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ABSTRACT 

 
When nanoparticles, heavy metals and ions generated from industry are released to the 

environment, they may react with cells of organisms and can be toxic to them. The primary purpose of 

this study is to develop a novel cell model that mimics several reveal cell properties including 

nanomechanical behavior, and to investigate the interactions between them and the aqueous environment. 

The novel cell model developed in this work has potential applications as a platform to investigate 

cytotoxicity. 

In this study, the cell membrane model consists of a hydrogel-supported lipid-bilayer. Hydrogels 

are cross-linked polymer networks that can absorb large amounts of water without dissolving or loosing 

their shape (1). A number of hydrogels are stimuli-sensitive. They can change their structures and 

properties in response to changes in environment, such as pH (2), temperature (3), and ionic strength. 

These polymer hydrogels have wide applications in various biological and clinical fields (4), including 

drug delivery (5), contact lenses (6), and artificial implants (7). Biocompatibility and hydrophilic 

properties of hydrogels are the basis of these applications (8). In this study, neutral PAAm hydrogel is 

used as support for the lipid bilayer. The used hydrogel is a (neutral) polyacrylamide (PAAm) hydrogel. 

The lipid bilayer used in this study is Eggphosphatidycholine (EggPC). A layer-by-layer method with two 

polyelectrolytes, poly(sodium 4-styrenesulfonate) (PSS) and  poly(allylamine hydrochloride) (PAH), was 

used to graft the EggPC to the neutral PAAm hydrogel. An electrostatic attraction is the main driving 

force for the adsorption of the bilayer on the hydrogel-supported polyelectrolyte multilayer (PEM). The 

developed cell model has been fully characterized in this work by using different surface analytic 

techniques.  

On a silica substrate, lipid vesicle ruptures and fuses above a critical vesicle concentration to form 

a continuous lipid bilayer. QCM-D measurements and AFM imaging were performed to verify the 

formation of the bilayer on the silica substrate. The adsorption kinetics of the lipids on the hydrogel-

supported PEM completely differs from that on the “hard” silica substrate. However, the change in 

dissipation supported the formation of a lipid bilayer. Further, the adsorbed mass on bovine serum 

albumin (BSA) verified that the adsorbed lipids on the PAAm hydrogel-PEM complex form a lipid 

bilayer, but the surface coverage is only partial. Thus, BSA adsorbs on the PEM through the defects of the 

lipid bilayer.  

The interactions between cells and the environment happen through the cell membrane, and very 

often the nanomechanical behavior determines such interactions, and also cell sensing and response. In 

this work, the nanomechanical properties of PAAm hydrogels, PAAm-supported PEM and lipid bilayers 

were studied using atomic force microscopy (AFM), including both nano-indentation and the response to 
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shear. A significant difference in the elasticity (and viscoelasticity) between the behavior of the hydrogel-

supported PEM and the silica-supported lipid bilayer was concluded from these studies, as well as very 

different mechanisms for the energy dissipation upon shear. The question that remains to be answered is 

the behavior of the cell model constituted of the hydrogel-supported PEM and the lipid bilayer, which is 

the outlook of this work.  
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CHAPTER 1   INTRODUCTION 

	  
When nanoparticles, heavy metals, and other contaminants generated from industry are released 

to the environment, like water bodies, they may interact with living cells and can be toxic to them. The 

motivation for this study is to advance our fundamental understanding of the interactions between cell 

membranes and the environment. For that purpose, we have developed a novel cell model system that 

enables to mimic the properties of real cell membranes and to investigate the interactions between living 

cells and aqueous environment. This system will be applied to identify mechanisms of cytotoxicity in 

future works.  

1.1 Model for Biological Membranes 
Cell membranes are permeable biological membrane with high selectivity, which separates 

interior of living cells and outside environment. It maintains the required conditions for the interior cell 

environment by regulating the molecular transport across the membrane, while providing mechanical 

stability to the living cell. Cell membranes are dynamic structures that undergo changes as a response to 

the environment that depend on the stage within the cell lifecycle. In addition, cell membranes have a 

complex composition and microstructure, usually characterized by a phospholipid bilayer, with embedded 

proteins and lipopolysaccharides (9). Instead of using living cells, it is a common practice to employ 

biological membrane models for systematic investigations of particle-membrane interactions as this 

allows longer-term studies, and systematic investigations of several parameters. Natural or synthetic lipid 

bilayers are commonly used as models for cell membranes to study the effects of pollutants, such as metal 

ions, organics and surfactants, on membrane cytotoxicity (10). Usually the lipid bilayer is adsorbed onto a 

solid substrate (11). Some studies, however, have pointed out several limitations of this model. First of 

all, the high friction between the lipid bilayer and the solid substrate leads to a decreased lateral mobility 

of the lipid bilayer, in contrast to the 2D fluid nature of the membrane of living cells (12). Furthermore, 

since the investigated lipid bilayers are just a few nms in height, the proteins embedded into the lipid 

bilayer usually lack on mobility owing to their strong interaction with the substrate, which differs from 

the behavior of the proteins embedded in living cell membranes (13). Besides, the diffusion path for ions 

and other solutes in supported lipid bilayers is just 2-3 nm in height, which strongly differs from real 

cells.  

To overcome or partially solve the limitations mentioned above, a (soft) polymer film has been 

inserted between the lipid bilayer and the solid substrate (14, 15). Thus, a thin polymer layer has been 

attached to the solid substrate, providing the polymer-supported lipid bilayer with long-lateral range 

mobility, which makes the membrane model more similar to real cell membranes. The polymer film acts 

as a spacer between the lipid bilayer and the solid substrate, not only to minimize the solid substrate 
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effects (stiffness), but it also provides a larger contact area for embedded proteins. In contrast to the short 

diffusion path length for the particles across the lipid bilayer-solid substrate model, this polymer-

supported lipid matrix provides a longer diffusion path length, which includes both the lipid bilayer and 

the polymer.  

Based on literature review, the use of a hydrophilic polymer as a soft support for the model 

membrane is still a relatively new but promising system (16,17). The investigated supports are 

polyelectrolyte multilayers and have a thickness of a few tens of nanometers, which is still small in 

comparison to real cells. In this project, a novel cell membrane model consisting of a hydrogel-supported 

lipid bilayer is used to study interactions between albumin and microparticles with cell membranes in 

aqueous environment. The height of the hydrogel can be tuned in the µm-range (4-200 µm). The polymer 

consists of polyacrylamide hydrogel (PAAm), and the lipid bilayer is Eggphosphatidycholine (EggPC), 

which is grafted to the hydrogel by a polyelectrolyte multilayer. 

The pathway of cytotoxicity can be very different depending on the involved interactions. For 

example, studies have shown that direct contact between nanoparticles and cell membrane is necessary 

for cell damage (18); the adsorption of nanoparticles has still not been well understood. Cell-particle 

interactions are controlled by surface properties, surface forces and solution conditions.  

Typical interactions between silica particles in water involve van der Waals (VDW), electrostatic 

double layer, and hydration forces (19). VDW forces result from quantum mechanical fluctuation of 

electrons, which induce a dipole moment in atoms leading to an attractive (Coulombic) force. The 

superposition of these interactions for the atoms at the solid surface constitutes the VDW force, which is 

usually a weak attractive force. The electrostatic double layer force arises from the surface charges on 

cells and particles in an aqueous system and the formation of a diffuse and Stern layer. The Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory considers the sum of attractive VDW and repulsive 

electrostatic double layer forces. Since most cell membranes have surface charges, electrostatic and VDW 

forces play an important role in the adsorption of macromolecules on cell membranes, in the interaction 

with other cells, and with nanoparticles (20). For example, as a result of the electrostatic repulsion, 

negatively charged nanoparticles are usually assumed to adsorb less to a cell membrane membrane than 

neutral and positively charged nanoparticles. 

In contrast to this, negatively charged gold nanoparticles with citric acid stabilizing ligands are 

observed to adsorb to cell membrane (21). This phenomenon is explained by nonspecific adsorption of 

serum proteins onto the gold surface. These proteins induce the nanoparticles to enter into cells via the 

mechanism of receptor-mediated endocytosis. The endocytic fate has been observed with both gold and 

iron oxide nanoparticles (22, 23).  As a matter of fact, in nature most molecules are internalized through 

endocytosis upon contact with the cell membrane. In addition, since the major component of cell 



	  
	  

3	  

membranes – the phospholipid bilayer – is highly hydrophilic and undergoes dynamic fluctuations, 

repulsive hydration is believed to contribute to the interaction between nanoparticles and cell membranes 

as well (24). Besides the interaction forces mentioned above, the compliant and deformable membrane 

together with the cell heterogeneity because of surface embedded proteins and other structures further 

complicate the interactions between nanoparticles and cell membrane (25).  

Protein adsorption occurs in both natural and man-made systems at interfaces. It has important 

implications in different fields, such as medical, environmental and biotechnological process, and 

therefore a fundamental understanding of how proteins adsorb to interfaces, including membrane cells, is 

necessary.  

Proteins are composed of polypeptide units connected by amide linkages (26). Protein adsorption 

is a complicated process, which results from combination of different types of interaction with the 

adsorbent. However, independent on the mechanism for adsorption, adsorption occurs spontaneously if 

the overall Gibbs energy of the system decreases. The decrease in Gibbs energy can be achieved by 

decrease in the enthalpy and/or increase in the entropy (27). Factors that determine protein adsorption 

mainly include hydrophilicity of the surfaces, electrostatic interactions, hydrophobic interactions, and 

other effects including hydrogen bonding and dipolar interactions, as well as conformational entropy 

changes of proteins (27). 

Most native globular proteins contain a secondary structure. These structures form when the 

proteins are stabilized by hydrogen bonds and by hydrophobic interaction between amino acid side groups. 

Proteins inherently fold into a secondary structure, which leads to an entropy loss. The introduction of an 

interface provides a region where protein can unfold without exposing the hydrophobic side. The 

structural change of protein reduces hydrophobic interactions, and thus reduces secondary structure 

formation. As a result, surface-adsorbed protein molecule involves a significant increase in 

conformational entropy (27).  

As mentioned above, another factor influencing protein adsorption is the hydrophilicity of the 

surfaces. Some studies have shown that albumin adsorbs more significantly on hydrophobic surfaces (28, 

29) than on hydrophilic surfaces, while other studies show opposite trends (30, 31). For example, human 

serum albumin (HSA) is shown to adsorb more onto the hydrocarbon chains than onto the polar groups of 

lipid layers (32). Hydration water can be retained between the adsorbed protein and the substrate when 

adsorption occurs on hydrophilic surfaces (27). Even though the results are contradictory, hydrophilicity 

is considered to strongly contribute to protein adsorption.  

Electrostatic interactions strongly influence protein adsorption. In most of the cases, proteins and 

substrates are electrically charged and surrounded by counter ions when they are in aqueous environments. 

An electrical double layer forms at charged interfaces in aqueous medium. If the protein and the substrate 
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are (locally) oppositely charged, they attract each other and adsorption takes place. However, if only one, 

either the protein or the substrate, is charged or if they have same charge sign, proteins can still adsorb 

spontaneously. This phenomenon has been explained as a result of ion diffusion between solution and the 

adsorbed layer to counterbalance charges and to avoid charge accumulation in the adsorption sites (33, 

34). Ion association and ion pair formation is expected to occur in this region. As a result, the electrostatic 

repulsion is decreased and protein adsorption is possible. 

In this project, bovine serum albumin (BSA) is used to investigate the protein adsorption onto our 

model cell membrane. BSA is the most abundant serum protein and is described as a soft protein (29), 

which shows a high affinity for surfaces. BSA can adsorb at hydrophilic surfaces under conditions of 

electrostatic repulsion (27).  

Living cells are capable of sensing mechanical forces and respond to them (35). Cells can change 

mechanical properties based on the substrate they are cultured on. For instance, the stiffness of cell 

decreases when grown on a soft substrate (36,37). The mechanical response of cells has been increasingly 

recognized as a major regulator of several cellular processes. For example, studies have shown that cell 

mechanics partially govern differentiation of cells (38,39). It is also believed that if cells are in contact 

with nanoparticles, the mechanical properties of cells can change. It has been proved that contact with 

MgO particles contribute to mechanical damage of the cell membranes (40).  

The mechanical properties of cells determine the extent of cell deformation. Distinct mechanical 

properties have been measured for different cells. The relation between specific cells and their mechanical 

properties is a promising medical application to differentiate healthy cells and cancer cells (41,42). The 

measurement of the elastic moduli of cells is widely used as an indicator of cellular changes. These 

findings indicate that mechanical signals and properties are essential in the process of cell processes, 

sensing and response to external stimuli (43). As a result, understanding the mechanical properties of cells 

is becoming increasingly important. However, compared to the understanding level of chemical-induced 

cell signals, cell sensing and response to mechanical forces remain a relative new area of research that 

needs more study.  

A variety of methods have been applied successfully to measure the mechanical properties of a 

single cell, including optical traps (44), atomic force microscopy (AFM) (45), and microplate cell 

manipulation (46), etc. Among these techniques, AFM is the mostly employed technique over the past 

decade to quantitatively measure cell’s stiffness due to its incomparable precision and high spatial 

resolution. AFM has been used to measure the elasticity of a wide range of different cell types, such as 

cancer cells (47), and stem cells (48). 

For elastic materials, the measured stiffness is independent of the deformation rate, whereas for 

viscoelastic materials, the measured stiffness is strongly dependent on the deformation rate. It has been 
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shown that at low indentation depth, cells show almost an ideal elastic response, while at large indentation 

depths the cell stiffness is dependent on the loading rate. When higher forces are applied, viscous effects 

will increasingly contribute to the measured cell stiffness (49,50).  In literature, cell stiffness has a large 

variation, however, most studies agree that cells respond stiffer when probed at higher loading rate (49), 

as it is common for (viscoelastic) gels. Most of the experiments show that the cell stiffness obeys a weak 

power law as a function of speed (44,51). In this project, AFM is used to measure the stiffness of cell 

models and to characterize viscoelastic behavior and response to shear forces.	  
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CHAPTER 2   MATERIALS AND METHODS 

2.1 Materials 

To prepare polyacrylamide (PAAm) hydrogel, 40% (w/v) acrylamide (AAm) stock solution 

(Sigma-Aldrich) and 2% (w/v) bis-acrylamide (Bis-AAm) stock solution (Sigma-Aldrich) were used as 

received. 0.1M NaOH, 3-Aminopropyltriethoxysilane (APES) and 0.5% (v/v) glutaraldehyde in 

phosphate-buffered saline (PBS) were used to pretreat the 25-mm circular coverslips. 

Dichlorodimethylsilane (DCDMS) was used to pretreat the 25 × 75-mm glass slides. 

Tetramethylethylenediamine (TEMED) and 10% (w/v) ammonium persulfate (APS) were used as 

accelerator and initiator of the reaction, respectively. Distilled H2O was used for these solutions. Other 

materials include hot plate, 6-well plate, 35-mm petri dishes, Kimwipes, and vacuum desiccator.  

To prepare the charged PAAm hydrogels, itaconic acid (Sigma-Aldrich), AAm, Bis-AAm, and 

APS (Sigma-Aldrich) were used without further purification. Distilled H2O was used for all solutions. A 

hot plate was needed to provide heat for the polymerization.  

To prepare the lipid vesicles, a suspension of egg phosphatidylcholine (EggPC) 1 mg/ml in 

chloloform (Avanti) was used as received. Milli-Q water (Milli-Q, 18.2MΩ, Millipore, USA) was used 

for all solutions. A mixture of 10 mM Tris, pH 8.0 and 100 mM NaCl was used as buffer. 

For the polyelectrolyte multilayer, poly(sodium 4-styrenesulfonate) solution (PSS, 70 kDa), 

poly(allylamine hydrochloride) (PAH, 17.5 kDa) and sodium chloride were obtained from Sigma and 

used as received. Milli-Q water (Milli-Q, 18.2MΩ, Millipore, USA) was used for all polymer, buffers and 

salt solutions. Unless indicated, water means Milli-Q water.  

2.2 Synthesis of PAAm hydrogels 

By adjusting the concentration of the monomer, AAm, and the cross-linker, Bis-AAm, stiffness 

of acrylamide hydrogel can be easily modified. To mimic the elasticity of living cells, which varies 

between 100Pa to 100kPa, the selected concentrations of the different chemicals is shown in Table 1. This 

composition gives a Young’s Modulus of ~2.8kPa based on AFM results. 

 

Table 1. Composition of polyacrylamide hydrogel 

 AAm 

mol/L H2O 

Bis-AAm 

mol/L H2O 

IA 

mol/L H2O 

APS 

mol/L H2O 

TEMED 

mol/L H2O 

PAAm 1.407 0.002 0 0.0044 0.0067 

PAAm-co-IA 1.4 0.016 0.146 0.1675 0 

PAAm-co-IA 1.4 0.016 0.055 0.1675 0 
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PAAm hydrogels were prepared according to the protocol given by Tse et al. (52). 25-mm 

coverslips were placed on a hot plate and 500!" of 0.1 M NaOH was added to each coverslip so that the 

solution covers the entire coverslip. The coverslips with solution were heated to 80℃ until the liquid was 

evaporated. Boiling of solution was avoided. After evaporation, a thin semi-transparent film of NaOH 

remained on the coverslip. If the film was not uniform, NaOH was diluted by adding 500 !" of distilled 

H2O to the coverslip and heated until the film of NaOH was uniform. Coverslips were then placed in the 

fume hood and 200  !" of APES was added to the surface of each coverslip. After 5 min of reaction, both 

the top and bottom of coverslipswere rinsed under distilled H2O to remove excess APES. Coverslip was 

immersed in a petri dish with distilled H2O twice, each time for 5 min. After rinsing twice with distilled 

H2O, the coverslip was immersed in0.5% (v/v) glutaraldehyde in phosphate-buffered saline into a petri 

dish for 30 min. Coverslips were wiped with a Kimwipe and further dried by blowing nitrogen on them. 

The pretreated coverslips remained viable for 48h. DCDMS was spread onto both sides of 25 × 75-mm 

glass slides in the fume hood. After 5 min, excess DCDMS was removed with a Kimwipe. Each glass 

slide was rinsed under distilled H2O for 1 min.  

Acrylamide and bis-acrylamide were mixed at the ratio given in Table 1 in distilled H2O.  The 

mixture was degassed under strong vacuum for 15 min to remove the dissolved oxygen. 1/100 total 

volume of APS and 1/1000 total volume of TEMED were added to the mixture. The solution was 

vortexed for about 30 seconds. 25!L gel solution was pipetted onto the glass slide and the solution was 

sandwiched between glass slide and coverslip with its treated side facing down. The gel was allowed to 

polymerize for 10 min. The bottom glass slides were removed and the coverslips were rinsed with 

distilled H2O to remove unpolymerized acrylamide. The coverslips were placed in a 6-well plate in 

distilled H2O with the gel coated side face up and stored at 4℃. Hydrogels can be stored for one month 

without changes in the mechanical properties. In this project, hydrogel were stored for a maximum of 15 

days. This protocol was followed to prepare the hydrogels for AFM studies.  

To prepare the hydrogels on TInAS sensors, only the steps with NaOH and glutaraldehyde were 

skipped to avoid staining of the sensors that would affect the optical path. Hydrogels were also prepared 

on QCM gold sensors, but the steps with NaOH, APES and glutaraldehyde were skipped as it was found 

to improve the quality of the grafting to the gold sensor. The amount of polymer solution pipetted on 

TInAS sensors was 0.75  !!  and 0.5  !" on QCM sensors, which lead to a hydrogel thickness of 6  !"  and 

4 µm respectively.  

2.3 Synthesis of PAAm-co-IA hydrogels 

Even though polymer hydrogels has broad applications in various areas, many potentials uses are 

limited by their low mechanical strength (53). The interpenetrating polymer network (IPN) technique is a 



	  
	  

8	  

possible way to improve the mechanical behavior of hydrogels. IPNs are formed when two or more cross-

linked polymer networks co-exist and at least one is cross-linked in the presence of the other (54). In this 

study, semi-interpenetrating hydrogel networks based on polyacrylamide and itaconic acid was also used. 

Itaconic acid introduces negative charges to the hydrogel so that a polyanionic hydrogel is obtained. 

Swelling behavior, and mechanical properties can differ from the neutral hydrogel. By adjusting the 

amount of cross-linker and amount of monomer, the mechanical properties of PAAm-co-Itaconic acid 

(PAAm-co-IA) hydrogels can be altered. To achieve a similar elastic modulus to that of the neutral 

hydrogels (~2 kPa) a higher crosslinking concentration (Bis-AAm) was required (see Table 1).  

PAAm-co-IA hydrogels were prepared according to the protocol given by Bera et al. (55) and 

Kayaman et al. (8). AAm, itaconic acid, MBA and APS were dissolved in water separately and then 

mixed. The same protocol was used to treat the 25-mm coverslips and 25 × 75-mm glass slides as for the 

neutral hydrogel. Upon mixture, a 25!L droplet of polymer solution was pipetted on the glass slide and 

covered by a coverslip to make the “sandwich”, and then placed on a hot plate at 70℃ for 30 min to 1hr to 

polymerize. The time needed to fully polymerize depends on the copolymer composition. After 

polymerization, patterns appeared around the edge of sensor. 

2.4 Lipid Vesicle 

2.4.1 Preparation of Lipid Vesicles 

Small unilamellar vesicles (SUVs) were prepared according to the protocol given by Keller et al. 

(56). 10mg EggPC in chloroform was transferred to a round bottom flask. The lipid mixture was dried 

onto the walls of a continuously rolled round bottom flask under vacuum and left for 3-4 hours to ensure 

complete removal of solvents. 10mL buffer (10 mM Tris buffer pH 8.0, 100 mM NaCl) was added to the 

round bottom flask. Nitrogen gas was blown to the flask to avoid lipid contact with oxygen. The dried 

lipid was resuspended in buffer by vortexing for 30 min. Lipid vesicles were formed by sonicating the 

suspension to clarity using 1/8” microtip of Branson probe sonicator. The sonication was carried out on 

ice in 5s pulses separated by 5s cooling period. The total sonication time initially was 60 min. Due to 

aging of the probe sonicator, the sonication time was increased to 90 min. The vesicle suspension was 

spun at 150,000  × g for 4.5 h in an ultracentrifuge to separate SUVs from large lipid structures. Based on 

the protocol(58), after ultracentrifuge, the supernatant above the pellet should be drawn off in three 

fractions and the middle fraction should be used for adsorption experiments. However, in our experiments 

only 2 fractions formed every time, and the upper fraction was used and characterized by Dynamic Light 

Scattering. The SUV fractions were stored under N2 in small vials at 4℃. 
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2.5 Dynamic light scattering (DLS) 

After preparation of the lipid vesicles, the solution was diluted to a concentration of 0.1 mg/ml in 

Tris buffer pH 8.0 10 mM, 100 mM NaCl, to be consistent with the concentration used for all adsorption 

experiments. Both, size and zeta potential of lipid vesicles were measured. The refractive index and light 

absorption were assumed to be 1.47 and 0.1, respectively. For both size and zeta potential measurement, 

three runs were taken, and average and standard calculation were determined.  

2.6 Swelling experiments 
The swelling ratio of the PAAm hydrogel was measured in all solutions used in the experiments, 

including water, 1 mM hepes, 10 mM hepes, 10 mM Tris buffer pH 8.0 with 100 mM NaCl, and 500 mM 

NaCl. 2mL hydrogel solution was polymerized inside of 4cm diameter petri dish instead of on top of a 

coverslip to prepare 15 hydrogels, with 3 replicates for each solution. After preparation, hydrogels were 

rinsed with DI water and then dried on a hot plate at 80℃. After the hydrogels were completely dry, they 

were weighed on a balance and the mass of each piece was recorded. The completely dried PAAm 

hydrogels were then immersed in the selected solutions in separate petri dishes (10 cm diameter). The 

weight of the hydrogel immersed in solution was measured with time until equilibrium was achieved. 

2.7 Quartz crystal microbalance (QCM) 

The gold QCM sensor was cleaned according to the following procedure: exposure to UV ozone 

for 10 min, immersion into a 1:1:5 solution of hydrogen peroxide (30%), ammonia hydroxide (25%) and 

water heated to 75℃ for 5 min, immediately rinsed with water and dried with nitrogen, and a final 

exposure to UV ozone for 10 min. The silica QCM sensors were cleaned by exposure to UV ozone for 10 

min, sonicated in sodium dodecyl sulfate (SDS) solution (2% w/v) for 30 min, immediately rinsed with 

water, dried with nitrogen and exposure to UV ozone for 10 min. QCM crystals were used immediately 

after cleaning. Before each experiment, the fluid cell was cleaned by running SDS (2% w/v) for at least 

10 min and then water for at least 30 min and air to dry the tubing with a flow rate of 300!"/min. The 

fluid cell was further dried in N2 flow. 

2.7.1 Formation of Polyelectrolyte Multilayers (PEM) on PAAm hydrogels 

Two polyelectrolytes, PAH 2mg/ml in water, and PSS, 2mg/mL in water with NaCl (500 mM) 

were prepared and sonicated at 50℃ overnight to fully dissolve the polymers. Right before use, the 

polyelectrolyte solutions were filter using a 0.2!" nylon sterile syringe filter.  

PAAm hydrogels were made ex situ on gold sensors as described above. After equilibrating with 

water for at least 1 h, the system was tuned to the resonant frequency of the hydrogel on the gold sensor. 

Water was flowing through the cell for another 10 min to obtain a baseline. During the measurement, first 
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NaCl solution (500 mM) was introduced to the system. Then, the PAAm gel was coated by alternating 

adsorption of aqueous solutions of PAH (2mg/mL) and PSS (2mg/mL). In this project, two PEM systems, 

(PSS-PAH)2 and PAH-(PSS-PAH)2were investigated as discussed in the Results and Discussion section. 

Each polyelectrolyte was allowed to adsorb for at least 15 min or till equilibrium with a 50!"/min flow 

rate. Between adsorption of each layer, PAAm hydrogel was rinsed with water for at least 10 min or till 

equilibrium, to wash away weakly adsorbed polyelectrolytes.  

2.7.2 Vesicle adsorption and lipid bilayer formation 

Adsorption of lipid bilayers adsorption was tested on three different systems: directly on hard 

substrates (silica and gold), on PEM directly adsorbed onto the gold QCM sensor, and on PAAm-

supported PEMs (also called PAAm-PEM complexes). 

Lipid vesicle adsorption on gold and silica sensors was performed as it follows. After cleaning, 

QCM silica and gold sensors were equilibrated with Tris buffer pH 8.0 (10 mM) and NaCl (100 mM). 

After equilibration, the system was tuned to the resonant frequency of the crystals. Tris buffer pH 8.0 (10 

mM) and NaCl (100 mM) was run for another 10 min to get a baseline in buffer. Then buffer was 

replaced by lipid vesicle diluted in buffer to a concentration of 0.1 mg/ml. After reaching equilibrium, 

lipid vesicle solution was replaced with buffer to wash away weakly adsorbed lipid vesicles. These were 

our reference measurements to compare to vesicle adsorption on the polymer films and hydrogels.  

As lipid vesicles did not adsorb on PAAm and PAAm-co- IA hydrogels, hydrogels were coated 

by a layer-by-layer approach with four to five layers, with PAH as the top layer. The results on PAAm-

co-IA hydrogels were not successful owing to failures of grafting the charged hydrogel to gold, and 

therefore the Results Section focuses on the results obtained for PAAm. After the last rinsing with water, 

Tris buffer pH 8.0 (10 mM) with NaCl (100 mM) and CaCl2 (0-25 !") was flowed through the cell. After 

reaching equilibrium, adsorption of lipid vesicles diluted to 0.1 mg/ml in Tris buffer pH 8.0 (10 mM) with 

NaCl (100 mM) and CaCl2 (0 − 25!") took place. In contrast to the direct adsorption on ahard substrate, 

CaCl2 was added to enhance the adsorption of lipid vesicle. Lipid vesicle adsorption was also investigated 

on gold-supported PEM, i.e. in absence of PAAm hydrogel following the same protocol. 

2.7.3 Bovine Serum Albumin (BSA) Adsorption 

In order to understand the adsorption mechanisms of albumin on hydrogel-supported lipid 

bilayers, six different systems were investigated and compared. The first system was albumin adsorption 

on silica-supported lipid bilayer. The protocol for lipid vesicle adsorption on QCM sensors was described 

above. After lipid bilayer formation, the Tris buffer pH 8.0 (10 mM), and NaCl (100 mM) was replaced 

by hepes (10 mM) to get a baseline. The second system was albumin adsorption after lipid adsorption on 

silica-supported PAH-(PSS-PAH)2. The protocols for the PEM formation and lipid vesicle adsorption 
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were described in section 2.7.2. Albumin adsorption was also investigated on PEM-hydrogel complexes 

(hydrogel-supported PEM) after lipid adsorption. In addition, albumin adsorption was investigated on 

hydrogel-supported PEM without previous lipid adsorption and in neutral and charged PAAm hydrogels. 

In all six systems, after equilibrium was achieved in Hepes (10 mM), hepes was replaced by BSA (1 

mg/ml) in hepes to investigate albumin adsorption, and finally rinsed with hepes to remove weakly 

adsorbed albumin. 

2.8 Transmission Interference Adsorption Sensor (TInAS) 

A novel high-speed adsorption sensor based on thin-film interferometry at interfaces called 

Transmission Interference Adsorption Sensor (TInAS) was used as a standalone instrument in this project 

to measure the optical thickness of adlayers. The basic TInAS setup includes a flow cell, which is built on 

the top of the sensor surface and a tubing system connected to the flow cell. The TInAS sensors used in 

this project composed of a flat glass substrate with a 25nm aluminum layer (mirror) and 2-3um silica 

layer (spacer) on top of each other in the presenting order. Usually the adsorption reaction occurs on top 

of the silica. However, in this project, a thin layer about 6!" of hydrogel was grafted to the sensor ex-situ 

as described in the Experimental Section and the sorption experiments were performed on the hydrogel. 

The hydrogel is porous and the solute can diffuse into the pores; therefore not only adsorption but also 

absorption takes place, which can more broadly be called “sorption”. We will here still refer to this 

phenomenon as adsorption for simplicity. A detailed discussion on theory and experimental setup for 

TInAS can be found in Heuberger et al.’s article (57). 

Before each measurement, TInAs sensors were sonicated in toluene, isopropanol, and ethanol, 

each for 10 min, dried with nitrogen and exposed to UV ozone for 15 min to clean. The other components 

of the cell were sonicated in ethanol for 10 min before use. 

2.8.1 Formation of Lipid Bilayer on TInAs sensor 

The procedure of lipid vesicle adsorption on TInAs sensor was similar to the procedure for QCM. 

After cleaning, TInAs sensors were equilibrated with Tris buffer pH 8.0 (10 mM) and NaCl (10 mM) 

while the thickness of spacer was measured in buffer at the same time. When the sensor was equilibrated 

with the buffer, the thickness of spacer was entered manually into the software. The buffer was allowed to 

flow for another 10 min to obtain the baseline. After equilibration, the buffer was replaced by the lipid 

vesicles solution at a a concentration of 0.1 mg/mL. The refractive index of the lipids was assumed to be 

1.42. After reaching equilibrium, the cell was rinsed with buffer to wash away weakly adsorbed lipid 

vesicles. The flow rate was 230  !"/min. 
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2.8.2 Formation of Polyelectrolyte Multilayers (PEM) on PAAm hydrogel 

PAAm hydrogel was grafted on a TInAs sensor first and then allowed to equilibrate in water. The 

thickness of hydrogel was adjusted manually in the software to bring the thickness of adlayer to zero 

before adsorption takes place. The refractive index of PAAm gel and polyelectrolyte were assumed to be 

1.35 and 1.42, respectively. The refractive index of solvent was assumed to be 1.337. After a 10 min 

baseline in water, the PEM was deposited on the PAAm hydrogel by alternating adsorption of aqueous 

solutions of PAH (2mg/mL) and PSS (2mg/mL). Both the four layer system (PSS-PAH)2 and the five 

layer PAH-(PSS-PAH)2 were deposited on PAAm hydrogels for comparison. Each polyelectrolyte was 

allowed to adsorb at least for 15 min or till equilibrium with a 230!"/min flow rate. Between adsorption 

of each layer, hydrogel was rinsed with water for at least 10 min or till equilibrium to wash away the 

weakly adsorbed polyelectrolyte. 

2.8.3 Bovine Serum Albumin (BSA) Adsorption 

The refractive index of PAAm hydrogels and BSA were assumed to be equal to 1.35 and 1.42, 

respectively. First the PAAm hydrogel was allowed to equilibrate with hepes (10 mM). The thickness of 

hydrogel was adjusted manually in the software to bring the thickness of adlayer to zero before adsorption 

takes place. Hepes (10 mM) was allowed to run for another 10 min to get a baseline. Then BSA (1 mg/mL) 

in hepes (10 mM) was injected into the cell and allowed to adsorb. After the adsorption reached 

equilibrium, hepes (10 mM) was injected into the cell to remove weakly adsorbed BSA. 

2.8.4 Collapsing and Swelling of PAAm gels 
Two sets of experiments were carried out with either water or hepes (10 mM). After BSA 

adsorption, either in water or in hepes, a high concentration of CaCl2 solution 1M in water (hepes (10 

mM)) was flowed through the flow cell. TInAS only measures the dry mass or optical thickness of the 

adsorbate, and the thickness of hydrogel is assumed to remain constant as there is no desorption of 

polymer. However, since the optical path is highly related to the refractive index of the adsorbate layer, 

and this changes as hydrogel swells or collapses, it is possible to measure swelling and collapse of gels. 

Finally, the hydrogel was rinsed with water (hepes) again.  The flow rate was kept constant through the 

adsorption experiment, which equals to 230!"/!"#. The temperature was room temperature throughout 

the experiment. 

2.9 Fourier Transform Infrared Spectroscopy (FTIR) 
The IR spectrum of PAAm hydrogel, and PAAm-IA hydrogels was measured using FTIR-ATR 

within the range 400 cm-1 to 4000 cm-1. Both PAAm and PAAm-IA hydrogels were made as described 

above, except that the hydrogels were synthesized in a 4 cm diameter petri dish instead of a coverslip. A 
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small piece of PAAm hydrogel was cut from the large piece with a spatula. A background run was 

performed with a droplet of DI water covering the window. Since hydrogels were composed mostly of 

water, scanning water as background effectively excluded the influence of water.  

The IR spectrum of PAAm hydrogel with PAH-(PSS-PAH)2, and PAAm hydrogel with PAH-

(PSS-PAH)2 and lipid bilayer was also obtained. Here it is important to investigate the surface of the gel, 

so, a different method was used. First, PAAm hydrogels were synthesized on coverslips as described 

before. The cover slips with the hydrogels were immersed in PAH (2mg/mL) and PSS (2 mg/mL) 

solutions with 500 mM NaCl in a 4cm diameter petri dish, each for 15 min. After each cycle of adsorption, 

the PAAm hydrogel was rinsed with water twice to remove the weakly adsorbed polyelectrolyte before 

the next polyelectrolyte solution was added. After the PEM formation, some of the samples were also 

immersed in Tris buffer pH 8.0 (10 mM) with NaCl (100 mM) and CaCl2 (25 !") for 30 min. Then the 

PAAm hydrogel was immersed in lipid vesicle solution with a concentration of 1 mg/mL with CaCl2 (25 

!") for 2 hours to allow adsorption. Here a longer time and higher concentration of adsorption was used 

compared to the QCM experiments, to compensate the lack of flow in the immersion experiments. After 

the adsorption, the PAAm hydrogel was immersed again in Tris buffer pH 8.0 (10 mM) with NaCl (100 

mM) and CaCl2 (25 !") for 30 min to remove the nonadsorbed lipid vesicles. The coverslip with the 

prepared samples was placed on top of the ATR crystal with the PAAm hydrogel facing down. 

2.10 Atomic Force microscopy 
AFM indentation and friction experiments on PAAm hydrogels were carried out with a MFP-3D 

(Asylum Research). Indentation with conventional sharp AFM tips results in a high local stress on the 

hydrogel, which likely induces damage. Measurement using sharp pyramidal tips is usually 2 to 3 times 

higher than the spherical tips (58). In this project, a colloidal sphere with a 10!" diameter was glued to 

the end of the cantilever.  Under this condition, the force is distributed over a large area, and the damage 

can be considered negligible. Indentation measurements and lateral force measurements were performed 

on various hydrogel systems, and lipid bilayers.  

2.10.1 Nanoindentation 

After calibration of the tipless cantilever to determine the normal spring constant by the thermal 

noise method, a colloidal sphere around 10 !m in diameter was glued to the tip of the cantilever (59).  

The sensitivity of the cantilever was determined in a normal force measurement on a glass slide immersed 

in water every time before measurements.  

After PAAm hydrogel was grafted on the coverslip, the coverslip was fixed at the center of the lid 

of a 4 cm petri dish with an adhesive pad. A few droplets of water were deposited on the top of the 

hydrogel to avoid drying in air. Contact mode was used for nanoindentation. Since the adhesion was very 
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high, a 5!" force distance was used to pull out the colloid sphere after each indentation. The maximum 

loads were 20nN and 40nN, and the approaching speeds 0.1 !"/!, 0.5  !"/!, 2  !"/!, 10  !"/!, 

30  !"/! and 50 !"/!. For each speed, 10 successive normal forces were taken at each spot and three 

different spots indented per gel. The elastic modulus was determined from the force-distance curve upon 

approach by using Hertz contact model (60).  

2.10.2 Lateral force measurements 

A cantilever from the same box as the one used for friction measurements was used for lateral 

calibration. After determination of its normal spring constant, a 40  !m in diameter sphere was glued at the 

tip of the cantilever. The sphere was used to hit the edge of a clean silicon wafer at five different positions. 

The slope of the each curve was determined to determine the lateral spring constant according to the test 

probe method (61).  

Load-dependent and speed-dependent friction forces were measured. Since the selected PAAm 

hydrogels are relatively soft, the contact area upon applied normal load was very large (calculated with 

the Herzian model for each load – for 5nN, it is ~4µm). In order to assure the lateral movement of the 

colloid sphere, the maximum force was 5nN, and the minimum sliding distance was 7.5 !". 

For the friction vs. load experiments, a sliding distance of 15  !" was used to ensure the lateral 

motion. The scanning rate was set at 0.1 Hz, which lead to a sliding speed equal to 3  !"/!. The load was 

varied from 0.5nN to 5nN in increments of 0.5nN; the average and standard deviations were calculated 

from 10 friction loops at each load. The cantilever was withdrawn between each load.  

For the friction vs. scanning speed measurements, a normal load of 5nN was maintained constant. The 

scanning rate was again set to be 0.1 Hz and the sliding distance varied from 5  !" to 50  !", which lead 

to a sliding speed from 1  !"/! to 15  !"/!.  
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CHAPTER 3   RESULTS AND DISCUSSION 

All experiments were performed on freshly prepared gels as aging was found to increase the 

stiffness of the hydrogels, in agreement with previous reports.  

3.1 DLS measurements 

The phospholipid used in these investigations was Eggphosphatidylcholine (Egg-PC, 1,2-Diacyl-

sn-glycero-3-phosphocholine, or 3-sn-Phosphatidylcholine) and the vesicles were prepared according to 

the described method. The vesicles have a size of 35.2 ± 3.8 nm, and a zeta potential of -5.8 ± 0.9 mV in 

the selected buffer (10 mM Tris pH 8, 100 mM NaCl) with a vesicle concentration of 0.1 mg/ml. 

3.2 Swelling ratio of the hydrogels in different solvents 

The swelling ratio of the hydrogels was determined in various solutions. Figure 1 shows the 

swelling ratio calculated by: 

!" =
!!"# −!!"#

!!"#
 

where !!"# is the dry mass of the hydrogel (determined at 80ºC) and !!"# is the equilibrium weight of 

the hydrogel during water uptake.  

Figure 1: Swelling ratio of PAAm in pure water, 1 mM and 10 mM Hepes, 500 mM NaCl and Tris 

buffer as a function of time. 

Figure 1 shows the negligible influence of the ionic strength in the range of ~0 mM (in Milli-Q water) to 

500 mM (NaCl), and of pH (5.8 in nanopure, 7.1 in hepes and 8 in tris buffer), consistent with the non-

charged properties of the polyacrylamide hydrogel. An equilibrium swelling ratio of ~14.1±2.6 is 

achieved after water uptake for 24h and the average swelling ratio for all solvents is 14.4±1.8 [-]. The 

variability between hydrogels is thus larger than between the results obtained at different ionic strengths 

and pH. The swelling ratio is smaller than that reported in (62) which can rely in the different protocol for 

the hydrogel synthesis. The values can be also underestimated as the gels are wet-dried before weighting.	  
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3.3 Formation of PEM on neutral hydrogels: (PSS-PAH)2 and PAH-(PSS-PAH)2 
The formation of the PEM on the neutral gel was monitored by QCM-D (see representative 

results in Figure 2). In our studies, the hydrogels were prepared ex situ on gold QCM sensors, and the 

baseline was determined with the hydrogel in water. Thus, the hydrogel represents the “substrate” for the 

further investigation of the formation of the PEM. The hydrogel is porous, and polymer diffusion into the 

pores is possible; further, the hydrogel-polyelectrolyte complexes can collapse and swell as a response to 

changes in ionic strength. The reason is that polyelectrolyte that remains within the hydrogel converts 

PAAm into a “charged” hydrogel, and therefore it makes it responsive to gradients in osmotic pressure. It 

has been previously shown that hydrogels can also become thermo-and pH-responsive when altered by 

layer-by-layer assembly of polyelectrolytes (63,64).  

Besides, as a result of absorption the baseline can also change during the experiments, as 

described below. Such changes of the substrate do not occur on the classical QCM sensors, since they are 

rigid and non-porous (gold, quartz, silica). Representative QCM results for the PEM formation of (PSS-

PAH)2	  	  on the PAAm hydrogel	  are shown in Figure 2.  

 
Figure 2:QCM-D data (frequency and dissipationx106) during PEM formation using NaCl solution 

(500 mM) before flowing the 1st polymer solution (PSS). Overtones 7th and 9th are shown. The dotted 

lines give the time at which the solution is changed; it takes 2-3 minutes for the solution to enter the 

chamber. The arrows point at the rinsing steps with water (single line black) after each layer 

deposition.  
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In the QCM measurements a solution of NaCl (500 mM) was first introduced into the cell and 

then the polymer solution, in deviation with the classical protocol for the layer-by-layer formation. This 

enables to distinguish between the influence of the density of the salty polymer solution and the 

adsorption of polymer on the changes in frequency and dissipation. The higher density and viscosity of 

the 500 mM NaCl solution compared to water (baseline) leads to the initial decrease in frequency 

(∆fsalt~-10Hz for the 7th overtone). Figure 2 also shows that the dissipation becomes negative after the 1st 

PSS adsorption (∆D7~-2 for the 7th overtone). The negative dissipation is explained by the sorption of 

polymer within the porous hydrogel	   (63-66) –the pore size is expected to be ~100 nm (67), which 

increases the stiffness of the porous substrate. As a distinction between the absorption within the pores 

and at the hydrogel/solution interfaces is not possible, the new baseline cannot be determined.  

During rinsing with water (blue arrows) the frequency increases and the dissipation decreases as a 

result of following concerted effects: i) decrease in density and viscosity of the solution - as the polymer 

solution with NaCl is exchanged by water (∆fsalt~-9.8±2 Hz for the 7th overtone), ii) swelling of the 

hydrogel – as it is effectively charged after polyelectrolyte absorption-, and iii) polymer desorption as the 

interactions between polyacrylamide and PSS have been shown to be weak (68). The overall changes 

during rinsing suggests that desorption of polymer and decrease in density of the solution are dominant.  

The dissipation changes upon adsorption and desorption of the 2nd, 3rd and 4th layers is complex as 

well but most likely not related to the hydrogel support: It has been shown in microgel particles (63-66, 

69,70) that only the 1st layer penetrates into the gel, although we cannot exclude that some weak 

absorption is taking place. Upon adsorption, we expect the polyelectrolyte to adsorb with the 

conformation in bulk and later to collapse at the surface; the change of conformation is associated with a 

change in frequency and dissipation. Upon rinsing with water, the frequency first increases owing to the 

decrease in density of the solution and then it slowly increases which can be related to desorption of 

weakly adsorbed polymer. The changes in dissipation upon rinsing with water are significant for PAH, 

which can be related to a rearrangement of the polymer chains to optimize interactions with the lower 

layers. Complex changes were also observed for the silica-supported PEM (see supplementary 

information) and they have been previously reported for another system (71).  

Figure 3 summarizes the results obtained for PAH-(PSS-PAH)2  with qualitatively similar results 

for the frequency and the dissipation. The negative dissipation suggests that the porous substrate also 

becomes stiffer upon absorption. The changes in frequency and dissipation indicate the successful 

formation of the PEM (see figure 4 for average values of frequency and dissipation for each layer) under 

the investigated conditions. In all cases upon rinsing with water the change in frequency increases (it 

become less negative); the increase is larger than expected for the change in density/viscosity, which 

suggests a significant swelling of the polymer-hydrogel complexes is not taking place.  
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Figure 3: 

QCM-D data of frequency and dissipationx106 (7th and 9th overtones) during PEM formation on 

PAAm hydrogel rinsing with NaCl solution (500 mM) before flowing polymer solution. The dotted 

lines give the time at which the solution is changed; it takes 2-3 minutes for the solution to enter the 

chamber. The blue arrows point at the rinsing steps with water after each layer deposition. The 

changes in frequency for each layer are shown (with respect to the baseline in water). 

Figure 4 shows a collection of the changes in dissipation and in frequency during the formation of 

each PE layer for the two investigated hydrogel-supported PEM. For PAH-(PSS-PAH)2 (see dotted lines) 

a positive change in dissipation results upon PSS adsorption (PSS-1 and PSS-2) suggesting an increase in 

rigidity of the system, whereas the opposite effect is observed upon addition of PAH, which has a smaller 

MW. The corresponding negative change in frequency demonstrates the successful layer-by-layer 

formation. All values of frequency and dissipation changes were obtained with respect to the baseline in 

water. For (PSS-PAH)2 (empty symbols), the positive frequency change results from the absorption of 

PSS-1 into the hydrogel (~3 Hz) while the negative dissipation supports the substrate is becoming stiffer 

(∆D~-3x10-6); the changes are small though (see arrows). For the following layers, the negative change in 

frequency accompanied by very small dissipation changes (0-1), supports the successful formation of this 

PEM on the hydrogel as well. The significant standard deviations are attributed to slightly different 

thicknesses of the gels and crosslinking degrees. The obtained values are similar to those measured for 

other PEM on a rigid and non-porous substrate (71), with the dissipation being smaller than ~4 x10-6.  
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Figure 4: Changes in frequency and dissipation during PEM formation for each single layer in 

(PSS-PAH)2 (empty circles) and PAH-(PSS-PAH)2  (full circles). 

PEM are usually soft or viscoelastic in nature due to the hydration water present in the film, and 

therefore the Sauerbrey expression often becomes invalid. For viscoelastic films, the mass can be deduced 

using the Voigt model (72), which assumes that the film has uniform thickness and density. However, 

absorption within the hydrogel substrate complicates the modeling, as the Voigt model cannot be used to 

model negative dissipation values. Instead, the dry mass of the PEM on the hydrogel can be determined 

by TInAS without the need of models or approximations. The interferometric technique measures the 

optical thickness  ! if the refractive index is known, which is directly proportional to the dry adsorbed 

mass given by !!"# =
! !!"#!!!"#$

!"/!"
 (73).  

Thus, this interferometric measurement is not sensitive to the water content. At the beginning of 

the experiment the optical thickness of the hydrogel was measured (!!~~187±9 from 10 measurements); 

this is used as baseline in the TInAS experiments (!=0). The refractive index of PAAm is assumed to 

remain constant and equal to 1.35 [-]; a refractive index of 1.42 was assumed for the layer-by-layer and 

1.337 for the solvent.  

Figure 5 shows representative results for the two hydrogel-supported PEMs. It is to note that 

during the initial PSS adsorption, the optical thickness of (PSS-PAH)2 becomes negative and equal to -

0.772 nm, which is attributed to a hydrogel collapse. Collapse and swelling of hydrogels were also 

investigated in a separate series of experiments (not shown) with polyanionic hydrogels (PAAm co-

polymers with itaconic acid) by TInAS It was demonstrates that upon increase in ionic strength of the 
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solution a negative optical thickness was measured during collapse (!<!!), and the original thickness was 

recovered after re-equilibrating (swelling) the polyanionic in water (!=!!). Although the loss of water 

cannot be detected by TInAS, the increase of refractive index is reflected in a shift of the interference 

fringes, i.e. of the optical path  !" (74). Since the refractive index is assumed to remain constant during 

the measurement, ! decreases, although the dry mass remains constant. 

Thus, when PSS diffuses into the hydrogel, the latter becomes effectively charged. The hydrogel 

is still hydrated by pure water, whereas the solvent is a NaCl solution with a concentration of 500 mM 

and PSS concentration of 1 mg/ml. Thus, the gradient in osmotic pressure is responsible for the gel 

collapse, while there is simultaneous PSS ab- and adsorption. As in our measurements, the baseline 

(! = ! ) is set before polymer adsorption, !  becomes negative upon initial gel collapse. Further 

investigations of the collapse and swelling behavior of the hydrogels after albumin sorption are discussed 

in the Supplementary Information in more detail.  

Figure 5: Optical thickness of the PEM adlayer for (PSS-PAH)2(in blue) and PAH-(PSS-PAH)2(in 

red)measured by TInAS.  

Contrasting results were obtained for PAH-(PSS-PAH)2. Here, the optical thickness ! did not 

become negative upon PAH sorption, although the increase in !is much smaller than during the following 

steps. Thus, it cannot be excluded that absorption of the 1st PAH layer is also accompanied by 

hydrogelcollapse, although the increase in dry mass is dominant in this case. For the (PSS-PAH)2, the 

final optical thickness of the PEM layer is !~ 8-9 nm, whereas !~14 nm is obtained form PAH-(PSS-

PAH)2. It is to note that during rinsing there is only a slight decrease of the optical thickness, which 
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suggests that no polymer desorption occurs. Hence, the changes in frequency and dissipation upon rinsing 

with water in QCM experimentsmust be related to both,decrease in salt concentration and rearrangement 

of the polymer chains (and loss of water).  

3.4 Lipid bilayer formation 

Reference adsorption measurements by QCM-D showed that the lipid vesicles adsorb on silica –

where vesicle fusion takes place to form a lipid bilayer (figure 6, insets) –, and on gold (as vesicles, see 

SI), in agreement with ref. (75). The thickness was calculated with the Voigt model assuming a density of 

the lipid bilayer equal to 1.5 g/cm3. No adsorption of lipid vesicles was detected on PAAm hydrogels, 

which demonstrates a weak interaction between vesicles and hydrated PAAm. On the polyelectrolyte 

multilayer (PEM) grafted to PAAm hydrogel –with PAH (positively charged) as top layer– vesicle 

adsorption took place but the kinetics of adsorption was completely different (figure 6). Vesicle 

adsorption was also studied on PAH-(PSS-PAH)2 directly adsorbed onto a silica substrate for comparison, 

and the results are shown in the supplementary information.  

On the silica substrates, it is well accepted that the vesicles first adsorb and then they fuse and 

form the bilayer (see also figure 7 with an AFM image or reference	   (76)). Vesicle fusion is typically 

dominated by surface adhesion energy between vesicles and the substrate as the adhesion enhances stress 

and leads to vesicle rupture and spreading after a critical surface concentration of adsorbed vesicles has 

been achieved. This behavior leads to the characteristic increase in dissipation followed by a notable 

decrease as the water is released; the frequency follows the opposite behavior. The vesicles contain large 

amounts of water, which explains the large dissipation, whereas the lipid bilayer is a much stiffer system. 

On the PEM-hydrogel complexes the frequency rapidly decreases (∆f7~-26 Hz) and a small peak 

was observed in the dissipation. This suggests the immediate rupture of the vesicles at the surface, which 

keeps the dissipation low, in agreement to ref. (77). The total change id frequency was very similar to that 

measured on the flat silica-coated QCM sensors. However, we expect the PEM-fluid interface to be rough, 

which enhances the surface area compared to flat surfaces leading to larger changes in frequency and 

dissipation compared to those of flat QCM sensors. The thickness of the lipid bilayer obtained by the 

Voigt model is ~3.1 nm, whereas a smaller thickness of ~2.1 nm was obtained for the PEM-hydrogel 

complexes, which suggests only a partial coverage. 
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Figure 6: a) Characteristic change in frequency and dissipation (7th and 11thovertones) during lipid 

bilayer formation on PAAm hydrogels modified by PAH-(PSS-PAH)2. The inset shows the 

Characteristic change in frequency and dissipation (7thovertone ) on a silica substrate. B) Thickness 

of the lipid bilayer on four different altered hydrogels with PAH-(PSS-PAH)2 calculated by the 

Sauerbrey equation, without addition of calcium (blue) and upon addition of calcium (red). The 

inset shows the thickness of the lipid bilayer on three different silica substrates calculated by the 

Voigt model.   

It was also found that when PSS was used as top layer vesicle adsorption did not take place (not 

shown here), which supports the driving force for the adsorption to be the electrostatic interaction 

between the amino group in the PAH and the phosphate ion. It has been previously shown that a 

complexation of the lipid layer with segments from the second last layer is possible (76,78) owing to 

entanglements between PAH and PSS chains. Thus, a relevant surface density of sulfates on the top layer 

is also possible for our system. In fact, the vesicle adsorption was strongly enhanced by adding small 

amounts of Ca2+ (25µM) to the vesicle solution (79). Thus, it is likely that the calcium ions interact with 

PSS chains close to the PEM-solution interface and act as bridging between the slightly negatively 

charged vesicles and the PEM grafted to the hydrogel. Our results in figure 6b show that the resulting 

thickness increased upon addition of calcium, demonstrating a larger surface coverage, although there 

were discrepancies between experiments. As the PEM-hydrogel complexes are expected to be rough, a 

higher adsorbed mass is expected which might explain the larger thickness in some of these experiments.  

The successful formation of the lipid bilayer was also demonstrated by AFM imaging of the 

QCM sensors. The lipid bilayer fully covered the (flat) silica substrate (figure 7). A scratch test was 
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performed to show the height of the bilayer (~2.5 nm, not shown). AFM imaging will be performed in 

close future to demonstrate discontinuities of the lipid bilayer. 

	  
Figure 7: AFM image (lateral deflection) of the lipid bilayer a) on a silica substrate (QCM sensor). 

Scan rate = 0.75Hz, contact mode, sharp tip HQ: CSC38/No Al.  

The adsorption of lipid vesicles was also measured by TInAS on rough silica substrates (the 

TInAS sensors) leading to an optical thickness of 4 nm; equilibrium was achieved within 5 minutes (dry 

mass=292 ng/cm2 estimated with nadl=1.47 and dn/dc=0.182 g/cm3). As TInAS is not sensitive to the 

water content, the vesicle rupture cannot be detected, and only a continuous increase in thickness was 

observed to around 3.1 nm. AFM imaging in contact mode showed single vesicles adsorbed to the surface 

with a maximum number density of 10 per µm2 (see supplementary information). The corresponding dry 

mass to this number density –estimated for vesicles with a diameter of 32 nm, phospholipid with a molar 

mass of 770 g/mol, and a surface area per phospholipid of 0.85 nm2- is more than 2 orders of magnitude 

smaller than the dry mass measured by TInAS. This demonstrates that a larger amount of lipids was 

adsorbed in the TInAs experiment but it could not be detected by AFM imaging. As the roughness of the 

substrate is ~5.5 nm (RMS), i.e. larger than the lipid bilayer height, it is likely that the distinction of the 

lipid bilayer on the TInAS sensors is not possible by AFM and a (probably discontinuous) lipid bilayer 

along with single vesicles is present at the surface.  

3.5 ATR-FTIR of the systems 

Figure 8 (top) shows the IR spectrum of PAAm, of the PAAm-IA copolymer, and of the AAm 

and IA monomers. The amide group has three characteristic peaks	  (80): the first is at 1672 cm−1 (Amide 

I), representing the –C=O stretching vibration of the amide group. The second is at 1610 cm−1 (Amide II) 

and is primarily due to the –NH2 bending vibration of the amide group and the third is the –CN stretching 
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vibration of the amide group at 1425 cm−1. The methylene backbone produces a characteristic peak at 

1458 cm−1 due to the –CH2 scissoring vibration. The shoulder at 1720 cm-1 and the peak at 1216 cm-1 

are characteristic of the itaconic acid.  

Fig. 8 (bottom) shows a section of the fingerprint region of the IR absorption spectrum for PAAm 

(black), PAAm-supported PAH-(PSS-PAH)2, and adsorbed lipid onto the hydrogel-PEM complex ranging 

from 1750 cm-1 to 950 cm-1. The spectra of the pure phospholipid (published in ref. 66) can thus be used 

as a reference when comparing lipid spectra in the presence of the polyelectrolyte species.  

The footprints of PSS are very pronounced in the spectrum of the hydrogel-PEM complex. Two 

characteristic peaks at 1178 cm-1 and 1125 cm-1 correspond to the asymmetric stretching vibrations of 

the S=O; the band at1037 cm-1 was assigned to the S=O symmetrical stretching vibrations, and the peak 

at 1008 cm-1 was attributed to aromatic in-plane vibrations (81). We clearly detect the peaks at 1037.5, 

1009, 1127, and 1178 cm-1. 

The identification of PAH is difficult. The band around 1500–1600 cm-1 is of the amide II and is 

attributed mainly to the distortion oscillations of N–H and the stretching oscillations of C–N while, the 

band around 1300 cm-1 of the amide III (82). The only peak that can be distinguished is at 1651 cm-1 

(see arrow).  

The presented section covers the phosphate region, including the asymmetric stretch of phosphate 

characterized by two components at ~1220cm-1 and ~1229 cm-1, as well as the symmetric stretch at ~ 

1087 cm-1. The C–O–C carboxylic acid ester bond connecting the fattyacids to the glycerol contributes 

an asymmetric stretch vibration around 1183 cm-1 (a broad peak) and the symmetric C–O–C stretch is at 

1065 cm-1. We detect the following peaks: 1178, 1086, 1065 and 1216 cm-1. The observed shifts of the 

peaks suggest interactions between the lipids and the polyelectrolytes, possibly owing to the interaction of 

PAH with the phosphate group of the lipid. According to ref (76). strong interaction of polyelectrolyte 

primary amino groups of PAH with phosphate can lead to phospholipid dehydration. The higher intensity 

of the peaks of the lipids indicates the presence of less water. Hence our results are consistent with a 

dehydration of the system.  
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Figure 8: Top) IR spectra of IA and AAm monomers, and of the PAAm and PAAm-co-IA hydrogel. 

Bottom) FTIR-ATR spectra for PAAm (black), PAAm-supported PAH-(PSS-PAH)2 (blue) and lipid 

on the hydrogel-supported PAH-(PSS-PAH)2 (red). The lines give the peaks that have been used to 

identify the functional groups of the system components.  
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3.6 Adsorption studies of albumin on supported lipid bilayers 
To understand the adsorption mechanisms of albumin on a lipid bilayer, various reference 

systems were investigated. Figure 9 shows representative results for the adsorption of lipid vesicles 

followed by albumin adsorption on (a) silica, and (b) PAH-(PSS-PAH)2 directly adsorbed to silica. The 

Voigt model was used to model the results with a density of albumin assumed to be 1.32 g/cm3. The 

sorption of albumin in the hydrogel is shown in the supplementary information, and it completely differs.  

Figure 9 shows the completely different adsorption kinetics of albumin on the compared 

substrates. Upon lipid bilayer formation on silica, the adsorption of albumin is strongly hindered; only a 

small increase in adlayer thickness is detected (adsorbed mass <80 ng/cm2, <0.5 nm). Hydration repulsion 

possibility explains the hindered adsorption.  

On silica-supported PEM, albumin adsorption is significant and the adlayer thickness is ~18 nm, 

i.e. it is smaller than the vesicle size. We first evaluate the vesicle adsorption: the characteristic well was 

also not observed (figure 22 in SI) which means that either the vesicles do not rupture at the interface, or 

the rupture is immediate after adsorption. The change in frequency is ~-90 Hz and that of the dissipation 

is ~2x10-6 and it remains constant. A simple calculation demonstrates that the measured change in 

frequency (~90 Hz) is smaller than the expected change for full coverage with vesicles: If one considers 

vesicles with 32 nm radius, a molar mass for the phospholipid equal to 770 g/mol and a surface area per 

phospholipid of ~0.85 nm2, a full coverage of the QCM sensor with vesicles would lead to an adsorbed 

mass of 3.26 µg/cm2, or -184 Hz. This value includes the mass of water within the vesicle. Hence, the full 

coverage of the PEM-fluid interface with vesicles can be excluded. If the interface would be populated by 

vesicles, only a 50% of the surface area would be covered by vesicles. 	  
Figure 10 shows the adsorption of vesicles and of albumin on various PEM-hydrogel complexes. 

In absence of vesicle adsorption, albumin adsorption is significant, as expected for PAH according to ref.	  
(83): an average adlayer thickness of 30 nm of albumin is obtained by means of the Voigt model. We 

assume the results will be similar if the PEM is grafted directly to the silica substrate. On the PEM-

adsorbed to silica, the albumin adlayer is only ~5 nm indicating the hindered adsorption of albumin by the 

lipids. As the reduction is much larger than ~50%, we thus conclude that vesicle rupture did take place on 

the silica-supported PEM. The silica-supported PEM is covered by a defective lipid bilayer, and albumin 

adsorbs in the defects. The larger thickness of the lipid bilayer (~18 nm) on the silica-supported PEM 

results from the significantly larger surface area of the PEM-hydrogel, i.e. to surface roughness. For 

rough substrates, there are more appropriate models than the Voigt mode, and therefore the modelling 

results are considered to be a rough estimation.  
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Figure 9: Thickness of the adlayer on a) a silica substrate and b) PAH-(PSS-PAH)2 calculated with 

the Voigt model. The first change in adlayer thickness occurs during vesicle adsorption, and the 

second change is caused by albumin adsorption.  

 

Figure 10: Adlayer thickness of albumin on PEM-hydrogel, and on a similar system after vesicle 

adsorption calculated by the Voigt model. The layer-by-layer formation and the adsorption of the 

vesicles are not shown in the diagram.  

Finally, the thickness of the albumin adlayer on the hydrogel-supported PEM after vesicle 

adsorption is smaller than that in absence of lipids (figure 10). The reduction in albumin adsorption is, 

however, much smaller than on the silica-supported PEM, which suggests that the lipid bilayer, if it form, 
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has more defects. For attachment and rupture of the lipid vesicles, the affinity towards the support should 

be large enough – in our work through electrostatic interactions- whereas the formation of the continuous 

membrane requires local rearrangements of the lipid coverage, for which lateral mobility of the lipids 

along the surface of the support is an essential condition. It is possible that the mobility introduced by the 

hydrogel support enhances the lateral mobility of the vesicles so much that vesicle fusion is hindered, 

leading to a higher amount of defects. AFM imaging will be used to demonstrate the presence of the 

bilayer on the hydrogel-supported PEM. Future work will focus on mixtures of phosphatidylcholine and 

phosphatidylserine, as it has been shown to promote the lipid bilayer formation (76).  

3.7 Nanoindentation by Colloidal Probe AFM  
Sneddon’s model	   (84) can be used to characterize the mechanical properties of viscoelastic 

polymers in AFM nanoindentation experiments provided certain conditions are fulfilled (85). Substrate 

effects need to be avoided by limiting the penetration depth to a maximum of 10% of the unperturbed 

film height. If δ<<R, the Sneddon model	  (86) for a rigid spherical indenter against a planar linear elastic 

material is equivalent to the well-known Hertz equation: 

! =
4
3

!
1 − !!

!!.!!!.! 

where E and v are the elastic modulus and the Poisson’s ratio of the material (Poisson ratio = 0.45), 

respectively, and E/(1-ν2) gives the reduced elastic modulus Er. A better estimation of the contact 

geometry for very compliant materials, as hydrogels, is obtained by Segedin’s approach	   (86)	  but this is 

outside the scope of the present study. Short-term viscoelasticity can be characterized through an 

indentation-rate-dependent reduced elastic modulus Er (so-called effective elastic modulus) that is 

obtained from the force curve upon loading, during which Er remains constant. By increasing the 

indentation rate, the viscoelastic effects are minimized. Under these conditions the force still scales with 

δ1.5as given by Eq. (1). Other power laws for the force as a function of the penetration depth are obtained 

depending on indenter geometry (84).  

Nanoindentation experiments by colloidal Probe AFM on PAAm hydrogels and lipid bilayers 

were performed in water at different indentation rates between 0.1 µm s-1 and 50 µm s-1. The maximum 

penetration depth δmax was limited to 1% of the equilibrium hydrogel (~200 µm) to avoid substrate effects 

(85). Representative curves for PAAm in water are depicted in figure 11 at an indentation rate of 0.2 µm 

s-1and 48 µm s-1. The deformation is well described by the Hertz equation with a constant reduced elastic 

modulus for the whole indentation range of ~2 µm (regression correlation R2>0.99). At least 20 

successive compressions at three different spots on each hydrogel were indented at each speed. Hydrogels 

were less than 15 days old.  
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Figure 11: Indentation at a single position at a) 2 µm/s and b) 48 µm/s. The dotted line is the fitted 

Hertz model. Radius of the silica microsphere ~ 5 µm. 

Figure12 shows the elastic moduli of neutral PAAm gels inwater as a function of the indentation 

rate (average values and standard deviations). The increase in elastic modulus with indentation speed is 

weak but it demonstrates the viscoelastic nature of the hydrogels. The estimated elastic moduli range from 

2-3.5 kPa as expected (87). There is an increase in the elastic modulus of the gel with speed; no influence 

of the maximum applied load below 40nN was detected (not shown).  

Figure 12: Young modulus as a function of the speed for the PAAm hydrogel (Poisson ratio=0.45) at 

the maximum load of 40nN. Blue, red and green points hydrogel were 1 day, 1 day and 15 days old, 

respectively. 
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Indentation-rate-dependent elastic moduli are characteristic of viscoelastic materials. When 

polymer films are confined between two surfaces, the time-dependent (or speed-dependent) response can 

be attributed to different mechanisms, each with a characteristic relaxation time	  (88). First, solvent has to 

flow out through or into the network of increasingly compressed gels; second, the coils themselves must 

reorder as they become compressed or uncompressed.  

Alternative time-dependent processes, such as the formation of segment-segment or segment –

counter surface interactions can occur, and contribute to the pull off and hysteresis. While desorption of 

polymers would also lead to a time-dependent response, the reproducibility of the results along the course 

of each experiment demonstrated the system did not changed. Successive indentation measurements 

overlap well and lead to a small standard deviation, meaning that there is no delayed or long-term 

viscoelastic recovery (86). The standard deviation is smaller than discrepancies observed between 

hydrogels and different positions (see different curves in figure 13). 
The results for the PEM adsorbed onto the hydrogel are shown in figure 13. The difference 

between the elastic moduli of the pure PAAm hydrogels and that of the hydrogel-supported PAH-(PSS-

PAH)2 is not statistically significant. The weak viscoelasticity is preserved after adsorption of the 

polyelectrolyte multilayer.  

 

Figure 13: Comparison between the elastic moduli of two PAAm hydrogels after the layer-by-layer 

formation of PAH-(PSS-PAH)2 with that of the PAAm hydrogel before the layer-by-layer 

adsorption at a maximum load of 20 nN. Both hydrogel 1 and 2 were 1 day old. 
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The elastic moduli of the lipid bilayer on a hard silica substrate were determined in preliminary 

experiments but the experiments failed most likely because of roughness of the colloidal spheres. As the 

colloidal sphere radius is much larger than the height of the adlayer it is better to determine the elastic 

modulus with a sharp tip. The elastic modulus is expected to be in the MPa range (89,90), i.e. at least 3 

orders of magnitude higher than that of the hydrogel supported polyelectrolyte multilayer. The outlook of 

this work will be to combine the hydrogel-supported PAH-(PSS-PAH)2 with the lipid bilayer and 

determine the resulting Young modulus and viscoelasticity, if present, by colloidal probe normal force 

measurements. 

3.8 Friction measurements  

When a load is applied, the colloidal spheres indent the gel, the deformation is large, and thereby 

the contact area. The contact radius at the normal load of 5 nN is ~1.5 µm assuming the Hertz model. To 

assure the lateral motion of the gel, the sliding distance needs to be larger than the contact radius. One can 

identify that the tip is not moving on the shape of the friction loops as demonstrated previously for 

polymer brushes (91). Thus, the sliding distance in all our experiments was at least 7.5 µm. Figure 14 

shows friction vs. applied normal load at constant sliding speed of 3 µm/s for the PAAm hydrogel in 

water. The good agreement between the measurements at different positions suggests that the gels are 

homogeneous. Larger differences are obtained between gels synthesized under similar conditions with 

slightly different ages.  

Figure 14: a) Friction vs. load for the PAAm hydrogel at the sliding speed = 3 µm/s, and sliding 

distance = 15 µm. B) Friction vs. sliding speed at an applied load of 5 nN. The minimum sliding 

distance is 7.5 µm. Data from 1 and 6 days old hydrogels. Radius of sphere = 6 µm.  
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Figure 15: Friction vs. load for the hydrogel-supported PAH-(PSS-PAH)2. Sliding speed = 3 µm/s, 

sliding distance = 15µm. Radius of sphere = 6 µm. The hydrogel was 1 day old. 

Figure 15 shows results for the hydrogel-supported PAH-(PSS-PAH)2. Interestingly the friction 

force is reduced by a factor of ~5, although the elastic moduli of hydrogel and hydrogel-supported PEM 

are similar. This can be explained by the different fluidity of the PEM film compared to the hydrogel. 

Water can flow through the polymer network in the polyelectrolyte multilayer much easier than through 

the gel network and this dissipation mechanism aids in reducing friction. This is consistent with our 

QCM-D results that prove that the hydrogel is much stiffer than the polyelectrolyte multilayer.  

Finally, figure 16 shows preliminary results of the friction studies for the silica-supported lipid 

bilayer. The friction force has not been calibrated, and therefore the values are given in arbitrary units. 

We expect a different dissipation mechanism for the lipid bilayer as it is only ~ 3nm in thickness, 

relatively stiff (~20 MPa) and the water content is very low. The very different friction behavior of the 

lipid bilayer on a hard substrate is demonstrated in figure 16. The load-dependent friction force shows 

two different regimes, low and high friction regimes, which is usually explained by a change in 

dissipation mechanism. We hypothesize that in the low friction regime the slip plane is located between 

the two single lipid monolayers and sliding proceeds with very low interaction between the monolayers. 

At higher load, stronger interactions between the hydrocarbon chains cause an increase in dissipated 

energy, as the chains slide past each other, leading to an increase in friction. Another explanation is that 

the lipid bilayer exhibits a transition from fluid-like to solid-like at higher applied loads and confinement.  
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Figure 16: Friction vs. load for the silica-supported lipid bilayer at a maximum load of 200nN (a) and 60 nN 

(b) and a sliding speed = 5 µm/s, c) Friction vs. speed for the silica-supported lipid bilayer at two different 

loads: 31.8 nN is still in the low friction regime and 96 nN is in the high friction regime. Minimum sliding 

distance = 5µm. Radius of sphere = 5µm. 

Moreover both diagrams show a hysteresis between friction force upon increase and decrease in 

load. Thus, there is dissipation of energy or in other words, a change of properties of the lipid bilayer, that 

is not completely reversible within the time scale of the experiment. This is observed in lipid bilayers at 

different maximum loads in figures 16a and 16b. The two friction regimes are also pronounced in the 

friction vs. speed, as shown in figure 16c, where each curve was obtained at a different load. Figure 16 

also show that the speed does not induce any relevant change of response of the system. Future work will 
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include the investigation of the influence of the soft support, i.e. the hydrogel-PEM complex, on the 

nanomechanics of the lipid bilayer, as well as the influence of the lipid bilayer on the nanomechanics of 

the hydrogel.   
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CONCLUSIONS 
	  

Studying the interactions between model cells and aqueous environment is applied to investigate 

cytotoxicity. In contrast to the classical bilayer-solid substrate model, cell membrane model consisting of 

a polymer-supported lipid-bilayer is a relatively new but very promising approach. The novelty of this 

work has been to use a hydrogel as the support for the lipid bilayer. Some of the advantages are to provide 

a longer travel path for particles to diffuse in and to mimic better the mechanical properties of living cells; 

both of them can be tuned upon selection of proper synthesis parameters. In this project, PAAm hydrogel 

was selected as the polymer cushion. By adjusting the concentration of monomer and crosslinker, we 

were able to adjust the PAAm hydrogel to stiffness about 3 kPa, which is similar to that of real cells.  It 

was found that formation of the lipid bilayer on the hydrogel is a very challenging process, likely owing 

to the strong hydration of the hydrogel. The best approach to promote the adsorption of the lipids on the 

hydrogel was a layer-by-layer method with alternating cationic and anionic polyelectrolytes. Four to five 

polyelectrolyte layers consisting of PAH and PSS, positively and negatively charged, respectively, were 

adsorbed alternatively on PAAm hydrogel and the formation of the PEM was characterized by several 

techniques. Having PAH as top layer and negatively charged lipid vesicles, the adsorption of lipids on the 

hydrogel-supported PEM was driven by electrostatic interactions. Adsorption was enhanced by calcium 

ions in solution which indicates that despite the PAH top layer, there was a high surface density of 

sulfonate from the layer below. PAH had a much smaller MW than PSS which might be responsible for 

the excess of sulfonate. It is suggested to test the feasibility of other cationic polymers, with higher MW 

in future. 

It is to note that a charged hydrogel (PAAm-co-IA) as cushion was also studied here but the 

results were not satisfactory. The charge density within the hydrogel enhanced polyelectrolyte absorption, 

among others, and a very pronounced collapse and swelling were observed; besides it was very 

challenging to graft the PAAm-co-IA hydrogel to the substrate; all this made difficult to get high-

accuracy QCM data and their evaluation. The use of other charged hydrogels might be an option. This 

requires further research, which is outside the scope of this work.  

Formation of lipid bilayer on silica surface is well known. Lipid vesicles first adsorb as intact 

vesicles. When the substrate is covered by a certain amount of lipid vesicles, they rupture and fuse into a 

bilayer. The successful formation of a lipid bilayer was demonstrated by QCM-D measurements and the 

full coverage of the silica-coated QCM sensor was confirmed by AFM imaging. These results were 

compared to the kinetics of adsorption of the lipid bilayer on a hydrogel-supported PEM. Although the 

frequency did only continuously decrease, the small peak in dissipation supported the formation of the 

lipid bilayer on the hydrogel-PEM complexes. Albumin adsorption was consistent with a partial coverage 
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of the hydrogel-supported PEM with a lipid bilayer. AFM imaging of the PAAm hydrogel-PEM 

complexes after lipid adsorption will be performed in close future to fully verify the formation of the lipid 

bilayer. These measurements are very challenging, as they imply imaging soft matter in liquid medium.  

AFM nanoindentation and lateral force microscopy were performed to investigate the mechanical 

properties of different systems: (a) PAAm hydrogel, (b) PAAm hydrogel-supported PEM, and (c) lipid 

bilayer. The viscoelastic behavior of the PAAm hydrogel and hydrogel-supported PEM was demonstrated 

by the slight increase of the Young modulus with the indentation rate at relatively high loads (20- 40 nN). 

This result indicates that hydrogel mimic better the viscoelastic behavior of cells, than polymer films of a 

few nanometers do.  The friction between the colloidal sphere and hydrogel increased with applied load. 

This is usually caused by a dehydration of the system, which enhances interactions between the polymer 

chains. The increase in friction with speed is explained by an increase in the number of physical bonds 

that form with time with increase in speed. The agreement between measurements taken at different spots 

on PAAm hydrogel suggests that the gels are homogenous. While the elastic modulus of hydrogel-PEM 

complexes is similar to that of the PAAm hydrogel, the response upon shear was very different. 

Preliminary results show that the presence of the PEM layer strongly reduces friction force, most likely 

because of the high fluidity of this layer compared to the gel. The fluidity of the hydrogel is much lower, 

despite the large amount of water, most likely caused by the complex pore network that difficult the flow 

of water, while it is easier within the PEM . For the lipid bilayer on a silica support low and high friction 

regimes were identified, perhaps owing to a transition from fluid-like to solid-like of the lipid bilayer 

induced by the applied load, The question that remains to be answered is the mechanical behavior 

resulting from the combination of the hydrogel-supported PEM and the lipid bilayer. For that purpose, 

nanoindentation and lateral force microscopy measurements will be performed with both sharp tip and 

silica microsphere on the hydrogel-supported PEM after lipid adsorption in close future.  

The proposed novel model cell is expected to mimic the nanomechanic behavior of cells with 

more accuracy than other existent model systems to date. This soft composite can simulate the mechanical 

response of cells of living organisms, and therefore a fundamental understanding of the nanomechanics 

under different conditions will be of extreme value.. The hydrogel properties (e.g. stiffness, pore size) can 

be tuned, as long as it allows the formation of a polyelectrolyte multilayer for the lipid adsorption.  

Decoration of this lipid bilayer with proteins and polysaccharides should be also possible, and therefore it 

offers a great flexibility in the design of model systems. It is also expected that this system will be applied 

to investigate the interactions with the aqueous environment, e.g. with nanoparticles, ions, heavy metals, 

virus, proteins, etc. as a platform to investigate cytotoxicity.  
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APPENDIX: SUPPLEMENTARY INFORMATION 

A1. QMC results for a stiffer hydrogel 

It has been reported that hydrogels age and become stiffer with time after synthesis. We have observed 

that 1-day old hydrogels were slightly stiffer than fresh made hydrogels, and this influenced the 

collapse/swelling behavior significantly in the adsorption measurements. The decrease in dissipation 

during the adsorption of the 1st layer of PSS on 1d-hydrogel was reduced, as shown in Figure SM1 b). 

The subsequent adsorption results are consistent with the results obtained for fresh hydrogels (Figure 

SM1 a). The results of QCM and TInAS experiments discussed in this thesis correspond to freshly 

prepared gels.  

 

Figure 17: QCM-D data (frequency and dissipation) for the formation of (PSS-PAH)2 on two PAAm 
hydrogels: a) freshly prepared and b) 1 day old.  
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A2. Lipid vesicles formation on silica sensor 

	  
Figure 18: Left) Representative changes in frequency and dissipation (11th overtone), and right) Adlayer 

thickness calculated with the Voigt model, during vesicle adsorption and lipid bilayer formation on a silica 

substrate. The different kinetics results from the different vesicle radius (32 nm in blue and 130 nm in black). 

Once the vesicle surface coverage reaches a critical concentration, the vesicles spontaneously rupture and fuse 

to form a continuous lipid bilayer. The frequency increase is due to lipid bilayer displacement of adsorbed 

vesicles and the buffer released from within the vesicle interior. A complete bilayer is characterized by a dip 

in Δf and peak ΔD with time, resulting in a final Δf of ~−26 Hz and a ΔD of ~0.2*10^(-6). Assumed density 
for the lipid bilayer = 1.5 g/cm3.  

A3. Albumin adsorption on PAAm hydrogels 

Sorption of a model protein, bovine serum albumin (BSA), was also studied on the porous PAAm 

hydrogels. Albumin can diffuse into the gel and absorb within the pores (absorption), and also adsorb at 

the hydrogel/fluid interface (adsorption). QCM and TInAS did not show similar sorption kinetics but the 

final adlayer thickness was similar (~3.5 nm). This is ~2x the optical thickness of albumin on a bare silica 

substrate, which demonstrates the larger surface area of the hydrogel owing to the porosity and to surface 

roughness). The origin for the discrepancy of the kinetics lies in the measuring principle, as described 

below.  

In the QCM experiments, the sorption kinetics is initially very fast and after ~2 minutes, the increase in 

adlayer thickness is slow, most likely caused by a small diffusion of BSA into the hydrogel. After ~90 

minutes the solvent (hepes) is injected into the cell to remove weakly adsorbed albumin but the mass 

remained constant.  
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Figure 19: Left) Change of frequency and of dissipation (x10-6) for the 7th overtone during sorption of 

albumin in 10 mM hepes on freshly prepared PAAm hydrogels. The Voigt model was not used owing to the 

negative dissipation that results from the diffusion of albumin into the gel. Results from three measurements 

on different gels (freshly prepared) are shown here. Right) Adlayer thickness of albumin calculated with the 

Sauerbrey equation (density = 1.32 g/cm3). The synthesized gels vary in their properties as shown in the 

different kinetics. The thickness of the gels in QCM experiments is  ~4 µm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Optical thickness of the albumin adlayer during sorption onto PAAm hydrogel in hepes 10 mM, 

assuming a constant refractive index of n=1.42 for albumin and n=1.35 for the gel. There is a collapse after 

the initial adsorption caused by a osmotic pressure gradient: upon albumin sorption, the hydrogel becomes 

effectively charged. The collapse of the gel brings the system to the new equilibrium swelling state. The dry 

thickness of the gels in TInAS experiments is ~187±9 nm, and the real thickness ~6 µm. 

TInAS measurements showed an initial increase of the optical thickness, followed by a decrease, and a 

final gradual increase under similar conditions to the QCM experiments. We explain this trend through 

the superposition of adsorption and collapse of the hydrogel. TInAS is not sensitive to the loss of water, 

but the collapse leads to an increase in refractive index, thus, to a change in the optical path ∆(!"). As we 
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assume the refractive index of the gel to remain constant, the adlayer optical thickness decreases. Such 

collapse was also clear in QCM experiments as the dissipation became negative, indicating that the 

substrate became stiffer. The collapse of the hydrogel after albumin sorption is caused by a gradient in 

osmotic pressure. Although the hydrogel PAAm is neutral and therefore not sensitive to changes in ionic 

strength, upon albumin sorption the hydrogel becomes “effectively charged” and thereby it responds to 

the electrolyte concentration in the solution. To further demonstrate this, the response of the hydrogel 

after albumin sorption to changes in ionic strength was also investigated.   

A4. Collapse and swelling behavior of hydrogels-albumin complexes owing to osmotic pressure 

gradients  

The sorption of albumin in water differs from that in Hepes, as shown in figure 5. Upon rinsing the 

hydrogel–albumin complex with water, an increase in optical thickness is observed (swelling) to eliminate 

the gradient in osmotic pressure –the high charge density within the gel-albumin complex is reduced by 

an increase in volume. In both systems, a decrease in optical thickness (collapse) occurred when the 

hydrogel-albumin complexes were exposed to CaCl2 solution, owing to smaller charge density within the 

gel compared to the solution. In contrast, no collapse of the hydrogel was observed in CaCl2 solutions at a 

concentration of 1M. 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Measured optical thickness of two PAAm gels in hepes 10 mM (red) and in water (blue) during a) 

absorption of albumin, b) rinsing with the corresponding solvent (time=60 min, hepes and water, 

respectively), and c) gel collapse when exposed to CaCl2 1M.  
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A5. Layer-by-layer formation on silica substrates 
 

 

Figure 22: QCM-D data of frequency and dissipation (7th and 9th overtones) during PEM formation on a silica 

support; the cell was initially rinsed with NaCl solution (500 mM) before flowing polymer solution, which 

lead to a decrease in frequency and increase in dissipation. The changes of dissipation upon rinsing PAH and 

PSS are complex owing to the rearrangement of the polymer chains at the interface upon adsorption. There is 

a strong increase in frequency upon PAH adsorption, which can be induced by partial desorption of PSS and 

loss of water.  This is not observed during the layer-by-layer formation on a hydrogel, demonstrating the 

significant influence of the support on the PEM structure.	  	  

A6. AFM imaging of lipid vesicles on a rough TInAS sensor 

	  
Figure 23: AFM image (contact mode) set point = 1nN of vesicles on a TInAS (Silica) sensor. Sharp 

tip HQ:CSC38/No Al The lipid bilayer cannot be imaged due to the high roughness of the surface. 

The vesicles have a size of ~80 nm. Number density = 10 in 25 µm2 
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