(C) 2015 by Cecilia Mauceri. All rights reserved.

# EXPANDING COMMONSENSE KNOWLEDGE BASES BY LEARNING FROM IMAGE TAGS 

BY<br>CECILIA MAUCERI

## THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisor:

Professor Svetlana Lazebnik

## Abstract

I present a method for learning new commonsense facts to augment existing commonsense knowledge bases by using the metadata of large online image collections. Online image collections present a source of knowledge that is supported by many contributors, has good representation of objects and their properties, and is visual. The collection's broad support of objects and object properties ensure the relevance and quality of the commonsense knowledge collected, while the visual focus provides a different subset of knowledge than typical text corpora. Using the image metadata provides a text representation of the visual information. Therefore, I can use classifiers trained on existing text-based knowledge bases to learn relationships between concepts represented in the images. I collect two datasets of more than 1 million images each, one consisting of animal images, one of room interiors. The images are tagged with relevant concepts by their owners. I train classifiers using facts from two popular commonsense knowledge bases, ConceptNet and Freebase, to classify the relationships between frequent concept pairs. The output is a list of more than 90,000 proposed facts, which are in neither source knowledge base.

## Acknowledgments

Thanks to my adviser, Svetlana Lazebnik, for all your helpful advise and constructive critism that kept the project moving. Also many thanks to my husband, Steffen, for sharing countless cups of coffee and encouragement, and to my parents for always offering grammatical support and love.

## Table of Contents

List of Tables ..... vi
List of Figures ..... ix
List of Abbreviations ..... xi
Chapter 1 Introduction ..... 1
Chapter 2 Related works ..... 4
2.1 Information extraction ..... 4
2.2 Visual knowledge ..... 4
2.2.1 Visual knowledge bases ..... 4
2.2.2 Image semantics ..... 5
Chapter 3 Method ..... 7
3.1 Collect image dataset ..... 8
3.2 Establish a vocabulary ..... 8
3.2.1 Mine the dataset for frequent image tags. ..... 8
3.2.2 Cleaning up the initial vocabulary ..... 9
3.2.3 Expand the vocabulary to include phrases ..... 9
3.3 Labels for concepts ..... 11
3.4 Pairwise concept co-occurrence ..... 11
3.5 Collecting training edges from existing knowledge bases ..... 12
3.6 Relationship transfer ..... 16
3.6.1 Edge features ..... 16
3.6.2 Classifiers ..... 16
Chapter 4 Experimental set up ..... 18
4.1 Datasets ..... 18
4.2 Vocabulary ..... 18
4.3 Ground truth edges ..... 20
Chapter 5 Quantitative results ..... 22
5.1 Metric definitions ..... 22
5.2 Cross-Validation ..... 23
5.3 Cross-dataset training and testing ..... 25
5.4 Hand-labeling ..... 28
Chapter 6 Qualitative results ..... 35
Chapter 7 Future Work ..... 47
7.1 Human annotation ..... 47
7.2 Including visual representations in classification ..... 47
7.3 Building visual edge detectors ..... 48
7.4 $\quad$ Frequent concept sets ..... 48
Chapter 8 Conclusions ..... 49
Appendix A Merged relationships ..... 50
A. 1 IsA. ..... 50
A. 2 GeographicContainment ..... 50
A. 3 GeographicAdjective ..... 51
A. 4 AtLocationGeographic ..... 51
Appendix B Vocabulary ..... 52
Appendix C Labeled vocabulary examples ..... 56
C. 1 Colors ..... 56
C. 2 Locations ..... 57
Appendix D Predicting edge existence ..... 59
Appendix E Proposed edge details ..... 61
E. 1 Proposed edges from the animal dataset ..... 61
E. 2 Proposed edges from the room dataset ..... 65
E. 3 Proposed edges dataset comparison ..... 70
References ..... 72

## List of Tables



4.2 Vobabulary statistics at each step of the collection process. . . . . . . . . . . . . . . . . . . . 20
4.3 Edge statistics. All edges described in this table have both source and target concepts in the
5.1 Accuracy, Precision, and Recall for various classifiers Columns include: Accuracy for any cor-
rect label using the highest scoring classifier, mean recall over relationships using the highest
scoring classifier (MR@1), mean precision over relationships using the highest scoring classifier
(MP@1), mean recall over relationships for the top three highest scoring classifiers (MR@3),
mean precision over relationships for the top three highest scoring classifiers (MP@3). The
highest values for each dataset are in bold.. . . . . . . . . . . . . . . . . . . . . . . 23

| 5.2 | n, and recall comparison for various training and test sets using the Cubic |
| :---: | :---: |
| SVM and difference features When training and testing on the same dataset, 5-fold cross- |  |
| validation is used. Columns include: Accuracy for any correct label using the highest scoring |  |
| classifier, mean recall over relationships using the highest scoring classifier (MR@1), mean |  |
| precision over relationships using the highest scoring classifier (MP@1), mean recall over |  |
| relationships for the top three highest scoring classifiers (MR@3), mean precision over rela- |  |
| tionships for the top three highest scoring classifiers (MP@3). . . . . . . . . . . . . . . . . . . |  |
| 5.3 | Selected examples of high confidence confused edges for room dataset |
| 5.4 | Selected examples of high confidence confused edges for animal dataset. |
| 5.5 | Edge statistics for hand-labeled edges Visualness of relationship types. This table reports the percent of handlabeled-edges that are |
| 5.6 |  |
| labeled visual for each relationship type as well as the total number of hand-labeled edges |  |
| summed over both datasets. The relationships are sorted by percent visual then by the number |  |
|  | of examples. |

6.1 All training edges containing "sheep" in animal dataset. Rows are sorted by relationship type, then by number of owners.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Examples of high confidence AtLocation edges containing "sheep" from the animal test set. Bold rows are illustrated in Figure [6.1| Edges are the eight highest scoring proposals with more that 500 owners and NPMI greater than 0.02 . . . . . . . . . . . . . . . . . . . . . . . . 3
6.3 Examples of high confidence edges containing "sheep" from the animal test set. The edges are the highest scoring proposals with more than 500 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure|6.4| Pink rows are misclassified. . . 37

|  |  |  |
| :---: | :---: | :---: |
| score less than 0.6 , fewer than 500 owners, and a positive NPMI. Low confidence edges have |  |  |
| many more erroneous labels than high confidence edges. Bold rows are illustrated in Figure |  |  |
|  | 6.3\| Pink rows are misclassified. Ellipsis indicates hidden examples. |  |
| Selected examples of high confidence edges containing "gosling" from the animal test set. |  |  |
| There are no training edges containing "gosling" in the rooms dataset. Pink rows are mis- |  |  |
| classified. The italic row not a proposed relationship. It is included to show the score of the |  |  |
| reverse edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  |  |
| 6.6 Top four highest scoring proposed edges in room dataset for each relationship. Edges are |  |  |
| sorted by relationship then by score. |  |  |
| Top four highest scoring proposed edges in room dataset for each relationship. Edges are |  |  |
| sorted by relationship then by score. . |  |  |
| B. 1 Top 50 concepts from the room dataset at various stages of collection. The initial vocabulary |  |  |
| is collected from the image tags only excluding English stopwords. The filtered vocabulary re- |  |  |
| moves camera vocabulary, numbers, non-roman characters, and automatic Flickr tags (except |  |  |
| for vision tags), and splits concatenated phrases when possible. The extended vocabulary |  |  |
| adds phrases that are frequent in the dataset found using high PMI and local search on Free |  |  |
| base. The effective vocabulary is the vocabulary terms in the extended vocabulary for whi |  |  |
|  |  |  |
|  | Top 50 concepts from the animal dataset at various stages of collection. The initial vocabulary |  |
| is collected from the image tags only excluding English stopwords. The filtered vocabulary re- |  |  |
| moves camera vocabulary, numbers, non-roman characters, and automatic Flickr tags (except |  |  |
| for vision tags), and splits concatenated phrases when possible. The extended vocabulary |  |  |
| adds phrases that are frequent in the dataset found using high PMI and local search on Free- |  |  |
| base. The effective vocabulary is the vocabulary terms in the extended vocabulary for |  |  |
|  |  |  |

E. 1 All training edges with "bird" as the source in animal dataset. Rows are sorted by relationship type, then by number of owners. There are also 47 edges with "bird" as the target in the training set, all with the relationship IsA, representing different species of bird. These examples accompany Figure 6.4 and Table|E.2|61
E. 2 Selected examples of high confidence edges containing "bird" from the animal test set. The edges are the highest scoring proposals with more than 500 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure $6.4 \mid$ Pink rows are misclassified. 63
E. 3 Training edges containing "farmland" in animal dataset . . . . . . . . . . . . . . . . . . . . . 64
E. 4 Selected examples of high confidence edges containing "farmland" from the animal test set. The edges are the highest scoring proposals with more than 300 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure [6.4]
E. 5 All training edges containing "sofa" in room dataset. Rows are sorted by relationship type, then by number of owners. These examples accompany Figure|E.2 and Table E.6||65
E. 6 Selected examples of high confidence edges containing "sofa" from the room test set. The edges are the highest scoring proposals with more than 500 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure E. 2]66
E. 7 Selected examples of high confidence edges containing "mirror" from the room test set. The edges are the highest scoring proposals with more than 300 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure E.4 | Pink rows are misclassified.
E. 8 Training edges containing "garlic" in room dataset
E. 9 Selected images from high confidence edges containing "garlic" from room test set. These image grids illustrate the highlighted edges in Table E. 10 |
E. 10 Selected examples of high confidence edges containing "garlic" from the room test set. The edges are the highest scoring proposals with more than 100 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure|E.9| Pink rows are misclassified.
E. 11 Selected examples of high confidence edges containing "new year" from the rooms test set. There are no training edges containing "new year" in the rooms dataset. Bold rows are
illustrated in Figure E.5. Pink rows are misclassified.]. . . . . . . . . . . . . . . . . . . . 69
E. 12 Training edges containing "baby" in both datasets. Rows are sorted by relationship type, then by number of owners. These examples accompany Figure 6.6 and Tables [E.13] and E.14] 70
E. 13 Selected Examples of High Confidence edges containing "baby" from the room test set. Bold rows are illustrated in Figure 6.6| Pink rows are misclassified. Green rows are learned by the classifiers for the animal dataset as well. Ellipsis indicates a number of excluded high confidence edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E. 14 Selected Examples of High Confidence edges containing "baby" from the animal test set. Bold
rows are illustrated in Figure 6.6 Pink rows are misclassified. Green rows are learned by the classifiers for the room dataset as well. Ellipsis indicates a number of excluded high confidence edges. 71

## List of Figures

4.1 Distribution of images collected for each search term . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Distribution of edges over relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Confusion matrix for room dataset This confusion matrix is generated using 5-fold cross validation on the training set and the cubic svm classifiers trained with difference features. Each entry represents the number of edges with the ground truth label, y, that were classified as x . The relationships are ordered along the x and y -axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom. Examples of confused edges can be seen in Table /5.3
5.2 Confusion matrix for animal dataset This confusion matrix is generated using 5 -fold cross validation on the training set and the cubic svm classifiers trained with difference features. Each entry represents the number of edges with the ground truth label, y, that were classified as x . The relationships are ordered along the x and y -axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom. Examples of confused edges can be seen in Table [5.4
5.3 A screenshot of the GUI used for hand-labeling concept pairs . . . . . . . . . . . . . . . . . . 29
5.4 Relationship distribution of hand-labeled edges for each dataset. The animal dataset has a larger proportion of IsA edges because animals are often referred to with different levels of specificity. For example, "animal", "bird", "chicken", "hen" can all be used to refer to the same animal. The room dataset has a larger proportion of AtLocation relationships because it has a large number of inanimate objects found in the home.
5.5 Receiver Operator Characteristic (ROC) for predicting directed edge existence. I use one of the metrics listed in the legend to predict whether or not an ordered concept pair is an edge. Pairs with a value above a certain threshold are labeled as edges. These labels are compared to the hand-labeled ground truth, counting the number of true positive and false positive labels. The curve is plotted by varying the threshold which varies the numbers of true and false positives. The area below the curve is the accuracy. The diagonal is random chance. A larger area above the diagonal indicates better prediction. In these plots, the highest classifier score is most predictive of directed edge existence. Additional plots of the corresponding thresholds and precision recall curves are available in Appendix D ]
5.6 Confusion matrix using hand-labeled relationships from animal dataset This confusion matrix is generated using the hand-labeled relationships for the test edges. Each entry represents the number of edges with the ground truth label, y, that were classified as x. The relationships are ordered along the x and y -axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom.
5.7 Confusion matrix using hand-labeled relationships from room dataset This confusion matrix is generated using the hand-labeled relationships for the test edges. Each entry represents the number of edges with the ground truth label, y , that were classified as x . The relationships are ordered along the x and y -axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom.

6.1 Selected images from high confidence AtLocation edges containing "sheep" from animal test
set. These image grids illustrate the highlighted edges in Table 6.2 . These two examples show
the AtLocation relationship can be used to describe nearness as well as scene locations. . . . 36
6.2 Selected images from high confidence edges containing "sheep" from animal test set. These image grids illustrate the highlighted edges in Table 6.3 | These examples show the variety of images contributing to each edge. In Figure 6.1 b , the images are very consistent, but the association learned is incorrect. 37

| image grids illustrate the highlighted edges in Table $6.3 \mid$ These examples show the variety |  |
| :---: | :--- | :--- |
| of images contributing to each edge. In Figure 6.1 b | \|he images are very consistent, but the |
| association learned is incorrect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 |  |

6.3 Selected images from low confidence edges containing "sheep" from animal test set. These image grids illustrate the highlighted edges in Table 6.4 | Twos of these examples show unusual but accurate edges. The third, Figure $[6.3 \mathrm{~b} \mid$ shows some toy sheep with buttons, but is predominantly sheep images on buttons or sheep shaped buttons.

| image grids illustrate the highlighted edges in Table $6.4 \mid$ Twos of these examples show unusual |
| :--- | :--- | :--- |
| but accurate edges. The third, Figure $6.3 \mathrm{~b} \mid$ shows some toy sheep with buttons, but is |
| predominantly sheep images on buttons or sheep shaped buttons. $\ldots$. . . . . . . . . . . 38 |

6.4 Selected images from high confidence edges containing "bird" from animal test set. These image grids illustrate the highlighted edges in Table|E.2| These two examples show that the "bird" facts are being learned that apply to all species of birds, e.g. "bird has a foot", and to specific species of birds, e.g. "bird has property bright"
6.5 Selected images from edges containing "baby" learned by both test sets. Each rows shows the same edges with the examples from the animal dataset on the left and the examples from the room dataset on the right. We can see that while the knowledge comes from very different sources, but the general facts about babies are the same.43
6.6 Selected images from high confidence edges containing "baby" learned by only one dataset. The edges are only learned by one dataset's classifiers, suggesting that baby animals are more fuzzy and that they are less likely to be found in kitchens than human babies.44
D. 1 Examining directed edge prediction for the animal dataset ..... 59
D. 2 Examining directed edge prediction for the room dataset ..... 60
E. 1 Selected images from high confidence edges containing "farmland" from animal test set. These image grids illustrate the highlighted edges in Table E.4| These two examples show two possible relationships between "farmland" and animals. A similar AtLocation relationship, "cow at location farmland" is present in the training data, but there is no similar UsedFor relationship.
E. 2 Selected images from high confidence edges containing "sofa" from room test set. These image grids illustrate the highlighted edges in Table|E.6| Figure|E.2a|shows "male" being used as a synonym for "man" in stock photo tagging.66
E. 3 Training edges containing "mirror" in room dataset. . . . . . . . . . . . . . . . . . . . . . . . 67
E. 4 Selected images from high confidence edges containing "mirror" from room test set. These image grids illustrate the highlighted edges in Table E. 7 . . . . . . . . . . . . . . . . . . . . . 67
E. 5 Selected images from edge "new year has property happy". The images contain three different "happy new year" themes: written messages, fancy meals, and groups of celebrating people, showing how different image motivs can represent the same fact.

## List of Abbreviations

| MP@1 | Mean Precision at 1 (i.e. considering only the highest scoring classifier) |
| :--- | :--- |
| MP@n | Mean Precision at $n$ (i.e. considering all $n$ top scoring classifiers) |
| MR@1 | Mean Recall at 1 (i.e. considering only the highest scoring classifier) |
| MR@n | Mean Recall at $n$ (i.e. considering all $n$ top scoring classifiers) |
| NPMI | Normalized Pointwise Mutual Information |
| PMI | Pointwise Mutual Information |
| R@1 | Recall at 1 |
| R@n | Recall at $n$ (i.e. considering all $n$ top scoring classifiers) |
| SVM | Support Vector Machine |

## Chapter 1

## Introduction

Commonsense knowledge describes the everyday facts that humans learn through experience. Examples include simple observations such as that a ball will roll down a slope, or that sugar is sweet. Shared commonsense knowledge is an important starting point for making sense of observations. If we observe a ball rolling uphill, we assume there is some hidden agent pushing it upwards. This hypothesis may be false, perhaps we are observing the ball in an unconventional reference frame, but without commonsense knowledge, any reasoning about the scene would be like reasoning about a surrealist painting.

Similarly, artificial intelligence systems can draw on models of their environment in the form of commonsense knowledge bases to make sense of observations. Commonsense knowledge bases have well established uses in text parsing [34], word sense disambiguation [8] and improving topic modeling [28]. Such knowledge bases are often represented by a graphical network. The nodes represent concepts and edges represent the relationships between concepts. This allows for a complexly interconnected representation of the system of facts. The more complete the representation, the better the system can reason about new observations. Two popular knowledge bases with this format are Freebase and ConceptNet. Freebase is used by Google to summarize topics and suggest related search results [20]. ConceptNet is designed to support commonsense reasoning [22].

Commonsense knowledge bases are far from complete. Dong et al. found that the birthplace of $71 \%$ people on Freebase was unknown, as was the nationality of $75 \%$ [15]. Additionally, Freebase draws its facts from structured data on the web, such as Wikipedia, and therefore has more knowledge about concrete nouns, but it has less information about abstract topics such as emotions. Other databases have similar gaps resulting from their limited sources of knowledge and their limited ability to either manually or automatically extract the knowledge.

Traditional commonsense knowledge bases gather facts from text resources and stored facts in a text representation. Recent research has addressed expanding commonsense knowledge bases to include other modalities. While text-based commonsense knowledge is very useful for interpreting and parsing language, text is a representation that is specific to language. In many situations, it is easier to work directly with
other representations rather than glossing them with text. For example, if the system is asked to describe how to manipulate an object based on visual input, it needs to identify possible joints, grasping points, and degrees of freedom. A text-based description would be long and cumbersome. An easier approach would be to mark the joints and grasping points in the visual space. Additionally, even when working with text, a correspondence is needed for interpreting text in terms of the visual signal and vice versa. For example, if the system is asked a question, "Is the teapot on the table?", it must visually locate the teapot and the table and understand what "on" looks like.

This work presents a strategy for automatically collecting visual commonsense knowledge to augment language-grounded commonsense knowledge bases. The goal is to identify relationships between visual concepts. For example, the concepts "teapot" and "table" are related by their relative locations. To learn similar facts, I start with the intuition that commonsense knowledge should be frequently represented in images, e.g. I should see many teapots on tables. I collect frequently co-occurring concept pairs from image tags and train classifiers to learn relationships similar to those found in existing knowledge bases.

Using images as the source of knowledge, rather than news articles or other text corpora, focuses fact collection on visual concepts. Visual concepts are often less frequent in text corpora usually because the visual context is considered obvious and an exhaustive visual description would be too lengthy. For my method, I use image tags which are often chosen by the image's owner to boost its appearance in relevant search results. While they are not an exhaustive description, the image's tags often evoke specific visual imagery. For example, given the short list, "cat", "sofa", "sunshine", and "serenity", every reader can imagine how a corresponding scene might look.

The process of using one source, e.g. text, to learn about another, e.g. images, is referred to as transfer learning. I use a training set of facts from existing knowledge bases compiled from text sources to learn relationship models. I then transfer the models to candidate facts collected from images. Transfer learning is challenging for several reasons. Different sources contain different distributions of information and usually have different representations. In this case, image tags can be used to provide a shared text representation for the two sources. However, the problem remains that the sources have very different distributions. Some of the tags for the images do not appear in the existing knowledge bases. This means the learned classifiers must be powerful enough to generalize to unknown concepts. In experiments, the classifiers have a mean $83 \%$ accuracy on cross-validation tasks, and mean $64 \%$ accuracy on unknown facts. While this is a significant drop, if a small number of facts can be identified with high confidence, humans can confirm the accuracy of the new facts before adding them to existing knowledge bases.

This work can greatly increase the completeness of the popular commonsense knowledge bases Concept-

Net and Freebase. I collect two datasets of more than 1 million images each with two themes, domestic animals and room interiors. Using classifiers trained on an average of 3,653 relevant facts retrieved from ConceptNet and Freebase, my experiments produce 69,310 new fact proposals for an animal-themed vocabulary and 40,131 new fact proposals for a room-themed vocabulary. If the preliminary result of $64 \%$ accuracy holds for these edges, the knowledge base would grow by $700 \%$.

The primary contributions of this work are:

- Developing the idea of using transfer learning for visual commonsense knowledge.
- Collecting two datasets with more than 1 million images each and establish a procedure for extracting a vocabulary of concepts and a list of candidate facts. (Section 4 )
- Presenting a method to transfer relationships from existing knowledge bases to frequent the candidate facts. (Section 3 )
- Proposing 93,850 facts which are not currently in ConceptNet or Freebase. (Section 5 )


## Chapter 2

## Related works

### 2.1 Information extraction

Information extraction methods support finding structured facts from unstructured source data, usually text. One of the most famous of these systems is NELL, the Never-ending Language Learner [25]. NELL builds on an initial ontology, learning new relationship types, concepts, and facts from reading websites. Mitchell et al. report that NELL has learned over 80 million facts since January 2010 25.

NELL learns classifiers for each relationship type from the context patterns extracted from text using the Coupled Pattern Learning [6] and OpenEval [32] systems. Both systems use sophisticated frequent pattern mining to retrieve pairs of concepts that have the given relationship. The classifiers used in information extraction vary widely. Ritter et al. [29] and Dong et al. [15] use probabilistic models to expand exiting knowledge bases. Chang et al. 7 show how to use matrix factorization to transfer relationships between similar concepts. I use a much simpler one-vs-all classifier.

### 2.2 Visual knowledge

Visual knowledge is not well represented in text. Where it is represented, it requires additional work to identify and extract [13]. Joint image and text models have been shown to improve iconic image detection [18] and image annotation [38, 19]. Ontologies, classification systems similar to commonsense knowledge bases, have been used to improve object classification [11] and image annotation [36] as well. The value in collecting visual knowledge is significant.

### 2.2.1 Visual knowledge bases

There are few existing commonsense knowledge bases that specifically target visual information. These include the Never-ending Image Learner (NEIL) inspired by NELL [9, Robobrain [33, and VisKE 31]. NEIL and Robobrain collect visual concepts and relationships that correspond to a fixed set of classifiers.

For example, NEIL uses the intersection over union of two object detectors to represent the relationship "part of". VisKE is much more flexible. It has the ability to discover the validity of any relationship between two concrete nouns. The knowledge discovery method balances these two approaches. It can learn any relationship type from an existing knowledge base, making it more flexible than NEIL and Robobrain, but also more focused than VisKE. Additionally, it is not limited to noun relationships as VisKE is, but can also learn relationships between nouns and adjectives.

ImageNet, a structured collection of images with an average of 1000 images per concept [30], could also be considered a commonsense knowledge base with only hierarchical relationships between concepts. ImageNet relationships describe the broader categories concepts belong to, for example, "domestic cat is a feline" or "chair is a furniture". The method supports many more relationship types and provides images corresponding to facts, such as "cat has property black", instead of concepts, such as "cat". Additionally, ImageNet is constructed using manual annotation, I provide an automated method for finding images for concepts.

### 2.2.2 Image semantics

Visual commonsense knowledge bases are an extension of research in image semantics. Semantics refers to the study of meaning. Image semantics refer to the visual traits that are used to identify and describe an object or scene as well as the interactions between objects in the scene. For example, a particular object is visually identified as a "cat" because of its shape, color and texture. Additionally, it might be a "cute cat" or a "fuzzy cat". "Cuteness" and "fuzziness" are visual properties. Other properties, such as the name of the cat, are non-visual and are not part of the image semantics. The cat's location in the scene, e.g. "on the sofa", and its behavior, e.g. "sitting", can also be part of the image semantics. Image semantics are usually studied in separate pieces, such as object detection, attribute detection, pose or action detection, and modeling interaction. Image understanding systems seek to put all these pieces together for a comprehensive explanation of the structure of the image.

Of these many pieces, one of the most important inspirations for the visual knowledge discovery method is attribute detection. Object attributes describe the properties of the object without naming the object explicitly. For example, the attributes "has four legs" and "has fur" identify an object as an animal without using the name "animal". Attributes can be any visual semantic properties, such as shape, texture, color, or even higher level properties such as parts, actions, pose, and materials. The seminal works in the field of object attributes are Lampert et al. [21] and Farhadi et al. [16]. Lampert et al. proposed using high-level attributes rather than object classes to describe images because the attributes generalized better to unseen classes. Following closely afterwards, Farhadi et al. focused on automatically learning features that are
discriminative for an attribute within a class. Attribute detection and attribute features are a major area of research with applications in object detection, image retrieval, and image description. Attribute detection is usually studied as a fully supervised or weakly supervised problem using image features with attribute labels and sometimes bounding boxes. My method takes a weakly supervised approach to learn attributes that correspond to the knowledge base relationships.

Commonsense knowledge emerges from attributes when those attributes can reliably describe a concept across a large collection of images. For example, "is pink" might describe a cat in one or two pictures, but in general, the attribute "is pink" would not help identify a cat. Therefore, it is not a reliable commonsense attribute. Instead, I am looking for attributes that accurately summarize a large collection of images. This is closely related to the fields of image collection summarization and iconic images. Iconic images are images that show canonical views of an object or scene. Usually, they are selected so that a small collection of iconic images can provide a clear summary of the variation present in the object or scene class. While some iconic image methods rely entirely on visual composition models, 3, 14, others include image metadata to produce more complete semantic models [27, 18]. I take inspiration from Raguram and Lazebnik and Gong et al., to use image metadata to identify frequent attributes.

## Chapter 3

## Method

To start, I introduce the terminology. The vocabulary is the set of words or phrases that I am interested in learning about. The elements of the vocabulary are referred to as concepts. The commonsense knowledge facts are stored in the form of directed edges of a commonsense graph. Each edge connects a pair of concepts. The start of the edge is the source concept. The end of the edge is the target concept. The edge also has a relationship label. For example, the edge "kitten is a cat" has the source "kitten", the target "cat", and the relationship label "IsA".

The method has five major steps.

1. Collect a dataset of several million images using a small set of search terms (Section 3.1)
2. Establish a vocabulary (Section 3.2)
a. Mine the dataset for frequent image tags
b. Filter unwanted tags from the list and split concatenated phrases
c. Expand the vocabulary to include frequent phrases
d. Label all concepts with part of speech, language, and category labels
3. Count the pairwise co-occurrence of concepts (Section 3.4)
4. Collect ground truth relationship labels from ConceptNet and Freebase (Section 3.5)
a. Retrieve a large set of edges for each concept in the vocabulary.
b. Select a set relationship types to learn
c. Filter the edges using the part of speech, language, and category labels, and concept co-occurrence frequency
5. Use a multi-class SVM to predict relationship labels for an edge (Section 3.6)
a. Represent edges using GloVe feature vectors
b. Train on high frequency edges with ground truth
c. Test on high frequency edges without ground truth

### 3.1 Collect image dataset

Establishing the vocabulary requires a large set of images with metadata. A randomly selected set of images may not contain any clear frequent patterns from which to learn. Therefore, I focus image retrieval using a small set of search terms which all belong to some common category, for example, a list of domestic animals or rooms in homes. I use the Flickr API [1] to collect images containing one of the category search terms in their title, description, or tags. I gather between several hundred thousand and one million images for each search term. The goal is to have one million images for each search term, but in some cases, it is difficult to retrieve so many. Therefore, the distribution of the retrieved images reflects the search term's overall frequency in Flickr. The combined set of images retrieved for all the search terms is referred to as the dataset.

### 3.2 Establish a vocabulary

### 3.2.1 Mine the dataset for frequent image tags

I select vocabulary from the tags of the images. The tags are unordered words or phrases which the image owner chooses to describe the image. Flickr also provides a few automatically generated tags based on visual classifiers. For example, Flickr automatically tags images with human faces, people, and outdoor scenes.

I define the vocabulary with a simple bag of words model. Each image's tag set is tokenized, i.e. split into individual tags. The frequency of each token is counted over the dataset. Single prolific users can have a large influence on what tokens are frequent in the dataset. Intuitively, I do not want exotic cat names, like 'Pickles', to skew frequency results because the cat's owner is a prolific contributor. Therefore, the token occurrences are counted per user rather than per image.

I use the tokens which meet a frequency threshold as the initial vocabulary, excluding all English stopwords, numbers and tokens composed entirely of non-roman characters from the vocabulary. I aim for an initial vocabulary of a couple thousand concepts to generate a large number of interesting edges.

### 3.2.2 Cleaning up the initial vocabulary

All of the concepts in the initial vocabulary are tokenized tags as retrieved from Flickr. This leads to some confusion because Flickr treats tag phrases ambiguously. Flickr either splits all the words into separate tags or it removes the spaces to create a single tag. For example, "persian cat", might be tagged in some images as two tags, \{"persian", "cat"\} and in others as a single tag, $\{$ "persiancat"\}. I attempt to identify both these patterns as a single concept, "persian cat". I have two strategies for identifying concepts with missing spaces: (1) comparing combinations of concepts and (2) searching the knowledge base.

For each concept, $c$, in the vocabulary, I check whether there is a pair of concepts in the vocabulary which when concatenated are equivalent to $c$. If there are two possible ways to split a concept, such as 'kitchen sink' or 'kitchens ink', I take the split which has the more frequent component concepts. I only check pairs of concepts because the comparison is combinatorial and hence very expensive.

I also search Freebase for all of the concepts in the vocabulary. To distinguish between different word senses, Freebase uses topic nodes, each one representing a different word sense. Each topic has several aliases or synonyms that are used to describe the same topic. For example, "new york city" has the aliases, "new york, new york", "new york", "nyc", "city of new york", and "the big apple", among others. I remove the spaces from the aliases and compare them to the vocabulary. If one of the aliases for the retrieved topics is equivalent to a concept, I replace the concept in the vocabulary with the original alias with spaces.

Automatic tags also add noise to the initial vocabulary. Many applications and websites that post images to Flickr automatically tag the images with generated tags. Flickr, additionally, automatically tags images based on object detectors. I keep the object detector tags, but remove any other automatic tags, because such concepts are very frequent in the dataset and do not refer to the visual content of the images. Likewise, I apply filters to remove concepts related to photography, such as the makes and models of cameras and film, variations of photo, photography, or photographer, and the names of photography apps and websites. I refer to the vocabulary after this filtering step as the filtered vocabulary.

### 3.2.3 Expand the vocabulary to include phrases

Sometimes, tokenizing the tags breaks up phrases that should be treated as single token, such as 'Maine Coon Cat' or 'New York City'. I already identified some phrases when splitting concatenated tags, but there may also be phrases in the vocabulary which do not occur in a concatenated form. To recover these phrases, I use two methods. I merge concepts with high pointwise mutual information and I perform a local search on the knowledge base.

Pointwise mutual information (pmi) is a statistical measure of dependence of two outcomes, $x \in X$ and
$y \in Y$ where $X$ and $Y$ are discrete random variables.

$$
p m i(x, y)=\log \frac{p(x, y)}{p(x) p(y)}
$$

PMI is used in natural language processing to measure correlation while normalizing to account for the overall frequency of $x$ and $y$ [10]. For example, the concept "shearing" may always occur with "sheep", resulting in a very high conditional probability. However, "sheep" is very frequent overall in the dataset. Therefore, the PMI is low. Concepts with high PMI are more likely to be part of a phrase.

Normalized pointwise mutual information (npmi) defined on the range $[-1,1]$ with -1 corresponding to $x$ and $y$ never occurring together, 0 corresponding to complete independence and 1 to complete co-occurrence.

$$
n p m i(x, y)=\frac{p m i(x, y)}{-\log (p(x, y)}
$$

If the normalized pointwise mutual information of two concepts in the dataset is above 0.8 , I consider it highly likely that the concepts are part of a phrase. I search Freebase for both orderings of the two concepts. If one of the orderings is in Freebase, I add the phrase to the vocabulary.

For all statistical techniques, including PMI, I use Laplace smoothing to prevent zero probabilities. I model the additive quantity as a single image from a unique owner tagged with all the concepts in the current vocabulary. This produces a small positive probability $\frac{1}{n+1}$ for every pair of concepts where $n$ is the total number owners.

Additionally, for each concept in the vocabulary, I check all of the adjacent edges in Freebase. If I find an adjacent concept composed of words already in the vocabulary, I add it as a new concept phrase. For example, if the vocabulary contains $\{$ "cat", ..., "maine", ..., "coon"...\} and I find the edge "maine coon cat is a cat", I would add the phrase "maine coon cat" to the vocabulary.

Freebase is used to check the existence of a phrase because valid phrases are likely to be proper nouns, e.g. "new york city" and "maine coon cat", while erroneous phrase, e.g. "blue eyes", are likely to be descriptive. Freebase has excellent coverage of proper nouns, and therefore is fairly reliable as a resource for this task. It returns mixed results when the phrase has multiple word senses, one of which is a proper noun, for example "Sunset Park", a neighborhood in Brooklyn, or "Black Sheep", a hiphop artist.

Any new concepts must meet the frequency threshold to be added to the vocabulary. I refer to the vocabulary including the phrases as the expanded vocabulary.

### 3.3 Labels for concepts

I collect a variety of other properties of each of the concepts to facilitate relationship classification and cleaning the training set. These include part of speech, language, locations, and colors. For each concept, I collect part of speech labels, including nouns, verbs, and adjectives, from WordNet[17], via the Python Natural Language Toolkit (NLTK) 4. This resource provides labels for an average of $86 \%$ of the vocabulary.

I also collect language labels from WordNet to identify non-English words. While the approach should be flexible for other languages as well, this implementation does not tackle non-English concepts. NLTK Wordnet interface provides dictionaries for 16 languages. I label a concept as non-English if it meets three criteria: (1) it is not in the English dictionary, (2) it is in one of the non-English dictionaries, and (3) it is not a proper noun. The third rule is necessary because most proper nouns, such as "Paris" or "France", do not appear in the English dictionary. I use the WordNet "instance hypernym" relationship to identify a list of proper nouns.

I additionally collect Freebase type categories for each concept. The "location" types are especially useful for identifying geographic locations. Many of the concepts are geographic locations because users like to tag their images with the location where they were taken. For concepts with the location type, I also collect population statistics if available. The population is a good signal for word sense disambiguation. If the population is large, the word is more likely being used to tag a location. If the population is low and another word sense is available, the concept might not refer to the location. I use Wordnet to provide alternate word senses.

Another useful Freebase category is "color". I am especially interested in color because it is an intrinsically visual concept. Usually, instances of color should be in the "has property" relationship. This would seem to be a straight forward case of identifying colors as adjectives. However, most colors can also be used as nouns, eg., "red is the color of a rose". Therefore, the part of speech labels from WordNet are not as useful for filtering colors from other relationships. While the edges containing color tags collected from ConceptNet or Freebase are generally reliable and do not require much additional filtering, color filters can be helpful in eliminating proposed concept pairs in the test set, where the overall frequency of color in the dataset generates a lot of noise.

### 3.4 Pairwise concept co-occurrence

Once the expanded vocabulary is defined, I look at pairwise concept frequency to generate a list of high frequency concept pairs which may be edges. For example, if the concepts "cat" and "sofa" occur together
frequently, there is likely some relationship between them. This pair is not yet considered an edge because it is un-ordered and has no relationship label. As with the vocabulary, the frequency of concept pairs can be counted in two ways, by the number of images in which both tags appear or in terms of the number of image owners who use the tags as a pair to describe an image. Counting pairs of concepts is more memory intensive than counting single concepts. I present several strategies for memory efficient counting.

To count images, a bag of words feature can be constructed for each image. These are then concatenated into a $n$ by $m$ term document matrix, $D$ where $n$ is the size of the vocabulary and $m$ is the number of images. The matrix product $C=D D^{\prime}$ is the pairwise co-occurrence matrix of the concepts. The memory required for the term document matrix is $O(n m)$ and $O\left(n^{2}\right)$ for the co-occurrence matrix. The matrix can also be processed in image batches, so the size of $m$ is flexible depending on the memory constraints of the system. The co-occurrence matrix will dominate, making the memory constraint order $O\left(n^{2}\right)$. Using a sparse matrix representation is recommended because many concepts will never occur together.

A different approach is needed to count the number of owners. There are two possibilities. I can construct a separate term document matrix $D_{i}$ for each owner. A per owner pairwise co-occurrence matrix would be calculated and thresholded to create a binary membership matrix, $C_{i}=\left(D_{i} D_{i}^{\prime}>0\right)$. These $C_{i}$ would then be summed for all owners. This approach has similar memory complexity to the image counting method, but also requires organizing the dataset so that all images belonging to one owner can easily be retrieved. Another approach is to keep a list of unique owners for each pair of concepts. This is $O\left(p n^{2}\right)$ where $p$ is the number of owners. Again, it will be smaller in practice because not every owner will contribute to every pair. The length of each list corresponds to the entry in the co-occurrence matrix for that pair. This implementation uses the latter method.

### 3.5 Collecting training edges from existing knowledge bases

I use the manually annotated commonsense knowledge bases ConceptNet [35] and Freebase [20. Freebase focuses on concepts present in Wikipedia, leading to a greater coverage of proper nouns, while ConceptNet additionally collects facts from Verbosity, a game which collects commonsense knowledge from human players 37]. ConceptNet therefore has a greater coverage of more generalized commonsense knowledge. However, ConceptNet's facts can also be more subjective.

For each knowledge base, I download all edges related to concepts in the vocabulary. For ConceptNet, I use the API's text search to locate edges with the vocabulary concepts as either the source or target. I retrieve up to 10,000 edges for each vocabulary term. For Freebase, I use the API's search function to identify

Table 3.1: Description of relationship types including which knowledge bases they are drawn from, an example, and a brief definition. Relationships are listed alphabetically.

| Relationship | Freebase | ConceptNet | Example and Definition |
| :---: | :---: | :---: | :---: |
| AtLocation |  | $\checkmark$ | "cat at location sofa" <br> The source object is at the target scene or near the target object. Usually, the more portable object is the source. |
| AtLocationGeographic |  | $\checkmark$ | "sheep at location Scotland" Distinct from AtLocation in that the target must be a geographic location. |
| CapableOf |  | $\checkmark$ | "baby capable of sleep" <br> The source is capable of performing the target |
| CreatedBy |  | $\checkmark$ | "bread created by baker" <br> The source is created by the target |
| Causes |  | $\checkmark$ | "lightning causes thunder" <br> The source causes the target |
| CausesDesire |  | $\checkmark$ | "food causes desire eat" <br> The source causes a desire for the target |
| GeographicAdjective | $\checkmark$ |  | "Canada adjectival form is Canadian" <br> The target is the adjectival form of the source. |
| GeographicContainment | $\checkmark$ | $\checkmark$ | "France contains Paris" <br> A larger geographic entity contains a smaller geographic entity |
| HasA |  | $\checkmark$ | "baby has a toy" <br> The target belongs to or is being used by the source. Sometimes the source and target are separate objects as opposed to PartOf. |
| HasProperty |  | $\checkmark$ | "cat has property white" <br> The source can be described by the target. |
| IsA | $\checkmark$ | $\checkmark$ | "sofa is a chair" <br> This is a classic hypernym relationship. The more specific concept is the source. The more general concept is the target. |
| LocatedNear |  | $\checkmark$ | "chair located near table" <br> An object is located near another object. This relationship often overlaps with AtLocation, but is much less frequent in ConceptNet. |
| LocationOfAction |  | $\checkmark$ | "wash at location bathroom" |

Table 3.1 - Continued from previous page

| Relationship | Freebase | ConceptNet | Example and Definition |
| :--- | :---: | :---: | :--- |
| MadeOf |  |  | The source action takes place at the target loca- <br> tion. This relationship often overlaps with AtLo- <br> cation, but is much less frequent in ConceptNet. |
| MotivatedByGoal |  | $\checkmark$ | "house made of wood" <br> Target describes the material of the source. |
| PartOf |  | $\checkmark$ | "cook motivated by goal eat" <br> The source action is motivated by the target <br> event. <br> "fabric part of sofa", "baby part of family" <br> The source is part of the target, usually, a literal <br> piece although occasionally more conceptual such <br> as in the second example. |
| ReceivesAction | $\checkmark$ | "cat receives action feed" <br> The source is the recipient of the target action. |  |
| UsedFor |  | "dog similar size cat" <br> Both concepts have similar sizes. |  |

the top 5 Freebase topic pages related to each vocabulary term. I then download the topic pages using the topic function. As mentioned before, each Freebase topic represents a separate word sense. I choose the first search result with an exact spelling match between the concept and one of the aliases as the word sense for that concept. For example, the topic page for the country "Turkey" is higher in the search results than the topic page for the bird "turkey". Therefore, I use the edges associated with the country rather than the bird. I limit the word senses to try to exclude unusual uses of the concept from the retrieved edges.

I take this large collection of edges and select edges where both the source and target are concepts in the vocabulary. Unfortunately, the edges collected from these resources are often quite noisy, so several layers of filters and manual intervention are used to select as clean a set of edges as possible. First, I choose a list of 19 relationships that I am interested in learning (See Table 3.1). For greater generality, I merge several Freebase relationships to make a GeographicContainment relationship, which includes edges like "France contains Paris", and a GeographicAdjective relationship which includes edges like "Canadian is the adjectival form of Canada". I also merge several Freebase scientific classification relationships and the ConceptNet IsA relationship, which includes edges like "cat is a feline". The complete list of component relationships for IsA, GeographicContainment, and GeographicAdjective is available in Appendix A.

For each of the relationships in the final list, I consider whether there should be a part of speech restriction

Table 3.2: All filters applied to relationship types. A checkmark indicates an inclusive filter, i.e., the concept must include that label. An ' X ' indicates an exclusive filter, i.e the concept cannot have that label. Labels without either symbol are not explicitly included or excluded. Adj is short for adjective.

|  | Source |  |  |  |  | Target |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Relationship | Noun | Verb | Adj | Location | Color | Noun | Verb | Adj | Location |  | Color 1

for either the source or the target. For example, the relationship "PartOf" can only involve nouns, so I add a noun restriction on both the concepts in the "PartOf" relationship. I also implement a few restrictions involving geographic locations, due to their frequency in the dataset, and colors, due to the visual importance of color. I also use filters to move some of the "PartOf" edges to the "GeographicContainment" relationship and to create a new relationship "AtLocationGeographic" containing edges like "cat in Paris". Table 3.2 details the restrictions used for each relationship.

Some relationships, like "HasA", "AtLocation" and "PartOf", have a significant amount of overlap. To make these relationships more distinct and easier to learn, I remove the overlapping edges from the more general relationship. For example, "AtLocation" is more general than "PartOf", so I remove the overlap between "AtLocation" and "PartOf" from "AtLocation".

I want the training edges to be very relevant to the dataset, so I require the source and target concepts to meet a minimum co-occurrence frequency threshold. The retrieved edges with filtered relationships which meet this threshold are the training set.

### 3.6 Relationship transfer

### 3.6.1 Edge features

To use a classifier, I need a feature representation for the edges. Recently, there has been a focus on developing word vector representations that are good at representing analogies [24, 23, 26]. For the analogy task, the difference between the first two word vectors in the analogy should be similar to the second two word vectors in the analogy. For example, adding the difference between "cat" and "kitten" to the vector for "horse" should be very similar to the vector for "foal", as per the analogy "cat is to kitten as horse is to foal". This family of representations preserves semantic relationships in the vector space representation. Because I am interested in classifying the type of semantic relationship between two words, this kind of representation seems ideally suited to the task.

GloVe is the state-of-the-art word vector representation on the analogy task [26]. Like other representations in this family, GloVe trains a model that predicts the likelihood of terms appearing in similar contexts in text. GloVe, in particular, benefits from being a batch rather than an online method, unlike its closest competitor, skip-gram 23].

Pre-trained GloVe models are available. I selected a 300 dimensional model, trained on 42 billion tokens from Common Crawl, as it provided the most coverage of the vocabulary of any of the available models. It was also the most successful model tested by Pennington et al[26]. Some of the vocabulary terms are not covered by this model. For phrases, if all the words in the phrase are in the model, I can average the word vector representations to approximate the representation of the phrase.

I can only classify edges for which I have GloVe representations for both the source and target. Therefore, I refer to the portion of the expanded vocabulary for which I have GloVe representations as the effective vocabulary. Using GloVe, I experimented with two edge representations, (1) the concatenated GloVe vectors of the edge's source and target (2) the difference between the source and target vectors.

### 3.6.2 Classifiers

Most of the high frequency concept pairs are not present in the training set. However, their frequency in the dataset makes it likely that they share some unknown relationship. Therefore, any concept pair that meets the same frequency and filter criteria as the training set, but is not represented by an edge in the training set is a candidate pair to test for a relationship. Each candidate pair generates two test edges, one for each ordering of the concepts, which will be labeled by the multi-class classifier.

Using the features described in the previous section, 3.6.1. I train one-vs-all support vector machine
(SVM) classifiers for all relationships with at least 50 training edges. If an edge has multiple ground truth relationship labels, it appears in the positive training set for all relationships for which it has a label. I compare one-vs-all SVMs with Gaussian and cubic kernels. For the Gaussian SVM, I found a box constraint of 100 and a kernel scale of 27 to produce the best results.

All the filters that are applied to the training set, see Table 3.2 , are also applied to the classifier output. This leaves use with a classifier score for each relationship type for each test edge. The classifier confidence is a strong signal for whether or not a directed edge exists (See Section 5.4. I consider all the classifier scores for a concept pair, i.e. all classifiers for both edge directions, and choose the maximum scoring classifier greater than zero as the proposed edge for that concept pair.

## Chapter 4

## Experimental set up

### 4.1 Datasets

I tested the method on two independent datasets, domestic animals and rooms in houses. I will refer to these datasets as the animal and room datasets. Choosing these sets allowed me to compare a vocabulary focused on objects to one focused on scenes. For the animal dataset, I used 11 terms collected from the '/biology/domesticated_animal' Freebase category. For the room dataset, I manually compiled a list of 7 common household rooms. In total, I collect 1,187,943 unique owners for the animal dataset and 1,109,921 unique owners for the rooms dataset. Figure 4.1 shows the number of images and the number of unique owners collected for each of the search terms.

### 4.2 Vocabulary

I choose a vocabulary frequency threshold of 500 unique owners per concept for the animal dataset and 200 unique owners per concept for the room dataset. These thresholds result in a 3565 concept effective vocabulary for the animal dataset and a 5897 concept effective vocabulary for the room dataset. Table 4.2 gives a more detailed break down of vocabulary statistics at each step of the collection process. Appendix Balso provides the top 50 most frequent vocabulary words at each stage of collection process.

The number of non-English concepts labeled is quite small, approximately $3 \%$. This is unsurprising as most of Flickr's traffic originates in the United States of America [2]. However, the non-English labeling process is also very conservative, labeling only concepts which meet three criteria: (1) The concept does not appear in WordNet's English dictionary, (2) the concept does appear in a WordNet language dictionary, and (3) the concept is not a proper noun. This filter fails when WordNet lacks a dictionary for the origin language for a concept. One example of a missing dictionary is German. In the animal dataset, "gans" (goose) and "ziege" (goat) are German concepts that are missed by the non-English filter. Another failure case occurs when the concept is a common noun in a non-English language and an unusual proper noun in


Figure 4.1: Distribution of images collected for each search term
Table 4.1: Dataset statistics. Statistics for tags per image are given after stopword filtering but before any other filters are applied.

|  | Domestic Animals | Rooms |
| :--- | :--- | :--- |
| Total number of images | $6,536,760$ | $4,481,772$ |
| Number of unique owners | $1,187,943$ | $1,109,921$ |
| Mean number of tags per image | 6.99 | 5.71 |
| Median number of tags per image | 5 | 3 |

English, for example Azul, Buenos Aires. "Azul" means blue in Spanish, and is more likely being used to refer to the color than the location. Hopefully, the few concepts which escape labeling should not effect the results too greatly because they will be less frequent than their English equivalents.

Tagging an image with the location where it was photographed is very popular. Around $15 \%$ of the concepts are labeled as locations. The labeling process for locations is much more permissive, but it relies on Freebase's completeness in cases where the concept has multiple word senses. If Freebase has no listed population for a location, the concept may not be included in the location filter. For example, "Constantinople" has no listed population and therefore, is not labeled as a location. A list of the most 200 frequent labeled locations for the room dataset is available in Appendix C. 2

Colors occur very frequently as image tags. However, the colors retrieved from Freebase frequently have multiple word senses. Some examples include "chestnut", "terra cotta", and "asparagus". A complete list of labeled color concepts from both datasets is available in Appendix C.1. Therefore, it is important to use the color filter with caution. The method only applies the color filter to the source of the HasProperty relationship.

|  | Animal | Room |
| :--- | :--- | :--- |
| Minimum number of unique owners for vocabulary concepts | 500 | 200 |
| Size of initial vocabulary | 3785 | 5577 |
| Size filtered vocabulary | 3648 | 5377 |
| Size of expanded vocabulary | 3691 | 6036 |
| Size of effective vocabulary | 3565 | 5897 |
| Number of concepts present in ConceptNet | 1726 | 4325 |
| Number of concepts present in Freebase | 2777 | 2968 |
| Number of concepts present in either knowledgebase |  |  |
| Number of concepts with part of speech | 3142 | 5398 |
| Number of non-English concepts | 100 | 134 |
| Number of location concepts | 535 | 874 |
| Number of color concepts | 59 | 78 |

Table 4.2: Vobabulary statistics at each step of the collection process.

|  | Domestic Animals | Rooms | Combined |
| :--- | :--- | :--- | :--- |
| Minimum number of unique owners for a training or test edge | 100 | 100 | 100 |
| Minimum number of edges per relationship | 50 | 50 | 50 |
| Number of edges retrieved from ConceptNet | 37,623 | 60,547 | 64,874 |
| Number of edges retrieved from Freebase | 3456 | 7151 | 8099 |
| Number of edges with desired relationships | 12,282 | 18,783 | 20,510 |
| Number of training edges | 3915 | 3390 | 5353 |
| Number of test edges | 169,538 | 101,158 | 232,082 |
| Number of proposed edges | 69,310 | 40,131 | 93,850 |

Table 4.3: Edge statistics. All edges described in this table have both source and target concepts in the vocabulary.

### 4.3 Ground truth edges

I retrieve 12,282 edges with one of the desired relationships for the animal dataset and 18,783 edges for the room dataset. Most of these edges come from ConceptNet. These edges are further reduced using the edge frequency threshold for a minimum of 100 unique owners. The remaining edges are the training edges. Figure 4.2 shows the frequency of the each relationship types in the datasets. A minimum of 50 edge examples per relationship is required to train a classifier. Causes, CausesDesire, CreatedBy, MotivatedByGoal, GeographicAdjective, LocatedNear, LocationOfAction, and SimilarSize, do not meet the threshold. Edges with these relationships are used as negative training examples.

Table 4.3 shows the break down of edge statistics at each stage of the collection process including the number of test edges for each dataset. The test edges are concept pairs which meet the same frequency threshold as the training edges but are not in the training set. There are two orders of magnitude more test edges than training edges.


Figure 4.2: Distribution of edges over relationships

## Chapter 5

## Quantitative results

I perform quantitative evaluation in three ways, five-fold cross validation on the training set, inter-dataset training and testing, and hand-labeling candidate edges using a GUI interface.

### 5.1 Metric definitions

I use three metrics to express quantitative results: accuracy, mean precision, and mean recall. Accuracy is usually expressed as:

$$
\text { accuracy }=\frac{T P+T N}{n}
$$

where $T P$ is the number of true positives, $T N$ is the number of true negatives, $n$ is the number of examples. In the cross-validation experiment, every edge receives some label, so disregarding relationship type, $T N=0$. This is also equivalent to recall $\left(\right.$ recall $\left.=\frac{T P}{P}\right)$ when $P=n$, where $P$ is the number of examples with a positive label. The other two metrics, mean precision and mean recall, do not ignore the relationship type. Rather I average precision and recall over each classifier.

$$
\begin{gathered}
\text { mean recall }=\frac{1}{m} \sum_{r \in R} \frac{T P_{r}}{P_{r}} \\
\text { mean precision }=\frac{1}{m} \sum_{r \in R} \frac{T P_{r}}{G T P_{r}}
\end{gathered}
$$

where $P_{r}$ stands for the number of edges classified as relationship $r$ from the set of all relationships $R, T P_{r}$ stands for number of true positive, i.e. edges correctly classified as relationship $r, G T P_{r}$ stands for number of ground truth positive, i.e. edges with the ground truth relationship $r$, and $m$ is the number of relationships in $R$.

The datasets are unbalanced in terms of how many examples there are of each relationship. Using mean precision and mean recall gives a more accurate summary of how the individual classifiers are performing. I also report these values with different numbers of retrieved edges. It is possible for a pair of concepts to

Table 5.1: Accuracy, Precision, and Recall for various classifiers Columns include: Accuracy for any correct label using the highest scoring classifier, mean recall over relationships using the highest scoring classifier (MR@1), mean precision over relationships using the highest scoring classifier (MP@1), mean recall over relationships for the top three highest scoring classifiers (MR@3), mean precision over relationships for the top three highest scoring classifiers (MP@3). The highest values for each dataset are in bold.

|  |  | Animals |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  | Accuracy | MR@1 | MR@3 | MP@1 | MP@3 |  |
| Gaussian SVM | Concatenated | $\mathbf{0 . 8 3 6}$ | 0.624 | 0.829 | $\mathbf{0 . 7 1 2}$ | 0.288 |  |
|  | Difference | 0.821 | 0.607 | 0.808 | 0.695 | 0.287 |  |
| Cubic SVM | Concatenated | 0.835 | $\mathbf{0 . 6 2 6}$ | $\mathbf{0 . 8 3 9}$ | 0.705 | $\mathbf{0 . 2 8 9}$ |  |
|  | Difference | 0.828 | 0.601 | 0.811 | 0.700 | 0.286 |  |

have multiple relationships. If I only report the highest scoring relationship (@1), I may be missing some correct edge labels. Additionally, for misclassified edges, the second most confident classifier, may have the correct classification. Therefore, I also report the mean precision and mean recall for a correct classification in the top three highest scoring classifiers (@3).

### 5.2 Cross-Validation

The first set of experiments use five-fold cross-validation on the training set. The training set has ground truth labels for each edge's relationship which I don't have for the test set. For five-fold cross-validation, I split the training set into five equally sized samples. I train on four of the samples and test on the fifth, repeating until I have tested on all the samples. I then average the results over all trials. This provides an estimate of how well the classifiers learn.

From the results in Table 5.1. I see that there is very little difference between the SVM classifiers. The Cubic SVM using difference features performs slightly better on the rooms dataset, so I perform the remainder of the experiments using this classifier configuration.

Figures 5.1 and 5.2 show more detailed confusion matrices from the Cubic SVM classifier for both datasets accompanied by a few examples of error cases in Tables 5.3 and 5.4 . The confusion matrices show the number of times an example with a ground truth label $y$ was labeled with the classification $x$. Both datasets have the greatest confusion (as a percentage of the ground truth relationship) on the same set of classifiers:

Table 5.2: Accuracy, precision, and recall comparison for various training and test sets using the Cubic SVM and difference features When training and testing on the same dataset, 5-fold cross-validation is used. Columns include: Accuracy for any correct label using the highest scoring classifier, mean recall over relationships using the highest scoring classifier (MR@1), mean precision over relationships using the highest scoring classifier (MP@1), mean recall over relationships for the top three highest scoring classifiers (MR@3), mean precision over relationships for the top three highest scoring classifiers (MP@3).

| Training Set | Testing set | Accuracy | MR@1 | MR@3 | MP@1 | MP@3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Animal | Animal | 0.841 | 0.671 | 0.874 | 0.772 | 0.352 |
| Room | Animal | 0.758 | 0.529 | 0.780 | 0.612 | 0.318 |
| Animal | Animal (hand-labeled) | 0.662 | 0.368 | 0.710 | 0.405 | 0.213 |
| Room | Room | 0.821 | 0.651 | 0.873 | 0.752 | 0.332 |
| Animal | Room | 0.731 | 0.534 | 0.774 | 0.632 | 0.304 |
| Room | Room (hand-labeled) | 0.628 | 0.341 | 0.709 | 0.385 | 0.197 |

- HasA (ground truth) and AtLocation (classified) is confused an average of $17.5 \%$
- PartOf and AtLocation is confused an average of $32.5 \%$
- PartOf and IsA is confused an average of $15 \%$
- ReceivesAction and UsedFor is confused an average of $17.5 \%$
- CapableOf and UsedFor is confused an average of $15.5 \%$

Some of the same edges are also confused in both datasets, such as "cook part of kitchen".
Several of these frequently confused relationships are somewhat ambiguously defined or contain some degree of overlap. Is a stove in a kitchen or part of a kitchen? Or both? Additionally, an edge can have multiple correct labels. A calf is a cow and a cow has a calf. The ground truth contains ambiguous relationships and is incomplete. This can also contribute to classifier confusion. For example, there are 83 AtLocation edges containing "kitchen" in the second position, compared to 6 with other relationships. Consequently, "cook part of kitchen" is classified with high confidence as "cook at location kitchen". In this case, the classifier has learned that "kitchen" is a scene with the predominating relationship AtLocation. A cook being part of a kitchen is more idiomatic than semantic. The classifier's alternative relationship proposal is completely reasonable.

The error cases fall roughly into two categories: (1) one of the concepts, in its current position, always belongs to the same relationship in the training set, or (2) the training set does not contain one or both of the concepts in their current positions and generalizes incorrectly.

For case (1), the classifier is essentially memorizing a list of concepts which always belong to the relationship in the training set. Usually, this is also specific to the position of the concept. For example in
the rooms dataset, "table" is the target in 21 AtLocation edges, and only once as HasA. As a result, the classifier learns to classify this configuration as AtLocation with high confidence, and in the cross validation task, the single HasA edge, "restaurant has a table", is classified as "restaurant at location table". This behavior could be considered a localized overfitting caused by the limited training data.

For case (2), the classifier is being forced to generalize based on the GloVe vector features. In some cases, this leads to erroneous labels for closely related concepts. For example, "farmhouse" only occurs in the rooms dataset in one edge, "farm has a farmhouse". However, the closely related term "farm", occurs in seven AtLocation edges. The classifier generalizes the high confidence for "farm" to "farmhouse", incorrectly classifying "farm has a farmhouse" as "farm at location farmhouse". In this case, the generalization leads the classifier to make a mistake, but similar generalizations may be boosting classifier performance on other edges. For example, I have only one edge containing "aquarium", "fish at location aquarium", but the classifier identifies the correct label with high confidence, perhaps drawing training examples containing related concepts such as "zoo". This illustrates how important quality training data is to the development of strong knowledge proposals.

### 5.3 Cross-dataset training and testing

Another way to test a classifier's ability to generalize is training on one dataset and testing on another. The animal dataset focuses on objects while the room dataset focus on scenes. Because of their different training examples, I expect a drop in recall and precision, but if the classifiers generalize well, the drop should not be too great. Table 5.2 shows that there is an average drop of 13.5 points in mean recall and an average drop of 14 points in mean precision. These modest drops indicate the promise of this method.


Figure 5.1: Confusion matrix for room dataset This confusion matrix is generated using 5 -fold cross validation on the training set and the cubic svm classifiers trained with difference features. Each entry represents the number of edges with the ground truth label, $y$, that were classified as x . The relationships are ordered along the x and y -axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom. Examples of confused edges can be seen in Table 5.3

Table 5.3: Selected examples of high confidence confused edges for room dataset

| Source | Target | Ground Truth Relationship | Highest Scoring Classifier Relationship | Score |
| :--- | :--- | :--- | :--- | :--- |
| restaurant | table | HasA | AtLocation | 1.11 |
| farm | farmhouse | HasA | AtLocation | 0.76 |
| cook | kitchen | PartOf | AtLocation | 1.56 |
| book | library | PartOf | AtLocation | 1.07 |
| apple | bake | ReceivesAction | UsedFor | 1.56 |
| animal | travel | CapableOf | UsedFor | 0.66 |
| baby | woman | CreatedBy | IsA | 0.65 |



Figure 5.2: Confusion matrix for animal dataset This confusion matrix is generated using 5 -fold cross validation on the training set and the cubic svm classifiers trained with difference features. Each entry represents the number of edges with the ground truth label, y , that were classified as x . The relationships are ordered along the x and y -axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom. Examples of confused edges can be seen in Table 5.4

Table 5.4: Selected examples of high confidence confused edges for animal dataset

| Source | Target | Ground Truth Relationship | Highest Scoring Classifier Relationship | Score |
| :--- | :--- | :--- | :--- | :--- |
| ship | bridge | HasA | AtLocation | 0.84 |
| cook | kitchen | PartOf | AtLocation | 1.18 |
| wave | ocean | PartOf | AtLocation | 0.93 |
| pony | animal | PartOf | IsA | 1.88 |
| chicken | eat | ReceivesAction | UsedFor | 0.78 |
| animal | love | CapableOf | UsedFor | 0.85 |
| milk | mammal | CreatedBy | IsA | 0.89 |

### 5.4 Hand-labeling

It is unclear whether the cross validation conclusions will hold for the test edges for several reasons. The sources from which the ground truth was collected are text-based, and the candidate edges are image-based. There are vocabulary terms which are not present in any ground truth edge. However, the test edges have one even more significant difference to the training edges; many of them should not be assigned a label. Some frequent concept pairs which are included in the test set have a strong correlation, but no direct relationship, for example "sheep" and "green". From the training edges alone, I have no way to identify such pairs, because all of the training edges have valid relationships.

To further analyze the test edges, I hand-labeled around 500 edges from each dataset using a GUI, shown in Figure 5.3. The GUI asked three questions: (1) is there a relationship between these two terms, (2) can the relationship between the two terms be illustrated with a photo such as one of those displayed below, and (3) which relationship label best describes the relationship between the two terms. Question (1) addresses edge existence. Question (2) addresses edge visualness, and Question (3) labels the edge with a relationship.

One concern when choosing which edges to label was that many edge properties are not uniformly distributed. For example, the frequency of edges has a long tail distribution as does the conditional probability of edges. The distributions for normalized pointwise mutual information and highest classifier score are closer to a skewed normal distributions. To attain a labeled sample with a large variety of edge properties, I perform a simplified version of stratified random sampling. For each property, I bin the property values in 50 bins. I then randomly sample from each bin. This provides better representation of outliers in the sample. Tabel 5.5 shows the number of labels that I collected by handlabeling labeling around 500 edges for each dataset.

The distribution of relationship types for the hand-labeled edges is somewhat similar to the relationships from the knowledge bases (See Figure 5.4). The room dataset hand-labeled relationship frequency appears to follow the same exponential trend as the knowledge base relationships, but the animal dataset follows a very different distribution. It shows spikes for the IsA and AtLocationGeographic relationships. The IsA spike probably results from the many different levels of specificity which people use to refer to animals, e.g. "bird", "chicken", and "hen". From the observations, this use of synonyms appears to be more frequent for animals than for objects found in the home. The spike in AtLocationGeographic relationships may result from people photographing animals while traveling. They are less likely to mention the geographic location of their home.

The Receiver Operator Characteristic for predicting directed edge existence show that the highest classifier score is the strongest signal for finding directed edges (See Figure 5.5). Using this signal, I propose

V The relationship is visual. It can be illustrated with a photo such as one of those shown below
Choose the relationship from the list that best describes how the two terms are related.

Flip term order

| None |
| :--- | :--- |
| AtLocation |
| GeographicContainme |
| IsA |
| UsedFor |
| HasProperty |
| HasA |
| PartOf |
| MadeOf |
| ReceivesAction |
| CapableOf |
| AtLocationGeographic |
| Causes |
| GeographicAdjective |
| CreatedBy |
| Z |



## OK

## Save Labels

Figure 5.3: A screenshot of the GUI used for hand-labeling concept pairs
edge labels for test set edges which have the maximum classifier score over all classifiers for a concept pair. Additionally, the score must be greater than zero. For example, "cattle at location field" and "field made of cattle" are the two highest scoring classifications for the pair "field" and "cattle". "cattle at location field" has the higher classifier score with 1.13 compared to 0.199 , so the proposed label is "cattle at location field". 69,310 edges have proposed labels in the animal dataset and 40,131 edge have proposed labels in the room dataset.

Using the proposed labels, I can further probe the accuracy of the classifiers by generating confusion matrices for the hand-labeled data. Figures 5.7 and 5.6 show these confusion matrices. Using the highest classifier score is doing a decent job of filtering out unlabeled edges. I correctly filter out $76 \%$ of the animal dataset and $67 \%$ of the room dataset while incorrectly excluding only $29 \%$ of the animal dataset and $26 \%$ of the rooms dataset. The small number of labeled examples makes it hard to draw conclusions about the individual relationships, but the AtLocation, IsA and HasProperty classifiers seem to be most powerful.


Figure 5.4: Relationship distribution of hand-labeled edges for each dataset. The animal dataset has a larger proportion of IsA edges because animals are often referred to with different levels of specificity. For example, "animal", "bird", "chicken", "hen" can all be used to refer to the same animal. The room dataset has a larger proportion of AtLocation relationships because it has a large number of inanimate objects found in the home.

Table 5.5: Edge statistics for hand-labeled edges

|  | Domestic Animals | Rooms |
| :--- | :--- | :--- |
| Number of hand-labeled edges | 492 | 490 |
| Number of edges with a relationship | 202 | 187 |
| Number of visual edges | 153 | 137 |

The last piece of hand-labeled information is visualness. The classifiers do not explicitly learn visualness because they have no access to a visual representation of the images, only the concept features. However, the labeling shows that the visualness of an edge is linked to its relationship type. In Table 5.6. I see that the AtLocation relationship is always visual while the GeographicContainment relationship is never visual. HasProperty and IsA are also strongly visual. The potential of visual representations is an exciting direction for future work and is discussed more in Chapter 7


Figure 5.5: Receiver Operator Characteristic (ROC) for predicting directed edge existence. I use one of the metrics listed in the legend to predict whether or not an ordered concept pair is an edge. Pairs with a value above a certain threshold are labeled as edges. These labels are compared to the hand-labeled ground truth, counting the number of true positive and false positive labels. The curve is plotted by varying the threshold which varies the numbers of true and false positives. The area below the curve is the accuracy. The diagonal is random chance. A larger area above the diagonal indicates better prediction. In these plots, the highest classifier score is most predictive of directed edge existence. Additional plots of the corresponding thresholds and precision recall curves are available in Appendix D


Figure 5.6: Confusion matrix using hand-labeled relationships from animal dataset This confusion matrix is generated using the hand-labeled relationships for the test edges. Each entry represents the number of edges with the ground truth label, y , that were classified as x . The relationships are ordered along the x and $y$-axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom.


Figure 5.7: Confusion matrix using hand-labeled relationships from room dataset This confusion matrix is generated using the hand-labeled relationships for the test edges. Each entry represents the number of edges with the ground truth label, $y$, that were classified as x . The relationships are ordered along the x and $y$-axis from most to least frequent, so rows on the top represent a greater number of edges than rows on the bottom.

Table 5.6: Visualness of relationship types. This table reports the percent of handlabeled-edges that are labeled visual for each relationship type as well as the total number of hand-labeled edges summed over both datasets. The relationships are sorted by percent visual then by the number of examples.

| Relationship | Percent Visual | Total Edges |
| :--- | :--- | :--- |
| AtLocation | 1.00 | 59 |
| LocatedNear | 1.00 | 18 |
| MadeOf | 1.00 | 5 |
| ReceivesAction | 1.00 | 4 |
| LooksLike | 1.00 | 3 |
| LocationOfAction | 1.00 | 1 |
| IsA | 0.97 | 95 |
| HasProperty | 0.96 | 47 |
| UsedFor | 0.92 | 26 |
| PartOf | 0.92 | 24 |
| CapableOf | 0.89 | 9 |
| HasA | 0.75 | 8 |
| Causes | 0.50 | 2 |
| AtLocationGeographic | 0.09 | 23 |
| GeographicContainment | 0.00 | 55 |
| Other | 0.00 | 4 |
| AtTime | 0.00 | 3 |
| CreatedBy | 0.00 | 2 |
| None | 0.00 | 1 |

## Chapter 6

## Qualitative results

This chapter will discuss the proposed edges in detail. I retrieved 69,310 proposals for the animal dataset and 40,131 proposals for the room dataset. The quantitative analysis of hand-labeled edges in the previous chapter suggests an average accuracy of $64 \%$ for the proposed edges. I will use examples to discuss the kinds of edges that I successfully detect and the mistakes that are made.

The first set of examples is drawn from the Animals dataset. In this dataset, I retrieved images with keywords from a list of domestic animals including "sheep". Table 6.1 shows the training edges that contained the term "sheep". This list of eleven edges is accurate "sheep" commonsense knowledge, but it is not comprehensive. I have 664 additional proposed edges for sheep. Of these, 31 are high confidence classifications. High confidence edges have a large score, a large number of owners, and a non-negative PMI. For the animal dataset, I use a threshold of 500 unique owners, and a score greater than 0.6 for high confidence edges. These thresholds are chosen by manual examination of the proposed edges.

Table 6.2 shows the top eight highest confidence AtLocation edges. Some of these are scenes like "sheep at location countryside" or "sheep at location field". Others are other objects that frequently occur in images near sheep, such as, "sheep at location wall", see Figure 6.1a or "sheep at location house". Not all proposed edges are intuitive, for example, "sheep at location sea", but examining the images supports the edge with a set of images where sheep graze near the ocean or are even being rescued from a rocky seashore(see Figure 6.1 b . The knowledge I learn about sheep is not limited to locations. Table 6.3 show high confidence "sheep" edges for five other relationships types including parts, properties, categories, actions, and uses.

Despite the high confidence, not all edges are well supported. Figure 6.2a shows that alternate word senses may be subsumed into another frequent word sense. Most of these images show close ups of sheep ears appropriate for the fact "sheep has a ear", but one image shows sheep shaped earrings. In this case, an appropriate relationship was proposed. However, differentiating word senses is still an open problem. Figure 6.2 b shows another unsolved problem. The classifier correctly learns that green is usually a property, but incorrectly associates green with the sheep rather than the field in which the sheep is standing.

Table 6.1: All training edges containing "sheep" in animal dataset. Rows are sorted by relationship type, then by number of owners.

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| sheep | farm | AtLocation | 11549 | 0.22 |
| wool | sheep | AtLocation | 5883 | 0.39 |
| sheep | meadow | AtLocation | 1603 | 0.21 |
| sheep | fair | AtLocation | 800 | 0.07 |
| sheep | graze | CapableOf | 2748 | 0.19 |
| sheep | wool | HasA | 5883 | 0.39 |
| sheep | animal | IsA | 15153 | 0.03 |
| sheep | farm animal | IsA | 2715 | 0.22 |
| sheep | mammal | IsA | 958 | 0.07 |
| merino | sheep | IsA | 348 | 0.21 |
| sheep | person | IsA | 135 | -0.02 |



Figure 6.1: Selected images from high confidence AtLocation edges containing "sheep" from animal test set. These image grids illustrate the highlighted edges in Table 6.2. These two examples show the AtLocation relationship can be used to describe nearness as well as scene locations.

Table 6.2: Examples of high confidence AtLocation edges containing "sheep" from the animal test set. Bold rows are illustrated in Figure 6.1. Edges are the eight highest scoring proposals with more that 500 owners and NPMI greater than 0.02

| Source | Target | Proposed Relationship | Score | Number of Owners | NPMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| sheep | wall | AtLocation | $\mathbf{2 . 0 2}$ | $\mathbf{1 3 9 1}$ | $\mathbf{0 . 1 0}$ |
| sheep | fence | AtLocation | 1.73 | 2786 | 0.15 |
| sheep | countryside | AtLocation | 1.70 | 4321 | 0.30 |
| sheep | church | AtLocation | 1.31 | 1015 | 0.09 |
| sheep | sea | AtLocation | $\mathbf{1 . 2 5}$ | $\mathbf{2 4 1 4}$ | $\mathbf{0 . 0 3}$ |
| sheep | house | AtLocation | 1.17 | 1382 | 0.03 |
| sheep | village | AtLocation | 1.15 | 1096 | 0.09 |
| sheep | field | AtLocation | 1.14 | 8287 | 0.27 |



Figure 6.2: Selected images from high confidence edges containing "sheep" from animal test set. These image grids illustrate the highlighted edges in Table 6.3 . These examples show the variety of images contributing to each edge. In Figure 6.1b, the images are very consistent, but the association learned is incorrect.

Table 6.3: Examples of high confidence edges containing "sheep" from the animal test set. The edges are the highest scoring proposals with more than 500 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure 6.4. Pink rows are misclassified.

| Source | Target | Proposed Relationship | Score | Number of Owners | NPMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| sheep | ear | HasA | $\mathbf{1 . 0 7}$ | $\mathbf{5 8 3}$ | $\mathbf{0 . 0 1}$ |
| sheep | green | HasProperty | $\mathbf{0 . 9 3}$ | $\mathbf{6 4 5 0}$ | $\mathbf{0 . 1 1}$ |
| sheep | young | HasProperty | 0.75 | 508 | 0.03 |
| sheep | toy | IsA | $\mathbf{0 . 9 2}$ | $\mathbf{1 6 5 0}$ | $\mathbf{0 . 0 2}$ |
| sheep | livestock | IsA | 0.69 | 1917 | 0.22 |
| sheep | ram | IsA | 0.62 | 3140 | 0.32 |
| sheep | feed | ReceivesAction | $\mathbf{0 . 7 9}$ | $\mathbf{8 9 7}$ | $\mathbf{0 . 0 5}$ |
| sheep | train | ReceivesAction | 0.69 | 510 | 0.01 |
| land | sheep | UsedFor | 0.82 | 551 | 0.11 |
| farmland | sheep | UsedFor | 0.74 | 665 | 0.21 |
| wood | sheep | UsedFor | 0.74 | 1188 | 0.02 |
| barn | sheep | UsedFor | 0.74 | 1739 | 0.14 |



Figure 6.3: Selected images from low confidence edges containing "sheep" from animal test set. These image grids illustrate the highlighted edges in Table 6.4. Twos of these examples show unusual but accurate edges. The third, Figure 6.3b, shows some toy sheep with buttons, but is predominantly sheep images on buttons or sheep shaped buttons.

Table 6.4: Low confidence edge proposals containing "sheep" from animal dataset. These edges have a score less than 0.6 , fewer than 500 owners, and a positive NPMI. Low confidence edges have many more erroneous labels than high confidence edges. Bold rows are illustrated in Figure 6.3. Pink rows are misclassified. Ellipsis indicates hidden examples.

| Source | Target | Proposed Relationship | Score | Number of Owners | NPMI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| sheep | west | AtLocation | 0.41 | 375 | 0.02 |
| sheep | wind | AtLocation | 0.40 | 349 | 0.07 |
| sheep | horizon | AtLocation | 0.40 | 293 | 0.10 |
| sheep | lane | AtLocation | 0.37 | 164 | 0.09 |
| sheep | fine art | AtLocation | 0.36 | 104 | 0.00 |
| sheep | vista | AtLocation | 0.02 | 193 | 0.10 |
| sheep | figure | AtLocation | 0.01 | 181 | 0.01 |
| sheep | button | HasA | 0.40 | 138 | 0.04 |
| sheep | horizontal | HasA | 0.33 | 129 | 0.05 |
| sheep | flare | HasA | 0.21 | 111 | 0.04 |
| sheep | embroidery | HasA | 0.19 | 125 | 0.01 |
| sheep | crochet | HasA | 0.16 | 313 | 0.04 |
| sheep | cloudy | HasProperty | 0.57 | 463 | 0.11 |
| sheep | calm | HasProperty | 0.44 | 150 | 0.04 |
| sheep | friendly | HasProperty | 0.40 | 108 | 0.00 |
| sheep | curious | HasProperty | 0.34 | 287 | 0.03 |
| sheep | peaceful | HasProperty | 0.19 | 251 | 0.08 |
| sheep | overcast | HasProperty | 0.14 | 104 | 0.06 |
| sheep | lonely | HasProperty | 0.05 | 174 | 0.04 |
| sheep | rare | HasProperty | 0.01 | 102 | 0.02 |
| sheep | baby animals | IsA | 0.53 | 337 | 0.07 |
| sheep | track | IsA | 0.52 | 377 | 0.05 |
| sheep | analogue | IsA | 0.51 | 167 | 0.05 |
| sheep | tag | IsA | 0.47 | 346 | 0.01 |
| sheep | angel | IsA | 0.44 | 214 | 0.02 |
| $\ldots$ |  |  |  |  |  |
| sheep | outback | IsA | 0.01 | 130 | 0.07 |
| sheep | national trust | IsA | 0.00 | 477 | 0.16 |
| sheep | top | IsA | 0.00 | 154 | 0.01 |
| sheep | plastic | MadeOf | 0.28 | 170 | 0.00 |
| sheep | drive | ReceivesAction | 0.33 | 263 | 0.02 |

If I consider low confidence edges, there are many more erroneous classifications. Table 6.4 shows some low confidence edge examples. While a larger proportion of these are incorrectly labeled, there are still a few unusual but accurate edges in the list. Figure 6.3 shows the supporting images for some of these less intuitive edges.
"Sheep" was one of the search terms that I used to retrieve the Flickr images and the 4th most frequent concept in the animal dataset with 78,748 unique owners. However, most of the vocabulary were not initial search terms and are not as frequent. It is important to show that the method can also learn from less frequent concepts.
"Bird" is the 16 th most frequent vocabulary term with roughly half the number of unique owners compared to "sheep". Interestingly, I have 89 training edges containing the term "bird", many more than "sheep" (See Appendix Table E. 1 for the full list). This may be because "bird" is a broader animal category than "sheep". The search keywords for the animal dataset include three kinds of bird: turkey, goose, and parrot.

Table E. 2 shows high confidence proposed edges for "bird". The classifiers' proposals appear to learn from the different species of birds in the dataset. The locations learned, such as lake, river, ocean, pond, and wetland, may come from the "goose" images. While the location "jungle" and the many colorful properties may come from the "parrot" images. For example, Figure 6.5b shows images of brightly colored parrots from the set of images with the relationship "bird has property bright". Other proposals represent all species of bird, such as "bird has a foot". In Figure 6.4a. I see both parrot and goose feet illustrating "bird has a foot".

Let's consider a much less frequent concept, "farmland". "Farmland" occurs in 1,531 images. I have 6 training edges for "farmland". For less frequent concepts, I receive many fewer proposals because they co-occur with fewer other concepts. For "farmland", there are 16 proposals. Interestingly, I learn some facts which are very different from the training examples. In the training set, I have "cow at location farmland" and "horse at location farmland". In the proposed edges, I have "bull at location farmland", which is a similar relationship, but I also have "farmland used for sheep" and "farmland used for cattle". This shows the ability of the classifiers to generalize between concepts. The complete list of training examples and a selection of high confidence edges for "farmland" is available in Appendix E. 1 .

The number of training edges also effects the confidence and accuracy of the proposed edges. The concept "gosling" is not present in any training edge. In Table 6.5, there are many more misclassified high confidence proposals than in the previous examples. For example, the classifiers prefer "swim at location gosling" with a score of 0.87 to "gosling capable of swim" with a score of -0.22 . However, the classifiers do correctly identify that "gosling" is an animal, bird, duck, and baby, and that they are frequently found in lakes.

Similar results from frequent to infrequent concepts using the terms "sofa", "mirror", "garlic", and "new


Figure 6.4: Selected images from high confidence edges containing "bird" from animal test set. These image grids illustrate the highlighted edges in Table E.2. These two examples show that the "bird" facts are being learned that apply to all species of birds, e.g. "bird has a foot", and to specific species of birds, e.g. "bird has property bright".
year" from the room dataset are detailed in Appendix E. 2 . The two datasets have different vocabularies and different training sets, but when they do overlap it can provide some insight into the different kinds of knowledge that they are learning. A good example of that overlap is the concept "baby". "Baby" is very frequent in the animal dataset and in the room dataset. In the animal dataset, it occurs in images picturing a wide variety of species, while in the room dataset it usually refers to human babies.

Two edges are learned by the classifiers for both datasets: "mother has a baby" (Figures 6.5a and 6.5b) and "baby has property white" (Figures 6.5 c and 6.5 d ). The classifiers arrive at the same knowledge from very different starting points, but there are slight differences. "Mother has a baby" is a universal fact that applies to all animals including humans, so it can be learned equally well from both datasets. However, "baby has property white" in the animal dataset refers to white fur or feathers, while "baby has property white" in the room dataset refers to either white walls or clothing or a light flesh tone. The animal dataset edge is more consistent with the images. For "baby has property white", the datasets learn two slightly different relationships with the same text gloss. This is an area where visual models of the relationships could clarify meaning.

For the proposed edges that are specific to one dataset, the differences between non-human animal and human babies emerge. Figure 6.6a shows the animal dataset edge "baby has property fuzzy". Figure 6.6 b shows the room dataset edge "baby at location kitchen". Starting with the same training edges (See Appendix Table E.12, the two datasets learn different knowledge, suggesting that animal babies are fuzzier

Table 6.5: Selected examples of high confidence edges containing "gosling" from the animal test set. There are no training edges containing "gosling" in the rooms dataset. Pink rows are misclassified. The italic row not a proposed relationship. It is included to show the score of the reverse edge.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| water | gosling | AtLocation | 1.89 | 1067 | 0.18 |
| swim | gosling | AtLocation | 0.87 | 319 | 0.23 |
| gosling | swim | CapableOf | -0.22 |  |  |
| young | gosling | AtLocation | 0.83 | 362 | 0.31 |
| gosling | lake | AtLocation | 0.74 | 691 | 0.18 |
| gosling | park | AtLocation | 0.60 | 381 | 0.10 |
| gosling | cute | HasProperty | 0.77 | 715 | 0.12 |
| gosling | animal | IsA | 2.44 | 698 | 0.01 |
| gosling | bird | IsA | 2.03 | 3431 | 0.24 |
| gosling | grass | IsA | 1.12 | 423 | 0.11 |
| gosling | wild life | IsA | 1.02 | 1097 | 0.22 |
| gosling | waterfowl | IsA | 0.90 | 500 | 0.35 |
| gosling | pond | IsA | 0.41 | 549 | 0.22 |
| gosling | duck | IsA | 0.37 | 360 | 0.10 |
| gosling | canadian goose | IsA | 0.27 | 461 | 0.34 |
| gosling | baby | IsA | 0.27 | 1266 | 0.30 |

than human babies and less likely to be in kitchens. Tables of high confidence proposed edges for both datasets are available in Appendix Table E. 13 and E.14.

Exploring the proposed edges concept by concept shows the variety of knowledge learned, but how are individual classifiers behaving? Tables 6.6 and 6.7 show the top four highest scoring edge proposals for each relationship type. Here many of the highest scoring predictions use the same concepts. For example, "feed" as the source produces a high score from the RecievesAction classifier in the animal dataset. This is similar to the behavior explored in Section 5.2 where classifiers appear to be learning patterns of concepts. In many cases, the pattern matching is successful. For example, "kitchen" is usually a location and "cute" is usually a property. However, it fails when the classifier is trained on fewer edge examples, as in "black used for love" and "woman made of glass" from the animal dataset.


Figure 6.5: Selected images from edges containing "baby" learned by both test sets. Each rows shows the same edges with the examples from the animal dataset on the left and the examples from the room dataset on the right. We can see that while the knowledge comes from very different sources, but the general facts about babies are the same.


Figure 6.6: Selected images from high confidence edges containing "baby" learned by only one dataset. The edges are only learned by one dataset's classifiers, suggesting that baby animals are more fuzzy and that they are less likely to be found in kitchens than human babies.

Table 6.6: Top four highest scoring proposed edges in room dataset for each relationship. Edges are sorted by relationship then by score.

| Source | Target | Proposed Relationship | Score | Number of Owners | Normalized PMI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| sunlight | countryside | AtLocation | 2.87 | 680 | 0.18 |
| horn | zoo | AtLocation | 2.89 | 608 | 0.08 |
| wool | farm | AtLocation | 3.01 | 1381 | 0.16 |
| sunlight | park | AtLocation | 3.02 | 663 | 0.01 |
| bird | swim | CapableOf | 1.43 | 1334 | 0.13 |
| animal | graze | CapableOf | 1.43 | 1021 | 0.06 |
| animal | swim | CapableOf | 1.55 | 576 | 0.04 |
| animal | fly | CapableOf | 1.77 | 797 | 0.08 |
| animal | tongue | HasA | 1.76 | 784 | 0.05 |
| wild life | beak | HasA | 1.84 | 741 | 0.22 |
| wild life | wing | HasA | 1.86 | 1086 | 0.20 |
| wild life | feather | HasA | 2.14 | 1768 | 0.20 |
| pet | cute | HasProperty | 2.06 | 8104 | 0.24 |
| hound | cute | HasProperty | 2.06 | 19634 | 0.05 |
| farm animal | cute | HasProperty | 2.07 | 799 | 0.12 |
| wild life | black | HasProperty | 2.12 | 754 | 0.03 |
| ara | bird | IsA | 2.56 | 6307 | 0.24 |
| ara | animal | IsA | 2.84 | 2175 | 0.12 |
| black sheep | animal | IsA | 2.92 | 744 | 0.03 |
| anser anser | bird | IsA | 3.27 | 716 | 0.21 |
| art work | stone | MadeOf | 0.99 | 770 | 0.06 |
| sun rise | water | MadeOf | 1.02 | 1280 | 0.19 |
| woman | glass | MadeOf | 1.08 | 980 | 0.06 |
| holiday | sand | MadeOf | 1.19 | 650 | 0.16 |
| sea | wave | PartOf | 0.64 | 2073 | 0.39 |
| canine | head | PartOf | 0.67 | 622 | 0.08 |
| window | automobile | PartOf | 0.81 | 510 | 0.05 |
| wing | duck | PartOf | 0.83 | 543 | 0.15 |
| cow | feed | ReceivesAction | 0.95 | 1063 | 0.15 |
| goose | feed | ReceivesAction | 0.97 | 916 | 0.02 |
| goat | feed | ReceivesAction | 0.98 | 1085 | 0.13 |
| bird | feed | ReceivesAction | 1.20 | 1588 | 0.07 |
| market | travel | UsedFor | 1.86 | 700 | 0.18 |
| black | love | UsedFor | 1.92 | 515 | 0.05 |
| paint | love | UsedFor | 1.97 | 1175 | 0.04 |
| eye | love | UsedFor | 2.28 | 690 | 0.02 |

Table 6.7: Top four highest scoring proposed edges in room dataset for each relationship. Edges are sorted by relationship then by score.

| Source | Target | Proposed Relationship | Score | Number of Owners | Normalized PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| vegetarian | kitchen | AtLocation | 3.12 | 521 | 0.05 |
| salt | kitchen | AtLocation | 2.90 | 770 | 0.17 |
| curtain | home | AtLocation | 2.81 | 584 | 0.10 |
| toy | bedroom | AtLocation | 2.79 | 911 | 0.07 |
| infant | smile | CapableOf | 0.95 | 515 | 0.28 |
| boy | sit | CapableOf | 0.93 | 667 | 0.21 |
| man | sleep | CapableOf | 0.91 | 637 | 0.15 |
| man | reflect | CapableOf | 0.87 | 740 | 0.14 |
| bedroom | leg | HasA | 1.97 | 1082 | 0.11 |
| garden | window | HasA | 1.63 | 502 | 0.13 |
| apartment | window | HasA | 1.57 | 998 | 0.07 |
| dwelling | window | HasA | 1.49 | 2166 | 0.19 |
| pet | cute | HasProperty | 2.06 | 953 | 0.42 |
| food | yellow | HasProperty | 2.02 | 787 | 0.06 |
| lifestyle | white | HasProperty | 2.02 | 644 | 0.19 |
| day | white | HasProperty | 1.95 | 762 | 0.08 |
| mutt | animal | IsA | 2.57 | 1604 | 0.31 |
| red | vegetable | IsA | 2.34 | 691 | 0.27 |
| pup | animal | IsA | 2.29 | 1604 | 0.32 |
| dude | beverage | IsA | 2.28 | 558 | 0.17 |
| night | glass | MadeOf | 1.31 | 954 | 0.03 |
| art | wood | MadeOf | 1.29 | 558 | 0.07 |
| view | glass | MadeOf | 1.21 | 1294 | 0.08 |
| book | glass | MadeOf | 1.17 | 565 | 0.02 |
| leaf | nature | PartOf | 1.60 | 586 | 0.34 |
| frame | living room | PartOf | 1.49 | 591 | 0.14 |
| bloom | living room | PartOf | 1.39 | 1237 | 0.00 |
| african american | living room | PartOf | 1.33 | 856 | 0.10 |
| meal | eat | ReceivesAction | 0.51 | 712 | 0.49 |
| tomato | cook | ReceivesAction | 0.41 | 802 | 0.25 |
| dwelling | design | ReceivesAction | 0.23 | 685 | 0.13 |
| interior | paint | ReceivesAction | 0.06 | 857 | 0.04 |
| kitchen | eat | UsedFor | 2.69 | 2305 | 0.18 |
| kitchen | dine | UsedFor | 2.49 | 757 | 0.04 |
| bed | relax | UsedFor | 2.10 | 894 | 0.24 |
| bathroom | relax | UsedFor | 2.06 | 559 | 0.06 |

## Chapter 7

## Future Work

### 7.1 Human annotation

The small hand-labeled sample shows that the proposed edges have an average accuracy of $64 \%$. This is not accurate enough to add the edges directly to ConceptNet or Freebase, but the proposed edges can be quickly and efficiently reviewed by human annotators. Human annotation is already extensively used to add edges to ConceptNet and Freebase [35, 20]. However, human annotators are likely to miss more unusual facts like "sheep at location sea".

The method proposes very complete list of potential edges three orders of magnitude smaller than the number of all possible concept pairs. Human labelers are expensive and are better at making easy judgments, such as answering yes or no questions. Therefore, presenting them with a smaller list of more likely edges is more effective use of their time and energy. Once labeled, the edges can be added to the knowledge bases and used to further improve the classifiers.

### 7.2 Including visual representations in classification

One of the most important future goals for this project is incorporating visual representations of the images in the classification. The visual information in the images may prove helpful for word sense disambiguation, learning more robust classifiers, and identifying the most interesting edges. Currently, the method does not distinguish between different word senses, such as "Turkey" the country and "turkey" the bird. This is a limitation of using only the tags of the image, which do not indicate which sense is intended, and of the GloVe vector, which also uses the same representation for both word senses. However, the images for each word sense would differ greatly. By adding visual features to the method, I could leverage these differences to distinguish between the two senses, hopefully leading to more robust and accurate classification.

### 7.3 Building visual edge detectors

Another benefit of using visual representations would be the potential to provide edge detectors for images without tags or with incomplete tags. Many images on the internet are not tagged, and tagging is another expensive manual annotation task. I could train edge detectors that would learn a visual model of an edge from the tagged images in the datasets. I could then label untagged images with appropriate concepts and edges. NEIL [9], Divvala et al. [12], and VisKE [31, all learn visual models of the concepts and knowledge that they identify.

### 7.4 Frequent concept sets

Beyond simple concept co-occurrence, I can also examine frequent concept sets or sequences of more than two concepts using techniques from Data Mining. The subfield of frequent pattern mining has developed several algorithms for efficiently discovering frequent sets. Borgelt et al. [5] provides a good overview of different algorithms to extract frequent concept sets from the dataset.

Frequent concept sets provide us with interesting clusters of concepts which might indicate commonly co-occurring edges. Identifying commonly co-occurring edges might help predict whether or not a edge should exist. For example, the common concept cluster of "sheep", "grass", and "green", currently produces three edges, "sheep at location grass", "grass has property green", and "sheep has property green". The last edge, "sheep has property green" is a misclassification resulting in part from the high correlation between "sheep" and "green". Knowing that this correlation results from the latent concept "grass" might help limit such misclassifications.

## Chapter 8

## Conclusions

In conclusion, I have contributed a method for extracting potential commonsense edges in the form of concept pairs from a large collection of images, learning models of relationships from existing commonsense knowledge bases, and transferring the relationships to the concept pairs. This is the first work which attempts to learn visual commonsense knowledge from image collections through transfer learning. For the experiments, I collected two datasets with more than one million images each, extracted concept vocabularies from those datasets, collected a training set of edges from Freebase and ConceptNet containing concepts from the vocabulary, and proposed 93,850 new edges with an accuracy of $63 \%$.

These proposed edges could be quickly and efficiently reviewed by human annotators. Then number of proposed edges is several orders of magnitude smaller than the number of possible edges presenting a more efficient review task. Future work would incorporate visual representations of the images into the method opening the door for learning visual edge detectors. Visual commonsense knowledge has great potential both for extending existing knowledge bases and for new applications in image understanding.

## Appendix A

## Merged relationships

This appendix lists the relationships from Freebase and ConceptNet which are merged to create the relationship types we use for training.

## A. 1 IsA

IsA is composed of Freebase relationships:

- /biology/organism_classification/higher_classification
- /biology/organism_classification/lower_classifications
- /biology/domesticated_animal/breeds
- /biology/animal_breed/breed_of
and ConceptNet relationship:
- IsA


## A. 2 GeographicContainment

GeographicContainment is composed of Freebase relationships:

- /location/administrative_division/country
- /location/administrative_division/first_level_division_of
- /location/administrative_division/second_level_division_of
- /location/location/partially_containedby
- /location/location/containedby
- /location/country/administrative_divisions
- /location/country/first_level_divisions
- /location/location/contains
- /location/location/partially_contains
- /location/country/capital
and ConceptNet relationships:
- PartOf if both source and target have location labels
- AtLocation if both source and target have location labels


## A. 3 GeographicAdjective

Geographic Adjective is composed of Freebase relationships:

- /location/location/adjectival_form
- /location/country/iso3166_1_shortname
- /location/country/fifa_code
- /location/country/iso_alpha_3
- /olympics/olympic_participating_country/ioc_code


## A. 4 AtLocationGeographic

AtLocationGeographic is composed of ConceptNet relationships:

- AtLocation if the source or target has a location label, but not both


## Appendix B

## Vocabulary

This appendix shows the vocabulary filtering and extention process for the top 50 most frequent concepts in each dataset. Details of the full process are given in Section 3.2.

Table B.1: Top 50 concepts from the room dataset at various stages of collection. The initial vocabulary is collected from the image tags only excluding English stopwords. The filtered vocabulary removes camera vocabulary, numbers, non-roman characters, and automatic Flickr tags (except for vision tags), and splits concatenated phrases when possible. The extended vocabulary adds phrases that are frequent in the dataset found using high PMI and local search on Freebase. The effective vocabulary is the vocabulary terms in the extended vocabulary for which we have GloVe representations. The frequency counts are shown for the extended vocabulary.

| Initial Vocab | Filtered Vocab | Extended Vocab | Effective Vocab | Frequency |
| :--- | :--- | :--- | :--- | :--- |
| kitchen | kitchen | kitchen | kitchen | 96741 |
| bathroom | bathroom | bathroom | bathroom | 61139 |
| square | bedroom | bedroom | bedroom | 45726 |
| iphoneography | house | house | 28745 |  |
| squareformat | home | home | house | 27680 |
| bedroom | food | food | home | 26798 |
| instagramapp | room | room | food | 13110 |
| uploaded:by=instagram | window | window | 12379 |  |
| house | white | white | window | 19290 |
| home | living room | living room | white | 32153 |
| food | red | modern architecture | modern architecture | 1274 |
| room | art | red | red | 16707 |
| light | christmas | art | art | 14004 |
| window | blue | christmas | christmas | 12948 |
| white | green | blue | blue | 14544 |
| livingroom | mirror | green | green | 16192 |
| red | cooking | mirror | cooking | bed |
| portrait | bed | hotel | black | hotel |
| canon | black | bed | 15618 |  |
| art | living | hotel | 16219 |  |
| christmas | living | 14386 |  |  |
| uploaded:by=flickrmobile | restaurant |  |  | 22080 |

Table B. 1 - Continued from previous page

| Initial Vocab | Filtered Vocab | Extended Vocab | Effective Vocab | Frequency |
| :---: | :---: | :---: | :---: | :---: |
| blue | family | restaurant | restaurant | 15397 |
| green | cat | family | family | 14503 |
| mirror | girl | cat | cat | 13158 |
| cooking | night | girl | girl | 13231 |
| bed | water | night | night | 12491 |
| nikon | new | water | water | 12177 |
| hotel | wedding | new | new | 3585 |
| flickriosapp:filter=nofilter | table | wedding | wedding | 13561 |
| black | party | table | table | 6222 |
| living | travel | party | party | 10464 |
| restaurant | sink | travel | travel | 13059 |
| family | apartment | sink | sink | 1926 |
| cat | interior | apartment | apartment | 12175 |
| girl | selfportrait | rock music | rock music | 1025 |
| night | london | interior | interior | 8558 |
| water | yellow | building construction | building construction | 534 |
| new | vintage | selfportrait | selfportrait | 11763 |
| wedding | reflection | london | london | 11427 |
| table | old | yellow | yellow | 11559 |
| party | summer | black girl | black girl | 1657 |
| travel | dinner | vintage | vintage | 8628 |
| sink | architecture | reflection | reflection | 11001 |
| apartment | flowers | old | old | 8597 |
| interior | toilet | chicago illinois | chicago illinois | 966 |
| blackandwhite | people | summer | summer | 10528 |
| film | winter | dinner | dinner | 9963 |
| selfportrait | design | architecture | architecture | 9761 |
| london | usa | flowers | flowers | 10673 |

Table B.2: Top 50 concepts from the animal dataset at various stages of collection. The initial vocabulary is collected from the image tags only excluding English stopwords. The filtered vocabulary removes camera vocabulary, numbers, non-roman characters, and automatic Flickr tags (except for vision tags), and splits concatenated phrases when possible. The extended vocabulary adds phrases that are frequent in the dataset found using high PMI and local search on Freebase. The effective vocabulary is the vocabulary terms in the extended vocabulary for which we have GloVe representations. The frequency counts are shown for the extended vocabulary.

| Initial Vocab | Filtered Vocab | Extended Vocab | Effective Vocab | Frequency |
| :---: | :---: | :---: | :---: | :---: |
| dog | dog | dog | dog | 203792 |
| cat | cat | cat | cat | 163431 |
| vision:outdoor $=$ | vision:outdoor= | vision:outdoor= | sheep | 95139 |
| sheep | sheep | sheep | horse | 78745 |
| horse | horse | horse | rabbit | 55859 |
| rabbit | rabbit | rabbit | animal | 69836 |
| animal | animal | animal | chicken | 66504 |
| square | turkey | turkey | animals | 60749 |
| turkey | chicken | chicken | bird | 59544 |
| chicken | animals | animals | nature | 61051 |
| iphoneography | bird | bird | dogs | 58519 |
| squareformat | nature | nature | cats | 56653 |
| instagramapp | dogs | dogs | goat | 48432 |
| uploaded:by=instagram | cats | cats | goose | 40975 |
| animals | goat | goat | geese | 41878 |
| bird | goose | goose | birds | 49781 |
| nature | vision:sky= | vision:sky= | parrot | 47039 |
| dogs | geese | geese | white | 33059 |
| cats | birds | birds | cute | 45374 |
| goat | vision:mountain $=$ | vision:mountain $=$ | food | 40962 |
| goose | parrot | parrot | black | 20076 |
| vision:sky= | white | white | green | 38494 |
| geese | cute | cute | farm | 29412 |
| birds | food | food | pet | 37840 |
| vision:mountain $=$ | black | black | water | 37593 |
| parrot | green | green | zoo | 34126 |
| white | farm | farm | horses | 34476 |
| cute | pet | pet | bunny | 5306 |
| food | water | water | snow | 28512 |
| black | zoo | zoo | blue | 24501 |
| green | horses | horses | park | 19622 |
| farm | bunny | bunny | wild life | 31723 |
| pet | snow | snow | puppy | 30183 |
| water | blue | blue | winter | 29113 |

Continued on next page

Table B. 2 - Continued from previous page

| Initial Vocab | Filtered Vocab | Extended Vocab | Effective Vocab | Frequency |
| :--- | :--- | :--- | :--- | :--- |
| zoo | park | park | portrait | 27697 |
| horses | wildlife | wild life | red | 25381 |
| canon | vision:text= | vision:text= | cattle | 23955 |
| bunny | puppy | puppy | grass | 27463 |
| snow | winter | winter | landscape | 26553 |
| nikon | portrait | portrait | art | 23325 |
| blue | red | red | beach | 26060 |
| park | cattle | cattle | summer | 25259 |
| wildlife | grass | grass | sky | 19815 |
| vision:text $=$ | landscape | landscape | pets | 23966 |
| puppy | art | art | lake | 22120 |
| winter | beach | beach | vision:plant= | cow |
| portrait | vision:plant= | summer | 23294 |  |
| red | summer | sky | 22078 |  |
| cattle | sky | pets | 22821 |  |
| grass | pets |  | spavel | 21937 |

## Appendix C

## Labeled vocabulary examples

This appendix provides some examples from the color and location vocabulary labels.

## C. 1 Colors

The following lists all the vocabulary labeled as colors from both datasets.

- amber
- aqua
- chestnut
- iris
- pear
- pearl
- tan
- asparagus
- beige
- chocolate
- jade
- pink
- straw
- lavender
- pomegranate
- berry
- clear
- lemon
- pumpkin
- terra cotta
- black
- coral
- lime
- purple
- tomato
- blond
- cranberry
- lion
- raspberry
- transparent
- blue
- brick
- cream
- magenta
- red
- turquoise
- bronze
- brown
- burgundy
- camel
- cardinal
- dark blue
- magnolia
- red hair
- midnight
- rose
- mint
- ruby
- vanilla
- denim
- mustard
- rust
- violet
- navy blue
- sage
- wheat
- olive
- scarlet
- orange
- sepia
- white
- champagne
- charcoal
- green
- orchid
- silver
- wine
- cherry
- grey
- peach
- stone
- yellow


## C. 2 Locations

The following lists the top 200 most frequent vocabulary labeled as geographic locations from the room dataset. The total number of locations in the room dataset is 874 . The animals dataset contains similar locations with only 97 different locations.

| - london | - seattle | - las vegas |  | - bangkok |
| :---: | :---: | :---: | :---: | :---: |
| - chicago illinois | - mexico | - hong kong |  | - arizona |
| - usa | - australia | - manhattan |  | - argentina |
| - california | - texas | - boston |  | - shanghai |
| - japan | - india | - singapore |  | - virginia |
| - france | - thailand | - toronto |  | - malaysia |
| - new york | - red house | - taiwan |  | - michigan |
| - bath | - washington | - brooklyn |  | - sweden |
| - paris | - new york city | - oregon |  | - nashville |
| - italy | - morning sun | - hawaii |  | - beijing |
| - china | - old city | - africa |  | - madrid |
| - england | - barcelona | - amsterdam | mu- | - sydney |
| - nsw australia | - scotland | seum |  | - ontario |
| - europe | - asia | - fuji |  | - philadelphia |
| - san francisco | - ireland | - vancouver |  | - belgium |
| - canada | - berlin | - austin |  | - rome |
| - spain | - united states | - mobile |  | - netherlands |
| - chicago | - amsterdam | - colorado |  | - portugal |
| - germany | - los angeles | - vegas |  | - greece |
| - vienna austria | - portland | - america |  | - edmonton alberta |
| - florida | - pittsburgh pennsyl- | - vietnam |  | - ohio |
| - tokyo | vania | - red square |  | - melbourne |
| - valencia | - turkey | - italia |  | - new orleans |


| - illinois | - nevada | - alaska | - morocco |
| :---: | :---: | :---: | :---: |
| - taipei | - massachusetts | - north carolina | - utah |
| - brazil | - indonesia | - north yorkshire | - iceland |
| - reunion | - vienna | - nice | - indiana |
| - georgia | - norway | - poland | - costa rica |
| - pennsylvania | - wisconsin | - south africa | - copenhagen |
| - austria | - bali | - cambridge |  |
| - city park | - venice | - oxford | cambodia |
| - victoria | - stone county | - cuba | - egypt |
| - beach park | - tennessee | - manchester | - baltimore |
| - dublin | - kyoto | - church village | - memphis |
| - wales | - buenos aires | - old castle | - starbucks |
| - edinburgh | - starbucks coffee | - stockholm | - glasgow |
| - istanbul | - russia | - budapest | - munich |
| - korea | - new river | - finland | - minneapolis |
| - switzerland | - new house | - frankfurt germany | - louvre museum |
| - united kingdom' | - prague | - seoul | - israel |
| 'new zealand | - orlando | - caribbean | - model city |
| - philippines | - north west | - brussels | - disneyland |
| - brasil | - maine | - dallas |  |
| - deutschland | - maryland | - black rock | tuscany |
| - atlanta | - sarasota florida | - houston | - new mexico |
| - show room | - wash | - glass bowl | - green lake |
| - san diego | - pearl river | - hollywood | - home park |
| - peru | - miami | - louisiana | - osaka |
| - montreal | - chile | - florence | - river thames |
| - roman empire | - denmark | - denver | - thames river |
| - washington dc | - minnesota | - new jersey | - missouri |

## Appendix D

## Predicting edge existence

This appendix contains precision recall curves and threshold plots to accompany the ROC curves in Figure 5.5

I use one of the metrics listed in the legend to predict whether or not an ordered concept pair is an edge. Pairs with a value above a certain threshold are labeled as edges. These labels are compared to the hand-labeled ground truth. The curve is plotted by varying the threshold which varies the precision and recall of the prediction. Figure D.1 use the same values as Figure 5.5 a and Figure D. 2 uses the same values as 5.5b. The figure on the left shows the precision recall curve. The figure on the right shows thresholds corresponding to ROC and precision recall curves. In the threshold plot, the number of images, number of owners, and highest classifier score are normalized. The other metrics show their actual values.



Figure D.1: Examining directed edge prediction for the animal dataset


Figure D.2: Examining directed edge prediction for the room dataset

## Appendix E

## Proposed edge details

## E. 1 Proposed edges from the animal dataset

This appendix contains more complete results from the animal dataset to accompany Chapter 6

Table E.1: All training edges with "bird" as the source in animal dataset. Rows are sorted by relationship type, then by number of owners. There are also 47 edges with "bird" as the target in the training set, all with the relationship IsA, representing different species of bird. These examples accompany Figure 6.4 and Table E. 2 .

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| bird | zoo | AtLocation | 8596 | 0.20 |
| bird | tree | AtLocation | 5613 | 0.08 |
| bird | sky | AtLocation | 3331 | 0.02 |
| bird | sea | AtLocation | 2870 | 0.00 |
| bird | beach | AtLocation | 2339 | -0.04 |
| bird | cage | AtLocation | 1752 | 0.24 |
| bird | wild | AtLocation | 1683 | 0.12 |
| bird | nest | AtLocation | 1416 | 0.22 |
| bird | field | AtLocation | 1190 | -0.09 |
| bird | wood | AtLocation | 962 | -0.03 |
| bird | forest | AtLocation | 799 | 0.00 |
| bird | countryside | AtLocation | 529 | -0.10 |
| bird | bush | AtLocation | 281 | 0.03 |
| bird | state park | AtLocation | 224 | -0.04 |
| bird | air | AtLocation | 189 | -0.03 |
| bird | roof | AtLocation | 146 | -0.05 |
| bird | lawn | AtLocation | 142 | -0.02 |
| bird | flight | CapableOf | 4752 | 0.28 |
| bird | perch | CapableOf | 1040 | 0.27 |
| bird | walk | CapableOf | 946 | -0.07 |
| bird | land | CapableOf | 835 | -0.03 |
| bird | feather | HasA | 8594 | 0.32 |
| bird | beak | HasA | 0.38 |  |
|  |  | Continued on | next page |  |

Table E. 1 - Continued from previous page

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| bird | eye | HasA | 2453 | 0.09 |
| bird | egg | HasA | 1001 | 0.02 |
| bird | claw | HasA | 374 | 0.14 |
| bird | tail | HasA | 305 | 0.00 |
| bird | wing | HasA;PartOf | 4318 | 0.25 |
| bird | cute | HasProperty | 2525 | -0.08 |
| bird | beautiful | HasProperty | 1905 | 0.09 |
| bird | pretty | HasProperty | 763 | 0.09 |
| bird | cool | HasProperty | 319 | 0.01 |
| bird | animal | IsA | 24615 | 0.18 |
| bird | pet | IsA | 4048 | -0.01 |
| bird | owl | IsA | 0.19 |  |
| bird | food | IsA | 1079 | -0.16 |
| bird | mammal | IsA | 490 | -0.05 |
| bird | predator | IsA | 259 | 0.15 |
| bird | flock | PartOf | 1849 | 0.12 |
| bird | watch | UsedFor;CapableOf | 156 | -0.04 |
| bird | eat | UsedFor;CapableOf;ReceivesAction | 1122 | 0.03 |
| bird | fly | UsedFor;HasProperty;CapableOf | 2568 | 0.26 |

Table E.2: Selected examples of high confidence edges containing "bird" from the animal test set. The edges are the highest scoring proposals with more than 500 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure 6.4 Pink rows are misclassified.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| bird | lake | AtLocation | 1.41 | 6474 | 0.13 |
| bird | river | AtLocation | 1.18 | 3130 | 0.08 |
| bird | ocean | AtLocation | 0.85 | 2870 | 0.03 |
| bird | pond | AtLocation | 0.80 | 3556 | 0.17 |
| bird | wetland | AtLocation | 0.74 | 1385 | 0.20 |
| bird | jungle | AtLocation | 0.69 | 611 | 0.14 |
| bird | swim | CapableOf | 1.41 | 1334 | 0.13 |
| bird | hunt | CapableOf | 0.30 | 606 | 0.02 |
| bird | foot | HasA | $\mathbf{0 . 6 7}$ | $\mathbf{5 6 8}$ | $\mathbf{0 . 0 3}$ |
| bird | baby | HasA | 0.27 | 2126 | 0.02 |
| bird | plumage | HasA | 0.27 | 525 | 0.27 |
| bird | bright | HasProperty | $\mathbf{1 . 1 5}$ | $\mathbf{7 2 3}$ | $\mathbf{0 . 1 4}$ |
| bird | young | HasProperty | 0.93 | 782 | 0.086 |
| bird | yellow | HasProperty | 0.86 | 4239 | 0.16 |
| bird | black | HasProperty | 0.85 | 2645 | 0.05 |
| bird | green | HasProperty | 0.85 | 7270 | 0.14 |
| bird | white | HasProperty | 0.80 | 4894 | 0.09 |
| bird | blue | HasProperty | 0.80 | 5417 | 0.14 |
| bird | female | HasProperty | 0.65 | 2014 | 0.10 |
| bird | male | HasProperty | 0.61 | 1972 | 0.15 |
| bird | feed | ReceivesAction | 1.19 | 1588 | 0.07 |
| anser anser | bird | IsA | 3.27 | 716 | 0.21 |
| ara | bird | IsA | 2.57 | 6307 | 0.24 |
| duckling | bird | IsA | 2.17 | 508 | 0.17 |
| gosling | bird | IsA | 2.03 | 3431 | 0.24 |
| amazon | bird | IsA | 1.86 | 827 | 0.21 |
| branta canadensis | bird | IsA | 1.85 | 1812 | 0.27 |
|  |  |  |  |  |  |

Table E.3: Training edges containing "farmland" in animal dataset

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| farmland | farm | UsedFor | 1061 | 0.31 |
| farmland | country | AtLocation | 243 | 0.34 |
| farmland | countryside | AtLocation | 378 | 0.43 |
| farmland | land | IsA | 119 | 0.38 |
| cow | farmland | AtLocation | 959 | 0.24 |
| horse | farmland | AtLocation | 175 | -0.04 |



Figure E.1: Selected images from high confidence edges containing "farmland" from animal test set. These image grids illustrate the highlighted edges in Table E.4. These two examples show two possible relationships between "farmland" and animals. A similar AtLocation relationship, "cow at location farmland" is present in the training data, but there is no similar UsedFor relationship.

Table E.4: Selected examples of high confidence edges containing "farmland" from the animal test set. The edges are the highest scoring proposals with more than 300 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure 6.4 .

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| farmland | sheep | UsedFor | $\mathbf{0 . 7 4}$ | $\mathbf{6 6 5}$ | $\mathbf{0 . 2 1}$ |
| farmland | cattle | UsedFor | 0.60 | 959 | 0.31 |
| bull | farmland | AtLocation | $\mathbf{1 . 2 4}$ | $\mathbf{9 5 9}$ | $\mathbf{0 . 2 0}$ |
| grass | farmland | AtLocation | 0.90 | 341 | 0.27 |
| tree | farmland | AtLocation | 0.87 | 369 | 0.17 |

## E. 2 Proposed edges from the room dataset

This section contains more complete results from the room dataset to accompany Chapter 6.

Table E.5: All training edges containing "sofa" in room dataset. Rows are sorted by relationship type, then by number of owners. These examples accompany Figure E. 2 and Table E. 6

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| sofa | living room | AtLocation | 6898 | 0.49 |
| sofa | house | AtLocation | 1194 | 0.14 |
| sofa | home | AtLocation | 1354 | 0.16 |
| cat | sofa | AtLocation | 509 | 0.05 |
| sofa | leg | HasA | 193 | 0.18 |
| sofa | chair | IsA | 1630 | 0.36 |
| sofa | leather | MadeOf | 443 | 0.44 |
| cushion | sofa | PartOf | 499 | 0.46 |
| fabric | sofa | PartOf | 314 | 0.19 |
| sofa | cushion | ReceivesAction | 499 | 0.46 |
| sofa | relax | UsedFor | 1064 | 0.38 |
| sofa | comfort | UsedFor | 771 | 0.38 |
| sofa | sit | UsedFor | 398 | 0.35 |
| sofa | sleep | UsedFor | 362 | 0.14 |



Figure E.2: Selected images from high confidence edges containing "sofa" from room test set. These image grids illustrate the highlighted edges in Table E.6. Figure E.2a shows "male" being used as a synonym for "man" in stock photo tagging.

Table E.6: Selected examples of high confidence edges containing "sofa" from the room test set. The edges are the highest scoring proposals with more than 500 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure E. 2 .

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| sofa | apartment | AtLocation | 2.75 | 871 | 0.20 |
| sofa | wall | AtLocation | 1.58 | 615 | 0.22 |
| sofa | rug | AtLocation | 0.83 | 1098 | 0.35 |
| sofa | table | AtLocation | 0.68 | 1203 | 0.36 |
| sofa | window | AtLocation | 0.65 | 1638 | 0.23 |
| dog | sofa | AtLocation | 1.69 | 580 | 0.11 |
| male | sofa | AtLocation | $\mathbf{1 . 4 5}$ | $\mathbf{7 7 8}$ | $\mathbf{0 . 2 2}$ |
| female | sofa | AtLocation | 1.39 | 1329 | 0.22 |
| boy | sofa | Attocation | 1.27 | 778 | 0.11 |
| girl | sofa | AtLocation | 1.06 | 1329 | 0.08 |
| sofa | white | HasProperty | 0.94 | 1013 | 0.15 |
| sofa | furniture | IsA | 0.32 | 1377 | 0.39 |
| dwelling | sofa | HasA | 1.16 | 1354 | 0.34 |
| pillow | sofa | PartOf | $\mathbf{0 . 1 7}$ | $\mathbf{1 0 3 0}$ | $\mathbf{0 . 3 6}$ |

Figure E.3: Training edges containing "mirror" in room dataset

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| mirror | bedroom | AtLocation | 2283 | 0.24 |
| mirror | wall | AtLocation | 317 | 0.14 |
| mirror | glass | IsA;MadeOf | 719 | 0.11 |



Figure E.4: Selected images from high confidence edges containing "mirror" from room test set. These image grids illustrate the highlighted edges in Table E. 7

Table E.7: Selected examples of high confidence edges containing "mirror" from the room test set. The edges are the highest scoring proposals with more than 300 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure E.4. Pink rows are misclassified.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| mirror | home | AtLocation | 1.92 | 452 | 0.02 |
| mirror | room | AtLocation | 1.29 | 450 | 0.12 |
| mirror | bed | AtLocation | $\mathbf{0 . 5 6}$ | $\mathbf{7 5 9}$ | $\mathbf{0 . 1 8}$ |
| mirror | dwelling | AtLocation | 0.54 | 452 | 0.08 |
| mirror | living room | AtLocation | 0.02 | 731 | 0.08 |
| mirror | white | HasProperty | 1.66 | 530 | 0.09 |
| mirror | blue | HasProperty | 1.37 | 316 | 0.05 |
| mirror | sculpture | IsA | $\mathbf{0 . 7 4}$ | $\mathbf{4 1 6}$ | $\mathbf{0 . 0 2}$ |
| mirror | reflect | UsedFor | 0.15 | 2673 | 0.30 |
| self | mirror | AtLocation | 0.60 | 777 | 0.30 |
| female | mirror | AtLocation | 0.39 | 1054 | 0.10 |
| male | mirror | AtLocation | 0.36 | 359 | 0.06 |

Table E.8: Training edges containing "garlic" in room dataset

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| garlic | kitchen | AtLocation | 967 | 0.21 |
| garlic | dinner | AtLocation | 175 | 0.23 |
| garlic | food | IsA | 561 | 0.30 |
| garlic | spice | IsA | 164 | 0.40 |
| garlic | ingredient | IsA | 138 | 0.45 |



Table E.9: Selected images from high confidence edges containing "garlic" from room test set. These image grids illustrate the highlighted edges in Table E. 10 .

Table E.10: Selected examples of high confidence edges containing "garlic" from the room test set. The edges are the highest scoring proposals with more than 100 owners and PMI greater than zero for selected relationship. Bold rows are illustrated in Figure E.9. Pink rows are misclassified.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| garlic | knife | AtLocation | $\mathbf{1 . 5 6}$ | $\mathbf{1 0 7}$ | $\mathbf{0 . 2 6}$ |
| garlic | pan | AtLocation | 1.09 | 113 | 0.20 |
| garlic | garden onion | AtLocation | 0.39 | 370 | 0.41 |
| garlic | white | HasProperty | 1.01 | 108 | 0.09 |
| garlic | green | HasProperty | 0.90 | 141 | 0.14 |
| garlic | vegetable | IsA | 0.92 | 278 | 0.38 |
| garlic | herb | IsA | 0.64 | 141 | 0.40 |
| garlic | vegetarian food | IsA | 0.43 | 104 | 0.38 |
| chilli pepper | garlic | HasA | 0.56 | 266 | 0.36 |
| vegetarian cuisine | garlic | HasA | 0.56 | 104 | 0.40 |
| vegetarian | garlic | HasA | 0.55 | 104 | 0.26 |
| still life | garlic | MadeOf | $\mathbf{0 . 3 3}$ | $\mathbf{1 5 2}$ | $\mathbf{0 . 3 0}$ |
| recipe | garlic | MadeOf | 0.24 | 126 | 0.36 |
| salt | garlic | UsedFor | 0.17 | 102 | 0.37 |



Figure E.5: Selected images from edge "new year has property happy". The images contain three different "happy new year" themes: written messages, fancy meals, and groups of celebrating people, showing how different image motivs can represent the same fact.

Table E.11: Selected examples of high confidence edges containing "new year" from the rooms test set. There are no training edges containing "new year" in the rooms dataset. Bold rows are illustrated in Figure E. 5 Pink rows are misclassified.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| new year | happy | HasProperty | $\mathbf{0 . 1 9}$ | $\mathbf{1 0 9}$ | $\mathbf{0 . 2 4}$ |
| new year | woman | IsA | 0.54 | 160 | 0.02 |
| new year | female | IsA | 0.31 | 160 | 0.01 |
| new year | holiday | IsA | 0.23 | 208 | 0.10 |
| new year | fun | UsedFor | 0.85 | 119 | 0.06 |
| new year | party | UsedFor | 0.48 | 547 | 0.21 |
| new year | celebration | UsedFor | 0.17 | 173 | 0.33 |

## E. 3 Proposed edges dataset comparison

This section contains more complete results from the cross dataset comparison of edges containing the concept "baby" to accompany Chapter 6 and specifically Figure 6.6.

Table E.12: Training edges containing "baby" in both datasets. Rows are sorted by relationship type, then by number of owners. These examples accompany Figure 6.6 and Tables E. 13 and E. 14

| Source | Target | Ground Truth Relationship | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- |
| baby | home | AtLocation | 374 | 0.027 |
| toy | baby | AtLocation | 340 | 0.17 |
| baby | house | AtLocation | 224 | -0.055 |
| baby | crib | AtLocation | 156 | 0.445 |
| baby | rug | AtLocation | 108 | 0.067 |
| baby | play | CapableOf | 382 | 0.246 |
| baby | sleep | CapableOf | 311 | 0.154 |
| baby | laugh | CapableOf | 116 | 0.212 |
| woman | baby | HasA | 1189 | 0.10 |
| cat | baby | HasA | 234 | 0.04 |
| animal | baby | HasA | 196 | 0.14 |
| baby | hair | HasA | 110 | 0.03 |
| baby | cute | HasProperty | HasProperty | 306 |
| baby | happy | HasProperty | 182 | 0.361 |
| baby | young | HasProperty | 119 | 0.248 |
| baby | small | IsA | 0.244 |  |
| baby | mammal | IsA | 0.184 |  |
| puppy | baby | PartOf | 0.14 |  |
| baby | family | UsedFor | 737 | 0.16 |
| sleep | baby |  | 311 | 0.15 |

Table E.13: Selected Examples of High Confidence edges containing "baby" from the room test set. Bold rows are illustrated in Figure 6.6. Pink rows are misclassified. Green rows are learned by the classifiers for the animal dataset as well. Ellipsis indicates a number of excluded high confidence edges.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| baby | bedroom | AtLocation | 1.81 | 840 | 0.08 |
| baby | kitchen | AtLocation | 1.80 | 1000 | 0.01 |
| baby | bed | AtLocation | 0.84 | 386 | 0.09 |
| baby | smile | CapableOf | 0.61 | 515 | 0.26 |
| baby | white | HasProperty | $\mathbf{1 . 3 4}$ | $\mathbf{4 8 8}$ | $\mathbf{0 . 0 6}$ |
| baby | living room | PartOf | 0.67 | 550 | 0.06 |
| dwelling | baby | HasA | 1.23 | 374 | 0.056 |
| caucasian | baby | HasA | 0.85 | 488 | 0.230 |
| man | baby | HasA | 0.82 | 914 | 0.026 |
| female | baby | HasA | 0.78 | 1189 | 0.109 |
| $\ldots$ |  |  |  | $\mathbf{0 . 3 6 6}$ |  |
| mother | baby | HasA | $\mathbf{0 . 4 2}$ | $\mathbf{7 8 7}$ | 0.092 |
| bed | baby | UsedFor | 0.59 | 386 | 0.188 |
| bath | baby | UsedFor | $\mathbf{0 . 3 4}$ | 406 |  |

Table E.14: Selected Examples of High Confidence edges containing "baby" from the animal test set. Bold rows are illustrated in Figure 6.6. Pink rows are misclassified. Green rows are learned by the classifiers for the room dataset as well. Ellipsis indicates a number of excluded high confidence edges.

| Source | Target | Proposed Relationship | Score | Number of Owners | PMI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| baby | farm | AtLocation | 1.12 | 863 | 0.028 |
| baby | field | AtLocation | 1.11 | 308 | 0.002 |
| baby | grass | AtLocation | 0.30 | 862 | 0.073 |
| baby | feather | HasA | 1.13 | 362 | 0.052 |
| baby | green | HasProperty | 1.11 | 760 | 0.019 |
| _. |  |  |  |  |  |
| baby | white | HasProperty | $\mathbf{0 . 9 9}$ | $\mathbf{6 9 3}$ |  |
| baby | blue | HasProperty | 0.93 | 483 | 0.031 |
| baby | sweet | HasProperty | 0.92 | 596 | 0.021 |
| baby | fluffy | HasProperty | 0.88 | 537 | 0.213 |
| baby | fuzzy | HasProperty | 0.82 | 315 | 0.237 |
| baby | adorable | HasProperty | 0.81 | 662 | 0.276 |
| baby | bird | IsA | 1.42 | 2126 | 0.019 |
| baby | female | IsA | 0.71 | 1242 | 0.069 |
| baby | male | IsA | 0.64 | 857 | 0.024 |
| baby | pet | IsA | 0.60 | 1038 | 0.027 |
| calf | baby | IsA | 0.56 | 380 | 0.200 |
| grey | baby | UsedFor | 0.90 | 305 | 0.039 |
| natural light | baby | UsedFor | 0.78 | 403 | 0.081 |
| gray | baby | UsedFor | 0.73 | 305 | 0.066 |
| wild life | baby | HasA | 1.57 | 904 | 0.034 |
| farm animal | baby | HasA | 0.88 | 392 | 0.135 |
| domestic cat | baby | HasA | 0.73 | 2266 | 0.013 |
| mother | baby | HasA | $\mathbf{0 . 3 9}$ | $\mathbf{9 8 3}$ | $\mathbf{0 . 3 3 0}$ |

## References

[1] Flickr services. Web, July 2015.
[2] flickr.com site overview. Web, July 2015.
[3] Tamara L Berg and Alexander C Berg. Finding iconic images. In Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on, pages 1-8. IEEE, 2009.
[4] Steven Bird, Edward Loper, and Ewan Klein. Natural Language Processing with Python. O'Reilly Media Inc., 2009.
[5] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):437-456, 2012.
[6] Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hruschka Jr, and Tom M Mitchell. Coupled semi-supervised learning for information extraction. In Proceedings of the third ACM international conference on Web search and data mining, pages 101-110. ACM, 2010.
[7] Kai-Wei Chang, Wen tau Yih, and Chris Meek. Multi-relational latent semantic analysis. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). ACL Association for Computational Linguistics, October 2013.
[8] Junpeng Chen and Juan Liu. Combining conceptnet and wordnet for word sense disambiguation. In IJCNLP, pages 686-694, 2011.
[9] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil: Extracting visual knowledge from web data. In Computer Vision (ICCV), 2013 IEEE International Conference on, pages 1409-1416. IEEE, 2013.
[10] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexicography. Computational linguistics, 16(1):22-29, 1990.
[11] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut Neven, and Hartwig Adam. Large-scale object classification using label relation graphs. In Computer Vision-ECCV 2014, pages 48-64. Springer, 2014.
[12] Santosh K Divvala, Alireza Farhadi, and Carlos Guestrin. Learning everything about anything: Weblysupervised visual concept learning. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 3270-3277. IEEE, 2014.
[13] Jesse Dodge, Amit Goyal, Xufeng Han, Alyssa Mensch, Margaret Mitchell, Karl Stratos, Kota Yamaguchi, Yejin Choi, Hal Daumé III, Alexander C Berg, et al. Detecting visual text. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762-772. Association for Computational Linguistics, 2012.
[14] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A Efros. What makes paris look like paris? ACM Transactions on Graphics (TOG), 31(4):101, 2012.
[15] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20 th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 601-610. ACM, 2014.
[16] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by their attributes. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1778-1785. IEEE, 2009.
[17] Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA, 1998.
[18] Yunchao Gong, Qifa Ke, Michael Isard, and Svetlana Lazebnik. A multi-view embedding space for modeling internet images, tags, and their semantics. arXiv preprint arXiv:1212.4522, 2012.
[19] Yunchao Gong, Liwei Wang, Micah Hodosh, Julia Hockenmaier, and Svetlana Lazebnik. Improving image-sentence embeddings using large weakly annotated photo collections. In Computer Vision-ECCV 2014, pages 529-545. Springer, 2014.
[20] Google. Freebase API. https://developers.google.com/freebase, 2014.
[21] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 951-958. IEEE, 2009.
[22] Hugo Liu and Push Singh. Conceptneta practical commonsense reasoning tool-kit. BT technology journal, 22(4):211-226, 2004.
[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-3119, 2013.
[24] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746-751, 2013.
[25] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), 2015.
[26] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12:1532-1543, 2014.
[27] Rahul Raguram and Svetlana Lazebnik. Computing iconic summaries of general visual concepts. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on, pages 1-8. IEEE, 2008.
[28] Dheeraj Rajagopal, Daniel Olsher, Erik Cambria, and Kenneth Kwok. Commonsense-based topic modeling. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, page 6. ACM, 2013.
[29] Alan Ritter, Luke Zettlemoyer, Oren Etzioni, et al. Modeling missing data in distant supervision for information extraction. Transactions of the Association for Computational Linguistics, 1:367-378, 2013.
[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), pages 1-42, April 2015.
[31] Fereshteh Sadeghi, Santosh K Divvala, and Ali Farhadi. Viske: Visual knowledge extraction and question answering by visual verification of relation phrases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1456-1464, 2015.
[32] Mehdi Samadi, Manuela M Veloso, and Manuel Blum. Openeval: Web information query evaluation. In AAAI. Citeseer, 2013.
[33] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K Misra, and Hema S Koppula. Robobrain: Large-scale knowledge engine for robots. arXiv preprint arXiv:1412.0691, 2014.
[34] Lei Shi and Rada Mihalcea. Putting pieces together: Combining framenet, verbnet and wordnet for robust semantic parsing. In Computational linguistics and intelligent text processing, pages 100-111. Springer, 2005.
[35] Robert Speer and Catherine Havasi. Conceptnet 5: A large semantic network for relational knowledge. In The Peoples Web Meets NLP, pages 161-176. Springer, 2013.
[36] Munirathnam Srikanth, Joshua Varner, Mitchell Bowden, and Dan Moldovan. Exploiting ontologies for automatic image annotation. In Proceedings of the $28^{\text {th }}$ annual international ACM SIGIR conference on Research and development in information retrieval, pages 552-558. ACM, 2005.
[37] Luis Von Ahn, Mihir Kedia, and Manuel Blum. Verbosity: a game for collecting common-sense facts. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 75-78. ACM, 2006.
[38] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the Association for Computational Linguistics, 2:67-78, 2014.

