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ABSTRACT

Empirical potential-based quasi-continuum theory (EQT) provides a route to

incorporate atomistic detail into a continuum framework such as the Nernst-

Planck equation. EQT is a simple and fast approach to predict inhomogeneous

density and potential profiles of confined fluids. EQT potentials can be used

to construct a grand potential functional for classical density functional theory

(cDFT). The combination of EQT and cDFT provides a robust and accurate

approach to predict the structure and thermodynamic properties of confined

fluids at multiple length-scales, ranging from few Angstroms to macro meters.

In this work, first, we demonstrate the EQT-cDFT approach by simulating sin-

gle component Lennard-Jones (LJ) fluids, namely, methane and argon, confined

inside slit-like channels of graphene. For these systems, we show that the EQT-

cDFT can accurately predict the structure and thermodynamic properties, such

as density profiles, adsorption, local pressure tensor, surface tension, and solva-

tion force of confined fluids as compared to the MD simulation results. Next,

we extend the EQT-cDFT approach to confined fluid mixtures and demonstrate

it by simulating a mixture of methane and hydrogen inside slit-like channels of

graphene. We show that the EQT-cDFT predictions for the structure of the

confined fluid mixture compare well with the MD simulations results. In addi-

tion, our results show that graphene slit nanopores exhibit a selective adsorption

of methane over hydrogen.

Key Words: confined nanofluids, Empirical potential-based quasi-continuum

theory (EQT), classical density functional theory (cDFT), molecular dynamics

(MD), confined mixture, thermodynamic properties
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

For nearly all systems of interest to us, the most transferrable and funda-

mental description of matter is one that invokes quantum mechanics. Solving

Schrödinger’s equation for the system of interest, yields the highest level of ac-

curacy. However, accounting for all subatomic particles in the system requires

huge amount of computer resources. Moreover, depending on the system size,

it is even impossible to approach a system quantum mechanically. Thus, many

approximations need to be made in order to simplify the system and make it

solvable for the computer. Ab initio methods, density functional theories are

among such techniques that invoke approximations to make a system tractable

for the computer. But, even these methods are limited only to a small number

of atoms.

Sometimes we are interested in a physical phenomenon that manifest itself at

larger time or length scales, so we do not need the fine-grained detail in order

to understand them. In other words, we can coarse-grain fine details to run

simulations longer than those achieved by the first-principle methods. On the

other hand, there are examples such as protein folding and viral capsid assembly

that the physical observables, which occur at large time and length scales, are

highly connected to the details at the finer levels. Thus, there is a need for

methods to link simulations hierarchy, namely multiscale modeling, shown in

Fig. 1.1.

As shown in Fig. 1.1, there are two ways that the information can be prop-

agated between the levels: i) bottom-up and ii) top-down. The top-down ap-

proach is to inform the finer levels by providing input from coarser levels. For

example, inputs from experimental studies such as molecular structure can help

to develop molecular models and different force-fields required for particle to

interact. The bottom-up approach, however, tries to use information avail-

able at the all-atom level and incorporate them into a coarser level, so that the

time and length scales are bridged from atomistic level all the way to the macro-

scopic level. Here in this thesis, we will introduce a multiscale approach, namely

EQT, that allows study of system of multiple length-scales, ranging from few

Angstroms to macro meters.
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Figure 1.1: Hierarchy of simulations from sub-atomic level (quantum mechanics)
to the macroscopic level (continuum approaches). (The figure is adopted from
the ”Coarse graining and multiscale techniques” lecture (ChE210D) by Scott
Shell at UCSB.

Fluids and their mixtures in confined geometries ranging from nano- to micro-

sized dimensions are interesting systems to study because of their appealing ap-

plications, such as nanofiltration [1, 2, 3, 4, 5], adsorption, lubrication [6], drug

delivery [7], enhanced oil recovery [8, 9], heat management [10, 11], material

synthesis [12], separations, and geophysical application [13]. In confinement,

due to the spatial constraints and competition between the surface-fluid and

fluid-fluid atomic interactions, the fluid properties can be significantly different

from the bulk fluid. For example, the pressure experienced by a fluid confined

in a nanopore can be orders of magnitude higher than the pressure in the bulk

fluid [14]. Such unusual behavior of confined fluids can have practical appli-

cations, e.g., a carbon nanotube (CNT) can be used as a super-compressor for

the synthesis of valuable high-pressure materials, such as KI nanocrystals [12].

In addition, the layering of fluid molecules near a wall has profound effects on

the properties of confined fluids. For instance, the velocity profile of a nanocon-

fined fluid between two surfaces is strongly influenced by the density oscilla-

tions [15, 16]. Therefore, study of confined fluids is important to get atomic-

level insights into their unusual properties and to enable the design of novel

nanofluidic applications.

Over the past few decades, atomistic descriptions such as molecular dynamics

(MD) and Monte Carlo (MC) simulations have been widely used to study fluids

and their mixtures in nanoconfinement [13, 17]. However, it is computationally

expensive to do full molecular simulations for systems involving multiple length-

and time-scales ranging from the quantum to atomic to continuum scales. On

the other hand, it has been shown that to study fluid-fluid or fluid-solid in-
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terfaces, classical continuum descriptions fail to accurately capture atomistic

details [18, 19]. To address these issues, we need a multiscale method which is

not only as accurate as molecular simulations, but also as fast as classical con-

tinuum methods. In addition, the method should be computationally simple,

especially when dealing with multi-component fluid systems.

1.2 Thesis Overview

This thesis provides a comprehensive computational study for Lennard-Jones

fluids confined in slit-like channels from all-atom and continuum perspective

by studying argon, methane and a binary mixture of hydrogen and methane

molecules inside graphene slit nano channels. In this section, we provide the

general layout of this thesis and briefly summarize its chapters.

Chapter 2 discusses the fundamentals of the molecular dynamics simulation,

including the underlying algorithm, different ensembles and potentials used in

MD simulations. In addition, the essential details about the MD simulation

setups are provided for the case studies considered in this thesis.

Chapter 3 describes the fundamentals on the Emperical potential-based Quasi-

Continuum Theory (EQT). We introduce EQT as a multiscale method that

seamlessly integrate atomistic details into a continuum-based model. Moreover,

to clarify the theory for the readers, a brief overview on particle densities and

pair distributions is provided. Finally, the frame work is extended to account

for the multi-component systems as well.

In chapter 4, the EQT potentials are used within the classical density func-

tional theory (cDFT) in order to obtain thermodynamic properties other than

the fluid structure. In this chapter, brief overview of the cDFT frame work

is presented. Furthermore, necessary thermodynamic relations are derived and

discussed.

In chapter 5, the EQT-cDFT results are provided and compared with the

all-atom reference MD simulations. Various thermodynamic properties such as

density profiles, adsorption, local pressure tensor, surface tension, and solvation

force are predicted by the EQT-cDFT approach and compared with the MD

simulation results.

Finally, chapter 6 summarizes the major accomplishments of the thesis and

shows the possible future directions of the research.
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CHAPTER 2

MOLECULAR DYNAMICS SIMULATION OF

NANOCONFINED LENNARD-JONES FLUIDS

Nowadays, computer simulations are essential tools in scientific research. They

serve as a complement to experiments, enabling us to understand and further

develop systems that are not even experimentally feasible in laboratory. In some

cases experiments are impossible to do, too dangerous, expensive or even blind

for properties that cannot be observed on short time- and very small space-

scales. Under these circumstances, one can cling on computer simulations to

circumvent the practical problems exist in experiments.

2.1 Fundamentals of MD simulation

The underlying physics of Molecular Dynamics (MD) simulation are Newton’s

law of motion. At any time, for an N particle system, position (rN ) and mo-

mentum (pN ) are two key variables to determine the state of the entire system.

For a system of particles to evolve in time, we need to be able to calculate forces

(Fi) on each particle. In MD, atoms and molecules are allowed to interact based

on some potential function that is usually called force field. The knowledge of

force field is based on finer theories such as quantum mechanics, which allow

one to determine the interactions from the first principles. Once the force field

is determined, the governing Newton’s equation of motion can be integrated

to create trajectories and velocities using a suitable numerical algorithm (i.e.

Verlet Algorithm). The following flowchart summarizes the necessary steps for

performing classical molecular dynamics simulations.

1) Input initial conditions (potential interaction, V , as a function of atom po-

sitions, positions r and velocities v of all atoms in the system).

2) Repeat 3,4,5 for the required number of steps.

3) Compute forces on each atom based on the potential and any external forces

exerting on the system.

4) Update positions and velocities of the atoms based on calculations in step 3.

5) Outputting quantities such as positions, velocities, forces and analyzing tra-

jectories for desired static and dynamic properties.
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1. System initialization

In order to start the simulation in MD, it is necessary to construct a molecular

model consisting N number of particles. Initially, positions and velocities should

be assigned to all particles. The particle positions should be chosen such that

they do not overlap on each other; otherwise it will result in unrealistic forces,

causes the simulation to crash. In order to avoid this problem, one can initially

place the particles on a cubic lattice [20] and perform energy minimization algo-

rithms to minimize the potential within the specified tolerance. Among all the

algorithms, steepest decent method is the popular one due to its robustness and

ease of implementation [21].The initial velocities are taken from a Maxwellian

distribution at the given temperature. The temperature of the system can be

monitored using the equipartion theory:

T =
1

kBNdof

N∑
i=1

m(v2
x + v2

y + v2
z) (2.1)

where kB is the Boltzmann constant, m is the particle mass and Ndof is the

number of degrees of freedom.

2. Force calculation

The force acting on a particle i is computed by Fi = ∂V/∂ri, where V is

the potential energy of the system. Basically, the interaction between atoms

and molecules is determined from quantum mechanics, where one can get rid

of electrons and consider the effective interaction of nuclei- the potential energy

surface, V . To calculate V there are methods such as quantum chemistry, Ab

initio and semi-empirical approach. In semi-empirical approach people try to

make a good guess and use experimental data or quantum calculations to adjust

it. This method is fast and it is widely used in classical MD, but depending

on the complexity of the potential surface it may not reveal correct details. In

quantum chemistry approach potential surface is computed at a few points and

fitted to a reasonable form. The method is hard, due to its complexity and

computational effort. Finally, in Ab initio, quantum calculations are performed

on the fly as the trajectory being generated. This procedure couples quantum

calculation of the electrons with classical one of the nuclei. It requires more

computational effort; however, no analytical form is needed. Force calculation is

the most time consuming step in the MD simulation (time required to calculate

the forces on N particles in the system scales as O(N2). However, there are

efficient algorithms that would ensure that force calculation is done in the order

of O(N(lnN)).
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3. Integrating the equation of motion

A ubiquitous choice of integrator in MD simulations is the Verlet algorithm.

One can Taylor expand the position at time t+ ∆t and t−∆t.

r(t+ h) = r(t) + v(t)h+
1

2
a(t)h2 + b(t)h3 +O(h4), (2.2a)

r(t− h) = r(t)− v(t)h+
1

2
a(t)h2 − b(t)h3 +O(h4), (2.2b)

where r is the coordinate of the particle, a(t) is the acceleration of the particle

at time t, b(t) is the third derivative of the position with respect to time, ∆t is

the time step in the MD simulation, v is the particle velocity, and m represents

the mass of the particle. Adding Eqs. 2.2a and 2.2b, new positions in the Verlet

algorithm can be obtained as

r(t+ h) = 2r(t)− r(t− h) +
f(t)

m
h2 +O(h4) (2.3)

where we substitute acceleration by the force acting on the particle at time t

divided by its mass. To estimate velocities, one can subtract Eq. 2.2b from

Eq. 2.2a to get the new velocity from the following equation,

v(t) =
r(t+ h)− r(t− h)

2h
+O(h2) (2.4)

We note that time reversal invariance is built in the Verlet algorithm. In

other words, the energy does not drift either up or down and it is constant.

Instead, if the temperature of the system is to be maintained constant, the

update algorithm is modified depending on which thermostat is used. Two of

the commonly used thermostats are the Berendsen [22] and the Nosé-Hoover

thermostat [23].

The choice of time step ∆t depends on both system and the quantity of

interest, which is calculated from MD simulation [24]. Choosing a very small

time step increases the cost of the simulation and may not be possible for systems

containing large number of particles. On the other hand, increasing the time

step is computationally preferable, but the resultant trajectories may be very

different from the actual physical system. Therefore, the time step for MD

simulation should be optimized for both speed and accuracy of the simulation.

4. Output and data analyses

In statistical mechanics, the ensemble average is defined as the average of a

quantity weighted by a probability density distribution. A property, such as

temperature, is calculated by averaging over the instantaneous properties of

the fluctuating system. Each state can be microscopically different, but the

ensemble average is a stable characterization of the system that results in a

unique macroscopic variable. The ergodic hypothesis postulates that one can
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make the implicit assumption that an ensemble average (which relates to many

replicas of the system) is the same as an average over time of one replica (the

system we are studying). Therefore, in MD, various properties and a of the

system can be calculated by averaging trajectories over a long time interval. A

classical example of such calculation is the self-diffusion coefficient, D, based on

velocity auto correlation function [25] obtained from MD trajectories.

D =
1

3N

∫ ∞
0

〈
N∑
j=1

vj(t0)vj(t)

〉
dt (2.5)

Other relevant examples to this work such as density distributions and potential

of mean force profiles will be discussed in detail in subsequent chapters.

2.1.1 Thermodynamic ensembles

As it was mentioned in Section 2.1, if the system is ergodic, ensemble averages

can be replaced by time averages. Furthermore, in the Verlet algorithm number

of particles (N), volume (V ) and the energy (E) is constant. Therefore, time

averaging in a conventional MD simulation is equivalent to ensemble averaging

in microcanonical ensemble (NVE). However, it is difficult to maintain system

energy constant in real experiments. It requires to perfectly isolating the system

to avoid any heat or mass transfer with the surrounding. On the other hand,

it is more convenient to work under constant temperature, pressure or volume.

Hence, for MD to emulate such conditions, different ensembles are available to

maintain the thermodynamic properties of interest. The various commonly used

ensembles can be categorized as follows.

1) Microcanonical Ensemble (NVE)

Microcanonical ensemble statistically describes a system that is isolated (i.e.

no energy exchange and mass transfer is allowed) from its surrounding and the

particle number and volume of it are unchanged throughout the simulation. In

this description, according to the Boltzmann each possible microstate of the

system is equally probable. In reality, realizing such conditions is extremely

hard. In the simulations especially for solids, one should be cautious about the

choice of time step. Failure to choose an appropriate time step will result in

energy drift in the simulation that violates the energy conservation. This can

also be attributed to the incorrect preparation of the sample.

2) Canonical Ensemble (NVT)

Also called isochoric-isothermal ensemble, NVT is used to represent mechani-

cal systems of constant volume that are in thermal equilibrium with an external

heat bath. The relevant thermodynamic free energy for this ensemble is the

Helmholtz free energy F (= U −TS, where U is the internal energy and S is the
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entropy of the system). The use of thermostats enables MD simulations to main-

tain the average temperature of the system at a constant value. Various tech-

niques to control temperature include Anderson [26], Berendsen, Nosé-Hoover

and Langevin (stochastic) thermostats. In Anderson and Langevin thermostats,

the temperature is held constant by a coupling mechanism between the system

and external heat bath. The mechanism is based on introducing stochastic

forces, which modify the kinetic energy of the atoms in order to steer temper-

ature to the desired value. Since the momentum transfer is destroyed using

these algorithms, Anderson and Langevin thermostats should not be used for

dynamic properties such as diffusion [27]. In Berendsen thermostat velocities of

the atoms rescaled frequently to control temperature. This procedure does not

strictly follow the canonical ensemble and suffers from time-irreversibility prob-

lem. Finally in Nosé-Hoover thermostat there are no random forces or velocities

to deal with. The idea is to modify the equation of motion using extended La-

grangian formalism. In this technique temperature is controlled by means of a

friction factor that alter particle velocities in the simulation. Main advantages

of Nosé-Hoover thermostat are time-reversibility and the fact that it does not

alter the dynamics of the system.

3) Isobaric-Isothermal Ensemble (NPT)

This kind of ensemble is very useful in chemistry because it mimics the real

conditions in experiments where the chemical reactions occur under the con-

stant pressure [28]. The relevant thermodynamic potential for this ensemble is

the Gibbs free energy G( = F + PV ). Similar to thermostats, to keep the av-

erage pressure constant barostats are used for this purpose. The most common

among them are Berendsen and Parinello-Rahman barostats [21]. The former

is usually used to pre-equilibrate the system while the latter is useful to get the

thermodynamic properties in equilibrium state.

4) Grand Canonical Ensemble (µVT)

The system is open when it can exchange both energy and particles with its

surrounding. In this context, we name surrounding as reservoir that is in contact

with the system of interest. In a general picture, both reservoir and system

can be described in NVE ensemble since together they are isolated and the

number of particles is constant. However to study the system alone, one should

seek thermodynamic variables that are constant during the simulation. For an

open system that is in equilibrium with a reservoir, the chemical potential µ,

volume V and temperature T are the constant thermodynamic variables. Thus,

grand canonical ensemble (µVT) can be used as a statistical description of such

systems. The relevant potential for this ensemble is the grand potential defined

as follows.

Ω = F − µN = U − TS − µN (2.6)
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where F is the Helmholtz free energy of the system. Chemical potential can

be defined as the derivative of F with respect to N . So by particle inser-

tion/deletion within the system one could maintain the chemical potential at

a particular value. However, care should be taken to ensure that there is no

artificial effect on the dynamics of the system. In molecular simulations, Monte

Carlo techniques are popular for performing grand canonical ensemble. How-

ever, to some extent MD can also simulate constant µVT ensemble [29, 30].

More details on the grand potential will be given in chapter 4.

2.1.2 Interatomic potentials

The true potential energy surface is N-body in nature. It couples the motion

of all atoms in the system. We can assume that the non-bonded part of the

potential can be written in the following form:

V =
∑
i

Vext(ri) +
∑
i

∑
j>i

V (2)(ri, rj)

+
∑
i

∑
j>i

∑
k>j>i

V (3)(ri, rj , rk) + · · · (2.7)

where Vext is the potential energy due to external fields and the remaining terms

are the intermolecular interactions where V (2) is the two-body potential that

is pair-additive, V (3) is the three-body potential and so on. Three-body and

higher-order potentials are computationally expensive and usually are truncated

in Eq. 2.7. The non-bonded interactions V (2) contain repulsion, dispersion and a

Coulomb term. The bonded interactions include covalent bond-stretching (Vb),

angle bending (Va), improper (Vid) and proper dihedrals (Vd).

• London-van der Waals (vdW) interaction

In this work, we will consider only Lennard-Jones (LJ) potential to model

vdW interaction between two atoms. This is the standard model used in MD

and its formula is given by

uLJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.8)

where rij is the distance between particles i and j, σ is the length scale where

the inter-particle potential is zero and ε is the depth of the potential well. An

alternative form of Eq. 2.8 is

uLJ(rij) =
C

(12)
ij

r12
ij

−
C

(6)
ij

r6
ij

, (2.9)
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with coefficients C
(12)
ij and C

(6)
ij are, respectively, given as

C
(12)
ij = 4εijσ

12
ij , (2.10a)

C
(6)
ij = 4εijσ

6
ij . (2.10b)

The r−12 term in Eq. 2.8 is the repulsion term that describes at short ranges

(r < σ) two atoms repel each other due to the overlapping electron orbitals.

The functional form of the repulsive term has no theoretical justification. It has

been shown that, as long as the functional form is repulsive enough the shape

of it does not affect the structural properties [31]. On the other hand, r−6 has a

clear physical justification. This term represents long-rang attraction that rises

from dipole-induced-dipole interaction. Not considering the special case of hard

spheres, phase transition is impossible without attractive forces.

• Bonded interactions

In bonded interactions covalent bond interaction potential Vb represents vibra-

tional frequencies and bond stretching along the chemical bond. It is modeled

as a harmonic oscillator with

Vb(rij) =
1

2
k

(b)
ij

(
rij − r(0)

ij

)2

, (2.11)

where k(b) is the bond spring constant and r(0) is the equilibrium bond length.

Similarly, the bond-angle vibration is defined between triplets of atoms (ijk).

Va(θijk) =
1

2
k

(a)
ijk

(
θijk − θ(0)

ijk

)2

(2.12)

where k(a) is the angular spring constant and θ(0) is the equilibrium angle be-

tween two adjacent bonds. Finally, the potential due to the dihedral interaction

is associated with the conformations in the molecule due to the planar orienta-

tion of the atoms. Full details on modeling such potentials is given in [21].

• Electrostatic (Coulomb) interaction

For a system containing charged atoms, electrostatic forces become important.

The net electrostatic potential between two atoms of charges qi and qj can be

calculated based on Coulombs law:

Vc(rij) =
qiqj

4πε0εrrij
(2.13)

where ε0 is the permittivity of space and εr is the relative dielectric constant

of the medium in which the charges are placed. Unlike LJ potential, Coulomb

potential is extremely long-range and requires efficient algorithms to implement

it in molecular dynamic simulations. Among these algorithms, Particle Mesh

Ewald (PME) [11] and Fast Multiple Method (FMM) are widely used in MD

simulations. More detail on these methods can be found in [20].
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2.2 Single component LJ fluid in a slit-like nanopore

In this work first we simulate two different confined LJ fluid systems, namely,

methane-graphene and argon-graphene slit-channel systems. In both the sys-

tems, the LJ fluid is confined between two flat graphene walls in equilibrium

with the bulk reservoir. The thermodynamic state of the confined fluid is defined

by the bulk reservoir temperature, T , and density, ρb. We consider supercritical

states of the methane and argon fluids given in Table 2.1.

Table 2.1: Thermodynamic states of methane and argon.

T (K) ρb (nm−3)
Methane 296 18
Argon 300 24

We perform the equilibrium MD simulations for various channel widths from

2σ to 20σ, where σ is the length-scale parameter for the LJ interaction between

fluid molecules (see Table 2.1). To perform the reference MD simulations, we use

the similar procedure and the interaction parameters given in Ref. [32]. The MD

simulations are performed in theNV T (canonical) ensemble by GROMACS [21].

Methane, argon, and graphene carbon atoms are modeled as LJ type spherical

particles. Spherical cutoff of 1.38 nm is used for the Lennard-Jones interactions.

The LJ interaction parameters used in MD simulations for various pairs of

methane, argon, and graphene carbon particles are given in Table 2.2.

Table 2.2: LJ interaction parameters for methane (CH4), argon (Ar), and
graphene carbon (C) atom pairs.

C12 (kJ/mol) C6 (kJ/mol) σ (nm)
CH4-CH4 0.46341E-04 0.15102E-01 0.3812
CH4-C 0.10353E-04 0.47088E-02 0.3606
Ar-Ar 0.96929E-05 0.62194E-02 0.3405
Ar-C 0.46428E-05 0.29922E-02 0.3402

In Table 2.2, for all unlike interactions Lorentz-Berthelot combining rules are

applied [33]:

σij =
σii + σjj

2
(2.14a)

εij =
√
εiiεjj (2.14b)

As shown in Fig. 2.1, two graphene layers are placed along the x-y plane, and

the lateral dimensions of the layers are: Lx = 3.83400 nm and Ly = 3.68927 nm.

The separation distance between the two graphene layers, i.e., the channel width,

is varied from 2σ to 20σ. Spherical cutoff of 1.38 nm is used for the Lennard-

Jones interactions. Wall atoms are kept fixed at their original positions.
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Periodic boundary conditions are specified in the x, y, and z directions. The

simulation box is padded with a vacuum layer of 60σ width in the z dimension to

avoid the interactions between periodic images in the z dimension. Temperature

is maintained using the Nosé-Hoover thermostat [23] with 0.5 ps time constant.

All systems are equilibrated for 2 ns and production runs of 8 ns are performed

with 1 fs time step. The density profiles are computed using 0.05σ bin size along

the z direction.

(a) (b)

Figure 2.1: (a) Simulation setup for a single component LJ fluid confined be-
tween two graphene sheets. (b) Schematic view of the graphene slit nano-
channel.

2.3 Lennard-Jones binary mixtures in a slit-like
nanopore

In this section, we consider binary LJ mixtures of methane and hydrogen inside

a slit-like nano confinement. The thermodynamic state of the confined mixture

is specified based on the bulk mixture reservoir that is in equilibrium with the

nanopore.

As shown in Fig. 2.2, the mixture of methane and hydrogen is simulated

in graphene nanopores. The slit pores considered in this study consist of two

graphene layers separated in z-direction. The lateral dimensions of the layers in

the x-y plane are 3.834×3.689 nm2 and separation distance, H, between the two

sheets is varied from 0.762 nm (= 2σ22 where σ22 is the length-scale parameter

for LJ interaction between methane molecules) to 6.34 nm. In this study, Visual

Molecular Dynamics (VMD) [34] is used to construct the geometries.

In this study, the slit channels are in equilibrium with two bulk mixture com-

positions: Methane-rich (xm = 0.7) and hydrogen-rich bulk mixture (xm = 0.3)

with total bulk density of 17.73 atoms/nm3. Methane and hydrogen molecules

are modeled as single-site LJ spherical particles with interaction parameters

given in Table 2.3. The parameters are taken from [35] and like the single com-

12



Figure 2.2: Simulation setup for the mixture of methane and hydrogen molecules
confined between two graphene sheets.

ponent case in Section 2.2, for all unlike interactions we use Lorentz-Berthelot

combining rules (Eq. 2.14).

Table 2.3: LJ interaction parameters for methane (CH4), Hydrogen (H2), and
graphene carbon (C) atom pairs.

σ (nm) ε (kJ/mol)
C-C 0.340 0.2328
H2-H2 0.2915 0.3159
CH4-CH4 0.3812 1.2314

In Fig. 2.2, wall atoms are kept fixed throughout the simulation. Thus, the

bonded interactions of the graphene carbon atoms are excluded. The spheri-

cal cut-off used for Lennard-Jones interactions is 1.7 nm. Periodic boundary

conditions are applied in all directions with an extra vacuum of 10 nm in z-

direction. Since no electrostatic forces are involved in the system, the extra

vacuum space only needs to be larger than LJ cut-off used in the simulation.

This gap ensures that the system is not interacting with its mirror image in the

z-direction. MD simulations for confined methane-hydrogen mixture are per-

formed in GROMACS molecular package [21]. To maintain the temperature at

300 K, NoséHoover thermostat is used with time constant of 0.2 pico seconds.

All systems are equilibrated for 5ns in the NVT (canonical) ensemble. Following

equilibration, production run for 45ns performed with 1 femto second time step.

The numbers of hydrogen and methane molecules required in nanopores are ob-

tained based on a theoretical approach that is discussed in detail in Chapter

3.
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In this study, for mixtures the focus is on the structure of the fluids in the

confinement. By minimizing the grand potential of the confined fluid, we will

show in Chapter 4 that fluid densities can be related to the potential of the mean

force (PMF) profiles. Therefore, in our simulations in addition to positions,

force components are also dumped with interval of 0.5 pico seconds. Processing

the trajectories, density profiles are computed using bin size of 0.05σ22 along z

direction.
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CHAPTER 3

INTERATOMIC POTENTIAL-BASED

MULTISCALE THEORY

3.1 Empirical Potential-Based Quasi-Continuum
Theory (EQT)

An empirical potential-based quasi-continuum theory (EQT) is a multiscale ap-

proach that provides a framework to seamlessly integrate atomistic details into a

continuum-based model. Over the past few years, EQT has been developed and

studied to predict structure and potential profiles of single component Lennard-

Jones fluids [36, 32], carbon dioxide [37] and water [38, 39] in nano slit-like

channels. In this chapter, we present a modified version of EQT that is general,

more accurate and applicable to mixtures. Moreover, we will show in Chapter 4

that EQT potentials can also be used to construct the excess free energy func-

tional (F ex[ρ(r)]) required in the classical density functional theory (cDFT).

As shown in Fig. 2.1b, for a fluid confined in a slit-like geometry, it is reason-

able to assume that the fluid concentration in the channel has a one-dimensional

variation along the z direction. The objective is to determine the fluid density,

ρ, and the total potential profile, U , as a function of z inside the channel. For

this purpose, in order to relate the density and the total potential, one can use

the 1-D steady-state Nernst-Planck (NP) equation,

d

dz

(
dρ

dz
+

ρ

RT

dU

dz

)
= 0 (3.1)

with boundary conditions

ρ(0) = ρ(H) = 0 (3.2a)

1

H

∫ H

0

ρ(z)dz = ρavg (3.2b)

In Eqs. 3.1 and 3.2, T is the fluid temperature, R is the ideal gas constant, H

is the channel width, ρavg is the average density of the confined fluid and the

total potential, U(z), is the sum of fluid-fluid and wall-fluid contributions, i.e,

U(z) = Uff(z) + Uwf(z). (3.3)

One needs to solve for both U(z) and ρ(z). This requires an additional equation.
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The main idea of EQT is to express U in terms of ρ by using empirical pair

potentials and continuum representation of the wall and fluid atoms. Once the

expressions for the fluid-fluid (Uff) and the wall-fluid (Uwf) potentials are ob-

tained, Eq. 3.1 is solved self-consistently with the boundary conditions specified

in Eq. 3.2 to determine the density and potential profile of the confined fluid.

3.2 EQT for single component fluids

In this section, we introduce the EQT formalism for the single component fluid

in the presence of an external potential. Although the case study we consider

is the fluid inside a slit-like confinement, the EQT formalism presented here is

general and applicable for 3D geometries as well. As mentioned in Section 3.1,

in the EQT, the total potential, U(r), at a given location r can be computed

as a sum of wall-fluid and fluid-fluid interactions. For the rest of this chapter,

we are going to explain how the wall-fluid and the fluid-fluid potentials can be

expressed as a function of the concentrations and inter-atomic force field of the

wall and fluid atoms.

3.2.1 Wall-fluid potential

From atomistic perspective, the wall-fluid potential at a given location r is given

by:

Uwf(r) =

Nw∑
i=1

uwf(|r− ri|), (3.4)

where the summation goes over all the number of wall atoms Nw, which are

interacting through wall-fluid potential, uwf, and ri is the location of the wall

atom i. As shown in Fig. 3.1, in the EQT we represent wall atoms as a continuum

medium with a density of ρw(ri). Thus, Eq. 3.4 can be rewritten as,

Uwf(r) =

Nlw∑
i=1

uwf(|r− ri|)ρw(ri)∆Vi, (3.5)

where the summation goes over the number of radial wall layers denoted by

Nlw, that represents wall atoms within the sphere of radius Rwf
cut. In Eq. 3.5,

∆Vi is the volume of the ith radial layer and ρw(ri) represents the density of

wall atoms in the ith radial layer. Assuming that the wall atoms are kept fixed

at their locations (i.e. rigid wall), the continuum approximation for the discrete

summation in the Eq. 3.5 is given by:

Uwf(r) =

∫
ρw(r′)uwf(|r− r′|)dr′, (3.6)
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where dr′ is an infinitesimal volume element in the wall structure, ρw(r′) is the

wall density at location r′ and uwf(|r−r′|) is the wall-fluid potential between the

two points r and r′. For a more detailed implementation of the EQT wall-fluid

potential inside a slit-like channel, see Ref. [36].

Figure 3.1: The shaded region in the figure is the volume circumscribed by the
sphere of radius Rcut located at the point r (the red circle).

3.2.2 Fluid-fluid potential

In contrast with the wall-fluid potential, the fluid-fluid interactions are not

trivial and require special considerations due to fluid-fluid correlations. In order

to obtain a continuum expression for the fluid-fluid potential, we need to have a

good understanding of the correlations in the fluid medium due to the interaction

between the fluid atoms. Recall that for the wall-fluid potential, because of the

rigid wall assumption , we did not take into account the effect of fluid atoms

on the wall structure. However, for the fluid-fluid potential this is not the case.

Hence, in this section, before introducing the EQT formulation for the fluid-

fluid potential, we will provide necessarily information about particle densities

and distribution functions.

Particle densities

In general, n-particle density, ρ(n)(rn), is the probability density of finding n par-

ticles of the system with coordinates rn ≡ r1, r2, ..., rn. Thus, ρ(n)(rn)drn is the

probability of finding n particles in the volume elements drn ≡ dr1, dr2, ..., drn

irrespective of the positions of the remaining particles and irrespective of all mo-

menta. Thus, ρ(1)(r)dr, with ρ(1)(r) as the 1-particle density, is the probability
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of finding a single particle in a volume element dr at a location r irrespective of

the positions of the remaining particles. Therefore,∫
ρ(1)(r)dr = N, (3.7)

where, N is the total number of particles in the system. For a uniform bulk

fluid, 1-particle density is equal to the overall number density:

ρ(1)(r) =
N

V
= ρb, (3.8)

where, V is the volume of the system and ρb is the bulk density of the uniform

system.

The n-particle density can also be considered as a joint probability density of

finding n particles at r1, r2, ..., rn simultaneously. For example, ρ(2)(r1, r2)dr1dr2

is the joint probability of finding two particles located at r1 and r2 at the same

time.

Distribution functions

The particle distribution functions measure the extent of which the structure of

a fluid deviates from complete randomness. The n-particle distribution function

g(n)(rn) is defined in terms of the corresponding particle densities as

g(n)(rn) =
ρ(n) (r1, r2, ..., rn)∏n

i=1 ρ
(1)(ri)

, (3.9)

where ρ(n) (r1, r2, ..., rn) is the joint probability when the particles interact and∏n
i=1 ρ

(1)(ri) is the joint probability when particles do not interact, i.e., com-

plete randomness.

Therefore, from Eq. 3.9 the 2-particle distribution function, g(2)(r1, r2), i.e.,

pair distribution function, is given by

g(2)(r1, r2) =
ρ(2) (r1, r2)

ρ(1)(r1)ρ(1)(r2)
, (3.10)

i.e.,

ρ(2) (r1, r2) = g(2)(r1, r2)ρ(1)(r1)ρ(1)(r2). (3.11)

Estimating number of neighbors using pair distribution function

In probability theory, a conditional probability measures the probability of an

event given that another event has occurred. In other words, given the two

events A and B the conditional probability is defined as

P (A|B) =
P (A ∩B)

P (B)
. (3.12)
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We can use Eq. 3.12 to determine the number of fluid particles at the location

ri around a particle located at r. To do so, we define events A and B to represent

particles located at the positions ri and r, respectively. Thus Eq. 3.12 can be

written as

ρ(ri|r)dri =
ρ(2)(ri, r)drdri
ρ(1)(r)dr

, (3.13)

where, ρ(ri|r) is the probability density of having a particle at the position ri

given a particle at the position r. Simplifying Eq. 3.13 yields,

N(ri|r) =
ρ(2)(ri, r)

ρ(1)(r)
dri, (3.14)

where, N(ri|r) is the number of particles at the position ri in a volume element

dri relative to a particle located at r. Using Eq. 3.11, Eq. 3.14 can be re-written

in terms of the pair distribution function,

N(ri|r) = ρ(1)(ri)g
(2)(ri, r)dri. (3.15)

Using Eqs. 3.13 and 3.15, we can redefine the pair distribution as,

g(2)(ri, r) =
ρ(ri|r)

ρ(1)(r)
. (3.16)

In other words, one can think of the pair distribution function as a criterion

to which a tagged particle will affect its surrounding.

Fluid-fluid potential formulation

Similar to the wall-fluid potential, in a particle-based framework like MD, the

fluid-fluid potential, Uff(r), of a fluid molecule located at r can be computed as

a sum of interactions with all the neighbor fluid atoms, as

Uff(r) =

Nf∑
i=1

uff (|ri − r|) , (3.17)

where uff is the fluid-fluid pair potential and Nf is the total number of fluid

neighbors within a cut-off radius Rff
cut. As shown in Fig. 3.2, in a continuum

framework of EQT, in order to calculate the fluid-fluid potential of a molecule at

a specific location, we need to take into account its effect on its neighboring fluid

molecules. In other words, due to the existing inter-atomic potential between

the fluid molecules, the density of the fluid around a tagged particle is different

than the bulk. Thus, in a continuum framework of EQT, Eq. 3.17 is represented

as,

Uff(r) =

Nlf∑
i=1

uff (|ri − r|) ρ(ri|r)∆Ωi, (3.18)
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where Nlf is the total number of discrete volumes within a cut-off sphere from

the point r and ∆Ωi is the volume of the ith discrete layer. Using the definition

of the pair distribution function given by Eq. 3.16, Eq. 3.18 can be reformulated

in terms of the pair distribution function and ρ(ri), which is equivalent to the

1-particle density, ρ(1)(ri),

Uff(r) =

Nlf∑
i=1

uff (|ri − r|) g(2)(ri, r)ρ(ri)∆Ωi. (3.19)

Figure 3.2: Plot of discrete fluid volumes that are distributed radially around
the tagged particle (red circle) located at r.

A continuum approximation for the discrete summation in Eq. 3.19 is

Uff(r) =

∫
uff (|r− r′|) g(2) (r, r′) ρ (r′) dr′, (3.20)

where dr′ is an infinitesimal fluid volume element, ρ(r′) is the average fluid

density at location r′, and uff(|r − r′|) is the effective fluid-fluid pair potential

between the two points r and r′. For a more detailed implementation of the

EQT fluid-fluid potential inside a slit-like channel, see Refs. [36, 38].

I. EQT effective fluid-fluid pair potential

The main idea in the EQT is to use the effective interactions from a more

detailed high resolution level. For example, if the system under study consists

of only Lennard-Jones type of atoms/molecules, the effective fluid-fluid (uff) and

wall-fluid (uwf) pair potentials are the standard 12-6 Lennard-Jones potentials.

uwf(r) = 4εwf

[(σwf

r

)12

−
(σwf

r

)6
]
, (3.21a)

uff(r) = 4εff

[(σff

r

)12

−
(σff

r

)6
]
, (3.21b)
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where σwf, εwf, σff, and εff are the usual LJ parameters for the wall-fluid and

fluid-fluid interactions. For the complex systems such as carbon dioxide, water,

etc, aside from the van der Waals interactions, care should be taken regarding

the electrostatic forces. As of now, in the EQT frame work, we treat molecules

as single-site LJ particles. Thus, for any complex systems such as mentioned

above, we need to properly coarse-grain the degrees of freedom and incorporate

their effect into an optimal pair potential to use in the EQT formulation. For

this purpose, we coarse-grain degrees of freedom from the detailed all-atom

level to the particle-based CG level, and to the continuum-based level. This

procedure is shown for water molecules confined inside a slit-like channel (see

Fig. 3.3).

Figure 3.3: Systematic coarse-graining procedure form all-atom level to the
cheaper particle-based CG level and to continuum-based level.

In this system, the wall-fluid and fluid-fluid interactions are coarse-grained

by the relative entropy method [40]. The CG potentials are optimized such

that they reproduce accurate density distribution of water molecules inside the

channel. Further information on the EQT for confined water can be found in

reference [38].

II. Approximations for pair distribution function

There exist several approximations for the pair distribution function. Among

them, mean field theory (MFT) has been widely used, especially in the cDFT

literature to treat long-range attractions in the excess part of the intrinsic

Helmholtz free energy [41, 42, 43, 44]. MFT assumes that there is no cor-

relation between the fluid molecules (i.e., g(2) (r, r′) = 1). Although MFT is

computationally convenient and easy to grasp, it can be quantitatively prob-

lematic and even sometimes qualitatively incorrect [45]. In addition, since the

pair potential is highly repulsive as r −→ 0, the mean field approximation will

cause numerical singularities. To avoid this problem and to introduce a better

approximation for the pair correlation, we follow an approach similar to Tang

and Wu’s work [45]. We approximate the pair distribution function by

g(2)(r, r′) ≈ ghs(|r− r′|), (3.22)
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where ghs is the radial distribution function (RDF) of homogeneous hard spheres

at bulk density, ρb. Hard sphere particles are defined as impenetrable spheres

that cannot overlap. They usually serve as a model to study the extremely

strong repulsion between the atoms/molecules at very close distances. For in-

stance, modeling a dense Lennard-Jones fluid system with a group of hard sphere

particles is not a bad approximation. As represented by Fig. 3.4, hard spheres

interact via an infinite potential at their contact and zero elsewhere, i.e,

uhs =

∞ for r < d

0 for r > d
(3.23)

where d is the hard sphere diameter.

Figure 3.4: Plot of the hard sphere potential of diameter d.

Although there is no attraction between the hard spheres, they still arrange

in layers from a tagged particle. Basically, geometry, density and the strong

repulsion make the system of bulk hard spheres to acquire a radial distribution

function (ghs(r)). An example of hard sphere RDF is given in Fig. 3.5.

Figure 3.5: Bulk hard sphere radial distribution function of η ≈ 0.5.

To fully determine the hard sphere RDF, we need to know the packing fraction

η = πρbd
3/6. In order to mimic a real LJ fluid in which the particles interact

with a soft-core, the hard sphere diameter is calculated based on the relation
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proposed by Barker and Henderson [46],

d(T ) =

∫ σ

0

(
1− exp

[
−u

ff(r)

kBT

])
dr (3.24)

where σ is the length-scale parameter for LJ interaction and kB is the Boltz-

mann constant. In fact, Eq. 3.24 is obtained based on minimization of the free

energy difference between a real LJ bulk fluid system and the corresponding

hard sphere system with the diameter d. Once the diameter is determined, the

RDF is obtained using existing analytical expressions based on Percus-Yevick

approximation [47, 48, 49]. A complete review on different closures and approx-

imations can be found elsewhere [50].

III. Correlation-correction potential

Since, the hard sphere RDF approximation may not accurately reproduce

the properties of a real fluid, we introduce an isotropic correlation-correction

potential denoted as , uff
ccp(r), and reformulate Eq. 3.20 as

Uff(r) =

∫
ρ(r′)

(
uff(|r− r′|)ghs(|r− r′|) + uff

ccp(|r− r′|)
)
dr′. (3.25)

To model the correlation-correction function we use uniform cubic B-splines

as

uff
ccp(r) =

[
1 t t2 t3

] 1

6


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1



cj

cj+1

cj+2

cj+3

 , (3.26)

where r is the separation distance between any two fluid molecules with the

cut-off radius denoted by Rcut. The separation distance is discretized into n−1

intervals of equal size ∆r = Rcut/(n − 1) such that ri = i × ∆r, where i ∈
(0...n−1). In Eq. 3.26, the n+2 values {cj} are called spline knots where index

j is determined such that rj ≤ r < rj+1, and t is given by

t =
r − rj

∆r
. (3.27)

In Fig. 3.6, a schematic picture of the correlation-correction potential is shown.

3.2.3 Optimization

In this section, we introduce a metric called PMF-matching proposed by [39] in

order to optimize the spline knot values used to model the correlation-correction

function. For a slit-like channel, where the fluid inhomogeneity is in one direc-

tion (z), as a solution to Eq. 3.1, the equilibrium density distribution must
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Figure 3.6: A schematic plot of the fluid-fluid correlation correction potential.

satisfy the Boltzmann relation given by

ρ(z) = ρ0 exp

(
− Ũ(z)

kBT

)
, (3.28)

where ρ0 is the density at the reference point z0 and Ũ(z) is the total potential

of mean force (PMF) relative to the reference point z0.

Ũ(z) = Uff(z) + Uwf(z)− U(z0). (3.29)

In the PMF matching technique, the mean-square error in density is min-

imized such that it reproduces the target potential of mean force within the

specified tolerance. In the PMF matching, for a slit-like system, the metric is

defined as

εB =
1

2H

∫ H

0

(
ρtgt0 exp

(
− Ũ(z)

kBT

)
− ρtgt(z)

)2

dz, (3.30)

where ρtgt is the target density obtained from the reference all-atom MD sim-

ulations. To obtain the optimal knot values in correction-correlation function,

Eq. 3.30 is minimized using the Newton-Raphson optimization technique. For

further information on the details of optimization for a slit-like channel, see Ref.

[39].

3.3 EQT formalism for mixtures

In order to extend EQT frame work for multi-component fluid system inside the

slit-channel, we need to solve Nernst-Planck equation for each species present

in the mixture, i.e,
d

dz

(
dρα
dz

+
ρα
RT

dUα
dz

)
= 0 (3.31)
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with boundary conditions

ρα(0) = ρα(H) = 0 (3.32a)

1

H

∫ H

0

ρ(z)αdz = ρα,avg (3.32b)

where α = 1, 2, · · · ,m is the label of a fluid component and m is the number

of fluid components in the mixture. As mentioned in Section 3.1, we need to

formulate total potential in terms of the fluid density, in order to be able to

self-consistently solve the equations mentioned above.

In general, the total potential of a fluid component α, Uα(r), at a given

location r can be computed as a sum of wall-fluid and fluid-fluid interactions:

Uα(r) = Uwf
α (r) + Uff

α(r) (3.33)

where Uwf
α and Uff

α are the wall-fluid and fluid-fluid potential of component α,

respectively.

Similar to what we did for single component case in Section 3.2, the wall struc-

ture is locally represented by a single density distribution, ρw(r). Therefore, for

the mixtures, Eq. 3.6 holds for each fluid component.

Uwf(r) =

∫
ρw(r′)uwf

α (|r− r′|)dr′, (3.34)

where uwf
α is the wall-fluid pair potential for component α.

Similarly, Eq. 3.20 can be generalized to account for multi-component fluid

system in EQT. Thus, for a mixture of fluids, the fluid-fluid potential energy

can be expressed as

Uff
α(r) =

m∑
β=1

∫
ρβ (r′) g

(2)
αβ (r, r′)uff

αβ (|r− r′|) dr′, (3.35)

where uff
αβ is the fluid-fluid pair potential between components α and β. Using

the bulk hard sphere approximation for the pair distribution function, the EQT

fluid-fluid potentials for mixtures is given by

Uff
α(r) =

m∑
β=1

∫
ρβ (r′)

(
ghs
αβ (r, r′)uff

αβ (|r− r′|) + uff
ccp,αβ (|r− r′|)

)
dr′ (3.36)

As an example, in the binary mixture of hydrogen and methane molecules,

the fluid-fluid potential for hydrogen molecule, denoted by α = 1, is written as

Uff
1 (r) =

∫
ρ1 (r′)

(
ghs

11 (r, r′)uff
11 (|r− r′|) + uff

ccp,11 (|r− r′|)
)
dr′ +∫

ρ2 (r′)
(
ghs

12 (r, r′)uff
12 (|r− r′|) + uff

ccp,12 (|r− r′|)
)
dr′ (3.37)
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where interactions 11 and 12 refer to hydrogen-hydrogen and hydrogen-methane

interactions, respectively. Since in the hydrogen potential, the hydrogen-methane

interaction is weighted by the methane density, we introduce two different

correlation-correction potentials to optimize for.

26



CHAPTER 4

AN EQT-BASED CDFT APPROACH FOR

CONFINED FLUIDS

In this chapter, we integrate EQT frame work with classical density functional

theory (cDFT), i.e., EQT-cDFT approach, in order to determine thermody-

namic properties of confined fluids. The combination of EQT and cDFT pro-

vides a simple and fast approach that not only predicts the equilibrium struc-

ture, but also other thermodynamic properties, such as the local pressure profile,

adsorption, solvation force, surface tension, etc. [51]

The remainder of this chapter is organized as follows. First we will provide

some information on different free energies and the ensembles associated with

them. We will focus more on the grand potential and obtain the thermodynamic

properties based on it. In Section 4.3, we briefly introduce the classical density

functional theory. Finally, in Section 4.4 we introduce the EQT-cDFT approach

and explain how EQT potentials can be utilized to construct the excess free

energy functional required in the cDFT.

4.1 Free energies and different ensembles

According to the first law of thermodynamics, an infinitesimal change in system

internal energy , E, can be related to other thermodynamic properties as

dE = TdS +
∑
i

xiXi, (4.1)

where S is the entropy, T is the temperature, and Xi are work coordinates. In

Eq. 4.1, the variables appear as conjugate pairs (x,X) consisting of intensive

and extensive quantities. For example, for a usual fluid system that is allowed

to change volume and to exchange particles with its surrounding, Eq. 4.1 reads,

dE = TdS − PdV + µdN, (4.2)

where P is the pressure, V is the system volume, µ is the chemical potential

and N is the number of particles in the system. In Eq. 4.2, P and µ are the

conjugate variables to −V and N , respectively.

Now consider the same system containing an interface (e.g. a plate), one can

change the internal energy by changing the area of the interface. In this case
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Eq. 4.1 is written as

dE = TdS − PdV + µdN + γdA, (4.3)

where γ is the interfacial tension which is a conjugate variable to the surface

area, A.

As mentioned in Section 2.1.1, for each ensemble, there exist a relevant ther-

modynamic potential which is minimum when the system is in equilibrium.

Thus, knowing the relevant free energy for a system is crucial to obtain the

equilibrium thermodynamic properties. Here, we briefly discuss the free ener-

gies and elaborate more on the grand potential, namely, Landau free energy.

1. Helmholtz Free Energy

The Helmholtz free energy is defined as,

F = E − TS. (4.4)

Using Eq. 4.2, an infinitesimal change in F is given by

dF = −PdV − SdT + µdN. (4.5)

Thus, in equilibrium, if the set of control variables are N , V and T , the change

in the Helmholtz free energy is zero and consequently F is minimum. Hence,

for a system that does not exchange particles and has a constant volume, but

is allowed to exchange heat with the environment, the relevant thermodynamic

quantity is the Helmholtz free energy.

2. Gibb’s Free Energy

The Gibb’s free energy is defined as,

G = E − TS + PV. (4.6)

Using Eq. 4.2, an infinitesimal change in G is given by

dG = V dP − SdT + µdN. (4.7)

Eq. 4.7 indicates that, if the set of control variables are N , P and T , the

change in the Gibb’s free energy is zero and consequently G is minimum un-

der these conditions. Hence, for a system of constant number of particles (i.e.

no particle exchange), constant pressure and constant temperature (i.e. allow-

ing heat exchange to the environment) the relevant thermodynamic quantity is

the Gibb’s free energy. The NPT ensemble in molecular dynamic simulation

packages is a tool to mimic these conditions in a computer simulation.
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3. Grand potential

Finally the relevant thermodynamic potential for an open system that is in

equilibrium with a bulk phase (i.e., the system can exchange heat and particle

with the bulk phase) is the grand potential.

Ω = −PdV − SdT −Ndµ. (4.8)

Using Eq. 4.2, an infinitesimal change in the Ω is given by

dΩ = V dP − SdT + µdN. (4.9)

Eq. 4.9 suggests that, the relevant condition or ensemble for which the grand

potential is minimum in equilibrium is the constant µ , V, and T ensemble. Un-

der these thermodynamic conditions, the system is allowed to exchange particle

and heat with the environment, while its volume is maintained. For example,

if a fluid confined between two plates is in equilibrium and in contact with the

a bulk reservoir, it is necessary that the chemical potential of the reservoir and

the confined fluid be the same.

Thus far, we assumed a system with no interface (Eq. 4.8). When a fluid

is narrowly confined between to parallel plates of area A, additional control

variables comes into play. These new variables are the surface area of the plates,

A and the spacing between them , H. Therefore, the generalisation of Eq. 4.9

for a confined fluid inside a slit-like channel is

dΩ = −SdT − PdV −Ndµ+ 2γdA− (fSA)dH, (4.10)

where fS is commonly referred to as the solvation force. In fact, fS has a

dimension of pressure, but it is interpreted a force required to hold the plates

in place.

4.2 Thermodynamic properties

As mentioned in Section 2.2, we consider a fluid confined in a slit-like channel,

which consists of two infinitely long plane parallel walls placed in the x-y plane

at z = 0 and z = H. Therefore, the system is periodic in the x and y directions,

and we focus only on the z-variation of the properties. From Eq. 4.10, one

can determine various thermodynamic properties of a confined fluid. In this

work, we compute the properties such as total adsorption, local pressure tensor,

interfacial tension, and solvation force as described below.

The total adsorption is the difference between the average number of fluid

molecules in the confined region with and without the channel walls. The total

adsorption per unit surface area, Γ, can be computed as an integral over the
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confined region:

Γ(H) =
1

2

∫ H

0

(ρ(z)− ρb) dz, (4.11)

where ρb is the bulk density of the fluid at a given T and µ, and the factor of
1
2 is multiplied to account for the two channel walls.

The interfacial tension, γ, according to the thermodynamic definition, is

the isothermal work required to increase the interface by unit area, i.e., γ =
1
2

(
∂Ω
∂A

)
T,µ,H

for a slit-channel system. Alternatively, γ can also be determined,

according to the mechanical definition, in terms of the stress transmitted across

a strip of unit width normal to the interface. In this work, we use a mechanical

definition of the surface tension given by [52]

γ(H) =
1

2

∫ H

0

(Pn(z)− Pl(z)) dz, (4.12)

where Pn(z) and Pl(z) are the normal and lateral components of the local pres-

sure tensor. In a bulk fluid, pressure is homogeneous and isotropic, however, in

a confined fluid, pressure varies with the position and is anisotropic due to the

wall-fluid force field and local variations in the fluid density [53, 54, 55]. For

a slit-channel system, Pl(z) can be computed as a negative of the local grand

potential density, Ω(z) [56, 57].

Also, for a slit-channel system in the steady-state, Pn(z) must be uniform

across the channel width to satisfy a mechanical equilibrium condition. There-

fore, for a given channel of width H, an average normal pressure value, Pn(H),

can be computed using the thermodynamic definition as

Pn(H) = − 1

A

∂Ω

∂H
(4.13)

To compute ∂Ω(H)/∂H in Eq. 4.13, we use the central difference scheme as

Pn(H) = − 1

A

Ω(H + ε)− Ω(H − ε)
2ε

(4.14)

where ε is the infinitesimal change in the channel width.

The solvation force, fS, is the difference between the pressure exerted by a

confined fluid on the channel walls and the bulk fluid pressure, Pb [58, 59].

For a slit-like system in mechanical equilibrium, the pressure exerted by a con-

fined fluid on the channel walls is equal to the average normal pressure, Pn(L).

Therefore, the solvation force can be computed as

fS(L) = Pn(L)− Pb (4.15)

30



4.3 Classical density functional theory

cDFT is a continuum-based technique that describes the properties of inhomo-

geneous fluids from a microscopic level [58, 25, 60]. It is based on the theorem

that, for a fluid in an external field, the Helmholtz free energy, F , is a unique

functional of the average molecular density profile, ρ(r), independent of the ex-

ternal potential, Vext(r) [58, 25, 60]. Therefore, in cDFT, the grand potential is

defined as a functional of ρ(r):

Ω [ρ(r)] = F [ρ(r)] +

∫
(Vext(r)− µ) ρ(r)dr. (4.16)

To determine Ω from Eq. 4.16, we require an expression for F [ρ(r)]. The

Helmholtz energy has two parts: (i) the ideal part, F id [ρ(r)], and (ii) the excess

part, F ex [ρ(r)], i.e.,

F [ρ(r)] = F id [ρ(r)] + F ex [ρ(r)] . (4.17)

The ideal part of the Helmholtz energy accounts for the ideal gas free energy,

F id [ρ(r)] = kBT

∫
ρ(r)

(
ln
(
ρ(r)Λ3

)
− 1
)
dr, (4.18)

where kB is the Boltzmann constant, Λ =
(

2π~2

mkBT

) 1
2

is the thermal wavelength,

~ is the reduced Planck’s constant, and m is the mass of an atom. The excess

part of the intrinsic Helmholtz energy accounts for the non-bonded interactions

between molecules. Modeling the excess free energy is the most challenging

part of the cDFT. The exact expression for F ex [ρ(r)] is in general unknown

[60]. There exists approximate functionals for F ex [ρ(r)], such as fundamental-

measure theory (FMT) functionals [61, 62, 63, 64, 65, 66] and functionals based

on the statistical associating fluid theory (SAFT) [67, 68, 69].

According to the variational principle

δΩ [ρ(r)]

δρ

∣∣∣∣
eq

= 0, (4.19)

and therefore the equilibrium density distribution satisfies

ρ(r) = ρb exp

(
− 1

kBT

[
Vext(r) +

δF ex [ρ(r)]

δρ(r)
− µex

])
, (4.20)

where the bulk chemical potential µ has been decomposed into ideal (µid) and

excess (µex) part. In Eq. 4.20, we use the fact that the system is in equilibrium

with the bulk reservoir; thus, ideal part of chemical potential can be related

to the bulk density (ρb). To show this, we use the relation between the ideal
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chemical potential and ideal free energy given by

µid
b =

∂F id
b

Nb

∣∣∣∣
T

(4.21)

where Nb is the number of particles in the bulk phase. Using the same expression

given for the ideal free energy in Eq. 4.18 for the bulk, Eq. 4.22 can be related

to the bulk density as follows,

µid
b = kBT log

(
ρbΛ

3
)
. (4.22)

In the following section, we use EQT to formulate F ex [ρ(r)] so that we get a

closed from of Eq. 4.20.

4.4 EQT-cDFT for confined single component LJ
fluids

In the EQT-cDFT approach, the fluid-fluid EQT potential model (Eq. 3.25) is

used to construct the excess part of the intrinsic Helmholtz energy functional

as

FEQT,ex [ρ(r)] =
1

2

∫
ρ(r′)Uff(r′)dr′. (4.23)

Following the same formula in Eq. 3.25, in the bulk phase the EQT fluid-fluid

potential can be written as follows:

Uff
b = 4πρb

∫
r2
(
uff(|r− r′|)ghs(|r− r′|) + uff

ccp(|r− r′|)
)
dr. (4.24)

Similar to Eq. 4.23, we can construct the bulk excess free energy by using

Eq. 4.24,

FEQT,ex
b [ρ(r)] =

1

2

∫
ρbU

ff
b dr =

V

2
ρbU

ff
b (4.25)

where V is the volume of the fluid in the bulk phase. Similar to what we did for

the ideal part of the chemical potential, the excess part in Eq. 4.20 is equal to

the bulk excess chemical potential and can be related to the excess free energy

as

µex
b =

∂F ex
b

Nb

∣∣∣∣
T

(4.26)

Using Eqs. 4.25 and 4.26, it is easy to show that µex
b = Uff

b and by substituting

Vext(r) = Uwf(r), Eq. 4.20 can be re-written in terms of the EQT formulation:

ρ(r) = ρb exp

(
− 1

kBT

(
Uff(r) + Uwf(r)− Uff

b

))
. (4.27)

Therefore, in the EQT-cDFT approach, one can obtain the equilibrium den-

sity and potential profiles of a confined fluid using a numerical procedure such
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as Picárd iteration to self-consistently solve Eqs. 3.6, 3.25, and 4.27. Unlike

the Nernst-Planck approach (Eq. 3.1), EQT-cDFT approach eliminates the re-

quirement for a-priori knowledge of the average density, ρavg, for each channel.

Instead, ρavg can be obtained as an output of this method for various channel

widths.

Finally, to obtain the thermodynamic properties from EQT-cDFT approach,

we need an expression for the grand potential. From Eqs. 4.17, 4.18, 4.23, 3.6,

and 4.16, we get the EQT-cDFT-based grand potential functional, ΩEQT [ρ(r)],

as

ΩEQT [ρ(r)] = kBT

∫
ρ(r)

(
ln
(
ρ(r)Λ3

)
− 1
)
dr

+
1

2

∫
ρ(r)Uff(r)dr

+

∫ (
Uwf(r)− µ

)
ρ(r)dr,

(4.28)

where µ is given by

µ = kBT log
(
ρbΛ3

)
+ Uff

b . (4.29)

Using Eq. 4.28 and the relations mentioned in Section 4.2, one can obtain

various thermodynamic properties for a confined fluid in a slit-channel. For

instance, the lateral pressure variation along the z-direction can be obtained

from the following relation:

Pl(z) = −kBTρ(z)
(
ln
(
ρ(z)Λ3

)
− 1
)

−1

2
ρ(z)Uff(z)

−
(
Uwf(z)− µ

)
ρ(z).

(4.30)

Using Eqs. 4.29 and 4.27 in Eq. 4.30, Eq. 4.30 simplifies to

Pl(z) = ρ(z)kBT +
1

2
ρ(z)Uff(z). (4.31)

In Eq. 4.31 the first term refers to the kinetic part of the pressure and the second

term refers to the contributions from vdw part of the fluid-fluid interactions.
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4.5 EQT-cDFT for confined multi-component LJ
mixtures

In this section, we extend EQT-cDFT formalism to a multi-component system.

For such a system in presence of an external potential, Vext,α, Ω is written as

Ω [{ρα(r)}] = F id [{ρα(r)}] + F ex [{ρα(r)}] +

m∑
α=1

∫
[Vext,α(r)− µα] ρα(r)dr,

(4.32)

where for the mixtures, the ideal part of the intrinsic Helmholtz free energy is

given by

F id [{ρα(r)}] = kBT

m∑
α=1

∫
ρα(r)

(
ln
(
ρα(r)Λ3

α

)
− 1
)
dr. (4.33)

As mentioned in Section 4.3, in general, the exact expression for the excess

free energy is unknown, and there exist approximations to model this part of

the free energy. Following the same procedure as for EQT-cDFT of the single

component case, the equilibrium density distribution for each fluid component

satisfies

ρα(r) = ρα,b exp

(
− 1

kBT

[
Vα,ext(r) +

δF ex [{ρα(r)}]
δρα(r)

− µex
α

])
, (4.34)

In the EQT-cDFT, as in Eq. 4.23 we model the excess free energy in Eq. 4.34

as

FEQT,ex [{ρα(r)}] =
1

2

m∑
α=1

∫
ρα(r′)Uff

α(r′)dr′. (4.35)

Using Eq. 4.35, Eq. 4.26, and substituting Vext,α = Uwf
α , we can rewrite Eq. 4.34

in terms of EQT formulation:

ρα(r) = ρα,b exp

(
− 1

kBT

(
Uff
α(r) + Uwf

α (r)− Uff
α,b

))
. (4.36)

where Uff
α,b is the bulk potential energy per particle for each component, and it

is given by

Uff
α,b = 4π

m∑
β=1

ρβ,b

∫
r2
(
uff
αβ(|r− r′|)ghs

αβ(|r− r′|) + uff
ccp,αβ(|r− r′|)

)
dr.

(4.37)
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CHAPTER 5

RESULTS

In this chapter, we investigate the accuracy of the EQT-cDFT approach against

the reference all-atom MD simulations for various channel widths. For this

purpose, first we provide results for single component LJ fluid systems namely,

methane-graphene and argon-graphene slit-channel systems. Next, we show

structural properties from MD and EQT-cDFT approach of the binary mixtures

of methane and hydrogen molecules confined in graphitic slit channels. As

mentioned in Section 2.3, to demonstrate the applicability of the EQT-cDFT

approach for confined fluid mixtures we consider two different bulk mixture

compositions. One contains high concentration of hydrogen molecules (xh =

0.3) and the other reservoir is rich in methane (xm = 0.7). For both single-

and multi-component cases, all the channels are in equilibrium with their bulk

reservoirs. To find out more about the MD simulation setups and different

ensembles, please see chapter 2.

5.1 Single component LJ fluid

In the EQT-cDFT simulations of methane-graphene and argon-graphene slit-

channel systems, we model uwf(r) and uff(r) as the standard 12-6 LJ potentials.

For the methane-graphene, argon-graphene, methane-methane, and argon-argon

LJ interactions, we use the same LJ parameters as in the MD simulations that

are given in Table 2.2. The average densities of fluid molecules used both in MD

and EQT-cDFT approach, i.e., ρavg = no. of molecules/volume of the channel,

in various size channels are given in Table 5.1.

Table 5.1: Average fluid densities (nm−3) in MD simulations of various size
channels.

System 20σ 15σ 10σ 9σ 6σ 3σ 2σ
Methane-graphene 17.18 16.92 16.37 16.20 15.24 11.94 9.09
Argon-graphene 22.76 22.30 21.50 21.24 19.84 15.79 12.05

The cut-offs for the wall-fluid, Rwf
cut, and fluid-fluid, Rff

cut, pair interactions are

set to 1.4nm. For the cubic B-splines-based uff
ccp(r) (Eq. 3.26), we use ∆r = 0.04

nm and n = 36 and optimize the spline knot values, {c0, c1, c2, ..., cn+1}, using
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a systematic approach based on the potential of mean force (PMF) matching

(Eq. 3.30). Modeling correlation-correction potential using B-splines (Eq. 3.26)

gives flexibility to the correction function and provide a numerically robust way

of obtaining accurate density profiles. Here, to optimize the spline knot val-

ues of uff
ccp(r) for methane and argon, we use the corresponding 20σ channel

atomistic trajectories from the MD simulation as a reference. Fig. 5.1 shows

the optimized uff
ccp(r) for the methane-methane and argon-argon interactions.

Although, correlation-correction potentials are optimized for a reference chan-

nel of width 20σ, we find that they are transferrable across different pores at

the same thermodynamic state. This can be due to fact that PMF-matching

approach optimizes structurally consistent potential parameters at the specific

thermodynamic state.

Figure 5.1: Fluid-fluid correlation correction potentials: methane-methane
(blue) and argon-argon (red).

To obtain equilibrium density profiles of methane and argon inside graphene-

slit channels of various widths, we self-consistently solve Eqs. 3.6, 3.25, and

4.27. Fig. 5.2 shows that, for both methane-graphene and argon-graphene sys-

tems, the equilibrium density profiles from the EQT-cDFT agree well with the

MD simulations for various channel widths. We observe that the methane and

argon density profiles are similar and oscillatory, because the confined LJ fluid

molecules arrange in the layers near the walls due to the competition between

the wall-fluid and fluid-fluid interactions. When H = 3σ, fluid molecules ar-

range in two layers located around 0.95σ distance from each wall. A layer of

particles is added mid-way between the walls with each σ increase in the channel

width, and the density of the added layer decreases with increase in the distance

from the walls. The maximum number of layers occur when H = 18σ. Further

increase in H only adds flat bulk-like region in the middle of a channel.

Fig. 5.3 shows the variation of ρavg and Γ with H. We observe that, for

the channels 2σ to 20σ, Γ < 0 and ρavg < ρb. Due to the strong repulsion

from the wall atoms, fluid molecules cannot access the volume very close to the

walls. Moreover, the layering of particles not only forms the regions of high

(> ρb) densities, but also the regions of low (< ρb) densities inside a channel.
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Figure 5.2: Comparison of density profiles of argon (a,c,e) and methane (b,d,f)
from EQT-cDFT (lines) and MD (circles) simulations at different channel
widths: 20σ (red), 9σ (blue), and 3σ (green).
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The net effect of the excluded volume and layering is that the total number of

fluid molecules inside the channel of a volume V is smaller than the number of

molecules in the bulk of the same volume. We also observe that, for the smaller

channels with no bulk-like region, Γ oscillates with H. The oscillations in Γ

follow the formations of adsorbed layers with increasing H. The minimum in Γ

occur when adsorbed particles form an additional layer to arrange in a closely

packed structure and reduce the average density.

Figure 5.3: EQT-cDFT predictions for total adsorption (a) and average density
(b) of methane (blue solid lines) and argon (red solid lines) molecules inside
graphene slit channels of various widths. In subfigure (b) dotted lines correspond
to the bulk densities of methane (blue) and argon (red).

Next, we compute the local pressure tensor, surface tension, and solvation

force. To compute the local pressure tensors from MD, we use the method of

Schofield and Henderson [70] in combination with the Gaussian smoothing kernel

similar to ref. [54]. The local pressure determination method is not available in

the default GROMACS 4.6.1 version. Therefore, for this work, we modified the

GROMACS source code and implemented the method for determining the local

pressure tensor in a slit-like geometry. Our implementation of the local pressure

tensor method in GROMACS is publicly available on GitHub [71]. Recently,

Vanegas et al. [72] have also implemented a local pressure calculation method

in a custom version of GROMACS, which is based on the Hardy–Murdoch pro-

cedure. The surface tension and solvation force values from MD are determined

by substituting the MD local pressure values in Eqs. 4.12 and 4.15, respectively.

To estimate the errors in the properties from MD, we perform 5 different MD

simulations with different initial conditions and obtain 5 sets of mean values of

the properties. The estimate of error in the properties from MD are found to
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be less than 1.0%.

Fig. 5.4 shows the lateral pressure profiles in the methane-graphene and argon-

graphene systems. It can be observed that the lateral pressure predictions from

the EQT-cDFT compare well with the MD for various channel widths. We

observe that, in a channel, Pl(z) oscillates similar to ρ(z). The lateral pressure

values are much higher near the walls than the bulk pressure. The maximum

value of Pl(z) occurs near the first density peak, i.e., 0.95σ from the walls,

and it is ≈ 5 times greater than the bulk pressure. Such high pressures in a

confined fluid near the channel walls provide explanations for the confined fluid

nanophases[73, 14], such as high pressure solid phases [74, 75] and chemical

reactions [12]. Away from the walls, the oscillations in Pl(z) decay towards the

bulk value.

Figure 5.4: Comparison of lateral pressure profiles of methane (a) and argon
(b) from EQT-cDFT (lines) and MD (circles) simulations for various channel
widths: 20σ (red), 9σ (blue), and 3σ (green).

Fig. 5.5 shows the variation of the normal pressure, surface tension, and sol-

vation force as a function of H for both methane-graphene and argon-graphene

systems. We observe that the predictions for Pn(H), γ(H), and fS(H) from

the EQT-cDFT simulations compare well with the MD simulations. Fig. 5.5

shows that the normal pressure oscillates with H for channels less than 9σ and

it approaches the bulk pressure value for H > 9σ. The oscillations in the normal

pressure are well-known and they arise because of the oscillations in the average

density values (see Fig. 5.3) [59, 74, 73, 53, 14]. Similar to the normal pressure,

the surface tension and solvation force oscillate for the smaller channels and the

amplitudes of oscillations decay rapidly with increasing H.
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Figure 5.5: Variation of normal pressure (a), surface tension (b), and solvation
force (c) of methane (blue) and argon (red) with channel width. Lines are
EQT-cDFT results and circles are MD results.

5.2 Multi-component LJ fluid mixture

In the EQT-cDFT simulations for confined binary mixture of hydrogen and

methane molecule, we model uwf(r) and uff(r) as the standard 12-6 LJ po-

tentials. For the methane-graphene, hydrogen-graphene, methane-methane,

hydrogen-methane and hydrogen-hydrogen LJ interactions, we use the same

LJ parameters as in the MD simulations that are given in Table 2.3.

As mentioned in Section 4.4, the average concentration in the channels can

be predicted by the EQT-cDFT approach. To examine this, in MD simulations

linear superposition approximation (LSA) method [76] is adopted to estimate

the number of molecules inside the channels of width larger than 1.524 nm

(= 4σ22). It has been shown that LSA results in constant chemical potential

except at very small separations (about two molecular diameters)[77]. Hence, for

pores smaller than 4σ22, the EQT-cDFT results are verified by NVT simulation

of slit channels in contact with bulk mixture [29]. The distance between walls,

densities and correlation-correction potentials are made dimensionless based on

hydrogen LJ parameters (σ11, ε11) and represented by z∗ = z/σ11, ρ∗α = ρασ
3
11,

and (uff
ccp,αβ)∗ = uff

ccp,αβ/ε11, respectively.

We optimize methane-methane, methane-hydrogen, hydrogen-hydrogen, and

hydrogen-methane correlation-correction potentials for each bulk mixture com-

position considered in this work. For each bulk mixture composition, PMF-

matching-based optimization is performed using the methane and hydrogen

density profiles in 6.34 nm channel, which are obtained from the reference MD

simulations. We choose 6.34 nm channel for optimization because it is large

enough that the layered structure and bulk region are well formed for both
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hydrogen and methane. Fig. 5.6 shows the optimized (uff
ccp)∗ for different fluid-

fluid interactions. Similar to the single component case, we observed that the

correlation-correction potentials that are optimized for a reference channel of

6.34 nm width, are transferrable across different pores at the same thermody-

namic state.

(a) (b)

Figure 5.6: Correlation-correction potentials for xm = 0.3 (a) and xm = 0.7 (b)
bulk compositions. Solid lines represent alike interactions: CH4 - CH4 (black),
H2 - H2 (red); Dashed lines stand for cross interactions: CH4 - H2 (black), H2

- CH4 (red).

Figs. 5.7 and 5.8, depict that the density profiles from the quasi-continuum

framework agree well with the MD simulations. In all cases, except for the

hydrogen density profile in the smallest channel of methane bulk composition

of 0.3 (see Fig. 5.7a), the EQT-cDFT predictions are as accurate as MD. Both

methane and hydrogen molecules arrange in layers and exhibit an oscillatory

structural behavior due to the interplay of wall-fluid and fluid-fluid interac-

tions. Well-formed layered structure and a plateau bulk region are observed for

both hydrogen and methane in 6.34 nm channel, which is the largest channel

considered in this study (see Figs. 5.7f and 5.8f). Layering is enhanced as the

bulk composition increases from 0.3 to 0.7 (Compare Figs. 5.7b-5.7f and 5.8b-

5.8f). This fact is more evident by comparing number of layers for methane

and hydrogen in a slit width of 3.21nm (see Figs. 5.7d and 5.8d). The number

of layers for methane and hydrogen of bulk composition 0.3 are 6 whereas for

bulk mixture of 0.7, methane and hydrogen molecules are arranged in 8 layers.

Thus, increasing methane mole fraction enhances the structural order for both

methane and hydrogen. Finally, by comparing the magnitude of the first peak

for methane and hydrogen densities, it is evident that methane molecules are

more concentrated in the vicinity of the wall.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison of the density profiles of methane and hydrogen from
EQT-cDFT and MD simulations at T = 300 K for various channel widths in
equilibrium with hydrogen-rich bulk mixture (xm= 0.3): a) 0.762 nm, b) 2.25
nm, c) 1.143 nm, d) 3.21 nm, e) 1.524 nm, f) 6.34 nm. In all subfigures, circles
are MD and lines are EQT-cDFT simulation results in which red and black
colors denote hydrogen and methane densities, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Comparison of the density profiles of methane and hydrogen from
EQT-cDFT and MD simulations at T = 300 K for various channel widths in
equilibrium with methane-rich bulk mixture (xm= 0.7): a) 0.762 nm, b) 2.25
nm, c) 1.143 nm, d) 3.21 nm, e) 1.524 nm, f) 6.34 nm. In all subfigures, circles
are MD and lines are EQT-cDFT simulation results in which red and black
colors denote hydrogen and methane densities, respectively.
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The essential new feature for mixtures is the change in composition due to

confinement. Depending on the width, structure and material, nanopore may

become selective towards a certain fluid component in the mixture. This selec-

tivity, S, is often expressed as [13, 44, 78]

S =
xpore

CH4
/xbulk

CH4

xpore
H2

/xbulk
H2

(5.1)

where xpore and xbulk represent the fluid mole fraction in the pore and the

bulk phase, respectively. Fig. 5.9 shows the selectivity for hydrogen-rich bulk

mixture as a function of pore width. S values less than unity represent that the

channel is selective toward hydrogen while the values greater than unity imply

favorability for methane. It can be seen in Fig. 5.9 that methane shows a higher

adsorption affinity than hydrogen, especially in the smaller pores. This is due

to the larger interaction energy between methane and graphene than hydrogen.

The same line of reasoning has also been used in other literature [79, 80] in

which they have shown that the molar fraction of the component having the

strongest interaction with the channel is increased compared to the bulk.

Figure 5.9: Selectivity of methane over hydrogen as a function of channel width.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

EQT is a practical, fast and easy approach to bridge the gap between atomistic

and continuum methods by constructing potentials from atomistic interactions.

These potentials can be used in a continuum framework such as the Nernst-

Planck equation or to construct a grand potential functional within the clas-

sical density functional theory framework (EQT-cDFT). In the present study,

we demonstrated the EQT-cDFT approach for the single component LJ flu-

ids, methane and argon, and multi-component LJ fluids, binary mixture of

methane and hydrogen molecules, confined in slit-like graphene channels of var-

ious widths. The EQT-cDFT predictions for the structure and thermodynamic

properties, like the density, adsorption, local pressure tensor, surface tension,

and solvation force, compare well with the MD simulations. For confined LJ fluid

mixtures, we considered two extreme cases, where channels are in equilibrium

with methane-rich and hydrogen-rich bulk mixtures. In both cases, theoretical

results compare well with the MD simulations. We also used EQT-cDFT re-

sults to calculate adsorption selectivity of the mixture rich in hydrogen. It is

found that, though the bulk composition favors hydrogen, graphene slit chan-

nels exhibit selectivity for methane molecule. This finding can be attributed to

the larger energy interaction of methane and graphene wall. EQT-cDFT is a

promising multiscale framework that can accurately predict structure and other

thermodynamic properties of confined fluids.

There is no limitation to EQT in terms of system complexity. It has been

shown that, EQT can also capture density variation of polar molecules such as

water in nanoconfined channels [38]. In fact, EQT framework also provides a

tool to use particle-based coarse-grained potentials for which the electrostatic

effects are already imbedded. Thus, Complex systems that involve long-range

electrostatic interactions such as water/methanol mixtures and electrolytes can

also be investigated and studies in these directions are in progress.
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Gubbins, “Pressure enhancement in carbon nanopores: a major confine-
ment effect,” Physical Chemistry Chemical Physics, vol. 13, no. 38, pp.
17 163–17 170, 2011.

[74] J. Klein and E. Kumacheva, “Confinement-induced phase transitions in
simple liquids,” Science, vol. 269, no. 5225, pp. 816–819, 1995.
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