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ABSTRACT

Despite advances in intrusion detection and prevention systems, attacks on networked com-

puter systems continue to succeed. Intrusion tolerance and forensic analysis are required to

adequately detect and defend against attacks that succeed. Intrusion tolerance and forensic

analysis techniques depend on monitors to collect information about possible attacks. Since

monitoring can be expensive, however, monitors must be selectively deployed to maximize

their overall utility. We identify a need for a methodology for evaluating monitor deployment

to determine a placement of monitors that meets both security goals and cost constraints.

In this thesis, we introduce a methodology both to quantitatively evaluate monitor deploy-

ments in terms of security goals and to deploy monitors optimally based on cost constraints.

First, we define a system and data model that describes the system we aim to protect, the

monitors that can be deployed, and the relationship between intrusions and data generated

by monitors. Second, we define a set of quantitative metrics that both quantify the utility

and richness of monitor data with respect to intrusion detection, and quantify the cost asso-

ciated with monitor deployment. We describe how a practitioner could characterize intrusion

detection requirements in terms of target values of our metrics. Finally, we use our data

model and metrics to formulate a method to determine the cost-optimal, maximum-utility

placement of monitors. We illustrate our approach throughout the thesis with a working

example, and demonstrate its practicality and expressiveness with a case study based on an

enterprise Web service architecture. The value of our approach comes from its ability to

determine optimal monitor placements, which can be counterintuitive or difficult to find, for

nearly any set of cost and intrusion detection parameters.
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CHAPTER 1

INTRODUCTION

Intrusion detection and prevention systems have become increasingly sophisticated and ca-

pable of detecting complex, coordinated attacks. Despite such advances, attackers continue

to successfully compromise networked computer systems [1, 2, 3]. Attackers and defend-

ers remain caught in the cat-and-mouse game of modern computer security. As existing

systems are patched and updated and new systems are developed, the space of exploitable

vulnerabilities changes. Attackers find new vulnerabilities in new and updated systems and

exploit vulnerabilities that are not yet known to defenders (otherwise known as zero-days)

in existing systems. At the same time, defenders detect attacks, often well after the fact,

and implement patches to close existing vulnerabilities. Security researchers also devise new

mechanisms for protecting systems that eliminate entire classes of attacks. However, at-

tackers and often other security researchers invent clever workarounds to those mechanisms.

For example, when operating systems began implementing executable space protection to

combat buffer overflow attacks, attackers eventually devised Return-Oriented Programming

(ROP) to circumvent the protections [4]. It suffices to say that intrusion prevention and de-

tection are not on their own enough to secure computer systems; mechanisms for both further

information-gathering and online response are required to adequately deal with attacks that

succeed.

Intrusion tolerance, which emerged from the field of fault tolerance, recognizes that at-

tackers will be able to infiltrate computer systems [5]. Instead of attempting to prevent all

possible intrusions, intrusion-tolerant systems anticipate that some intrusions will succeed

and instead tolerate the intrusions, triggering response and recovery mechanisms that pre-

vent the intruder from causing a system failure or a critical security breach. We believe that

the correct approach to securing large, distributed systems is to employ elements of intru-

sion tolerance, not only preventing as many attacks as possible, but also detecting successful

attacks as early as possible and taking response actions that can provide more information

about intruders and prevent them from causing catastrophic damage to the system. Even

with the absolute best intrusion tolerance system, however, it is impossible to ensure that

attackers are never able to break into the system undetected. Security administrators must
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also perform forensic analysis on logs to detect intrusions after they have occurred and iden-

tify the exploited attack vectors, which can then be mitigated, more closely monitored, or

closed.

We identify the following components of intrusion tolerance: collection of data about the

system that might provide evidence of intrusions, fusion of the data to determine what

attacks are taking place in the system, and selection and execution of a response action

based on the observed state of the system and perceived attack actions. Data collection

is foundational among these components, as fusion and response both depend on proper

information about the system.

Security data collection in computer systems is performed by means of various types of

sensors, which we refer to as security monitors or simply monitors. Examples of such mon-

itors include host-level intrusion detection systems, such as antivirus suites; network-level

intrusion detection systems; firewalls; application logs; system event logs; and network flow

logs. It is important to note that different monitors generate different types of information,

as a result of which, the utility of the logs may depend on the algorithms that are used to

analyze the data. Ultimately, however, for intrusion tolerance and forensics analysis tech-

niques to be effective, it is essential that logs be correct and contain adequate information

about events that may take place in the system [6, 7].

In practice, monitor deployment is generally conducted by a system administrator, who

either deploys monitors based on domain knowledge and expected monitoring needs or uses

existing commercial coordinated monitoring and analysis tools that in turn deploy monitors.

The simplest approach monitor deployment is to deploy as many monitors as possible and

use all generated data during analysis. However, even for a relatively restricted domain such

as Linux system resource monitoring, the list of available monitors is overwhelming. For ex-

ample, ServerDensity provided a list of over 80 Linux monitoring tools [8], which represents

just a sampling of tools available. Many of the monitors provide duplicate functionality and

differ just in presentation. It is unclear what minimal set of tools might provide adequate in-

formation about system resources, or in the event of compromise (by a rootkit, for example),

which tools, if any, would be trustworthy. Furthermore, storing all of the data for future

forensic analysis or large-timescale intrusion detection would be impractical. Extending the

aforementioned problems to large, diverse, and complex systems such as enterprises makes

deploying monitors in such a manner impractical and inefficient.

It might seem appropriate, then, to rely on commercial off-the-shelf (CotS) packaged

monitoring and analysis solutions. Such tools are often referred to as Security Information

and Event Management (SIEM ) systems, and for domains such as enterprise systems or

cloud data centers, many such tools exist [9, 10, 11, 12].
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SIEM systems offer a wide list of features, including compliance with federal regulations,

consolidated management of monitoring, and automated monitor reconfiguration. Such tools

are attractive because they ensure compliance and offload all monitoring responsibilities to

the solution provider. However, it is again unclear how the tools differ in functionality, or

what kinds of weaknesses remain in the monitoring and fusion performed by the tools (in the

case of compromise of monitors, for example). The algorithms used by the tools to deploy

monitors, perform detection, and generate alerts are proprietary, and important information

could be hidden by the filtering performed by said algorithms. Overall, there is no widely

applicable, quantitative methodology for evaluating the effectiveness of monitoring tools.

In addition to the issues just mentioned, one must take into account the cost of monitoring.

Monitoring infrastructure can be expensive to purchase and maintain, and organizations

generally have limited log storage capacity. It is not possible to instrument one’s entire

system or store all data indefinitely; monitors must be selectively deployed based on cost

and utility tradeoffs.

Constraints on monitor placement may come from many sources. Budgetary limits, for

example, may be at odds with the operational goals of detecting as many intrusions as

possible or enabling proper a posteriori analysis of logs. There is further a tradeoff between

the cost of data collection and the richness and quality of the data collected. Hence, there

is a need for a methodology for evaluating monitor deployment to determine an optimal

placement of monitors that meets security goals and requirements.

It is often said that “you can’t improve what you don’t measure.” Security metrics provide

a means for measuring properties of computer security systems. According to the National

Institute of Standards and Technology (NIST) [13] and the SANS Institute [14], security

metrics are seen as an important factor in evaluating the effectiveness and efficiency of

security architectures. We believe that to holistically evaluate monitor placement, it is

necessary to define a set of quantitative monitor deployment metrics.

1.1 Contributions and Organization

This thesis makes several contributions, as described below.

• To begin to solve the problem of monitor placement, we first define a system and

data model that describes the system we aim to protect and the monitors that can

be deployed in the system. We represent the system as a graph of networked nodes

that contain both system resources on which monitors can be deployed and standalone
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monitoring resources. Since the ultimate goal of intrusion detection is to detect attacks

on a system, we relate our metrics and deployment methodology to the attacks that

we would like to detect. We represent monitors as sources of evidence of attacks in the

system. Our data model provides a mapping of monitor information to attacks that is

motivated by actual algorithms and techniques that would perform intrusion detection

using the collected data.

• Second, we define a set of utility and cost metrics that can be used to characterize the

ability of a deployment of monitors to meet intrusion detection goals and to capture

the cost associated with monitor deployment. The goal of the metrics is to provide

quantitative means for evaluating the information provided by monitors relative to the

attacks to be detected in the system. We provide the intuition and motivation behind

each of the metrics and define how they would be computed. While our set of metrics

is by no means complete, it provides a baseline for quantitative evaluation of monitor

placement.

• Third, we formulate a method to determine the optimal placement of monitors using

our metrics and data model that is based on the tradeoff between intrusion detection

requirements and cost constraints. We first introduce a set of weights and constraints,

and show how a practitioner can use them to specify intrusion detection goals and

requirements. We then consider two different types of cost constraints, and devise two

integer programs that can be solved to find an optimal deployment of monitors for a

given set of requirements.

• Finally, we demonstrate the use of our optimal monitor deployment methodology

through a case study in which we build a mock enterprise Web service. We imple-

ment all components of our model and describe a method to programmatically extract

indicators from logs collected from monitors, which we implement for the monitors in

our case study. To evaluate our approach, we construct a series of intrusion detection

scenarios and show how a practitioner could represent the intrusion detection require-

ments and goals for the scenarios within our model. We show that for each of the

scenarios, our methodology is capable of determining the optimal monitor placement,

some of which are not intuitive.

The rest of this thesis is organized as follows. Chapter 2 provides a survey of research

that has been done in determining optimal monitor or IDS placement in networked systems

to maximize intrusion detection ability or minimize attacker capability. In Chapter 3, we

describe our system and data model, which we use to represent intrusions, monitors, and
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the evidence monitors provide of intrusions, and the fundamental assumptions that we make

in our model. We then define our core set of monitor deployment metrics in Chapter 4.

Subsequently, in Chapter 5, we define the representation of intrusion detection goals within

our model, and we present our optimization equations that can optimize monitor deployment

based on the intrusion detection requirements. Putting all of the pieces together, we illustrate

how our overall methodology can be used to deploy monitors with the case study experiment

in Chapter 6. Finally, we conclude and identify areas of ongoing and future research in

Chapter 7.
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CHAPTER 2

RELATED WORK

2.1 Industry Approaches

In practice, monitor deployment is generally done by a system administrator, who either

deploys monitors based on domain knowledge and expected monitoring needs or uses existing

commercial coordinated monitoring and analysis tools that in turn deploy monitors.

Some organizations, such as Cisco and the SANS Institute, publish strategies for the de-

ployment of network IDSes [15, 16, 17]. The strategies, however, provide high-level guidelines

and suggestions rather than formal approaches to IDS placement, overlooking the theoreti-

cal soundness of the deployment. For example, in [15], Pappas suggests not to deploy inline

IPSes on high-throughput links, to deploy IDSes and IPSes in pairs, and to use penetration

testing to evaluate one’s IDS deployment. In [17], Carter makes recommendations such as

placing an IDS outside the firewall and placing IDSes between internal groups on the net-

work. Neither Pappas nor Carter provides a sound, quantitative mechanism by which to

evaluate IDS placements in terms of their ability to detect intrusions.

Many commercial off-the-shelf (CotS) packaged monitoring and analysis solutions exist

for domains such as enterprise systems or cloud data centers. Prominent vendors include

NetIQ [9], IBM [10, 18], Symantec [11], Tripwire [19], and Splunk [20]. Such tools control

monitor deployment, monitor configuration, and log management behind the scenes, and

perform monitor data fusion and intrusion detection to provide a security administrator

with high-level alerts about potential threats to the system. Other security information

and event management (SIEM) and incident forensics tools offered by the same vendors

give an administrator the ability to perform forensic analysis by retracing the actions of an

attacker through collected logs. SIEM tools and solutions provide a long list of features, and

are particularly attractive because they ensure compliance with data privacy and security

regulations and offload all monitoring responsibilities to the tool, alleviating the burden for

a security administrator.

As an example of the features provided by SIEM tools, consider the IBM QRadar Security
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Intelligence Platform [18]. The suite offers a Log Manager tool that collects, analyzes, and

archives log data; a SIEM tool that consolidates and normalizes log data across the entire

network and correlates the data to detect intrusions; a Vulnerability Manager tool that dis-

covers new vulnerabilities and prioritizes their mitigation; and an Incident Forensics tool to

trace the step-by-step actions of an attacker and dig into logs to conduct forensic investiga-

tion of potential malicious network activity. All of the tools can work in tandem to perform

coordinated monitoring, intrusion detection, and response for a security administrator.

However, a significant issue with industry SIEM tools is that the algorithms behind their

operation are closed-source and proprietary, so it is not possible to understand how the tools

differ in functionality or what intrusion detection guarantees the tools provide. Since the

monitoring performed by the tools is also hidden from the administrator, it is not possible to

evaluate the cost-effectiveness of the monitoring or efficiency of the algorithms performing

intrusion detection. As a further consequence, it is not possible to integrate data from

additional monitors or different SIEM tools together to improve the intrusion detection

capabilities of the tools. We believe there is a need for a widely applicable, quantitative

methodology for evaluating the effectiveness of monitoring tools and determining optimal

monitor deployments based on a security administrator’s unique constraints and intrusion

detection requirements.

2.2 Monitor Deployment Literature

Interest in the topic of resource-limited security monitor and intrusion detection system

(IDS) placement and evaluation has increased in recent years. The research literature in

the area largely follows three tracks: placement based on maximizing detection using attack

graphs, placement based on game-theoretic considerations, and placement based on ensuring

security policy adherence of information flow graphs.

2.2.1 Attack Graph-Based Monitor Deployment

Attack graphs have been used extensively in the literature to describe attacks and their

relation to monitors [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Attack graphs model

attacks in terms of the component attack stages that can be detected by monitors and

IDSes. The attacker starts in one of multiple initial states in the graph, where the intial

states represent the attacker’s starting capabilities and level of access to the system. Through

actions in the system, such as exploitation of vulnerabilities or reconnaissance actions, the
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attacker traverses through connected states in the graph to increase its capabilities and

access to the system. The attacker’s goals are represented as a set of target states in the

graph. A single successful attack in an attack graph would be represented as a single path

in the attack graph leading from an initial state to a target state. As attack graphs describe

attacks in stages of execution that can be detected incrementally, they provide an intuitive

method for modeling intrusions in a distributed system.

Attack graph formalisms can largely be categorized into two types. In the first, the

nodes of the graph represent the state of the entire system, and edges represent actions the

attacker could take to change system state. Examples include the model-checking-based

attack scenario graph presented by Sheyner et al. [21], the network attack graph used by

Jajodia et al. in their Topological Vulnerability Analysis tool [27], and the attack graph

generated by the tool developed by Swiler et al. [29]. In the second, the vertices of the

graph represent logical attack stages or attack conditions, and the edges represent causal or

precondition-postcondition relationships between the nodes. Examples include the exploit

dependency graph defined by Noel et al. [22], in which vertices are exploits and edges are

dependencies between exploits; the Correlated Attack Modeling Language (CAML) defined

by Cheung et al. [24], in which vertices are attack steps and edges are inferences that can

be made given attack steps and monitor information to detect subsequent attack steps; and

the attack execution graph used by LeMay et al. in ADVISE [23], in which nodes represent

many properties of an attacker’s behavior, including attack steps, attack goals, attacker

knowledge and skill, and attacker access to the system, and edges represent dependencies

between nodes.

Many researchers have proposed methods for determining monitoring requirements or

hardening measures from attack graphs. Sheyner et al. [21] define an attack scenario graph

in which paths in the graph represent exploits that can be performed between nodes in the

system network graph. Within their formalism, preventing exploits from being performed

removes edges from the graph, thus making some attack goals impossible to achieve. There-

fore, the authors attempt to find the minimal and minimum sets of attack steps that must

be blocked to prevent an attacker from reaching his or her objectives.

In CAML [24], Cheung et al. consider how information from different monitors and IDSes

must be correlated in order to detect individual attack steps. They separate attack steps that

can be detected directly from sensors from those that require inference on observed attack

steps, and specify the temporal and prerequisite relationships between different attack steps.

Using their attack scenario graph, the authors construct a scenario recognition engine that

can detect attacks using information arriving from sensors in real time. The authors suggest

the use of their approach to actively tune monitors based on the global view of system
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security provided by the scenario recognition engine, but they do not actually provide such

a method.

Jajodia et al. [28] use their Topological Vulnerability Analysis (TVA) tool to perform a

host of analyses about how changes to a networked system impact its overall security. In

TVA, attacks are represented as paths through an attack graph, where vertices in the graph

represent vulnerabilities and edges represent their interdependencies. Traversal of the attack

graph corresponds to an attacker’s taking attack actions and progressively compromising

components in the system. The attack graph contains topological information, in that each

vertex corresponds to a vulnerability on a given asset, and an edge only exists between two

vertices if an attacker with access to the originating vertex has the capability to perform the

exploit associated with the destination vertex. The authors illustrate their approach and

suggest how it could be used to decide where to invest resources to have the most impact on

system security, or analyze how changes to the system could impact overall risk, but again

do not provide details on how this would work.

Noel et al. [33] use a probabilistic attack graph model to study the problem of resource

allocation to maximize security benefit. The authors use live network scans and vulnerability

database information to populate their topological attack graph model, which is similar in

construction to the one used by TVA, and assign exploit success probabilities to each of the

edges based on publicly available vulnerability scores. The authors then use simulations to

evaluate the return on investment from making different changes to the monitors to determine

which set of changes is cost-optimal. While the authors’ approach makes decisions at a finer

grain than our approach, such as deciding whether or not to block traffic of a specific protocol,

it considers monitoring only at the level of IDSes, when in fact in practice, monitors from

various levels are used to detect intrusions. Furthermore, it does not consider the addition

or replacement of monitors.

Albanese et al. [26] focus on the issue of real-time intrusion detection. The authors use

temporal attack graphs, which incorporate time delays and time windows into the definition

of an attack graph. The authors merge multiple temporal attack graphs, each for a different

attack, into a single temporal multi-attack graph and use an indexing approach to efficiently

update information about which attacks are occurring as IDS alerts and other monitor data

are observed. The authors claim that by doing so, they are able to detect attacks in real-time

from heterogeneous sensors.

The approaches discussed above provide a sense of how a system should be changed in

order to detect or prevent a given set of attacks. They do not, however, consider how

placement of monitors or the types of monitors being deployed affect the data that are being

fed to the intrusion detection algorithms to determine system security state. Considering
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that the intrusion detection algorithms rely solely on the logs generated by monitors to

perform detection, the monitor placement problem is important.

Some researchers have used attack graphs to predictively determine optimal monitor de-

ployments. For example, Noel et al. [31] use TVA attack graphs to model the system and

determine where to place NIDSes to minimize monitor cost and ensure detection ability for

all attacks represented by the attack graph. The authors take advantage of the fact that

the TVA attack graph captures topological information about the progression of an attack

to identify the critical paths through the network an attacker would need to take to accom-

plish an attack. The authors then determine which of a set of available NIDSes should be

enabled to ensure coverage of the attack graph. The authors’ approach neglects the goal

of preemptive or rapid detection, which may be aided by monitor redundancy, and fails to

consider monitors other than NIDSes.

Almohri et al. [32] also attempt to minimize the success probability of attackers, but

they take mobile devices into account. The authors define a logical attack graph that acts

much like a fault tree. Vertices represent system state, attack preconditions, and attacker

goals. An edge between two vertices represents the conditional expected probability of attack

success for one vertex given the probability of attack success of the other vertex. Given

starting vertex probabilities, the overall attack success probability can be determined using

conditional probability. The authors determine monitor cost based on monitor resource

utilization, purchase cost, and code library utilization. They use their model to evaluate

the effects of different security hardening devices, such as firewalls and IDSes, on the overall

attack success probability, and devise a linear program that yields a cost-optimal deployment

of security resources that minimizes attack success probability. Because of the probabilistic

nature of the authors’ approach, they are able to quantify the uncertainty of detection and

consider the effect of unknown attacks, such as zero-days. However, the authors do not

provide a mechanism to represent the cost of a successful attack in the objectives of their

optimization problem. It may be the case that one attack with a low detection probability has

devastating consequences and must be prevented at the expense of detecting other attacks.

The predictive deployment approaches described above do not take into account the effect

of monitor compromise on intrusion detection. Indeed, Noel et al. attempt to minimize

monitor redundancy to achieve a cost-optimal monitor deployment, but they do not consider

how compromise of one of the IDSes on a critical path could eliminate a data source needed

for detection of many attacks. We believe that since intrusions in the system may compromise

the data provided by monitors, it is important to consider compromise in an evaluation of

monitor placement.
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2.2.2 Game-Theoretic Monitor Deployment

Game theory, too, lends itself to modeling of attacker and defender behavior when a system

is under attack. Schmidt et al. [34] attempt to determine an optimal IDS placement strategy

for a defender, assuming a rational attacker. They model the behavior of an attacker and

defender using a two-person, zero-sum, non-cooperative Markov game over a topological

attack graph. Attacker cost is represented as the cost of detected malware, and defender

cost is represented as the cost of missing a malware packet. At any step, the defender is

capable of deploying a packet sniffer anywhere in the network that feeds into an IDS with

perfect detection capability, and the attacker is capable of advancing an attack through the

network. The authors use simulation to show that a defender using their placement algorithm

can drastically reduce the number of malware packets that go undetected. In a realistic

system, however, the defender may be playing against many attackers, each with different

goals, so any placement decisions should optimize over all attacks to detect. Furthermore,

in most cases, because of intrusion detection delay or false negatives, the defender may not

learn of the attacker’s behavior immediately and take response actions before the attacker’s

next move, so this model of attacker and defender behavior is not viable. The authors do

consider the effect of compromise of the IDS, noting that under compromise, the optimal

deployment provided by their algorithm does little to ensure detection of attacks.

Zhu et al. [25] likewise apply game-theoretic principles to attack graphs, modeling at-

tacker and defender behaviors in a zero-sum stochastic game to determine how to optimally

configure IDSes to minimize the utility of an intelligent attacker. Unlike Schmidt et al., the

authors model the game as an N-person cooperative game in which utility for each player

is defined as a binary value. The authors assume that the IDS takes prior attack graph

knowledge as input and will use detection of early attack stages to attempt to prevent future

attack stages. The authors use game theory to find an initial configuration for the IDSes

that is optimal in terms of defender attack detection ability and detection efficiency.

Like many of the attack-graph-based deployment approaches, both of the above approaches

focus on deployment or configuration of network IDSes, neglecting the deployment of lower-

level monitors, such as access logs, that can yield valuable information for intrusion detection

and forensic analysis.

2.2.3 Information Flow Graph-Based Monitor Deployment

Other researchers have proposed the use of network information flow graphs to determine

where to place monitors. Information flow graphs represent how network traffic can flow
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between hosts in a network, taking into account network topology; the configuration of

network hardware, such as routers and switches; the configuration of security hardware,

such as IPSes and firewalls; and the flows established by hosts.

Talele et al. [35, 36] model the flow of security information among hosts and network

IDSes in terms of information flow graphs and attempt to determine minimal-cost traffic

mediator placements that can prevent all information flows disallowed by security policies.

The authors use graph theoretic algorithms to determine where in the network to place the

mediators. They argue that by preventing network flows that violate security policies, their

approach can also restrict attack paths. The authors make the strong assumption, however,

that all devices, operating systems, and programs that enforce information flow policies do

so correctly, which may not be the case if the systems are compromised.

Bloem et al. [37] model general network traffic using information flow graphs and de-

termine optimal network filtering policies that ensure detection of malware in the network.

adherence to security policies. The authors aim to minimize the total amount of network

packet sampling that must be conducted by monitors across the network while ensuring a

minimum amount of malware detection. They define the optimal deployment problem as a

mixed-integer nonlinear program, and solve the program to obtain the optimal filtering poli-

cies. The authors’ approach focuses very specifically on malware detection through network

filtering, so it does not generalize well to overall network intrusion detection.

Again, these two approaches focus only on the deployment or configuration of network

IDSes. Furthermore, examining only information flow policies ignores the ability of an IDS

or forensic analyst with access to all of the data in detecting intrusions.

2.2.4 Summary

Monitor deployment in industry currently relies on proprietary tools for which it is not pos-

sible to evaluate the cost-effectiveness or efficacy of monitor deployment, or on best practices

that neglect monitor compromisability or monitor cost. Approaches in the research litera-

ture use attack graphs, game theory, and information flow graphs to model the system, and

reason about monitor deployment by taking intrusion detection ability, attacker capabilities,

monitor cost, and probability of attack steps into account. However, most of the approaches

focus primarily on NIDSes, and almost none of them consider the effect of compromise on

the deployment of monitors. We see the need to model the system while taking cost and

compromise considerations into account, and to determine optimal monitor deployments in

terms of both.
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CHAPTER 3

SYSTEM AND DATA MODEL

3.1 Guiding Observations and Assumptions

3.1.1 Observations

In order to guide our research in monitor deployment and development of monitoring metrics,

we make two observations about monitors, monitor data, and intrusion detection.

3.1.1.1 Monitor Faultiness and Compromise

We observe that monitors, once deployed, become part of a system’s attack surface. The

monitoring system is made up of software and hardware components, just like the systems

that we aim to protect. Monitoring components are deployed upon system assets, which we

know can be attacked and compromised. Since any computer system is susceptible to hard-

ware and software faults, the monitoring system itself could be faulty or compromised, and,

as a result, produce false alerts or fail to produce alerts at all. For example, a monitor that

observes the resource consumption behavior of virtual machines must have some component

that resides on the same physical machine as the VMs. If the physical machine is subject

to hardware faults that cause CPU operations to return incorrect results, the VM resource

monitor will also be subject to faults, which would make the information provided by the

monitor unreliable.

Understanding that monitors may be unreliable or be the target of attack motivates our

research in two ways. First, we take the effect of compromise into account when developing

our set of metrics, as we cannot assume that the presence of a monitor or the generation of

an alert implies that the monitor will always generate indicators or that the indicators are

necessarily correct. For example, in [38], Pham et al. showed that on Windows systems,

some rootkits can hide themselves from OS process enumeration methods, thus rendering

themselves undetectable from intrusion detection mechanisms that run within the OS or rely
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on user space monitor data. If such a rootkit were installed on a Windows VM, any activities

taken by the rootkit would not be captured by monitors deployed within the VM, even if

the same activity were detectable if performed by a normal process. Second, our models and

metrics quantify 1) the ability to detect intrusions when all monitors are functioning correctly

as well as 2) the redundancy of monitors. We believe that increased redundancy in data

collection can increase the ability to detect intrusions and perform forensic analysis when

some monitors are unavailable or are providing erroneous data. For example, in [38], though

it is not possible to detect hidden rootkits from OS-level monitors such as Ninja, Pham et

al. are able to use their hypervisor-based hidden rootkit detection monitor to identify hidden

processes and detect the rootkit.

The problem of monitoring on systems susceptible to compromise has been studied in the

past [7], but we consider the problems of securing the logs or ensuring that it is possible

to detect tampering to be outside the scope of this thesis. Instead, we focus on capturing

the effect of compromise on the logs generated by monitors, and, in turn, on our ability to

detect intrusions.

3.1.1.2 Monitor Heterogeneity

We observe that different monitors produce information in heterogeneous formats. As a

result, our model should be able to take heterogeneous information into account when repre-

senting the information produced by monitors and consumed by intrusion detection systems

and forensic analysts.

3.1.2 Guiding Assumptions

We also make the following two simplifying assumptions that make the problems of modeling

monitors and intrusion detection approaches tractable.

3.1.2.1 Independence of Monitors

We assume that monitors generate information independently given that the assets on which

they run do not in some way depend on a common component. That is, different monitors

use independent underlying mechanisms to generate their alerts, even if they produce the

same types of alerts. That may not always be the case. For example, consider two host-level

network traffic monitors, Snort and tcpdump. Snort [39] is a network intrusion detection
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and prevention system that can perform real-time network traffic analysis on IP traffic.

Here, we consider the case where Snort is being run on a host, monitoring all traffic on the

network interfaces connected to the host. Tcpdump [40] is a command-line packet analyzer

that can display all IP traffic over the network to which a host is attached. To perform full

packet capture, Snort and tcpdump both rely on a packet capture library (libpcap on Unix-

like systems and WinPcap on Windows) to obtain copies of full packets from the operating

system. Since Snort and tcpdump run as separate processes, the compromise of one does

not necessarily result in compromise of the other. If the underlying packet capture library

on which they both depend were replaced with a malicious copy, however, both Snort and

tcpdump would no longer be trustworthy.

While understanding the dependencies between monitors is important, to do so would

require static source-code or binary analysis of each monitor to determine which shared

libraries and operating system utilities are used by each. Constructing such a model would

allow us to gain a more nuanced understanding of how compromise of system components

would affect intrusion detection ability, but we defer this to future work.

3.1.2.2 Intrusion Detection Ability

We separate the problem of monitor deployment from the problem of intrusion detection

using information provided by monitors. Through our model, we aim to be able to accom-

modate arbitrary fusion or analysis techniques and determine a deployment of monitors that

can provide enough information for detection.

We approach the problem of monitor deployment from a proactive perspective. That is,

unlike the problem of intrusion detection, in which the placement of monitors is fixed and

the goal is to use data from already-deployed monitors to detect intrusions, we consider the

problem of deploying monitors before the system is running in order to support intrusion

detection. Thus, we develop a model that supports evaluation of the ability of monitors to

aid in intrusion detection before any traffic passes through the system and monitors begin

generating data.

For a realistically large set of events, most intrusion detection approaches in the literature

and those in use in industry have nonzero false positive and false negative rates [41, 42].

That is, the intrusion detection approaches may claim to detect an event when the event

is not actually taking place (false positive), or may fail to detect an event that is taking

place (false negative). Because our analysis of monitor deployment is performed prior to

monitor data generation or intrusion detection, we cannot guarantee that events will always
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be correctly detected by an intrusion detection system or forensic analyst, or quantify the

probability that they will be detected.

Thus, to simplify our characterization of the fusion approach taken, we make the assump-

tion of perfect forensic ability of the intrusion detection system or forensic analyst. Under

this assumption, if an attack occurs in the system, the forensic analyst or IDS will be able to

detect the attack if given access to a set of monitors that generates some minimal amount of

information about the intrusion, where we define the minimal amount of information needed

for detection in our model. Put in intrusion detection terminology, we assume that the IDS

or forensic analyst has a zero false negative rate.

While that assumption would be unrealistic, it allows us to be agnostic with respect to

fusion and forensic analysis approaches, assuming a best-case scenario for said processes.

For online intrusion detection, the assumption corresponds to an ideal fusion algorithm that

can consider all monitor information simultaneously in real time and detect intrusions with

a 0% false negative rate given that enough information exists to detect the intrusion. For

after-the-fact forensic analysis, the assumption corresponds to an ideal forensic analyst, who,

given enough time, money, and resources, could detect any attack that could possibly be

detected given the information provided. We consider the problem of incorporating the

abilities of specific fusion or forensic analysis approaches into monitor deployment as future

work that is outside the scope of this thesis.

Our proactive perspective does not preclude use of our monitors to evaluate the effective-

ness of monitor placement after the system has started running. In fact, we aim for our

monitor deployment metrics to support redeployment of monitors as a response action to

increase the focus of monitoring as the understanding of system state changes. Ultimately,

we envision that our monitor deployment metrics and deployment methodology can be used

as part of a larger intrusion tolerance system in which the decisions on where to deploy

monitors are driven by monitor data fusion and response actions.

3.2 Definitions

In order to quantitatively evaluate the usefulness of a set of security monitors for intrusion

detection, it is first necessary to define a model on top of which the quantitative metrics

can be defined. Such a model must be able to accurately represent both the capability of

monitors to generate information pertaining to the state of the system and the techniques

or algorithms used to aggregate, correlate, and analyze the data to detect intrusions in the

system.
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We first define the following components of the monitoring system:

Definition 1. Monitors are the sensors that collect and report information about the state

of the system.

Monitors observe heterogeneous system components and generate information about the

system that can be used in intrusion detection and forensic analysis. While we do not adopt

the formalism for the system and state provided by Bishop in his formal model of security

monitoring [43], monitors under our framework perform the logging functionality defined in

Bishop’s model, and may optionally perform some auditing functionality.

In security and intrusion detection literature, the primary focus is on monitors that fuse

raw system information, such as raw network packets or raw syslogs, to produce alerts

about possible malicious activity in the system. Such monitors necessarily perform auditing

as defined by Bishop in his formal model of security monitoring [43], and are often called

“intrusion detection systems” (IDS). While IDSes produce a consolidated view of the security

of a system, we believe that it is important to support the representation of all types of

monitors in our model, as new approaches to coordinated intrusion detection may fuse

information from different sets of monitors in novel ways not captured by existing IDSes.

We desire to be able to use our model to reason about monitor deployment for a wide set of

fusion approaches. Thus, we do not restrict our definition of monitors to those that provide

security-related alerts; instead, we allow for the inclusion of any monitor that could provide

information about the system that might be used in intrusion detection.

Some examples of monitors include the Apache server access log, which logs all requests

processed by an Apache HTTP server; Snort, which logs header information for network

traffic observed over a network interface and can perform traffic analysis and packet inspec-

tion on the traffic to generate alerts; and nmap, a network topology mapper that performs

a network scan to detect the topology and reachable endpoints in a network and could be

configured to perform periodic scans of the network. As a result of the heterogeneity of

the information provided by different monitors, the format and informational content of the

alerts generated can vary considerably between different monitors. Our model represents

monitors in a general manner by abstracting the information generated by monitors, as

discussed later in this chapter.

Definition 2. Events are (1) attacks or intrusions in the system or (2) actions taken in

the system that could be symptomatic of an attack or intrusion.

Events represent the malicious or suspicious actions that an attacker might perform in

the system that a security administrator would want to detect. Events could be explicit
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violations of security policy, or actions that an attacker might take in the process of con-

ducting an attack. While we acknowledge the importance of other types of events, such as

quality-of-service-related events, we focus our attention in this thesis on intrusion events.

Since our analysis takes place offline, we elide the notion of time in our definition of an

event. We intend for our definition of events to be general, so as to allow practitioners to

enumerate events using any methodology of their choice.

Event definitions may include source and/or target information for an intrusion, or may

represent any manifestation of the intrusion, depending on intrusion detection goals. For

example, for a TCP SYN flood denial-of-service attack, a practitioner could represent the

attack within our model as a set of events “TCP SYN flood DoS attack on target ti” (for

some set of targets ti) or as “any instance of a TCP SYN flood DoS attack in the system”

(generalizing the set of targets).

Events are not concrete pieces of data that are directly generated by monitors. Rather,

detection of an event potentially requires the correlation of information from multiple mon-

itors. Within our model, events are completely described by the relationship between the

event and the information provided by monitors, which serves as an abstraction of fusion

and forensic analysis. We discuss that relationship later in this chapter.

Definition 3. Indicators are the primitives that represent information provided by moni-

tors about the events taking place in the system.

Indicators represent the semantic meaning of the data generated by the monitors, not the

actual data that are produced. A single indicator is an observation that can be completely

determined by some logical predicate evaluated over information generated by a single mon-

itor and can be used to define the conditions necessary to detect an intrusion.

As an example, consider a system call monitor for an operating system. The monitor will

generate log entries in an operating-system-specific format for each system call made by a

process. The entries might contain information such as process ID, timestamp, and function

name. From the perspective of intrusion detection, however, if we are interested in whether

a specific process has executed a specific function call, we could represent such a query as a

logical predicate and its instantiation within the logs as an indicator, and therefore consider

it observable by the system call monitor. We leave the exact specification of the indicator

logic to future work, but some examples of related work exist in the literature [44, 45, 46].

By taking the approach described above, we eliminate the need to consider the heteroge-

neous formats of the data generated by individual monitors or the need to define a common

format and technique for conversion. The approach also facilitates enumeration of indicators

by security domain experts, who may not be able to specify the exact format for the logs gen-
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Figure 3.1: Architectural diagram for the working example. Server 1 runs SSH; Server 2
runs the Web application; and Server 3 runs the MySQL database for the Web application.

erated by each of the monitors they can deploy, but understand what semantic information

is provided by each log. Furthermore, our approach presents the potential for programmatic

enumeration of indicators, which we discuss and illustrate in our case study in Chapter 6.

Definition 4. Assets are the system’s computing components that we wish to be able to

protect from intrusions or that may have monitors deployed on them.

Assets can be defined at any granularity in the system that is considered relevant by a

security administrator. Our definition of assets is the same as that introduced by Thakore et

al. in [47]. Assets of value may include host machines, servers, virtual machines, applications,

and network hardware. While most monitors will likely be deployed on the systems they

protect, there are assets, such as firewalls, that serve only as monitoring components.

3.3 Working Example

To illustrate the concepts in this and the following two chapters, we use a small running

example that contains commonly used components and is vulnerable to attacks that are

representative of those experienced by the larger systems one would see in enterprises.

Consider the system illustrated in Figure 3.1. The system provides a Web service to

consumers, who access the service over the Internet. The system is composed of three Linux
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servers connected by a single network switch. Server 1 runs an SSH daemon service on top

of Linux, with its firewall rules set to allow SSH connections from the outside Internet for

management purposes. Server 2 runs an Apache HTTP server on top of Linux, and hosts a

website that uses PHP. Server 3 runs a MySQL database that is used by the website hosted

on the Apache HTTP server. The network switch acts as a firewall and an intranet switch,

preventing all access to Servers 1, 2, and 3 from the outside Internet except for port 22 access

to Server 1 for SSH and port 80 access to Server 2 for HTTP. Within the internal network

of the system, there is no access restriction between servers, so each of the servers is capable

of accessing any open ports on any of the other servers.

In our working example, monitors can be deployed to monitor each of the application assets

within the system. On Server 1, the SSH daemon service can be configured to generate SSHd

logs, which contain information about all SSH access attempts to the system and unexpected

connections to port 22. On Server 2, the Apache HTTP server can be configured to generate

Apache request logs, which create an entry for each HTTP request sent to the Apache

server. PHPIDS [48], a PHP Web application IDS, can also be deployed to Server 2 to

detect PHP and other attacks on the website. On Server 3, the MySQL server can be

configured to generate MySQL query logs, which log every query submitted to the MySQL

server. Finally, as all of the network traffic to and from Servers 1, 2, and 3 passes through

the network switch, the switch is able to observe and monitor all traffic in the system. It

can be configured to mirror all of its traffic to Server 1 for analysis by Snort.

3.4 System Model

Before describing how we represent monitor information, we must first describe the formal-

ization we use to represent the set of system components.

First, we define the base system components:

VS = {v | v = a system component to protect}

ES = {e | e = (vi, vj) , vi, vj ∈ VS, vi depends on vj for proper operation}

VS represents the complete set of computing assets in the system that are either of value

or may have monitors deployed on them, as defined above.

ES represents the set of asset dependence relationships in the system. Note that these are

not the same as network connections between the assets; instead, they represent dependencies

between different assets vi and vj that we can use to understand the effects of compromise.
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An example of such a relationship is the dependence between SSHd and the server on which

it runs. If the server were to be compromised, it could tamper with SSH traffic, causing any

actions taken by SSHd and any data in the SSHd logs to be untrustworthy. In that case, we

would represent the dependence relationship as an edge e in ES between SSHd and Server

1.

To represent the monitoring infrastructure, we augment the system graph with the set of

monitors that are deployed. The monitors are defined as additional vertices and edges in

the graph, which we define as follows:

M = {m | m = a monitor that can be deployed in the system}

EM = {em | em = (m, v) ,m ∈M, v ∈ VS,m can be deployed on v}

M represents the set of monitors that can be deployed in the system. Each of the elements

in M can be deployed by the system administrator to one of the assets in VS in order to

increase the amount of system information collected. For example, in our working example,

M would include the MySQL query logs, irrespective of whether query logging is enabled.

It is possible to include (or exclude as necessary) any set of monitors in the set over which

the monitor deployment optimization is to be performed. If there is a monitor that could

be deployed with multiple possible configurations, each configuration could be treated as a

different monitor, and the optimization could be run multiple times, where the set M would

contain a different configuration of the monitor for each run.

EM represents the deployment relationships between the monitors in M and the system

assets in VS. Specifically, an edge em exists in EM if the correct operation of monitor m

depends directly on the correct operation of asset v. Since the asset dependence relationships

are captured by the edges in ES, edges in EM are directed to the highest-level assets on which

the monitor depends. For example, consider the case of the MySQL query log given above.

MySQL runs on the Server 3 Linux instance, which is connected to the other servers and to

the outside Internet by the network switch. If the switch, Server 3, or the MySQL server

instance were compromised, the integrity of the query log would be suspect. We would,

however, map the query log directly to the MySQL server vertex in VS, and not to the other

assets.

The significance of the monitor deployment mappings in EM is that, as is the case with

dependence relationships in ES, if an asset v is compromised or taken down, m may also

potentially be compromised or taken down.

Definition 5. We define the system graph, S, as a dependency graph constructed from the
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Figure 3.2: System model for the working example. White shapes represent assets, shaded
green shapes represent monitors, and arrows represent dependence relationships.

components in the system and their dependence relationships:

S = (V,E)

where V = VS ∪M and E = ES ∪ EM .

This representation of the system graph in terms of assets and their dependencies is driven

by the guiding principles of monitor and asset compromisability we discuss in Section 3.1.1.1.

Our aim is to capture how monitors can be used to gain information about the system and

how components in the system depend on one another.

Our definition of system assets is motivated by the definitions of assets and layers proposed

by Thakore et al. in [47] and [49]. The use of a graph to represent the system is motivated

by the cyber-physical topology language proposed by Weaver et al. in [50]. As suggested

by Weaver et al., such a representation allows us to perform interesting operations like

contraction to higher-level views, which we could use to analyze monitor deployment based

on the compromise of different sets of system components.

In our working example, we treat all of the hardware and software components as assets.

Where a software component is deployed on a hardware component, the software component

depends on the hardware component, so an edge in ES exists between the two. The edges in

EM are defined by the deployment of the monitors to the software and hardware components.

The equations and figure describing the system model for the working example are given by
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v1 = Server 1

v2 = Server 2

v3 = Server 3

v4 = SSH server

v5 = Apache HTTP server

v6 = PHP5

v7 = MySQL server

v8 = Switch

e1 = (v1, v8)

e2 = (v2, v8)

e3 = (v3, v8)

e4 = (v4, v1)

e5 = (v5, v2)

e6 = (v6, v2)

e7 = (v7, v3)

VS = {v1, v2, v3, v4, v5, v6, v7, v8}
ES = {e1, e2, e3, e4, e5, e6, e7}

m1 = SSHd logs

m2 = Snort

m3 = Apache request logs

m4 = PHPIDS

m5 = MySQL query log

em1 = (m1, v4)

em2 = (m2, v1)

em3 = (m3, v6)

em4 = (m4, v7)

em5 = (m5, v8)

M = {m1,m2,m3,m4,m5}
EM = {em1 , em2 , em3 , em4 , em5}

Figure 3.3: Equations describing the working example system model illustrated in
Figure 3.2.

Equation 3.3 and Figure 3.2.

3.5 Event and Indicator Model

We have defined events and indicators above. We now define the sets of each that we can

use in our evaluation of the efficacy and cost-effectiveness of monitor deployment.

Definition 6. The set of events of interest, Φ, is the set of all events that may take place

in the system that we would like to be able to detect.

Currently, events of interest (that is, those worth dedicating monitoring resources to aim

to detect) must be specified by a security administrator with domain expertise based on

attacks of importance. A systematic method by which the set Φ can be obtained is left to

future work and is discussed in Section 7.2.
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For our working example, we are interested in detecting the following events of interest:

φ1 = SSH brute-force

φ2 = phpMyAdmin attack

φ3 = Incidence of botnet running on servers

φ4 = SQL injection

Definition 7. The set of observable indicators, I, is the set of indicators that can be

generated by at least one of the monitors, m ∈M .

It may be possible to observe other indicators given the presence of other monitors, but we

restrict our view of the universe of all possible indicators to those that we can observe given

the monitors that we can deploy, since our control over monitor deployment only extends to

such monitors.

For our working example, we define the following observable indicators:

ι1 = failed SSH attempts > thresholdSSH

ι2 = SSH initiation attempts > thresholdSSH

ι3 = HTTP request to phpMyAdmin from IP not in whitelist

ι4 = IRC NICK CHANGE message on non-IRC port

ι5 = traffic on IRC ports

ι6 = IRC botnet control packet matches

ι7 = MySQL version string in packet

ι8 = requests to phpMyAdmin pages > thresholdphpMyAdmin

ι9 = HTTP POST of PHP file

ι10 = MySQL injection @@version HTTP GET attempt

ι11 = any phpMyAdmin PHPIDS alert

ι12 = any MySQL injection PHPIDS alert

ι13 = MySQL injection-type query

3.5.1 Relationship Between Monitors and Indicators

We can now define a representation for the information produced by monitors. The monitor-

indicator generation relationship describes how a monitor contributes to the goals of intrusion
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detection and forensic analysis by generating indicators, corresponding to the relationship

mentioned in Section 3.2.

Definition 8. The monitor-indicator generation relationship is given by a function

α : M → P (I) such that

α (m) = {ι ∈ I | monitor m can generate ι} (3.1)

where P (I) represents the power set of I.

We make a few points about the mapping α. First, the mapping is one-to-many from

monitors to indicators, and represents the complete set of indicators that can be generated

by a given monitor. The mapping is deterministic, in that we assume that if an event occurs,

the indicator will always be generated.

In our working example, we can use the SSH logs to identify failed SSH attempts. We

can use Snort to observe a number of activities, including SSH initiation attempts, HTTP

traffic, IRC traffic, and MySQL queries. We can use the Apache request logs to detect

phpMyAdmin attack attempts and some SQL injection attempts. We can use PHPIDS to

observe phpMyAdmin attack attempts and SQL injection attempts. Finally, we can use the

MySQL query logs to conclusively detect SQL injection attempts. The following equations

describe the monitor-indicator generation relationship for our working example:

α (m1) = {ι1, ι2}

α (m2) = {ι2, ι3, ι4, ι5, ι6ι7}

α (m3) = {ι3, ι8, ι9, ι10}

α (m4) = {ι11, ι12}

α (m5) = {ι13}

3.5.2 Evidence Required to Detect Events

Next, we define a representation for the evidence required to detect an event. As mentioned

in Section 3.1.2.2, this relationship stands in for the actual methods by which intrusion

detection algorithms and forensic analysis techniques relate monitor information to attacks,

corresponding to the relationship between events and indicators mentioned in Section 3.2.

Therefore, it should be general enough to represent many different fusion algorithms.

First, we consider the minimal sets of indicators that must be observed to detect an event.

For any given event, φ, there may be multiple methods by which the event can be detected.

For example, it would be possible to detect an SSH brute-force attack by examining the SSHd

log entries for a host with a high number of failed login attempts within a time window or
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by observing from a Snort alert that a host exceeded a predefined threshold of SSH login

attempts within a time window. Each of the indicators on its own would provide enough

information to enable detection of the attack. Thus, we define the minimal sets of indicators

as follows.

Definition 9. A minimal indicator set for an event φ is a set of indicators, σ, such that

the generation of all indicators in σ is sufficient to detect φ.

Now, we define the evidence required to detect an event.

Definition 10. The evidence required to detect an event is given by a function β :

Φ→ P (P (I)), where

β (φ) = {σ | σ can be used to detect φ}

β is a one-to-many map from events to sets of indicators, where only one of the sets σ needs

to be observed for event detection to be possible. As is the case with α, β is deterministic,

which is related to the assumption of perfect forensic ability.

In our working example, the following equations describe the evidence required to detect

the events of interest:

β (φ1) = {{ι1} , {ι2}}

β (φ2) = {{ι3} , {ι8} , {ι11}}

β (φ3) = {{ι4} , {ι5} , {ι6}}

β (φ4) = {{ι7, ι10} , {ι12} , {ι13}}

Essentially, for the SSH, phpMyAdmin, and botnet events, each of the indicators related

to the event can on its own be used to detect the event. For the SQL injection event, the

detection of a successful injection attack requires evaluation of either PHPIDS alerts (ι12) or

the MySQL query logs (ι13) for evidence of SQL injection, or the combination of an injection

HTTP request (ι10) and its subsequent response (ι7).

Our model of event-to-indicator mappings supports a wide range of attack definitions and

fusion algorithms. Most directly, our approach supports signature-based approaches, such

as LAMBDA [44]. In such approaches, an alert is generated simply if a set of signatures is

satisfied. Under our model, we could represent the components of the signatures as indicators

from each monitor, and the signature itself as a minimal indicator set.

One limitation of our approach to mapping events to indicators is that we do not consider

probabilistic relationships, which means we cannot accurately capture probabilistic fusion

techniques. For example, Almgren et al. use Bayesian networks to detect network security

violations [51] by constructing a graph between events and observations in the system and
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assigning probabilities to the edges that represent the likelihood of an observation given

an event’s occurrence. At any point, the authors assume that the most probable event,

determined using Bayesian inference over the actual observations in the system, is actually

taking place. In such a model, the occurrence of many events is inferred from the same set

of indicators, so a straightforward application of our approach of using minimal indicator

sets would require that all of the indicators in the network be correlated to all of the events,

resulting in a relatively uninformative model. We leave consideration of probabilistic fusion

and forensic analysis approaches to future work.

3.6 Detectability

For the purpose of representing intrusion detection goals within our model, we must define

the conditions within our model by which we consider a monitor deployment capable of

supporting detection of an event.

Definition 11. An event, φ, is detectable given a monitor deployment if it is possible to

observe at least one of the minimal indicator sets in β (φ) using the indicators generated

by the monitors that are deployed in the system. That is, detectability is a function δ :

Φ× P (Md)→ 0, 1 such that

δ (φ,Md) = 1↔ ∃σ ∈ β (φ) ∧ σ ⊆
⋃

m: m∈Md

α (m) (3.2)

where Md is the set of monitors deployed in the system, Md ⊆M .

By our assumption of perfect forensic ability, this definition of detectability implies that

so long as at least one of the minimal indicator sets of φ is generated by the monitors in Md,

an intrusion detection system or forensic analyst will always be able to detect φ.

That definition of detectability drives the remainder of our work. Our goal is to ensure

that the most important events are at least detectable and at best even detectable under

compromise or failure. The choice and definitions of the metrics we present in Chapter 4

are based on the qualities of the monitor deployment that would most affect or reflect the

ability of the system to support intrusion detection or forensic analysis under compromise

or failure.
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CHAPTER 4

MONITOR DEPLOYMENT METRICS

As described in Section 3.1.1.1, we recognize that a monitoring system may be faulty, under

attack, or compromised. Therefore, we believe intrusion detection and forensic analysis

benefit from validation and redundancy, since a redundant monitoring system would allow

for intrusion detection even if some of the monitors were compromised or faulty. Our goals

in developing monitor deployment metrics are to provide an understanding of what events

an intrusion detection system is able to detect in an uncompromised state given a set of

monitors, how much redundancy the monitors provide to support intrusion detection, and

how compromise of monitors might affect the ability of an intrusion detection system to

detect events.

We now define the four metrics we have formulated to encapsulate the capability of mon-

itors to meet intrusion detection goals. We define three utility metrics, namely coverage,

redundancy, and confidence, and one cost metric.

4.1 Coverage

We define coverage as the overall fraction of the events of interest that are detectable given

a monitor deployment.

Definition 12. Coverage is formally defined as follows:

Coverage (Φ,Md) =
|{φ | δ (φ,Md) ∧ φ ∈ Φ}|

|Φ|
(4.1)

where Md is the set of monitors deployed, and Φ is the set of events of interest to detect in

the system.

Coverage provides a measure of how much of what a system administrator wants to detect

can be detected using a set of monitors. If a small set of events must all be detected, it is

possible to require 100% coverage of those events. If detection requirements are more relaxed

and best-effort detection is acceptable, maximizing coverage can maximize the ability of an
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intrusion detection or forensic analysis system to detect a wide range of events when the

system is not compromised.

It is important to note that we do not consider the “coverage” of system assets with

our metrics (i.e., how many of the assets are being protected). The reason is that we do

not believe that a metric that measures how many assets are protected necessarily provides

valuable information about the security of the system. Ultimately, for an intrusion detection

system to be considered effective, it must be able to detect as many different intrusions as

possible and be able to detect high-impact intrusions with high probability. Furthermore,

we believe that by carefully defining the set of events to detect, it is possible to ensure that

the coverage metric we define above captures the protection of the assets. We assume that

the security administrator generating the set of important events understands what parts

of the system must be most protected, and can define the events to adequately cover those

parts. Thus, we define our coverage metric from the perspective of event detection.

We now illustrate the use of the coverage metric using our working example. Let the

set of events of interest be Φ = {φ1, φ2, φ3, φ4}. The coverage of Φ changes as the set of

monitors deployed changes. For example, when SSHd logging and PHPIDS are deployed,

it is possible to detect φ1, φ2, and φ4, so Coverage (Φ, {m1,m4}) = 0.75. However, when

Snort and Apache request logging are deployed, it is possible to detect all of the events, so

Coverage (Φ, {m2,m4}) = 1.

4.2 Redundancy

We define redundancy for an event, φ, as the amount of evidence a set of monitors provides

that supports the detection of φ.

Redundancy increases the ability to detect intrusions by increasing the number of alerts

generated by monitors for a given event. As a corollary, it can also increase the confidence

in any alerts generated by monitor data fusion algorithms.

To quantify redundancy, we consider two different measures for redundancy in the context

of our data model. At the lowest level, we can consider sets of monitors to provide redundant

information if they produce identical indicators. In such a case, the information from either

monitor can be used to detect the same intrusions. In terms of detecting events, we can

consider sets of monitors redundant if they provide different ways to detect the same event.

In our model, redundancy of sets of monitors is represented as generation of the indicators

for different minimal indicator sets.

To determine how many different ways we can detect the same event, we must determine
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the set of minimal indicator sets for an event that are detectable given a set of monitors.

Definition 13. The set of detectable minimal indicator sets, ς, for event φ, is defined

as follows:

ς (φ,Md) = {σ | σ ∈ β (φ) ∧ δ (σ,Md)}

Definition 14. Redundancy is a composition of the two measures of redundancy men-

tioned above. Let Md and φ be defined as above. Then, formally,

Redundancy (φ,Md) =
∑

σ∈ς(φ,Md)

min
ι∈σ
|{m | m ∈Md, ι ∈ α (m)}| (4.2)

In other words, redundancy for φ is the total number of different ways that the minimal

indicator sets for φ can be detected using the monitors in Md, where a minimal indicator

set σ can be detected in k ways if each indicator ι ∈ σ is generated by k different monitors

in Md.

Redundancy is complementary to coverage, as one might attempt to maximize the redun-

dancy for critical events and attempt to ensure at least a minimal threshold of redundancy for

other high importance events, using coverage as a catchall to maximize the overall detection

of events in the system.

For example, let us examine the same two sets of monitor deployments that we exam-

ined for coverage. When SSHd logs and PHPIDS are deployed, an SSH brute-force at-

tack can be detected using either ι1 or ι2, so Redundancy (φ1, {m1,m4}) = 2. Similarly,

PHPIDS allows us to detect each of φ2 and φ4 in one way, so Redundancy (φ2, {m1,m4}) =

Redundancy (φ4, {m1,m4}) = 1. Since φ3 is not detectable using m1 and m4,

Redundancy (φ1, {m1,m4}) = 0.

When the set of monitors deployed is changed to Snort and Apache request logs, the

redundancy for φ1 decreases to 1, because only ι2 can be used to detect the event. However,

φ2 can be detected using ι3 as generated by either m2 or m3, or using ι8, as generated by

m3. Thus, Redundancy (φ2, {m2,m3}) = 3. Similarly, Redundancy (φ3, {m2,m3}) = 3

and Redundancy (φ4, {m2,m3}) = 1.

4.3 Confidence

We define confidence as the belief in the ability to detect an event using a set of monitors

given that monitors may be compromised or faulty. This metric is closely related to the
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reliability or truthfulness of monitors and captures the expected reliability of the overall

monitoring system in detecting intrusions.

To reason about the overall confidence in the ability of a deployment of monitors to support

detection of events, we must first assess the truthfulness of the monitors.

Definition 15. The truthfulness of a monitor is the belief that the indicators produced by

the monitor are correct.

In assessing the truthfulness of a monitor, we apply fuzzy logic, observing that the truth-

fulness of a monitor is not binary; that is, a monitor might not transition directly from

producing only truthful indicators to producing false indicators upon compromise, but may

instead continue to produce correct indicators for all but a handful of events. Monitors are

not probabilistically truthful, but variably truthful. As argued by Hosmer in [52], fuzzy logic

lends itself better to such situations than probability theory does. Therefore, we define a

function γM that maps monitors to their truthfulness in generating indicators as a fuzzy

logic degree of truth that represents how many (as a proportion of the aggregate) of the

indicators generated by a monitor are truthful.

γM : M → {n ∈ R | 0 ≤ n ≤ 1}

We project the truthfulness of a monitor to the truthfulness of all indicators produced

by the monitor. Given a set of monitors Md, we consider the overall truthfulness γI of an

indicator to be the disjunction in monoidal-t-norm-based logic (MTL) of the truthfulness

values of the indicator for all monitors that generate the indicator. If no monitors generate

the indicator, its truthfulness is 0 by default.

γI (ι,Md) =


∨

m∈Md | ι∈α(m)

γM (m), δ (φ,Md)

0, otherwise

=

 max
m∈Md | ι∈α(m)

γM (m), δ (φ,Md)

0, otherwise

In order to detect an event, we need to be able to detect all of the indicators from at least

one of the minimal indicator sets for the event. Therefore, for a minimal indicator set σ,

we can define the confidence in detecting σ as the MTL conjunction over the truthfulness

values for all indicators in σ. Finally, we can define the confidence in detecting event φ to

be the MTL disjunction of the confidence values for all of the minimal indicator sets for φ.
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Put simply, the confidence metric is a transformation of the Boolean logic tree representing

what combinations of indicators are required to detect an event into a fuzzy logic equation.

Definition 16. Confidence is formally defined as follows:

Confidence (φ,Md) =
∨

σ∈β(φ)

∧
ι∈σ

γI (ι,Md) (4.3)

= max
σ∈β(φ)

min
ι∈σ

γI (ι,Md) (4.4)

Within our working example, let us assume that SSHd logging and Snort are more suscep-

tible to compromise because they reside on the management VM (Server 1); that the Apache

request log and PHPIDS are moderately susceptible; and that the MySQL query log is rel-

atively insusceptible. Let those assumptions be represented as γM (m1) = γM (m2) = 0.3,

γM (m3) = γM (m4) = 0.5, and γM (m5) = 0.9.

Now, if we deploy SSHd logging and Snort, we can detect φ1, φ2, and φ3. Since all monitors

in this deployment have a γM value of 0.3, all of the indicators generated also have a γI value

of 0.3, so Confidence (φi, {m1,m2}) = 0.3 for all 1 ≤ i ≤ 3. If we instead deploy Snort and

Apache request logs, γI (ι3) increases to 0.5, because ι3 can be generated by m3 as well as

by m2. Thus, Confidence (φ2, {m2,m3}) increases to 0.5. Since detection of φ4 requires the

generation of both ι7 from m2 and ι10 from m3, the confidence in detecting the set ι7, ι10 is

the minimum of γI (ι7) = 0.3 and γI (ι10) = 0.5. Thus, Confidence (φ2, {m2,m3}) = 0.3.

4.4 Cost

We define cost as the overall value of the resources consumed by monitors that are deployed

in a system. Our cost metric captures the cost (for our purposes, monetary cost) of the

deployment, operation, and management of monitors and collection and storage of the data

generated by monitors.

Our cost model is composed of two types of costs: resource utilization costs and purchase

and management costs. Resource utilization costs represent the operational costs of running

a monitor on a system asset per unit of time. We assume that the modeler already has

pricing information for the different compute and storage resources used by monitors. For

example, for systems such as public clouds, prices could be determined based on the public

pricing model for compute resources used to bill customers. For other systems, prices could

represent opportunity costs of using the resources for monitoring instead of for other business

purposes, or data center operating costs amortized per unit of resource utilization.
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Purchase and management costs represent the fixed cost of purchasing and deploying a

monitor on the system and the recurring costs of maintaining and managing the monitors

during operation of the system. Because we consider cost per unit time, the fixed purchase

cost must be amortized over the expected lifetime of the monitor. The recurring management

cost primarily represents the human cost of managing the monitoring infrastructure; we

assume that the computing costs of the management software are negligible.

Definition 17. The amortized purchase and management costs are defined by a func-

tion P : M → R, where P (m) is the fixed and variable costs of monitor purchase, deploy-

ment, and management described above for monitor m, amortized over the lifetime of the

monitor, into a cost per unit time.

In order to calculate the overall resource cost of a set of monitors, we first define the costs

of using resources on assets. Within our model, monitors consume the following resources

on system assets (units of utilization are in parentheses):

• CPU utilization (in CPU cores)

• Memory utilization (in GB)

• Disk storage (in GB)

• Network communication (in GB per hour)

Definition 18. For each asset in the system, the asset resource costs represent the cost

per unit of utilization per unit time for each of the four resources listed above. That is, the

resource costs for an asset v ∈ VS are defined by a function ResourceCost : VS → R4, where

ResourceCost (v) =


CPUCost (v)

MemoryCost (v)

DiskCost (v)

NetworkCost (v)

 (4.5)

The costs may be dynamic; that is, the value of the resources being used by monitoring

may change depending on system load, and thereby change the cost of deployment of a

monitor. Our model does not disallow that, but for the sake of computation, we fix the costs

at the time of evaluation of the metrics.

For assets at multiple levels, the user the options of either propagating resource costs

for the lowest-level asset (one that is not dependent on any other assets) upwards to its
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dependent, higher-level assets, or assigning different resource costs based on additional con-

siderations, such as application-specific costs.

Next, we define the resource utilization of the monitors. As stated earlier, each monitor

consumes resources on the asset on which it is deployed, with the exception of storage.

Definition 19. For each monitor, we define the long-term average monitor resource

utilization for a monitor m as the expected amount of resources utilized by the monitor

during a unit of time. It is given by a function ResourceUtilization : M → R4, where

ResourceUtilization (m) =


CPUUtilization (m)

MemoryUtilization (m)

DiskUtilization (m)

NetworkUtilization (m)

 (4.6)

As it is possible for a monitor to log remotely and thus consume storage on a different

asset, we define the relation LogsTo : M → VS to define where a monitor stores its logs.

Definition 20. The cost of a set of monitors is the product sum of the monitor resource

utilization with the asset resource costs for the asset on which the monitor is deployed. That

is,

Cost (Md) =
∑
m∈Md

(P (m) + CPUCost (v) CPUUtilization (m)

+ MemoryCost (v) MemoryUtilization (m)

+ NetworkCost (v) NetworkUtilization (m)

+ DiskCost (LogsTo (m)) DiskUtilization (m))

(4.7)

where (m, v) ∈ EM . As cost is an expected rate of expenditure for the set of monitors, the

units of cost are currency units per unit time.

For simplicity’s sake, within our working example, let us set the resource costs for all

servers to be the same, and let the resource costs for each of the applications be the same as

those for the servers. That is, we let ResourceCost (vi) =
[

1 1 1 1
]T

for all i. Let us

also set ResourceUtil (mi) =
[

1 1 1 0
]T

for i ∈ {1, 3, 4, 5} and ResourceUtil (m2) =[
2 2 2 2

]T
, as Snort requires that packets be transmitted to Server 1 for processing,

but all other monitors log locally. In the example, the amortized purchase and management

costs for each monitors is 0.50.

Given those parameters, we can calculate the cost for each monitor independently. Since

all assets share the same resource cost, Cost ({mi}) = 0.50 + 1 · 1 + 1 · 1 + 1 · 1 + 1 · 0 = $3.50
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for i ∈ {1, 3, 4, 5}, and Cost ({m2}) = 0.50 + 1 · 2 + 1 · 2 + 1 · 2 + 1 · 2 = $8.50. Monitor

costs are additive, so the cost of a monitor deployment is simply the sum of the costs of all

deployed monitors.

In this chapter, we define a set of quantitative metrics for monitor deployment that char-

acterize the utility provided by the monitors to support intrusion detection and the cost of

deploying the monitors. In order to use these metrics to perform optimal monitor deploy-

ment, we must define a methodology by which a practitioner can specify the requirements

of monitor deployment in terms of values of the metrics and then find the best deployment

of monitors that meets the requirements. We introduce such a methodology in the next

chapter.
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CHAPTER 5

OPTIMAL MONITOR DEPLOYMENT

Our goal is to provide a methodology to deploy monitors effectively in a system. A prac-

titioner should be able to specify intrusion detection requirements using our methodology

and be able to determine the optimal placement of monitors for the intrusion detection

requirements.

5.1 Intrusion Detection Requirements

We define intrusion detection requirements in terms of the events the practitioner wishes to

detect and target values of the metrics defined in Chapter 4. To support that, we allow a

practitioner to specify weights and constraints on the values of the monitoring utility metrics

for the optimal monitor deployment algorithm. That is, we define the following constants:

wCoverage ∈ [0, 1] : The weight for the coverage metric for the set of events Φ (5.1)

wRedundancyφ ,wConfidenceφ ∈ [0, 1] ∀φ ∈ Φ : The weights for the redundancy and (5.2)

confidence metrics for each of the events in Φ

minCoverage ∈ [0, 1] : The minimum value for the coverage metric for the set (5.3)

of events Φ

minRedundancyφ ∈ Z ∀φ ∈ Φ : The minimum values for the redundancy metric (5.4)

for each of the events in Φ

minConfidenceφ ∈ [0, 1] ∀φ ∈ Φ : The minimum values for the confidence metric (5.5)

for each of the events in Φ

The weights and constraints can be used to specify the importance of each of the events

and each of the metrics in overall deployment. For example, if Φ contains two events, φ1

and φ2, and a practitioner wants to be able to detect φ1 under attack and wants to be

able to detect φ2 in as many ways as possible, the practitioner could set wConfidenceφ1
and
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wRedundancyφ2
to large values and all other weights to small or zero values. Then, the utility of

a monitor deployment would depend most heavily on the confidence in detecting φ1 and the

number of redundant ways to detect φ2, so the optimal monitor deployment chosen would

prioritize these two metrics’ values.

Given weights for each of the metrics’ values, we define intrusion detection requirements

as conditions on detectability of the events of interest. The following are three types of

requirements that practitioners may have that we support in our optimal monitor deployment

methodology:

• A practitioner may desire best effort detection of an event φ, which means that φ

does not necessarily need to be detectable by the optimal monitor deployment, but

detectability of the event is preferred to lack of detectability. That might be the

case for most noncritical events that, while important, may not warrant extensive,

expensive monitoring. Best-effort detection may be specified in terms of any of the

metrics (i.e., maximum coverage, maximum redundancy, or maximum confidence) and

can be represented by nonzero weights wCoverage, wRedundancyφ , and wConfidenceφ .

• A practitioner may desire mandatory detection of an event φ, which means that φ must

be detectable by whatever set of monitors is determined by the optimal deployment

algorithm. That might be required for important events that would cause financial

loss or breach of sensitive data. Mandatory detection can be represented by requiring

minRedundancyφ = 1. If the entire set of events must be detected, that can be represented

by requiring minCoverage = 1.

• A practitioner may desire redundant detection of an event φ, which means that φ should

be detectable in more than one way. That might be required for critical events that

would cause catastrophic system failure, major financial loss, or legal ramifications.

If a specific redundancy level k is desired, redundant detection can be represented by

requiring minRedundancyφ = k. Otherwise, opportunistic redundant detection can be

represented by a high nonzero weight wRedundancyφ .

Additionally, practitioners are often bound by business constraints on system security. We

represent such constraints using the constant maxCost, an upper limit on the value of the

cost metric. If the budget for monitoring is restricted, a practitioner could represent that

within our methodology by setting the value of maxCost.
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5.2 Constrained-Cost Optimal Deployment

To solve for optimal monitor deployment under a fixed cost constraint, we must be able to

optimize over the monitoring utility metrics by determining the set of monitors that provides

the maximum utility while satisfying the constraints specified by the intrusion detection

requirements. Given the types of inequality constraints we have defined above as intrusion

detection requirements, mathematical programming lends itself well to the optimization

problem.

In our model, we assume that monitors can either be deployed or not deployed. Therefore,

their deployment either contributes to the values of the metrics (i.e., the deployment takes

a value of 1) or does not (i.e., the deployment takes a value of 0). Therefore, we represent

our optimal deployment program as a 0-1 integer program with inequality constraints. The

program is given by Equation 5.6. Unless otherwise specified, by default, the min and w

constants are set to 0, and maxCost is set to ∞.

Definition 21. We define the cost-constrained monitor deployment program as the

following integer program:

given S = (V,E) , Φ, I, α, β, γM

P, ResourceCost, ResourceUtil, LogsTo

wCoverage,minCoverage

wRedundancyφ ,minRedundancyφ ∀φ ∈ Φ
wConfidenceφ ,minConfidenceφ ∀φ ∈ Φ
maxCost

maximize
Md

wCoverageCoverage (Φ,Md) +∑
φ∈Φ

(
wRedundancyφRedundancy (φ,Md) +

wConfidenceφConfidence (φ,Md)
)

subject to Cost(Md) ≤ maxCost

Coverage (Φ,Md) ≥minCoverage

Redundancy (φ,Md) ≥minRedundancyφ ∀φ ∈ Φ

Confidence (φ,Md) ≥minConfidenceφ ∀φ ∈ Φ

Md ∈ {0, 1}|M |

(5.6)

The cost-constrained optimal monitor deployment program defined by Equation 5.6 takes

as input the system and data models, metric value weights, minimum value constraints

on the metrics, and cost constraints. The program searches over the space of all possible
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deployments of monitors. All monitors in the deployments are either enabled or disabled.

The objective function of the program maximizes the utility of the monitors in detecting

intrusions, where utility is defined as a weighted sum of all the metric values. The program

is subject to a maximum cost constraint specified by the practitioner and minimum value

constraints on the utility metric values, which ensure that the monitor deployment obtained

from the solution to the program abides by the minimum values of the metrics that are

specified. Rather than find the lowest-possible-cost monitoring (which, logically speaking,

would be deployment of no monitors at all), the program will find the highest-utility monitor

deployment whose monitoring cost is lower than the maximum cost specified.

The program can be solved using the branch and bound algorithm to find an optimal

monitor deployment for the detection requirements described in Section 5.1. A practitioner

could use the metric value weights and minimum value constraints defined in Equations (5.1)

to (5.5) to define a utility function that captures the requirements.

The program is nonlinear in terms of the monitor deployment vector, Md, because the

objective function is a weighted sum of the utility metrics’ values, which are themselves

nonlinear. We now prove nonlinearity for each of the utility metrics.

Theorem 1. The coverage metric defined by Equation 4.1 is nonlinear in terms of monitor

deployment, Md. That is, ∃ Φ, α, β, Md such that

Coverage (Φ,Md) 6=
∑

m∈Md
Coverage (Φ, {m}).

Proof. Assume by way of contradiction that the coverage metric is linear. Then, by defini-

tion, for any values of Φ, α, and β, for two disjoint sets of monitors M1 and M2,

Coverage (Φ,M1 ∪M2) = Coverage (Φ,M1) + Coverage (Φ,M2)

Let M = {m1,m2}, where m1 and m2 are unique monitors that produce identical indica-

tors. Specifically, let α(m1) = α(m2) = {ι1}. Further, let Φ = {φ1}, and let β(φ1) = {{ι1}}.
Let M1 = {m1} and let M2 = {m2}. By construction, M1 ∩M2 = ∅. Then, since m1 and

m2 produce ι1,

Coverage (Φ,M1) = 1

Coverage (Φ,M2) = 1

Since both monitors independently cover Φ, both monitors together will also cover Φ. In
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other words,

Coverage (Φ,M1 ∪M2) = 1

6= Coverage (Φ,M1) + Coverage (Φ,M2)

That is a contradiction! Thus, the coverage metric is not linear.

Theorem 2. The redundancy metric defined by Equation 4.2 is nonlinear in terms of mon-

itor deployment, Md. That is, ∃ φ, α, β, Md such that

Redundancy (φ,Md) 6=
∑

m∈Md
Redundancy (φ, {m}).

Proof. Assume by way of contradiction that the redundancy metric is linear. Then, by

definition, for any values of φ, α, and β, for two disjoint sets of monitors M1 and M2,

Redundancy (φ,M1 ∪M2) = Redundancy (φ,M1) + Redundancy (φ,M2)

Let M = {m1,m2}, and let α(m1) = {ι1} and α(m2) = {ι2}. Further, let Φ = {φ1}, and

let β(φ1) = {{ι1, ι2}}. Let M1 = {m1} and let M2 = {m2}. By construction, M1 ∩M2 = ∅.

Then,

Redundancy (φ1,M1) = 0

Redundancy (φ1,M2) = 0

Alone, neither monitor allows for detection of Φ. However, deploying both monitors

together does cover φ1. In other words,

Redundancy (φ1,M1 ∪M2) = 1

6= Redundancy (φ1,M1) + Redundancy (φ1,M2)

That is a contradiction! Thus, the redundancy metric is not linear.

Theorem 3. The confidence metric defined by Equation 4.3 is nonlinear in terms of monitor

deployment, Md. That is, ∃ φ, α, β, Md such that

Confidence (φ,Md) 6=
∑

m∈Md
Confidence (φ, {m}).

Proof. Assume by way of contradiction that the confidence metric is linear. Then, for any

values of S, φ, α, β, and γM , for two disjoint sets of monitors M1 and M2,

Confidence (φ,M1 ∪M2) = Confidence (φ,M1) + Confidence (Φ,M2)
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Let M = {m1,m2}, where m1 and m2 are unique monitors that produce identical indica-

tors. Specifically, let α(m1) = α(m2) = {ι1}. Further, let Φ = {φ1}, and let β(φ1) = {{ι1}}.
Let M1 = {m1} and let M2 = {m2}. By construction, M1 ∩M2 = ∅.

Additionally, let γM(m1) = γM(m2) = 0.5. As a result, γI(ι1,M1) = γI(ι1,M2) =

γI(ι1,M1 ∪M2) = 0.5. Then,

Confidence (φ1,M1) = 0.5

Confidence (φ1,M2) = 0.5

However, since γI(ι1,M1 ∪M2) = 0.5,

Confidence (φ1,M1 ∪M2) = 0.5

6= Confidence (φ1,M1) + Confidence (φ1,M2)

That is a contradiction! Thus, the confidence metric is not linear.

5.3 Unconstrained-Cost Optimal Deployment

The maximum utility program given by Equation 5.6 assumes optimization based on an

upper bound on cost. In some cases, such as those where monitor cost is negligible or security

is of the highest importance, it may instead be desirable to minimize the cost of monitoring

while meeting hard intrusion detection requirements. In such cases, the nonlinear program

specified by Equation 5.6 cannot solve for an optimal deployment. Instead, we must create

an alternative formulation of the program in which the objective function is minimization

of the cost metric.

When optimizing the value of the cost metric, the monitoring utility metric weights defined

in Equations 5.1 and 5.2 no longer hold any significance, as they are not an element of

the utility function of the optimization equation. Without minimality restrictions on the

values of the utility metrics, the program will always return the trivial zero-cost solution

of deploying no monitors. Therefore, we define the integer program solely in terms of the

minimality requirements on the metric values. The program is given by Equation 5.7.
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Definition 22. We define the minimum cost monitor deployment program as the

following integer program:

given S = (V,E) , Φ, I, α, β, γM

P, ResourceCost, ResourceUtil, LogsTo

minCoverage

minRedundancyφ ,minConfidenceφ ∀φ ∈ Φ
minimize

Md

Cost (Md)

subject to Coverage (Φ,Md) ≥minCoverage

Redundancy (φ,Md) ≥minRedundancyφ ∀φ ∈ Φ

Confidence (φ,Md) ≥minConfidenceφ ∀φ ∈ Φ

Md ∈ {0, 1}|M |

(5.7)

The unconstrained-cost optimal monitor deployment program defined by Equation 5.7

takes as input just the system and data models and minimum value constraints on the

metrics. The program searches over the space of all possible deployments of monitors for a

monitor deployment subject to minimum value constraints on the utility metric values. The

minimum value constraints ensure that the monitor deployment obtained from the solution

to the program meets some minimum required level of monitoring. The objective function

of the program minimizes the cost of the monitors.

The program defined by Equation 5.7 can be used to solve for an optimal monitor deploy-

ment for the mandatory and redundant detection requirements described in Section 5.1. A

practitioner could use the minimum value constraints defined in Equations 5.1 and 5.2 to

define a utility function that captures the requirements.

5.4 Application of Optimal Deployment Programs

We foresee both offline and online use of our optimal monitor deployment methodology. In

an offline setting, a practitioner could use our methodology to determine which monitors

to deploy before operation of the system to increase the efficacy of a forensic analyst or

intrusion detection algorithm during operation. In an online setting, a forensic analyst or

intrusion detection algorithm could use observed system state to update the system model

and rerun the optimal deployment programs to determine how to redeploy monitors to

continue meeting intrusion detection requirements. In this thesis, we focus on the offline

analysis and deployment. Understanding how to use observations from monitors to update
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system state is outside the scope of this work, so we present our ideas on online use of our

methodology in Section 7.2.

Using our optimal monitor deployment programs, a practitioner can determine what set

of monitors would facilitate forensic analysis or intrusion detection. The practitioner could

define intrusion detection requirements in terms of values of the weights and constraints

on the monitoring metrics, and then use the appropriate optimal deployment program to

determine which monitors to deploy. We now illustrate the use of our optimal monitor

deployment methodology using our working example. Let us consider two cases.

Case 1: In the first case, our sole concern is with maximizing coverage of all events with

a maximum cost of $11. Since there is a maximum cost constraint, we use Equation 5.6.

Since we have no minimum detection requirements, we set minCoverage = minRedundancyφ =

minConfidenceφ = 0 for all φ ∈ Φ. Furthermore, since we care only about maximizing coverage,

we also set wCoverage = 1 and wRedundancyφ = wConfidenceφ = 0 for all φ ∈ Φ. To account for

the cost constraint, we set maxCost = $11. Given those constraints and the model values

we define in previous chapters, solving Equation 5.6 yields the deployment Md = {m1,m4},
where m1 is the SSHd log and m4 is PHPIDS. Notice that Coverage (Φ,Md) = 0.75 and

Cost (Md) = $7. Because of the cost constraint, it is not possible to detect all of the events,

but our approach yields a deployment that minimizes cost while yielding maximum coverage.

Case 2: In the second case, we wish to guarantee detection of the botnet (φ3) and SQL

injection (φ4) attacks and maximize the redundancy and confidence for those two attacks,

performing best-effort detection for the φ1 and φ2. Furthermore, the monitors must have a

maximum cost of $16.

Again, since we aim to maximize detection utility with a maximum cost constraint, we

use Equation 5.6. Here, we set minRedundancyφ3
= minRedundancyφ4

= 1 to account for the

detection guarantees, and set wRedundancyφ3
= wRedundancyφ4

= 1 to maximize redundancy and

wConfidenceφ3
= wConfidenceφ4

= 1 to maximize confidence. To capture best-effort detection

guarantees for φ1 and φ2, we can set wCoverage = 2. To account for the cost constraint, we

set maxCost = $16. We set all other parameters to 0. Solving Equation 5.6 yields the

deployment Md = {m2,m3,m5}, where m2 is Snort, m3 is the Apache request log, and m5

is the MySQL query log. The monitor deployment Md yields Redundancy (φ3,Md) = 3,

Redundancy (φ4,Md) = 2, Confidence (φ3,Md) = 0.3, Confidence (φ4,Md) = 0.9, and

Cost (Md) = $15.50. Note that without the confidence constraints, the optimal deployment

could contain m4 instead of m5, and with maxCost = $15, the optimal deployment would

instead be Md = {m2,m5}.
These two cases illustrate the expressiveness of our methodology. By varying the weights

and constraints that define intrusion detection goals, a practitioner can phrase a multitude of
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questions about monitor deployment and study the effect of deploying monitors on intrusion

detection ability.

5.5 Complexity Analysis

We now consider the complexity of our approach in terms of the size of the model.

To compute the objective function and constraint functions for both the constrained-cost

and unconstrained-cost optimal monitor deployment programs, it is necessary to compute

the values of the following metrics for each of the possible monitor deployments, Md:

• Coverage (Φ,Md)

• Redundancy (φ,Md) ∀φ ∈ Φ

• Confidence (φ,Md) ∀φ ∈ Φ

• Cost (Md)

There are 2 |Φ| + 2 functions that must be computed for each monitor deployment (Md)

evaluated while solving the program. To determine the overall complexity of our implemen-

tation, we first evaluate the complexity of computing each of the metric functions.

5.5.1 Coverage

The algorithm we use to compute coverage is given by Algorithm 1. In the first for loop,

we generate the set of all indicators that can be generated by the set of monitors Md. We

call that set I. Generation of I is done by computing the union of all values of α(m) for all

m in Md. In the worst-case, each value of α(m) will consist of all observable indicators, I,

so the complexity of computing the set is O (|M | |I|). Then, we check for each event φ in Φ

whether any minimal indicator set σ in β(φ) is a subset of I. In the worst-case, that requires

B checks, where B =
∑

φ∈Φ |β(φ)|. Checking that a minimal indicator set σ is a subset of I
requires |σ| operations, where, in the worst-case, σ = I. Thus, the worst-case computational

complexity of determining the coverage of a set of events Φ is O (|M | |I|+B |I|).

5.5.2 Redundancy

The algorithm we use to compute redundancy is given by Algorithm 2. In the first set of

nested for loops, we count the number of monitors that can generate each of the indicators.
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Algorithm 1 Algorithm to compute the value of the coverage metric

1: function Coverage(Φ, Md)
2: I ← ∅
3: for all m in Md do
4: I ← I ∪ α (m)
5: end for
6: coverage← 0
7: for all φ in Φ do
8: for all σ in β (φ) do
9: if σ ⊆ I then
10: coverage← coverage+ 1
11: else
12: break
13: end if
14: end for
15: end for
16: return coverage/ |Φ|
17: end function

We represent that mapping as C. In the worst-case, the outer for loop iterates |M | times, and

the inner for loop iterates |I| times. Thus, the complexity of this step is O (|M | |I|). In the

second set of nested for loops, we check how many ways each minimal indicator set σ in β(φ)

can be generated, and sum these values to compute the redundancy. In the worst-case, the

outer loop iterates |β (φ)| times, and the inner loop iterates |I| times. Thus, the worst-case

computational complexity of computing redundancy for an event φ is O (|M | |I|+ |β (φ)| |I|).
During the computation of Redundancy (φ,Md) for all events φ in Φ, the value of C

can be computed once, stored, and reused for all other events. Furthermore, the number of

iterations of the second outer loop performed in total over all events is given by B. Therefore,

the worst-case computational complexity of determining the redundancy for all events φ in

Φ is O (|M | |I|+B |I|).

5.5.3 Confidence

The algorithm we use to compute confidence is given by Algorithm 3. In the first set of

nested for loops, we compute the values of γI for each of the indicators. In the worst-case,

the outer for loop iterates |M | times, and the inner for loop iterates |I| times. Thus, the

complexity of this step is O (|M | |I|). In the second set of nested for loops, we compute the

confidence metric value using the values of γI . In the worst-case, the outer loop iterates

|β (φ)| times, and the inner loop iterates |I| times. Thus, the worst-case computational
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Algorithm 2 Algorithm to compute the value of the redundancy metric

1: function Redundancy(φ, Md)
2: C ← 0|I|

3: for all m in Md do
4: for all ι in α (m) do
5: C[ι]← C[ι] + 1
6: end for
7: end for
8: redundancy ← 0
9: for all σ in β (φ) do
10: count← 0
11: for all ι in σ do
12: count← min(count, C[ι])
13: end for
14: redundancy ← redundancy + count
15: end for
16: return redundancy
17: end function

complexity of computing confidence for an event φ is O (|M | |I|+ |β (φ)| |I|).
As was the case for redundancy, during computation of Confidence (φ,Md) for all events

φ in Φ, the value of γI can be computed once, and the number of iterations of the second

outer loop performed in total is B. Therefore, the worst-case computational complexity of

determining the confidence for all events φ in Φ is O (|M | |I|+B |I|).

5.5.4 Cost

The algorithm we use to compute cost is given by Algorithm 4. The algorithm iterates

only once over the set of monitors Md and computes a single arithmetic operation for each

iteration. Thus, the worst-case computational complexity of computing cost for a set of

monitors is simply O (|M |).

5.5.5 Optimal Monitor Deployment Programs

In general, integer nonlinear programming (INLP) is NP-hard. Additionally, since our opti-

mal deployment programs use the metrics’ values as objective and constraint functions, the

programs have nonlinear, non-convex objective and constraint functions. As a result, it is

not possible to use convex optimization techniques (such as interior point methods) or linear
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Algorithm 3 Algorithm to compute the value of the confidence metric

1: function Confidence(φ, Md)
2: γI ← 0|I|

3: for all m in Md do
4: for all ι in α (m) do
5: γI [ι]← max(γI [ι], γM(m))
6: end for
7: end for
8: confidence← 0
9: for all σ in β (φ) do
10: confσ ← 1
11: for all ι in σ do
12: confσ ← min(confσ, γI [ι])
13: end for
14: confidence← max(confidence, confσ)
15: end for
16: return confidence
17: end function

relaxation techniques to solve the programs.

Furthermore, our programs have the additional constraint that the monitor deployment

variables are binary, so mixed-integer nonlinear program solvers that use gradient descent

approaches are also of limited use, since the metric functions are discontinuous over the

search space. To solve the optimal deployment programs, we implement a version of the

branch-and-bound algorithm that performs a search over the state space of all possible

monitor deployments and prunes the set of possible deployments when the constraints are

not met.

The algorithm we implement to solve the optimization equations is given by Algorithm 5.

Algorithm 4 Algorithm to compute monitor cost

1: function Cost(Md)
2: cost← 0
3: for all m in Md do
4: a← parentAsset(m)
5: cost ← cost + P (m) + a.CPUCost × m.CPUUtilization + a.MemCost ×
m.MemUtilization + LogsTo(m).DiskCost ×m.DiskUtilization + a.NetworkCost ×
m.NetworkUtilization

6: end for
7: return cost
8: end function
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First, we note that by branching based on the presence of a value for maxCost, we are able

to use a single algorithm to solve both optimal deployment programs.

The size of the total state space is 2|M |, where M is the set of all monitors over which

the optimization is being performed. In the worst-case, the algorithm will need to examine

the entire state space. For each iteration of the search, in the worst-case, all of the metric

values will need to be computed for all events in Φ. Thus, from the analysis performed

above, the worst-case complexity of each iteration is given by O (|M | |I|+B |I|+ |M |) =

O (|M | |I|+B |I|).
Thus, the overall worst-case computational complexity required to search over all possible

solutions to find the optimal monitor deployment is O
(
2|M | |I| (|M |+B)

)
.

If we assume that each event has a constant number of minimal indicator sets, B grows

linearly with the number of events, |Φ|. We can then rewrite the overall worst-case complexity

of computing the optimal monitor deployment as O
(
2|M | |I| (|M |+ |Φ|)

)
. From this analysis,

we can see that the computational complexity of our optimal deployment algorithm grows

linearly in the number of indicators, linearly in the number of events, and superexponentially

in the number of monitors. In many cases, we anticipate that the pruning performed by

our algorithm can significantly reduce the number of monitor deployments examined, thus

significantly reducing the average case computational complexity.

We leave further investigation of possible optimizations and heuristic approaches to solving

the optimal deployment programs to future work.
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Algorithm 5 Algorithm to compute the optimal monitor deployment

1: function FindOptimalDeployment(Φ, M)
2: S ← P (M)
3: best← ∅
4: while S is not empty do
5: possible← True
6: choose Md randomly from S
7: cost← Cost(Md)
8: if (maxCost exists and cost > maxCost) or (not maxCost exists and cost >

Cost(best)) then
9: remove all deployments from S that are proper supersets of Md

10: else
11: coverage← Coverage(Φ, Md)
12: if coverage < minCoverage then
13: possible← False
14: else
15: for all φ in Φ do
16: if possible then
17: redundancy[φ]← Redundancy(φ, Md)
18: if redundancy[φ] < minRedundancyφ then
19: possible← False
20: break
21: end if
22: end if
23: if possible then
24: confidence[φ]← Confidence(φ, Md)
25: if confidence[φ] < minConfidenceφ then
26: possible← False
27: break
28: end if
29: end if
30: end for
31: end if
32: . continued on page 50
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Algorithm 5 (continued)

33: if not possible then
34: remove all deployments from S that are proper subsets of Md

35: else
36: if maxCost exists then
37: calculate utility function for Md

38: if Md.utility > best.utility or (Md.utility = best.utility and cost <
Cost(best)) then

39: best←Md

40: remove all deployments from S that are proper subsets of Md

41: end if
42: else
43: best←Md

44: remove all deployments from S that are supersets of Md

45: end if
46: end if
47: end if
48: remove Md from S
49: end while
50: return best
51: end function
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CHAPTER 6

CASE STUDY: ENTERPRISE WEB SERVICE

6.1 Experimental Setup

To evaluate our approach to modeling and evaluating the efficacy of monitor deployment, we

use a use case that models an enterprise Web service. The model contains software platforms

that are commonly used in Web service architectures: a firewall, an HTTP server platform,

a database, and a server-side scripting language that generates served pages. For simplicity,

we restrict the size of the enterprise system to one each of the aforementioned components

and restrict the event space to a small set of attacks for each of the components in our

sample system.

Through this case study, we observe how different intrusion detection goals affect the

placement of monitors and illustrate the utility of our approach in determining optimal

monitor placements. We hypothesize that the use of our metrics will provide unexpected

optimal placements, which would support the value of our quantitative approach.

6.1.1 Goal

The system architecture for the case study is illustrated in Figure 6.1. Our goal in this case

study is to protect a Web application running within the “intranet” from the attacker VM,

which represents attackers on the “Internet.” We implemented our experiments using a series

of virtual machines running atop QEMU-KVM, networked together using separate VLANs

for the “Internet” and “intranet” to provide network isolation. The attacker VM runs Kali

64-bit GNU/Linux 1.1.0 and is on the same VLAN as one of the network interfaces to the

firewall VM. The firewall, Web server, and database server VMs all run Metasploitable v2.0.0

[53] and are networked together on a separate VLAN from the attacker VM. Metasploitable

is an Ubuntu 8.04 image that is configured with services that have known vulnerabilities and

backdoors, which we use for ease of experimentation. The firewall VM acts as a firewall and

management virtual machine, running an instance of the Uncomplicated Firewall (UFW)
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Figure 6.1: Architectural diagram for the case study experiment. The attacker can access
the Web server through the ingress switch and firewall, and can use SSH to log in to the
firewall. The subnet for the “Internet” is 10.100.0.0/24, and the subnet for the “intranet”
is 172.16.3.0/24.

configured with firewall rules to block all external traffic to the “intranet” except Web traffic

to and from the Web server and SSH traffic to and from the SSH server. The subnet for the

“Internet” is 10.100.0.0/24, and the subnet for the “intranet” is 172.16.3.0/24.

We ran the Mutillidae Web application [54] for our case study. Mutillidae is a deliberately

vulnerable Web application that implements vulnerabilities that correspond directly to the

Open Web Application Security Project (OWASP) Top 10 list of Web application security

weaknesses from 2013 [55]. Mutillidae uses the Apache 2.2.8 HTTP server, PHP 5.2.4, and

MySQL server v14.12, distribution 5.0.51a. We have configured the Mutillidae instance

running on the Web server to use Apache and PHP on the Web server and MySQL on the

database server.

6.1.2 Monitors

To perform monitoring within the system, we used the built-in logging capabilities of each of

the software packages installed. They include SSHd logging for the SSH server, UFW’s logs

for the firewall, Apache access logs for the HTTP server, and MySQL query logs for the SQL

server. For this experiment, we restricted the set of assets to protect to those pertaining to

the use of the Mutillidae Web application and management of the network. Specifically, they

include all three servers and the Apache HTTP server, PHP, MySQL server, and SSH server

instances. The system model for the case study and the associated component labels are
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illustrated in Figure 6.2. The equations describing the case study system model are given

in Figure 6.3.

6.1.3 Security Events

We now describe the events of interest for our case study experiment. We used the OWASP

Top 10 list [55] as the source for the events of interest. The OWASP Top 10 provides a

set of the most common, important categories of vulnerabilities observed in attack datasets

reflecting hundreds of organizations and thousands of Web applications. As Mutillidae is

built to exhibit vulnerabilities in all OWASP Top 10 categories, we selected 5 attacks, one

from each of the highest-ranked OWASP Top 10 categories, as the events of interest. They

are as follows:

• φ1: [Category A1: Injection] SQL injection through the capture-data.php page in

Mutillidae

• φ2: [Category A2: Broken Authentication] Authentication bypass using SQL injection

on the login.php page

• φ3: [Category A3: Cross-site Scripting (XSS)] XSS on the capture-data.php page

• φ4: [Category A4: Insecure Direct Object References] Access to the PHP configuration

page through brute-force directory traversal

• φ5: [Category A5: Security Misconfiguration] SSH brute-force attack on the firewall

machine

6.2 Implementation

The process by which we constructed our model of the system from the raw logs is illustrated

in Figure 6.4. First, we ran a given attack to generate the logs for the events associated

with the attack. Then, we parsed the raw log entries, converting them into a series of

data fields. Next, we converted the parsed log entries into indicators based on logical and

temporal predicates on the fields of the logs. Using the indicators extracted from the logs,

we constructed minimal indicator sets and the event-indicator mappings for each event by

hand. Finally, we used the experiment topology and the Mutillidae and OWASP resources

to define the remaining components of our model.
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Figure 6.2: System model for the case study experiment. White shapes represent assets,
green shaded shapes represent monitors, and arrows represent dependency relationships.

Corresponding to the flowchart in Figure 6.4, our implementation consists of the following

parts:

1. Raw log parsers: The raw log parsers convert the raw logs into a machine-understand-

able format. We have implemented these using C++ code for the logs in our experi-

ment. This component is used in stage 2 of the flowchart.

2. Indicator extraction code: This code converts the parsed raw logs into indicators

that can be represented within our model. We have implemented this in C++. The

indicators are generated in the format used by the system model Python code described

below. This component is used in stage 3 of the flowchart.

3. The system and data model, metrics, and optimal deployment program:

We have implemented our model, metrics, and deployment program in Python. The

Python code allows a user to construct and configure the model and all intrusion

detection parameters, which define the optimal deployment program for a given sit-

uation. We implement the algorithms described in Section ?? to compute the values

of the metrics and solve the optimal deployment program. We use this component to

build the system model in stages 4 and 5 of the flowchart and to solve for the optimal

deployments.

To explain how we use monitor log data to generate indicators, we now describe our

implementation of the indicator extraction code.
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v1 = Firewall server

v2 = Web server

v3 = Database server

v4 = SSH server process

v5 = Apache HTTP server process

v6 = PHP5

v7 = MySQL server

v8 = Mutillidae Web application

e1 = (v8, v5)

e2 = (v8, v6)

e3 = (v8, v7)

e4 = (v4, v1)

e5 = (v5, v2)

e6 = (v6, v2)

e7 = (v7, v3)

VS = {v1, v2, v3, v4, v5, v6, v7, v8}
ES = {e1, e2, e3, e4, e5, e6, e7}

m1 = SSHd logs

m2 = UFW

m3 = Apache access logs

m4 = MySQL query log

em1 = (m1, v4)

em2 = (m2, v1)

em3 = (m3, v5)

em4 = (m4, v7)

M = {m1,m2,m3,m4}
EM = {em1 , em2 , em3 , em4}

Figure 6.3: Equations describing the case study system model illustrated in Figure 6.2.

6.2.1 Indicator Extraction

As discussed earlier in this thesis, indicators are defined by logical predicates over the infor-

mation generated by monitors. Specifically, in our implementation, each indicator is defined

by a logical predicate, which we refer to as the indicator logic, over the fields provided by the

monitors. A monitor m can generate an indicator if it is possible to evaluate the indicator

logic over the fields generated by m. As some of the attacks within the set of events of

interest for our case study rely on access thresholds within a given period of time, we use

Run attacks and 
collect all 

generated logs

Parse raw logs to 
machine-

understandable 
format

Convert parsed 
logs into 

indicators

Examine 
indicators and 
create event-

indicator 
mapping by 

hand 

Construct 
remaining 

system model 
components

Figure 6.4: Flowchart describing the steps we take to generate the system model for the
case study example given the system model and events defined in Section 6.1.
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temporal as well as logical predicates to define the indicator logic.

For this experiment, we implemented the indicator logic described below for the four

monitors we used in our experiment. We observe that some indicators, such as “SSH attempt

to log in as an invalid user” change in importance depending on the username that is used.

For example, an attempt to log in with a misspelled version of a valid username would

be relatively benign, but an attempt to log in using a username that is commonly found

in brute-force dictionaries, such as “alice” or “bob”, could be malicious. Therefore, we

uniquely identify indicators by their type and by the set of unique identifiers associated

with the indicator, which we specify with the description of the indicator logic. Indicator

extraction corresponds to stage 3 in the flowchart given by Figure 6.4.

6.2.1.1 Indicator Logic for SSHd Logs

For the SSHd logs, we define the following indicators:

• High frequency of authentication attempts for a given IP address: This indicator cap-

tures an attempt by a single IP address to perform an SSH login on the firewall machine

more than thresholdSSH times within a windowSSH-second time interval, whether the

attempt was successful or unsuccessful. For this experiment, we set thresholdSSH to

5 and windowSSH to 10 based on the speed of the tool we use to perform SSH brute

force. Within the SSHd logs, a failed login attempt generates the following types of

entries:

Jun 26 11:04:29 firewall sshd[26865]: Failed password for invalid user admin

from 10.100.0.200 port 42656 ssh2

Jun 26 11:04:29 firewall sshd[26865]: pam\_unix(sshd:auth): authentication

failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=10.100.0.200 user=

root

The unique identifier for this indicator is the IP address attempting the SSH logins.

• Reverse DNS lookup fails for an IP address attempting SSH login: This indicator

captures an attempt by an IP address that fails reverse DNS lookup to perform an SSH

login on the firewall machine. While such failures do not always have malicious causes,

failure of a reverse DNS lookup could indicate that the IP address being provided is

being spoofed, or that the SSH request is coming from the darknet. Within the SSHd

logs, a reverse DNS lookup failure generates the following type of log entry:
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Jun 26 11:06:04 firewall sshd[26842]: Address 213.144.202.125 maps to

125-202-144-213.altitudetelecom.fr, but this does not map back to the

address - POSSIBLE BREAK-IN ATTEMPT!

The unique identifier for this indicator is the IP address attempting the SSH login.

• SSH login attempt from a blocked IP address: This indicator simply captures an

attempt to perform an SSH login on the firewall machine from an IP address that has

for some reason been blacklisted. Blacklisting could be done automatically by SSHd

if the process has been configured to do so, or could be done manually. Within the

SSHd logs, such an attempt generates the following type of log entry:

Jun 26 11:06:29 firewall sshd[26865]: refused connect from 10.100.0.200

(10.100.0.200)

The unique identifier for this indicator is the IP address attempting the SSH login.

• SSH login attempt using an invalid username: This indicator captures an attempt to

perform an SSH login on the firewall machine using a username that does not exist on

the machine. In some cases, such an attempt reflects misspelling of a valid username

and is benign. However, in most cases, such an attempt is an attempt by an attacker

to discover weak user accounts on the system that can be used to gain access to the

system. SSHd generates a host of different log messages when an invalid username is

used. This indicator is generated if any of the following types of entries are generated

by SSHd:

Jun 26 11:06:04 firewall sshd[26842]: Invalid user admin from 10.100.0.200

Jun 26 11:06:04 firewall sshd[26842]: input_userauth_request: invalid user

admin [preauth]

Jun 26 11:06:04 firewall sshd[26842]: pam_listfile(sshd:auth): Refused user

admin for service sshd

Jun 26 11:06:04 firewall sshd[26842]: pam_unix(sshd:auth): check pass; user

unknown

Jun 26 11:06:06 firewall sshd[26842]: Failed password for invalid user admin

from 10.100.0.200 port 42465 ssh2

The unique identifiers for this indicator are the IP address attempting the SSH login

and the invalid username used.

• High frequency of authentication failures using the sudo command: This indicator

captures an unsuccessful attempt by a user to perform a command using sudo on the
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firewall machine more than thresholdsudo times within a 10-second time interval. For

this experiment, we set thresholdsudo to 5.

The unique identifier for this indicator is the username performing the sudo attempts.

6.2.1.2 Indicator Logic for UFW Logs

For the UFW logs, we define the following indicators:

• UFW BLOCK alert: This indicator captures any packet that is blocked by UFW. As we

have configured UFW to allow only Web and SSH traffic from the external “Internet”

to the internal IP addresses, any other attempts at sending traffic will generate a UFW

block attempt. We have also configured UFW to add a limit rule to port 22 (SSH)

to block SSH access for an IP address temporarily if it exceeds a threshold number of

new network flows to the SSH port within a certain period of time.

As the set of rules we have created use destination ports to distinguish between types

of traffic, the unique identifiers for this indicator are the source and destination IP

addresses and the destination port.

• UFW AUDIT alert: This indicator captures a packet that does not exactly match

a firewall rule, but is allowed through the firewall by the default policy; such an

occurrence could indicate that a hole has been found in the firewall.

As with the UFW BLOCK alert indicator, the unique identifiers for this indicator are

the source and destination IP addresses and the destination port.

6.2.1.3 Indicator Logic for Apache Access Logs

For the Apache access logs, we define the following indicators:

• HTTP access to an administrative URL: This indicator captures an attempt by an

IP address to access an administrative resource. While not malicious on its own, if

performed by an IP address that is not permitted to access the resource, or by an

unauthenticated user, it could indicate compromise of the system. For this indicator,

we have constructed a list of directories and files (from the Mutillidae website) that are

restricted for administrative use. We consider any access attempt (any HTTP verb)

to one of the administrative URLs from an IP address outside the “intranet” to be

malicious.
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The unique identifiers for this indicator are the requester IP address and the URL of

the resource requested. For this and all other Apache access log indicators, the URL

is stripped of its query string, leaving just the path to the requested resource.

• High frequency of HTTP accesses: This indicator captures the actions of an IP address

that makes a large number of HTTP requests within a windowHTTP requests-second time

interval. A count of HTTP requests beyond a threshold, thresholdHTTP requests, likely

indicates that a user (or machine) is attempting to perform brute-force requests on the

Web server for one of multiple possible reasons (e.g., denial of service, vulnerability

discovery, or discovery of unprotected administrative pages). For this experiment, we

set thresholdHTTP requests to 20 and windowHTTP requests to 10.

The unique identifier for this indicator is the requester IP address.

• High frequency of bad HTTP status codes: This indicator captures the actions of

an IP address that makes a large number of HTTP requests (an amount that exceeds

thresholdHTTP bad status) to the Web server within a 10-second time interval that return

with bad status codes (bad status codes are 301, 4XX, and 5XX). The requests may

be to invalid pages, may be made without valid authorization, or may result in a server

error. For this experiment, we set thresholdHTTP bad status to 5.

The unique identifier for this indicator is the requester IP address.

• Malicious POST request: This indicator captures an attempt to perform an HTTP

POST to the Web server machine. While the Apache access logs do not provide the

contents of the POST, they do provide the URL to which the POST was sent. If a

website’s API is clearly defined, POST requests should be sent only to a specific set of

URLs, so any POSTs to other URLs could indicate an attempt to upload a backdoor

or exploit a vulnerability in the website. In the case of Mutillidae, almost all POSTs

will be malicious, so we do not distinguish in our indicator logic between valid and

invalid URLs.

The unique identifiers for this indicator are the requester IP address and the URL to

which the POST request was sent.

• URL string containing SQL code: This indicator captures an attempt to perform

SQL injection by providing SQL code as a URL query string parameter. To simplify

detection of SQL code, we look for substrings that we would never expect to see under

normal circumstances, but would likely be present in SQL code. That technique is used

in practice to detect SQL injection attempts, often using regular expressions instead
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of exact-match substrings. An example of a tool that uses such techniques is Apache

scalp [56].

For the purposes of this experiment, we looked for the following substrings:

– --

– @@version

– varchar

– char

– union

The unique identifiers for this indicator are the requester IP addresses and the URL

to which the request was sent.

• URL string containing JavaScript code: Similar to the SQL code URL indicator,

this indicator captures an attempt to perform cross-site scripting (XSS) by inject-

ing Javascript code as a URL query string parameter. As with the detection of SQL

code, while it is possible to use tools like Apache scalp and Apache mod security to

perform regular expression analysis of the access logs to detect XSS attempts, in our

implementation, we simply examined the URL query string for the following characters

and substrings:

– backslash (“\”)

– opening or closing angle brackets (“<”, “>”, or “/>”)

– opening or closing parentheses (“(” or “)”)

– semicolon (“;”)

– “script”

The unique identifiers for this indicator are the requester IP address and the URL to

which the request was sent.

6.2.1.4 Indicator Logic for MySQL Query Logs

The indicator logic for the indicators extracted from MySQL query logs depends heavily

on the actual MySQL queries performed by the Web application, as in order to identify

anomalous queries, it is necessary first to establish a baseline. Thus, we first describe the

MySQL queries that Mutillidae generates upon Web requests.
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Mutillidae contains an array of different pages that can be used to perform initialization of

the database, authentication, update of the database, and retrieval of database information.

When a user visits a page, Mutillidae creates a connection to the MySQL database; executes

the queries pertaining to the page itself; logs the IP address, user agent string, referer, and

time of access of the request to a hitlog table; and then closes the connection. Thus, each

connection containing a query to the hitlog table can be treated as a unique page request,

providing the IP address of the requester of the page. Mutillidae also stores informational log

messages to the hitlog table for some user actions, including all successful and unsuccessful

authentication attempts. For example, upon a hit to a page that does not require any

page-specific SQL queries, the following entries are added to the MySQL query log:

150626 9:25:28 43 Connect root@localhost on owasp10

43 Query INSERT INTO hitlog(hostname, ip, browser, referer, date)

VALUES (’10.100.0.200’, ’10.100.0.200’, ’Mozilla/5.0 (X11; Linux

x86_64; rv:31.0) Gecko/20100101 Firefox/31.0 Iceweasel/31.6.0’, ’User

visited’, now() )

43 Quit

In addition, for pages that store information to be retrieved later, such as

capture-data.php and add-to-your-blog.php, Mutillidae generates a SQL query that

inserts data captured by the URL query string and fields on the page into MySQL tables

corresponding to the page visited. For example, upon a visit to the capture-data.php page,

the following entries are added to the MySQL query log:

150626 10:09:53 68 Connect root@localhost on owasp10

68 Query SELECT * FROM accounts WHERE cid=’1’

68 Query INSERT INTO captured_data(ip_address, hostname, port,

user_agent_string, referrer, data, capture_date) VALUES

(’10.100.0.200’, ’10.100.0.200’, ’53333’, ’Mozilla/5.0 (X11; Linux

x86_64; rv:31.0) Gecko/20100101 Firefox/31.0 Iceweasel/31.6.0’, ’’, ’

page = capture-data.php

showhints = 2

username = admin

uid = 1

my_wikiUserID = 2

my_wikiUserName = Test

my_wiki_session = 6f9d602e9031eb75474500799fe76bed

PHPSESSID = d633mpp1img52iie4bishda4q4

showhints = 2
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username = admin

uid = 1

my_wikiUserID = 2

my_wikiUserName = Test

my_wiki_session = 6f9d602e9031eb75474500799fe76bed

PHPSESSID = d633mpp1img52iie4bishda4q4

’, now())

68 Query INSERT INTO hitlog(hostname, ip, browser, referer, date)

VALUES (’10.100.0.200’, ’10.100.0.200’, ’Mozilla/5.0 (X11; Linux

x86_64; rv:31.0) Gecko/20100101 Firefox/31.0 Iceweasel/31.6.0’, ’User

visited’, now() )

68 Quit

Since the queries used for all Mutillidae pages are static, we can create regular expressions

that attempt to find anomalous queries or those with unexpected clauses or characters.

Thus, for the MySQL query logs, we define the following indicators:

• Unexpected SQL query: This indicator captures an attempt to perform a form of

SQL injection in which additional clauses are appended to a SQL query by way of a

user-provided string field that is not properly escaped by the PHP webpage. For the

pages that we visited for this experiment, we collected all of the SQL queries performed

by visits to those pages, excepting all hitlog table queries. We constructed a regular

expression that matches all such valid queries, where user-supplied string parameters

have been replaced with a regular expression matching any possible properly-escaped

MySQL string. Any query that does not match the regular expression is potentially

malicious or evidence of a SQL injection attempt.

The unique identifiers for this indicator are the requester IP address and the table on

which the query is being performed.

• SQL query containing HTML: This indicator captures an attempt to perform XSS by

inserting HTML code into the database to be retrieved later and displayed by the Web

application. To identify HTML code, the indicator looks for matches of the regular

expression string “<[^>]*?>”, which identifies XML tags within the query.

The unique identifiers for this indicator are the requester IP address and the table on

which the query is being performed.

• SQL query containing injection keywords: This indicator captures an attempt to per-

form SQL injection using common SQL injection keywords. For the purposes of this
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experiment, we looked for the following substrings, which we know would not be present

in a valid query:

– --

– @@version

– varchar

– schema

– union

The unique identifiers for this indicator are the requester IP address and the table on

which the query is being performed.

By running the code implementing the indicator logic described above, we were able to

extract the observable indicators shown in Figure 6.5 from the logs in our system.

The monitor-indicator generation relationship for the indicators listed in Figure 6.5 is

given by the following set of equations:

α (m1) = {ι1, ι2, ι3, ι4, ι5, ι6}

α (m2) = {ι7, ι8}

α (m3) = {ι9, ι10, ι11, ι12, ι13, ι14, ι15, ι16, ι17, ι18, ι19, ι20}

α (m4) = {ι21, ι22, ι23, ι24, ι25}

6.2.2 Creation of the Event-Indicator Mapping

Next, given the indicators extracted from the logs, we generated the mappings for the evi-

dence required to detect events by hand, which corresponds to stage 4 in the flowchart given

by Figure 6.4. We did so using our understanding of how the responses by the system to

attack actions map to the indicators generated when we ran the attacks.

First, for each event, we grouped the indicators that were generated by each monitor

based on the type of evidence they provided to support detection of the event. For example,

for φ5, all of the SSH invalid user indicators (where each indicator describes an attempt

under a different username) for the same IP address would provide equivalent evidence to

support detection of an SSH brute-force attack by that IP address. We could treat all such

indicators as equivalent. Thus, we grouped all of these indicators together when examining

the indicators generated by SSHd logs for φ5.

Then, we used our judgment, backed by existing IDS signatures and the literature on

intrusion detection techniques, to determine which groups of indicators would need to be

detected in order to detect an attack. For each group, we considered the generation of some
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ι1 = SSH auth attempts > thresholdSSH for 10.100.0.200

ι2 = SSH login attempt from blocked IP 10.100.0.200

ι3 = SSH login attempt with bad username test@10.100.0.200

ι4 = SSH login attempt with bad username admin@10.100.0.200

ι5 = SSH login attempt with bad username alice@10.100.0.200

ι6 = sudo auth failures > thresholdsudo for user user

ι7 = UFW BLOCK for source 10.100.0.200 to 10.100.0.100:22

ι8 = UFW BLOCK for source 10.100.0.200 to 172.16.3.70:80

ι9 = HTTP access to admin URL /mutillidae/index.php?page=phpinfo.php

by 10.100.0.200

ι10 = HTTP access to admin URL /mutillidae/phpinfo.php by 10.100.0.200

ι11 = HTTP access to admin URL /mutillidae/index.php?page=/etc/passwd

by 10.100.0.200

ι12 = HTTP access to admin URL /phpMyAdmin by 10.100.0.200

ι13 = HTTP brute force by 10.100.0.200

ι14 = HTTP bad requests > thresholdHTTP bad status for 10.100.0.200

ι15 = malicious POST to /mutillidae/index.php?page=login.php by 10.100.0.200

ι16 = malicious POST to /mutillidae/index.php?page=text-file-viewer.php

by 10.100.0.200

ι17 = SQL injection attempt through URL string on resource

/mutillidae/index.php?page=capture-data.php by 10.100.0.200

ι18 = SQL injection attempt through URL string on resource

/mutillidae/index.php?page=login.php by 10.100.0.200

ι19 = XSS attempt through URL string on resource

/mutillidae/index.php?page=capture-data.php by 10.100.0.200

ι20 = XSS attempt through URL string on resource /mutillidae/index.php

by 10.100.0.200

ι21 = unexpected SQL query on table accounts by 10.100.0.200

ι22 = unexpected SQL query on table captured data by 10.100.0.200

ι23 = XSS attempt via injection on table captured data by 10.100.0.200

ι24 = SQL injection attempt on table accounts by 10.100.0.200

ι25 = SQL injection attempt on table captured data by 10.100.0.200

Figure 6.5: Equations listing the indicators extracted from logs for the case study
experiment.
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minimum threshold number of indicators from the group to be sufficient for detection of the

group. In most cases, the threshold number was one. For example, for φ5, we considered

brute force to be defined as one of 1) a threshold number of failed SSH login attempts from

the same IP address within a given time period, 2) a threshold number of failed sudo attempts

for the same user within a given time period, 3) a threshold number of SSH login attempts

using invalid usernames from the same IP address, 4) a UFW BLOCK alert for port 22 on

the firewall server (since the UFW SSH limit rule causes UFW to generate BLOCK alerts for

SSH connection attempts exceeding a threshold number), or 5) an SSH login attempt that

appears to be a break-in attempt coupled with a login attempt from the same IP address

using an invalid username. We constructed the minimal indicator sets and evidence mapping

for φ5 using the conditions described above and the actual indicators that were generated.

The equations provided below describe the evidence required to detect the events for our

case study.

β (φ1) = {{ι17} , {ι22} , {ι25}}

β (φ2) = {{ι15, ι21} , {ι15, ι24} , {ι18, ι21} , {ι18, ι24} , {ι21, ι24}}

β (φ3) = {{ι19} , {ι20, ι22} , {ι20, ι25} , {ι23}}

β (φ4) = {{ι9} , {ι10} , {ι12}}

β (φ5) = {{ι1} , {ι3, ι4} , {ι3, ι5} , {ι4, ι5} , {ι6} , {ι7}}

6.2.3 Remaining System Model Parameters

After constructing the system model graph, S; the list of events, Φ; the list of indicators, I;

the mapping between monitors and events, α; and the mapping between events and indica-

tors, β, we still needed to define values for a small number of system model parameters. They

are the trustworthiness values for the monitors, γM , and the parameters and mappings for the

calculation of monitor cost, which are the monitor resource utilization, monitor purchase and

management cost, asset resource cost, and monitor LogsTo relationship. Assigning these

values corresponds to stage 5 in the flowchart given by Figure 6.4.

We assigned truthfulness values to the monitors based on the levels of indirection between

the monitors and the attacker VM and the vulnerability of the assets on which they depend,

as provided by Mutillidae’s website.

We assigned resource utilizations to each of the monitors based on a resource usage profile

of its execution during the tests and based on the size of the logs generated. We used a

scaled version of Amazon’s EC2 pricing model to determine resource costs for each of the
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Table 6.1: System model values for case study monitors.

Monitor γM(m)
Resource Utilization

CPU Memory Disk Network

m1 0.3 0.02 0.008 0.1 0
m2 0.3 0.05 0.004 0.01 0
m3 0.5 0.1 0.1 0.4 0
m4 0.9 0.2 100 1 0

Table 6.2: System model values for case study assets.

Assets
Resource Cost

CPU Memory Disk Network

v1, v4 0.5 0.002334 0.0347 0.1

v2, v3, v5,
1.0 0.005668 0.0694 0.1

v6, v7, v8

resources on the machines. Furthermore, as the firewall server is not crucial to the operation

of the Web server, its resource costs were reduced in comparison to those of the Web server

and database server. As the monitors used in our case study are open-source and do not

require extensive configuration, we set all purchase and management costs to zero. In our

case study, all monitors log locally. All of the values we used in the case study for the system

model parameters are provided in Tables 6.1 and 6.2.

6.3 Results

We use the following four sets of intrusion detection requirements as example cases to com-

pare the deployment obtained through our methodology with one that might be chosen by

a system administrator. For each example case, we also show the complete set of possible

deployments and the values of the relevant metrics for each deployment, to prove that our

equations indeed yield the optimal result. For all cases, the deployment is subject to a cost

constraint of maxCost = $1.00, which we chose to be insufficient to deploy all monitors, but

sufficient to deploy at least two.
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Monitors deployed
Cost Redundancy(φ1) Coverage(Φ)

m1 m2 m3 m4

No No No No $0.000 0 0.0
Yes No No No $0.013 0 0.2
No Yes No No $0.025 0 0.2
Yes Yes No No $0.039 0 0.2
No No Yes No $0.128 1 0.6
Yes No Yes No $0.142 1 0.8
No Yes Yes No $0.154 1 0.8
Yes Yes Yes No $0.167 1 0.8
No No No Yes $0.836 2 0.6
Yes No No Yes $0.850 2 0.8
No Yes No Yes $0.862 2 0.8
Yes Yes No Yes $0.875 2 0.8
No No Yes Yes $0.965 3 0.8
Yes No Yes Yes $0.978 3 1.0
No Yes Yes Yes $0.990 3 1.0
Yes Yes Yes Yes $1.003 3 1.0

Table 6.3: Relevant metrics’ values for all possible monitor deployments for Case 1.

6.3.1 Case 1

A practitioner wishes to maximize the number of events that can be detected, but must

ensure detectability of φ1 (SQL injection through capture-data.php). Using his or her

intuition, the practitioner would deploy all of the monitors, but would not know if this

meets the cost constraints.

Using our approach, we can describe the set of events of interest as Φ = {φ1, φ2, φ3, φ4, φ5}.
The intrusion detection requirements can be captured by setting wCoverage = 1 to maximize

the number of events that can be detected and by setting minRedundancyφ1
= 1 to ensure

detectability of φ1. All other parameters are set to 0.

Solving the optimal deployment equation generated by the requirements provided above

and the model constructed for this experiment yields the deployment Md = {m1,m3,m4}.
Table 6.3 shows the values of Redundancy(φ1), Coverage(Φ), and monitor cost for all

possible monitor deployments. Because of cost constraints, it is not possible to deploy all

four monitors. However, m1 and m2 both provide coverage for φ5, so only one of them needs

to be deployed to maximize coverage. From examination of the table, it is evident that the

deployment chosen by our algorithm is indeed cost-optimal.
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6.3.2 Case 2

A practitioner wishes to ensure that all unauthorized access events (φ2, φ4, φ5) can be de-

tected. The other events are not important. Based on intuition, the practitioner would

deploy monitors m1, m3, and m4, since the unauthorized access events deal with SSH ac-

cesses, Web page accesses, and logins using the database.

Using our approach, since we do not have any requirements regarding φ1 or φ3, we can

restrict the set of events of interest to Φ = {φ2, φ4, φ5}. Doing so increases the efficiency of

the solver, as it does not need to keep track of as many intermediate variables. By setting

minCoverage = 1, we can ensure that the monitor deployment will completely cover all events

in Φ. All other parameters are set to 0.

Solving the optimal deployment equation generated by the requirements provided above

and the model constructed for this experiment yields the deployment Md = {m1,m3,m4}.
Table 6.4 shows the values of Coverage(Φ) and monitor cost for all possible monitor de-

ployments. From examination of the table, it is evident that the monitor deployment chosen

by our algorithm is indeed optimal. In this case, the deployment does not differ from the de-

ployment chosen via intuition. However, from the fact that the optimal deployment required

both m3 and m4, we can be sure that m3 and m4 cannot independently provide enough

information to detect both φ2 and φ4. That inference is corroborated by Table 6.4.

6.3.3 Case 3

A practitioner believes that monitors may become unavailable and wishes to maximize the

number of ways in which events φ1 and φ4 can be detected. All other events are of lesser

importance. Using intuition, the practitioner would deploy m3 and m4, as both monitors

should provide information about both events.

As with Case 2, using our approach, we can set Φ = {φ1, φ4}. To maximize the number

of ways to detect the two events, we can set wRedundancyφ1
= wRedundancyφ4

= 1. All other

parameters are set to 0.

Solving the optimal deployment equation generated by the requirements provided above

and the model constructed for this experiment yields the deployment Md = {m3,m4}. Ta-

ble 6.5 shows the values of Redundancyφ1 and Redundancyφ4 ; the monitor cost for all possible

monitor deployments; and the value of the utility function (the function to maximize) for

the optimal deployment equation. Here, again, the deployment is the same as the intuitive

deployment, and examination of the table verifies that the deployment chosen by our algo-

rithm is optimal. However, our approach provides the additional utility of quantifying the
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Monitors deployed
Cost Coverage(Φ)

m1 m2 m3 m4

No No No No $0.000 0.00
Yes No No No $0.013 0.33
No Yes No No $0.025 0.33
Yes Yes No No $0.039 0.33
No No Yes No $0.128 0.33
Yes No Yes No $0.142 0.67
No Yes Yes No $0.154 0.67
Yes Yes Yes No $0.167 0.67
No No No Yes $0.836 0.33
Yes No No Yes $0.850 0.67
No Yes No Yes $0.862 0.67
Yes Yes No Yes $0.875 0.67
No No Yes Yes $0.965 0.67
Yes No Yes Yes $0.978 1.00
No Yes Yes Yes $0.990 1.00
Yes Yes Yes Yes $1.003 1.00

Table 6.4: Relevant metrics’ values for all possible monitor deployments for Case 2.

redundancy values for the two events. For the case study model constructed as described

above, Redundancy(φ1,Md) = 3 and Redundancy(φ4,Md) = 3.

6.3.4 Case 4

A practitioner believes the system may be compromised, and wishes to maximize the ability

to detect SQL injection attacks (φ1 and φ2) and φ5. Based on intuition, the practitioner

would deploy m4 to detect the two SQL injection attacks and m1 to detect φ5. However, it

is unclear which of the other two monitors would best meet the practitioner’s requirements.

Using our approach, we first set Φ = {φ1, φ2, φ5}. We can maximize the ability to detect

the events under compromise by maximizing redundancy and confidence for each. That

is, we set wRedundancyφ1
= wRedundancyφ2

= wRedundancyφ5
= wConfidenceφ1

= wConfidenceφ2
=

wConfidenceφ5
= 1. All other parameters are set to 0.

Solving the optimal deployment equation generated by the requirements provided above

and the model constructed for this experiment yields the deployment Md = {m1,m2,m4}.
Table 6.6 shows the values of the redundancy and confidence metrics for φ1, φ2, and φ5; the

monitor cost for all possible monitor deployments; and the value of the utility function (the
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Monitors deployed
Cost Redundancy(φ1) Redundancy(φ4) Total utility

m1 m2 m3 m4

No No No No $0.000 0 0 0
Yes No No No $0.013 0 0 0
No Yes No No $0.025 0 0 0
Yes Yes No No $0.039 0 0 0
No No Yes No $0.128 1 3 4
Yes No Yes No $0.142 1 3 4
No Yes Yes No $0.154 1 3 4
Yes Yes Yes No $0.167 1 3 4
No No No Yes $0.836 2 0 2
Yes No No Yes $0.850 2 0 2
No Yes No Yes $0.862 2 0 2
Yes Yes No Yes $0.875 2 0 2
No No Yes Yes $0.965 3 3 6
Yes No Yes Yes $0.978 3 3 6
No Yes Yes Yes $0.990 3 3 6
Yes Yes Yes Yes $1.003 3 3 6

Table 6.5: Relevant metrics’ values for all possible monitor deployments for Case 3. Total
utility for this case is the sum of Redundancy(φ1) and Redundancy(φ4).

function to maximize) for the optimal deployment equation. Examination of the table shows

that compared to deploying only m1 and m4, deploying m2 increases the redundancy of φ1

by 1 and deploying m3 increases the redundancy of φ5 by 4. Since the added utility from

deploying m3 is greater than that of deploying m2, deploying m3 is more beneficial. While a

practitioner could use intuition or domain knowledge to try to arrive at the same conclusion,

our deployment explicitly quantifies the benefit, eliminating guesswork and simplifying the

analysis for the practitioner. The deployment chosen by our algorithm can be seen to be

optimal for this set of requirements.

6.3.5 Expressiveness of Approach

The evaluation we perform here illustrates not only the feasibility and ease-of-use of our

approach in determining cost-optimal monitor placements, but also its expressiveness. Each

of the four scenarios represents a realistic intrusion detection goal a practitioner may have for

a system. As shown above, the scenarios can be directly transformed into intrusion detection

requirements within our methodology, and the resulting optimization equation can be solved

to obtain an optimal deployment. Using our methodology, a practitioner could perform
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a study of monitor deployment with different sets of intrusion detection requirements or

different parameter values for the same system. For a small system like the one used in our

experiments, it would be possible to perform the analysis manually, but as the size of the

system and the numbers of monitors and events grow, our approach significantly simplifies

such an analysis.

72



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we presented a quantitative methodology to determine maximum-utility, cost-

optimal deployments of security monitors in networked distributed systems in terms of in-

trusion detection goals. We showed the need for our methodology by observing that current

approaches to monitor deployment do not consider the cost of monitoring, deal only with

the deployment or configuration of network IDS monitors, or do not consider the effect of

compromise on the ability of monitors to support intrusion detection.

Our methodology consists of three components. First, we defined a system and data

model that represents 1) system components, monitors, and their dependence relationships;

2) events in the system that a security administrator would want to detect; and 3) how data

generated by monitors relates to the detectability of an event. Second, we defined a set of

monitor utility metrics that quantify the ability of a set of monitors to support intrusion

detection and a monitor cost metric that quantifies monitor purchase and utilization costs

over the lifetime of the monitor. Third, we defined an optimization problem that combines

our model and metrics with intrusion detection requirements and can be solved to yield an

optimal monitor deployment.

We illustrated the use of our approach through a working example based on an enterprise

Web service scenario. We demonstrated the efficacy and practicality of our approach through

a case study, also based on an enterprise Web service scenario, in which we programmatically

generated the components of our model from logs captured from a running Web application

and used a nonlinear program solver to find optimal monitor deployments for a set of four

different example scenarios. Through our examples, we demonstrated that our methodology

gives practitioners a way to express intrusion detection requirements and easily determine

satisfactory optimal monitor deployments, which may not be intuitive. Our approach offers

a novel, quantitative technique for determining where to deploy security monitors, and fills

a gap in the existing range of tools and literature.
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7.2 Future Work

In future work, we plan to investigate utility metrics other than the three we introduce here.

Some possible metrics include those related to increasing the granularity of monitor informa-

tion for forensic analysis, graph-theoretic metrics such as connectivity and robustness of the

assets in the graph, and metrics related to the necessity of certain types of information for

monitor data fusion and intrusion detection algorithms. We are also considering performing

sensitivity analysis on assets to determine the absolute effect of unavailability of an asset on

the utility metrics.

Another avenue for future work would be to address some of the assumptions we make

in our approach. In our current model, monitors independently provide information about

events by generating indicators. In some cases, however, absence of an indicator in the

presence of other indicators may itself provide evidence supporting detection of an event.

We aim to represent such a relationship between monitors and events within our model. In

our current model, we also assume independence between monitors, and model dependence

between assets as a dependency graph. We plan to investigate dependence relationships

among assets and monitors in more depth, and accurately represent the relationships within

our model.

We also aim to investigate methodical ways to set model parameters and enumerate the

components of our system and data model. In this thesis, we propose a mechanism for

generating indicators directly from log data, but other possible approaches include using

monitor configurations and monitor source code analysis to determine the set of all pos-

sible indicators that can be generated by a monitor. We currently leave specification of

events of interest and selection of target metric values to the security administrator, but it

might be possible to automatically infer these parameters directly from the security policy

specifications, service level agreements, and intrusion detection system rules.

Finally, we plan to adapt our approach to be used for online monitor deployment. As the

system changes and alerts arrive from monitors, the optimal deployment of monitors will

also change. We plan to investigate how fusion and intrusion detection algorithms would

drive our model, metric definitions, and weights and constraints for the optimal deployment

equations. We also plan to investigate the applicability of machine learning approaches

to online monitor deployment. An online version of our approach could be the basis for

reinforcement learning responses or a defensive monitoring system.
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