral framework yields

KFP (2, 1, t) =

∫
D[x]e

i
~
∫ t
0
dtm2 ẋ

2

= lim
M→∞

( m

2πi~τ

)M/2
∫ ∞
−∞
· · ·
∫ ∞
−∞

dxM
M∏
j=1

e
i
h τ

m
2

(
x(j+1)−x(j)

τ2

)
. (3.24)

Integrating the right-hand side of eqn. (3.24) yields the expected propagator for the free particle,

KFP (xM , x0, t) =
( m

2πi~t

)1/2

e
i
~
m
2

(xM−x0)2

t , (3.25)

which is just the substitution of the classical free particle action into Dirac’s quantum mechanical action

functional. Initially, it may seem strange that a classical quantity, in this case the free particle’s action, may

51



be directly substituted into a quantum mechanical functional without any further modification to account

for quantum effects. Nonetheless, for exactly solvable potentials, it is often the case that by expanding or

incorporating the dominant classical paths of the underlying potential of interest excellent approximations

for various propagators may be arrived. This insight is among the many methods that quantum mechanics

is approximated from a semiclassical perspective.

The free particle propagator is in essence a case of repeated Gaussian integration, wherein an integration

over some variable results in the same rescaled integral. This effect is generally referred to as the the

semigroup property of the propagator and must appear for any exact propagator as can be seen by the

following mathematical argument,

K(3, 1, t2 + t1)|1〉 =

∫ ∞
−∞

dx2K(3, 2, t2)K(2, 1, t1)|1〉. (3.26)

Since K must have the same form at any time or state, when an intervening state is integrated out from two

exact propagators the resulting propagator must be exactly the same as the two prior propagators, excepting

a rescaling by an appropriate factor. This odd but seemingly useless property is, in fact, very important for

designing efficient numerical sampling techniques for the integration of approximations to these functions

since the a potential perturbed form of the free particle propagator is in effect Feynman’s path integral

formulation. The semigroup property associated with the free particle portion of this approximate propagator

may then be used to relatively quickly find acceptable samples for numerical integration techniques. This

will be covered in detail in the chapter on computational approaches to path integrals.

3.6 The Path Integral for the Harmonic Oscillator

3.6.1 Introduction

Like the free particle, the harmonic oscillator is another classical toy potential within physics and quantum

mechanics in particular. The Schrödinger equation which determines it in a single dimensional setting is

given by

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+
m

2
ωx2ψ (3.27)

where ω is the frequency of oscillation. The quantum Hamiltonian of this potential is then necessarily given

by

Ĥ =
p̂2

2m
+
m

2
ωx̂2, (3.28)

52



and the classical Lagrangian by

L =
m

2
ẋ2 +

m

2
ωx2. (3.29)

However, unlike the prior presentation for the free particle, this presentation for the harmonic oscillator will

first show how the harmonic oscillator propagator may be derived using classical path techniques and fluctu-

ation terms. Afterwards, that same harmonic oscillator propagator will be manipulated and deconstructed

in order to find the underlying eigenfunctions of the associated harmonic oscillator.

3.6.2 Deriving the Propagator of the Harmonic Oscillator Using the Classical

Path and Fluctuation Terms

First, the path integral for the harmonic oscillator may be described as follows where A is used indicate the

action of the system in question and that it is being used in a “looser” fashion than previously presented. As

an aside, it should be noted that the derivation of the harmonic oscillator propagator which follows descends

from that given by H. Kleinert in his truly massive tome on path integrals [67].

The propagator for the harmonic oscillator is given in the following functional form as

〈x2, t2|e
it
~ Ĥosc |x1, t1〉 =

∫
D[x]

∫
D[p]

2π
e
i
~A[p,x],

=

∫
D[x]e

i
~A[ẋ,x] (3.30)

where the action expressed in terms of momentum, p, and position, x, is

A[p, x] =

∫ t2

t1

dt

(
pẋ− p2

2m
− mω2

2
x2

)
, (3.31)

and the action in terms of of velocity ẋ and position, x, is

A[ẋ, x] =

∫ t2

t1

dt
m

2

(
ẋ2 − ω2x2

)
. (3.32)

Following from the path formalism of Feynman’s approach to the path integral, the propagator of the

harmonic oscillator may be expressed as in terms of quantum fluctuations around the classical paths of the

harmonic as oscillator as

Afl =

∫ t2

t1

dt
m

2

(
(δẋ)2 − ω2(δx)2

cl

)
, (3.33)
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where the classical paths of the harmonic oscillator are defined in terms of the classical action as

Acl =

∫ t2

t1

dt
m

2

(
ẋcl

2 − ω2x2
cl

)
. (3.34)

Applying the following boundary conditions,

δx(t1) = δx(t2) = 0, (3.35)

to the fluctuations at times t1 and t2. Thus there is no term that mixes the classical path coordinates

with the fluctuation terms and consequently the path integral expression for the quantum propagator of the

harmonic oscillator may be rewritten as a product of terms due to the classical path and the fluctuation

terms as

〈x2, t2|e
it
~ Ĥosc |x1, t1〉 =

∫
D[x]e

i
~A[x]

= e
i
~AclFω(t2 − t1). (3.36)

The classical trajectory may then be solved to give

xcl(t) =
x2 sin(ω(t− t1)) + x1 sin(ω(t2 − t))

sin(ω(t2 − t1))
, (3.37)

where it is assumed that ω(t2 − t1) 6= nπ, n ∈ Z.

The classical action requires some algebraic manipulation to re-express it in terms of the boundary

conditions as,

Acl =

∫ t2

t1

dt
m

2
(xclẍcl − ω2xcl) +

m

2
xclẋcl|t2t1

=
m

2
xclẋcl|t2t1 , (3.38)

where the integrand term cancels because it defines the equation of motion minus itself, leaving the boundary

term as the answer. Taking the time derivative of eqn. (3.37) and solving for the boundary times gives the
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following expressions,

ẋcl(t2) =
ω

sin(ω(t2 − t1))
(x2 − x1 cos(ω(t2 − t1)))

ẋcl(t1) =
ω

sin(ω(t2 − t1))
(x2 cos(ω(t2 − t1))− x1) . (3.39)

Substituting these equations into eqn. (3.38) yields an expression for the classical action in terms of the

boundary conditions (x2, t2) and (x1, t1),

mω

sin(ω(t2 − t1))

(
(x2

2 + x2
1) cos(ω(t2 − t1))− 2x2x1

)
, (3.40)

so that the classical portion of the propagator may be expressed as,

e
i
~Acl = e

i
~

mω
sin(ω(t2−t1)) ((x2

2+x2
1) cos(ω(t2−t1))−2x2x1). (3.41)

The fluctuation term is a bit more tricky but may be ultimately be derived in the following fashion.

Recalling the fluctuation factor, Fω(t2 − t1), its N -slice limited form indicated as FNω (t2 − t1) may be

expressed via the following expression,

FNω (t2 − t1) =

√
m

2π~iε

N∏
n=1

[∫ ∞
−∞

dδxn

](√
m

2π~iε

)N
e
iε
~
m
2 [
∑N
m,m′=1

δm(∇∇+ω2)δm′ ], (3.42)

where∇ and ∇ indicate the forward and backward difference operators and the
∑N
m,m′=1 indicates that

object being manipulated is a matrix. If this matrix is diagonalized, the following eigenvalues result

ΩmΩm =
2− 2 cos(νmε)

ε2
− ω2, (3.43)

and FNω (t2 − t1) may expressed in terms of these eigenvalues as

FNω (t2 − t1) =

√
m

2π~iε

N∏
m=1

=
1√

ε2ΩmΩm − ε2ω2
. (3.44)

The following factor is then defined for convenience,

sin(ε
ω̃

2
) = ε

ω

2
, (3.45)

so that a term in the RHS of eqn. (3.44) may expressed using this expression and then simplified using
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various product identities as,

N∏
m=1

(
ε2ΩmΩm − ε2ω2

)
=

N∏
m=1

(
ε2ΩmΩm

) N∏
m=1

(
ε2ΩmΩm − ε2ω2

ε2ΩmΩm

)

=

N∏
m=1

(
ε2ΩmΩm

) N∏
m=1

(
1−

sin(ε ω̃2 )2

sin(ε mπ
2(N+1) )2

)

=
sin(ω̃(t2 − t1))

sin(εω̃)
. (3.46)

The finite N -slice fluctuation factor may be given as,

FNω (t2 − t1) =

√
m

2π~iε

√
sin(εω̃)

sin(ω̃(t2 − t1))
. (3.47)

Finally, taking the continuum limit as limN→∞
(
sin(ε ω̃2 ) = εω2

)
= ω̃ = ω, which allows

lim
N→∞

FNω (t2 − t1) =

√
m

2πi~

√
sin(ω)

sin(ω(t2 − t1))
. (3.48)

Combining this fluctuation term with that of the classical path term given by eqn. (3.41) yields the expected

propagator

〈x2, t2|e
it
~ Ĥosc |x1, t1〉 =

√
m

2πi~
sin(ω)

sin(ω(t2 − t1))
e
i
~

mω
sin(ω(t2−t1)) ((x2

2+x2
1) cos(ω(t2−t1))−2x2x1). (3.49)

3.6.3 Extracting the Eigenfunctions of the Harmonic Oscillator from Its

Propagator

Now that the propagator of the harmonic oscillator has been derived, it is both enjoyable and instructive to

use it perform some mathematical tricks and show that it relates as expected to the underlying wavefunction

expression for the quantum propagator. This section follows closely the original presentation on this subject

in Feynman and Hibbs [64], which the author enjoyed so much and found so instructive when first learning

about path integrals that he felt it important to include it in his thesis.

This presentation begins by changing from a time-dependent description of quantum mechanics to a

time-independent one (The methodology for doing so may be found in any reasonable introductory text-

book on quantum mechanics.) allows the Schrödinger equation to be presented in terms of the underlying
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eigenfunctions of the harmonic oscillator as

Ĥφn(x) =

(
p̂2

2m
+
k

2
ωx̂2

)
φn(x) = Enφn(x). (3.50)

Solving for this equation yields energy levels given by

En = ~ω(n+
1

2
), n ∈ Z+, (3.51)

where ω =
√

k
m and the eigenfunctions given as

φn(x) =
1

(2nn!)1/2

(mω
π~

)1/4

Hn(x

√
mω

~
)e−

mω
2~ x

2

, (3.52)

where Hn(x) are the Hermite polynomials which may be determined via the following generating formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

. (3.53)

Using the definition of a propagator along with the previously derived harmonic oscillator propagator

allows the following statement

〈x2, t2|e
it
~ Ĥosc |x1, t1〉 =

∞∑
n=0

φ∗n(x2)φn(x1) e
−it
~ En

=

(
mω

2πi~ sin (ωt)

)1/2

e
imω

2π~ sin (ωt)
((x2

2+x2
1) cos (ωt)−2x2x1). (3.54)

While using the complex exponential form of the trigonometric functions in eqn. (3.54) allows the propagator

to be rewritten as

( mω
2πi~

)1/2 eiωt/2

(1− e−2iωt)1/2
e

imω
2π~ sin (ωt)

((x2
2+x2

1) 1+e−2iωt

1−e−2iωt−2x2x1
eiωt/2

1−e−2iωt )
. (3.55)

The geometric series may then be used to expand the ratio of factors and give the following expression,

( mω
2πi~

)1/2

eiωt/2
(

1 +
1

2
e−i2ωt + · · ·

)
e−

mω
2~ (x2

2+x2
1)

×

[
1 +

2mω

~
x2x1e

−iωt +
1

2

(
2mω

~

)2

x2
2x

2
1e
−i2ωt − mω

~
(x2 + x1)e−i2ωt + · · ·

]
. (3.56)

After laboriously grouping the terms of like energy of the form φ∗n(x2)φn(x1)e−inω(t+ 1
2 ) of eqn. (3.56),
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the wavefunctions, as well as the energy levels, may be extracted back out from the propagator. Giving

En = ~ω(n+ 1
2 ), n ∈ Z+ as expected for the energy levels as well as,

φ0(x) =
(mω
π~

)1/4

e−
mω
2~ x

2

, (3.57)

for the ground state wavefunction of the harmonic oscillator. Similar groupings may be performed for the

excited states.

3.7 The Thermal Density Matrix: An Imaginary-Time

Complement to Feynman’s Formulation

3.7.1 Overview of Quantum Statistical Mechanics

Within computational physics, lattice methods aside, quantum statistical mechanics is the major application

of the path integral due to the numerical stability of the integrands that this methodology yields. While so

far, the presentation in this chapter has focused upon the real-time or time-dependent quantum mechanical

applications of the Feynman path integral, in a computational setting these methods are in fact of limited

or of highly specialized importance/interest due to the oscillatory effects of the complex factor present

in the real-time phase factor, |ψ(t)〉 = e
it
~ Ĥ |ψ〉 ∼ e

i
~S[x,t]. Applying standard Monte Carlo numerical

integration techniques to integrate the high-dimensional integrands that would be generated by the Feynman

path integral results in a statistical error that becomes exponentially worse with each added dimension of

integration. This fact has resulted in this field being considered from a computational perspective to be

quite outside the mainstream or as a starting point for semiclassical approaches which typically yield much

better behaved integrands.

That said, when exploring quantum statistical mechanics it is quite common to come across the quantum

Boltzmann operator e−βĤ which yields the equilibrium Boltzmann distribution and hence the weighting for

for quantum systems. Moreover, this operator shares its mathematical form with the Heisenberg time-

evolution operator e−
it
~ Ĥ and has thus far been indirectly the subject of this chapter. While clearly related

to Heisenberg’s operator, the Boltzmann operator may in fact be found by analytically continuing in the real

time coordinate t to an imaginary time t→ iτ such that iτ
~ = −β. This simple analytical trick allows all of

the reasoning used by Feynman to initially derive quantum propagators to be applied to quantum Boltzmann

factors, although it is arguable that the heuristic arguments underlying Feynman’s manipulations are lost in

the transition from real- to imaginary-time. Fortunately, what is lost in heuristic is gained in mathematical
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rigor as techniques such as Feynman-Kac integrals and split-operator methods become applicable.

To state it succinctly, the trace over the Boltzmann operator defines the quantum canonical partition

function Z(β) of quantum statistical mechanics. This quantity may be variously defined as follows

Z(β) =
∑
i

d(i)e−βEi =

∫
dx 〈x|e−βĤ |x〉, (3.58)

where the middle expression of eqn. (3.58) is a summation over energy where the Boltzmann factor,e−βEi ,

of each energy state is weighted by its degeneracy, di. To make a fuller identification with the Feynman path

integral, the Dirac ansatz for the Boltzmann operator may be stated as follows

∫
dx〈x|e−βĤ |x〉 =

∑
Closed Paths

e−i
∫−it
0

dτ L[q̇(τ),q(τ)]. (3.59)

Continuing on, while the partition function is typically regarded as the function of central interest in

statistical mechanics due to its direct relationship to the free energy F as Z(β) = e−βF , in truth, what

makes it useful from an experimental and hence ultimately scientific viewpoint is that it can be used to

calculate average macroscopic quantities of interest using the following expression,

〈A(β)〉 =

∫
dx 〈x|Â e−βĤ |x〉

Z(β)
. (3.60)

Once an average value for some expectation value Â, such as average magnetization of a material or average

energy of a system or even heat capacity of a system, is found it may be corroborated with experiment.

3.7.2 Quantum Statistical Mechanics via the Bloch Equation

The previous subsection has focused on presenting quantum statistical mechanics in its usual framework of

counting states, finding partition functions, and calculating expectation values. However, another approach

links the thermal density matrix or the quantum observable matrix element defined by the Boltzmann

operator to a Schrödinger-like equation called the Bloch equation. This should not come as a surprise to

the reader since the quantum propagator may be (and has been) derived in exactly the same fashion using

formal manipulations of the Schrödinger equation. The Bloch equation is defined as,

−∂ρ(x′, x;β)

∂β
= Ĥ ρ(x′, x;β)→ ρ(x′, x;β) = 〈x′|e−βĤ |x〉, (3.61)
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where this expression ought to look much like an analytically continued Schrödinger equation to the reader

with the following boundary conditions for boltzmannon particles (particles without quantum exchange

effects),

ρ(x′, x; 0) = δ(x′ − x), (3.62)

and the following boundary conditions

ρ(x′, x; 0)B/F =
∑
P

(±1)Pδ(Px′ − x), (3.63)

for bosons and fermions, both types of quantum particles, the later of which will be covered extensively in

this thesis.

Since the matrix element which is the solution to the Bloch equation is an expectation value for the

Schrödinger equation it may be expressed via eigenfunction just like any other average quantity as

ρ(x′, x;β) =
∑
i

ψ∗i (x′)e−βEiψi(x). (3.64)

This expression is a fundamental relation for the thermal density matrix and provides a convenient way to

prove assertions that are often difficult to show in other frameworks.

3.7.3 Connecting the Thermal Density Matrix to the Path Integral

So far, a great deal of background for statistical mechanics has been covered, however, the reader may wonder

how this relates to path integrals. While it is clear and has been previously alluded to that the thermal

density matrix shares a form with quantum propagator, its direct connection may still seem elusive. It is

the purpose of this subsection to concretely demonstrate how the Boltzmann operator may be expressed in

a path integral expression using an alternant split-operator approach to the path integral that is actually

the standard formalism within the computational physics/chemical physics communities.

First, consider the Boltzmann operator e−βĤ . Using the Lie-Trotter theorem, it may be split and

reformulated in an approximate form so that calculations may be performed as follows

e−βĤ ≈
(
e−β

T̂
n e−β

V̂
n

)n
≈
(
e−β

T̂
2n e−β

V̂
n e−β

T̂
2n

)n
=
(
e−β

T̂
n e−β

V̂
n

)n
+ O

(
1

n

)
=
(
e−β

T̂
2n e−β

V̂
n e−β

T̂
2n

)n
+ O

(
1

n2

)
. (3.65)
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At first sight, these operations may seem abstruse and possibly unnecessary; however, they are required

because a direct evaluation of the Boltzmann operator would require the solution of the Schrödinger equation

for the Hamiltonian of interest. Instead, Ĥ = T̂ + V̂ may be split, so that only the individual exponential

operator functions, e−βT̂ and e−βV̂ , need be considered. Repeatedly splitting the Boltzmann operator using

the formalism given by eqn. (3.65) develops the direct connection to the path integral framework so that,

Z(β) = Tr(e−βĤ) ≈ Tr(
n∏
j=1

e−β
T̂
n e−β

V̂
n ). (3.66)

Inserting complete sets of position and momentum states in front of the kinetic energy operators, T̂ , and

potential energy operators, V̂ , and operating on those states with those exponential operators yields,

Z(β) = Tr(e−βĤ) ≈ Tr(
n∏
j=1

∫
dpjdxje

−β T̂n |pj〉〈pj |e−β
V̂
n |xj〉〈xj |), (3.67)

where after some rearrangement of terms, these individual matrix elements may be evaluated as follows,

〈y|e−βT̂ e−βV̂ |x〉 =

∫
dp 〈y|e−βT̂ |p〉〈p|e−βV̂ |x〉

=

∫
dp 〈y|p〉〈p|x〉e−β

p2

2m e−βV ({x})

=

∫
dp eip(y−x)e−β

p2

2m e−βV ({x})

=

(
m

2πβ

) d
2

e−
m(y−x)2

2β e−βV ({x}). (3.68)

So that, after the momentum states are integrated out and the resulting functions that describe the underly-

ing matrix elements may be reinserted into the split-operator path integral framework given by eqn. (3.66)

to yield the final path integral expression for the thermal density matrix,

Z(β) ≈
(
m

2πβ

) dn
2
∫
dxn

n−1∏
j=0

e−
mn(x(j+1)−x(j))2

2β e−
β
nV ({x(j)}). (3.69)

3.7.4 An Exact Solution for the Partition Function of the Harmonic Oscillator

As a final exercise for the thermal density matrix, the partition function as well as the average energy, 〈E〉,

for the harmonic oscillator will be found as it is a ubiquitous test problem within this field. First, recall that

61



the Hamiltonian of the harmonic oscillator is given by following operator expression

Ĥ =
p̂2

2m
+
k

2
x̂2. (3.70)

Solving for the energy levels of the harmonic oscillator via the time-independent Schrödinger equation,Ĥφn(x) =

Enφn(x), yields the following relations

En = ~ω(n+
1

2
), n ∈ Z0, (3.71)

where ω =
√

k
m . Consequently, the partition function, Z(β), may be described as

Z(β) = Tr(e−βĤosc) =

∫
dx〈x|e−βĤosc |x〉 =

∞∑
n=0

e−β(~ω(n+ 1
2 )). (3.72)

While all of the various forms for Z(β) given in eqn. (3.72)are soluble, by far the easiest method is

summing the series given by the far RHS of the equation (In fact, it is given as a problem in the introductory

undergraduate thermal physics course here at the University of Illinois). By using the geometric series, it

may be shown that,

Z(β) =

∞∑
n=0

e−β(~ω(n+ 1
2 )) =

e−
β~ω
2

e−β~ω − 1
, (3.73)

and then by applying the definition,

−∂ ln(Z(β))

∂β
= 〈E〉, (3.74)

of average energy to the partition function for the harmonic oscillator gives

〈E〉 =
~ω
2

1 + e−β~ω

e−β~ω − 1
. (3.75)

This average energy for a single particle in a one-dimensional harmonic oscillator then becomes a convenient

test case for various simulations.

3.8 The Lie-Trotter Discretization of et(T̂+V̂ )

3.8.1 Overview of the Lie-Trotter Theorem

Previously in this chapter, the path integral has been presented in a fashion meant to make explicit con-

nections between the Lagrangian-Action approach of classical mechanics and sum over paths approach to
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determining the real- (and imaginary-) time propagators of quantum mechanics. The path integral was

presented in this fashion to give a sense both historic and current to how many researchers coming from

the physical sciences approach this methodology. That said, from a mathematical standpoint the path in-

tegral as a literal sum-over-paths has never been shown to be mathematically well founded for real-time

calculations (the case is different for imaginary time) and reading between the lines of various statements

he made concerning mathematics and physics seems to have been a source of consternation for R.P. Feyn-

man [64, 65]. Consequently, this section seeks to present an approach to the path integral, which while

not technically a sum-over-paths approach, is nonetheless mathematically solid, and moreover, as will be

shown in the subsequent chapter on computational approaches to the path integral allows one to explain why

Feynman’s arguments yield correct answers. Within the applied mathematics, these techniques are referred

to as “split-operator methods”; here, they will be referred to as Lie-Trotter-type formulas.

At its most fundamental level, Lie-Trotter-type formulas concern the relationship between an exponential

function of a sum of non-commuting operators and the individual exponential functions of those same

operators, and more importantly, how well products of those individual exponential functions of a single

operator may approximate the initial exponential function of a sum of non-commuting operators. Typically,

the goal of research into Lie-Trotter-type formulas is to make as high of an order approximation to the initial

exponential operator function as possible while using as few as individual operator functions as possible in

the approximating product in order to limit the number of variables ultimately used in the approximation.

Moreover, it is often a goal to structure these approximations in ways to preserve desirable symmetries and

properties like hermiticity as doing so often has useful error limiting consequences. The following presentation

of a proof of the standard and symmetric Lie-Trotter theorems will closely follow the proofs presented in M.

Suzuki’s book on path integration techniques [68].

3.8.2 Proof of the Standard Lie-Trotter Theorem

To apply Lie-Trotter-type formulas to the approximation of a quantum mechanical propagator et(T̂+V̂ ) or

as will be subsequently used et(Â+B̂), where t here is some time, real or imaginary, and [Â, B̂] 6= 0. It is

the non-commuting nature of the underlying operators Â and B̂ that makes finding these approximations

beguiling and challenging problems. In general, the Lie-Trotter theorem may be simply stated as follows,

et(Â+B̂) = lim
m→∞

(
e
t
m Âe

t
m B̂
)m

. (3.76)
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Although in truth in any computational application this identity will be truncated at some finite m and so

it is useful to see how the error decays asymptotically as a function of the number of replicas

et(Â1+Â2+...+Ân) =
(
e
t
m (Â1+Â2+...+Ân)

)m

=

(
e
t
m Â1e

t
m Â2 · · · e t

m Ân +O(
t2

m2
)

)m

=
(
e
t
m Â1e

t
m Â2 · · · e t

m Ân
)m

+O

(
t2

m

)
. (3.77)

Proving these statements, however, are quite challenging and based on the many theses and papers concerning

path integration that use these methods that the author has perused seldom understood or appreciated by

the computational physics/chemical physics communities. Consequently, the explanations that are meant

to fill in that gap while providing proofs of Lie-Trotter-type theorems in succinct and as accessible a way as

possible.

First, some basics are required. A matrix norm for an operator Â or B̂ in some sense measures the “size”

of an operator just as a ruler measures the length of a line. Typically, we equip our matrix operator norms

with the following properties by definition:

1. ||Â|| ≥ 0

2. ||xÂ|| = |x| ||Â||

3. ||Â+ B̂|| ≤ ||Â||+ ||B̂||

4. ||ÂB̂|| ≤ ||Â|| · ||B̂||

5. ||1|| = 1 . (3.78)

Examples of a norm for a matrix are maximal absolute eigenvalue of a Hermitian matrix,|λmax| or the

maximal columns sum of a matrix ||Â|| = maxi
∑
j |aij |. Next, for the purpose of convenience, two dummy

expressions p and q are defined as

p = e
t
m (Â1+Â2+...+Ân), (3.79)

and as

q = e
t
m Â1e

t
m Â2 · · · e t

m Ân . (3.80)
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Next these expressions are constructed for p and q so as to measure the mth order difference between them

using the binomial theorem, the triangle inequality, and the Taylor series expansion for the exponential

function,

||pm − qm|| ≤ ||p− q|| (||p||m−1 + ||p||m−2||q||+ · · ·+ ||q||m−1)

≤ ||m|| e
(m−1)|t|

m (||Â1||+||Â2||+···+||Ân||). (3.81)

A similar line of reasoning gives gives rise to the following inequality,

||p− q|| ≤ 2

(
e
|t|
m (||Â1||+||Â2||+···+||Ân||) − (1 +

|t|
m

(||Â1||+ ||Â2||+ · · ·+ ||Ân||))
)

≤
(
|t|
m

(||Â1||+ ||Â2||+ · · ·+ ||Ân||)
)2 (

e
|t|
m (||Â1||+||Â2||+···+||Ân||)

)
. (3.82)

Consolidating these inequalities down, simplifying, and replacing our expressions for p and q back into the

expressions allows for,

||et(Â1+Â2+...+Ân) − (e
t
m Â1e

t
m Â2 · · · e t

m Ân)m|| ≤ |t|
2

m

 n∑
j=1

||Âj ||

2 (
e|t|

∑n
j=1 ||Âj ||

)
, (3.83)

which implies both the convergence of the Lie-Trotter theorem in the limm→∞ as well as the first order

O( 1
m ) convergence of this primitive form of the theorem.

3.8.3 Advantages of Conserving Hermiticity in the Proof of a

Lie-Trotter-Type Theorem

Fortunately, tighter bounds for Lie-Trotter-type theorems may be found when a discretization is made in

a way that is mindful to preserve the underlying Hermiticity of the exponential operator. Let us begin by

defining the symmetrized product formula,

S(t) = e
t

2m Â1e
t

2m Â2 · · · e t
2m Ân−1e

t
m Âne

t
2m Ân−1 · · · e t

2m Â2e
t

2m Â1 . (3.84)

As a teaser, note that this formula has a second order convergence which means that far fewer product

terms are required to gain the same level of accuracy as the initial Lie-Trotter formula i.e.,
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e
t
m (Â1+Â2+...+Ân) = S(t) +O(t2). (3.85)

In order to prove this, it is convenient to re-frame S(t) in the form of an exactly equivalent exponential

operator function,

S(t) = et(Â1+Â2+...+Ân)+t2R2+t3R3+..., (3.86)

where the terms Rj refers to the various commutators that are multiplied by tj ,

S(−t) = e−t(Â1+Â2+...+Ân)+t2R2−t3R3+.... (3.87)

Taking advantage of the special structure of an approximate symmetrized operator is easy to show that if

the parity of t is reversed and the resulting operator multiplied as follows,

S(t)S(−t) = S(−t)S(t) = 1, (3.88)

so that the identity may be used to argue that even-ordered commutator terms with the exception of 1 must

vanish like so,

S(t)S(−t) = e2(t2R2+t4R2+t6R6+...) = 1. (3.89)

This line of reasoning leads quite naturally to the following argument,

et(Â1+Â2+...+Ân) =
(
S(t/m) +O(t3/m3)

)m

=
(
S(t/m)m +m ·O(t3/m3)

)

=
(
S(t/m)m +O(t3/m2)

)
, (3.90)

which proves that a symmetrized Lie-Trotter-type product approximation converges to the initial starting

exponential operator function as O(t3/m2), which is much faster than the primitive Lie-Trotter formula

would predict.
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3.9 The Effects of Identical Particles in Path Integration

Within quantum mechanics, there are two types of indistinguishable quantum particles, bosons and fermions.

When spin is suppressed for clarity, in the wavefunction formalism, this indistinguishability is manifested

as,

Φ(X) = ĜF/BΨ(X)

=
1

N !

∑
j

(∓1)PF/BP̂jψ(x1, . . . , xu, . . . , xv, . . . , xN ), (3.91)

where Φ(X) denotes the total (anti-)symmetrized wavefunction, ĜF/B , the (anti-)symmetrization operator (F

and B denoting fermionic or bosonic respectively), and Ψ(X) the multi-particle boltzmannon wavefunction.

The process of (anti-)symmetrization proceeds as follows,

P̂u↔vψ(x1, . . . , xu, . . . , xv, . . . , xN )

=ψ(x1, . . . , xv, . . . , xu, . . . , xN ), (3.92)

where the coordinates that define the position of a single particle state and hence its identity in the sense of

“being” are permuted with those of another particle, so that their individual existences become blurred and

intimately interconnected. In the bosonic case, the exchange of the particle coordinates is always associated

with multiplying of the resultant new resultant wavefunction by a 1 so that the new collective wavefunction

for an N identical bosonic system is just the average Φ(X)B = 1
N !

∑
j (1)P P̂jψ(x1, . . . , xu, . . . , xv, . . . , xN )

of the N ! permutation resultant wavefunctions.

For fermions, this formula is different. In the fermionic case, the exchange of the particle coordinates

is always associated with multiplying of the resultant new resultant wavefunction by a −1 so that the new

collective wavefunction for an N identical fermionic system is just the average,

Φ(X)F =
1

N !

∑
j

(−1)P P̂jψ(x1, . . . , xu, . . . , xv, . . . , xN ), (3.93)

of the N ! permutation resultant wavefunctions.

Within the path integral framework, the necessity of the (anti-)symmetrization process is no different

from that of the wavefunction formalism and proceeds in a similar fashion except that in this framework

instead of permuting coordinates, one permutes and averages over the permutations of paths so that within
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the standard framework a propagator may be expressed as,

〈X2, t2|e
it
~ Ĥ |X1, t1〉 =

1

N !

∑
P

(∓1)P 〉
∫ P̂ x(t2)

x(t2

D[X(t2)]D[X(t1)]e
i
~
∫ t
0
dtm2 ẋ

2

, (3.94)

for a fermionic/bosonic quantum system and as,

Z(β) = Tr
(
〈X|ĜF/Be−βĤ|X〉

)
=

1

N!

∑
P

(∓1)P〉
∫ P̂x(t2)

x(t2

D[X(t2)]D[X(t1)]e
i
~
∫ β
0

dτ m
2 ẋ2

, (3.95)

for the partition function Z(β) of a fermionic/bosonic quantum statistical mechanical system.
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Chapter 4

Path Integral Monte Carlo as a
Computational Framework

4.1 Introduction

From a computational standpoint, the imaginary-time path integral provides a robust, arbitrarily exact

framework for accurately predicting measurable properties of (nearly) real systems. The ability of path

integral methods to attain arbitrary exactness arises from the Lie-Trotter discretization formalism which

allows for a discretization error which may be made as small as desired by increasing the number of dis-

cretizations. As a result of these properties, these path integral methods have been of considerable interest to

the computational physics/chemical physics communities over the past 30-40 years for calculating quantum

statistical mechanical quantities. That said there are also considerable drawbacks and open problems within

imaginary-time path integration techniques. In particular, sign problems in which the density in question

has negative regions which scale with system size bedevil this and other related methodologies for fermionic

and magnetic systems and restrict the practical utility of path integral type simulations to static or non-time

dependent quantities.

Typically, the mathematical parts and approach to the computational path integral are divided into 3 un-

derlying parts: the action of the path integral, the numerical methodology used to evaluate the path integral,

and the estimators used to determine the physical quantities of interest. The action of the approximate path

integral in its most basic form is the function associated with ln(ρapp(x)), where ρapp(x) is the approximate

density matrix. This function dictates a great deal about how numerical methodology will be applied to

ρapp(x). For instance, the harmonic spring-like structure associated with the kinetic energy term suggests

a natural isomorphism between the thermal density matrix and a ring-polymer, an observation which has

inspired many connections between these quantum simulations and their coarse-grained soft matter polymer

counterparts [69,70].

Selecting a numerical methodology for evaluating the expectation values associated with the thermal

density matrix can be both the easiest and most difficult decision made for the numerical evaluation of the

path integral. It is easy in the sense that the high-dimensional nature of the computational path integral
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necessitates the usage of Monte Carlo integration or molecular dynamics since these methods are more or less

the only practical ones available for integrating such a high-dimensional integrand. However, choosing from

among the available Monte Carlo methodologies can be challenging as it is important to find a Monte Carlo

methodology which achieves ergodicity relatively quickly, while minimizing the amount of work required to

perform the samples in question, while minimizing the correlation between samples as much as possible.

Often the selection of an appropriate methodology is highly dependent upon the underlying probability

distribution to be sampled from as well as the information available to define that distribution. Within

the context of path integration, a standard approach for the sampling algorithm is the bisection method,

which successively constructs a Brownian bridge in a hierarchical fashion such that the coarsest levels are

constructed and accepted or rejected first and then the lower levels are constructed and rejected or accepted

down to the lowest level. This is a highly successful method as it both samples the kinetic energy terms of

boltzmannon particles exactly and has the capacity to reject unlikely samples at a high level and thus avoid

performing the unnecessary computations associated with the lower levels of the Brownian paths.

Estimators are the functions evaluated using the time series generated by the simulation to estimate the

values of the associated expectation values of interest. In many cases, they are fairly straightforward to

derive.This is particularly true for expectation values which are diagonal in the underlying basis set of the

density matrix i.e. they are easily expressible in terms of the coordinates of the simulated density matrix.

The derivation of estimators becomes more challenging, however, when the underlying quantities of

interest are not diagonal in the basis set of the path integral simulation. This is particularly true for

thermodynamic quantities such as the average energy of a system, its heat capacity, its entropy, or most

seriously its free energy. Free energy calculations comprise an entire subfield of computational methods unto

themselves. In this thesis, the only off-diagonal estimators that will be considered are estimators used to

assess the average energy of the quantum system under investigation.

Finally, quantum mechanics requires that the computational practitioner pay attention not only to the

direct simulation of the path integral, but to the boundary conditions which arise from the underlying

quantum statistics as well. In the final section of this chapter, a brief review of bosonic sampling methods

for path integrals will be given. This review will then directly lead into the related and still very challenging

methodology associated fermionic path integral systems. In particular, the sampling strategy of Takahashi

and Imada [71] for one-dimensional systems will be reviewed and finally, the fixed node fermionic PIMC

sampling method due to Ceperley [72–74], which is used in this thesis, will be reviewed.
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4.2 The Practical Consequences of the Structure of the Path

Integral

First, recall the underlying approximate form of the imaginary-time path integral or thermal density matrix

Z(β) ≈
(
m

2πβ

) dM
2
∫
dxM

M−1∏
j=0

e−
mM(x(j+1)−x(j))2

2β e−
β
M V ({x(j)}) (4.1)

where eqn. (4.1) defines a path integral for a one-dimensional single particle systems, d is the dimensionality,

m is the mass of the particle, M is the number of slices, and the x(j) variables define the position coordi-

nates of the jth slice. As has already been argued and demonstrated in the preceding chapter, arbitrarily

increasing the number of slices, M , yields a high-dimensional integral that becomes an asymptotically better

approximation as O( 1
M2 ) to the thermal density matrix.

After a visual inspection of the argument in the exponential present in eqn. (4.1)’s integrand and some

thought, it is apparent that the path integral may be considered as being like the simulation of a ring

polymer, where each of the comprising monomers of that polymer are subject to the external potential given

by V ({x(j)}). While at first thought this description may seem like a pleasant if not terribly important, this

isomorphism may is, in fact, quite useful as it suggests physical consequences for the underlying wave-like

nature of the particles being studied.

In effect, the dimensionlessness of a quantum point particle is replaced by a ring polymer or necklace like

object which describes the extent of the quantum delocalization of that particle due to its wave-like nature

of the ring polymer standing in for that quantum particle’s thermal wavelength. This description results is a

unique situation for the practitioner of quantum mechanics as it is unusual in the field to get a classical-like

object which describes a quantum system in way that it accessible to intuition.

Because this ring polymer is a classical-like object, it has been studied extensively using the techniques

and tools of both classical mechanics and classical statistical mechanics. In particular, the development of a

quantitative and qualitative understanding of the extent of the delocalization of the quantum particle as a

function of temperature has been of great interest to practitioners of the art. To this effect various means to

describe this phenomena although only the most basic will be presented here and follows the presentation

in [62].

Among the most obvious quantities to calculate to describe the motion of a ring polymer is its radius of

gyration which is defined as follows

Rg =
1

M

M∑
j=1

(xj − x)2 (4.2)
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where the mean position of a monomer x is calculated as

x =
1

M

M∑
j=1

xj . (4.3)

Rg may be physically interpreted in the standard mechanical fashion such that as Rg gets larger the average

amount of space occupied by the ring polymer grows and hence the quantum particle is more delocalized.

As Rg gets smaller, the ring polymer begins to collapse in upon itself and thus turn into a classical-like

particle where quantum effects are minimal. The free particle case in the infinite slice limit M → ∞ may

be calculated exactly as

Rg =
β~2

12m
=
π

6
λ2 (4.4)

where λ is the thermal wavelength of the quantum system [62].

Having an exact result allows for a more detailed analysis of the underlying system as a function of

temperature. Clearly, as β → 0 or conversely m → ∞, Rg → 0, the particle described the ring polymer

becomes more classical as expected since its thermal wavelength, λ, which can be thought of as a stand-in

for its quantum nature, goes to 0. This analysis becomes far more difficult in the presence of a potential

as this term acts as a limit on how far the polymer may spread and is dependent upon temperature in a

complex way.

If one neglects the classical entropic term of the ring polymer one may derive the following heuristic for

the number of slices to be used in a simulation. In essence, since there are two opposing forces present in

a ring polymer in a potential: the potential itself which will tend to attract beads to its lower energy wells

and the harmonic oscillator chain of the ring polymer itself which causes the polymer to tend to contract

upon itself. A ring polymer is in equilibrium when the average value of these two competing forces are

balanced. Consequently, this line of reasoning may be used to estimate about how many beads are necessary

for simulating a given system. If too few beads or slices are used, the ring polymer will tend towards the

classical limit since the harmonic chain connecting the beads will be too strong to allow the necklace to

fully feel the effects of the external potential. However, if more beads than are necessary for a given level

of desired accuracy are added to the ring polymer then the sampling of the finer details of the potential

which those beads allow are completely unnecessary. Thus, in order to have the most important simulation

possible, it is important to consider the trade-offs between slice number and desired accuracy. A general

rule of thumb has been derived to give a convenient lower bound for these issues and may be summarized

as follows,

M >>
β~2

m`
, (4.5)
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where ` is the length scale of the potential of interest. This result suggests that to get a simulation of

reasonable accuracy the number of slices ought to be much larger than β~2

ml . While this rule of thumb ignores

issues like bosonic and fermionic exchange as well a effects due to intermolecular potentials, it, nonetheless,

is a good starting heuristic, so that the practitioner is not blindly guessing his/her slice number M .

4.3 Path Integral Actions

Path integral actions are defined as,

ln(ρapp(x)), (4.6)

where ρapp(x) is the approximate density matrix. A simple action for the Lie-Trotter expression where the

split operators are the kinetic energy operator and the potential energy operator may be given succinctly as

S(T ) = S(K) + S(V ) (4.7)

where

S(K) = ln

(
m

2πβ

) dM
2

−
M−1∑
j=0

mM(x(j+1) − x(j))2

2β
(4.8)

and

S(V ) = − β

M

M−1∑
j=0

V (x(j)) (4.9)

which has been chosen since the study of more exotic actions, excepting fermionic permutation effects, are

not used.

4.3.1 Pair-Product Action and Propagator

While the study of alternative actions is major area of methodological research within the PIMC community,

typically with the intent to devise an approximate path integral which converges faster with fewer time

slices or has some other computationally convenient property, perhaps the most venerable and certainly the

most used of these alternant actions is the pair-product approximation. In this discretization a pair-wise

interacting potential given by,

V (R) =
∑
i<j

v(ri − rj), (4.10)
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is integrated as the potential term of the Feynman-Kacs path integral. As related in [75], the integrated pair

energy along a random walk is give as,

xij = e−
∫ τ
0
dt v(rij(t)), (4.11)

where rij(t) is the random walk variable which describes the interaction between particles i and j. This

means that xij may be interpreted itself as a random variable drawn from some distribution described by the

Feynman-Kac formula for a pair interaction. The xij may then be used to describe the exact Feynman-Kac

formula for the potential given by eqn. (5.1) as,

e−βU = 〈
∏
i<j

xij〉, (4.12)

which is the pair interaction potential part of the imaginary-time Feynman propagator.

Using this result it is not difficult to make a qualitative argument for why the pair-product propagator

is an effective approximation for the path integral: While all particles do interact the vast majority of the

interactions may be considered to be dominated by a single pairwise interaction for each particle which

means that each of the individual xij may be assumed to be statistically independent of each other, which is

an excellent assumption in low density regimes where 3-body, 4-body, and n-body interactions are extremely

rare events. Thus, the approximation becomes

e−βU ≈
∏
i<j

〈xij〉, (4.13)

which means that the pairwise potential given by eqn (5.1) may be replaced with the individual pairwise

actions of the system with negligible consequence. Moreover, because this approximation amounts to little

more than a slight alteration of the operator-splitting the Hamiltonian in the sense of the Lie-Trotter-Suzuki

theorem one maintains the exact approximability of the path integral.

This leaves the question of how one actually calculates the pair product approximation. In most applica-

tions, one takes advantage of the interaction typically being that of a central potential and uses the squaring

framework of Klemm and Storer [75,76] to numerically determine the action of the pair-interaction system.

In this thesis, however, this numerical framework will not be used and instead an exact pair interaction pair

propagator and action will be derived in a subsequent chapter.
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4.4 Introduction to Monte Carlo Methods

In numerical analysis, Monte Carlo methods comprise approaches to numerical problems which seek to take

advantage of random phenomena and produce answers to those numerical problems within some statistical

error. The easiest form of Monte Carlo method to understand is typically considered to be naive Monte

Carlo integration. In this naive approach, the goal is to numerically evaluate the following integral

I =

∫ 1

0

· · ·
∫ 1

0

dxNf(x). (4.14)

If a random vector Xj is drawn from the N-dimensional unit probability measure defined by dxN then the

test integral may be evaluated as

I ≈ 1

M

M∑
j=1

f(Xj), (4.15)

such that the standard deviation is calculated as

σ =

√√√√ 1

M − 1

M∑
j=1

(fj − 〈f〉)2 =

√
〈f2〉 − 〈f〉2
M − 1

(4.16)

and which is used as the standard error for Monte Carlo methods. Thus, an integral integrated in the fashion

described may be written as

A(I) = IAns ± σ, (4.17)

so that each mean evaluated as in eqn.(4.15) has statistical error bars defined by the standard deviation as

±σ.

So far, Monte Carlo numerical integration has been considered as sampling from a uniform probability

density, µ(dx). While theoretically, this method is an extremely agreeable one as it is easy analyze and its

quality of convergence depends only upon the quality of the underlying pseudorandom points, in practice,

it is very slow to converge as most points sampled from it are in areas that don’t contribute much to the

hypervolume of the multivariate integrand under consideration. Consequently, it is of great importance to

sample from a distribution that closely mirrors the integrand under consideration. For all but the simplest

distributions such as the Gaussian distribution, this sampling is easier said than done.

Consequently, instead of directly drawing random samples from a given distribution, a Markov chain

model is setup to simulate an arbitrary distribution. Developing this methodology was the groundbreaking

work of Metropolis et. al. [77] for statistical mechanical partition functions and arbitrary probability dis-

tributions. Hastings [78] generalized the arguments concerning the construction of the underlying Markov
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chains to more general cases than those considered by Metropolis et. al. Before continuing, it is important

to consider just what exactly are the consequences of such a simulation and how it changes the integrand of

interest. In particular, if Xj ∈ µ(ρ(x)dx) then

Iapp =
1

N

N∑
j=1

f(Xj) ≈
∫
f(x)µ(ρ(x)dx)∫
µ(ρ(x)dx)

(4.18)

so that if Xj are drawn from such a distribution µ(ρ(x)dx) then the resulting integrand is normalized by

the normalization constant associatied with that same distribution.

To simulate such a distribution, a Markov chain system is implemented so in the infinite limit it reaches

equilibrium and thus any transition, forward or backward, between two states denoted by s and s′ are of

equal likelihood,

π(s)T (s→ s′)A(s→ s′) = π(s′)T (s′ → s)A(s′ → s). (4.19)

To explain, in this simulation π(s) is the probability integrand of interest in state s and associated with

ρ(x) in eqn. (4.18), T (s → s′) is the transition probability associated with the probability distribution

the random number from which the transition probability is drawn. In this thesis, it will be a Gaussian

probability distribution with an appropriate variance as needed for all presented formulas. Finally the

acceptance probability, A(s→ s′), is the probability associated with the acceptance of the suggested move.

Re-arranging the previous equation yields the more manageable expression,

A(s→ s′) = min

[
1,
π(s′)T (s′ → s)

π(s)T (s→ s′)

]
, (4.20)

where the given expression is accepted if a random number drawn from a uniform probability distribution

is less than the quantity defined as above. Running this algorithm for a sufficiently long time, which

may be analyzed using autocorrelation methods, yields an ergodic behavior of the states throughout a

given probability state space and thus guarantees after a sufficiently long run which may be gauged using

autocorrelation functions for the states involved that the expected probability distribution is being drawn

from.
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4.5 Monte Carlo Methods Specialized to the Path Integral

4.5.1 Metropolis Monte Carlo PIMC: Bead-by-Bead Sampling

Bead-by-bead sampling performs Metropolis importance sampling on the thermal density matrix given by

eqn. (4.1) whereby for each Monte Carlo step a single variable is displaced and either accepted or rejected

in an attempt to sample from the following distribution,

µ(x) =
1

Z(β)

M−1∏
j=0

e−
mM(x(j+1)−x(j))2

2β e−
β
M V ({x(j)}). (4.21)

In essence, this method samples a ring polymer in the fashion after Metropolis et. al. Unfortunately, it is

quite slow to converge and in fact has an autocorrelation time which diverges quadratically as a function of

the number of polymer beads which effectively limits the applicability of this method to very small necklaces.

A greater overview of this topic will be be given in the following subsection.

4.5.2 Bisection Sampling

Bisection Sampling Overview and Background

The critical slowdown of associated with the Metropolis algorithm has been recognized as a problem for

PIMC since at least the 1980’s. This slowdown occurs because moving a path integral simulation a single

bead at a time is an incredibly slow way for the ring polymer to diffuse through path space in its totality. In

effect, this slowdown prevents Metropolis-type sampling from being applicable to approximate path integrals

for systems larger than a single quantum particle depending upon underlying potential. As a consequence of

the rather early recognition of this problems, a great deal of work on this problem was performed in this field

from approximately the mid-1980’s to mid-1990’s at which time Ceperley’s bisection algorithm [75] became

the gold standard for the field, and arguably, has yet to be superseded. Nonetheless, it is important to give

context and a brief description of other methods in this field before describing the inspiration and derivation

of the bisection algorithm.

Among the major efforts in path integrals not discussed extensively in this thesis, but which require

mentioning are path integral molecular dynamics techniques. These methods actively seek to simulate the

path integral ring polymer as a real polymer under the confines of the simulated potential. While a direct

application of the molecular dynamics methods go back to the early 1980’s with the work of Chandler and

Wolynes [79]. More modern and efficient approaches based upon the movement of the centroid of ring

polymer (CMD) are due to Voth and his co-workers [80–82]. These methods have even been extended into

77



real-time situations using a heuristic formalism begun by Craig and Manolopoulos [83–86] and extended and

reviewed by Miller, Markland, and Habershon [87]. Other methods such as the W-cycle multgrid method

have attempted to model the diffusion of the path integrals’ ring polymers using methods from numerical

stochastic differential equations [88]. And still others, have attempted to model the paths being summed

over using the Fourier path decomposition approach originally developed by Feynman, but since generalized

to wavelet methods by Doll et. al [60, 89]. These methods have been fully generalized by Bond et. al. to

describe the full decomposition of path spaces in a non-basis set dependent way.

As has already been alluded to in the introduction to this chapter, the bisection method is widely regarded

as the best importance sampling method for PIMC. The essential goal of the bisection method is to improve

upon the quadratic divergence with slice and particle number of the Metropolis algorithm’s autocorrelation

times for the Lie-Trotter path integral by sampling larger sections of the polymer ring and updating more

variables per accepted move. That the critical slowdown of the Metropolis algorithm has been recognized

as a problem for PIMC since at least the 1980’s is not in doubt.

Due to the recognition of this problem, the first steps towards constructing a workable solution were taken

by Sprik, Klein, and Chandler [90] in developing the staging algorithm, an approach that contains many

of the seeds of the bisection method, although it lacks that the bisection method’s polish. In the staging

method, among the key concerns addressed by the staging method was the inefficiency of only moving a

single variable per move of the Monte Carlo Markov chain as in the Metropolis algorithm. The method

operates by first performing a variable change upon the segment of the path integral targeted for movement,

so that the kinetic energy terms become uncoupled harmonic oscillators. Next these uncoupled oscillators

are sampled exactly and the relevant potential terms evaluated and Metropolis-type acceptance/rejection

methods are applied to the move. If the movements are accepted the ring polymers positions are updated,

the estimators evaluated and recorded and the process repeated.

While the staging algorithm is able to move many particles at once, it is somewhat difficult to implement

due to the consequences of the required coordinate change and moreover, it wastes a lot of effort calculating

many variable changes that will ultimately be rejected. Consequently, a method which is able to avoid these

unnecessary movements while retaining the efficiency of the multivariable movement as the exact sampling

of kinetic energy term was highly desirable by the late 1980’s. The bisection sampling algorithm addresses

all of these concerns and has arguably not been improved upon since its publication.

The bisection sampling algorithm was developed by David Ceperley at the University of Illinois at Urbana-

Champaign in 1994 [75] and its derivation begins by recognizing that the multivariate kinetic energy term,

the free particle action, is both easy to sample and applicable at coarser or higher levels of an approximate
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density matrix due to the semigroup nature of an exact propagator. Typically, there are two equivalent

ways to approach the derivation of this algorithm which while similar give insight to the various modes of

thought taken by practitioners when constructing these sorts of methods: The first is to view this algorithm as

approximating the propagator via a hierarchy of levels such that a finer and finer level to the approximation is

derived with algorithm stopping and moving onto to another configuration if any of those levels are rejected.

The second approach is to view this method as creating a Levy construction of a Brownian path which,

while similar to the first viewpoint, potentially opens up other mathematical possibilities for improving the

method. In this method, the Brownian path is taken by the free particle is successively bisected so that the

details of the free particle path is successively calculated. The potential term then enters consideration as the

perturbation to the Brownian path such that these proposed paths are “pinned” by this potential and either

accepted or rejected according to the standard Metropolis Monte Carlo acceptance function framework.

An astute reader may be wondering what makes this method so powerful. In truth it is the accretion of

little things in a computationally efficient structure that makes this method appealing. First and foremost,

like the staging algorithm, it is able to move large sections of the ring polymer chain at a time. Unlike the

staging method, however, this is accomplished while minimizing the actual amount of computation necessary

to complete the task. Specifically, only Gaussian random variables are required, which are easy and fast to

compute using the Box-Mueller algorithm and any number of standard random number generators. This

leaves only the potential function as the difficult or computationally intensive function that needs to be

calculated and the number of computations of this difficult potential function is minimized by accepting or

rejecting the proposed moves in a hierarchical fashion so that only the most likely paths ever need to be

fully calculated.

Bisection Sampling Implementation

After giving the rationale for the bisection method in the preceding sub-subsection, this sub-subsection

presents the actual derivation/implementation of the bisection method. It’s equation flow will closely follow

the presentation given by K. Esler’s thesis [61] as it is the opinion of the author that this presentation is

difficult to improve upon in terms of clarity of explanation. The construction and implementation of the

bisection method begins by randomly selecting a N = 2L + 1-slice segment of the path integral density

where L describes the numbers level of the bisection method and then exactly samples from the level of the

moment’s kinetic energy term and rejects or accepts that sample based on acceptance function for that level.

The transition to the next finer level begins by taking advantage of the semigroup property of the kinetic

energy propagator so that the acceptance function can be considered as only a ratio of the potential energy
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terms.

To calculate the transition probability of the forward and reverse moves respectively, the following ex-

pressions are considered which defines the transition of a free particle from a 3-slice segment of a kinetic

energy defined by the collective coordinate variables r0, r1, and r2 with r ≡ 1
2 (r0 + r2),

T (r1 → r′1) = (2πσ)−
3
2 e−

(r′1−)2

2σ2 , (4.22)

and

T (r′1 → r1) = (2πσ)−
3
2 e−

(r1−r)
2

2σ2 . (4.23)

The forward transition can then be sampled using any standard library Gaussian random variable routine

with the mean r and the variance σ2 to find the new variable r′1. The decision to accept or reject this new

variable may then be described via the acceptance function,

A(r1 → r′1) = min [1, R(r1, r
′
1)] , (4.24)

- where R(r1, r
′
1) is described using the Markov Chain transition probability equation,

π(r1)T (r1 → r′1)A(r1 → r′1) = π(r′1)T (r′1 → r1)r1(s′ → r1), (4.25)

so that when rearranged the preceding expression yields,

R(r1, r
′
1) =

π(r′1)T (r′1 → r1)

π(r1)T (r1 → r′1)
. (4.26)

Working out R(r1, r
′
1) for a single level of the bisection method yields,

R(r1, r
′
1) =

T (r′1 → r1)

T (r1 → r′1)
e−∆(KE)e−∆(V)

=
e−

(r1−r)
2

2σ2 e−
M(r′1−r)

2

2λβ

e−
(r′1−r)

2

2σ2 e−
M(r1−r)2

2λβ

e−∆(V), (4.27)
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where the ∆(KE) is defined as

∆(KE) = [(r′1 − r0)2 + (r′1 − r2)2 − (r1 − r0)2 − (r1 − r2)2]

= [(r′1)2 − 2r′1 · r − (r2
1 − r1 · r)]

= [(r′1 − r)2 + (r1 − r)2] (4.28)

and

σ2 = 2Lλ
β

M
. (4.29)

The acceptance function is then applied to each level of the bisected path integral for the reasons given in

the preceding sub-subsection.

4.5.3 The Displace Move

While the bisection sampling method is very effective for importance sampling along a contiguous stretch

of time slices, its relatively low acceptance ratio for large numbers of slices prevents the ring polymer of the

path integral from diffusing effectively through space [75]. Consequently, a rigid displacement movement

is often beneficial. In this displacement move, the ring polymer is translated in its entirety with a single

random, rigid movement defined by a random vector. To define this rigid movement, a random vector with

a Gaussian distribution is drawn with a σ chosen to ensure a sufficiently high/low acceptance rate. The

thesis of Ken Esler [61] recommends an acceptance rate of 0.2.

4.6 Estimators

Estimators are essential for performing a PIMC calculation as they computationally define the quantities

to be measured. They are the functions evaluated and averaged over for the probability distribution of the

approximate thermal density matrix to estimate the expectation value of a Monte Carlo-type simulation.

While in many simulations, it is quite easy to express the quantity of interest in terms of the chosen basis

of the simulation, which is typically the position basis for PIMC. Nonetheless, many quantities, such as the

total energy of the system under investigation, are not well expressed by the basis set used to represent the

approximate thermal density matrix.
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4.7 Estimators Diagonal in the Underlying Basis Set

4.7.1 Standard Diagonal Estimators

Before showing how a diagonal estimator is applied, first a brief review of the expression for expectation

value,

〈A〉 =
1

Z(β)
Tr(Âρ) =

∫
dx 〈x|Âρ|x〉
Z(β)

, (4.30)

where ρ is the Boltzmann operator or the approximate Boltzmann operator. If the expectation value’s

operator Â is diagonal in the basis set x then the preceding equation may be expressed as

〈A〉 =
1

Z(β)
Tr(Âρ) =

∫
dxA(x)ρ(x)

Z(β)
. (4.31)

where A(x) and hence the estimator in question is just a function of the basis set x.

4.7.2 Pair Correlation Functions

Pair correlation functions are used to describe the probability as a function of distance of two particles. In

effect, they may be used to calculate the average spherically symmetric structure around a given particle

type and thus may be used to describe pairing interactions as well as the shell-like structures which appear

in liquid systems. The pair correlation function is defined as follows [36],

gα,γ(r1, r2) =
1

nα(r1)nγ(r2)
〈
∑

i∈α,j∈γ
δ(ri − r1)δ(rj − r2)〉, (4.32)

where α and γ are used to describe the different species of interest and nα(r1) and nγ(r2) describe the

particle densities of their respective species.

For a periodic system or conversely a unit cell of a bulk, homogeneous system a translationally invariant

form may derived which is given as

gα,γ(r) =
1

nαnγ
〈
∑

i∈α,j∈γ
δ(ri − rj − r)〉. (4.33)

This form yields a much simpler protocol for calculation since one needs to only to create a binned histogram

of the interparticle distances and then normalize with the particle number of the given species nα and nγ to

give the pair correlation or in this case, radial distribution function.
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4.8 Off-Diagonal Estimators or Estimators Not Diagonal in the

Underlying Basis Set

For estimators not diagonal in the underlying basis set, the situation is quite different as a means must be

found to indirectly find functions that may act as their estimators in a non-diagonal basis set (It will be

presumed in the following discussion that the position coordinates are the diagonal basis set of the system

under study). Often it is the case that these non-diagonal estimators are for fundamental thermodynamic

quantities such as total and kinetic energy or in the most complicated of cases free energy. In these cases

there are generally two approaches available.

4.8.1 Energy

For total energy, it may be expressed in terms of an operation upon auxiliary variable in this case the inverse

temperature, β, so that

〈E〉 = −∂ln(Z)

∂β
= − 1

Z

∂Z

∂β
(4.34)

and the estimator becomes,

〈E〉 ≈ 1

M

M∑
i=1

−∂ρ(Xi)App
∂β

, Xi ∈
ρ(Xi)App

Z
, (4.35)

where Z ≈
∫
dXρ(X)App.

When these operations are applied to the actual path integral formalism, the resultant estimator may

vary quite widely depending upon the precise condition of the variable coordinates in use when the derivative

with respect to β is applied. The classical, primitive estimator [69] is given by the following

〈E〉T =
1

M
〈
M∑
i=1

(
dN

2τ
− (Xi −Xi−1)2

4λτ2
+
dU i

dτ

)
〉. (4.36)

If one associates the mass derivative of the partition function with the kinetic energy estimator, one derives

the following,

〈K〉T =
m

βZ

∂Z

∂m
=

1

M
〈
M∑
i=1

(
dN

2τ
− (Xi −Xi−1)2

4λτ2

)
〉. (4.37)

And, thus finds that the average potential energy may described as,

〈E〉T − 〈K〉T = 〈V 〉T =
1

M
〈
M∑
i=1

(
dU i

dτ

)
〉. (4.38)

83



While this primitive derivation is relatively straightforward, it was the subject of considerable concern in the

1980’s because of its perceived computational inefficiency which arises from the subtraction in the kinetic

and total energy terms upon the variance of the estimator which makes the variance of the estimator decay as

O(τ−1) as opposed to the preferable convergence O(τ−2) seen in the approximate density matrix [75,91–95].

Within the literature, there is a slight divergence between the condensed matter and chemical physics/physical

chemistry communities in terms of what is termed a virial estimator [75,93–96]. Within the chemistry com-

munity, the virial estimator is typically refers to an estimator that is applied to all space and is derived

by using a variable substitution [91–93, 95, 97] and scaling argument whereas within the physics literature

the boundary conditions are more general but typically assumed to be periodic boundary conditions unless

otherwise stated and derived using both the early work of Berne et. al. [91] and later conditions detailed in

by Ceperley [75,94]

Beginning with the chemist’s interpretation of the virial estimator, recall that the basic functional form

of the approximate path integral is given by,

Z(β) ≈
(
m

2πβ

) dM
2
∫
dxM

M−1∏
j=0

e−
mM(x(j+1)−x(j))2

2β e−
β
M V ({x(j)}). (4.39)

Now, allowing that x(j) may be substituted as x(j) → q(j)
√

(β), applying the definition given in eqn. (4.38),

and then backsubstituting q(j)
√

(β)→ x(j) yields the estimator,

〈E〉T =
1

M
〈
M∑
i=1

dU i

dτ
+
Ri
2
· ∂

2U i

∂τ∂Ri
〉. (4.40)

The physicists’ version of the virial estimator which is subject to periodic boundary requires a more

detailed derivation given explicityly in [75]. It may be succinctly stated as,

〈E〉T =
1

M
〈 3N

2Lτ
− 1

4Lτ2λ
(RL+i −Ri)(Ri+1 −Ri) +

∂U i

∂τ
+
∇i(U i+1 + U i)

4Lτ

L−1∑
j=−L+1

〉. (4.41)

4.8.2 Specific Heat

Heat capacity or specific heat at a constant volume,

Cv = 〈∂E
∂T
〉|Ω = −β2 ∂E

∂β
|Ω, (4.42)

which measures the change of the energy containment as function, may be approached in a similar fashion.

As for its parent estimator, energy, it may be derived in the fashion of a straight forward application of eqn.
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(4.42) to an approximate density matrix or it may derived using a virial type transformation. That said, it

is perhaps easiest and most effective to construct it as a fluctuation estimator as

Cv = β2〈(H− Ē)2〉 (4.43)

= β2〈(Ei,i+L − Ē)(Ej,j+K − Ē)〉,

(4.44)

where the preceding equation has been derived by taking the τ derivative at 2 different time slices and the

Ei,i+L notation refers to the energy calculated using a preceding energy estimator for time slices from i to

i + L. Typically one performs many such calculations with varying intervals and then averages over them

to get a final estimate.

4.8.3 Free Energy

In the case of free energy the situation is considerably more complex, and is often regarded as an almost

entirely different area of study with its own techniques and jargon. Nonetheless, it is approachable within

the computational path integral framework as well using methods known in the statistics community as

Ogata’s method [98] and within the computational chemistry and physics communities as thermodynamic

integration [99].

While the introduction of this method to this thesis would be too long of detour, in essence, this method

work by multiplying the integration variables of the probability density of interest by a dummy parameter

and taking a derivative with respect to that parameter and then integrating over that parameter while

sampling from the probability distribution of interest. The resultant estimator yields ln(Z(β)) which can be

used to calculate the normalizing constant Z(β) as well as the free energy − 1
β ln(Z(β)).

Given the direct challenges typically associated with the calculation of the free energy a simplified estimate

may be made for it using only information gleaned from the 〈E(β)〉. Using the thermodynamic relationship

〈E(β)〉 = ∂βF
∂β as well as a quadrature procedure, the free energy may be calculated using the relation,

β2F (β2)− β1F (β1) =

∫ β2

β1

dβE(β), (4.45)

which allows the calculation of the free energy at arbitrary temperatures since F (T → 0)→ E(T = 0).
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4.8.4 Pressure

The pressure estimator like estimators for total energy and heat capacity has both a standard and virial

form. The definition of pressure is defined by the statistical mechanical relationship as,

P =
1

βZ

∂Z

∂Ω
|β . (4.46)

When this relation is applied to the approximate density matrix this results in the following

P =
1

3τΩ
〈3N − (Ri −Ri−1)2

2λτ
− 2Ri∇iU〉 (4.47)

which is averaged over the path variables. When the virial theorem is applied to a pair potential, the pressure

estimator may be expressed as,

P =
1

3Ω
〈2K −

∑
i<j

rij
∂v(rij)

∂r
〉, (4.48)

where K is the estimator for the kinetic energy. The order of convergence as well as the statistical error will

necessarily depend upon the choice of kinetic energy estimator used in the preceding expression.

4.8.5 Superfluid Density

Following [75,100], the superfluid density, ρs of an N -particle system may be cursorily defined as the linear

superfluidic response to a rotation via a fractional density term. From more detailed and experimentally

oriented view it may be considered from the following thought experiment [100]: Consider a system enclosed

and rotating with an angular frequency, ω, between two cylindrical shells. The internal shell has a radius

of R; the external shell has a radius of R + d. If d/R << 1, the system may be considered to be in box

defined by two planes with a depth of d and periodic in a single direction moving at that same direction at

a velocity v = ωR. The density operator, ρ′ = e−βH
′
, where

H ′ =
∑
i

(pi −mv)2

2m
+ V, (4.49)

for this system in the rest frame can then be used to calculate the superfluid fraction. Returning to the

lab frame, which may be done because the mv term in eqn. (4.49) amounts to nothing more than a scalar

operator, allows ρ′ = ρv.

The response of the system to the moving boundary may then be captured by the normal component of
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the fluid as

ρN
ρ
Nmv = 〈Pv〉 =

Tr[Pρv]

Tr[ρv]

=
∂

β∂v
ln(Tr[ρv]) +Nmv

= −∂Fv
∂v

+Nmv, (4.50)

where Fv is the free energy of the system defined by eqn. (4.49). Ultimately, eqn. (4.50) may be expressed

in terms of the superfluid fraction [100] as,

ρS
ρ

=
∂(Fv/N)

∂(mv2/2)
, (4.51)

which is arrived at by considering that the superfluid density is that fraction of the density of the fluid that

does not rotate or couple via friction with the cylinder.

Taking the finite difference of the second line of eqn. (4.51) results in a power series expansion as

∆Fv
N

=
mv2

2

ρs
ρ

+O(v4) (4.52)

∆Fv = 0, i.e. a free energy change due to uniform boundary motion, when no superfluid is present and thus

as v → 0, ρS is linearly related to the change in the system’s free energy.

Typically, the approach utilized in [75, 100] descend from methods to calculate ρv and ∆Fv in systems

defined by periodic boundary conditions. In particular, ∆Fv may be calculated as

e−β∆Fv = 〈ei(m~)v·WL〉, (4.53)

where L is the box dimension, and W, which is essentially a running tally of the number of times the paths

wind around the systems starting from a location Ri and ending at the periodic image RPi.

For a standard superfluid like helium-4, the superfluid fraction may be expressed as,

ρs
ρ

=
W2

2λβN
. (4.54)

In the case of unpolarized paired particles of like charges the superfluid fraction becomes [52]

ρs
ρ

=
(W↑ + W↓)

2

2λβN
. (4.55)
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4.8.6 Momentum Distribution

The momentum distribution is defined as the single particle density presented in momentum space which is

given by,

nk(k, β) =

(
1

2π

)3 ∫
dxe−k·xn(x, β). (4.56)

The single particle density matrix is then given by

n(x, β) =

∫
dXρ(x1, · · · , xi, · · · , xN )ρ(x1, · · · , xi + x, · · · , xN ), (4.57)

where X subsumes all of the labeled values xj .

4.9 Path Integral Simulations with Quantum Statistics

Accurately simulating quantities defined by quantum mechanics requires that the particle statistics of the

underlying particles be incorporated into the simulation as well. For our purposes quantum particles come

in 2 flavors: fermions and bosons; anyons are beyond the scope of this thesis.

While the exact details and reasons for these different particle types have been covered in a previous

chapter, their particle exchange imposes significant and at least in the case of fermions daunting challenges

for their simulation. Recall that bosons or fermions are indistinguishable particles and thus are subject to

exchange of identical particles as follows,

ρB/F (R,R′;β) =
1

N!

∑
P

(±B/F1)PρD(PR,R′;β), (4.58)

where P indicates a permutation and the B/F subscript delineates whether or not the interpretation in

question is bosonic or fermionic.

4.9.1 Path Integral Bosonic Sampling Methods

Clearly from eqn. (4.58), a bosonic system may be described as a summation over the N ! permutations,

where all of the subterms ρD(PR,R′;β) have an equivalent weighting of +1. While bosonic systems present

no intrinsic challenges from a positivity standpoint, they do present challenges from the viewpoint of strictly

calculating the permutation sum. In fact, from just the standpoint of calculating the permutation sum

of the free particle the problem is NP-Hard because permutation sum can be represented as an arbitrary

permanent of a matrix with strictly positive elements which is a known NP-Complete/NP-Hard problem
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[101]. Fortunately, calculating a permanent may be done approximately in probabilistic polynomial time [102]

and this is exactly the approach taken in simulating path integrals.

Within PIMC, the particle exchange of bosons in a simulation is achieved by randomly sampling the

permutation space which results in an algorithm which randomly samples the various possible connections

among the N -particle bosonic paths. Since this permutation algorithm takes a Monte Carlo approach just

like the various moves for the path integral it is easy to incorporate into overall Monte Carlo integration

algorithm.

In the permutation moves algorithm, the permutations themselves are represented by a single vector of

length N , where N is the number of identical bosonic particles [61] where the vector scalar at each index i is

the particle to which the particle i permutes; an identity entry is just represented by i at index i. Since any

particle may be exchanged with another at any time slice, the join or the slice after which a permutation

has occurred is stored as metadata.

The bisection algorithm is incorporated into the permutation algorithm by selecting a range of 2L slices.

Then, at each level a permutation move involving typically 2-4 (or more) particles is proposed. Initially for

convenience, the following notation for a transition element is defined as

tab ≡
e−

(r′b−ra)2

2l+1τλ

e−
(r′a−ra)2

2l+1τλ

. (4.59)

For the permutation of a pair of particles a and b, the transition probability is constructed as follows,

T (R → PabR) = Ktabtab = K
e−

(r′b−ra)2

2l+1τλ

e−
(r′a−ra)2

2l+1τλ

e−
(r′a−rb)

2

2l+1τλ

e−
(r′
b
−rb)2

2l+1τλ

(4.60)

where a and b are the denote the positions the 2 particles in question on one slice and a′ and b′ denote the

positions those same particles respectively on another slice; K is the normalization constant. The symmetry

of the transition probability for both the forward and reverse transition of free particle transitions is clear

and thus T (R → PabR) = T (PabR → R)−1. In this particular case the permutation transition may be

sampled exactly without rejection.

When simulations are performed only permutations up to a certain depth are allowed due to compu-

tational constraints since the number of permutations grows as roughly Np, where N is the number of

particles and p is the depth of permutations Building up higher order permutations is relatively easy and

may be represented as Ktabtbctca for a 3 particle permutation, Ktabtbctcdtda for a 4 particle permutation,

Ktabtbctcdtdetea for a 5 particle permutation, and so on for more particles. K, the normalization constant
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for may then be derived to be for varying depths as follows: For a depth of 2-particle permutations, it is

K =
∑
a

[taa +
∑
b

tabtba]. (4.61)

For a depth of 3-particle permutations, it is

K =
∑
a

[taa +
∑
b

tab[tba +
∑
c

tbctca]], (4.62)

and for a depth of 4-particle permutations, it is

K =
∑
a

[taa +
∑
b

tab[tba +
∑
c

tbc[tca +
∑
d

tcdtda]]]. (4.63)

This trend may be continued for higher permutation depths as well. Typically though, only fourth or fifth

order depths are utilized in simulations since the aforementioned scaling Np applies for the permutation table

size. If higher order permutations are needed, a probability cutoff ε may be applied in the table construction

so that unlikely permutations are discarded and not tabulated.

After the table is constructed, a permutation may sampled from it by randomly selecting a number γ from

a uniform distribution and then constructing the associated cumulative distribution function by first labeling

each of the permutations i and then defining the cumulative distribution function of those permutations as,

cj =
∑
i<j

pi (4.64)

where pi is probability of a specific permutation i. Once the permutation is found such that cj−1 < γ ≤ cj ,

this permutation j is selected as the trial permutation. The backward probability transition for it is calculated

by constructing a similar table and it is accepted or rejected based on those merits. Afterwards a bisection

move is applied, another permutation is attempted for the next level down the bisection and this process is

repeated until the entire move is accepted or rejected.

4.9.2 Path Integral Fermionic Sampling Methods

Over the past 30 years, computational path integral Monte Carlo methods (PIMC) have found widespread

application and success in the simulation of quantum statistical mechanics of many-body phenomena, partic-

ularly for bosonic and high-temperature systems [75]. Unfortunately, the application of PIMC to fermionic

systems has been hindered by the notorious “sign problem,” which arises from the sign changes associated
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with the antisymmetrization of the approximate many-body density matrix. The sign problem poses a great

difficulty for the Monte Carlo integration methods typically used to evaluate the resulting high-dimensional

integrals. The near-cancellation of roughly equal positive and negative contributions of the integrand results

in a statistical variance increasing exponentially with the number of variables being integrated for a fixed

number of function evaluations [103].

During the last decade, Troyer and Wiese [104] showed that the evaluation of an expectation value

of a general function with a sign-problem is NP-Hard, and thus likely to be intractable, by reducing a

NP-Complete Ising spin glass problem to a form with the sign problem. While at first this result may

seem unfortunate since many interesting phenomena such as Fermi-Dirac condensates in optical lattices or

superconductivity arise from interacting fermionic systems, the sheer generality of their result leaves open

the possibility that most fermionic systems may not be subject to this curse since the extent of the space of

fermionic problems that are not NP-Hard is unknown. Methods such as the density matrix renormalization

group [14] and 1-D fermionic PIMC [105] already suggest that the set of non-NP-Hard fermionic problems is

quite large. Moreover, the trace of the density matrix which defines the quantum partition function and more

importantly its integrand are both strictly positive which suggests that the sign-problem is not necessarily

inherent to fermionic systems and is quite possibly an artifact of approximations from a computational and

theoretical standpoint.

Due to the inherent difficulty caused by the aforementioned fermionic-sign problem, published work on

the sign-problem within the context of path integrals is relatively scant in comparison to other methodological

developments like improved sampling. This is particularly true in relation to other Monte Carlo approaches

like diffusion Monte Carlo. Often, both within the field of path integral simulations and outside of it as well,

approaches towards dealing with the fermionic-sign problem seek to ameliorate the effects of oscillation in

Monte Carlo simulations as in [72, 106, 107] rather than tackling the problem from the head. In particular,

special cases based on potentials or boundary conditions are often developed, particularly within lattice

systems. Other approaches involve using uncontrolled approximations to simulating fermionic systems.

In this thesis, one approach from each type will be considered. In order these approaches are: the one-

dimensional of Takahashi and Imada and the fixed node approximation due to Ceperley.
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4.10 Approaches to Fermionic PIMC

4.10.1 The Approach of Takahashi and Imada to Fermionic PIMC

A standard approach to the fermionic density matrix path integral is developed with the aid of the Trotter

formalism. To review, the typical Hamiltonian used in imaginary-time PIMC is

Ĥ =
∑
k

P̂ 2
k

2m
+ V̂ {xk} = T̂ + V̂ , (4.65)

where P̂ is the momentum operator of a particle with mass m, V̂ is the operator denoting an N -particle,

interaction potential. The fermionic canonical partition function is then defined as

Z =

∫
dX 〈XA|e−βĤ |XA〉, (4.66)

where XA denotes an antisymmetrized position ket. Using the Trotter formula, the Boltzmann operator

e−βĤ is expressed as

e−βĤ = lim
M→∞

(
e−β

T̂
M e−β

V̂
M

)M
. (4.67)

For subsequent convenience, the antisymmetrized N -free particle propagator ρ without normalization is

defined as

ρ
(
g;X(j+1)|X(j)

)

= det

∣∣∣∣∣∣∣∣∣∣
e−g(x

(j+1)
1 −x(j)

1 )2 . . . e−g(x
(j+1)
1 −x(j)

N )2

...
. . .

...

e−g(x
(j+1)
N −x(j)

1 )2 . . . e−g(x
(j+1)
N −x(j)

N )2

∣∣∣∣∣∣∣∣∣∣
,

(4.68)

where g is a constant containing all relevant non-positional information, and X(j) collectively denotes

x
(j)
1 , · · · , x(j)

N . Limiting eqn. (4.67) to a finite number M slices and inserting and integrating out, when

possible, complete sets of antisymmetrized position and momentum states, given X(M) = X(0), yields an

approximate canonical partition function Z due to Takahashi and Imada (TI) [71]. Each individual slice is

then given as

ρ
(j)
TI

(
X(j+1)|X(j)

)
=

1

N !

(
mM

2πβ~2

) dN
2

×

ρ

(
mJ

2β
;X(j+1)|X(j)

)
e−

β
2M (V ({x(j)

i })+V ({x(j+1)
i }))

, (4.69)
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with d denoting the spatial dimensionality of the system and the approximate partition function is given by

Z ≈
∫
dXM

M−1∏
j=0

ρ
(j)
TI

(
X(j+1)|X(j)

)
. (4.70)

While this approach to the fermionic path integral results in a strictly positive representation of the

path integral for one-dimensional systems, it quickly breaks down when applied to systems with dimensions

higher than 1 due to the reappearance of the sign problem manifested by the non-negative regions present

in the antisymmetrically permuted approximate fermionic propagator.

4.10.2 The Fixed-Node Approach

Another approach to fermionic PIMC, as well as the one that will be used in this thesis, was first proposed

by Ceperley in [74] which yields a strictly positive integrand at the expense of being an uncontrolled approx-

imation. The methodology is developed by first observing that flux of positive and negative paths through

the nodal boundaries separating negative and positive regions of the integrand must be equal at the nodes

because they cancel and hence there is a node. Since the nodes are already zero, an infinite potential may

be imposed at the exact nodal surface without changing the underlying integral. Since negative paths (odd

permutations) must cross the nodal surface at some point, they may be discarded. Thus, only positively

signed, even permutations are required for this method. This results in an evaluation of the density matrix

that may be symbolically defined as [72],

ρF (Rβ ,R∗;β) =

∫
dR0ρF(R0,R∗; 0)

∮
R0→Rβ∈Γ(R∗)

dRre
−S[Rt], (4.71)

where St is the system action, R0 is the starting location of the paths, R∗ is the reference point or slice of

the path, and Rβ ∈ Γ(R∗) denotes the nodal surface obeyed by the reference point R∗. In the rare occasions

in which one has the exact nodal surface, this method is exact. To perform a simulation all one needs to do

is restrict the paths via the reference slice to that nodal surface, perform even permutations upon the paths,

and then calculate expectation values taking care to use the reference slice.

Unfortunately, one rarely has the exact nodal surfaces available unless the problem being explored has

already been solved. In practice, an approximation to the nodal surface is often made. Since it is known that

for a system which is not in a magnetic field, that density matrix a system at a high enough temperature

becomes like that of the ideal gas, the nodes of the free particle density matrrix are often used in simulation

[36,61,72].

Low and intermediate temperatures are more challenging. For very low temperatures often the nodal
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surface defined by the ground state wavefunction is used, but a rigorous interpolation to the intermediate

temperature region is still lacking [36].

Consequently, when actual simulations are performed within this framework, inexact nodal surfaces are

imposed from the few exactly solved problems that are available such as the free particle, the harmonic

oscillator or from BCS theory [73, 74]. As a result of these approximations, the analysis and interpretation

of the results calculated with this method can be difficult without an understanding of a related experiment

or a calculation of the same quantity using a different albeit more expensive method. Despite these draw-

backs, this technique presents one of the few potentially systematically improvable approaches to calculating

temperature dependent quantities with for general systems with fermionic statistics.
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Chapter 5

Pair Propagators in PIMC and the
Delta Function Pair Potential and
Propagator

5.1 The Pair Potential in Path Integral Monte Carlo and the

Underlying Motivation for Applying It to the Delta Function

Pair Potential

Within PIMC and related methods, pair interactions, and their actions and propagators are useful because

the potentials of most physical systems within a chemical and condensed matter context may be described

in ab initio terms as being the sum of single particles’ interactions with external fields and with each other

in a pairwise fashion. For those interested in simulating bulk systems such as liquid helium or hydrogen or

a bulk gas either in the presence of a nonexistent or negligible external field such as gravity, the potential

may be described in its entirety as a summation of pair interactions for an N-particle system [75] as,

V (R) =

N(N−1)/2∑
j<i

v(|ri − rj |). (5.1)

When the Lie-Trotter discretization is applied to this pairwise sum as described in section (4.3.1), the pair

propagator may be derived.

In the specific case of a fermionic unitary gas the pair propagator is expected to be extremely effective

since the physical behavior of the unitary gas is dominated by two particle interactions. However, in some of

the simulations of unitary gases [52], it has been unclear how well the unitary regime has been reached due

to the usage of a short range pair potential such as the modified Pöschl-Teller potential, which necessarily

has non s-wave terms. Consequently an improved pair propagator will be developed in this chapter, which

strips a short-range pair product propagator down to its essence by including that only the terms that define

the unitary regime, the δ-function pair interaction. Being defined by a distribution, this interaction is most

easily simulated via a pair propagator term as it cannot be simulated via a simple potential.
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5.2 Introduction: Unitarity and Potentials

The unitary limit is reached when the range of attractive pair interactions between fermionic species become

zero-range. This interaction effect results in the dominance of the s-wave scattering interaction between the

attractive short-range pair interactions of the fermionic particles [12]. In the unitary regime, the aforemen-

tioned fermionic system has been so diluted that the average spacing amongst the particles is much larger

than the range of interaction, or conversely, the scattering length, ζ, is much larger than the interparticle

spacing. Being located in this dilute spatial regime results in the bifermionic system having only a single

effective length scale, which within the literature is typically described by one of two values: the previously

described scattering length, ζ, of the underlying interaction potential or by the density n of the system

itself [12]. The presence of only a single length scale has been the source of considerable difficulty in probing

the unitary limit from an analytic standpoint due to the lack of an appropriately small parameter to use

within the framework of perturbation theory. That said this not to paint situation as entirely bad asthe

single length scale has also been a source of strength due to the applicability of scaling arguments [12].

Nonetheless, due to the theoretical difficulties presented by unitarity, the unitary regime is thus a uniquely

well-suited for investigation by computational techniques

As has already been covered in an introductory chapter, when the system in question is manipulated to an

appropriate density and interaction strength as is achievable naturally in some nuclear many-body systems

and via optical lattice methods in atomic and optical physics [1,12,108], the interactions between classes of

fermions between any short-range potentials may be tuned to be in the unitary regime. Because the unitary

regime is dominated by s-wave scattering between pair interactions and a single length scale, which for this

chapter’s purpose’s shall be set to the scattering length as, all possible short-range potentials effectively

become a zero-range, hard wall interaction. This statement may be justified by the following derivation:

First, consider the Schrödinger equation of two bodies of mass m’s finite range potential V (|r|) [34],

[
−1

2
∇2 + V̂

]
ψ(r) = Eψ(r), |r| < rc[

−1

2
∇2 + 0

]
ψ(r) = Eψ(r), |r| > rc, (5.2)

where the various physical constants involved have been set to 1 for convenience and rc denotes the finite

range of the pair potential. Setting E = k2/2 and rearranging the the outer range portion of eqn. (5.2)
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results in the Helmholtz equation,

[
−1

2
∇2 + k2

]
ψ(r) = 0, |r| > rc

(5.3)

which may be solved in terms of spherical harmonics, Ylm(θ, ψ), and spherical Bessel functions, jl(kr), as,

ψ(r) =

∞∑
l=0

l∑
m=−l

Alm[jl(kr)− tan(ηl)ηl(kr)]Ylm(θ, ψ), (5.4)

where ηl = jl(krc)
ηl(krc)

is the phase shift constant caused by the reflection of the particle off of the boundary at

rc caused by the boundary conditions ψ(rc) = 0.

Utilizing an intuitive approach to the justification of this pseudopotential, since the unitary system being

studied is defined as being a dilute one of necessarily low energy, this implies that the preceding equation

(5.4) must effectively be considered in the dual limits: k → 0 and rc → 0. The condition k → 0 follows from

the energy being low since as E → 0 by definition k → 0. Subsequently, this causes only the lowest s-wave

interaction to matter. The condition rc → 0 results from the dilute conditions present in a unitary system

since if one considers the system to be continuously rescaled the attractive short-range potential rapidly

becomes δ-function-like and zero-range because the particles are very far away from each other so that the

rescaled length of the inner core effectively becomes 0. Ultimately, this analysis implies that the two-body

potential interaction under consideration becomes governed by a pseudopotential in the unitary limit due

to the effective infinity of the δ function term which arises from the rescaled residual short-range potential.

From a mathematical standpoint, this pseudopotential has been previously studied and justified in a

more general form in [34] and may be derived by considering the lowest order term associated with the

constant A00,

ψ((r))
l→0
= A00[j0(kr)− tan(η0)η0(kr)]Y00(θ, ψ)

=
A00√

4π

[
sin(kr)

kr
+ tan(η0

cos(kr)

kr
)

]
. (5.5)

If the preceding equation is then studied in the same limit as before where r → 0, sin(kr)
kr → 1 and cos(kr)

kr →

∞, it may be considered that the term tan(η0
cos(kr)
kr ) dominates the wavefunction, ψ(r).

This approach corresponds to the extension of the range of validity of the outer function expression (5.5)

to the entirety of r i.e. to r < rc as well as to r > rc. Moreover, when since the preceding solution is valid
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within this inner region r < rc for the Helmholtz equation, the inner Helmholtz equation may be extended

using the relation ∇2(1/r) = −4πδ(r) and re-written as,

[
∇2 + k2

]
ψ(r) = −4π

A00√
4π

tan(η0)

k
δ(r). (5.6)

Taking advantage of the limiting value [34],

A00√
4π

=
∂

∂r
[rψ(r)]|r=0 (5.7)

results in the following expression

[
∇2 + k2

]
ψ(r) = −4π

tan(η0)

k
δ(r)

∂

∂r
[rψ(r)], (5.8)

which may then be re-arranged to yield the idealized the infinitesimally short ranged, s-wave, pseudopotential

pair interaction Schrödinger equation as,

[
∇2 + 4π

tan(η0)

k
δ(r)

∂

∂r
[rψ(r)]

]
ψ(r) = Eψ(r). (5.9)

Restoring the materials constants to this Schrödinger equation then yields the potential

[− ~2

2µ
∇2+U(r)− E]ψ(r) = 0

U(r) =
2π~2as
µ

δ(|r|) ∂

∂|r|
|r| (5.10)

where µ is the reduced mass since the assumption in this derivation is that a pair transformation has

already been applied to the equation. The mass, m, may be replaced with µ for a δ field interaction and

as, the screening length, results from the absorption of various constants associated with η0. Using the

pseudopotential given in eqn. (5.10) for the pair interaction term present in unitary Fermi gas simulations

allows one to strip this model system down to its bare essentials as one is solely simulating the interaction

term relevant to the unitary gas, and consequently, one does not have to be concerned by higher order effects.
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5.3 Derivation of the Pair Propagator with the Delta Pair

Interaction

Following the derivation of the δ-function pair interaction pseudopotential, eqn. (5.10) from a general

short-range pair interaction applicable to the unitary regime, the derivation of that pseudopotential’s pair

propagator will be considered. The plan of attack is as follows: First, the Wick-rotated or imaginary

time Schrödinger equation for the pair interaction will be considered. A coordinate transformation will be

performed to separate out the center of mass coordinate (the translational degrees of freedom) from the

pair interaction potential. The center of mass term will be solved as a free particle propagator and the

relative coordinates integral equation for the Green function or propagator will be solved using the Laplace

transform method for the solution of that integral equation.

5.3.1 The Wick-Rotated or Imaginary Time Schrödinger Equation for the

Delta Pair Interaction and Center of Mass Coordinate Transformation

The imaginary time Schrödinger equation for the δ-pair potential is given by

−~∂ψ
∂τ

=

[
− ~2

2m
∇2r1 −

~2

2m
∇2r2 +

2π~2as
µ

δ(|r1 − r2|)
∂

∂|r1 − r2|
|r1 − r2|

]
ψ (5.11)

By performing a center of mass transformation upon eqn. (5.11) three of the six coordinates may be separated

out. Beginning with the coordinate transformation, the derivatives, which are given in dummy cartesian

coordinates, and the gradient, which is given in vector form,

r = r1 − r2, R =
m1r1 +m2r2

m1 +m2
(5.12)

d

dr1
=

∂r

∂r1

∂

∂r
+
∂R

∂r1

∂

∂R
(5.13)

d

dr2
=

∂r

∂r2

∂

∂r
+
∂R

∂r2

∂

∂R
(5.14)

~2

2m
∇2

r1 +
~2

2m
∇2

r2 =
~2

2M
∇2

R +
~2

2µ
∇2

r (5.15)

yields the following equation when substituted into eqn. (5.11) relationship in terms of the gradient operators,

~
∂Ψ

∂τ
=

[
− ~2

2M
∇2

R −
~2

2µ
∇2

r +
2π~2as
µ

δ(|r|) ∂

∂|r|
|r|
]

Ψ, (5.16)
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where Ψ = φ(R)ψ(r), µ is the reduced mass, m1m2

m1+m2
, and M is the total mass of the two particle system.

As eqn. (5.16) is separable in terms of the coordinates given by R and r then leads naturally to

~
∂φ

∂τ
=

[
− ~2

2M
∇2

R

]
φ (5.17)

and the familiar equation derived in the prior section

~
∂ψ

∂τ
=

[
∇2

R −
~2

2µ
∇2

r +
2π~2as
µ

δ(|r|) ∂

∂|r|
|r|
]
ψ (5.18)

Because eqn. (5.17) is just the Schrödinger equation for the free particle, this expression may be solved

exactly and, when implemented as propagator or action in code, may be sampled exactly as well. This

leaves the propagator/action for eqn. (5.18) to be solved for, which may be handled using standard Green

function techniques.

5.4 Green Function Propagator Derivation for the Delta-Pair

Pseudopotential

The Green function formalism for the Schrödinger equation may be expressed by recalling the formal defi-

nition for the propagator K̂(τ) with the initial condition K̂(0) = 1 as,

K̂(τ) = e−τĤ (5.19)

Since this is a propagator, it by definition propagates a state vector from one state to another in imaginary

time, which is symbolically written as,

K̂(τ)|ψ(0)〉 = e−τĤ |ψ(0)〉 = |ψ(τ)〉 (5.20)

The Bloch equation may be recovered from the propagator by taking the derivative with respect to τ ,

∂

∂τ
|ψ(τ)〉 =

∂

∂τ
e−τĤ |ψ(0)〉 = −Ĥe−τĤ |ψ(0)〉 = −Ĥ|ψ(τ)〉

⇒
(
∂

∂τ
+ Ĥ

)
|ψ(τ)〉 =

(
∂

∂τ
+ Ĥ

)
K̂(τ) = 0 (5.21)
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Putting the propagator into a coordinate representation, K̂(τ)→ K(r, r′; τ) = 〈r|K̂(τ)|r′〉, allows the initial

condition to be expressed as K(r, r′; 0) = δ(r−r′), which may substituted back into the differential equation

given by eqn. (5.21). Having now defined the notation, the Hamiltonian Ĥ and propagator K̂ may be

subdivided into the free particle and other components which will be used to derive the actual expression

for the propagator,

Ĥ = Ĥ0 + V̂ (5.22)

K̂ = K̂0 + ∆K̂. (5.23)

Using the preceding expressions, an integral equation may be derived that will allow for the full solution of

the δ-pair propagator. Beginning with

δ(r− r′) =

(
∂

∂τ
+ Ĥ

)
K̂(r, r′; τ)

=

(
∂

∂τ
+ Ĥ0 + V̂

)(
K̂0 + ∆K̂

)
=

(
∂

∂τ
+ Ĥ0

)
K̂0 + V̂ K̂0 +

(
∂

∂τ
+ Ĥ

)
∆K̂

= δ(r− r′) + V̂ K̂0 +

(
∂

∂τ
+ Ĥ

)
∆K̂, (5.24)

and thus,

(
∂

∂τ
+ Ĥ

)
∆K̂ = −V̂ K̂0 ⇒(

∂

∂τ
+ Ĥ

)
∆K̂ − V̂∆K̂ = −V̂ K̂0 − V̂∆K̂(

∂

∂τ
+ Ĥ0

)
∆K̂ = −V̂ K̂, (5.25)

which in a coordinate representation becomes

(
∂

∂τ
+ Ĥ0

)
∆K̂ = −V (r)K(r, r′; τ)

(5.26)
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which results in the following derivation,

(
∂

∂τ
+ Ĥ0

)
∆K = −V (r)K(r, r′; τ)

= −
∫
dDr′′

∫ τ

0

dt′′δ(τ − t′′)δ(r− r′′)V (r′′)K(r′′, r′; t′′)

= −
∫
dDr′′

∫ τ

0

dt′′
(
∂

∂τ
+ Ĥ0

)
K0(r, r′′; τ − t′′)V (r′′)K(r′′, r′; t′′), (5.27)

and concludes in an integral equation as,

∆K(r, r′; τ) = −
∫
dDr′′

∫ τ

0

dt′′
(
∂

∂τ
+ Ĥ0

)
K0(r, r′′; τ − t′′)V (r′′)K(r′′, r′; t′′) (5.28)

which may be re-written as an integral equation related variously to second-order Fredholm and Volterra

integral equations as,

K(r, r′; τ) = K0(r, r′; τ)−
∫
dDr′′

∫ τ

0

dt′′
(
∂

∂τ
+ Ĥ0

)
K0(r, r′′; τ − t′′)V (r′′)K(r′′, r′; t′′). (5.29)

Eqn. (5.29) may be solved [109–111] by first integrating out the spatial coordinates r′′ and then applying

the Laplace transform to the imaginary time variable τ .

Since the δ-function of the studied pseudopotential may be integrated exactly within the coordinate

framework of eqn. (5.29), the regularization of the potential is not required in this case and so it becomes,

V (r) =
2π~2as
µ

δ(|r|) ∂

∂|r|
|r| → a3δ(r), (5.30)

where a3 is a constant introduced to simplify calculations.

Introducing the potential from eqn. (5.30) to the integral eqn. (5.29) and integrating over r′′ yields,

K(r, r′; τ) = K0(r, r′; τ)−
∫
dDr′′

∫ τ

0

dt′′
(
∂

∂τ
+ Ĥ0

)
K0(r, r′′; τ − t′′)a3δ(r

′′)K(r′′, r′; t′′) (5.31)

= K0(r, r′; τ)− a3

∫ τ

0

dt′′
(
∂

∂τ
+ Ĥ0

)
K0(r, 0; τ − t′′)K(0, r′; t′′) (5.32)

Applying the Laplace transform to eqn.(5.32),

L [K(r, r′; τ)] = L
[
K0(r, r′; τ)− a3

∫ τ

0

dt′′K0(r, 0; τ − t′′)K(0, r′; t′′)

]
⇒

L(r, r′; s) = L0(r, r′; s)− a3L0(r, 0; s)L(0, r′; s), (5.33)
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where L signifies the Laplace transformed term, allows an algebraic equation to appear, which may be solved

for by setting r = 0 so that

L(0, r′; s) = L0(0, r′; s)− a3L0(0, 0; s)L(0, r′; s)→

L(0, r′; s) + a3L0(0, 0; s)L(0, r′; s) = L0(0, r′; s)→

L(0, r′; s) =
L0(0, r′; s)

1 + a3L0(0, 0; s)
. (5.34)

Substituting eqn. (5.34) back into eqn. (5.33) yields

L(r, r′; s) = L0(r, r′; s)− a3
L0(r, 0; s)L0(0, r′; s)

1 + a3L0(0, 0; s)
. (5.35)

Finding the inverse Laplace transform on eqn (5.35) has its main source of difficulty in the term,

a3
L0(r, 0; s)L0(0, r′; s)

1 + a3L0(0, 0; s)
. (5.36)

Fortunately, a solution is known and may be found by preceding as follows: First, the Laplace transforms

which comprise all of the substituent terms of eqn. (5.36) are known [112] and given by the following,

L0(0, 0; s) = L
[

1

(2πτ)3/2

]
= −
√

2s

2π
(5.37)

L0(r, r′; s) = L
[

1

(2πτ)3/2
e−
|r−r′|2

2τ

]
=

1

2π|r− r′|
e−|r−r′|

√
2s. (5.38)

Substituting (5.37) and (5.38) into eqn. (5.36) results in the following expression,

∆L(r, r′; s) = a3

1
2π|r|e

−|r|
√

2s 1
2π|r′|e

−|r′|
√

2s

1− a3

√
2s

2π

. (5.39)

This expression may then be inverted by using the following inverse Laplace transform relation also known

as the Bromwich integral from [112,113],

a

2

∮
ds

2πi

esτ√
s

e−q
√

2s

√
s− a√

2

=
a

2
e−aq+

τa2

2 erfc(
q − τa√

2τ
), (5.40)

where a and q are arbitrary constants and s and τ have same meaning as previously defined for the Laplace

transform. The expression given by eqn. (5.39) may be converted into a form suitable for the inverse
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transform relation (5.40) by taking advantage of the following derivative relationship [112],

∆L(r, r′; s) = a3

1
2π|r|e

−|r|
√

2s 1
2π|r′|e

−|r′|
√

2s

1− a3

√
2s

2π

=
1

2
√

2π|r||r′|
e−(|r|+|r′|)

√
2s

√
s+

√
2π
a3

= − 1

4π|r||r′|
∂

∂|r|

(
1√
s

e−(|r|+|r′|)
√

2s

√
s+

√
2π
a3

)
. (5.41)

Setting q = (|r|+|r′|) and a3 = − 2π
a in eqns. (5.40) and (5.41) results in the following series of expressions,

∆K(r, r′; s) = − 1

4π|r||r′|
∂

∂|r|

∮
ds

2πi

esτ√
s

(
e−(|r|+|r′|)

√
2s

√
s+

√
2π
a3

)
(5.42)

= − 1

4π|r||r′|
∂

∂|r|
e

2π(|r|+|r′|)
a3

+ 2π2τ

a23 erfc

(
(|r|+ |r′|) + 2πτ

a3

2τ

)
(5.43)

=
τ

|r||r′|
1

(2πτ)3/2
e−

(|r|+|r′|)2
2τ − 1

2a3|r||r′|
e

2π(|r|+|r′|)
a3

+ 2π2τ

a23 erfc

(
(|r|+ |r′|) + 2πτ

a3

2τ

)
. (5.44)

Substituting (5.44) into (5.29) yields,

K(r, r′; τ) =
e−
|r−r′|2

2τ

(2πτ)3/2
+

(
τ

|r||r′|

)
e−

(|r|+|r′|)2
2τ

(2πτ)3/2

− 1

2a3|r||r′|
e

2π(|r|+|r′|)
a3

+ 2π2τ

a23 erfc

[
|r|+ |r′|+ 2πτ

a3√
2τ

]
(5.45)

and restoring the various materials and physical constants results in the following expression for the reduced

mass portion of the central potential propagator for the δ-function pair potential,

K(r, r′; τ) =
( µ

2π~τ

)3/2

e−
µ|r−r′|2

2~τ +

(
τ~

µ|r||r′|

)( µ

2π~τ

)3/2

e−µ
(|r|+|r′|)2

2~τ

+
µ

4π~2as|r||r′|
e
− µ
as~ (|r|+|r′|)+ µτ

2~3a2s erfc

[√
µ

2~τ

(
|r|+ |r′|+ τ

as~

)]
. (5.46)
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5.5 Computational Implementation and Verification of the Delta

Pair Propagator

Despite the exact derivation of the pair propagator for the δ-function pair pseudopotential in the previous

section, a few challenges still remain concerning its computational implementation as well as checking the

correctness of that implementation. This section is intended to address these final computational concerns for

this pair propagator and to present their effective solution. In the first subsection, difficulties concerning the

computational implementation of the special function definition of the δ-pair propagator will be addressed

and a suitable, computationally tractable implementation will be presented. In the final subsection, a method

to computationally check this expression will be presented and derived using the radial pair correlation

function for the delta-function pair propagator. A simulated radial pair correlation function for a two

particle system will then be compared to the exact calculated value and found to be correct to within a

normalization constant.

5.5.1 Delta Pair Propagator and Action for Implementation

When eqns. (5.45) and (5.46) or more specifically their actions are implemented using the standard pair

potential headers of the PIMC++ source code 1, a certain amount of modification must be made to this

propagator and its associated action. First, the total propagator, K(r, r′; τ), is divided through by the

reduced mass free particle propagator term,
(

µ
2π~τ

)3/2
e−

µ|r−r′|2
2~τ , and its corollary for the free particle prop-

agator with suppressed materials constants since the free particle portion represents that which is sampled

exactly.

1PIMC++ is an open source path integral Monte Carlo simulations package used for simulations in this thesis and developed
by the Ceperley group.
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To present the described as an equation, first the suppressed constants form is presented as

K(r, r′; τ) =
e−
|r−r′|2

2τ

(2πτ)3/2
+

(
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|r||r′|

)
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(5.48)

=
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(
τ
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(5.49)

and after division by the appropriate K0 becomes

ρδ(r, r
′; τ) = 1 +

(
τ

|r||r′|

)
e−

(|r|+|r′|)2−|r−r′|2
2τ

(2πτ)3/2

[
1−
√
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(—r|+—r′|+2πτ
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)2

2τ erfc

[
|r|+ |r′|+ 2πτ

a3√
2τ

]]
, (5.50)

where ρδ is the chosen notation for this reduced δ-pair propagator.
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Followed, by the form with full materials constants

K(r, r′; τ) =
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(5.51)
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(5.53)

and after division by the appropriate K0 becomes

K(r, r′; τ) =
( µ

2π~τ

)3/2

e−
µ|r−r′|2

2~τ +

(
τ~

µ|r||r′|

)( µ

2π~τ
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e−µ
(|r|+|r′|)2
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+
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. (5.54)

Finally, to derive the action the − log is taken of eqn. (5.54). The energy estimator for this propagator is

found by taking the β derivative of that same action.
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5.5.2 Challenges of the Computational Implementation of the Delta Pair

Propagator

Despite all of functions present in ρδ being computationally well understood and even standard in the various

libraries used for scientific computing such as the GNU Scientific Library (GSL), this equation still presents

problems from a computational standpoint. These difficulties originate in the exp-erfc term in which the

exponential function frequently becomes large as the erfc function becomes small so that rounding error and

stability issues are encountered. This issue may be observed directly by considering the offending term from

the suppressed constants ρδ (the issue is exactly the same for the ρδ with the materials constants),

e
(|r|+|r′|+2πτ

a3
)2

2τ erfc

[
|r|+ |r′|+ 2πτ

a3√
2τ

]
. (5.55)

Setting g =
(|r|+|r′|+ 2πτ

a3
)2

2τ and z =
|r|+|r′|+ 2πτ

a3√
2τ

, results in the simplified form,

eg erfc z. (5.56)

Consequently, a method to calculate this combined special function of an exponential or exponential-like

function multiplied by an erfc function is required. First, recalling that erfcx = 1 − erf x allows one take

advantage of various expressions for the error function. Ultimately, this insight results in the modification

of an algorithm for the error function which allows one to implement the erfc with an algorithm capable

of achieving a maximal error ≤ 1.2 × 10−7 using an exponential expression [113, 114]. This algorithm is

expressed as follows as

erfcx = q forx ≥ 0

= 2− q forx ≤ 0 (5.57)
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where,

q =t · exp[−x2 − 1.26551223 + 1.00002368 · t+ 0.37409196 · t2 + 0.09678419 · t3

− 0.18628806 · t4 + 0.27886807 · t5 − 1.13520398 · t6

+ 1.488515887 · t7 − 0.82215223t8 + 0.17087277 · t9]

where t =
1

1 + 0.5|x|
. (5.58)

When eqn. (5.56) is expressed with this algorithm the exp(g) term may be combined with exponential

portion of q and thus the final algorithm becomes,

eg erfc z = qegq forx ≥ 0

= 2eg − qeg forx ≤ 0 (5.59)

where,

egq =t · exp[g − x2 − 1.26551223 + 1.00002368 · t+ 0.37409196 · t2 + 0.09678419 · t3

− 0.18628806 · t4 + 0.27886807 · t5 − 1.13520398 · t6

+ 1.488515887 · t7 − 0.82215223t8 + 0.17087277 · t9]

where t =
1

1 + 0.5|x|
, (5.60)

which may be easily implemented without rounding error or stability issues.

5.5.3 Radial Distribution Function as a Check for a Pair Propagator

Testing the δ-pair or any pair propagator presents some unique challenges due to the multidimensional

nature of the propagator. Fortunately, any pair propagator may be used to exactly express it’s associated

radial distribution function and thus to test a pair propagator in a computational setting with very little

additional work, assuming that one’s underlying simulation program possesses a well-tested radial/pair

distribution simulation capability.

The formalism for this approach was among the first computational methods developed in the physics
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Figure 5.1: The plot of the radial distribution or pair correlation function as a function of density for a
δ-pair interaction propagator with a scattering length, as = −100 intrinsic length units and a µ = 1

2 with
each particle having a mass of 1, and T = 2.5ε0

community [76,115,116]and is presented as follows,

g(|x− y′|) =
ρ2(x,y,x,y)

ρ1(x,x)ρ1(y,y)
, (5.61)

where x and y denote the positions of the individual particles, g(|x − y|) is the diagonal matrix element

two-particle pair correlation or radial distribution function, ρ2(x,y,x,y) is the diagonal pair propagator,

and ρ1(x,x) is the diagonal free particle propagator for the particle labeled by x.

Within the context of the pair product transformation, g(|x−y′|) may be expressed as the diagonal form

of the reduced term denoted in the prior section by ρδ(r, r; τ) because it is just the pair product propagator

expressed in terms of the relative coordinates of the underlying particles divided through by the total mass

and reduced mass free particle propagator terms, which satisfies the prescription for g(|x−y′|) given by eqn.
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Figure 5.2: The plot of the ratios of simulated radial distribution or pair correlation functions to the
exact calculated value as a function of density for a δ-pair interaction propagator with a scattering length,
as = −100 intrinsic length units, a µ = 1

2 with each particle having a mass of 1, and T = 2.5ε0. The
discrepancy to a ratio of 1 observed in terms of constancy of the approximately flat lines is due to a
difference in normalization between the simulated and exact pair correlation functions due to difference in
normalization between periodic boundary conditions and all space.

(5.61.

Consequently, a two particle simulation may be run using the previously describe pair propagator code

for the δ-pair interaction such that the radial distribution function is observed and the diagonal terms of that

same pair propagator code may be used to generate a check. In this type of simulation, the only expected

errors would occur variously due either to random noise in the simulation or due to the difference in the

implicit normalization constants for the pair propagator in free space and that naturally occurring in the

simulation due to the periodic boundary conditions. Thus, one would expect a roughly flat curve when the

ratio of the simulated radial distribution function to the exact radial distribution function is plotted. When

the δ-pair propagator was implemented in code by the author, this sort of unit testing was performed and
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the plots for both the radial distribution functions as well as their ratios are displayed in figs. (5.1) and

(5.2) respectively. As can be seen Fig. (5.2), the expected flat lines are observed with a deviation from 1 in

terms of the value of the ratios being caused by the aforementioned difference in normalization constants.

5.5.4 The Unitary Propagator or Delta Pair Propagator in the Unitary Limit

The unitary propagator is the delta pair propagator, eqn. 5.51, in the limit of as → −∞, which may be

written as

K(r, r′; τ) =
( µ

2π~τ

)3/2

e−
µ|r−r′|2

2~τ +

(
τ~

µ|r||r′|

)( µ

2π~τ

)3/2

e−µ
(|r|+|r′|)2

2~τ . (5.62)

Dividing the preceding pair propagator through by the free particle term as was done in eqn. (5.50) yields,

ρU (r, r′; τ) = 1 +

(
τ

|r||r′|

)
e−

(|r|+|r′|)2−|r−r′|2
2τ

(2πτ)3/2
. (5.63)

Obtaining convergence with this new unitary propagator becomes difficult due to the hairpin-like divergence

of the singular term. If care is not taken in programming this singular term, an unusual error which is

present in most current programming languages with limited precision for real numbers occurs. This error

is due to a simultaneous underflow error from the exponential part and overflow error from the singular part

in the second term of eqn. (5.63) and is very difficult to discover the source of this error in experience of

the author as it is an exceedingly rare event which occurs only in specific configurations of the off-diagonal

term of the propagator. After its occurrence, however, the error essentially traps the simulation so that it

ceases to move.

Fixing this error requires that the singular part be combined with exponential part by re-writing eqn.

(5.63) as

ρU (r, r′; τ) = 1 + e
− (|r|+|r′|)2−|r−r′|2

2τ +log( τ

|r||r′|(2πτ)3/2
)
. (5.64)

The total argument in the exponential term may then be tested for size to prevent subsequent over- or

underflow errors. Applying this implementation method to the finite scattering length delta pair propagator

may also yield better results for that method as well with regards to scattering length and convergence, but

was not attempted in work.
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Figure 5.3: The plot of the radial distribution or pair correlation function as a function of density for a
δ-pair interaction propagator at unitarity with a µ = 1

2 with each particle having a mass of 1, and T = 2.5ε0

5.5.5 Verification of the Delta Pair Propagator in the Unitary Limit using the

Radial Distribution Function

Just as in the case of a propagator with a finite scattering length, a simulation of the radial distribution

function of a two particle system may be performed with this unitary propagator and compared to the exact

pair distribution function for the unitary limit. The procedure, derivation, and justification of this approach

is exactly the same as that used is in section (5.5.3) with the exception that the two particle propagator

being used is different. Plots for the radial distribution function of the unitary propagator at
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Figure 5.4: The plot of the ratios of simulated radial distribution or pair correlation functions to the exact
calculated value as a function of density for a δ-pair interaction propagator at unitarity with a µ = 1

2 with
each particle having a mass of 1, and T = 2.5ε0. The discrepancy to a ratio of 1 observed in terms of
constancy of the approximately flat lines is due to a difference in normalization between the simulated and
exact pair correlation functions due to difference in normalization between periodic boundary conditions and
all space.
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Chapter 6

Simulations of the Unpolarized Fermi
Gas at Unitarity

6.1 Overview

The simulations presented in this chapter focus upon systems of dilute, 3-dimensional unitary Fermi gases at

the unitary limit calculated with fixed-node path integral Monte Carlo using the nodes of the corresponding

fermionic free particle density matrix. The resulting data from these simulations will be presented in the

form of plots with commentary on some selected values and their relation to other theoretical results

From a computational standpoint, the system under study is defined using the pair propagators for

attractive delta function pseudopotentials at the unitary limit presented in the preceding chapter in the

PIMC framework. In particular, a system of 2 species of interacting fermions which do not interact amongst

like particles are studied here and are designated here by being considered to be the same particle type in

different spin state, spin-up or spin-down with the Hamiltonian for the system in question being given by,

Ĥ =

N∑
i=1

~2

2m
∇2
i +

N∑
j=1

~2

2m
∇2
j + as

∑
δ(r1i − r2j), (6.1)

in the limit as → ∞ and where m is the mass the 2 species considered. In these simulations atomic

units are used and all bare masses are set to 1. Simulations are performed for an unpolarized system of

5 spin-up and spin-down particles using the fixed-node path integral Monte Carlo methodology in periodic

boundary conditions with a cubic box sized to maintain a 0.238 density from Akkineni et. al. [36, 52] with

a discretization of τ = 0.00519826. The energy and temperature units used in this thesis are the intrinsic

energy units of this system ε0 = ~2

mr20
where r0 is an intrinsic length unit also set to 1. The corresponding

fermi energy for this system used in Akkineni et. al. [36, 52] is 1εF = 1.841ε0 and the Fermi gas energy is

1εFG = 3
5εF = 1.1046ε0.

In the rest of this chapter, the enduring challenges of simulating this system are considered as are some

of the workarounds for dealing with these challenges. The total system energy is considered, followed by the

radial distribution function, the structure factor, and the superfluid density. Finally, conclusions and future
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directions will be considered, which shall conclude this thesis.

6.2 Challenges of the Simulation

The simulation of the system under consideration in this chapter presented many technical challenges from a

computational standpoint due to the usage of the novel unitary delta pair propagator. The offending portion

of this pair propagator which is treated as a potential is given as follows,

ρU (r, r′; τ) = 1 +

(
τ

|r||r′|

)
e−

(|r|+|r′|)2−|r−r′|2
2τ

(2πτ)3/2
. (6.2)

In looking over, eqn. (6.2) one notices that the second term has an associated singular sub-term. While

it can be argued that in some Lie-Trotter type or short-(imaginary)-time discretizations, if a singular term

appears that it will be be integrated out in some sense and the sampling will not be adversely effected by

it. In this case, however, the exact two-particle propagator has a singular term in it which is conjectured

by this author to be a consequence of the pair-interaction being a distribution and not a true function.

Consequently for higher particle number propagators defined by the same particle pair interactions, it is not

unreasonable to presume that an exact solution for that propagator would feature singularities as well.

These considerations are important since it is empirically observed in simulations with the propagator

given by eqn. (5.62) that in some simulations the particles pair up and fall into the singularity in such a way

that they are effectively trapped on the timescale of the simulation. This is an effect that was presumably

encountered by Pessoa et. al. [53] since while it is not explicitly stated that such an effect occurs, a great

deal of effort is expended creating a novel sampling scheme which is designed to swap pairings amongst

the interacting particles of the system being studied. A cruder approach than taken by Pessoa et. al. is

used in this thesis. Specifically, any simulation whose time series correlation length is greater than 10 time

series units is not included in the calculation of any quantities in this thesis. This length was chosen as it

empirically divides the simulations as two regimes since the trapped simulations typically have correlation

length units of 30 or more intrinsic time series units. This is done so that the large correlations caused by

the very tight binding between paired particles are rejected from the calculation. While this may slightly

bias the resultant simulations due to failure to include data from regimes of strong binding, in practice it

appears to be a reasonable approach as good agreement is found at high temperature between the system

in question and prior results from a related system by Akkineni et. al. [36, 52].
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Figure 6.1: The energy per particle is plotted as a function of temperature for the unitary system and
compared to a similar calculation performed by Akkineni in [36,52] for a Pöschl-Teller pair interaction tuned
to unitarity and to a free Fermi gas of similar particle number. A classical ideal gas energy is provided for
reference as is the theoretical pairing temperature [117] as an energy.

6.3 Energy

The total energy per particle for a free particle fixed node simulation of the system defined by eqn. (6.1)

is given in graphical form by Fig. (6.1). It compares quite well particularly at high temperature with

simulations performed earlier by Akkineni in [36, 52] for a Pöschl-Teller pair interaction tuned to unitarity

and follows quite closely to them for the entire range of his simulation. The total energy per particle at the

lowest temperature T = 0.1ε0 is 0.043 ± 0.013ε0 which compares unfavorably with the energy per particle

0.44(1)εFG = 0.26εF = 0.48ε0 at T = 0 [52]. However, when compared with the range of data from Akkineni,

this simulated plot, compares fairly well at high and medium temperatures, only becoming negative or near

0 as temperatures become lower.

It is unclear if this is an indication of a non-ergodic effect in the simulation or caused by a need for a

finer discretization. A finer discretization was attempted by the author so that the discretization went from

τ = 0.00519826 to τ = 0.000519826. This new discretization unfortunately did not converge after 5 days of

simulation and appears to make the particle trapping problem referred to in an early section worse.

The kinetic and potential energy for this unitary system are plotted in Figs. (6.2) and (6.3) respectively.

In a visual inspection of Fig. (6.2), it appears that a transition seems to appear at T = ε0 as the kinetic

energy of the system appears to plummet. It is unknown if this is due to an issue with the ergodicity of the

simulation or due to the system itself; any subsequent exploration of this system ought to explore this as
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Figure 6.2: The kinetic energy per particle is plotted as a function of temperature for the unitary system.

Figure 6.3: The potential energy per particle is plotted as a function of temperature for the unitary system.

interesting physics may be here.

6.4 Radial Distribution Function and Structure Factor

The radial distribution functions produced within this simulation of the unpolarized unitary fermi gas

diverges as 1
r2 as expected from the exact two-body unitary propagator. Looking at the differences between

the high temperature radial distribution plots in Fig. (6.4) and the low temperature radial distribution plots

in Fig. (6.5) suggest that a change has occured between the high and low temperature zones, but do not

provide a clear indication of any transition.

The structure factors presented in the accompanying plots given by Fig. (6.6) give no indication of any

great structural change in k-space at any temperature. The multiple values for each |k| represent individual

values for each shell; they should converge in the limit of many runs.
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(a) Radial distribution function of spin-up and spin-down
particles at T = 4.5ε0

(b) Radial distribution function times r2 of spin-up and
spin-down particles at T = 4.5ε0

(c) Radial distribution function of spin-up and spin-down
particles at T = 2.5ε0

(d) Radial distribution function times r2 of spin-up and
spin-down particles at T = 2.5ε0

Figure 6.4: Plots of Radial Distribution Functions at various high temperatures on the left and Radial
Distribution Functions time r2 on the right.
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(a) Radial distribution function of spin-up and spin-down
particles at T = 0.8ε0

(b) Radial distribution function times r2 of spin-up and
spin-down particles at T = 0.8ε0

(c) Radial distribution function of spin-up and spin-down
particles at T = 0.1ε0

(d) Radial distribution function times r2 of spin-up and
spin-down particles at T = 0.1ε0

Figure 6.5: Plots of Radial Distribution Functions at various low temperatures on the left and Radial
Distribution Functions time r2 on the right.
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(a) |S(k)| of spin-up and spin-down particles at T = 4.5ε0(b) |S(k)| of spin-up and spin-down particles at T = 2.5ε0

(c) |S(k)| of spin-up and spin-down particles at T = 0.8ε0(d) |S(k)| of spin-up and spin-down particles at T = 0.1ε0

Figure 6.6: Plots of the Structure Factor at various temperatures as a function of |k|.
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Figure 6.7: The superfluid fraction as a function of temperature. The error bars are suppressed.

6.5 Superfluid Fraction

The superfluid fraction is visualized in Fig. (6.7). The error bars are suppressed for very low temperature to

make reading the plot easier. Nonetheless, it is clear that a superfluid transition does exist for this unitary

fermionic system as the nascent formation of one appears to be forming in that same figure; it is even more

clear from Fig. (6.8) as the superfluid fraction spans many decades of values indicating that superfluidity as

measured by the superfluid fraction appears quite suddenly around a temperature, TSF ≈ 1ε0. Unfortunately,

not enough data was able to be gathered to gain a true indication of this transition temperature.

6.6 Conclusion and Future Directions

This project has been a mixed success in the view of this author. While many technical challenges concerning

the implementation and sampling of the delta pair propagator in the unitary limit have been overcome,

this project has not yielded the “smoking gun” hoped for in determining the unitary transition. Key to

this inconclusiveness is the difficulty in sampling the system in question in such a way that the extreme
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Figure 6.8: The logarithm of superfluid fraction as a function of temperature. The error bars are suppressed
for covenience.

pairing observed in thesis does not occur 1. Any future work on this problem must address this issue in a

satisfactory way to move forward. Possible methods to do this include implementing alternative bulk moves

that are designed to break up the tight pairing which occurs in these simulations or changing the underlying

coordinate systems to spherical coordinates so that the pair divergences are canceled by the radial Jacobian

term and sampling from the resultant distribution. Once this challenge is overcome, careful consideration of

fermionic thermal density matrix nodes will be required to obtain accurate results. Suffice to say, it is this

author’s view that from the standpoint of simulation much remains to be done within the seemingly simple

field of unitary fermi gas physics.

1This is challenging and problematic precisely because the physics of interest in unitarity is pairing.
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