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ABSTRACT

Automatic garbage collection is an essential feature so that programs can

reclaim resources without the need for manual input. This feature is present

in many modern languages and is a common subject of research. However, in

parallel and distributed environments, programmer-controlled resource recla-

mation is highly error-prone. As the scale of programs increase, automatic

garbage collection is of paramount importance for efficient and error-free

execution.

Garbage collection in the context of actor systems is especially difficult

because actors are active objects and may not be garbage even if there are

no references to it. An additional difficulty is to perform garbage collection

on active objects without halting the current computation.

This thesis implements one of the proposed algorithms which can solve the

problem of garbage collection in distributed actor systems. This study also

explores how parameters in this algorithm along with how the topology of

an actor system affect the garbage collection. This was implemented on an

existing actor framework in order to highlight key factors in the algorithm’s

performance. The design details and insights gained from the results of these

tests are then discussed.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The main benefit of garbage collection is reclaiming resources to improve

performance. However, manual garbage collection is not only highly error-

prone but also imposes a non-trivial burden on the programmer. Automatic

garbage collection alleviates both of these issues. The downside to garbage

collection is that there are overhead storage costs for maintaining information

about objects as well as computational costs to determine object status. As

a system scales these drawbacks are overshadowed by the benefits automatic

garbage collection brings.

In a parallel/distributed environment, objects and processes are continu-

ously created and the need to reclaim these resources is of paramount im-

portance. Garbage collection for the Actor Model [1] is difficult because in

addition to the challenges of garbage collection the problem of distributed

resources and active objects [2] need to be considered. However, traditional

distributed garbage collection algorithms cannot be applied to the actors

model because actors are active objects.

This thesis implements the Hierarchical Distributed Garbage Collection

algorithm (HDGC) [3, 4] and explores how parameters in the algorithm affect

the performance of the algorithm. This algorithm is implemented in the

actor framework ActorFoundry [5] which is based on JavaTM. The main

contribution of this thesis is in the implementation of the HDGC algorithm,

analysis of the algorithm, and finally implications of the results for actor

program design. The performance is evaluated for both local and distributed

systems for a changing actor system topography.
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1.2 Thesis Outline

The thesis is organized as follows. Section 2 covers the Actor Model and

garbage collection of actor systems. Section 3 is a review of previous work

in garbage collection and covers the HDGC algorithm proposed by Nalini

Venkatasubramanian. Section 4 explains the implementation of the algo-

rithm in ActorFoundry along with shortcomings and differences in the im-

plementation versus the original algorithm. Section 5 presents the test setup

along with the results along with an analysis of the results. Finally, chapter

6 outlines conclusions along with areas for potential future investigation.

2



CHAPTER 2

BACKGROUND

This chapter introduces the Actor Model as well as gives a definition of

garbage in an actor system.

2.1 The Actor Model

2.1.1 History

The Actor Model is a model for concurrent computation through Actor ob-

jects which was first specified by Carl Hewitt [6] and later, further developed

by Gul Agha [1]. The modern operational semantics of the Actor model fol-

lows closely from the work of Gul Agha. The paradigm of Actors provides

many advantages in parallel and distributed application design over other

models such as object-oriented design. As parallel and distributed computa-

tion has become widespread, the Actor model has also become more widely

used in various languages and frameworks. A more in-depth review of the

Actor model along with its design can be found by Rajesh Karmani [7].

2.1.2 Operational Semantics

In the Actor Model the universe consists of actor objects and messages. Each

actor is a self-contained, autonomous agent which encapsulates its state, be-

havior, and processing power. The way actors communicate with each other

and the outside world is through messages. Specifically, actors communicate

with each other through a globally unique name assigned during creation

and can only be communicated through messages. Figure 2.1 shows an im-

plementation of the Actor Model with the processing power implemented

as a thread. Actors are executed concurrently and messages are sent asyn-
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Figure 2.1: Actors are self-contained objects which contains its own state,
behaviors, and control.

chronously. Messages are delivered to an internal mailbox and buffered until

the actor processes the message.

The behavior and state of an actor is driven by the messages it receives.

Messages are received and buffered in a mailbox and eventually executed.

When an actor handles a message one or more of the following events may

be triggered:

• Actor creation

• Modify its state

• Send a message to another actor

The Actor Model naturally lends itself to parallel and distributed appli-

cations because of the properties inherent to its design. Due to each actor

having its own state which cannot be accessed or modified by any other actor

there is no worry of unsafe concurrent access to shared memory. The name

of an actor is location transparent and as such can be used the same whether

in a local or distributed setting. Finally because messages are handled asyn-

chronously and are buffered upon receiving with execution not guaranteed

immediately upon arrival, actor programs can be used in a distributed setting

without modifications.
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Although there is a conceptual difference between the name of an actor

and the mailbox of an actor, in practice they refer to the same thing. The

name of an actor is a handle for the mailbox of the actor that a message is

intended for. In the context of referring to an actor and message sending the

terms name and mailbox will be used interchangeably in this thesis.

2.2 Garbage Collection

2.2.1 Passive Object Garbage Collection

Functional languages such as Lisp and Scheme have had automatic garbage

collection for decades. Erlang is a functional language which is built around

the Actor Model and does GC per process. Similarly, many object oriented

languages also support garbage collection. Java, an object-oriented language,

has built-in support for multiple automatic garbage collectors which all use

some form of a tracing collector. Python on the other hand uses a reference

counting scheme. A more detailed explanation of garbage collection schemes

in various languages are covered in the following chapter.

Garbage collection for passive objects in object-oriented systems can be

viewed as a graph problem. This graph is a directed graph where every

object is a node and each reference to that object is an edge. The graph of

objects and their references is called the object-reference graph. Root objects

in this are those which can never be garbage such as static objects, input-

output objects, and threads of control. These root objects are the starting

point for the reference graph traversal. Objects which are unreachable from

any root objects are unable to affect the execution of the program and can

be safely garbage collected. Periodically the garbage collection process is

executed and the resources for garbage objects are reclaimed.

However, garbage collection does have an associated cost both in terms of

storage overhead and computation cost. Many garbage collection algorithms

also requires a stop-the-world pause which pauses user computation. These

costs along with details of the schemes are covered in chapter 3.
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2.2.2 Garbage in Actor Systems

The above garbage collection scheme for object-oriented systems cannot be

applied directly to actor systems. The root set for the object-reference graph

in a object-oriented system includes threads of control but in the actor model

each actor encapsulates its own thread of control. The root set in an actor

system can only be actor themselves as state and objects are also encapsu-

lated. The following definitions of garbage in an actor system are based on

the work of Kafura et al. [8].

In an actor system the root set consists of the root actor which is the actor

created at the beginning of the computation. This actor receives an initial

message and as part of its behavior may create more actors. Similarly, actors

which communicate with the external environment are equivalent to input-

output objects and thus are part of the root set. Any other actors which

are not known either directly or indirectly by a root actor can therefore be

considered garbage as they cannot influence future computation.

In order to formally define garbage in an actor system the following defini-

tions are necessary. An acquaintance of actor A is an actor for which actor A

knows the name of. Names are assigned at creation and can only be commu-

nicated through messages. However, acquaintances can be lost if the name

is not kept. An inverse-acquaintance of actor A is an actor which holds the

name for actor A. It then follows from this definition that if actor A is an

acquaintance of actor B then actor B is an inverse-acquaintance of actor A.

An active actor is an actor which is either processing a message or has

messages left that need to be processed. An inactive actor is an actor which

is not currently processing a message nor has any messages to be processed.

Any inactive actor which is not known either directly or indirectly by an

active actor is permanently inactive.

The set of non-garbage actors in an actor system is called the reachable

set. Actors in the reachable set are defined recursively as follows:

• Root actors are reachable.

• Acquaintances of live actors are reachable.

• Inverse-acquaintances of reachable actors which are not permanently

inactive are reachable.
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A result of this definition is the inverse-acquaintances relationship also

influence reachability because actors which are not reachable from the root

set but are not inactive are reachable. could send their name to a reachable

acquaintance. In this case the topology changes and the previously unreach-

able actor is now reachable. However if the inverse-acquaintance is inactive

then it is always unreachable because it can never communicate its name to

any reachable actor.

Figure 2.2: Inverse-acquaintance non-garbage example.

Figure 2.2 shows an example actor system with active and inactive actors

with their GC labels. Actors 2 and 3 are non-garbage regardless of their

status because they are both reachable from the root actor. Actor 4 is garbage

because it is unreachable and inactive. Actor 5 is non-garbage despite not

being directly reachable because it is active and can potentially communicate

its address to a reachable actor. Actors 6 and 7 are both garbage despite

being active because they are not reachable and can not become reachable.

From this definition, any unreachable actor is therefore garbage and can

be safely collected. A key property of actors labeled garbage is that they

will remain garbage and there is no way for them to become non-garbage.

There is no way for the root actor to ever communicate with a garbage actor

so once an actor is marked garbage by the above definition it will remain

garbage forever.
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CHAPTER 3

PREVIOUS WORK IN GARBAGE
COLLECTION

This chapter begins with a summary of well established garbage collection

strategies and common variations. Next is a review of garbage collectors in a

number of languages. The section after describes work done in garbage col-

lection of actor systems. Finally a description of the Hierarchical Distributed

Garbage Collection algorithm which this thesis implements is explained.

3.1 Garbage Collection Strategies

3.1.1 Reference Counting

Reference counting is a common strategy for garbage collection due to its

simplicity. In reference counting every object maintains a count of how many

other objects hold a reference to it. This reference count is incremented

whenever another reference is created and decremented when a reference is

lost. Once the reference count for an object reaches zero that means that

there are no objects which know of it and therefore it can be reclaimed as

garbage. This particular trait of reference counting means that garbage is

collected incrementally and the system is kept garbage free.

The naive implementation of this strategy has the advantage of being sim-

ple to implement and also being able to detect garbage as soon as there are

no references to it. However, there is a high overhead of having to update

the reference count continuously and a simple implementation is unable to

detect cycles. A cycle of objects with references to each other will not have

their reference count drop to zero so another method needs to be applied to

detect these cycles.

Reference counting variants such as weighted reference counting and indi-

rect reference counting are effective solutions to garbage collection in parallel
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and distributed systems.

3.1.2 Mark-and-Sweep

The mark-and-sweep strategy for garbage collection was first described by

John McCarthy in 1960 as part of a paper on the implementation of LISP

[9]. In the original algorithm, mark-and-sweep is run when there is no more

free memory to be allocated. Every base register (root set) is marked and

from this every register (object) which can be reached is also marked. Once

this sweep is finished, any unmarked register is considered to be free memory

and can be reused.

This algorithm requires a stop-the-world pause and is only run periodically

but is able to handle cycles directly. Compared to reference counting, mark-

and-sweep is more computationally intensive due to a costly sweep of all

objects. The cost is of a full mark-and-sweep is determined by the size of the

heap.

3.2 GC Variations

Building on the reference counting and mark-and-sweep strategies there are

numerous improvements and hybrid strategies. Both reference counting and

mark-and-sweep in their most naive implementation have deficiencies which

the following variations attempt to address.

3.2.1 Hybrid

A simple method of overcoming the downsides of both the mark-and-sweep

algorithm and the reference counting algorithm is to utilize a hybrid scheme.

An example of a hybrid garbage collector is the Python garbage collector

[10]. Python uses a reference counting scheme but also has a periodic cyclic

garbage collector. Additionally Python allows the programmer to specify

objects which can only be manually garbage collected.
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3.2.2 Compaction

In both reference counting and mark-and-sweep schemes after garbage is

collected the heap is fragmented. This fragmentation makes future allocation

of memory of a large block difficult. Compaction refers to the relocation of

objects and free space to eliminate fragmentation of the heap. Some garbage

collection algorithms include a separate step for compaction of the heap while

others include as a side effect of the garbage collection.

3.2.3 Copy Collection

The copy collector scheme partitions the heap into two spaces; from-space

and to-space. When garbage collection needs to be performed, all live objects

are copied from one space to another and objects in the first space are garbage

collected. This has the impact of also compacting the memory during the

copy. A downside to this approach is that the heap is split in half.

3.2.4 Generational Garbage Collection

Hewitt and Lieberman first proposed Generational Garbage Collection [11]

in 1980 which makes use of the temporal locality property to improve the

efficiency of garbage collection. In generational garbage collection objects

are partitioned into spaces based on duration alive and different GC policies

are applied to the different sets. This is based on the heuristic that newer

objects are more likely to be garbage whereas longer lived objects will remain

non-garbage.

For example, objects initially created are placed in the first generation

space (G1). Once a garbage collection is initiated, surviving objects will be

moved to the second generation space. Garbage collection in G1 is performed

much more frequently based on the temporal locality heuristic. Generational

garbage collection not only exploits temporal locality but is faster than the

traditional mark-and-sweep because the traced set is smaller. One problem

with the generational approach is handling references which cross generation

boundaries.

There are multiple models regarding when an object should be tenured

from one space to another. However, it is argued by Clinger and Hansen [12]
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that if an exponentially decreasing probability function is used to model an

object’s lifetime then how long an object has been alive does not give any

insight towards how much longer it will live. A similar argument for why

the age of an object is not a useful heuristic in predicting object lifetime

was stated by Henry Baker [13]. Despite the potential erroneous underlying

assumption, both papers state that generational garbage collection has many

secondary effects which make it more efficient than non-generational schemes.

Effects such as locality of references and shorter stop-the-world pauses are

inherent in generational garbage collection and are improvements over non-

generational garbage collection.

Many languages which use the generational garbage collection scheme use

adaptive tenure policies. The garbage collector changes the tenure policy

based on statistics the profiler learns about the application.

One optimization for the tenure policy is the concept of pre-tenure. Ob-

jects which are pre-tenured are directly allocated into the old generation

space. This optimization reduces the number of objects which need to be

traced and copied. A dynamic pre-tenuring optimization was proposed by

Timothy Harris [14]. In dynamic pre-tenuring, statistics are gathered during

runtime and objects are pre-tenured using this data. Objects are sampled

and information such as class, life-time, how many allocated, and methods

invoked are collected. Using this information it is possible to know, for ex-

ample, that all objects of a given class always reach tenure and can directly

be placed in that set.

3.3 Languages

3.3.1 Java

Depending on the version of Java there are multiple different garbage collec-

tors which are available for use. These garbage collectors all use a mark-and-

sweep strategy and differ mainly in the duration of stop-the-world pauses and

resources required. In addition to the type of collector used, it is possible to

specify the heap size and generation size. A detailed summary of the various

garbage collectors was released by Sun Microsystems [15]

Java also features weak references which allows the programmer more con-
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trol over the underlying garbage collection mechanism. Weak references are

references which do not prevent garbage collection and when used to fetch ob-

jects may end up failing. There are four different levels of references ranging

from strong, soft, weak, and phantom.

Java’s generational garbage collectors also which offer programmers the

choice of various tenure strategies. Work such as that done by Blackburn et

al [16] show that pre-tenuring can easily be added to Java and can give a

significant performance boost to the garbage collector. Blackburn concludes

that because most Java programs have high lifetime homogeneity, pre-tenure

predictions are very accurate. Only two statistics need to be collected about

objects; age and time of death. From this information each allocation site

is given a short, long, or immortal label. This label accurately predicts the

behavior of objects created from each site and can be used as a pre-tenure

heuristic.

3.3.2 Scala

Scala is programming language which offers both functional and object-

oriented paradigms. Scala is compiled to Java bytecode and run on a JVM.

Because Scala runs on a JVM, Scala uses the garbage collectors present in

Java. Scala has featured support for actors through different libraries such

as scala.actors, Akka, Lift, and Scalaz. Currently, Akka has become the

standard for actors in Scala.

3.3.3 Akka

Akka [17] is a toolkit for Java and Scala and extends the two languages with

an actor model implementation. However, the Akka toolkit features some

functionality which deviates from the original Actor Model schematics. For

example, it is possible to create a pool of actors that share the same mailbox.

The garbage collector for Akka relies on the underlying JVM and thus is

unable to automatically collect actors for both Java and Scala implementa-

tions. Users must manually mark actors for garbage collection otherwise the

memory is leaked. This is true for both local and distributed actors in Akka.
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3.3.4 Erlang

Erlang [18] is a functional language designed by Ericsson in 1986 and was de-

signed around concurrent/distributed systems using the Actor Model. Prop-

erties of the actor model such as message passing, location independent nam-

ing, unshared state, etc are all supported by design in Erlang. Functional lan-

guage design such as immutable objects allows for faster and easier garbage

collection. For example, due to immutable objects, in a generational scheme

it is not possible for references to cross generation boundaries. Objects cre-

ated can never point to objects newer than itself. Because objects cannot

be modified the garbage collector does not need to worry about references

changing during GC.

The garbage collector is Erlang is unique in that the garbage collection is

per process and it is possible to specify the heap size of the process being

spawned. This optimization is useful because garbage collection pauses are

tiny and the sets traced are small. A programmer with knowledge of a

process’s lifetime and heap usage could potentially bypass garbage collection

for that process.

One example garbage collector present in Erlang which is simple yet can

be easily extended is the One-Pass Real-Time Generational Mark-Sweep

Garbage Collector [19]. This garbage collector utilizes the design of the

language to facilitate easier garbage collection. Assume the heap is orga-

nized with a high end and a low end such that objects are allocated in the

first location available in the high end. Due to objects being immutable,

all references for an object must point to objects which are lower than it in

the heap. A sweep begins from the highend towards the low-end with the

first object being marked as non-garbage. Any references encountered are

followed and the object pointed to is marked. Any object encountered which

is not marked is garbage and can be immediately reclaimed. This is because

once the sweep moves to a lower portion of the heap there is possibility of

that object being referenced to.

However, using the above algorithm means that memory locations once

reclaimed cannot be reused due to the initial assumptions of older objects

being placed higher. This problem can be fixed by keeping a history of

allocated objects and traversing that rather than traversing the heap from

high to low. Once objects are reclaimed the pointers in the history only need

13



to be changed in order to remain consistent. This mark-and-sweep scheme

can be made generational by sweeping only the newer objects using some

threshold for how much of the heap to sweep.

Despite the ease of garbage collection in Erlang, this only applies to mem-

ory allocated by Erlang actors and not actors themselves. The actor must

be manually deallocated and cannot be automatically garbage collected.

3.3.5 Pony

Pony is a very new language which, like Erlang, is designed around the

Actor Model concept. A unique feature of Pony is that the language can

concurrently garbage collect actors without requiring manual termination.

Additions to the Actor Model such as casual messaging help facilitate the

garbage collection process.

The algorithm Pony-ORCA [20] takes advantage of the Pony language and

its design for automatic actor garbage collection. Pony-ORCA maintains a

reference count for both objects owned by actors and actors themselves.

Garbage collection can be run for each actor independently and local objects

with a reference count of zero can be collected due to implicit ownership.

Similarly, when the reference for an actor is zero it can be safely garbage

collected because Pony guarantees there are no other actor with a reference.

3.3.6 Orleans

Orleans [21] is a distributed actor framework much like Akka and Erlang.

This very new framework was built entirely for distributed systems and scal-

ability. The distributed model is hidden from the programmer and the Actor

Model is used instead. Orleans does not have explicit actor creation and

actors instances are created when message intended for said actor are sent.

This design means that actor failure is transparent and additional actors are

created automatically.

The Actor Model used by Orleans is a virtual “actor space” which allows

actors to invoke any actors in the system. The location of the actor and

instance creation are handled without programmer intervention. Garbage

collection actors in this language is much simpler than in other languages.
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Because there are no references to specific actors, any actor which is idle will

eventually be garbage collected.

3.4 Actor System Garbage Collection

Kafura in addition to defining garbage in an actor system also presented the

Push-Pull Marking Algorithm and Is Black Algorithm. The basis for both

algorithms is the following color scheme for marking actors.

• White: Actors not reachable from a root actor.

• Gray: Actors reachable from a root actor, but cannot become active.

• Black: Non-garbage actors which are either root or are reachable from

a root and potentially active.

The below coloring rules defined by Jeffrey Nelson [22] is be used to assign

colors to actors:

Algorithm 3.4 Nelson’s Coloring Rules

1. All actors are colored white, with the exception of root actors which

are colored black.

2. Repeat the following rules until no more markings are made:

Rule 1: Color black all acquaintances of black actors.

Rule 2: Color black all inverse acquaintances of black actors if the

inverse acquaintance is not blocked.

Rule 3: Color gray all inverse acquaintances of black actors if the

inverse acquaintance is blocked.

Rule 4: Color black all inverse acquaintances of gray actors if the

inverse acquaintance is not blocked.

Rule 5: Color gray all inverse acquaintances of gray actors if the

inverse acquaintance is blocked.

3. Actors colored black are not garbage. Gray and white actors are

garbage and can be reclaimed.
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The Push-Pull Marking Algorithm uses two routines, Push and Pull, to

move actors between the three color sets. The pusher acts on actors in

the white set and moves actors into either the gray set or the black set.

If the white actor is active and an acquaintance of a black or gray actor

then the actor is moved to the black set. If the white actor is inactive and

an acquaintance of a black or gray actor then the actor is moved to the

gray set. The puller examines actors in the black set and moves non-black

acquaintances to the black set.

The Is Black Algorithm only uses two colors, black and white, but requires

an additional visit field. First, all acquaintances of a black actor are colored

black. Next, a depth first search is performed on all active white actors. If

any acquaintance of an active white actor is black then the actor itself is

moved to the black set. The visit field is used in this search to detect a cycle

and terminate the search.

Vardan [23] also presents a distributed garbage collection algorithm which

features a transformation of the actor graph into one which can be collected

using a passive garbage collector. Previously it was stated that passive object

garbage collectors cannot be applied to actors because actors are active ob-

jects. The transformation technique and proof of concept was implemented

on ActorFoundry and uses the same definition of garbage as in Section 2.2.2.

More recently, Clebsch and Drossopoulou [24] present a concurrent actor

garbage collection algorithm called Message-based Actor Collection(MAC).

MAC uses a deferred reference counting scheme along with casual messaging

to maintain correct reference counts for the actor system. There is an actor

dedicated to the detection of cyclic garbage which reference counting alone

cannot handle. Every actor maintains its own view of the topology of the

system using reference counts and upon being blocked sends its view of the

topology to the cyclic garbage detecting actor. This actor determines when

blocked, cyclic actors are present and allows these cycles to be collected.

3.5 Hierarchical Distributed Garbage Collection

The Hierarchical Distributed Garbage Collection (HDGC) algorithm is a non-

halting, distributed garbage collection algorithm. The HDGC algorithm uses

the definition of garbage from Section 2.2.2 and uses a generational mark-
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and-sweep strategy. The algorithm consists of two phases, Network Clearance

and Distributed Generation Scavenge (DGS). The network communication

channels are assumed to be FIFO and the topology of the distributed system

is static. The distributed system is divided into clusters with the smallest

unit being a single processor. Finally, the topology is assumed to be a two

dimensional mesh.

To begin a garbage collection phase a message is broadcast to all nodes

from the initiator. Next, a network clearance phase is done in order to take a

snapshot of the global state at the time of garbage collection. This is neces-

sary so that messages in transit are accounted for during garbage collection.

The names of actors can be communicated through messages resulting in a

dynamic toplogy. The snapshot is done by propagating a “forward bulldoze”

message. Once the “forward” message reaches the last node in the mesh,

the last node sends a “backwards bulldoze” message. Once the “backwards”

message reaches the initiator the snapshot is complete. Messages are tagged

new and old based on when the message was sent so that during garbage

collector the state is consistent.

Figure 3.1: An in-progress forward message wave.

Figure 3.1 shows a “forward” wave in-progress. Each circle represents

an individual node in the system. Node 1 began the message wave process.

Nodes which are colored can only send new messages since they have received

the “forward” message.

Following the snapshot, the distributed scavenge phase marks non-garbage

actors as touched. Touched indicates that the actor is reachable and should

not be garbage collected. Suspended (permanently inactive) and untouched

(unreachable) states indicate the actor can be safely garbage collected. A
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pseudo-code outline of the scavenge phase is reproduced below in Listing

3.1. The pseudo-code provides a rough outline of the algorithm with details

regarding tags and counters omitted.

After the scavenge phase, another message is broadcast to indicate the end

of the scavenge phase so that each node can then finalize garbage collection.

This step consists of clearing the memory of garbage actors, reseting the state

of alive actors, and incrementing the survived count. The survived count is

used as a counter for tenure and is incremented for every surviving actor.
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Listing 3.1: Actor Constructor Overloading

define traverseRoot(rootActor)

set status of rootActor to touched

for every actor A in rootset :

set status of A to touched

for every forward acquaintance facq of A:

(scavengeForward(facq, A))

for every inverse acquaintance iacq of A:

(scavengeInverse(iacq, A))

when (receiveAllAck(A)) (backPropogate(rootActor))

when (receiveAllAck(rootActor)) (finish)

define scavengeForward(actor, sender)

if actor is not touched then:

set status of actor to touched

for every forward acquaintance facq of actor:

(scavengeForward(facq, actor))

for every inverse acquaintance iacq of actor:

(scavengeInverse(iacq, actor))

when (receiveAllAck(actor)) (backPropogate(sender))

define scavengeInverse(actor, sender)

if actor is active then:

if actor is not touched then:

set status of actor to touched

for every forward acquaintance facq of actor:

(scavengeForward(facq, actor))

for every inverse acquaintance iacq of actor:

(scavengeInverse(iacq, actor))

when (receiveAllAck(actor)) (backPropogate(sender))

endif

else

set status of actor to suspended

for every inverse acquaintance iacq of actor:

(scavengeInverse(iacq, actor))

endif
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CHAPTER 4

IMPLEMENTATION

This chapter starts with an introduction to ActorFoundry then covers parts of

ActorFoundry which influence the implementation of the HDGC algorithm.

Finally the implementation of the HDGC algorithm is covered.

4.1 ActorFoundry

ActorFoundry [5] is a actor framework which extends JavaTM and was devel-

oped at the University of Illinois Urbana-Champaign by the Open Systems

Laboratory. The features of the Actor Model discussed in Chapter 2 are all

present in ActorFoundry.

The implementation of ActorFoundry uses various strategies to transform

native JavaTM into the semantic properties of the Actor Model. In order to

efficiently encapsulate a thread of control for each actor, Actor foundry uses

the Kilim framework [25, 26]. Kilim features a byte-code post-processor to

map multiple actors to a single native thread for performance, allows user-

level schedulers, and safe messaging between threads using “mailboxes”. In

addition to Kilim, ActorFoundry features a compiler which builds an “Ex-

ecutor” for each actor class. This is done to separate the interface of actors

from the execution of an actor object.

4.1.1 Hello World Example

The code fragment in Listing 4.1 illustrates a couple of features of actor

programs in ActorFoundry. An actor is defined using a class which extends

the Actor class. In the above code there are two actor definitions; HelloActor

and WorldActor. The initial actor that ActorFoundry should creates is the

HelloActor and the initial message sent should be “boot” with no parameters.
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Since the initial actor is specified either through command line or via a

configuration file it is not possible to send object parameters initially.

Methods which the actor can execute by receiving messages are annotated

with “@message”. create is used to create a new Actor and returns an Actor-

Name which is location transparent and can be passed around via messages.

Notice that if the ActorName reference is not stored then there is no way

for that actor to receive further messages. Finally, call and send are the

two mechanisms used to send messages. call is a synchronous send and is

blocking while send is asynchronous. In this example because “Hello” is sent

synchronously to stdout there is no possibility of “World!Hello ” to be output

as a result of this program.

An in depth review of the ActorFoundry framework along with compar-

isons to other actor frameworks was done by Rajesh Karmani [27]. The

following subsections briefly cover parts of ActorFoundry which were key to

the implementation of the HDGC algorithm.

4.2 Architecture

ActorFoundry contains many features and includes all the standard actor se-

mantics such as location independent naming, fair scheduling, encapsulation,

transparent migration, etc. In the following section only the components rel-

evant to the implementation of the HDGC algorithm are covered.

4.2.1 ActorManager

The ActorManager is the main component of the ActorFoundry framework.

The ActorManager handles creation of new actors, delivery of messages, mi-

gration of actors, and holds references to services such as remote sessions and

the the scheduler. The ActorManager is created by the ActorFoundry and

the initial actor if one is specified along with its parameters is created.

There are two ActorManagers available in ActorFoundry but additional

types can be created to extend the functionality provided. The LocalActor-

Manager does not feature support for a distributed system but has perfor-

mance optimizations for how messages are handled. The BasicActorManager

features network capabilities such as remote actor creation, communication
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with remote actors, and migration of actors. This thesis uses the BasicAc-

torManager due to its network support.

The ActorManager in previous versions had a list of actors which it man-

aged but in the latest version this was removed and the ownership of these

actors was moved to the scheduler. However, the ActorManager still main-

tains a list of Receptionists. The Receptionist list consists of actors which are

either not user created, created due to a remote ActorManager, or are actors

whose references have been communicated to another node.

4.2.2 Scheduler

ActorFoundry uses Kilim threads which allows it to have a custom scheduler

for said threads. It is inefficient for each actor to be handled by a native

thread and could easily result in the creation of many short lived threads.

However Kilim allows each actor to contain a thread of control called a Task

and maps multiple Tasks to each native thread.

The most up to date scheduler available in ActorFoundry is the Continu-

ationBasedScheduler and thus the implementation of the HDGC algorithm

was tested using this scheduler. The scheduler contains a pool of native

threads along with a queue of Tasks each of which corresponds to an actor

or a service. Whenever an actor is created it is scheduled with the scheduler.

Services include network handling and cleanup handlers which are not actors

but are scheduled in the same way. This design allows the cost of thread

creation to be handled upfront and allows the scheduler to allocate runtime

fairly. In order for a Task to be garbage collected by the JVM it is necessary

to remove it from the scheduler queue.

4.2.3 Actor, ActorImpl, and ActorExecutor

In order to handle the actor abstraction ActorFoundry has a ActorName

class, ActorImpl class, ActorExecutor class, and the user defined Actor classes.

The user defined actors only need to extend the base Actor class to have ac-

cess to actor functionality. In order to abstract the underlying implementa-

tion from the user, the ActorImpl and ActorExecutor are required. These two

classes along with the scheduler is what allows actors in the ActorFoundry
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framework to behave semantically as specified in the Actor Model.

The ActorName is a globally unique name generated when an actor is

created. Actor creation is asynchronous and the ActorName is able to receive

messages immediately even for remote actor creation.

The Actor class is extended to create a new type of actor as was shown in

4.1. Actors defined in this way can be created by the ActorManager through

a create request and support a default constructor or an explicit constructor

with parameters. Methods appended with “@message” are methods which

can be called by another called using call or send.

The Listing 4.2 shows off a more complex actor which features a non-

default constructor and method overloading. The remote ActorManager code

is explained in 4.2.5 and highlights how the interface provided influences the

topography of possible distributed actor systems.

Any objects created should be owned by the actor and although it is pos-

sible to pass embedded references around it is unsafe and breaks the actor

abstraction. By default messages are passed by copy and a deep copy of the

objects in the message is created. However, it is possible to pass messages

by reference but it is up to the user to ensure safety. Additionally, manipu-

lating threads within the actor description is potentially unsafe and breaks

the actor semantics.

The Actor Executor is a post-processing compilation step done by the

ActorFoundry compiler which creates an executor for each actor class. This

is done so that all methods labeled with “@message” matched with a string

name and array of Objects. Any message which has either a method name

or Object parameters which do not match a known “@message” method

results in an exception. This design allows actor methods to be pausable

by the scheduler and also allows the defined actor methods to be executed

indirectly through a message. The raw actor object is owned by the executor

along with its state and is inspected using the Java reflection API to allow

the above functionality.

The ActorImpl is a class which encapsulates the actor semantics and is

the scheduler Task which is run endlessly. The main loop within ActorImpl

checks for messages in its mailbox and then forwards the request to the

executor. Other than the main loop, the ActorImpl handles the creation of

actor requests such as create, migrate, send and passes those requests to the

ActorManager. However, other than queuing new messages to the mailbox
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of the actor, the thread which runs the ActorManager does not touch the

state of individual ActorImpls.

Naturally the access of the mailbox and even ActorName is not thread-safe

and needs to be handled as such. The queuing of messages is not thread-safe

because both the ActorImpl and the ActorManager modify it. The required

synchronization, an object lock in JavaTM, of the mailbox negatively impacts

performance. The creation of an actor needs to be an atomic operation so

there is another lock for the duration of actor creation and initialization.

4.2.4 ActorRequest

An ActorMsgRequest represents a message sent from one actor to another.

Information contained within this class includes the name of the sender, the

name of the receiver, the method to be executed, and the arguments to the

method.

4.2.5 Distributed Functionality

The way multi-node actor systems are created in ActorFoundry places strict

limitations on the design potential of actor programs. ActorFoundry must

be run without an initial actor and in an “open” state in order to create an

ActorFoundry instance which can be used as part of a distributed system.

Without the “open” state flag the scheduler will close the ActorFoundry

instance once no actors in the systems are live. In the following sections, a

“master” ActorFoundry instance refers to an instance with an initial actor

while a “slave” ActorFoundry instance refers to one which waits for an initial

message.

If an ActorRequest specifies a non-local actor or a creation request refers to

a different ActorManager, the request is put in a service queue and handled

asynchronously. Whenever an ActorName is communicated to a non-local

ActorManager the ActorName is added to the receptionist list. Similarly,

when an actor is created as a result of a remote creation request it is added

to the receptionist list.

The “master” ActorFoundry should create an initial actor and pass it a

message containing the IP of another node in the network. Although it is
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possible to hardcode the ip of other nodes in the system, this design does

not scale. However a downside of passing the IP to the initial actor is that it

naturally leads to a star network topology. Using hardcoded ips it is possible

to create longer chains within the topology but it suffers from maintenance

and scalability issues.

In order to communicate with a remote ActorManager, the YP service is

passed an IP and if successful returns an ActorManagerName. Due to the

implementation of the network layer in ActorFoundry, once a ActorManager

is discovered the ActorManagerName needs to passed around. This design

makes it very difficult to create a connected topology and once again lends

itself naturally to the star topology. Finally, ActorFoundry is unable to

handle churn in the system and assumes reachability of all discovered remote

ActorManagers.

4.3 HDGC in ActorFoundry

The HDGC algorithm implementation required changes to most of the parts

of ActorFoundry covered in Section 4.2. The implementation is used as

a proof of concept in order to perform tests on parameters in the HDGC

algorithm.

4.3.1 ActorManager

Previously the ActorManager only held the list of receptionist actors since

delivery of messages could be done through ActorName in the ActorRequest.

The garbage collection algorithm requires access to all the local actors as

well as a way to access their state. To allow this a list of local actors was

added and ActorNames along with their ActorImpl is added for every local

actor creation. Actors can be part of both the receptionist list as well as the

local list.

The garbage collection process is implemented as a service within the Ac-

torManager and is created during initialization of the Manager and imme-

diately scheduled by the scheduler. For the entire duration that the Actor-

Foundry instance is alive, the garbage collection service runs in an infinite

loop. The garbage collection thread runs periodically every 5 seconds and
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sleeps otherwise.

The garbage collection thread is able to send the various garbage collection

messages using actors in the local list. Additionally the garbage collection

functionality added to ActorImpl is called by this thread rather than the

ActorImpl itself. However, this means that all accesses to a mailbox must be

synchronized because multiple threads are able to modify the mailbox. For

a global garbage collection phase the GC thread also sends out remote Ac-

torMsgRequests in order to coordinate with known remote ActorManagers.

4.3.2 ActorImpl

Functionality involving managing acquaintances, inspecting pending mes-

sages, and handling of garbage collection messages was added to ActorImpl.

Although the functionality is part of the ActorImpl, the ActorManager thread

calls them as opposed to the ActorImpl Task. The previously explained syn-

chronization along with many additional messages for inverse acquaintances

is the main overhead from the HDGC algorithm implementation.

In order to discover the acquaintances of an actor the ActorImpl needs to

inspect the state of the actor as well as pending messages and the current

executed message if one exists. The ActorExecutor contains a reference to

the actor definition whose fields are inspected using the Reflection API. This

inspection finds and records any ActorName or collection of ActorNames.

Using a flag to signal local vs global garbage collection, this inspection adds

either all acquaintances or only local ones. During regular execution of mes-

sages a copy of the message being handled is saved and is inspected if a

garbage collection occurs during execution. Similarly, any messages in the

mailbox are also inspected. The inspection of messages involves saving the

sender as an inverse acquaintance and also inspecting parameters for any

ActorNames or collection of ActorNames.

Previously the ActorManager delivers messages by queuing the message in

the mailbox of receiving ActorImpl. Changes were made so that if the mes-

sage is a garbage collection message send on behalf of the garbage collection

service, it will be handled immediately rather than enqueued. The types of

messages in ActorFoundry was extended and are described below.
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4.3.3 ActorRequest

The messages sent by actors through an ActorMsgRequest have an additional

color as well as type. The color is whether the message is new or old using

the scheme descripted in the HDGC algorithm. Messages are intercepted

before delivery and actions are performed according to the HDGC algorithm.

An important design decision for the handling of ActorMsgRequests is that

the ActorManager thread handles the messages rather than the ActorImpl.

This is done so that the garbage collection process does not halt the user

computation and is performed in the background.

ActorMsgRequest used to be messages sent from one another to another

but with the introduction of garbage collection a message can be of the

following types:

• “Normal” message.

• Garbage collection message.

• Inverse garbage collection message.

• Back propagation (backprop) message.

• Finish message.

• Inverse acquaintance message.

• Stop message.

A normal message is a message sent from an actor to another actor and

does not need to be handled any differently from before.

The garbage collection message and inverse garbage collection is handled

as specified by the HDGC algorithm according to their color. Similarly, the

backprop message is the backwards propagation message which is used as an

“ack” in the HDGC algorithm.

The finish message is used by root actors to notify the ActorManager that

the current scavenge phase is complete. Although it is possible to reuse the

backprop message for this purpose in order to keep the design clean these

two types of notification messages are kept separate.

The inverse acquaintance message is sent from one actor to all of its ac-

quaintances during the garbage collection phase so that its acquaintances
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can add it as an inverse acquaintance. This message type is the source of a

large number of messages and for large systems will flood the network. A

new mechanism to handle the inverse acquaintance relationship is necessary

for the HDGC algorithm to scale.

The stop message is a message sent by the ActorManager to an actor to

end the execution loop. This is done so that when an actor is determined

to be garbage it ends execution and can be garbage collected by the JVM in

the future. The message is not intercepted and is handled by the ActorImpl

itself because an actor with no pending messages will sleep until a message

arrives.

4.3.4 Local vs Global Garbage Collection

Due to how ActorFoundry handles multi-node systems, the coordination re-

quired in the HDGC implementation requires additional bookkeeping. The

knowledge of other ActorFoundry nodes is only acquired when an actor in-

vokes the YP service to first determine the reachability of another Actor-

Manager. Upon receiving a reply, the remote ActorManagerName is stored.

The number of local garbage collections run for every global garbage col-

lection is a variable in the HDGC algorithm which this thesis explores. In a

global garbage collection, all actors are explored and all garbage actors are

collected in that phase. In a local garbage collection, actors whose name

have been communicated to a remote ActorManager are treated as if they

are root actors. This is done because it is not possible to determine locally

if an actor is garbage and cannot be safely collected.

The garbage collection service on the master ActorFoundry node handles

the coordination for garbage collection. When garbage collection is run the

GC thread first determines if the current GC phase is a local or a global

garbage collection. In both cases the GC thread broadcasts a message to

all N slave ActorFoundry nodes notifying them to begin a local or global

GC phase. After the broadcast a snapshot phase happens in order to clear

messages in transit. The snapshot phase consists of the master node sending

snapshot messages to all slaves and then waiting for an ack from all slave

nodes.

In the case of a local GC phase, each node handles their respective garbage
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collection without additional communication. In the case of a global GC

phase, all GC threads proceed with capturing the state of local actors, send-

ing inverse acquaintance messages, and scavenge phase the same as in local

garbage collection but then waits. After the master GC thread has received

all acks for its root actors it broadcasts a message indicating the scavenge

phase is finished then continues as usual. Upon receiving this message, each

slave node continues with marking actors as garbage and stopping the Task.

4.3.5 Garbage Collector Flow Summary

The following list is a high level overview of the steps in the garbage collector

implementation for the “master” ActorManager. The list highlights some of

the differences from the original HDGC algorithm due to being implemented

on ActorFoundry.

1. Determine if the garbage collection phase should be local or global.

2. If global, send to all remote ActorManagers a message that a GC phase

is beginning.

3. Send a snapshot message to all remote ActorManagers and wait for

every ActorManager to reply.

4. For each local actor, capture the current acquaintances. For a local

phase, do not add non-local actors.

5. For each local actor, send to each acquaintance an inverse acquaintance

message. Touch root actors, tenured actors, and potentially reception-

ists.

6. For each actor that is touched send each acquaintance a GC message

and each inverse acquaintance a INVGC message.

7. Wait for a finish message from the initial touched actors from this

phase.

8. If global, broadcast a message indicating the scavenge phase is com-

plete.
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9. Any actor that is untouched or suspended is labeled as garbage. In-

crease survivedGC counter for all survivors.

10. Send garbage actors a stop message, remove them from the scheduler,

and remove all references to them.

11. Wait 5 seconds before looping again.

4.3.6 Optimizations

The implementation requires the state of the actor to be captured anew each

garbage collection phase. This is an expensive process and is unnecessary in

a system where the topology infrequently changes. A potential solution is

to detect when an acquaintance is gained or lost and update the topology

accordingly. Although this was not implemented completely in this thesis, an

approximation was used to estimate the effect this optimization would have.

Additional book-keeping in the local collect phase is needed to remove ref-

erences to the garbage actor from all acquaintance and inverse acquaintance

lists.

When an actor gains or loses an acquaintance it sends a message to the

acquaintance which is intercepted by the ActorManager. Using this message

the ActorManager removes the acquaintance reference and inverse acquain-

tance reference from the respective ActorImpls.
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4.4 Listings

Listing 4.1: Hello World in ActorFoundry

public class HelloActor extends Actor {

ActorName acq = null;

@message

public void boot() throws RemoteCodeException {

call(stdout, "println", "Hello ");

acq = create(WorldActor.class);

send(acq, "hello", self());

}

}

public class WorldActor extends Actor {

ActorName acq = null;

@message

public void hello(ActorName name) throws RemoteCodeException {

acq = name;

send(stdout, "println", "World!");

}

}
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Listing 4.2: Actor Constructor & Overloading

public class FibActor extends Actor {

ActorName parent = null;

public FibActor(ActorName p) {

parent = p;

}

@message

public void boot(String remote, int val) throws

RemoteCodeException{

ActorName child1 = null;

try {

ActorManagerName remoteManager = (ActorManagerName)

invokeService(YP.name, "ypLookupRemoteManager", remote);

newChild1 = create(remoteManager, FibActor.class, self());

} catch (Exception e) {

...

}

...

}

@message

public void boot(int val) {

...

}

...

}
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CHAPTER 5

RESULTS

This chapter covers the test setup and the parameters which are used in this

parametric study. The results include local and distributed tests. Finally

the relevance of these results are discussed along with implications for actor

program design.

5.1 Test Setup

The test setup was structured to represent an “embarrassingly parallel” prob-

lem using an actor system. In general these problems involve a splitting of

input with little if any communication between different branches of compu-

tation which all report intermediate back to a parent actor. The topology of

these sort of systems is a tree structure with limited interconnects between

workers.

This is the general setup for most of the tests run because it can be used

to isolate the parameters and observe the effects on the runtime. A few

tests were run which did not require this sort of topology. In this sort of

topology the number of actors can be grown easily and reachability easily

managed. Additionally, this sort of topology provides a lower-bound on the

performance because many problems can be decomposed to this organization.

This provides a way to easily estimate the impact of the GC implementation

for many existing actor systems.

A simple example of an “embarrassingly parallel” problem would be a naive

implementation of Fibonacci. This actor system would consist of a root actor

which receives a integer N which is Nth Fibonacci number to calculate. This

root actor then creates 2 children which are responsible for calculating N-1

and N-2. This continues until a base threshold is reached and the result is

sent to the parent. Each parent upon receiving results from both children
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will propagate the sum back to its parent. This continues until the root actor

receives the final result and computation completes.

The specific topology used in the tests for single node and the multi-

node system are explained in their respective sections below. This topology

caching optimization was tested separately while the default strategy is used

for every other result.

5.2 Single Node

Tests for single node were done on a single laptop computer with background

processes running. 1024MB memory was allocated for each test.

5.2.1 Effect on User Computation

The first test run was Fibonacci for N=29 with and without garbage collec-

tion. This test was to determine the impact of garbage collection on user

computation. Although garbage collection is run concurrently and does not

block the user computation it uses up a thread that could otherwise be used

for computation. Additionally the increase in heap usage from the HDGC

algorithm forces the JVM garbage collector to run more frequently which

includes stop-the-world pauses. Garbage collection was run once during the

computation of Fibonacci N=29.

Table 5.1: Single Node Fibonacci N=29

GC TOTAL NO GC TOTAL NO GC GC THREAD

3708 ms 3330ms 378ms 424ms

The results in Table 5.1 are the average of three runs to account for any

variability. The results show that despite not having a stop-the-world pause

the garbage collector still imposes a cost on user computation. The GC

thread required 424ms to finish garbage collection and added 378ms to the

user computation. However, this is only a difference of 46ms which is negligi-

ble. Although not as expensive as a full stop-the-world pause which includes

context switches, the garbage collection is still very costly.
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Next, the same test was run for quicksort. The implementation of quicksort

also uses a naive “divide-and-conquer” organization of actors. However the

implementation differs by using not copying the array being sorted. This

object is shared between the actors and although supported in ActorFoundry,

does not follow the original Actor Model schematics.

Table 5.2: Single Node Quicksort 500000

GC TOTAL NO GC TOTAL NO GC GC THREAD

5784 ms 4544ms 1240ms 1372ms

The results in Table 5.2 show the runtime of quicksort for an array of

500000 integers with and without GC. The increase in runtime due to garbage

collection was 1240ms which is lower than the overall runtime of the GC

thread. However the difference is negligible and shows that the user compu-

tation is slowed down by nearly the entire GC runtime.

5.2.2 Tenure Policy

The following tests feature an initial actor which creates 100 local children

and each child creates another 100 children. The root actor then enters a

loop for 15 iterations. The children of the root actor will be referred to as

the 1st generation and the children of those actors will be referred to as the

2nd generation.

In each iteration each 1st generation child is sent a loop message. The 1st

generation child then removes references to 15 2nd generation children and

creates 15 children. This keeps the number of reachable actors the same but

introduces churn into the system. Additionally, the root creates 15 “garbage

cycles”. A garbage cycle actor creates a child, stores it, and sends it a message

with its own ActorName. The resulting actors is a garbage cycle of size 2.

The root actor does not save references to the created garbage cycles.
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Table 5.3: Single Node Tenure Result

time(ms) TENURE 2 TENURE 4 TENURE N+1

ITER0 310 337 319

ITER1 184 144 180

ITER2 112 149 117

ITER3 121 134 135

ITER4 149 131 112

ITER5 150 128 114

ITER6 129 138 116

ITER7 129 147 131

ITER8 125 165 140

ITER9 135 174 137

ITER10 130 152 135

ITER11 139 192 141

ITER12 115 146 144

ITER13 120 200 134

ITER14 124 161 133

TOTAL 2172 2498 2188

The results in Table 5.3 are how long a GC phase takes using three different

tenure policies. The TENURE N+1 column represents the policy where

tenure begins at 1 but increases by 1 for the next tenure threshold. Actors

which are tenured act as if they are part of the root set which means there are

fewer actors to explore in the scavenge phase. However, the cost of capturing

the actor state along with looping over local actors in the implementation

is still present. Having a lower tenure threshold is more efficient in this

implementation because it keeps the number of actors in the system low.

5.2.3 Number of Actors

The previous test highlighted the fact that the number of actors in the system

is an important variable. The following test uses the same setup as above but

with varying numbers of children. Churn, tenure, and cycles remain fixed at

15, 4, and 15 respectively.
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Table 5.4: Single Node Num Actor Result

time(ms) 100/100 150/150 200/200 300/300 400/400

ITER0 342 452 623 1359 2037

ITER1 145 284 452 1018 1749

ITER2 109 244 441 857 1707

ITER3 115 276 634 892 1862

ITER4 109 255 598 983 2053

ITER5 116 262 793 956 1835

ITER6 126 261 517 956 2001

ITER7 127 277 439 1145 1905

ITER8 130 259 414 1242 1986

TOTAL 1319 2570 4911 9408 17135

RATIO 7.658 8.814 8.186 9.598 9.361

The results in Table 5.4 show three tests run with varying number of

children. This number means that the test for 100/100 has initially 10101

actors, 150/150 has 22651 actors, 200/200 has 40201 actors, 300/300 has

90301 actors, and 400/400 has 160401 actors. The ratio row is the total GC

thread time divided by the number of initial actors. The ratios show that

the relationship between number of actors and GC runtime is roughly linear.

The Figure 5.1 shows clearly that the runtime of the implementation scales

linearly with the number of actors.

Figure 5.1: GC Runtime versus Number of Actors

A one-way analysis of variance test was done on Table 5.4. This test was
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done on the 5 columns with each row being an observation. The results show

an F-value of 473.8 and a P-value less than 0.01 which shows that the results

are statistically significant.

5.2.4 Churn

The following test results show how churn in the system affects the GC

runtime. The topology remains the same as in the previous tests. Other

than churn the variables tenure, cycles, num-children are 4, 15, and 100

respectively.

Table 5.5: Single Node Churn Result

time(ms) CHURN 15 CHURN 50 CHURN 100

ITER0 342 360 340

ITER1 145 178 226

ITER2 109 146 230

ITER3 115 150 189

ITER4 109 170 206

ITER5 116 163 230

ITER6 126 180 290

ITER7 127 173 207

ITER8 130 176 183

TOTAL 1319 1696 2101

The results in Table 5.5 show three tests with varying amounts of churn.

As stated previously, churn is how many 2nd generation children are removed

and also how many additional children are created. The results show that

high churn increases the GC runtime because there are more actors to explore

and also remove.

A one-way analysis of variance test was done on Table 5.5. This test was

done on the 3 columns with each row being an observation. However the first

row was excluded because the first iteration in this test is without any churn

with the same setup. The results show an F-value of 40.2 and a P-value less

than 0.01 which shows that the results are statistically significant.
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5.2.5 Topologies

The following test results show how the number of acquaintances affects the

GC runtime. In order to test this we created a scale free network where actors

know an arbitrary number of other actors based on the Poisson distribution.

In this type of topology it is difficult to incrementally create garbage because

a few number of random links will cause every node to be reachable from the

root. The number of connections a parameter which can severely limit the

scalability of this implementation and unlike previous tests with a minimum

of 10101 actors, this test has a very limited number of actors.

Table 5.6: Single Node Scale Free Poisson Distribution

time(ms) 300 500 1000

λ = 1
10
N 238 634.3 4183.3

λ = 1
3
N 449.3 1690 13592.3

λ = 1
2
N 650.1 2501.3 22295.7

The Poisson distribution was used to determine the number of acquain-

tances an actor should have. Once the root actor creates all N actors, it

generates a number from the Poisson distribution for each of the N Actors.

Each number is used to randomly select acquaintances for each actor. After

acquaintances have been generated for all N actors, the root actor also gen-

erates a number and removes extra acquaintances. In this way the topology

where each actor knows an arbitrary number of acquaintances following the

Poisson distribution is created.

The results in Table 5.6 show tests with 300, 500, and 1000 actors. The λ

value for the Poisson distribution is a fraction of the total number of actors.

With a large number of connections, this implementation quickly becomes

unusable due to the increased scavenge time. The Figure 5.2 shows the trend

of increasing the number of connections in a system.

Next, a ring topology actor system was created. The ring topology is the

same as a linked list of actors with the last actor in the link knowing the first

actor. The number of acquaintances is equal to the number of actors in the

ring.
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Figure 5.2: GC Runtime versus Poisson Lambda Value

Table 5.7: Single Node Ring Topology

time(ms) N=10001 N=20001 N=40001 N=80001

ITER0 284 351 461 899

The results in Table 5.7 show GC runtimes for rings of size 10001, 20001,

40001, and 80001. Although the runtime does increase the topology also plays

an important role. Unlike the results for a tree structure, because there are

fewer backprop messages required in the scavenge phase the runtime scales.

The ring topology is the lower bound for the least number of connections

between actors in an actor system.

Finally, a 2D mesh topology actor system was created. The mesh is a NxN

matrix of actors where each actor knows its immediate four neighbors. The

root actor creates all the actors and sends each actor the ActorNames of its

adjacent neighbors. Finally the root actor stores a reference to the first actor

created.

Table 5.8: Single Node 2D Mesh Topology

time(ms) 60x60 80x80 100x100

ITER0 2518 8177 24907

The results in Table 5.8 are for meshes of 3601, 6401, and 10001 actors.

Compared to the ring topology the mesh topology has many more connec-

tions. The label phase scales linearly with the number of actors while the

scavenge phase scales exponentially. The results for tree, scale-free, ring, and
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mesh show that HDGC implementation performs best for sparsely connected

topology.

5.2.6 Topology Caching

The following test results use the topology cache optimization. The main

benefit of this strategy is not having to use reflection to reinspect the state

of each actor for every GC phase. The setup uses the same parameters as

the tests from Section 5.2.4. However, because the optimization is faked

using messages the performance measurement is an estimate and an actual

implementation could have fairly different results.

Table 5.9: Single Node Topology Caching Result

time(ms) CHURN 50 CHURN 100 CHURN 200 CHURN 400

ITER0 50 60 62 65

ITER1 43 59 103 122

ITER2 23 27 75 76

ITER3 18 27 58 70

ITER4 12 24 46 65

ITER5 36 46 62 107

ITER6 21 61 52 95

ITER7 25 37 68 66

ITER8 30 36 66 81

TOTAL 258 377 592 747

The results in Table 5.9 show GC runtimes with varying amounts of churn

in the system. The tests with churn higher than 100 are where acquaintances

are needlessly gained and lost. Even in the case where churn is higher than

the number of actors the runtimes are very low. These results show that the

cost of using reflection to inspect the state of an object is extremely expensive

compared to sending messages.
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5.3 Multi-Node

Tests were done using two computers connected via LAN but have different

hardware and OS. The transport protocol used in ActorFoundry was UDP

as that was the most up to date. The UDP implementation in ActorFoundry

has guaranteed delivery of messages. Both computers had 1024MB allocated

for all tests.

5.3.1 Local to Global GC Ratio

The following test varies the number of local garbage collection phases run

for each global garbage collection phase. The local topology is the same as

before but additional children and cycles are created remotely. In addition to

100 local children, the root actor creates 30 remote children that each create

100 2nd generation children. In each iteration 15 remote cycles are created

as well. A remote cycle is a cycle that spans multiple nodes. These cycles

are unable to be collected until the next global garbage collection phase.

Table 5.10: Two Node Local-Global Ratio Test

time(ms) GLOB3 GLOB4 GLOB5

ITER0 1469 1491 1496

ITER1 174 138 158

ITER2 105 133 136

ITER3 104 120 130

ITER4 1042 119 167

ITER5 119 1213 170

ITER6 127 124 1312

ITER7 138 128 186

ITER8 1013 158 149

ITER9 167 132 145

ITER10 105 1136 175

AVG LOC 129.8 131.5 157.3

AVG GLO 1174.7 1280 1404

The results in Table 5.10 show that the implementation of HDGC in Ac-

torFoundry performs poorly when references cross node boundaries. Many
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non-local messages are sent during a global garbage collection for both the

snapshot and scavenge phases. The implementation sends many inverse ac-

quaintance messages during the snapshot phase and GC/INVGC messages

during the scavenge phase. Messages to non-local actors are extremely ex-

pensive. As the local-global ratio increases, more remote cycles are created

and need to be collected which is reflected in the increasing average global

GC runtime. The local GC runtime increases as well but is similar to the

values from a single node which is expected.

5.3.2 Two Node Churn

The following test features the same setup as the previous one except for

the churn parameter and includes a new remote churn. In this test remote

children are discarded every global GC phase and no additional remote chil-

dren are created. 15/1 represents a system with 15 local churn and 1 remote

churn. Similarly, 15/2 represents 15 local churn and 2 remote churn.

Table 5.11: Two Node Churn Test

time(ms) 15/1 15/2

ITER0 1468 1659

ITER1 184 245

ITER2 130 173

ITER3 153 149

ITER4 149 219

ITER5 910 841

ITER6 156 163

ITER7 124 115

ITER8 113 145

ITER9 111 159

ITER10 1011 1029

AVG LOC 140 171

AVG GLO 1129.6 1176.3

The results in Table 5.11 show that although fewer remote references

should improve efficiency there are many other effects which influence the

global GC runtime. In iteration 0 the two system are exactly the same yet
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there is a percentage difference of 12.2%. However the effect of the reduc-

tion in cross-node references is apparent in iteration 5. By removing remote

references there are fewer cross-node inverse acquaintance messages as well

as scavenge messages so the global GC is faster than the above test setup.

5.3.3 Ring and Mesh Topology

Similar to the single node topology test, these tests create a two node ring

topology and a two node mesh topology. The ring topology has half of the

ring on one node and the other half on the other. The ring is in one direction

so only one actor on a node knows one non-local node. The mesh topology

has half of the mesh on one node and the other half on the other. This means

that there are N non-local acquaintances for each half of the mesh.

Table 5.12: Two Node Ring Topology

time(ms) N=2501 N=5001 N=10001

1-Node 172 212 268

2-Node 210 272 398

Table 5.13: Two Node Mesh Topology

time(ms) 40x40 50x50 60x60

1-Node 564 1175 2362

2-Node 835 1950 4622

The results in Table 5.12 and Table 5.13 show the GC runtime for a global

GC phase. In the ring topology regardless of the size of the ring the number

of non-local acquaintances remains the same. The results show that the cost

of this non-local acquaintance is roughly static regardless of ring size. In the

mesh topology the number of non-local acquaintances increases linearly with

the size of the mesh. However as the mesh size increases the GC runtime

increases dramatically due to the increase of non-local acquaintances. These

results indicate that in order for the HDGC implementation to scale it is

necessary to create an actor system with as few non-local connection as

possible.
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CHAPTER 6

CONCLUSION

This thesis features an implementation of the Hierarchical Distributed Garbage

Collection Algorithm on ActorFoundry. This implementation is then used to

perform a parametric test on parameters in the HDGC algorithm. Param-

eters explored include the topology, churn, and tenure policy. The HDGC

algorithm is a garbage collector which does not require stop-the-world pauses

and utilizes the heuristic that young objects die early through a generational

mark-and-sweep strategy.

The design of the ActorFoundry framework influenced the implementation

greatly. In order to maintain an up to date list of acquaintances and inverse

acquaintances, the state of each actor must be examined which is a major

bottleneck in the implementation. The three main costs are determining

acquaintance and inverse acquaintance relationships, number of connections

in the system, and cross-node messages.

A potential optimization to the HDGC algorithm implementation by caching

the topology was proposed and mock implementation was tested. The results

for the mock implementation show that this could allow the implementation

to scale with number of actors effectively. This could potentially mitigates

the cost of determining acquaintance and inverse acquaintance relationships.

However, it is possible that this optimization could still reduce the GC per-

formance depending on how frequently changes actor in the actor topology.

The performance can be reduced if the cost of handling all the updates to

the cached topology is higher than the cost of determining the topology each

time the GC is run.

The number of acquaintances in a system is also a parameter which heavily

impacts the performance of the HDGC implementation. With a high degree

of interconnectivity the scavenge phase of the algorithm completely domi-

nates all other costs. A fully connected system of actors renders the imple-

mentation completely unusable due to the non-linear scaling. The topology
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of the actor system also plays a role in determining the cost of the scav-

enge phase. The HDGC implementation handles the scavenge phase in a

depth-first way so topologies which have long chains results in a large call

stack.

The parametric study results indicate that the ideal topology of an actor

system in ActorFoundry is to maintain as few remote references as possible in

a specific topology. This result shows that “divide-and-conquer” topologies

are the most efficient by reducing cross-node communication. Another effect

of this topology is that there are few connections required overall because

communication is only through parent-child. Finally, the results show that

it is better to have a reusable pool of actor because the garbage collection

runtime scales with the number of actors.

6.1 Future Work

Below is a list of potential areas for future work:

• Grouping cross-node inverse acquaintance messages can drastically re-

duce the amount of messages which need to be sent.

• Due to the synchronization required to inspect the state of an actor it

may be more efficient have actors handle the state themselves. This

means that user computation is halted but due to synchronization it

may still be more efficient.

• The generational strategy could use profiling or pre-tenuring to reduce

the amount of scavenge messages sent.

• Different local garbage collectors can be be used in conjunction with

the HDGC global collector.

• The cost of inverse acquaintance messages is a major bottleneck for

ActorFoundry. Implementing HDGC in a language with a different

representation of acquaintances and inverse acquaintances could dras-

tically improve the performance.

• A full implementation of the topology caching optimization would allow

efficient scaling with number of total actors.
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