

ACCELERATING INDUCTION MACHINE FINITE-ELEMENT
SIMULATION WITH PARALLEL PROCESSING

BY

CHRISTINE ANNE HAINES ROSS

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

 Professor Philip T. Krein

ii

ABSTRACT

Finite element analysis used for detailed electromagnetic analysis and design of electric

machines is computationally intensive. A means of accelerating two-dimensional transient finite

element analysis, required for induction machine modeling, is explored using graphical processing

units (GPUs) for parallel processing. The graphical processing units, widely used for image

processing, can provide faster computation times than CPUs alone due to the thousands of small

processors that comprise the GPUs. Computations that are suitable for parallel processing using

GPUs are calculations that can be decomposed into subsections that are independent and can be

computed in parallel and reassembled. The steps and components of the transient finite element

simulation are analyzed to determine if using GPUs for calculations can speed up the simulation.

The dominant steps of the finite element simulation are preconditioner formation, computation of

the sparse iterative solution, and matrix-vector multiplication for magnetic flux density calculation.

Due to the sparsity of the finite element problem, GPU-implementation of the sparse iterative

solution did not result in faster computation times. The dominant speed-up achieved using the

GPUs resulted from matrix-vector multiplication. Simulation results for a benchmark nonlinear

magnetic material transient eddy current problem and linear magnetic material transient linear

induction machine problem are presented. The finite element analysis program is implemented

with MATLAB R2014a to compare sparse matrix format computations to readily available GPU

matrix and vector formats and Compute Unified Device Architecture (CUDA) functions linked to

MATLAB. Overall speed-up achieved for the simulations resulted in 1.2-3.5 times faster

computation of the finite element solution using a hybrid CPU/GPU implementation over the

iii

CPU-only implementation. The variation in speed-up is dependent on the sparsity and number of

unknowns of the problem.

iv

To My Supportive Family and Friends

v

ACKNOWLEDGMENTS

 This project would not have been possible without the support of many people. Many

thanks to my advisor, Philip T. Krein, for his patience and technical guidance. Thanks to the

University of Illinois Graduate College for awarding me a SURGE Fellowship, and the Grainger

Center for Electric Machinery and Electromechanics for granting me research assistantships,

providing me with the financial means to complete this project. And finally, thanks to my

husband, parents, and numerous friends who endured this long process with me, always offering

support and love.

vi

TABLE OF CONTENTS

Chapter 1 Introduction .. 1

Chapter 2 Magnetic Vector Potential Formulation and Finite Element Implementation 3

 2.1 Magnetic Vector Potential Formulation .. 3

 2.2 Finite Element Discretization ... 7

 2.2.1 First-order elements ... 9

 2.2.2 Second-order elements .. 11

 2.3 Time Discretization .. 13

 2.4 Sparse Iterative Linear Solvers .. 15

 2.5 Post-Processing ... 18

 2.5.1 Magnetic flux density .. 18

 2.5.2 Eddy current density .. 20

 2.5.3 Force from Maxwell Stress Tensor ... 21

 2.6 Nonlinear Formulation ... 22

 2.6.1 Nonlinear formulation for first-order elements .. 27

 2.6.2 Nonlinear formulation for second-order elements ... 29

 2.6.3 Relaxation factor ... 33

 2.7 Implementation ... 34

 2.7.1 First-order, linear simulation ... 35

 2.7.2 Second-order, linear simulation .. 37

 2.7.3 First-order, nonlinear simulation .. 38

 2.7.4 Second-order, nonlinear simulation .. 39

vii

Chapter 3 Accelerating the Finite Element Simulation ... 41

 3.1 Methods of Accelerating Finite Element Simulations .. 41

 3.1.1 Numerical methods ... 41

 3.1.2 Parallel processing methods .. 42

 3.2 GPU Parallel Processing for the Finite Element Simulation 49

 3.2.1 Components of FEA suitable for GPU parallel processing 49

 3.2.2 Implementation methods for GPU parallel processing for FEA 51

Chapter 4 Simulation of the Benchmark Problem ... 61

 4.1 Problem Description ... 61

 4.2 GPU Parallel Processing Methods ... 63

 4.3 Simulation Results .. 68

 4.3.1 Linear magnetic material simulation results ... 70

 4.3.2 Nonlinear magnetic material simulation results ... 77

 4.3.3 Benchmark problem simulation results summary .. 93

Chapter 5 Linear Induction Machine Experiment and Simulation 95

 5.1 Experiment Description.. 95

 5.2 FE Simulation of Experiment .. 97

Chapter 6 Conclusion and Future Work .. 105

Appendix A CUDA Source Code for MATLAB mex Function: Sparse Matrix-Vector

Multiplication Using CSR Format ... 109

Appendix B CUDA Source Code for MATLAB mex Function: Biconjugate Gradient

Sparse Iterative Solver .. 113

Appendix C MATLAB Source Code for gcsparse Class Definition 116

viii

Appendix D Built-In MATLAB Functions that Support GPUArray for MATLAB

2012A .. 121

Appendix E Built-In MATLAB Functions that Support GPUArray for MATLAB

2014A .. 122

References ... 123

1

CHAPTER 1

INTRODUCTION

Electric machines constitute approximately two-thirds of all industrial electric power

consumption [1]. An improvement in efficiency to a large number of electric machines thus

conserves large amounts of electrical energy. This motivates improvements to electric machine

design to reduce inefficiencies.

 Specifically, induction machines and permanent-magnet synchronous machines are two

types of machines that interest engineers and researchers. Induction machines are considered the

“work horse” of electric machines [2]. Specific uses of induction machines include air

conditioning units, pumps, hoists, servos, and bench tools. Most induction machines used today

use the same design for induction machines developed in the 1960s. Those induction machines

were intended to use electric line power from the power grid, i.e., at a fixed frequency. The

technology available today in power electronics enables variable-frequency control of induction

machines. Such a different control necessitates a change in design of induction machines in order

to efficiently operate them with this different control.

Present commonly used tools for electric machine design include analytical circuit

equivalents and finite-element models (FEM) [2], [3]. Analytical circuit equivalents of electric

machines are a fast way to design a machine but do not model the machines as accurately as finite-

element models because they cannot model the nonlinear magnetic behavior used in the

construction of electric machines. This is important because induction machines may be operated

near or at the magnetic saturation of the magnetically permeable material. However, finite-element

models can model the nonlinear magnetic material used in electric machines, but they can be time-

consuming to set up and simulate the machine. As a result, many electric machine designers use

2

analytical models to create an initial design, and then use finite-element models to verify the

design.

Decreasing the simulation time of a finite-element model of an electric machine makes the

finite-element model a more desirable design tool for electric machine design. Several approaches

have been used to decrease the simulation time. Numerical approaches include the shooting-

Newton method used to compute fewer iterations to obtain a steady-state solution [4]. Domain

decomposition is another technique used to divide a finite-element domain into smaller domains

for more efficient computation [5]. The approach examined in this thesis is to use parallel

programming to reduce the simulation time.

3

CHAPTER 2

MAGNETIC VECTOR POTENTIAL FORMULATION AND

FINITE ELEMENT IMPLEMENTATION

The electromagnetic fields for an electric machine involve magnetic flux density ()B

through materials with different conductivity ()σ , permeability ()µ , permittivity (ε), stationary

and moving parts, and excitation by applying voltage or current. The magnetic flux density is

solved for in a domain Ω with boundary Γ . The fields are described by Maxwell’s equations and

constitutive relations [6]:

t

∂∇× = −
∂
B

E (2.1)

t

∂∇× = +
∂
D

H J (2.2)

 0∇⋅ =D (2.3)

 0∇⋅ =B (2.4)

 () 0σ∇ ⋅ =E (2.5)

 ε=D E (2.6)

 µ=B H (2.7)

where E is the electric field intensity, D is the electric flux density, H is the magnetic field

intensity, ε is the permittivity, and J is current density. Current density can be decomposed into

three parts: the impressed current sJ , eddy current σ E , and current induced by motion vσ ×B

where v is the velocity of the conductor with respect to B [3]. J is expressed as

2.1 Magnetic Vector Potential Formulation

4

 vs σ σ= + ×J J E + B (2.8)

The magnetic vector potential A is used to simulate the electromagnetic fields. It is related

to the magnetic flux density by the equation

 = ∇×B A (2.9)

These equations can be combined to form one equation that describes the electromagnetic

behavior of an electric machine. Substituting equation (2.1) into equation (2.9) and rearranging

yields

 0
t

∂ ∇ × = ∂ 

A
E + (2.10)

The electric scalar potential V is defined as

t

V
∂= −∇ −
∂
A

E (2.11)

Using the constitutive relations described by equations (2.6) and (2.7), substituting equations (2.8),

(2.9), and (2.11) into equation (2.2), and rearranging yields

 ()
2

2

1
+ v

t t t s

V
Vσ ε ε σ σ

µ
  ∂ ∂ ∂ ∇× ∇× + + = −∇ + + × ∇×   ∂ ∂ ∂  

A A
A J A (2.12)

The derivation considered here applies to isotropic media using scalars instead of dyads to

represent material properties [6]. Within each finite element subdomain, each type of material is

represented by scalar quantities of permittivity, permeability, and conductivity according to:

(, , ,)

(, , ,)

(. , ,)

x y z t

x y z t

x y z t

ε ε
µ µ
σ σ

=

=

=

5

Using the vector identity () 21 1 1 1

µ µ µ µ
 ∇× ∇× = ∇ ∇⋅ − ∇ ∇ ×∇× 
 

A A A + A , equation

(2.12) simplifies to

()

2
2

2

1 1

t t

1
 v

t s

V
V

σ ε
µ µ

ε σ σ
µ

∂ ∂∇ − ∇ ×∇× − − =
∂ ∂

 ∂∇ + + ∇ ⋅ − − × ∇× ∂ 

A A
A A

A J A

 (2.13)

Equation (2.13) includes the behavior of inhomogeneous material with the
1

µ
∇ term. This

formulation only includes homogeneous and uniform magnetic material properties, so the
1

µ
∇

vanishes [7] resulting in the standard wave equation

 ()
2

2
2

1 1
v

t t t s

V
Vσ ε µε µσ σ

µ µ
∂ ∂ ∂ ∇ − − = ∇ + + ∇⋅ − − × ∇× ∂ ∂ ∂ 

A A
A A J A (2.14)

Next, the divergence of A should be specified since it is not fully determined by equation

(2.9). For a unique solution to the wave equation, a gauge condition, i.e., the choice of ∇⋅A ,

should be specified, although that may not be necessary since B is the value of interest in machine

behavior [6]. In cases where the value of eddy current is desired, the gauge condition must be

specified since the value of A is directly used to calculate eddy current. Not specifying the gauge

condition can lead to numerical instability in iterative solutions and may reduce computational

precision [7]. The selected gauge condition is the diffusion gauge defined by

V

t
ε ∂∇⋅ = −

∂
A (2.15)

Applying the gauge condition to equation (2.14) yields

 () ()
2

2
2

1
v

t t sVσ ε σ σ
µ

∂ ∂∇ − − = ∇ − − × ∇×
∂ ∂
A A

A J A (2.16)

6

This equation is simplified by neglecting the gradient of the electric scalar potential term, which is

a function of the current density resulting from low-frequency voltage source excitation and

resistance, and the magnetic vector potential second-derivative term, which is the displacement

current and is small for low-frequency applications [7]. These assumptions reduce equation (2.16)

to

 ()21
v

t sσ σ
µ

∂∇ − = − − × ∇×
∂
A

A J A (2.17)

This equation is the main equation that describes the electromagnetic behavior of electric

machines using magnetic vector potential. In a two-dimensional simulation, with impressed

current density applied in the z-direction, the magnetic vector potential only has a single

component, zA . Reducing the problem to two dimensions means that the simulation assumes the

electric machine has infinite axial length. When conducting simulation studies of electric machine

designs, this assumption is appropriate for preliminary and semi-detailed machine analysis. This

two-dimensional simplification of the electric machine analysis enables significantly faster

analysis. However, for detailed machine design and analysis, a three-dimensional simulation that

captures end turn effects should be conducted.

The velocity term of equation (2.17) can be eliminated by setting velocity to zero and

neglecting motion or by employing a frame of reference that is fixed with respect to the moving

component so that the relative velocity v becomes zero. This reference frame is created by fixing

the mesh to the surface of the moving component and moving or remeshing only the elements in

the air around the component [3]. To simplify the meshing and finite element implementation,

motion is neglected in this formulation.

7

Using the fact that magnetic vector potential only has a single component in the z-direction

for the two-dimensional analysis and neglecting motion, equation (2.17) reduces to

2 2

2 2

1

t

A A A
J

x y
σ

µ
 ∂ ∂ ∂+ − = − ∂ ∂ ∂ 

 (2.18)

where A is understood to be z-directed and only varies in the x- and y-directions, and J is the

impressed z-directed current density. Equation (2.18) is referred to as a magnetic diffusion

equation.

The Galerkin approach is used to derive the finite element equations. It is a special case of

the method of weighted residuals. The Galerkin method uses the weighting function of the same

form as the finite element shape function [6], [3], [7]. The magnetic vector potential within an

element is approximated by the sum of shape functions. With Â denoting the approximation of A,

the magnetic vector potential within an element e is approximated by

1

ˆ ˆ(,)
m

e e e
i i

i

A N x y A
=

=∑ (2.19)

for m nodes in the element and eiN element shape functions.

The residual r of equation (2.18) with the approximation of A denoted as ̂A is

2 2

2 2

ˆ ˆ ˆ1

t

A A A
r J

x y
σ

µ
 ∂ ∂ ∂= + − +  ∂ ∂ ∂ 

 (2.20)

The weighted residual for element e is

2 2

2 2

ˆ ˆ ˆ1
 1, 2,...,

te

e e e
i i e

A A A
R N J dxdy i m

x y
σ

µΩ

  ∂ ∂ ∂= + − + =   ∂ ∂ ∂   
∫∫ (2.21)

2.2 Finite Element Discretization

8

where eΩ denotes the element domain. Integrating by parts, equation (2.21) can be written as

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ

ˆ

t

e e

e e

e e
e e e ei i
i ie e

e e e
i i

N NA A A A
R dxdy N x y n d

x x y y x y

A
N dxdy N J dxdy

µ µ

σ

Ω Γ

Ω Ω

   ∂ ∂∂ ∂ ∂ ∂= + − + ⋅ Γ      ∂ ∂ ∂ ∂ ∂ ∂   

∂− +
∂

∫∫ ∫

∫∫ ∫∫

�
 (2.22)

where eΓ denotes the contour enclosing eΩ and ˆen is the outward unit vector normal to eΓ .

To solve for the finite-element domain solution, the element weighted residuals,

represented by equation (2.22), are assembled by summation with the same equation with shape

functions for the other elements. The system residual should be zero so that the approximated Â

equates to the actual A. For M elements, this system residual is described by

1

1

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ

ˆ
 0

t

e e

e e

e eM
e e ei i
ie e

e

M
e e e
i i

e

N NA A A A
dxdy N x y n d

x x y y x y

A
N dxdy N J dxdy

µ µ

σ

= Ω Γ

= Ω Ω

    ∂ ∂∂ ∂ ∂ ∂ + − + ⋅ Γ +       ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ − + = ∂  

∑ ∫∫ ∫

∑ ∫∫ ∫∫

�

 (2.23)

From the derivation in [6], the internal element sides do not contribute to the line integral. By

imposing the homogeneous Neumann boundary condition, which is defined by
ˆ

0
ˆe

A

n

∂ =
∂

, the line

integral is zero. When the finite element method is used with other solution techniques, such as the

boundary element method or an analytical expression to represent techniques the air-gap region

solution [3], this may not be a suitable boundary condition. In that case, the line integral must be

evaluated [3]. This formulation only uses the finite element method, so the homogeneous

Neumann boundary condition is satisfactory and simplifies the solution calculation.

9

The reluctivity term is introduced, which is simply 1ν
µ

= . With the line integral term equal

to zero, the following equation shows equation (2.23) written in matrix form:

 [] { } [] { } { }
1 1 1

ˆ
ˆ 0

t

M M M
e e e

e e e

A
S A T Q

= = =

 ∂ + − = ∂  
∑ ∑ ∑ (2.24)

or even more compactly as

 []{ } [] { } { }
ˆ

ˆ 0
t

A
S A T Q

 ∂ + − = ∂  
 (2.25)

where it is understood that the S, T, and Q matrices are assembled by summing over the elements.

Entries in these matrices are given by:

e ee e
j je e i i

ij

N NN N
S dxdy

x x y y
ν

 ∂ ∂∂ ∂= +  ∂ ∂ ∂ ∂ 
∫∫ (2.26)

 e e e e
ij i jT N N dxdyσ= ∫∫ (2.27)

 e e e
i iQ J N dxdy= ∫∫ (2.28)

for , 1,2,...,i j m= nodes per element. { }Â and
ˆ

t

A ∂ 
 ∂  

correspond to the jth node. The integrals in

these matrices can be evaluated analytically or numerically. The matrices depend on the element

order and corresponding shape function.

 First-order elements consist of three nodes connected by three edges to form a triangle.

Figure 2.1 illustrates a first-order triangular element. For mesh consistency, they must be

2.2.1 First-order elements

10

numbered counterclockwise. The unknown function Â varies linearly within each element and is

approximated as

 ˆ (,)e e e eA x y a b x c y= + + (2.29)

With m = 3, the shape functions which approximate ˆ eA according to equation (2.29) satisfy

equation (2.19). The derivation of the first-order shape functions can be found in [6] and [3]. For

first-order elements, the shape functions are given by

1

(,) () 1,2,3
2

e e e e
j j j je

N x y x y jα β γ= + + =
∆

 (2.30)

with

1 2 3 2 3 1 2 3 1 3 2

2 3 1 3 1 2 3 1 2 1 3

3 1 2 1 2 3 1 2 3 2 1

; ; =x

; ; =x

; ; =x

e e e e e e e e e e e

e e e e e e e e e e e

e e e e e e e e e e e

x y y x y y x

x y y x y y x

x y y x y y x

α β γ
α β γ
α β γ

= − = − −

= − = − −

= − = − −

 (2.31)

and

 ()1 2 2 1

1

2
 area of the element

e e e e e

e

β γ β γ∆ = −

=
 (2.32)

Using these shape functions, equations (2.26), (2.27), and (2.28) evaluate to

() ()1

, , Q T =
4 12 3

e e e e e e

i j i j ije e e e e
ij ij i

e

e
S J

ν β β γ γ δ
σ

+ + ∆= =
∆

∆
 (2.33)

Figure 2.1 First-order triangular element

11

1 2

3

e

4

56

where ijδ = 1 when i = j, otherwise, ijδ = 0. Note that for this implementation, reluctivity and

conductivity are constant throughout the element.

 Second-order elements consist of six nodes connected by three edges to form a triangle.

Figure 2.2 illustrates a second-order triangular element. For mesh consistency, they must be

numbered in increasing order as shown in Figure 2.2. Higher-order elements are used to improve

element accuracy. Another method of improving accuracy is to solve the system with a greater

mesh density, i.e., smaller elements. Results and discussion about these options are presented for a

benchmark problem in Section 4.3 Simulation Results. The unknown function ̂A is a quadratic

function within each element and is approximated as

 2 2ˆ (,)e e e e e e eA x y a b x c y d x e xy f y= + + + + + (2.34)

With m = 6, the shape functions which approximate ˆ eA according to equation (2.34) satisfy

equation (2.19). The derivation of the second-order shape functions can be found in [6]. For

second-order elements, the shape functions are given by

()

4 1 2 5 2 3 6 3 1

(,) 2 1 , 1,2,3

(,) 4 , (,) 4 , (,) 4

e e e
j j j

e e e e e e e e e

N x y L L j

N x y L L N x y L L N x y L L

= − =

= = =
 (2.35)

2.2.2 Second-order elements

Figure 2.2 Second-order triangular element

12

with

1

(,) () 1,2,3
2

e e e e
j j j je

L x y x y jα β γ= + + =
∆

 (2.36)

and the same , , , and e e e e
j j jα β γ ∆ as defined for first-order elements.

Using these shape functions, equations (2.26), (2.27), and (2.28) evaluate to

()

() ()

() ()

14 24 12 16 36 13

25 35 23 15 26 34

2 2

44 1 2 1 2

2 2

55 2 3 2 3

66

4 1
 , 1,2,3

12
4 4

,
3 3
4

, 0
3

2

3
2

3
2

ije e e e e e
ij i j i je

e e e e e e

e e e e e e

e e e e e e
e

e e e e e e
e

e e

S i j

S S S S S S

S S S S S S

S

S

S

δ
ν β β γ γ

ν β β γ γ

ν β β γ γ

ν

−
= + =

∆

= = = =

= = = = =

 = + + +  ∆
 = + + +  ∆

= () ()

() ()

() ()

2 2

3 1 3 1

22 2
45 2 3 1 3 1 2 2 2 3 1 3 1 2 2

22 2
46 1 3 2 3 1 2 1 1 3 2 3 1 2 1

56 3 1 2 1 2 3

3
1

2 2
3
1

2 2
3
1

2
3

e e e e
e

e e e e e e e e e e e e e e e e
e

e e e e e e e e e e e e e e e e
e

e e e e e e e e
e

S

S

S

β β γ γ

ν β β β β β β β γ γ γ γ γ γ γ

ν β β β β β β β γ γ γ γ γ γ γ

ν β β β β β β

 + + +  ∆
 = + + + + + + +  ∆
 = + + + + + + +  ∆

= + +
∆

() ()22 2
3 3 1 2 1 2 3 32e e e e e e e eβ γ γ γ γ γ γ γ + + + + +  

 (2.37)

6 1 1 0 4 0

1 6 1 0 0 4

1 1 6 4 0 0

0 0 4 32 16 16

4 0 0 16 32 16

0 4 0 1

1

6 32

0

1

8

6

e
e e

ijT σ

− − − 
 − − − 
 − − −
 − 
 −
 

−

∆=

 

 (2.38)

13

 e

0 1,2,3

 4,5,6
3

e

e
i

i

J i
Q

=

∆ =

=



 (2.39)

The discretized system of equations for magnetodynamic finite-element analysis varies

with time. To emphasize this, equation (2.25) can be written as

 []{ } [] { } { }
ˆ ()ˆ() () 0
t

A t
S A t T Q t

 ∂ + − = ∂  
 (2.40)

In the case where motion is not modeled or a fixed reference frame is used, the S, T, and mesh-

dependent sections of Q matrices are not time-dependent. Note that the Q matrix is shown to vary

with time, but that is only because the applied current density J may vary with time. If motion

were modeled with a reference frame, then elements in air are deformed with respect to time while

all other elements remain the same. In air, the conductivity is zero, so this element deformation

would not affect T and the mesh-dependent sections of Q. The S matrix would change with respect

to time [3].

For induction machines, the magnetic field is time-varying within a conducting region

which induces an electromotive force (emf) according to Faraday’s law described by equation

(2.1). This induced emf produces current, called eddy current, in conducting material normal to

the magnetic flux. The eddy currents in the rotor create magnetic poles that interact with the stator

poles created by the excitation current, causing the rotor to move. Modeling eddy current is

essential to simulate an induction machine, so a magnetostatic formulation is not suitable. Either a

time-harmonic or time-domain simulation can be used. Time-harmonic steady-state simulations,

2.3 Time Discretization

14

where the time-varying fields are sinusoidal and represented by a single frequency, are typically

represented by the Fourier transform of equation (2.18) [3]:

2 2

2 2

1 A A
j A J

x y
ωσ

µ
 ∂ ∂+ − = − ∂ ∂ 

 (2.41)

The use of the time-domain simulation over the time-harmonic simulation is discussed in section

2.6 Nonlinear Formulation, where nonlinear magnetic material is addressed. For linear magnetic

material simulations, time-harmonic analysis described by equation (2.41) can be used for steady-

state simulations at a specified frequency. For linear or nonlinear magnetic material problems,

simulations not at steady-state or involving non-sinusoidal excitation require the solution of the

time-domain equation (2.40). For the simulations in this thesis, the time-domain formulation is

used to model all possible frequencies of electromagnetic behavior.

The stator (sω) and rotor (rω) frequencies are related according to the rotor slip s

according to

 s r

s

s
ω ω

ω
−= (2.42)

For a stationary time-domain formulation, the impressed current density is applied at slip

frequency instead of the stator frequency in order to represent the mechanical power and torque

produced on the rotor.

While the time-domain simulation enables eddy current simulation, the two-dimensional

simulation limits the accurate simulation of total machine core losses. The eddy currents in the

stator produce losses, called core losses, which the electric machine designer would like to

minimize. Core losses are reduced by using laminated sheets which are electrically insulated from

each other. The insulation is parallel to the direction of the magnetic flux density so that the eddy

currents which flow normally to the magnetic flux density can only flow in each laminated sheet

15

[1]. A two-dimensional time-varying simulation thus only models the eddy current due to one

lamination cross section.

 The time-discretization of equation (2.40) follows the derivation in [3]. The time-

discretization method used is based on:

 () { } { }
1

t t tt t t A AA A

t t t
β β

+∆+∆ −∂ ∂   + − =   ∂ ∂ ∆   
 (2.43)

The t∆ symbol indicates the change in time. The constant β allows the difference method to be

easily changed. Note that when 0,β = the algorithm is forward difference, when 1,β = the

algorithm is backward difference, or when 0 1,β< < the algorithm is an intermediate type. When

1
,

2
β = the algorithm is the Crank-Nicolson method [8].

Using equation (2.43) to discretize time in equation (2.40) yields

 [] [] { } [] [] { } { } { }1 1 1 1ˆ ˆt t t t t t
S T A T S A Q Q

t t

β β
β β β β

+∆ +∆   − −+ = − + +   ∆ ∆   
 (2.44)

When reluctivity is linear, equation (2.44) is used to solve for { }ˆ t t

A
+∆

at each time step.

The system defined by equation (2.44) is essentially a sparse linear system equivalent to the

typical

x b=A

This sparse linear system also applies to the nonlinear formulation described in section 2.6 when

solving for the change in magnetic vector potential used to update the next iteration. The matrix A

is sparse, b is a vector, and the system is solved for the vector x. For the sparse matrices solved

2.4 Sparse Iterative Linear Solvers

16

later in this thesis for time-domain formulations, the average density of nonzero elements in the

matrix relative to the total number of elements is 0.0012. For example, given this density, for a

10,000 by 10,000 element matrix, approximately 117,430 elements of the matrix are nonzero out

of the total 108 elements. An example of the matrix sparsity patterns is shown in Figure 2.3.

The assignment of the element and node numbering upon mesh generation affect the

sparsity structure of the matrix. For first-order elements, each element contributes nine nonzero

entries (3x3 matrix according to node numbering). For first-order elements, each element

contributes 36 nonzero entries (6x6 matrix according to node numbering).

There are several ways to solve the system. LU decomposition can be used. To solve the

system using LU decomposition with forward and backward substitution for n unknowns, 3()O n

multiplication operations are performed if A and b are full. The number of operations required

when employing sparse LU decomposition techniques, such as those in [9]- [10], depends on the

number and ordering of nonzero entries in the matrix.

0 1000 2000 3000 4000 5000 6000

0

1000

2000

3000

4000

5000

6000

nz = 47769
0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

x 10
4

nz = 257873

(a) (b)
Figure 2.3 Matrix sparsity pattern for example time-domain meshes for

(a) first-order elements and (b) second-order elements

17

Sparse iterative linear solvers are another option to solve the system. In particular, Krylov

subspace methods can be used to solve the finite-element discretized system [11]. To solve the

system using a sparse iterative linear solver for n unknowns, A is no longer treated as having n n×

values, but rather only p nonzero values, and its inverse is found in terms of a linear combination

of its powers. For well-conditioned matrices, this should reduce the number of operations that are

performed to solve the system. Krylov subspace methods that use the Arnoldi [12] or Lanczos [13]

process, such as generalized minimum residual method (GMRES) method [14], [15], conjugate

gradient (CG) method [14], [16], bi-conjugate gradients (BiCG) method, and the bi-conjugate

gradients stabilized (BiCGStab) method [14], [17], are 2()O n per iteration [18].

 Finite element matrices can be ill-conditioned for the sparse iterative linear solvers. This

means that the iterative solvers require many iterations to solve the system to a specified tolerance.

Using a preconditioner can accelerate the convergence of the iterative solvers. While it takes a

certain number of operations to create the preconditioner, the decrease in number of iterations

required to solve the system using the preconditioner with the iterative solver may still require

fewer operations than using iterative solver without the preconditioner. A preconditioner is used

by solving the system

 1 1x b− −=P A P (2.45)

Preconditioners used with iterative solvers are a computationally efficient way to find a matrix P

such that 1−P A is better conditioned than A. Two readily available preconditioners are the

incomplete LU (ILU) preconditioner [11] and incomplete Cholesky factorization preconditioner

[11], [19].

18

After computing the solution for the nodal magnetic vector potential, other values may be

computed from the solution in order to evaluate the physical behavior of the simulated problem.

These other values are considered to be “post-processed” values since they are computed after the

solution for A is found. The three post-processing values of interest in this thesis are the magnetic

flux density B, eddy current, and force.

The magnetic flux density is the first post-processed value of interest. Magnetic flux

density has physical meaning and can be measured, unlike magnetic vector potential. For the

linear ferromagnetic material model, magnetic flux density may be calculated outside of the

magnetic vector potential finite-element solution. To minimize memory storage, it is beneficial to

calculate the magnetic flux density at desired nodes or elements at each time step and store only

those values rather than both of the entire magnetic vector potential and magnetic flux density

solutions at each time step. For the nonlinear ferromagnetic material model, it is necessary to

calculate the magnetic flux density magnitude at each node or element at every iteration in order to

determine nonlinear reluctivity since reluctivity is a function of the square of magnetic vector

potential.

Recalling from equation (2.9) that B is the curl of A, so B varies in each element with one

degree of freedom less than A. For first-order elements, B is constant throughout the element. For

second-order elements, B varies linearly throughout the element. Theoretically, the lower order

elements decrease the accuracy of B. The element order accuracy and mesh density is examined in

the benchmark problem simulation results in Chapter 4.

2.5 Post-Processing

2.5.1 Magnetic flux density

19

Since B is the curl of A, and A only has a single component zA ,

 ˆ ˆz zA A
x y

y x

∂ ∂−
∂ ∂

B = (2.46)

The partial derivatives of zA are computed from the shape functions that describe ˆ
zA . B in terms

of shape functions is

1 1

(,) (,)ˆ ˆˆ ˆ
e em m

e i i
i i

i i

N x y N x y
x A y A

y x= =

∂ ∂−
∂ ∂∑ ∑B = (2.47)

For first-order elements, this equates to

3 3

1 1

1 1ˆ ˆˆ ˆ
2 2

e e e
i i i ie e

i i

x A y Aγ β
= =

−
∆ ∆∑ ∑B = (2.48)

Notice that the magnetic flux density is constant throughout the element. For second-order

elements, the expressions becomes more complicated and equates to

()
()()

()
() ()()

()
() ()()

()

3

2
1

2 1 1 1 1 2 2 2 42

3 2 2 2 2 3 3 3 52

3 12

1 ˆ
2

1 ˆ

1 ˆ

1

e
e e e e e i
x i i i i iee

i

e e e e e e e e

e

e e e e e e e e

e

e e

e

B x y A

x y x y A

x y x y A

γγ α β γ

γ α β γ γ α β γ

γ α β γ γ α β γ

γ α

=

 
 + + − +
 ∆∆ 

 
 + + + + + +
 ∆ 

 
 + + + + + +
 ∆ 

∆

∑=

() ()()1 1 1 3 3 3 6
ˆe e e e e ex y x y Aβ γ γ α β γ

 
 + + + + +
 
 

 (2.49)

20

()
()()

()
() ()()

()
() ()()

()

3

2
1

2 1 1 1 1 2 2 2 42

3 2 2 2 2 3 3 3 52

3 12

1 ˆ
2

1 ˆ

1 ˆ

1

e
e e e e e i
y i i i i iee

i

e e e e e e e e

e

e e e e e e e e

e

e

e

B x y A

x y x y A

x y x y A

γβ α β γ

β α β γ β α β γ

β α β γ β α β γ

β α

=

 
 − + + − −
 ∆∆ 

 
 + + + + + −
 ∆ 

 
 + + + + + −
 ∆ 

∆

∑=

() ()()1 1 1 3 3 3 6
ˆe e e e e e ex y x y Aβ γ β α β γ

 
 + + + + +
 
 

 (2.50)

 ˆ ˆe e e
x yB x B y+B = (2.51)

The eddy current density is modeled by magnetic vector potential derived from Maxwell’s

equations. Using equation (2.11) that relates electric field to magnetic vector potential, neglecting

the electric scalar potential, and knowing that

 eddy σ=J E (2.52)

then eddy current in terms of magnetic vector potential is

teddy σ ∂= −

∂
A

J (2.53)

In terms of time discretization using equation (2.43), eddy current density is calculated from the

magnetic vector potential solution at each time step by

() ()1

t t t

t t t
eddy eddy

A A
J J

t

β
σ

β β

+∆
+∆

−−
= −

∆
 (2.54)

2.5.2 Eddy current density

21

The purpose of an electric machine is to produce force or torque to do work. Measuring or

computing these quantities is useful to evaluate the performance of the machine. There are several

methods to compute the force from a finite element simulation. The Ampere’s Force Law,

Maxwell Stress Method, and Virtual Work Method are considered in [3]. In this thesis, the

Maxwell Stress Method is used to compute force. It is used to find the total, not the local, force on

an object. Additionally, the Maxwell Stress Tensor formulation in the air gap should result in

accurate force calculation for linear and nonlinear magnetic material representation.

Following the derivation from [3], the volume force density can be written as the

divergence of the Maxwell Stress Tensor (MST) T

 vp = ∇ ⋅T (2.55)

where T is derived as

22

22

0

22

1

2
1 1

2
1

2

x x y x z

y x y y z

z x z y z

B B B B B

B B B B B

B B B B B

µ

 − 
 
 = −
 
 
 − 
 

B

T B

B

 (2.56)

 Integrating and using the vector divergence theorem, the total force can be expressed as

S

F dS= ⋅∫ T� (2.57)

Taking this surface integration to be a cylindrical surface through the machine airgap, this

integration is reduced to a line for two-dimensional simulation to give force per unit depth. The

tangential (tF) and normal (nF) force components in newtons per meter can be calculated

according to

2.5.3 Force from Maxwell Stress Tensor

22

()

0

2 2

0

2 2 2 2

2 2 2 2 2 2 2 2 2 2

22 2 2 2

2

() ()

2 2

1
2

2

n t
t t

L L

n t
n n

L L

n t x y x y x y y x

n t x y x y x y y x x x x y x y y y

x y x y x y y x

B B
F dF dl

B B
F dF dl

B B B B s s s s B B

B B B s B B s s B s B s B B s s B s

B s B B s s B s B

µ

µ

= =

−= =

= − + −

− = − + − + +

= − + −

∫ ∫

∫ ∫

� �

� �

 (2.58)

where the unit normal and tangential vectors to the integration path and tangential and normal

components of flux density are defined as

ˆ ˆ ˆ

ˆ ˆ ˆ
n x x y y

t y x x y

t x x y y

n x y y x

a s a s a

a s a s a

B B s B s

B B s B s

= +

= − +

= +

= − +

 (2.59)

Including the nonlinear permeability of the ferromagnetic material involved in an electric

machine problem is necessary to obtain accurate simulations of magnetic flux saturation. Most

induction machines operate near or in the saturation region, so only modeling linear permeability

may yield inaccurate simulation results. To push the electric machines to their torque and power

density limitations, the machines are likely to operate near saturation.

The permeability or equivalent reluctivity in the constitutive relation shown by equation

(2.7) is nonlinear. It is a function of the local magnetic field. The most accurate physical

representation of the B-H relationship includes nonlinearity and hysteresis. The family of

hysteresis curves can be represented by a normal magnetization curve.

 Figure 2.4 shows an example family of hysteresis curves. The dotted line represents a

2.6 Nonlinear Formulation

23

normal magnetization curve. For a specific steel, Figure 2.5 shows the initial magnetization

nonlinear B-H curve. This steel curve is used for the nonlinear simulation of the benchmark

problem described in Chapter 4. From this data, the reluctivity versus the square of magnetic flux

density is computed and illustrated in Figure 2.6.

 Figure 2.4 Hysteresis curves and

 normal magnetization curve

Figure 2.5 Nonlinear B-H curve for steel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0

0.5

1

1.5

2

H (A/m)

B
 (

T
)

B-H Curve for Steel

24

 Figure 2.6 Nonlinear reluctivity versus square of
magnetic flux density for steel

As previously referenced, a time-domain simulation is preferred to accurately simulate how

nonlinear magnetic material affects the magnetic flux density. An effective permeability

approximation method based on average energy [3] can be used with the time-harmonic approach.

The time-domain method allows permeability to vary throughout the domain at each instant in

time, providing a more intuitive model of the nonlinearity of the magnetic permeability.

Additionally, time-domain simulation can include permeability hysteretic effects.

To model the nonlinearity of reluctivity, an iterative process is used to find the solution that

is consistent with the field solution. The process is summarized by first assuming an initial value,

solving the system, then correcting the reluctivity based on magnetic flux density solution. This

process continues until the change in either the magnetic vector potential or reluctivity is less than

a specified tolerance.

A common method of linearizing the system of nonlinear equations is the Newton-Raphson

method. For the nonlinear iterative solution, the existence and uniqueness of a unique stable

mathematical solution requires that the magnetization curve be monotonically increasing with their

first derivatives monotonically decreasing [7]. If the nonlinear function is monotonically

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

B2 (T2)

ν
(m

/H
)

Nonlinear Reluctivity versus B2

25

increasing, the solution from the Newton-Raphson method will converge quadratically. The curve

in Figure 2.4 is not monotonically increasing. In order to guarantee convergence, the reluctivity in

the low flux density region can be approximated as constant. Most electric machinery is not

designed to operate in this region in steady-state, so this approximation is acceptable. For

applications where the low flux density behavior is important, the Newton-Raphson method may

use the change in permeability from one iteration to the next as the convergence criterion rather

than the change in magnetic vector potential [3].

A review of the Newton-Raphson method for a system of nonlinear equations follows.

Consider a system of nonlinear equations

 () 0f x = (2.60)

where f represents a system of n equations, and xrepresents n variables 1 2, ,..., nx x x . An estimate

of the solution is ()kx . An initial guess is used as the solution to (0)x . The iteration number is

represented by the superscript (k). The error is () (1) ()k k kx x x+∆ = − . The system of equations can

at iteration 1k + can be represented by

 () ()() 0k kf x x+ ∆ = (2.61)

This equation expanded in a Taylor series is

()

()()
()

2() () () () ()

1 1

() () 0, 1,2,...,
k

n n
k k k ki k

i i j
j jj

j

x

f
f x x f x x O

x
x i n

= =

+ ∆ = ∂
∂

+ ∆ + ∆ = =∑ ∑ (2.62)

Omitting the higher order term, this equation can be written in matrix form as

 [] { } { }() ()

1 1
()k k

n n n n
J x f x

× × ×
∆ = − (2.63)

where the Jacobian matrix J is given by

26

 []

() () ()

() () ()

() () ()

() () ()

() () ()

() () ()

1 1 1

1 2

2 2 2

1 2

1 2

...

...

...

k k k

k k k

k k k

n

n

n n n

n

x x x

x x x

x x x

f f f

x x x

f f f

x x x

f f f

x

J

x x

 
 
 
 
 
 =  
 
 
 
 
 

∂

 

∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

M M O M

 (2.64)

Equation (2.63) is solved for ()kx∆ . Then, (1)kx + is found by (1) () ()k k kx x x+ = + ∆ . The method

continues to iterate until

 ()kx ε∆ < (2.65)

where ε is a specified tolerance.

The Newton-Raphson method is applied to the time-discretized finite-element equation

(2.44) to linearize the reluctivity. This derivation follows aspects of the magnetostatic and time-

domain modeling linearization using the Newton-Raphson method in [3] with some modifications

for handling second-order elements. The implementation of the Newton-Raphson method is

slightly different depending on the element order. For first-order elements, the reluctivity is

constant throughout each element, so the calculation of the Jacobian only involves the terms

2

2
j jA A

ν ν∂ ∂ ∂=
∂ ∂ ∂

B
B

for j = 1,2,3. B is the magnitude of the magnetic flux density calculated from A.

More information about how B is calculated from A is included in section 2.6 about post-

processing. For second-order elements, the reluctivity now varies throughout the element. Since

reluctivity is not an analytical function of B, it is represented numerically as the reluctivity derived

27

from B at each element node. In that case, the Jacobian involves
2

2
i i

j jA A

ν ν∂ ∂ ∂=
∂ ∂ ∂

B
B

for i, j =

1,2,3,4,5,6.

Consider the time-discretized equation (2.44) per element for first-order elements.

111 12 13 11 12 13

21 22 23 21 22 23 2

31 32 33 31 32 33 3

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 3

ˆ

ˆ

ˆ

1

t t

e

e

As s s t t t

s s s t t t A

s s s t t t A

t t t s s s

t t t s s s

t t t s s s

ν

β ν
β

+∆
     
      + =     
            

 
−  − 

  

1 1 1

2 2 2

3 3 33

ˆ
1ˆ

ˆ

t
t t tA Q Q

A Q Q

Q QA

β
β

+∆       
  −        + +       
                

 (2.66)

The subscripts denote local nodes 1, 2, and 3 for the element. Let , 1,2,3iF i = denote the ith

equation.

[] []

[] []

1

1 2 3 1 2 3 2

3

1

1 2 3 1 2 3 2

3

ˆ

ˆ

ˆ

ˆ
1 1ˆ

ˆ

t t

e
i i i i i i i

t

e t t t
i i i i i i i i

A

F s s s t t t A

A

A

t t t s s s A Q Q

A

ν

β βν
β β

+∆

+∆

 
  

 = + −  
 
  

 
  − − − − −  

   
  

 (2.67)

To find the derivatives necessary to form the Jacobian, equation (2.67) is differentiated with

respect to the nodal magnetic vector potential. Using the product and chain rules, the result is

23

2
1

e e
e t ti

ij ij iq qt t e
qj j

F B
s t s A

A B A

νν +∆
+∆

=

 ∂ ∂ ∂= + +  ∂ ∂ ∂ 
∑ (2.68)

2.6.1 Nonlinear formulation for first-order elements

28

for , 1,2,3.i j = The ith Newton-Raphson equation is

1

2
1 2 3

3

t t

i i i
it t t t t t

A
F F F

A F
A A A

A

+∆

+∆ +∆ +∆

∆ 
 ∂ ∂ ∂  ∆ = −  ∂ ∂ ∂   ∆ 

 (2.69)

This can be written in matrix notation per element as

[] [] { }

[] [] { } [] [] { } { } { }

[]

1 1

t tt t t t
k k k

t t t t t tt t t
k k

S T G A

S T A T S A Q Q

ν

β βν ν
β β

+∆+∆ +∆

+∆ +∆+∆

 + + ∆ = 

 − −
 − + + − + +  

 

 (2.70)

where

()

23 3 3

1 1 1
1 1 1 1

, 23 3 3

2 2 22,
1 1 1 2

23 3 3

3 3 3
1 1 1 3

0 0

[] 0 0

0 0

t tt t e

q q q q q q
q q q

e t t e
t t k
k q q q q q q

e t t
q q q

k
e

q q q q q q
q q q k k

B
s A s A s A

A

B
G s A s A s A

AB

B
s A s A s A

A

ν

+∆+∆

= = =

+∆
+∆

+∆ = = =

= = =

   ∂
   ∂  
  ∂ ∂=   

∂  ∂
   ∂
  

∂     

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (2.71)

Note the “hats” are dropped from the nodal magnetic vector potential, but it is understood that

those values are estimated values. All values at time t t+ ∆ are the kth iteration values. The

Newton-Raphson equations for each are assembled to obtain a global system of equations.

For each time step, the Newton-Raphson iteration process can be summarized as follows:

1. Start with an initial guess 0A A= . When solving for t tA+∆ , set 1 .t t tA A+ ∆ =

2. Calculate ,e t t
kB + ∆ , ,e t t

kν + ∆ , and the Jacobian values in equations (2.70) and (2.71) from

t t
kA + ∆ values.

3. Assemble global matrices from element values according to equation (2.70) and (2.71).

29

4. Solve linear system of equations for { } .
t t

k
A

+∆∆

5. Update 1 .t t t t t t
k k kA A A+ ∆ + ∆ + ∆

+ = + ∆ (2.72)

6. If t t
kA ε+∆∆ < , stop the iteration process and set 1

t t t t
kA A+ ∆ + ∆

+= . Otherwise, repeat the

iteration process from step 2 and continue.

Several calculations are required for step 2. The value of t t
kν + ∆ is calculated by first determining

t t
kB + ∆ from equation (2.46), then determining the value of t t

kν + ∆ according to the non-linear 2Bν −

curve at the point for ()2t t
kB +∆ . Note that the Jacobian values in equation (2.71) are calculated

differently for first- and second-order elements. The value of
()

,

2,

e t t
k

e t t
kB

ν +∆

+∆

∂

∂
is determined by taking

the derivative of the non-linear 2Bν − curve. The value of
()2,

,

e t t
k

t t
i k

B

A

+∆

+∆

∂
∂

, i = 1,2,3, for first-order

elements is derived from equations (2.46) and (2.48) that describes B as a function of Az. First,

note that

22

2e z zA A
B

x y

 ∂ ∂  +   ∂ ∂   
= (2.73)

Squaring the x- and y-components of equation (2.48) and taking the derivative as a function of Aj

for j = 1,2,3 yields

()

() ()

2, 3 3

, ,2 2
1 1, 2 2

e t t e e
k j je t t e t t

i i k i i kt t e e
i ij k

B
A A

A

γ β
γ β

+∆
+∆ +∆

+∆
= =

∂
= +

∂ ∆ ∆
∑ ∑ (2.74)

The author has not found specific implementation methods for modeling nonlinear second-

order time-domain finite element methods. In [3], the nonlinear magnetostatic formulation is

2.6.2 Nonlinear formulation for second-order elements

30

described for first-order elements, but not for second-order elements nor for the magnetodynamic

(time-harmonic or time-domain) formulation. In [6], the linear two-dimensional time-harmonic

formulation is described for first- and second-order elements, and the general time-domain

discretization is discussed, but neither the nonlinear time-harmonic nor the nonlinear time-domain

formulation for second-order elements is described. In [7], first- and second-order element

implementations for the Helmholtz equation are described, first-order element solutions of the

Newton-Raphson iterations are shown, and time- and frequency-domain problems are discussed

including eddy-current analysis using magnetic vector potential, but the time-domain, nonlinear

implementation for second-order or higher-order elements is not explicitly described. In [20]

which is more mathematically based rather than application based for [3], [6], [7], higher-

dimensional element formulation is presented, and iterative methods are discussed, but the

application of second-order elements for a time-domain, nonlinear problem is not presented. The

following formulation was derived for second-order elements as an extension of the nonlinear

formulation for first-order elements.

For elements with nonlinear reluctivity which is a function of 2B , and B depends on

position within an element, reluctivity is also a function of position within an element and is no

longer constant as it is for first-order elements. As a result, the finite element discretization, time

discretization, and linearization should be repeated with elemental reluctivity replaced by (),x yν .

To numerically include the reluctivity variation within the element, the value of B is calculated at

each local node per element. Then, using the local nodal B values, the reluctivity and

corresponding 2B

ν∂
∂

 at each local node belonging to elements in the nonlinear material region is

calculated according to the nonlinear v-B2 curve for the magnetic material. If an analytical

31

expression is available for the v-B2 relationship, it may be analytically possible to determine the

variation of v across the element. In this case, a value and gradient could be assigned at each local

node per element. As seen in the example v-B2 in Figure 2.6, the derivative of this curve is

constant for certain ranges of B2. The reluctivity at each node belonging to elements in the linear

material region is assigned according to the relative reluctivity to that region. For elements in the

linear material region, the reluctivity is constant throughout the element.

With the reluctivity variation in mind, the matrix defined by equation (2.37) is redefined by

replacing eν with e
iν . In this way, the finite element formulation is still the same as for first-order

elements, but a variation in reluctivity within an element is included.

The nonlinear finite-element formulation is the same as first-order elements except the

Jacobian values are different because reluctivity varies at each node. The Jacobian values become

26

2
1

t ti i i
i ij ij iq qt t

qj i j

F B
s t s A

A B A

νν +∆
+∆

=

 ∂ ∂ ∂= + +  ∂ ∂ ∂ 
∑ (2.75)

for , 1,2,...,6.i j = The Newton-Raphson equation can be written in matrix notation per element as

[] [] [] { }

[] [] [] { } [] [] [] { } { } { }

[]

1 1

t t t tt t
k kk

t t tt t t t t t

kk

diag S T G A

diag S T A T diag S A Q Q

ν

β βν ν
β β

+∆ +∆+∆

+∆ +∆ +∆

 + + ∆ =
 

 − − − + + − + +    

 (2.76)

where

26

, 2
1

t t

t t i i
ij k iq q

qi j k

B
G s A

B A

ν
+∆

+∆

=

  ∂ ∂=   ∂ ∂   
∑ (2.77)

The value of ,
t t
i kν +∆ is calculated in the same manner as for first-order elements by first determining

,
t t
i kB +∆ from equation (2.46), then determining the value of ,

t t
i kν +∆ according to the non-linear 2Bν −

32

curve at the point for ()2

,
t t
i kB +∆ . The value of

()
,

2

,

t t
i k

t t
i kB

ν +∆

+∆

∂

∂
is determined by taking the derivative of

the non-linear 2Bν − curve. The value of
()2

,

,

t t
i k

t t
j k

B

A

+∆

+∆

∂
∂

, i,j = 1,2,…,6 for second-order elements is

derived from equations (2.46), (2.49), and (2.50) that describe B as a function of Az. First, note that

22

2 z zA A
B

x y

 ∂ ∂  +   ∂ ∂   
= (2.78)

Rewriting equations (2.49) and (2.50) to simplify these expressions,

()
()()

()
() ()()

()
() ()()

()

3

2
1

2 1 1 1 1 2 2 2 42

3 2 2 2 2 3 3 3 52

3 12

1 ˆ
2

1 ˆ

1 ˆ

1

e
e e e e e i
x i i i i iee

i

e e e e e e e e

e

e e e e e e e e

e

e e

e

B x y A

x y x y A

x y x y A

γγ α β γ

γ α β γ γ α β γ

γ α β γ γ α β γ

γ α

=

 
 + + − +
 ∆∆ 

 
 + + + + + +
 ∆ 

 
 + + + + + +
 ∆ 

∆

∑=

() ()()1 1 1 3 3 3 6

6

1

ˆ

ˆ (,)

e e e e e e

m m
m

x y x y A

f x y A

β γ γ α β γ

=

 
 + + + + +
 
 

=∑

 (2.79)

33

()
()()

()
() ()()

()
() ()()

()

3

2
1

2 1 1 1 1 2 2 2 42

3 2 2 2 2 3 3 3 52

3 12

1 ˆ
2

1 ˆ

1 ˆ

1

e
e e e e e i
y i i i i iee

i

e e e e e e e e

e

e e e e e e e e

e

e

e

B x y A

x y x y A

x y x y A

γβ α β γ

β α β γ β α β γ

β α β γ β α β γ

β α

=

 
 − + + − −
 ∆∆ 

 
 + + + + + −
 ∆ 

 
 + + + + + −
 ∆ 

∆

∑=

() ()()1 1 1 3 3 3 6

6

1

ˆ

ˆ (,)

e e e e e e e

m m
m

x y x y A

g x y A

β γ β α β γ

=

 
 + + + + +
 
 

=∑

 (2.80)

Squaring the x- and y-components of B from equations (2.79) and (2.80) and taking the derivative

as a function of Aj for j = 1,2,…,6 yields

()2

6 6
,

, ,
1 1,

2 (,) (,) 2 (,) (,)
t t
i k t t t t

j i i m i i m k j i i m i i m kt t
m mj k

B
f x y f x y A g x y g x y A

A

+∆
+∆ +∆

+∆
= =

∂
= +

∂ ∑ ∑ (2.81)

The Newton-Raphson equation for each element is assembled to obtain a global system of

equations.

Rather than always updating the next iteration value of the nodal magnetic vector potential

by , a relaxation factor α may be used according to

 1
t t t t t t
k k kA A Aα+ ∆ + ∆ + ∆

+ = + ∆ (2.82)

to either over-relax or under-relax the update. The updated value is over-relaxed if 1α > , and this

theoretically reduces the number of iterations to achieve convergence as long as the update does

not overshoot the exact solution in which the method may not converge. The updated value is

2.6.3 Relaxation factor

34

under-relaxed if 0 1α< < . This may be necessary to achieve convergence with the Newton-

Raphson method so that the next updated value does not overshoot the solution.

A method of determining the relaxation factor to find the value ofα that minimizes the

objective function in equation (2.83) which is a function of the Galerkin residual [21], [22]. The

objective function is the sum of the values of the Galerkin residual each raised to the nth power.

Objective functions to the second and fourth powers were explored. Equation (2.84) shows the

Galerkin residual. Note that it is a function of the updated 1
t t
kA + ∆

+ which is a function of α .

 { }1 , 1

nt t
k i k

i

W H +∆
+ +=∑ (2.83)

 [] [] { } [] [] { } { } { }1 1

1 1

t t t t t tt t t t t
k k k

S T A T S A Q Q
β βν ν

β β
+∆ +∆+∆ +∆

+ +

 − −
 Η = + − − − −  

  (2.84)

The value of t t
kν + ∆ may be updated to the value of 1

t t
kν + ∆

+ which is a function of { } 1

t t

k
A

+∆

+ . This option

was experimentally explored and did not seem to improve the convergence or reduce the number

of iterations to achieve convergence. Additionally, updating the value of 1
t t
kν + ∆

+ for each updated

{ } 1

t t

k
A

+∆

+ for the values of α examined ()0,0.1,0.2,...,2α = increases the computation time of each

iteration without necessarily any benefit. Instead, the relaxation factor α that allowed the solution

value to achieve convergence was determined through numerical experiments for the specific

problem. When an appropriate under-relaxation factor still does not yield a converged solution, the

mesh may need to be refined.

2.7 Implementation

Each of the time-domain finite-element simulations was programmed for and run using

MATLAB. While other programs, such as Maxwell Ansoft and JMAG, are available for finite

35

element simulations of electric machines, a program needed to be created so that the lines of code

could be manipulated in order to experiment with acceleration of the simulation. The time

discretization used for each of these simulations is the Crank-Nicolson method with β = 0.5

according to equation (2.43).

In addition to the Neumann boundary condition applied in the derivation described in

section 2.2 Finite Element Discretization, other boundary conditions must be applied to create a

nonsingular global matrix and obtain a unique solution for the finite element problem [3]. At each

point on the boundary of the mesh domain, the magnetic vector potential unknown or the normal

derivative must be specified. Additionally, in order for the global matrix to be nonsingular, the

magnetic vector potential must be defined for at least one specific node. For this application, the

homogeneous Dirichlet boundary condition is applied, resulting that for all nodes on the boundary

of the mesh domain,� 0A = .

This section describes computer simulation implementation specifics for each type of

problem – first or second order elements, and linear or nonlinear simulations. For all matrices and

vectors stored and manipulated on the CPU, the MATLAB sparse matrix format is utilized to

improve computational efficiency and reduce memory usage.

2.7.1 First-order, linear simulation

The first-order element mesh for the benchmark and induction machine simulation was

generated using the MATLAB Partial Differential Equation (PDE) toolbox. This toolbox provides

the ability to create a mesh using the Delaunay triangulation algorithm for a specified geometry. It

generates a point matrix with the x- and y-coordinates of the points in the mesh, edge matrix, and

36

triangle matrix describing the element triangle corner points in counterclockwise order and the

corresponding element subdomain number.

For the simplest simulation using linear magnetic material and first-order elements, note

that conductivity and reluctivity are constant throughout the element. From implementation of

equation (2.44) using first-order matrices defined by equations (2.31)-(2.33), it is apparent that for

a fixed geometry and linear reluctivity, the [S] and [T] matrices do not vary with time, but the

magnetic vector potential and {Q} vectors do vary with time. As a result, the [S] and [T] matrices

only need to be computed once.

For a MATLAB script implementation, the [S] and [T] matrices are computed using the

MATLAB sparse matrix format. For each element, the contributions from each node are

calculated then summed over the elements to assemble the total [S] and [T] matrices. Because for

first-order, linear simulations these matrices are only calculated once, they are computed on the

CPU since the GPU will not yield a significant speed-up with this assembly, especially since the

matrices are sparse.

For each time step, the solution for the next time-step value of the magnetic vector potential

of equation (2.44) is solved for using the sparse iterative Krylov subspace solver biconjugate

gradients stabilized method using a function that implements the biconjugate gradients stabilized

method with preconditioner algorithm [11], [14], [17]. A similar MATLAB function “bicgstab” is

also available for comparison. Several types of solvers for use with preconditioners are readily

available functions in MATLAB. In addition to the biconjugate gradients stabilized method, the

biconjugate gradients, conjugate gradients squared, generalized minimum residual, least squares,

minimum residual, preconditioned conjugate gradients, quasi-minimal residual, and symmetric LQ

methods are available MATLAB functions. For the first-order, linear simulation, each of these

37

preconditioned solvers, except the quasi-minimal residual which was much slower, calculated the

solution in similar times. The biconjugate gradients stabilized method is chosen as the solver for

each type of simulation for consistency and calculation time comparison for different problem

sizes. For the biconjugate gradients stabilitized method used, the solver tolerance was 10-5. The

MATLAB built-in function “ichol” to form the sparse incomplete Cholesky factorization was used

to form the preconditioner. For this problem, the matrix is symmetric, positive definite, so the

incomplete Cholesky factorization is a suitable preconditioner. The modified incomplete Cholesky,

lower triangle preconditioner was formed using threshold dropping of tolerance 10-3. Once the

value for the magnetic vector potential was solved, the corresponding magnetic flux density per

element was computed by equation (2.48), and the eddy current density was computed by equation

(2.54)

2.7.2 Second-order, linear simulation

The second-order element mesh, specifically for the three additional nodes per element and

edges between elements used to determine boundary nodes, was generated with the MATLAB

PDE toolbox and the LehrFEM 2D finite element toolbox [23].

The second-order linear simulation follows the same simulation process as the first-order

linear simulation except with second-order defined matrices. These matrices are the [S] and [T] per

equations (2.37) and (2.38). Additionally, the magnetic flux density is calculated for each local

node per element according to equations (2.49) and (2.50). The same preconditioner was not used

for the second-order linear simulation as for the first-order linear simulation since it did not result

in a converging sparse iterative solution to the specified 10-5 tolerance. Instead, the lower

triangular, unmodified incomplete Cholesky factorization with zero fill was used for the

preconditioner.

38

2.7.3 First-order, nonlinear simulation

The nonlinear problem mesh is formed the same way as the linear problem mesh. The

nonlinear reluctivity vs. 2B and nonlinear 2B

ν∂
∂

vs. 2B are each represented by a piecewise linear

interpolation function according to the nonlinear magnetic material properties.

The nonlinear simulation is set up to solve equation (2.70) with equation (2.71) using the

Newton-Raphson method to solve the nonlinear system of equations. The matrices []T and []S

without the associated ν are computed once at the beginning of the simulation. The nonlinear

iterative process outlined in section 2.6, Nonlinear Formulation, is implemented. For first-order

elements, the magnetic flux density and reluctivity are constant throughout the element and are

thus assigned per element. The Newton-Raphson residual ε used was 10-6. The incomplete

Cholesky factorization preconditioner resulted in pivoting errors when it was called to compute

and did not enable the biconjugate gradient stabilized solver to converge. Instead, the sparse

incomplete LU factorization preconditioner was used according to the MATLAB function “ilu.”

The row-sum modified incomplete LU Crout version factorization with drop tolerance 10-5 was

used and resulted in converged solutions for the biconjugate gradient stabilized solver. The sparse

iterative linear solver tolerance was 10-5.

An under-relaxation factor according to equation (2.82) was used for each Newton-

Raphson iteration and time step. The value of the relaxation factor was determined experimentally

using the value closest to 1 but still allowing the Newton-Raphson iteration to converge and not

overstep the solution. This approach minimizes the number of Newton-Raphson iterations while

still resulting in a converging solution.

39

In addition to the relaxation factor, the element size and time step difference t∆ affect the

Newton-Raphson convergence. For the first-order, nonlinear simulation, both coarse and fine

meshes for the benchmark problem and t∆ = 1 ms result in a converged solution.

2.7.4 Second-order, nonlinear simulation

The second-order, nonlinear simulation follows the same process as for the first-order,

nonlinear simulation. The second-order matrices were computed according to equations (2.37),

(2.38), (2.39), (2.76), (2.77), and (2.81). As described previously, the nonlinear reluctivity and

resulting 2B

ν∂
∂

 and
2B

A

∂
∂

are computed for each local node per element. The magnetic flux density

is calculated for second-order elements by equations (2.49)-(2.51). The same incomplete LU

factorization type of preconditioner and iterative solver used for the first-order, nonlinear

simulation was used for this simulation.

The second-order, nonlinear simulation had Newton-Raphson convergence issues that did

not arise for the other simulation types. For the benchmark problem, the coarse mesh problem

could only converge for t∆ = 1 ms for simulation times 1-4 ms. Beyond that, smaller t∆ values

had to be used in order for the Newton-Rapshon iterations to converge to the 10-6 residual.

Solutions were calculated up to 27.487 ms with a t∆ = 0.001 ms. For subsequent times, it was

determined that for a reasonable computation time, the fine mesh needed to be used in order to

achieve convergence for a larger t∆ .

For the benchmark problem fine mesh, the solution converged for t∆ =1 ms for times 1-18

ms. For subsequent times, t∆ =0.5 ms resulted in converged solutions for times 18-20 ms, and t∆

=0.1 ms resulted in converged solutions for times 20-21.7 ms. The remaining part of the

40

simulation was not conducted due to the nonlinear convergence problems. Results are presented

for times 1-18 ms to show scalability of the GPU solution.

For the linear induction machine problem, the large air gap and excitation resulted in the

operation of the magnetic material in the linear region. Nonlinear problem solutions did achieve

convergence for the M19 steel representation using continuous analytical functions to represent v-

B2 and 2B

ν∂
∂

. However, the results were similar to the linear magnetic material results, so they are

not presented.

A complete nonlinear solution of the benchmark problem is available for the first-order

elements, but not for the second-order elements due to the nonlinear convergence problem. This

convergence issue could potentially be resolved by using an even smaller t∆ , finer mesh, or a

continuous analytical expression of the nonlinear magnetic material properties instead of the

piecewise linear representation. For electric machine design and analysis problems, the higher-

order element simulations with nonlinear magnetic material should result in higher fidelity

solutions than for first-order elements. As part of the tradeoff of simulation detail and computation

time, the higher-order element simulations require a smaller time step or finer mesh than the first-

order element simulations to achieve convergence, resulting in a longer computation time. This

trade-off may be reasonable when detailed simulation results are desired, such as for magnetic

material saturation near tooth tips.

41

CHAPTER 3

ACCELERATING THE FINITE ELEMENT SIMULATION

The finite element simulation of a low-frequency nonlinear electromagnetic problem can be

accelerated using a numerical or parallel computing method or both. The Shooting-Newton [4]

numerical method was investigated. Multi-core and GPU parallel computation methods were also

studied.

3.1.1 Numerical methods

When the steady-state analysis of an electromagnetic problem is desired, there are

numerical approaches, such as the shooting-Newton method [4], that can be utilized. Additionally,

domain decomposition techniques can be utilized to subdivide the problem for different processing

techniques [5].

Methods for steady-state analysis reduce the need for a transient solution to achieve the

steady-state solution. For an induction machine, eddy current is represented through transient

analysis. For different machine topologies such as permanent magnet synchronous machines,

steady-state analysis can be utilized for machine nominal performance design.

One approach of the shooting-Newton method, which requires Gaussian elimination,

assessed for simulation acceleration involves a matrix-free Krylov-subspace approach [4]. The

shooting method approach is to find the periodic steady-state solution of the problem by comparing

the computed solution at the end of the period and determining if it matches the initial condition at

the start of the period. The method outlined in [4] was experimented for the benchmark problem

3.1 Methods of Accelerating Finite Element Simulations

42

later presented. For this specific type of finite element analysis, this method did not appear to

reduce the computation time because the numerical integration required a small change in time,

resulting in a longer computation time than the transient finite element analysis formulation.

3.1.2 Parallel processing methods

3.1.2.1 Multiple core

Multiple-core processors provide a means to accelerate certain simulations such as ordinary

differential equations. For an implementation in which each equation is independent, not related to

the solution of a separate set of equations or other variables, and can be implemented in any order,

the solution of these equations is easily solved in parallel. For the time-domain finite element

simulation, each time step of the solution must be computed sequentially, but it may be possible to

decompose the domain for each time step and compute the solution of each subsection in parallel

[5].

For example, MathWorks has developed a parallel for-loop that enables parallel for-loop

implementation across each core of a processor [24], [25]. The parallel ordinary differential

equation example describes the use of the parallel for-loop to solve a parameter sweep study of a

second-order ODE system [26]. First, the example solves 3500 ODEs in serial using the ode45

solver. Then, the example solves the same number of ODEs using the parallel for-loop. For a

processor with four cores, the speed-up of this example is tested to be approximately 3.63, which is

nearly linearly proportional to the number of cores. This is due to the fact that this loop has

minimal overhead in terms of data transfer.

Another means of multi-core processing and parallel loops is using single program multiple

data (SPMD) [27]. This type of processing is suitable for simulations that can be implemented in

43

any order and be solved in parallel. SPMD is a shared-memory approach using message passing.

One task per processor is executed, and each processor executes the same code. In this way, a

parallel loop can be implemented. An API readily available for shared memory multiprocessing is

Open Multi-Processing (OpenMP). It provides a means of multithread processing whereby a block

of code is executed in parallel [27].

Message Passing Interface (MPI) is a message-passing communication protocol developed

for parallel programming such as scalable cluster computing [27]. The computing nodes do not

share memory and interact through message passing. Programs that use MPI use a set of routines

callable from several types of programming languages, making MPI portable.

There are several examples from the literature about parallel processing applied to finite

element simulations using MPI and domain decomposition (DD) [5], [28], [29], [30], [31].

Applications of such simulations include structural dynamics and electromagnetic simulation of

electric machines. The application described in this thesis is the time-domain, nonlinear simulation

of an induction machine in two dimensions for a fixed position. The time domain simulation of

this problem is essential in order to simulate the eddy currents of the induction machine.

Examples from the literature include aspects of this type of simulation but not all in a single

simulation using one or more parallel processing methods.

A simulation by engineers in Tokyo [30] describes a method to parallelize the 2D, steady-

state analysis of nonlinear induction machine magnetic fields. The approach, called the parallel

time-periodic finite-element method (PTPFEM), parallelizes the simulation in the time-axis

direction rather than in each time step. The simulation approach taken in this thesis and typical

with domain decomposition is by each time step. By solving the equations for all nonlinear

unknowns at every time step for a period simultaneously, the problem is posed for a larger number

44

of equations which lends itself to greater speed up from parallelization in this approach. This is

useful for the steady-state analysis of the induction machine and not the transient. This thesis does

not necessarily focus on the steady-state simulation of the induction machine. In the early stages of

a machine design, it may be beneficial to understand the steady-state behavior of the machine. In

this case, an approach such as this may be useful. The authors use MPI communications for the

parallel processing. The BiCGstab2 method and localized ILU preconditioning are used. To

stabilize the convergence of the Newton-Raphson method, the authors apply the line search based

on the minimization of energy function. The authors claim, but do not quantify, that the

communication overhead associated with domain decomposition for parallel performance causes

the performance to suffer for small scale analysis. The example simulation described for an

induction machine includes 13,198 elements, 256 time steps to form a period, and 3,252,480

unknowns. A supercomputer is used for the simulation where each node consists of four AMD

Opteron 8356 processors, and the backward Euler method is used for time integration. The

PTPFEM simulation results were compared for 1, 8, 16, 32, 64, and 128 processes, as well as for

the transient approach called the time-periodic explicit error correction method, which is a time-

domain approach to find the steady-state solution faster than traditional time-domain approaches.

For a slip of 1, the PTPFEM approach achieved a speed-up of 7.06, and for a slip of 0.0588, the

PTPFEM approach sped up the solution by a factor of 8.4. The authors did not describe a means to

parallelize the time-domain approach and compare those results to the PTPFEM approach. As the

number of processes increases, the speed-up increases, showing the effectiveness of the PTPFEM

approach for highly parallel computation.

Another example of the use of MPI was done by researchers at the University of Alberta

[29]. A two-dimensional, transient, nonlinear simulation of an induction machine was

45

implemented using the Newton-Raphson method for linearization and domain decomposition.

The induction machine was simulated with an interbar rotor circuit model. The parallelization was

done with three PCs using 3.2 GHz Pentium D processors and MPICH2. The problem was of

similar size in this thesis for the first-order element simulation of the benchmark problem. In [29],

the finite element simulation consisted of 1941 nodes and 3534 first-order elements per time step.

For the simulation of 1000 time steps, three simulations were completed using different methods:

the traditional Newton-Raphson (NR) method, NR method with domain decomposition, and

parallelized NR with domain decomposition. The simulation times for these methods were 2270

s, 1581 s, and 395 s respectively. Comparing the serial and parallel NR with domain

decomposition techniques, the parallelized simulation resulted in a speed-up of 4. Note also that

domain decomposition resulted in a speed-up of 1.43, and comparing traditional NR with

parallelized NR with DD resulted in a speed-up of 5.75. This may show that depending on the

implementation of domain decomposition, further simulation speed-up may be obtained by using

domain decomposition with parallel processing such as with MPI.

 A variation of parallel processing using MPI for a domain decomposition technique for

nonlinear dynamic finite element analysis was simulated for a structural dynamics problem [31].

The simulated problem requires the solution of second derivative differential equations, and the

unconditionally stable Newmark-β method is used for the time integration of the problem. The

parallel algorithm uses a method with overlapped domains with a predictor-corrector scheme. The

parallel algorithm is implemented on a cluster workstation using MPI. The number of partitioned

subdomains matches the number of processors. The algorithm was implemented for a mesh size

with 4710 unknowns and for a finer mesh with 17,322 unknowns. The larger mesh size provides a

slightly better speed-up than for a smaller mesh size, indicating the typical trend that the

46

performance of the parallel algorithm improves with increase in problem size. For 8 processors,

the smaller mesh speed-up was 4.7, and for the larger mesh the speed-up was approximately 5.

Researchers at the University of Tokyo and Kyushi University have also researched

domain-decomposition techniques applied to electromagnetic finite-element simulation [28]. They

applied the Heirarchical Domain Decomposition Method (HDDM) to a 3D nonlinear

magnetostatic problem. The domain decomposition technique allowed them to use parallel

computing with a supercomputer consisting of 64 nodes and 1024 cores. They investigated

different magnitudes of convergence criterion of two iterative solvers and how that affects the

computation time and convergence of the subdomain interface problem. The two iterative solvers

compared are the incomplete Cholesky-conjugate gradient method with shifted incomplete

Cholesky factorization preconditioner and the LU decomposition with pivoting. The specific

speed-up of the domain decomposition problem solved by the Supercomputer is not specified, but

they indicate that the problem had 1.2 billion degrees of freedom and solved in 4.8 hours with

approximately 80% of the time dedicated to computing and 16% of the time to communication. A

sequential solution for a smaller problem with 100 million degrees of freedom was solved in 4.5

hours. Assuming the supercomputer can solve the smaller 100 million degrees of freedom

problem in a proportional amount of time (which is not the case – the communication overhead

will likely increase), then the supercomputer may be able to solve this problem in 0.32 hours,

resulting in a potential speed-up of 14 due to the application of domain decomposition to multiple

cores and processors.

3.1.2.2 Graphical processing units

Graphical Processing Units (GPUs) can be utilized not only for graphics processing but

also for parallel computing [32], [33]. A GPU may consist of hundreds of cores that can be

utilized for multithreaded, single-instruction computation. Depending on the application, the

47

numerous cores could yield a large speed-up compared to CPUs. The fundamental design

differences between CPUs and GPUs can be utilized to achieve a faster simulation. Figure 3.1

from [33] illustrates the CPU and GPU design differences. The CPU is optimized for sequential

execution with a larger amount of memory, while the GPU has higher bandwidth, approximately

10 times on average [32].

Figure 3.1 CPU and GPU design illustration [33]

 The general architecture of a GPU is illustrated in Figure 3.2. Each block shows an array

of highly threaded streaming multiprocessors. In each block, there are two streaming

multiprocessors. Each of these has several streaming processors, represented by the green square.

Figure 3.2 Example GPU architecture [34]

48

Figure 3.3 illustrates how the GPU memory, data transfer, and threads are structured. Each

device is composed of multiple grids which contain multiple blocks. Each block contains multiple

threads that can each be used to execute a single process. Each thread has access to local, global,

and shared memory. The shared memory is shared among the threads in each block. The kernel

function specifies the code that all threads should execute in parallel. This process is the SPMD

process. When the kernel is launched, it executes the parallel threads in the grid [32]. To utilize

the full capability of the GPU hardware, the threads should be adequately allocated to maximize

the parallelism.

The amount of speed-up that can be expected from GPU parallel processing depends on the

portion of the application that can be computed in parallel [32]. In most applications, only a

portion of the problem can be computed in parallel. Additionally, a practical speed-up ceiling

exists, such as a possible maximum of 100 times speed-up, which limits the expected simulation

speed-up.

Figure 3.3 Abstract representation of GPU structure [33], [32]

49

Interaction between the CPU and GPU within a program is similar to message passing

since there is limited shared memory between the processors. The data transfer between the CPU

and GPU thus contributes to the overhead of a hybrid CPU/GPU simulation and should be

minimized [32].

3.2 GPU Parallel Processing for the Finite Element Simulation

3.2.1 Components of FEA suitable for GPU parallel processing

There are several components in the finite element simulation, some of which may be

suitable for parallel processing and some which may not be. The components that are suitable are

parts where the computation can be distributed to multiple processors for parallel processing, then

reassembled for the domain solution to that component. The time-domain finite element

simulation for eddy-current problems requires the solution for each time step to be computed, and

the previous time step solution is required for the next time step computation. Thus, multiple time

steps cannot be distributed for parallel processing; one time step at a time must be considered

unless a different numerical method is used. Within each time step, there are several components

to the finite element simulation, as discussed in section 2.3 Time Discretization, section 2.6

Nonlinear Formulation, and section 2.7 Implementation.

1. Matrix assembly

2. Matrix multiplication: Magnetic flux density calculation (post processing for linear

formulation, used to determine nonlinear reluctivity for nonlinear formulation)

3. Matrix multiplication: [] t t
kG +∆ for nonlinear formulation only based on nonlinear

reluctivity

50

4. Solution of the next time step { }t t
A

+∆
for the linear formulation, or iteration { }t t

k
A

+∆∆

for the nonlinear formulation. Solution is computed using a sparse iterative solver with

preconditioner.

5. Nonlinear reluctivity and 2B

ν∂
∂

determination based on 2Bν − for nonlinear magnetic

material only

6. Post processing: eddy current density, force calculation using multiplication

The finite-element mesh creation and assembly prior to computations for the magnetic vector

potential are not considered.

 In addition to identifying the components where GPU parallel processing can speed up the

simulation, the CPU computation time percentage of each component should be understood. To

gain the most speed-up, ideally the components that require the longest computation time should

lend themselves to GPU parallel processing. In Chapter 4, Simulation of the Benchmark Problem,

the component computation time will be discussed for the linear and nonlinear formulation for

different mesh densities. The component with the longest computation time is formulation of the

preconditioner and sparse iterative solver solution, followed by matrix multiplication for the

magnetic flux density and [] t t
kG +∆ , with the remaining components of matrix assembly, nonlinear

reluctivity determination, and eddy current density calculations requiring the shortest computation

times.

With the sparse iterative solver and matrix multiplications requiring longer computation

time than the other components, these components were chosen to study how GPUs can be used

for parallel processing with the goal to provide speed-up relative to the CPU simulation. The

51

remaining components are left on the CPU to form a hybrid CPU/GPU MATLAB-based

simulation. In particular, the MATLAB sparse matrix assembly and storage yields fast

computation times not readily achievable with the gpuArray format. There are numerous research

efforts that have studied how GPUs can be used for sparse matrix-vector multiplication and sparse

iterative solvers [35], [36], [37], [38], [39], [40], [41], [42], as is discussed in section 3.2.2.1

NVIDIA CUDA. This research studies how GPUs can be used to speed up these components to

form a hybrid CPU/GPU desktop-based MATLAB simulation for the time-domain finite element

analysis required for detailed electromagnetic induction machine analysis.

3.2.2 Implementation methods for GPU parallel processing for FEA

Several programming languages are available to use GPUs for parallel computing,

including OpenGL, OpenCL, Compute Unified Device Architecture (CUDA), and higher-level

language tools such as the parallel computing toolbox with MATLAB script programming

language. OpenGL is utilized for graphics programming and requires in-depth knowledge of the

programming language. CUDA, developed by NVIDIA, is an extension of C. This makes it more

accessible to programmers without the need to know graphics programming. This section focuses

on the use of CUDA, MATLAB extensions, and the MATLAB parallel computing toolbox.

3.2.2.1 NVIDIA CUDA

CUDA is a C-based programming language that extends C-programming for use with

GPUs for scientific parallel computing. In addition to the CUDA language, libraries have been

built to allow functions to be accessible to the average programmer and expand the use of CUDA.

In particular, for CUDA used for numerical solutions of partial differential equations, such as for

electromagnetic finite element simulation, the sparse linear algebra library CUSP [43] and

cuSPARSE library [44] provide useful functions. CUSP expands the Basic Linear Algebra Library

52

(BLAS) to apply linear algebra to sparse matrices. It supports several sparse matrix formats:

coordinate (COO) storage of sparse matrices (similar to sparse matrix storage in MATLAB),

compressed sparse row (CSR), diagonal (DIA), ell (ELL), and hybrid (HYB). According to

NVIDIA, the diagonal and ell formats are the most efficient for computing sparse matrix-vector

products, and therefore are the fastest formats for solving sparse linear systems with iterative

methods, such as the conjugate gradient method. The coordinate and CSR formats are more

flexible than DIA and ELL and easier to manipulate. Additional useful functions within the CUSP

library are preconditioners and iterative solvers. Iterative solvers include the conjugate-gradient,

biconjugate gradient, biconjugate gradient stabilized, generalized minimum residual, multi-mass

conjugate gradient, and multi-mass biconjugate gradient stabilized. CUSP provides the

preconditioners algebraic multigrid based on smoothed aggregation, approximate inverse, and

diagonal.

A comparison of ILU and Cholesky preconditioned iterative methods using CUSPARSE

and CUBLAS was made by researchers with NVIDIA [35]. Numerical experiments with the

incomplete factorization performed on the CPU and iterative method on the GPU were conducted.

The experiment shows that the ILU and Cholesky preconditioned iterative methods achieved an

average of two times speed-up using the CUSPARSE and CUBLAS libraries on the GPU over the

MKL implementation on the CPU. The test matrices ranged from square matrix sizes with

147,900 to 1,585,478 rows and columns, and the number of nonzero elements of the test matrices

ranged from approximately 1 to 17 million. The speed-up for different problems ranged from less

than 1 to 5.5 and is highly dependent on the sparsity pattern of the coefficient matrix. For each

iteration of the incomplete-Cholesky preconditioned CG method, one sparse matrix-vector

multiplication and two triangular solves are performed. For each iteration of the incomplete-LU

53

preconditioned BiCGStab iterative method, two sparse matrix-vector multiplications and four

triangular solves are performed. The total speed-up that can be achieved for a complete solution

will depend on the preconditioning time and number of iterations, not just the computation

required to perform one iteration. The majority of the computation time for both of these iterative

methods is spent for the triangular solve. Generally, the speed-up was greater for solutions

requiring a larger number of iterations and for less dense factorization. Denser factorization

inhibits the parallelism of these algorithms due to the dependence between rows in the sparse

triangular solver.

In [36], the authors also explore the use of GPUs for sparse matrix-vector products and

several preconditioning and iterative solver methods. Comparing CPU and GPU implementations

of the sparse triangular solve, the use of level scheduling can result in an improved matrix structure

more suitable for parallel computing. This type of sorting groups several unknowns into levels

such that the unknowns for one level can be computed at the same time, or in parallel [11]. The

ability of the GPU to speed up the computation of the parallel triangular solve depends on the

number of levels. Minimization of the number of levels improves the GPU computation time

speed-up. An example technique to reduce the number of levels is the Multiple Minimal Degree

ordering [45]. The greatest speed-up achieved using the GPU level scheduling sparse triangular

solve technique for the matrices tested was approximately 2.6 for a square matrix with 2.1 million

nonzero elements for a matrix size 525,000 x 525,000. The preconditioned iterative methods

considered were for the incomplete LU factorization, incomplete Cholesky factorization, block

Jacobi preconditioner, multi-color SSOR, and least-squares polynomial preconditioner. Certain

preconditioners were paired with the CG or GMRES iterative solver. For each of these

experiments, in many cases the triangular solves in the preconditioner were computed on the CPU

54

because the CPU computation time was faster than the GPU computation time. The greatest GPU

speed-up achieved for the cases considered was 4.3 for the GPU-accelerated ILUT-GMRES

method for the matrix with 8.8 million nonzeros for a matrix 1.27 million x 1.27 million. For the

sparse matrices used for the numerical experiments, the GPUs can be used to speed up the

computations, but their performance is limited for the sparse matrices compared to dense matrices.

3.2.2.2 MATLAB and extensions

There are several approaches to using GPUs with MATLAB script programs. With the

parallel computing toolbox, there is a gpuArray type that readily allows the user to convert an array

into this type and store the array on GPU as a full, single-precision array. This allows for direct

manipulation of the gpuArray with the MATLAB script. Another option is the use of mex files to

link a C, C++, or Fortran source file with the MATLAB program. This provides a means to pass

MATLAB variables to and from this function. With CUDA being an extension of C, this readily

allows the MATLAB program to call the CUDA program via the mex file. Additionally, a sparse

gpuArray format was developed by MATLAB users as an extension of the gpuArray type to

readily allow sparse matrix computation using gpuArray.

3.2.2.2.1 MATLAB gpuArray

A MATLAB gpuArray is stored on the GPU. Data can be created on the CPU and then

transferred to the GPU, resulting in communication time overhead, or created on the GPU. This is

accomplished using the gpuArray type. There are limitations to this type: the matrix must be non-

sparse (full) and of the data type single, double, int8, int16, int32, int64, uint8, uint16, uint64, or

logical. Thus, for problems well-suited to sparse matrix solvers, the use of GPUs and MATLAB

built-in functions will not inherently provide a faster computational speed. MathWorks has

55

adapted built-in functions to support the gpuArray type. For this list of functions, see Appendix D

Built-In MATLAB Functions that Support GPUArray for MATLAB 2012A, and Appendix E

Built-In MATLAB Functions that Support GPUArray for MATLAB 2014A. When one of these

functions is called with at least one gpuArray input argument, the function is executed on the GPU

and returns a gpuArray result.

An example of the use of gpuArrays with MATLAB functions to accelerate the matrix fast-

Fourier transform (FFT) is the solution of the second-order wave equation using spectral methods

[26]. The solution to the equation

2 2

2 2

u u u

t x y

∂ ∂ ∂= +
∂ ∂ ∂

with boundary conditions 0u = is implemented using a second-order central finite difference in

time, and a Chebyshev spectral method in space using the FFT. The implementations with CPUs

and GPUs are identical with the exception of gpuArrays used for vectors and matrices for the GPU

implementation. The real, fft, ifft and matrix multiplication functions are used with gpuArrays to

accelerate the computation. The iteration is also calculated using element-wise multiplication,

addition, and subtraction. Each time iteration solution depends on calculations for the previous and

current iteration. The previous iteration solution is merely saved in a gpuArray and stored in a

separate matrix used to calculate the current solution. This previous time iteration solution does

not need to be transferred between the CPU and GPU. Testing of this implementation with a CPU

running Windows 7 SP1 with Intel core i5-2400 CPU @ 3.10 GHz, 4.00 GB RAM, 64-bit OS and

with a GPU GeForce GTX 570 with 1024 threads per block and 15 multiprocessors, results in the

computation speeds shown in Figure 3.4 and speed-up shown in Figure 3.5. As is expected, the

speed-up improves as the grid size increases due to the reduced data storage overhead relative to

computation time for larger problem sizes.

56

Figure 3.4 Computation speed for CPU and GPU simulations using MATLAB ifft
function with gpuArrays

Figure 3.5 Speed-up for MATLAB ifft function with
gpuArrays

Another benchmark example of GPUs to CPUs developed by MathWorks is the mldivide

or backslash operator (\) used to calculate x from the system of equations x = A\b [24]. The time

measured is only the computation time to calculate x; it does not include the cost of transferring

data between the CPU and GPU or the time it takes to create a matrix. Note that since gpuArray

matrices are only defined for full matrices, the A matrix used with mldivide is a full matrix.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

Grid Size (N)

S
pe

e
d

U
p

(C
P

U
/G

P
U

 ti
m

e)
 fo

r 5
0

ite
ra

tio
ns

Speed Up

57

Compared to CPU sparse matrix solutions with mldivide or CPU sparse iterative solvers, the full

matrix gpuArray mldivide computation time is much longer. Figure 3.6 shows the calculated

speed-ups for the mldivide function for several matrix sizes and single or double precision

matrices. The computation time for these calculations was done with the same CPU and GPU as

described for the previous example. Especially for single precision, the larger the matrix size, the

greater the speed-up. These matrix sizes are multiples of 1024 which facilitates greater speed-up

than for other multiples based on the single and double precision byte size. Although there are 15

processors available with the GeForce GTX 570, the speed-up for the largest matrix size with

single precision is approximately 4. The speed-up achieved depends on the algorithm

implementation.

Figure 3.6 Speed-up results for single and double precision
calculations for MATLAB mldivide

3.2.2.2.2 MATLAB and MEX files

MEX files can be used to link MATLAB arrays with C files. They provide a means to link

CUDA code and libraries to gpuArray data on 64-bit platforms. Support for MEX files containing

1000 2000 3000 4000 5000 6000 7000 8000 9000
1

1.5

2

2.5

3

3.5

4

Matrix size

S
pe

ed
up

Speedup of computations on GPU compared to CPU

Single-precision

Double-precision

58

CUDA code was developed for MATLAB version 2013a and later. Programs using C, C++, or

CUDA with functions developed for external libraries can be linked to MATLAB data types and

formats with the MEX files. Since the gpuArray type does not yet support a sparse matrix format,

it is advantageous to make use of MEX files as a means to perform GPU computation in a sparse

matrix format linking to already developed CUDA libraries enabling sparse computation of GPU

data. As discussed in Section 3.2.2.1 NVIDIA CUDA, such sparse data and matrix CUDA

libraries are CUBLAS, CUSP, and cuSPARSE. CUDA version 4.0 with CUSP version 0.4.0 and

Thrust v1.2 is used in experimental simulations.

The entry point to the MEX-file is the mexFunction. The mexFunction contains the CUDA

or C code that interacts with the MATLAB objects (on CPU or gpuArray) and runs the CUDA

code. MEX files can allocate memory within the mexFunction. MATLAB links the

mexFunction C or CUDA source file to MATLAB by compiling the source file into a binary

MEX-file. The MEX-file only needs to be created once to compile the source file. For example,

executing the command for the CUDA source file “cusp_solve.cu” containing the mexFunction,

mex –largeArrayDims cusp_solve.cu

will compile this CUDA source file into a binary MEX-file. From there, this source code can be

executed with other MATLAB code similarly to a MATLAB function. MATLAB function or

workspace variables can be passed into and out of this source code. The “largeArrayDims” option

uses the MATLAB large-array-handling APLI and must be used when calling Linear Algebra

Package (LAPACK) or Basic Linear Algebra Subprograms (BLAS) functions in the source file.

Alternatively, a MATLAB kernel object can be used to execute a CUDA thread. Files

developed using the CUDA programming language (CU files or kernels) and PTX files can be

executed on the GPU using MATLAB. PTX files are parallel thread execution files. The CU file

59

must be compiled to create the PTX file using the nvcc compiler in the NVIDIA CUDA Toolkit.

For example,

nvcc -ptx myfun.cu

generates the file named myfun.ptx. Using the .cu and .ptx files, a MATLAB kernel object can be

created and used to evaluate the kernel

k = parallel.gpu.CUDAKernel('myfun.ptx', 'myfun.cu');

The feval function is then used to evaluate the kernel on the GPU. Inputs can be from the

MATLAB workspace data on the CPU or gpuArray type. It may be more efficient to use

gpuArray objects as inputs to the kernel. The outputs of the kernel evaluation are gpuArray. The

CUDAKernel object is already compiled CUDA. Access to GPU memory must be pre-allocated

before execution of the kernel. The evaluation of the kernel returns a gpuArray, so transfer is not

required between the GPU and CPU.

3.2.2.2.3 Sparse gpuArray format

While the gpuArray format allows the user to readily convert CPU matrices and vectors to

GPU matrices and vectors, the gpuArray format is limited. As stated previously, a limited number

of MATLAB built-in functions are overloaded and useable with the gpuArray format.

Additionally, as of the time of this research, the gpuArray format is only available for full vector

and matrix formats. Only since MATLAB version R2015a has the gpuArray sparse format been

available, and the only function available with this format that could increase GPU performance

for the FEA problem is the matrix multiplication function. Finite element simulations involve

sparse matrices by nature, and they are typically large, involving at least thousands of unknowns.

The sparse matrix format allows this type of problem to be solved faster and with less memory

than an equivalent full matrix format. This motivated the need for a sparse gpuArray format.

60

Several research institutions have developed gpuArray sparse formats for MATLAB. In

late 2013, researchers from the Lawrence Berkeley National Laboratory released a set of code for

MATLAB users for the gpuArray sparse class, called gcsparse, using the CUSP library [46]. This

code defines the class gcsparse. The sparse gpuArray formats available are COO and CSR.

Overloaded functions for this class are defined for transposition, sparse matrix multiplication

(mtimes), real, complex, find, size, type, ptr2row, and row2ptr. The sparse matrix multiplication

function uses a MEX file created for the mexFunction containing CUDA code. This CUDA code

uses the input arguments consisting of the sparse gpuArray matrix and vector (which can be sparse

or full gpuArray). Based on the specified sparse matrix storage format (COO or CSR), CUDA

pointers to the matrix and vector are created. The CUSP “multiply” function is used to implement

the sparse GPU matrix-vector multiplication. The mexFunction output is the result of the

multiplication on the GPU. The MATLAB output of the MEX file is the gpuArray result.

61

CHAPTER 4

SIMULATION OF THE BENCHMARK PROBLEM

The benchmark problem used to develop and test the finite element simulation programs is

the TEAM 10 benchmark problem [47]. It consists of steel plates around a coil as an example

nonlinear transient eddy current problem. The nonlinear initial magnetization B-H curve

describing the steel magnetic properties is shown in Figure 4.1. The dimensions of the problem are

shown in Figure 4.2. It is a three-dimensional problem. For the purpose of this set of simulations,

the problem is reduced to two dimensions by simulating the cross section shown in Figure 4.2a

with current excitation in the coils simplified by assuming infinite length into and out of the page.

The conductivity of the steel is given as 67.505 10⋅ S/m. The excitation current is

 ()/0.05
0 5.64 1 AtI e−= − (4.1)

Figure 4.1 Normal magnetization curve of steel

4.1 Problem Description

62

Figure 4.2 Geometry of TEAM problem 10 (dimensions in millimeters):
(a) side view, (b) top view

For use to evaluate the accuracy of finite element simulations, three search coils were

positioned on the steel plates to measure the average flux densities and eddy current densities on

the surface of the steel plates. Reduced to two dimensions, the search coils are positioned at the

points shown in Table 4.1. Figure 4.3 shows the measured magnetic flux densities at these search

coil positions and eddy current densities on the steel plate surface at these positions.

Table 4.1 Benchmark Problem Measured Positions

Search Coil Number x (mm) y (mm)

1 0-1.6 0
2 41.8 60-63.2
3 122.1-125.3 0

Figure 4.3 TEAM 10 benchmark problem magnetic flux density and eddy current
density measured at three search coils

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

B
 (

T
)

Magnetic Flux Density at Three Different Points

Meas B1

Meas B2

Meas B3

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Three Different Points

Meas J
ey

1

Meas J
ey

2

Meas J
ey

3

63

The hybrid GPU/CPU time-domain finite element program was developed to incorporate

GPU computation for the suitable FEA program components based on the CPU MATLAB linear

and nonlinear program implementation discussed in section 2.7 Implementation. For each type of

program – first-order linear, second-order linear, first-order nonlinear, and second-order nonlinear

– a hybrid GPU/CPU program was developed. The GPU parallel processing methods were the

same for each type of program.

For each program, the matrix assembly was computed on the CPU using MATLAB’s

sparse matrix storage and sparse matrix functions. Once the matrices are assembled, they are

converted to the sparse gpuArray format using the gcsparse class. This requires a conversion from

the CPU double format to the GPU single format. The CSR sparse matrix storage format is

utilized. The vectors used for computation including the magnetic vector potential solution are

stored as gpuArray vectors.

The gcsparse class is used in order to explore the GPU speed-up of the sparse matrix-vector

multiplication CUSP function “multiply.” Sparse matrix-vector multiplication using the CSR

sparse matrix storage format yielded accurate results, but when the COO storage format was used,

the results were inaccurate or nonsensical. As discussed in section 3.2.2.2.3 Sparse gpuArray

format, the gcsparse class overloaded multiplication function is defined using a MEX file that links

the MATLAB gpuArray inputs with the compiled CUDA source file mexFunction. The MEX

function uses the mxGPUArray type from the MATLAB mxGPU API to create pointers to the

MEX function inputs, perform calculations, and return outputs to MATLAB. The sparse matrix

multiplication source file for the CSR storage format creates pointers to the appropriate CSR-

format input matrix, allocates memory for the vector output, and calls the CUSP function multiply.

4.2 GPU Parallel Processing Methods

64

This MEX file is created once using the mex function to compile the CUDA source file. This

compilation time is not included in the GPU program computation time and only takes a few

seconds.

Using the sparse gpuArray matrix and gpuArray vector formats, the GPU sparse matrix-

vector multiplication is used to calculate the magnetic flux density for the linear and nonlinear

program, and
2B

A

∂
∂

 and SAterms for [] t t
kG +∆ for the nonlinear program. The same syntax using the

“*” operator for matrix-vector multiplication is used. With the operator overloaded for the

gcsparse and gpuArray formats, MATLAB will use the gcsparse class multiplication function.

This allows the hybrid GPU/CPU program to be readily converted from the CPU program once the

sparse gpuArray and overloaded functions with MEX files are created.

The preconditioner is computed using the MATLAB function on the CPU given the CPU

sparse matrix inputs. As described in section 2.7 Implementation, the incomplete Cholesky

factorization is used for the linear simulation using the MATLAB “ichol” function, and the

incomplete LU factorization is used for the nonlinear simulation using the MATLAB “ilu”

function. These preconditioners are not defined in the CUSP library. The available

preconditioners in the CUSP library are variations on the Bridson outer product formulation

(approximate inverse), diagonal, and smoothed aggregation. In [35], the author investigates the

CPU and GPU computation time for the incomplete-LU factorization preconditioner formation

using different fill-ins from the preconditioner functions available in the cuSPARSE library from

the NVIDIA CUDA toolkit. The speed-up was highly dependent on the sparsity of the matrix, and

the matrix sizes were much larger, 3-17 million nonzero elements, than the matrix size for this

application, several thousand elements. In this application, only the CUSP library functions were

65

investigated. Using the preconditioner algorithm, a MATLAB script could be written using the

gpuArray matrix format. However, directly using the algorithm with the gpuArray matrix will not

yield speed-up since the direct algorithm steps through each element in the matrix sequentially. A

specialized CUDA program utilizing multithreading is needed in order to utilize the GPUs for

parallel processing. With the desire for direct CPU and GPU computation time comparisons for

the same functions and implementation, since the CUSP library did not have the same

preconditioners defined as used for the MATLAB CPU implementation, the preconditioner

formation was left on the CPU.

The biconjugate gradients stabilized sparse iterative solver computation time was explored

using the CPU and GPU. Using the CPU, the MATLAB “bicgstab” sparse iterative solver was

used. Additionally, two equivalent biconjugate gradient functions following the known algorithm,

with or without a preconditioner, were written [11]. These function can receive inputs that are

either CPU double sparse matrices/vectors or sparse or full gpuArray matrices/vectors. Note that

the bicgstab algorithm without a preconditioner requires two sparse matrix-vector multiplications

per iteration, and the bicgstab algorithm with a preconditioner requires two sparse matrix-vector

multiplications and two sparse matrix-vector solutions per iteration. For the CPU preconditioned

biconjugate gradient algorithm function, the matrix-vector solution is calculated using the

MATLAB “mldivide” function for sparse matrices.

For GPU biconjugate gradients iterative solver computation, several methods were

explored. The gpuArray matrix and vectors were used with the implemented algorithms with and

without preconditioners. The implementation of the bicgstab function without the preconditioner

is the same for the gpuArray format as for the CPU double sparse format. However, for the

implementation of the bicgstab function with the preconditioner, the same implementation for the

66

GPU cannot be used as for the CPU since the MATLAB “mldivide” function is only available for

full gpuArray formats. Instead, to implement this algorithm, the inverse of the preconditioner is

computed on the CPU using the MATLAB “inv” function. Then, in the bicgstab implemented

function with preconditioner for gpuArray and gcsparse, the preconditioner inverse is used to

require four sparse matrix-vector multiplications per iteration instead of two sparse matrix-vector

multiplications and two sparse matrix-vector solutions. The overhead required to compute the

preconditioner inverse is acceptable for small problems but not for larger problems such as the fine

mesh used for this benchmark problem. As a result, the bicgstab implemented function with

preconditioner for the gpuArray is not usable.

Another method for the sparse iterative solver explored is the CUSP “bicgstab” function

without a preconditioner through the MEX file. A CUDA mexFunction given MATLAB CPU

sparse input matrix and vectors to solve, allocates memory and transfers the matrix and vector to

the GPU in COO format, allocates space on the GPU for the solution, calls the Krylov “bicgstab”

function, and outputs the solution. This mexFunction was compiled as previously described to

create the mexFunction. This function with the CUSP bicgstab solver computed accurate results

for small problems, but for larger matrices applied to the benchmark problem, the solver did not

converge and output a diverging solution for the same problem that did converge using the CPU

MATLAB bicgstab function. As a result, this mexFunction was not usable for the finite element

simulations.

For several problem sizes, Table 4.2 shows a comparison of multiple CPU and GPU-

implemented un-preconditioned solver computation times. Speed-up is computed for the fastest

CPU solution over the fastest GPU solution. From this sample of problems analyzed, the density

of the matrix affects the speed-up achieved by the hybrid CPU/GPU program over the CPU

67

program. Assessing the mldivide function using CPU sparse format and full gpuArray format, the

gpuArray format achieves speed-up over the CPU for random sparse matrices. However, for

matrices with similar sparsity as for the finite element simulations, speed-up is not achieved.

Comparing the CPU and GPU biconjugate gradient iterative solver implementations, speed-up is

only achieved for the dense random matrix, not for the finite element sparse matrix. Additional

CPU and GPU iterative solver computation times for the specific problems are discussed in section

4.3 Simulation Results.

Table 4.2 CPU and GPU Comparison Times for Multiple Problem Sizes for Different Solvers Without the
Preconditioner

 CPU or GPU CPU GPU GPU

Speed-
up

CPU CPU GPU GPU

Speed-
up

 Sparse or Full
Matrix

Sparse Full Full Sparse Sparse Sparse Sparse

 Data Structure MATLAB
CPU
sparse

gpuArray gpuArray MATLAB
CPU
sparse

MATLAB
CPU
sparse

CUSP
COO
(original
MATLAB
CPU
sparse) -
includes
transfer to
COO
format

gcsparse

 Solver \ \ \ MATLAB
bicgstab

m file
bicgstab

CUSP
bicgstab

m file
bicgstab

 Single or Double Double Single Double Double Double Single Single

So
lu

ti
on

 T
im

e
fo

r
P

ro
bl

em
 (

s)

Wilk 21x21 matrix 0.00002 0.10132 0.00051 0.04630 0.00153 0.00130 0.02783 0.05980 0.04676

Random 100x100
matrix, symmetric,
diagonal

0.1485 0.2868 0.0312 4.7661 0.0082 0.0050 6.8788 0.3328 0.0151

Random 1000x1000
matrix, symmetric,
diagonal

0.1092 0.1150 0.0209 5.2202 0.0125 0.0261 12.5315 0.1141 0.1094

Random 5000x5000
matrix, symmetric,
diagonal

5.2423 0.4186 0.7420 12.5241 0.0694 0.1589 28.3397 0.0539 1.2876

Random 5000x5000
matrix, symmetric,
diagonal, sparse
with density
9.95533e-4

0.0029 0.2837 0.6708 0.0101 0.0052 0.0099 11.9676 0.0482 0.1085

Random 6927x6927
matrix, symmetric,
diagonal, sparse
with density
9.95533e-4

0.0053 0.6371 1.5931 0.0083 0.0078 0.0139 0.0000 0.0483 0.1618

Linear problem at t
= 50 ms, 6927x6927
matrix, 7219 nnz

0.0134 0.9051 1.5910 0.0148 0.3697 0.3559 0.0000 1.8540 0.1920

Nonlinear problem
at t = 5 ms, first
order elements fine
mesh

0.0413 3.6364 0.0000 0.0113 0.2439 0.6854 0.0000 4.0792 0.0598

68

4.3 Simulation Results

Following the finite element derivations for first-order and second-order linear and

nonlinear simulations, each of these simulations was developed for the TEAM 10 benchmark

problem geometry and material properties. The simulations were developed using MATLAB

scripts. On the CPU, the MATLAB sparse vector and matrix storage and operations were used.

On the GPU, the gpuArray, sparse gpuArray, and MEX files linked to CUDA file were used.

Computation time for the CPU and hybrid CPU/GPU simulations is determined using the “tic” and

“toc” MATLAB functions. All of the simulations for this thesis were conducted on the CPU using

an Intel Core i5-2400 CPU with 4 gigabytes of random-access memory. The Windows 7 64-bit

operating system was used. The GPU for personal computing used for these simulations is the

NVIDIA GeForce GTX 780 (Kepler architecture) GPU with 3 gigabytes of memory and compute

capability 3.5. The GTX 780 has 2304 CUDA cores. Final MATLAB simulation implementations

were developed for MATLAB R2014a.

For each type of simulation, a coarse and fine mesh of the geometry was used to assess

scalability of the GPU simulation. Table 4.3 describes the number of elements and nodes for each

type of simulation. Figure 4.4 illustrates the coarse mesh, and Figure 4.5 illustrates the fine mesh.

The blue elements represent the coils with impressed current density, magenta elements represent

the magnetic steel, and white elements represent air. The elements and nodes that are colored

differently show the tracked nodes and elements in the simulations. The magnetic vector potential

and magnetic flux density solution is calculated for the entire domain for each iteration or time

step, but only specified nodes and element solutions are saved for the entire transient simulation.

69

Table 4.3 Benchmark Problem Mesh Descriptions

 Total Domain Nonlinear Region

Magnetic
Material
Model

Element
Order

Mesh Number of
Nonzero

Elements in
Matrix

Number of
Elements

Number
of Nodes

Number of
Elements

Number of
Nodes

Li
ne

ar
 First Fine 47769 14144 7219 0 0

Second Coarse 62973 3536 7219 0 0

Second Fine 257873 14144 28581 0 0

N
on

-
Li

ne
ar

 First Coarse 11444 3536 1842 932 725

First Fine 47769 14144 7219 3728 2379

Second Fine 257873 14144 28581 3728 8483

Figure 4.4 Coarse mesh for benchmark problem

-0.1 -0.05 0 0.05 0.1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Coarse Mesh for Benchmark Problem

x (m)

y
(m

)

70

Figure 4.5 Fine mesh for benchmark problem

4.3.1.1 First-order elements with linear magnetic material

The first-order element, linear magnetic material solutions for the benchmark problem are

shown in Figure 4.6 for magnetic flux density and Figure 4.7 for eddy current density for the fine

mesh. The computed solutions at the nodes nearest to the search coils are used to compare to the

measured solutions, and those coordinates are shown in Table 4.4 The steel permeability is

represented linearly with relative permeability 1000rµ = . The CPU simulation uses the

biconjugate gradient algorithm implemented function with preconditioner using the MATLAB

double sparse format. The GPU simulation uses the same iterative solver function with the sparse

gpuArray single format.

-0.1 -0.05 0 0.05 0.1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fine Mesh for Benchmark Problem

x (m)

y
(m

)

4.3.1 Linear magnetic material simulation results

71

Table 4.4 Tracked Solution Points for First-Order, Linear Program
for Benchmark Problem

 Measured Points Simulated Points

Search Coil Number x (mm) y (mm) x (mm) y (mm)
1 0-1.6 0 1.6 0
2 41.8 60-63.2 41 61.6
3 122.1-125.3 0 123.2 0

To show CPU and GPU program simulation time, Figure 4.8 shows the computation time

for the major components of the linear program for each time step. The major components

measured for each time step are the right-hand side vector calculation from equation (2.44), time to

solve for the magnetic vector potential using the sparse iterative solver, post-processing for

magnetic flux density, and post-processing for eddy current density. For the magnetic flux density

and iterative solver component computation times per time step, Figure 4.9 shows the CPU and

GPU computation times and speed-up. Note that the GPU computation times presented throughout

this thesis include the overhead to transfer data to the GPU from the CPU, and from the GPU back

to the CPU. The GPU computation time for the magnetic flux density results in approximately 4

times speed-up, but no speed-up – approximately 0.3 – for the sparse iterative solver with

preconditioner.

Figure 4.6 First-order element, linear material, magnetic flux density solution
for fine mesh, compared to TEAM problem measured results at three points

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

B
 (

T
)

Magnetic Flux Density at Three Different Points

CPU S1
CPU S2

CPU S3
Meas B1

Meas B2
Meas B3

72

Figure 4.7 First-order element, linear material, eddy current density solution for
fine mesh, compared to TEAM problem measured results at three points

Figure 4.8 First-order element, linear material, CPU and GPU computation
time for each time step

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Three Different Points

CPU P1

CPU P2
CPU P3

Meas Jey1

Meas Jey2

Meas Jey3

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
CPU Time Step Timing, Total Time = 54.0823 seconds

Time Step Number

T
im

e
to

 c
om

pu
te

 (
s)

timesolveB

timesolveA
timeRHS

timesolveJ

0 50 100 150
0

0.2

0.4

0.6

0.8

1

GPU Time Step Timing, Total Time = 78.9681 seconds

Time Step Number

T
im

e
to

 c
om

pu
te

 (
s)

timesolveB

timesolveA
timeRHS

timesolveJ

73

Figure 4.9 First-order element, linear material, CPU and GPU computation time
comparison for magnetic flux density and magnetic vector potential

Table 4.5. CPU and GPU Simulation Computation Time Comparison for First-
Order Elements, Linear Magnetic Material, Fine Mesh. Iterative solver is
preconditioned.

 Total for Simulation

Simulation
Time(s)/Speed-
up

Preconditioner
Formation on
CPU

Iterative
Solver

Magnetic
Flux
Density

Total

CPU Time (s) 0.004 20.075 33.858 54.082
GPU Time (s) 0.746 66.733 8.388 78.968
Speed-up N/A 0.301 4.036 0.685
Hybrid CPU/GPU
Time (s) 0.004 18.417 8.454 29.414
Speed-up N/A N/A 4.005 1.839

Table 4.5 summarizes the CPU and GPU computation time for the first-order, linear

element simulation for the fine mesh using the preconditioned iterative solver. For the CPU

simulation, the total magnetic flux density computation time was 33.86 seconds. Comparatively,

the total magnetic flux density computation for the GPU simulation was only 8.39 seconds due to

sparse gpuArray matrix-vector multiplication. This yields a total speed-up for the magnetic flux

0 50 100 150
0.05

0.1

0.15

0.2

0.25
Time to Solve B. Total Solve Time CPU = 54.0823, Total Solve Time GPU = 78.9681

Time Step Number

C
om

pu
ta

tio
n

T
im

e
(s

)

CPU

GPU

0 50 100 150
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5
Speedup = CPU/GPU for Time to Solve B

Time Step Number

C
om

pu
ta

tio
n

T
im

e
(s

)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time to Solve A

Time Step Number

C
om

pu
ta

tio
n

T
im

e
(s

)

CPU

GPU

0 50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Speedup = CPU/GPU for Time to Solve A

Time Step Number

C
om

pu
ta

tio
n

T
im

e
(s

)

74

density calculation of 4.04. However, the sparse gpuArray format did not yield a speed-up for the

sparse iterative solver. The total CPU sparse iterative solver calculation time was 20.075 seconds,

while the total GPU sparse iterative solver calculation time was 66.73 seconds. As a result, the

total computation time for the GPU simulation did not speed up the simulation compared to the

CPU simulation. For a hybrid CPU/GPU simulation that uses the sparse gpuArray format for

magnetic flux density calculation and the CPU sparse format for the CPU iterative solver

calculation, the simulation time is reduced by the GPU speed-up for the magnetic flux density

calculation. This saves approximately 25.4 seconds of computation time. With minimal GPU to

CPU transfer overhead, the resulting overall CPU/(hybrid CPU-GPU) speed-up is 1.84.

4.3.1.2 Second-order elements with linear magnetic material

Figure 4.10 Second-order element, linear material, magnetic flux density solution for coarse and

fine meshes, compared to TEAM problem measured results at three points

0 0.05 0.1 0.15
0

0.5

1

1.5

2

time (s)

B
 (

T
)

Magnetic Flux Density at Three Different Points

CPU coarse S1

CPU coarse S2
CPU coarse S3

Meas B1

Meas B2

Meas B3

CPU fine S1
CPU fine S2

CPU fine S3

75

Figure 4.11 Second-order element, linear material, eddy current density solution for

coarse and fine meshes, compared to TEAM problem measured results at three points

The coarse and fine mesh computed solutions near the measured points for the second-

order, linear element simulation are shown in Figure 4.10 for magnetic flux density and Figure

4.11 for eddy current density. The solutions shown for the coarse and fine meshes are for the

tracked points shown in Table 4.6.

Table 4.6 Tracked Solution Points for Second-Order, Linear Program for Benchmark Problem

 Measured Points Coarse Mesh Simulated
Points

Fine Mesh Simulated
Points

Search Coil Number x (mm) y (mm) x (mm) y (mm) x (mm) y (mm)
1 0-1.6 0 1.6 0 0.55 0
2 41.8 60-63.2 41 61.6 41 61.6
3 122.1-125.3 0 123.7 0 123.2 0

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Three Different Points

CPU coarse P1
CPU coarse P2

CPU coarse P3

Meas Jey1

Meas Jey2

Meas Jey3

CPU fine P1

CPU fine P2
CPU fine P3

76

Table 4.7 CPU and GPU Simulation Computation Time Comparison for Second-Order Elements, Linear
Magnetic Material
 Total for Simulation

M
e

sh
 Solver With or

Without

Preconditioner

Simulation

Time(s)/Speed-up

Preconditioner

Formation on

CPU

Iterative

Solver

Magnetic

Flux

Density

Total Total for

Hybrid

CPU/GPU

C
o

a
rs

e
 M

e
sh

Without

preconditioner

CPU Time (s) 0 50.041 41.271 91.567 91.567

GPU Time (s) 0 266.572 27.597 295.940 77.893

Speed-up N/A 0.188 1.495 0.309 1.176

With

preconditioner

CPU Time (s) 0.008018164 24.213 40.944 65.371 65.371

GPU Time (s) 1.115737855 73.364 29.688 117.886 54.114

Speed-up N/A 0.330 1.379 0.555 1.208

F
in

e
 M

e
sh

Without

preconditioner

CPU Time (s) 0 173.999 296.619 471.564 471.564

GPU Time (s) 0 274.234 25.267 301.561 200.212

Speed-up N/A 0.634 11.739 1.564 2.355

With

preconditioner

CPU Time (s) 0.005682121 261.100 298.550 560.593 560.593

GPU Time (s) 0.120006674 291.103 44.060 338.000 306.102

Speed-up N/A 0.897 6.776 1.659 1.831

The computation time for each major component and total simulation are shown in Table

4.7. It is important to note that in the linear simulation case, the preconditioner is only formed

once. As a result, the total simulation time is not as sensitive to the time to form the

preconditioner, but rather to the iterative solver computation time. For the coarse and fine mesh,

the gpuArray sparse format used with the iterative solver with and without the preconditioner did

not achieve speed-up. However, for the coarse mesh, approximately 1.4 times speed-up was

achieved for the magnetic flux density calculation. For the fine mesh, approximately 6-11 times

speed-up was achieved for the magnetic flux density calculation. Comparing the CPU iterative

solver computation time with and without the preconditioner, the coarse mesh solution using the

preconditioner was computed approximately twice as fast as compared to the solution without the

preconditioner. However, for the preconditioner used, the fine mesh solution with the

preconditioner was computed approximately 1.5 times slower than without the preconditioner. In

this case, using a different preconditioner may result in faster computation of the next magnetic

77

vector potential time step solution. Comparing the total CPU and GPU simulation times for the

GPU solution using the sparse gpuArray for the iterative solver, speed-up was only achieved for

the fine mesh. For the hybrid CPU/GPU simulation where the sparse iterative solver is computed

on the CPU and the magnetic flux density is computed on the GPU, a total speed-up of

approximately 1.2 is achieved for the coarse mesh, and approximately 1.8-2.3 for the fine mesh.

The speed-up is limited in this case to the percentage of the simulation where GPUs can be utilized

to compute the solution faster than the CPU. In this case, this is for the magnetic flux density,

which accounts for approximately 45-63% of the CPU total simulation time.

4.3.2 Nonlinear magnetic material simulation results

Given the magnetic steel material properties for the benchmark problem shown in Figure

4.1, the magnetic reluctivity vs. magnetic flux density squared and 2B

ν∂
∂

vs. magnetic flux density

squared were computed. These curves are represented using piecewise-linear representation in

MATLAB. The curves used to simulate the nonlinear magnetic steel properties are shown in

Figure 4.12. The discontinuities in the representation of the magnetic reluctivity vs. magnetic flux

density squared result in discontinuities in the derivative representation.

Figure 4.12 Nonlinear magnetic material representation for benchmark problem simulation

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Magnetic Flux Density Squared (T2)

M
ag

ne
tic

 R
el

uc
tiv

ity
 (

m
/H

)

Magnetic Reluctivity vs. B2 for Nonlinear Magnetic Material

0 0.005 0.01 0.015 0.02 0.025

-2

-1.5

-1

-0.5

0
x 10

7

Magnetic Flux Density Squared (T2)

d ν
/d

B
2 (

m
/(

H
*T

2))

Derivative of Magnetic Reluctivity/B2 vs. B2 for
 Nonlinear Magnetic Material

1 2 3 4 5
-1

0

1

2

3

4

5

6

7

8
x 10

4

Magnetic Flux Density Squared (T2)

d ν
/d

B
2 (

m
/(

H
*T

2))

Derivative of Magnetic Reluctivity/B2 vs. B2 for
Nonlinear Magnetic Material

78

4.3.2.1 First-order elements with nonlinear magnetic material

Solutions for the computed magnetic vector potential, magnetic flux density, and eddy

current density were tracked at several elements and nodes. The first measured solution is tracked

at an outer node between the steel and air with an element in the middle of the steel. The second

and third measured solutions are each tracked at inner, middle, and outer nodes and elements. The

computed solutions at the middle nodes and elements match the measured solutions more closely

than those on the inner or outer elements or nodes. The inner computed solutions were calculated

at higher magnetic flux densities and eddy currents than measured, and the outer computed

solutions were at lower values than measured. The following solutions shown are for the middle

elements and nodes close to the measured solutions described by the coordinates in Table 4.8

Table 4.8 Tracked Solution Points for First-Order, Non-linear
Program for Benchmark Problem

 Measured Points Coarse Mesh Simulated
Points

Fine Mesh Simulated
Points

Search Coil Number x (mm) y (mm) x (mm) y (mm) x (mm) y (mm)
1 0-1.6 0 1.6 0 1.6 0
2 41.8 60-63.2 44.6 60 41 61.6
3 122.1-125.3 0 122.1 0 123.2 0

The computed transient solutions at the designated points for the coarse and fine mesh are

shown in Figure 4.13 for the magnetic flux density, Figure 4.14 for the eddy current density, and

Figure 4.15 for CPU and GPU calculations of eddy current density. The points tracked for the

coarse mesh more closely track the measured magnetic flux density solution than the fine mesh

points. Both mesh solutions show the nonlinear magnetic material impact on the solution

compared to the linear simulations. The fine mesh solution for the first eddy current density point

near the origin closely tracks the measured solution, but the other calculated solutions do not match

79

well. Again, the nonlinear representation of the magnetic material is evident. Figure 4.16 shows

the comparison of the CPU and GPU calculated magnetic vector potential, magnetic flux density,

and eddy current density. The magnetic vector potential and magnetic flux density calculations

match closely, but there are some differences in the first point eddy current density later in the

transient solution.

Figure 4.13 First-order element, nonlinear material, magnetic flux density solution for
coarse and fine mesh, compared to TEAM problem measured results at three points

Figure 4.14 First-order element, nonlinear material, eddy current density solution

magnitude for coarse and fine mesh, compared to TEAM problem measured results
at three points

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

B
 (

T
)

Magnetic Flux Density at Three Different Points

CPU coarse S1
CPU coarse S2

CPU coarse S3

Meas B1

Meas B2
Meas B3

CPU fine S1

CPU fine S2
CPU fine S3

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Three Different Points

CPU coarse P1
CPU coarse P2

CPU coarse P3

Meas J
ey

1

Meas J
ey

2

Meas J
ey

3

CPU fine P1

CPU fine P2
CPU fine P3

80

Figure 4.15 First-order element, nonlinear material, eddy current density
solution magnitude for fine mesh, GPU and CPU solutions, compared to

TEAM problem measured results at three points

Figure 4.16 First-order element eddy current solution for fine mesh, GPU and CPU
solutions, percentage difference for magnetic vector potential, magnetic flux density,

and eddy current density computed solutions

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Three Different Points

CPU S1
CPU S2
CPU S3

Meas B1

Meas B2
Meas B3
GPU S1

GPU S2
GPU S3

0 0.05 0.1 0.15

0

0.1

0.2

0.3

0.4

time (s)

D
iff

er
en

ce
 f

or
 A

 S
ol

ut
io

n
(%

) CPU and GPU Solution Percentage Differences for Three Solution Points

0 0.05 0.1 0.15

0

0.05

0.1

time (s)

D
iff

er
en

ce
 f

or
 B

 S
ol

ut
io

n
(%

)

0 0.05 0.1 0.15

-300

-200

-100

0

time (s)D
iff

er
en

ce
 f

or
 J

ed
dy

 S
ol

ut
io

n
(%

)

S1

S2

S3

S1

S2

S3

S1

S2

S3

81

In the following subsections, results are shown for CPU and GPU simulation times for the

coarse and fine mesh complete solutions for each time step broken down by section of the time

step solution. These results use the MATLAB (CPU, sparse matrix) ILU preconditioner function

with the Crout version of ILU, drop tolerance of 1e-5, and row-sum modified incomplete LU

factorization. Due to results also shown for the CPU and GPU iterative solver, these results use the

fastest implementation with the CPU and MATLAB’s bicgstab solver with the ILU preconditioner.

4.3.2.1.1 Iterative solver numerical experiments

The following numerical experiments were conducted for the first-order elements,

nonlinear magnetic material simulation with the fine mesh. Experiments were conducted to

determine the shortest computation time achievable for the iterative solver. Methods using the

bicgstab algorithm on the CPU and GPU and with or without a preconditioner were explored.

Figure 4.17 shows the difference in the number of iterations when the preconditioner is not used

and when it is used. Accordingly, Figure 4.18 shows that the higher number of iterations results in

longer total solver computation time, shown as “timesolveA.” Figure 4.19 shows that even with

the preconditioner formation time, shown as “timePrec,” the overall solver time including the

preconditioner formation time is shorter than the iterative solver time without the preconditioner.

Figure 4.17 Number of bicgstab iterations without and with preconditioner to solve each Newton-Raphson iteration.
Example solution for time setup = 14 ms.

0 5 10 15 20 25
400

500

600

700

800

900

MATLAB bicgstab function without preconditioner

Newton-Raphson Iteration

bi
cg

st
ab

 I
te

ra
tio

n
C

ou
nt

0 5 10 15 20 25
2

2.5

3

3.5

MATLAB bicgstab function with ILU preconditioner

Newton-Raphson Iteration

bi
cg

st
ab

 I
te

ra
tio

n
C

ou
nt

82

Figure 4.18 Iterative solver time for MATLAB bicgstab function without preconditioner

Figure 4.19 Iterative solver time for MATLAB bicgstab function with preconditioner

0 5 10 15
0

50

100

150
Time Step Timing

Time Step Number
T

im
e

to
 c

om
pu

te
 (

s)

timesolveB

timePrec
timeSetup
timesolveA

timeQ

timeS

timeUpdate
timeUpdateT

timesolveJ

0 5 10 15
0

0.5

1

1.5

2
Average Time Per Iteration for Key Computations

Time Step Number

A
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

Average Iteration timesolveB

Average Iteration timePrec

Average Iteration timeSetup

Average Iteration timesolveA

0 5 10 15
0

20

40

60

80

Time Step Number

N
um

be
r

of
 I

te
ra

tio
ns

For Each Time Step, Number of Newton-Raphson Iterations to Converge to Residual = 1e-06

0 5 10 15
0

0.5

1

Time Step Number

R
el

ax
at

io
n

F
ac

to
r

Relaxation Factor for Each Newton-Raphson Iteration at Each Time Step

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100
Time Step Timing

Time Step Number

T
im

e
to

 c
om

pu
te

 (
s)

timesolveB
timePrec
timeSetup

timesolveA

timeQ
timeS

timeUpdate

timeUpdateT
timesolveJ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

Average Time Per Iteration for Key Computations

Time Step Number

A
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

Average Iteration timesolveB

Average Iteration timePrec
Average Iteration timeSetup

Average Iteration timesolveA

0 5 10 15
0

50

100

Time Step Number

N
um

be
r

of
 I

te
ra

tio
ns

For Each Time Step, Number of Newton-Raphson Iterations to Converge to Residual = 1e-06

0 5 10 15
0

0.5

1

Time Step Number

R
el

ax
at

io
n

F
ac

to
r

Relaxation Factor for Each Newton-Raphson Iteration at Each Time Step

83

Table 4.9 CPU and GPU Bicgstab Iterative Solver Algorithm Comparison with and without Preconditioner
 Average Newton-Raphson Iteration Computation Time (s)

CPU or

GPU

Solver Preconditioner

Used

Magnetic

Flux

Density

Setup Magnetic

Vector

Potential

Iterative

Solution

Precon-

ditioner

Approximate

Total

Iterative Solver

Percentage (%)

CPU MATLAB

bicgstab

No 0.21274 0.27914 0.92945 0.00000 1.42133 65.39

CPU bicgstab

algorithm

No 0.21571 0.27969 0.83654 0.00000 1.33194 62.81

GPU bicgstab

algorithm

No 0.05041 0.13759 4.94796 0.00000 5.13596 96.34

CPU MATLAB

bicgstab

Yes 0.21184 0.27810 0.02297 0.28577 0.79868 38.66

CPU bicgstab

algorithm

Yes 0.21765 0.27738 1.56864 0.34742 2.41109 79.47

Table 4.9 summarizes timing results for the CPU and GPU bicgstab iterative solver

algorithms with and without the preconditioner. The results are for time step solutions from 1 to

15 ms. Note that for the CPU bicgstab algorithm with preconditioner implemented, the two linear

solutions of Ax = b use the MATLAB mldivide function. This dominates the solution time and is

much slower than the MATLAB bicgstab with preconditioner function. Also, the GPU bicgstab

algorithm with preconditioner implemented requires the inverse of the preconditioner to be

computed since the mldivide function is not available for sparse GPUArray types. As a result, this

GPU bicgstab algorithm is extremely slow and is not included in this comparison. As previously

stated, further research using developed preconditioner formation and bicgstab with preconditioner

algorithms implemented using CUDA, such as in the cuSPARSE library, could be used and

integrated with MATLAB to determine if GPU speed-up can be achieved for this specific problem.

For the fastest implementation compared, the iterative solver for the magnetic vector potential is

approximately 39% of the average Newton-Raphson iteration computation time. With further

research, this component may be further reduced with GPU computing, but based on other

research, this is not conclusive based on the problem size and sparsity [35], [36], [37], [38]. Based

84

on these results, the iterative solver method used for the hybrid CPU/GPU solutions is the CPU-

based MATLAB bicgstab function with the ILU preconditioner.

4.3.2.1.2 Iteration setup time breakdown

The results in Figure 4.20 and Figure 4.21 show the CPU and hybrid CPU/GPU simulation

setup computation time for the fine mesh solution.

Figure 4.20 Setup time breakdown for CPU

Figure 4.21 Setup time breakdown for GPU sparse

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30
timeSetup Breakdown

Time Step Number

T
im

e
to

 C
om

pu
te

 (
s)

timeSetup-sub1

timeSetup-sub2
timeSetup-sub3

timeSetup-sub4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Average Time Per NR Iteration for timeSetup Breakdown

Time Step Number

A
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

timeSetup-sub1
timeSetup-sub2
timeSetup-sub3

timeSetup-sub4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

timeSetup Breakdown

Time Step Number

T
im

e
to

 C
om

pu
te

 (
s)

timeSetup-sub1

timeSetup-sub2

timeSetup-sub3

timeSetup-sub4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Average Time Per NR Iteration for timeSetup Breakdown

Time Step Number

A
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

timeSetup-sub1

timeSetup-sub2
timeSetup-sub3

timeSetup-sub4

85

The setup computation required for each Newton-Raphson iteration is broken down into

four subsections. The subsections along with the hybrid CPU/GPU simulation implementation are:

• timeSetup-sub1 = look up ν and
()

,

2,

e t t
k

e t t
kB

ν +∆

+∆

∂

∂
 based on B from fitted ν-B2 and 2B

ν∂
∂

equations (CPU)

• timeSetup-sub2 = compute S with elemental ν (CPU), and compute right-hand side

vector (matrix multiplication and subtraction) (GPU sparse)

• timeSetup-sub3 = compute G from equation .
2e

i

B

A

∂
∂

and SAare computed on the

GPU, and the sparse matrix assembly of G is done on the CPU.

• timeSetup-sub4 = compute the left-hand side matrix final addition (CPU).

The setup computation time results averaged over the Newton-Raphson iterations are

summarized by Table 4.10. The largest part of the CPU setup calculation time, subsection 3 to

compute G, can be parallel processed using the sparse gpuArray matrix-vector multiplication. This

subsection results in a speed-up of approximately 2.3, allowing for an overall setup time speed-up

of approximately 1.8.

 Table 4.10 CPU and GPU Setup Time Comparison

 Average Newton-Raphson Iteration Computation Time (s)

CPU or GPU Setup - sub 1 Setup - sub 2 Setup - sub 3 Setup - sub 4 Total

CPU 0.013749 0.018930 0.245237 0.000185 0.278102

GPU 0.013549 0.033317 0.107026 0.000175 0.154068

Speed-up CPU/GPU 1.014726 0.568162 2.291392 1.057076 1.805060

4.3.2.1.3 Transient CPU and hybrid CPU/GPU simulation results

The figures and tables in this section describe the transient simulation computation time for

the CPU and hybrid CPU/GPU implementations. In Figure 4.22, for a few sample time steps, the

86

CPU and hybrid CPU/GPU simulation computation times are broken down by major component to

illustrate the computation time percentage for each component and the GPU speed-up for each

component. The components are:

• timesolveB – time to compute the magnetic vector potential

• timePrec – time to form the preconditioner

• timeSetup – time to set up the Newton-Raphson iteration as described in Section 4.3.2.1.2

Iteration setup time breakdown

• timesolveA – time to solve for the next Newton-Raphson iteration magnetic vector

potential

• timeQ – time to calculate the next impressed current density

• timeS – time to assemble the S matrix

• timeUpdate – time to update the next magnetic vector potential iteration given the solution

for A∆

• timeUpdateT – when the A∆ is less than the specified tolerance, this is the time to save the

iteration solution as the time step solution and update the magnetic flux density and

reluctivity

• timesolveJ – time to compute the eddy current density

87

Figure 4.22 CPU and GPU computation time comparison for first-order elements, nonlinear
magnetic material, fine mesh. Subset of CPU and GPU computation time for several time

steps including breakdown of computation time for key computations.

Table 4.11 CPU and GPU Computation Time Comparison for Average Newton-Raphson Iteration, First-Order
Elements, Nonlinear Magnetic Material Problem

 Average Newton-Raphson Iteration Computation Time

Over Total Transient Solution (s)

Mesh CPU or GPU Magnetic

Flux Density

Setup Magnetic Vector

Potential Iterative

Solution

Precon-

ditioner

Approx.

Total

C
o

a
rs

e
 CPU 0.027664 0.053201 0.005250 0.019420 0.105535

GPU 0.022935 0.066776 0.005671 0.019508 0.114890

Speed-up 1.206207 0.796699 N/A N/A 0.918568

F
in

e
 CPU 0.218303 0.280088 0.036713 0.341196 0.876300

GPU 0.060477 0.151496 0.035943 0.283171 0.531087

Speed-up 3.609685 1.848813 N/A N/A 1.650013

46 47 48 49 50 51
0

10

20

30

Time Step Timing, CPU Total Time = 3439.9804 seconds
GPU Total Time = 2214.9281 seconds

Time Step Number

T
im

e
to

 c
om

pu
te

 (
s)

 timesolveB
timePrec

timeSetup

timesolveA

timeQ
timeS

timeUpdate

timeUpdateT
timesolveJ

46 47 48 49 50 51
0

0.5

1
CPU and GPU Average Time Per Iteration for Key Computations

Time Step Number

A
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

Average Iteration timesolveB

Average Iteration timePrec
Average Iteration timeSetup

Average Iteration timesolveA

0 50 100 150
0

50

100

Time Step Number

N
um

be
r

of
 I

te
ra

tio
ns

For Each Time Step, Number of Newton-Raphson Iterations to Converge to Residual = 1e-06

CPU Solution

GPU Solution

0 50 100 150

0.2

0.4

0.6

0.8

1

Time Step Number

R
el

ax
at

io
n

F
ac

to
r

Relaxation Factor for Each Newton-Raphson Iteration at Each Time Step

CPU Solution

GPU Solution

88

Table 4.12 CPU and GPU Computation Time Comparison for Total Transient Solution, First-Order Elements,

Nonlinear Magnetic Material Problem

 Total Transient Solution Computation Time (s)

Mesh CPU or GPU Magnetic

Flux Density

Setup Magnetic Vector

Potential Iterative

Solution

Precon-

ditioner

Total

C
o

a
rs

e
 CPU 67.597 128.695 12.771 46.817 263.609

GPU 57.563 162.282 14.021 48.600 299.995

Speed-up 1.174 0.793 N/A N/A 0.879

F
in

e
 CPU 856.000 1084.896 138.784 1319.007 3439.980

GPU 253.529 622.615 149.140 1164.800 2214.928

Speed-up 3.376 1.742 N/A N/A 1.553

Note that the preconditioner formation and magnetic vector potential solver are computed

on the CPU for the total GPU solution. From previous discussions, this method was used to

improve the total computation time since it was not previously shown that speed-up was achieved

with the sparse GPU format using the same bicgstab algorithm. From these results averaging over

all the time step solutions and the average Newton-Raphson iteration computation times, Table

4.11 shows that the magnetic flux density GPU computation achieved an average speed-up of 1.2

for the coarse mesh and 3.6 for the fine mesh, and the setup achieved an average speed-up of 1.8

for the fine mesh. This is primarily due to the parallel processing of GPU sparse matrix-vector

multiplication. From the total transient computation time shown in Table 4.12, the GPU

implementation does not achieve speed-up for the coarse mesh, but for the fine mesh it achieves

approximately 1.55 speed-up.

4.3.2.2 Second-order elements with nonlinear magnetic material

The simulation of the second-order elements, nonlinear program required more

manipulation of the relaxation factor and time step difference in order to achieve convergence. For

the coarse mesh, the solution only converged for times 1 to 4 ms with a time step of 1 ms. For

89

solutions beyond that, time steps of 0.25 ms and incrementally smaller were required in order to

achieve convergence. A reason for the convergence issue is due to too large of a time step given

the mesh density, resulting in a larger change in magnetic vector potential for each iteration. As a

result, solutions are shown for the fine mesh only. The higher mesh density reduced the

convergence issues. For the fine mesh, solutions for times 1-18 ms converged for a time step of 1

ms. For solutions beyond 18 ms, a smaller time step is required to achieve convergence. Full

transient solutions are not presented. For the partial simulations up to 18 ms for the fine mesh, the

CPU and hybrid CPU/GPU simulation results are presented in Figure 4.23 and Figure 4.24 for the

points described in Table 4.13. As previously discussed, the iterative solver used for both the

CPU and hybrid CPU/GPU simulation is on the CPU using the MATLAB “bicgstab” function with

row-sum modified incomplete LU Crout version factorization with drop tolerance 10-5 for the

preconditioner. This was the fastest iterative solver implementation tested for this problem.

Table 4.13 Tracked Solution Points for Second-Order, Non-linear Program for
Benchmark Problem

 Measured Points Fine Mesh Simulated Points

Search Coil Number x (mm) y (mm) x (mm) y (mm)
1 0-1.6 0 0.5 0
2 41.8 60-63.2 41 61.6
3 122.1-125.3 0 123.2 0

90

Figure 4.23 Second-order element, nonlinear material, magnetic flux density solution
for fine mesh, compared to TEAM problem measured results at three points

Figure 4.24 Second-order element, nonlinear material, eddy current density
solution magnitude for fine mesh, compared to TEAM problem measured

results at three points

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

B
 (

T
)

Magnetic Flux Density at Three Different Points

CPU S1

CPU S2

CPU S3
Meas B1

Meas B2

Meas B3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Three Different Points

CPU P1
CPU P2

CPU P3

Meas Jey1

Meas Jey2

Meas Jey3

91

Figure 4.25 Setup time breakdown for CPU, second-order elements

Figure 4.26 Setup time breakdown for GPU, second-order elements

To show the setup calculation time scalability, the setup calculation time by subsection is

shown in Figure 4.25 for the CPU and in Figure 4.26 for the GPU. Table 4.14 summarizes the

setup calculation time for the average Newton-Raphson iteration. Like for the first-order elements,

the subsection 3 dominates the setup calculation time and can be parallel processed using GPUs for

sparse matrix-vector multiplication. The larger problem size for the second-order elements results

in a subsection 3 speed-up of approximately 3.4, and an overall setup time speed-up of 2.9.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100
timeSetup Breakdown

Time Step Number

T
im

e
to

 C
om

pu
te

 (
s)

timeSetup-sub1

timeSetup-sub2
timeSetup-sub3

timeSetup-sub4

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
Average Time Per NR Iteration for timeSetup Breakdown

Time Step NumberA
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

timeSetup-sub1

timeSetup-sub2
timeSetup-sub3

timeSetup-sub4

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100
timeSetup Breakdown

Time Step Number

T
im

e
to

 C
om

pu
te

 (
s)

timeSetup-sub1

timeSetup-sub2
timeSetup-sub3

timeSetup-sub4

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
Average Time Per NR Iteration for timeSetup Breakdown

Time Step NumberA
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

timeSetup-sub1

timeSetup-sub2

timeSetup-sub3

timeSetup-sub4

92

Table 4.14 CPU and GPU Average Setup Computation Time per Iteration for Second-Order Elements, Fine Mesh

 Average Newton-Raphson Iteration Computation Time (s)

CPU or GPU Setup - sub 1 Setup - sub 2 Setup - sub 3 Setup - sub 4 Total

CPU 0.017544 0.096670 1.976303 0.002136 2.092652

GPU 0.018379 0.124870 0.574369 0.002113 0.719731

Speed-up CPU/GPU 0.954584 0.774167 3.440821 1.010553 2.907546

Figure 4.27 shows the transient solution CPU and GPU computation time by component. It

is clear that the preconditioner formation time constitutes a large portion of the calculation time,

followed by the setup time and magnetic flux density time. Due to the preconditioner, the sparse

iterative solver time is relatively short. Table 4.15 summarizes these results showing the average

component calculation time for a Newton-Raphson iteration. The magnetic flux density

calculation speed-up is approximately 6.9, and the setup calculation speed-up is approximately 2.9.

However, because the preconditioner formation is approximately 56% of the total iteration

computation time, the overall iteration speed-up is approximately 1.4. Compared to the first-order

nonlinear element problem, the overall speed-up is not as high but is comparable. The first-order

nonlinear problem achieved a speed-up of 1.55 with the preconditioner formation accounting for

38% of the simulation time. For the second-order nonlinear problem, while the component speed-

ups are greater due to the larger number of unknowns, the preconditioner formation accounting for

54% of the computation time limits the overall speed-up to 1.4.

Table 4.15 CPU and GPU Computation Time Comparison for Average Newton-Raphson Iteration, Second-Order
Elements, Nonlinear Magnetic Material Problem. For simulation 1-18 ms.

 Average Newton-Raphson Iteration Computation Time

Over Total Transient Solution (s)

Mesh CPU or GPU Magnetic

Flux Density

Setup Magnetic Vector

Potential Iterative

Solution

Precon-

ditioner

Approx.

Total

F
in

e
 CPU 1.888694 2.092652 0.177723 5.241148 9.400217

GPU 0.271298 0.719731 0.080714 5.429043 6.500786

Speed-up 6.961708 2.907546 N/A N/A 1.446012

93

Figure 4.27 CPU and GPU computation time comparison for second-order
elements, nonlinear magnetic material, fine mesh.

4.3.3 Benchmark problem simulation results summary

Table 4.16 Simulation Results Summary for Benchmark Problem
 Computation Time (s)

Magnetic
Material
Model

Element
Order

Mesh Preconditioned Number of
Nodes

CPU Hybrid
CPU/GPU

Speed-
up

Li
ne

ar
 First Fine Yes 7219 54.082 29.414 1.839

Second Coarse Yes 7219 65.371 54.114 1.208
Second Fine No 28581 471.564 200.212 2.355

N
on

-
Li

ne
ar

 First Coarse Yes 1842 263.609 299.995 0.879
First Fine Yes 7219 3439.980 2214.928 1.553
Second Fine Yes 28581 3417.101 2395.973 1.426

For the discussed simulations, Table 4.16 summarizes the CPU and GPU simulation

computation times. It shows that as the problem scale increases for both the linear and nonlinear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

200

400

600

Time Step Timing, CPU Total Time = 3417.1014 seconds
GPU Total Time = 2395.9733 seconds

Time Step Number

T
im

e
to

 c
om

pu
te

 (
s)

 timesolveB

timePrec
timeSetup

timesolveA

timeQ

timeS

timeUpdate
timeUpdateT

timesolveJ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10
CPU and GPU Average Time Per Iteration for Key Computations

Time Step Number

A
ve

ra
ge

 I
te

ra
tio

n
C

om
pu

ta
tio

n
T

im
e

(s
)

Average Iteration timesolveB

Average Iteration timePrec
Average Iteration timeSetup

Average Iteration timesolveA

0 2 4 6 8 10 12 14 16 18
0

20

40

60

Time Step Number

N
um

be
r

of
 I

te
ra

tio
ns

For Each Time Step, Number of Newton-Raphson Iterations to Converge to Residual = 1e-06

CPU Solution

GPU Solution

0 2 4 6 8 10 12 14 16 18

0.4

0.6

0.8

1

Time Step Number

R
el

ax
at

io
n

F
ac

to
r

Relaxation Factor for Each Newton-Raphson Iteration at Each Time Step

CPU Solution

GPU Solution

94

simulations, the speed-up achieved also increases. For the nonlinear simulation, due to the

significance of the preconditioner formation time which is only computed on the CPU for these

simulations, the overall speed-up is limited as the problem size increases.

95

CHAPTER 5

LINEAR INDUCTION MACHINE EXPERIMENT AND SIMULATION

The induction machine experiment chosen to estimate the validity of the finite element

CPU and GPU models is the double-sided stator linear induction machine (LIM). The machine is

described in [48]. Measurable experiments for the LIM with a solid aluminum rotor were

conducted. For the applied stator current and frequency from a constant volts-per-Hertz drive, the

force on the rotor for a steady-state locked position was measured by a spring scale. The linear

induction machine and experiment are depicted in Figure 5.1 from [49].

(a)

Figure 5.1(a) Laboratory LIM setup

5.1 Experiment Description

96

(b)

(c)

(d)

Figure 5.1(cont.) (b) subset of LIM geometry for 5 stator slots, (c) cross section of double
stator and rotor showing 36 stator slots, and (d) experimental setup with calibration mass

The LIM is excited using symmetric three-phase excitation for a single-layered, series-

wound stator. There are 35 turns per slot, and the pole pitch is 3 cm accordingly. The stator

97

laminations are constructed with M19 steel. The solid aluminum rotor (alloy Al6061 with T611

temper) has conductivity 72.4662 x 10 S/mσ = . The rotor is free to move laterally parallel to the

stator.

The experiment conducted from [49] attached a nylon string to the LIM rotor. On one end,

the string was attached to a stabilizing spring scale, and on the other end, it was attached to a mass

through a pulley. The mass was known and used to calibrate the spring scale. For specified

operating frequencies, the drive excited the rotor so that force was created away from the spring

scale. The total force measured was read by the spring scale. In addition, the stator excitation

current was measured for the operating frequency.

From the measured results recorded in [49], the data point chosen for finite element

simulation is shown in Table 5.1. The volts-per-Hertz drive ratio excitation used is 40/60 Vs.

Table 5.1 LIM Experiment Measurements

fs (Hz) Is,RMS
 (A) F (meas.) (N)

14 8.64 7.20

Based on the LIM geometry shown in Figure 5.1, a mesh was created for a subset of the

geometry for the partial differential equation simulation. Taking advantage of the periodicity of

the machine, six stator slots were simulated. The fine mesh is shown in Figure 5.2. The a-, b-, and

c-phase excitation polarity is such that the windings for the three left-most slots are out of the page,

and the three right-most slots are into the page. This applies to both the upper and lower stators.

Additional domains are created in the air gap to more readily compute the force in it. The elements

or nodes along the specified y coordinate along the edge of the domain are used for force

5.2 FE Simulation of Experiment

98

calculation using the Maxwell stress tensor method. Figure 5.3 shows the fine mesh closer to the

rotor and air gap. The green-filled elements are the first-order elements used to calculate the force

in the air gap. The force along the edge of the rotor is also calculated.

Figure 5.2 Linear induction machine fine mesh for six stator slots

Several assumptions are made for numerical simulation of the LIM experiment. The steel

conductivity is assumed to be zero. The steel magnetic permeability is simulated as linear with an

approximate relative permeability of 8754rµ = [50]. The resulting solution is not as sensitive to

the saturation of the magnetic steel as other machine problems because the air gap is relatively

large. The winding slot fill is assumed to be 100%, resulting in the impressed current density

calculated over the entire winding area. The impressed current density is also even over the

winding area. As with the benchmark problem, the two-dimensional approximation of the LIM

results in the impressed current density simulated as infinite in the z-direction.

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

x (m)

y
(m

)

99

Figure 5.3 Linear induction machine fine mesh view near air gap. Green-filled
elements are used for force calculation in the air gap for first-order elements.

For the above assumptions, the CPU and GPU simulations of the LIM are calculated for the

first- and second-order elements. Magnetic vector potential, magnetic flux density, and eddy

current solutions are tracked at four elements or nodes: the middle of the air gap, on the aluminum

rotor surface, in the middle of the aluminum rotor, and on the stator steel near the air gap. The

coordinates for these tracked solutions are given in Table 5.2.

Table 5.2 Tracked Solution Points for LIM Problem

Tracked Node Description
Simulated Points

x (m) y (m)

Middle Air Gap 0.00455 -0.00466
On Rotor Surface 0.00266 -0.00308
Middle of Rotor 0.00187 -0.00059
Stator Steel 0.00750 -0.00696

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x (m)

y
(m

)

100

(a) (b)

Figure 5.4 Simulated magnetic flux density magnitude at tracked points
for (a) first-order elements, and (b) second-order elements

The computed LIM magnetic flux density magnitude solutions for the first- and second-

order elements are shown in Figure 5.4. For both simulations, the highest magnetic flux density is

in the stator steel as expected for induction machine design. The periodicity of the solutions shown

for a 14 Hz excitation is due to the periodic excitation. Since the magnetic flux density magnitude

is shown, all values are positive. The oscillation within each period may be due to the numerical

time discretization of the simulation. The results shown are for a time step of 1 ms. When the time

step was reduced, the same oscillation within each period occurred, with one time step solution

lower or higher than the next. Comparing the first- and second-order magnetic flux density

solution magnitudes, the simulations match closely. The second-order elements simulated slightly

higher magnetic flux density in the stator steel.

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time (s)

B
 (

T
)

Magnetic Flux Density at Tracked Points - First-Order Elements

middle air gap

on rotor surface

middle of rotor
stator steel

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time (s)

B
 (

T
)

Magnetic Flux Density at Tracked Points - Second-Order Elements

101

Figure 5.5 Simulated eddy current density magnitude at rotor tracked points for first-
and second-order elements

The simulated eddy current density is shown in Figure 5.5 for the rotor surface and middle

of the rotor. The eddy current density is zero for the tracked stator steel and air gap points and is

not shown in Figure 5.5. As expected, the eddy current density is significant and greater on the

rotor surface compared to the middle of the rotor. The second-order eddy current density on the

rotor surface continues to increase over time while the first-order eddy current density on the rotor

surface increases then remains constant on average after approximately 0.35 seconds. However,

the first- and second-order simulated solutions are on the same order of magnitude.

The force per unit length is calculated according to the Maxwell Stress Tensor method in

section 2.5.3 Force from Maxwell Stress Tensor. The force density (N/m2) is calculated at each

point around the desired path. To numerically integrate along the path, the trapezoidal rule is used.

The numerical integration yields the force per unit length for the given time step solution. The

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

x 10
8

time (s)

J ey
 (

A
/m

2)

Eddy Current Density at Tracked Nodes

1st - Rotor Surface

1st - Middle of Rotor
2nd - Rotor Surface

2nd - Middle of Rotor

102

results shown in Figure 5.6 are calculated in newtons based on multiplying the force per unit length

times the stator height for the air gap force or the rotor height for the force on the rotor surface.

 The upper and lower forces are summed to calculate the force on the rotor. The total force

taken over the average of the last cycle simulated is shown in Table 5.3. Both the first- and

second-order simulated forces on the aluminum rotor edge are lower than the measured force. The

simulated force along the rotor edge is closer to the measured result than the simulated force along

the air gap. Factors that could contribute to the differences between measured and simulated

results are the two-dimensional approximation, and simulating a subset of the stator and stator

windings.

Table 5.3 Measured and Simulated LIM Force Calculations

 Force (N)

Region Measured First-Order Elements

Simulation

Second-Order Elements

Simulation

Al Rotor Edge 7.20 4.40 3.61

Along Air Gap 7.20 0.16 0.08

(a)

Figure 5.6 Calculated tangential and normal force along LIM rotor

edge and middle of the air gap for (a) first-order elements

0 0.05 0.1 0.15
-2

-1

0

1

2

time (s)

C
al

cu
la

te
d

T
an

ge
nt

ia
l F

or
ce

 (
N

)

Force Along Middle Air Gap

0 0.05 0.1 0.15

-4

-3

-2

-1

0

1

2

time (s)

C
al

cu
la

te
d

N
or

m
al

 F
or

ce
 (

N
)

0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

time (s)

C
al

cu
la

te
d

T
an

ge
nt

ia
l F

or
ce

 (
N

)

Force Along Rotor Edge

0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

1

2

time (s)

C
al

cu
la

te
d

N
or

m
al

 F
or

ce
 (

N
)

Lower

Upper

103

(b)

Figure 5.6 (cont.) Calculated tangential and normal force along LIM rotor edge and middle of the

air gap for (b) second-order elements

The CPU and hybrid CPU/GPU simulations of the linear LIM problem were conducted to

compare computation time. The hybrid CPU/GPU simulation follows the implementation for the

benchmark problem for the first- and second-order elements with linear magnetic material. Due to

the large air gap, the steel will not normally saturate for this LIM experiment. As a result, the

magnetic permeability of the steel can be approximated linearly. The hybrid CPU/GPU simulation

uses the GPU for matrix-vector multiplication to form the right-hand side vector and to compute

the magnetic flux density. As discussed previously, the biconjugate gradient iterative solver is

implemented on the CPU using the MATLAB built-in function bicgstab, and the preconditioner is

formed on the CPU using the incomplete Cholesky factorization function ichol. Additionally, the

force density calculation is done on the CPU since it is computed element-wise. This type of

calculation is much faster on the CPU than the GPU.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

C
al

cu
la

te
d

T
an

ge
nt

ia
l F

or
ce

 (
N

)

Force Along Rotor Edge

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-4

-3

-2

-1

0

1

2

time (s)

C
al

cu
la

te
d

N
or

m
al

 F
or

ce
 (

N
)

0 0.05 0.1 0.15

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

C
al

cu
la

te
d

T
an

ge
nt

ia
l F

or
ce

 (
N

)

Force Along Middle Air Gap

0 0.05 0.1 0.15
-4

-3

-2

-1

0

1

2

time (s)

C
al

cu
la

te
d

N
or

m
al

 F
or

ce
 (

N
)

Lower

Upper

104

Table 5.4 LIM Problem Mesh Description

 Total Domain

Magnetic
Material
Model

Element
Order

Mesh Number of
Nonzero

Elements in
Matrix

Number of
Elements

Number
of Nodes

Li
ne

ar
 First Fine 56517 16416 8281

Second Fine 297219 16416 32977

Table 5.5 CPU and hybrid CPU/GPU simulation times for LIM linear problem,

first- and second-order elements over 500 ms simulation

 Total Time (s)

 Preconditioner

Time (s)

Iterative

Solver

Magnetic Flux

Density

Total Time

(s)

F
ir

st

O
rd

e
r

CPU 0.006 23.984 73.330 111.322

GPU 0.005 9.973 15.353 38.567

Speed-up N/A N/A 4.776 2.886

S
e

co
n

d

O
rd

e
r

CPU 0.007 1550.500 676.252 2235.600

GPU 0.006 496.544 110.618 638.870

Speed-up N/A N/A 6.113 3.499

Table 5.4 shows the first- and second-order mesh descriptions. Table 5.5 shows the CPU

and hybrid CPU/GPU simulation times. While the iterative solver was calculated on the CPU for

both simulations, the hybrid CPU/GPU simulation calculated the iterative solution faster. For the

larger problem size for the second-order elements, greater speed-up is achieved. A speed-up of

approximately 4.7 and 6.1 was achieved for the first- and second-order magnetic flux density

calculation, respectively. The overall speed-up resulted in 2.8 for the first-order elements, and 3.5

for the second-order elements. The problem size for the LIM mesh is slightly larger than for the

benchmark problem. Using similar techniques, greater speed-up is achieved with the larger

problem size.

105

CHAPTER 6

CONCLUSION AND FUTURE WORK

The use of GPUs for parallel processing of the two-dimensional transient finite element

analysis problem was explored. Simulation results for the benchmark and linear induction

machine problems show which simulation GPUs can be used to speed up the finite element

analysis simulation computation time and where their functionality is limited. MATLAB

implementations of first- and second-order elements for linear and nonlinear magnetic material

were created, and the simulation results for these finite element analysis programs were presented.

For the sparsity and problem sizes simulated, the GPUs provided speed-up for a range of

approximately 4 to 11 times for sparse matrix-vector multiplication required for magnetic flux

density calculation and Jacobian formulation. However, GPUs did not speed up the sparse

iterative solver simulation time for each type of simulation. The CPU iterative solver used was the

MATLAB sparse-format based preconditioned biconjugate gradient stabilized method. These

CPU iterative solver times were compared to the CUDA biconjugate gradient functions explored

and linked to MATLAB and the preconditioned and un-preconditioned biconjugate gradient

stabilized method algorithm implementation using the sparse gpuArray format. Based on these

simulation results and prior research for GPU iterative solver implementations [35], [36], the

current algorithms available and implemented on the GPU do not result in faster computation times

for the GPU implementations for problems of this size (1842-32977 nodes). From [35], for

problem sizes ranging from 150,000 to 1.5 million rows and columns, speed-up achieved for the

incomplete-LU and Cholesky preconditioned BiCGStab and CG methods ranged from 1 to 5.5.

Different speed-up was achieved for different values of the preconditioner fill-in threshold. For

problems of varying sparsity, the average speed-up was approximately 2.2. From [36], the level

106

scheduling technique was used for the sparse triangular solve and several preconditioned iterative

methods on the GPU were explored for problems from 5,000 to 1.4 million rows and columns.

The greatest GPU speed-up achieved was 4.3 for the GPU-accelerated ILUT-GMRES method for

the matrix with 1.27 million rows and columns. Through use of algorithms favorable to

maximizing the parallel thread computations given the sparsity of the finite element matrix, such as

level scheduling in [36], it may be possible to improve the GPU performance of the biconjugate

gradient or GMRES solver over the CPU for two-dimensional finite element problem sizes.

However, the author expects these algorithms will provide limited improvements if any for this

problem size compared to the speed-up achieved for sparse matrix-vector multiplication.

To combine the simulation components with the fastest CPU and GPU computation times,

hybrid CPU/GPU simulation experiments were conducted. Matrix assembly, vector addition and

subtraction, preconditioner formation, and the sparse iterative solver were implemented on the

CPU, while the sparse matrix-vector multiplication operations were implemented on the GPU.

This required transferring matrices and vectors to and from the CPU and GPU. Such transfers

should be minimized since they contribute to GPU processing overhead. For the two-dimensional

problem sizes, this transfer time was minimal compared to the speed-up achieved for GPU sparse

matrix-vector multiplication. As a result, it was still advantageous to use GPUs for these parts of

the simulation.

These hybrid CPU/GPU simulation results were compared to the CPU-only simulation

results. Depending on the problem size, overall simulation speed-ups achieved for the benchmark

and LIM problems ranged from 2.3 to 3.5, with the largest problem size simulated consisting of

32977 nodes. The speed-up is limited by the component speed-up achieved and percentage of the

faster component computation time relative to the remainder of the simulation computation time.

107

The use of GPUs for parallel processing for even larger finite element analysis problems,

such as three-dimensional domains, will show the scalability and limitations of their processing

capabilities for electromagnetic analysis of electric machines. For larger scale problems, the

CUDA preconditioner and sparse iterative solver functions may provide speed-up, but this is

highly dependent on the sparsity of the problem. From three-dimensional mechanics finite element

problems with 147,900 rows and columns with 3.5 million nonzero elements analyzed in [35],

speed-up was not achieved for the fastest overall method tested - the preconditioned CG and

BiCGStab methods with 0 fill. For slower overall methods using higher fill in thresholds,

moderate speed-up of 1.1-6.28 was achieved. Ideally, speed-up on the GPU should be achieved for

the CPU fastest possible available method. For the triangular solve with level scheduling for the

3D Poisson problem in [36], the GPU implementation had a speed-up of approximately 2.3, and

the triangular solve of multi-color ILU with zero fill in had a speed-up of approximately 5.34 on

the GPU over the CPU.

Additionally, the scalability of the sparse matrix-vector multiplication can be explored for

the larger problem. For the sparse-matrix vector results presented, the GPU speed-up over the

CPU increased from 1.49 to 11 with increasing problem size in terms of the matrix number of

nonzero elements and the number of nodes in the mesh. From the 3D Poisson problem analyzed in

[36] with 85,000 rows and columns and 2.3 million nonzero elements, the greatest GPU sparse

matrix-vector multiplication achieved was approximately 5.3 using double precision floating point

arithmetic. As a result, the speed-up for sparse matrix-vector multiplication applied to three-

dimensional finite element problems is expected to be in the range of 5-10.

Along with finite element analysis, GPU parallel computing can be used for magnetic

equivalent circuits (MEC) [51], the boundary-element method [52], and finite element analysis

108

coupled to circuit equivalent models [3]. Each of these types of models requires the solution of a

system of equations. GPUs can be applied to the components of these types of models where they

are suitable for parallel processing, such as sparse matrix-vector multiplication or sparse iterative

solvers for large problem sizes.

Additionally, numerical and parallel processing techniques can be explored in conjunction

to further accelerate the more detailed electromagnetic simulation of the electric machine. Such an

approach could involve creating a hybrid three-dimensional MEC-FEA simulation by using MEC

to simulate flux density and field intensity for a certain transient duration, providing an estimated

initial condition for an FEA transient simulation. The MEC reluctance network could be mapped

to a similar FEA mesh, and then the FEA simulation could be used for more detailed analysis to

capture eddy current. GPUs could be applied to certain components of the MEC and FEA

simulations to further speed-up the simulation. Compared to an FEA-only CPU-based transient

analysis solution, such a hybrid approach along with the use of GPUs could result in faster

computation times.

109

APPENDIX A

CUDA SOURCE CODE FOR MATLAB MEX FUNCTION: SPARSE MATRIX-

VECTOR MULTIPLICATION USING CSR FORMAT

/*
 * Copyright (c) 2013, The Regents of the University of California,
 * through Lawrence Berkeley National Laboratory (subject to receipt of
 * any required approvals from U.S. Dept. of Energy) All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or
 * without modification, are permitted provided that the
 * following conditions are met:
 *
 * * Redistributions of source code must retain the above
 * copyright notice, this list of conditions and the following
 * disclaimer.
 *
 * * Redistributions in binary form must reproduce the
 * above copyright notice, this list of conditions and the
 * following disclaimer in the documentation and/or other
 * materials provided with the distribution.
 *
 * * Neither the name of the University of California,
 * Berkeley, nor the names of its contributors may be used to
 * endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXVPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXVEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Stefano Marchesini, Lawrence Berkeley National Laboratory, 2013
 */

#include <cuda.h>
#include <cusp/complex.h>
#include <cusp/blas.h>
#include<cusp/csr_matrix.h>
#include<cusp/multiply.h>
#include <cusp/array1d.h>
#include <cusp/copy.h>
#include <thrust/device_ptr.h>

110

#include "mex.h"
#include "gpu/mxGPUArray.h"

/* Input Arguments */
#define VAL prhs[0]
#define COL prhs[1]
#define ROWPTR prhs[2]
// #define NCOL prhs[3]
// #define NROW prhs[4]
// #define NNZ prhs[5]
#define XV prhs[3]

/* Output Arguments */
#define Y plhs[0]

void mexFunction(int nlhs, mxArray * plhs[], int nrhs,const mxArray * prhs[]){

 mxGPUArray const *Aval;
 mxGPUArray const *Acol;
 mxGPUArray const *Aptr;
 mxGPUArray const *x;
 mxGPUArray *y;

// int nnzs = lrint(mxGetScalar(NCOL));
// int nrows = lrint(mxGetScalar(NROW));
// int nptr=nrows+1;
// int nnz = lrint(mxGetScalar(NNZ));
//

 /* Initialize the MathWorks GPU API. */
 mxInitGPU();

 /*get matlab variables*/
 Aval = mxGPUCreateFromMxArray(VAL);
 Acol = mxGPUCreateFromMxArray(COL);
 Aptr = mxGPUCreateFromMxArray(ROWPTR);
 x = mxGPUCreateFromMxArray(XV);

 int nnz=mxGPUGetNumberOfElements(Acol);
 int nrowp1=mxGPUGetNumberOfElements(Aptr);
 int ncol =mxGPUGetNumberOfElements(x);

 mxComplexity isXVreal = mxGPUGetComplexity(x);
 mxComplexity isAreal = mxGPUGetComplexity(Aval);
 const mwSize ndim= 1;
 const mwSize dims[]={(mwSize) (nrowp1-1)};

 if (isAreal!=isXVreal)
 {
 mexErrMsgTxt("Aval and X must have the same complexity");
 return;
 }

 if(mxGPUGetClassID(Aval) != mxSINGLE_CLASS||
 mxGPUGetClassID(x)!= mxSINGLE_CLASS||

111

 mxGPUGetClassID(Aptr)!= mxINT32_CLASS||
 mxGPUGetClassID(Acol)!= mxINT32_CLASS){
 mexErrMsgTxt("usage: gspmv(single, int32, int32, single)");
 return;
 }

 //create output vector
 y = mxGPUCreateGPUArray(ndim,dims,mxGPUGetClassID(x),isAreal,
MX_GPU_DO_NOT_INITIALIZE);

 /* wrap indices from matlab */
 typedef const int TI; /* the type for index */
 TI *d_col =(TI *)(mxGPUGetDataReadOnly(Acol));
 TI *d_ptr =(TI *)(mxGPUGetDataReadOnly(Aptr));
 // wrap with thrust::device_ptr
 thrust::device_ptr<TI> wrap_d_col (d_col);
 thrust::device_ptr<TI> wrap_d_ptr (d_ptr);
 // wrap with array1d_view
 typedef typename cusp::array1d_view< thrust::device_ptr<TI> > idx2Av;
 // wrap index arrays
 idx2Av colIndex (wrap_d_col , wrap_d_col + nnz);
 idx2Av ptrIndex (wrap_d_ptr , wrap_d_ptr + nrowp1);

 if (isAreal!=mxREAL){

 typedef const cusp::complex<float> TA; /* the type for A */
 typedef const cusp::complex<float> TXV; /* the type for X */
 typedef cusp::complex<float> TYV; /* the type for Y */

 // wrap with array1d_view
 typedef typename cusp::array1d_view< thrust::device_ptr<TA > > val2Av;
 typedef typename cusp::array1d_view< thrust::device_ptr<TXV > > x2Av;
 typedef typename cusp::array1d_view< thrust::device_ptr<TYV > > y2Av;

 /* pointers from matlab */
 TA *d_val =(TA *)(mxGPUGetDataReadOnly(Aval));
 TXV *d_x =(TXV *)(mxGPUGetDataReadOnly(x));
 TYV *d_y =(TYV *)(mxGPUGetData(y));

 // wrap with thrust::device_ptr
 thrust::device_ptr<TA > wrap_d_val (d_val);
 thrust::device_ptr<TXV > wrap_d_x (d_x);
 thrust::device_ptr<TYV > wrap_d_y (d_y);

 // wrap arrays
 val2Av valIndex (wrap_d_val , wrap_d_val + nnz);
 x2Av xIndex (wrap_d_x , wrap_d_x + ncol);
 y2Av yIndex(wrap_d_y, wrap_d_y+ nrowp1-1);
// y2Av yIndex(wrap_d_y, wrap_d_y+ ncol);

 // combine info in CSR matrix
 typedef cusp::csr_matrix_view<idx2Av,idx2Av,val2Av> DeviceView;

 DeviceView As(nrowp1-1, ncol, nnz, ptrIndex, colIndex, valIndex);

 // multiply matrix

112

 cusp::multiply(As, xIndex, yIndex);

 }
 else{

 typedef const float TA; /* the type for A */
 typedef const float TXV; /* the type for X */
 typedef float TYV; /* the type for Y */

 /* pointers from matlab */
 TA *d_val =(TA *)(mxGPUGetDataReadOnly(Aval));
 TXV *d_x =(TXV *)(mxGPUGetDataReadOnly(x));
 TYV *d_y =(TYV *)(mxGPUGetData(y));

 // wrap with thrust::device_ptr!
 thrust::device_ptr<TA > wrap_d_val (d_val);
 thrust::device_ptr<TXV > wrap_d_x (d_x);
 thrust::device_ptr<TYV > wrap_d_y (d_y);
 // wrap with array1d_view
 typedef typename cusp::array1d_view< thrust::device_ptr<TA > > val2Av;
 typedef typename cusp::array1d_view< thrust::device_ptr<TXV > > x2Av;
 typedef typename cusp::array1d_view< thrust::device_ptr<TYV > > y2Av;

 // wrap arrays
 val2Av valIndex (wrap_d_val , wrap_d_val + nnz);
 x2Av xIndex (wrap_d_x , wrap_d_x + ncol);
 //y2Av yIndex(wrap_d_y, wrap_d_y+ ncol);
 y2Av yIndex(wrap_d_y, wrap_d_y+ nrowp1-1);

 // combine info in CSR matrix
 typedef cusp::csr_matrix_view<idx2Av,idx2Av,val2Av> DeviceView;

 DeviceView As(nrowp1-1, ncol, nnz, ptrIndex, colIndex, valIndex);

 // multiply matrix
 cusp::multiply(As, xIndex, yIndex);

 }

 Y = mxGPUCreateMxArrayOnGPU(y);

 mxGPUDestroyGPUArray(Aval);
 mxGPUDestroyGPUArray(Aptr);
 mxGPUDestroyGPUArray(Acol);
 mxGPUDestroyGPUArray(x);
 mxGPUDestroyGPUArray(y);

 return;
}

113

APPENDIX B

CUDA SOURCE CODE FOR MATLAB MEX FUNCTION: BICONJUGATE

GRADIENT SPARSE ITERATIVE SOLVER

#include "mex.h"
#include "cuda.h"
#include "gpu/mxGPUArray.h"
#include <string.h>
#include <iostream>
#include <time.h>
#include <windows.h>
#include <float.h>

#define DEBUG 1

#include <cusp/blas.h>
#include <cusp/copy.h>
#include <cusp/gallery/random.h>
#include <cusp/coo_matrix.h>

#include <cusp/krylov/bicg.h>
#include <cusp/krylov/bicgstab.h>
#include <cusp/krylov/cg.h>
#include <cusp/krylov/gmres.h>

#include <cusp/io/matrix_market.h>

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
 /* define timer variables */
 /* unsigned int kernelTime;
 cutCreateTimer(&kernelTime);
 cutResetTimer(kernelTime);*/
 LARGE_INTEGER frequency, start, end;
 double seconds;

 /* Read in one sparse matrix */
 mwSize nnz_A = mxGetNzmax(prhs[0]);

 /* Create the three arrays needed to represent matrix in COO format */
 mxArray *matlab_coo_A[] = {
 mxCreateNumericArray(1, &nnz_A, mxDOUBLE_CLASS, mxREAL),
 mxCreateNumericArray(1, &nnz_A, mxDOUBLE_CLASS, mxREAL),
 mxCreateNumericArray(1, &nnz_A, mxDOUBLE_CLASS, mxREAL)
 };
 mexCallMATLAB(3, matlab_coo_A, 1, (mxArray**)(&prhs[0]), "find");

 /* Create a cusp matrix on the host */
 cusp::coo_matrix<int, double, cusp::host_memory> A(mxGetM(prhs[0]),
 mxGetN(prhs[0]),
 nnz_A);
 double *row = (double*)mxGetData(matlab_coo_A[0]);
 double *col = (double*)mxGetData(matlab_coo_A[1]);

114

 for (int i = 0; i < nnz_A; i++)
 {
 A.row_indices[i] = row[i] - 1;
 A.column_indices[i] = col[i] - 1;
 }
 memcpy(&A.values[0], mxGetData(matlab_coo_A[2]), sizeof(double) * nnz_A);

 /* Copy to GPU */
 cusp::coo_matrix<int, double, cusp::device_memory> gpuA = A;
 /* A = gpuA; */

#if DEBUG
 cusp::io::write_matrix_market_file(A, "A.mtx");
#endif

 /* Read in a full vector */
 mwSize A_num_rows = mxGetM(prhs[0]);
 cusp::array1d<double, cusp::host_memory> B(A_num_rows);
 memcpy(&B[0], mxGetData(prhs[1]), sizeof(double) * A_num_rows);

 /* Copy to GPU */
 cusp::array1d<double, cusp::device_memory> gpuB = B;
 /* B = gpuB; */

#if DEBUG
 cusp::io::write_matrix_market_file(B, "B.mtx");
#endif

 /* Read in a full vector */
 cusp::array1d<double, cusp::host_memory> x(A_num_rows);
 memcpy(&x[0], mxGetData(prhs[2]), sizeof(double) * A_num_rows);

 /* Copy to GPU */
 cusp::array1d<double, cusp::device_memory> gpux = x;
 /* x = gpux; */

#if DEBUG
 cusp::io::write_matrix_market_file(x, "x.mtx");

#endif

 /* Read in one sparse matrix */
 mwSize nnz_M = mxGetNzmax(prhs[3]);

 /* Create the three arrays needed to represent matrix in COO format */
 mxArray *matlab_coo_M[] = {
 mxCreateNumericArray(1, &nnz_M, mxDOUBLE_CLASS, mxREAL),
 mxCreateNumericArray(1, &nnz_M, mxDOUBLE_CLASS, mxREAL),
 mxCreateNumericArray(1, &nnz_M, mxDOUBLE_CLASS, mxREAL)
 };
 mexCallMATLAB(3, matlab_coo_M, 1, (mxArray**)(&prhs[3]), "find");

 /* Create a cusp matrix on the host */
 cusp::coo_matrix<int, double, cusp::host_memory> M(mxGetM(prhs[3]),
 mxGetN(prhs[3]),
 nnz_M);
 double *rowM = (double*)mxGetData(matlab_coo_M[0]);

115

 double *colM = (double*)mxGetData(matlab_coo_M[1]);
 for (int i = 0; i < nnz_M; i++)
 {
 M.row_indices[i] = rowM[i] - 1;
 M.column_indices[i] = colM[i] - 1;
 }
 memcpy(&M.values[0], mxGetData(matlab_coo_M[2]), sizeof(double) * nnz_M);

 /* Copy to GPU */
 cusp::coo_matrix<int, double, cusp::device_memory> gpuM = M;
 /* A = gpuA; */

#if DEBUG
 cusp::io::write_matrix_market_file(M, "M.mtx");
#endif

 /* Allocate space for solution */
 cusp::array1d<double, cusp::host_memory> x1(A_num_rows, 0);
 cusp::array1d<double, cusp::device_memory> gpux1 = x1;

 cusp::verbose_monitor<double> monitor(gpuB, 8000, 1e-5);

 //cutStartTimer(kernelTime);
 /* solve the linear systems */
 QueryPerformanceFrequency(&frequency);
 QueryPerformanceCounter(&start);
 cusp::krylov::bicgstab(gpuA, gpux, gpuB, monitor);
 //cusp::krylov::cg(gpuA, gpux, gpuB, monitor);
 //cusp::krylov::gmres(gpuA, gpux, gpuB, 20, monitor);

 cudaDeviceSynchronize();
 QueryPerformanceCounter(&end);

// if any error, such as launch timeout, return maximum run time,
 seconds = (cudaGetLastError() == cudaSuccess) ? ((double)(end.QuadPart -
start.QuadPart) / (double)frequency.QuadPart) : DBL_MAX;
 std::cout << seconds << std::endl;
 /*cudaThreadSynchronize();
 cutStopTimer(kernelTime);
 printf("Time for the kernel: %f ms\n", cutGetTimerValue(kernelTime));*/
 /* Copy result back */
 x1 = gpux;

 /* Store in output array */
 double *output = (double*)mxCalloc(A_num_rows, sizeof(double));
 memcpy(output, &x1[0], A_num_rows * sizeof(double));

#if DEBUG
 cusp::io::write_matrix_market_file(x1, "xsolve.mtx");
#endif

 plhs[0] = mxCreateNumericArray(1, &A_num_rows, mxDOUBLE_CLASS, mxREAL);
 mxSetData(plhs[0], output);
}

116

APPENDIX C

MATLAB SOURCE CODE FOR GCSPARSE CLASS DEFINITION

classdef gcsparse < handle
 % sparse array GPU class
 % Usage:
 % A=gcsparse(A,[format]);
 % A=gcsparse(col,row,val,[nrows,[ncols,[format]]]);
 % format: 0 for COO, 1 for CSR (0 is default);
 % A: can be matlab full/sparse array or gcsparse i tself
 %
 % overloaded operators:
 % transpose: B=A.';
 % transpose: B=A';
 % multiply: x=A*y; (spmv)
 % size: [row, columns]
 % type: class/real/complex
 %
 % format conversion:
 % B=real(A);
 % A=complex(B);
 % B=gcsparse(A,format);
 % rowptr= ptr2row(A);
 % row =grow2ptr(A);
 % row <-> offset pointer conversion may crash insid e the function,
 % but manually does not:
 % so, to convert from A COO, to B CSR one can use this instead:
 % B=A; %copy
 % B.row= gptr2row(A.row,int32(A.nrows+1),A .nnz);
 % B.format=1;
 %
 % S. Marchesini, LBNL 2013

 % properties (SetAccess='private')
 properties
 nrows=int32(0); % number of rows
 ncols=int32(0); % number of columns
 nnz=int32(0); % non zero elements
 val=gpuArray([]); %values (gpu real/complex, single)
 col=gpuArray(int32([])); % column index (gpu int32)
 row=gpuArray(int32([])); % row/ptr index (gpu int32)
 format=int32(0); %0 for COO 1 for CSR
 end
 methods (Access = private)
 end
 methods (Static)
 end
 methods
 function obj = gcsparse(col,row,val,nrows,ncols,format)

 if nargin<6 %default is COO

117

 format=int32(0); %COO
 else
 format=int32(format);
 end

 if (nargin<=2); %gcsparse(A,[format])
 % get the sparse structure of A
 if nargin==2 %gcsparse(A,format) (format=row, second
input)
 format=int32(row); %row is actually the second input
 else
 format=0;
 end

 if isa(col, 'gcsparse') % we are just converting here
 obj=col; %col is actually the fisrt input
 if obj.format==format %nothing to do...
 return
 elseif (obj.format==0 && format==1)
 obj.row=row2ptr(obj); %COO->CSR
 obj.format=format;
 elseif (obj.format==1 && format==0);
 %nptr=obj.nrows+1;
 %rowptr= gptr2row(obj.row,nptr,obj.nnz);
 ro wptr=ptr2row(col); %CSR->
COO
 %
obj.row=gptr2row(obj.row,nptr,obj.nnz);
 obj.row=rowptr;
 obj.format=format;
 else
 fprintf('invalid');
 end
 return
 else
 % get val,col,row triplets from A (first input)
 [obj.nrows,obj.ncols]=size(col) ; %col is actually the
fisrt input
 obj.nrows=gather(obj.nrows);
 obj.ncols=gather(obj.ncols);

 [obj.row,obj.col,obj.val]=find(col);

 obj.col=gpuArray(int32(obj.col(:)));
 obj.row=gpuArray(int32(obj.row(:)));
 obj.val=gpuArray((single(obj.va l(:))));
 end
 if nargin==2
 format=int32(row); %row is actually the second input
 end
 else
 obj.col=gpuArray(int32(col(:)));
 obj.row=gpuArray(int32(row(:)));
 obj.val=gpuArray(val(:));
 obj.nrows=gather(int32(max(obj.row(:))));

118

 obj.ncols=gather(int32(max(obj.col(:))));
 obj.nnz=int32(obj.nnz);
 end

 obj.nnz=gather(int32(numel(obj.val)));

 % matlab to c indexing...:
 obj.col=obj.col-1;
 obj.row=obj.row-1;
 % increase nrows if input [nrows] is given
 if nargin>3
 if (~isempty(nrows))
 obj.nrows=gather(int32(max(obj. nrows,nrows)));
 end
 if nargin>4
 if (~isempty(ncols))
 obj.ncols=int32(max(obj.nco ls,ncols));
 end
 end
 end
 % sort by rows
 [obj.row,unsort2sort]=sort(obj.row);
 obj.col=obj.col(unsort2sort);
 obj.val=obj.val(unsort2sort);
 obj.format=0;

 if format==1;
 % obj.row=coo2csr(obj);
 obj.row= row2ptr(obj);
 obj.format=1;
 end
 % 'hi'
 end
 function B=real(A)
 B=A;
 B.val=real(B.val);
 end
 function B=complex(A)
 B=A;
 if isreal(A.val);
 B.val=complex(B.val);
 end
 end
 function y = mtimes(A,x) %SpMV
 %SpMV with CUSP
 if A.format==0
 % y=0;
 wait(gpuDevice())
 y=gspmv_coo(A.val,A.col,A.row,A.nro ws, x);
 elseif A.format==1
 % y=gspmv_csr(A.col,A.row,A.val,A.nrows,A.ncols,x) ;
 wait(gpuDevice());
 y=gspmv_csr(A.val,A.col,A.row,x);
 end
 end
 function C= ctranspose(obj)

119

 % format->coo->transpose->format
 C=gcsparse(obj,0); %convert to COO
 tmprow=C.col; %swap row and columns
 C.col=C.row;
 C.row=tmprow;
 tmp=C.nrows;
 C.nrows=obj.ncols;
 C.ncols=tmp;
 C.val=conj(obj.val); %conjugate
 C=gcsparse(C,obj.format); %revert to original format
 end

 function C= transpose(obj)
 C=gcsparse(obj,0); %convert to COO
 tmprow=C.col; %swap row and columns
 C.col=C.row;
 C.row=tmprow;
 tmp=C.nrows;
 C.nrows=obj.ncols;
 C.ncols=tmp;
 C=gcsparse(C,obj.format);
 end
 function [row,col,val]= find(obj)
 if obj.format==1;
 fprintf('it may not work, use COO\n')
 fprintf('[col,row,val]=find(gcsparse(A,0))');
% [~,row,~]=find(gcsparse(A,0));
 nptr=int32(obj.nrows+1);
 ptr=obj.row+0;
 nnz=obj.nnz+0;
 row=gptr2row(ptr,nptr,nnz);
% row=ptr2row(obj);
 row=row+1;
 if numel(row)<obj.nnz
 fprintf('did not work, use COO\n')
 end
% row=gptr2row(obj.row,int32(obj.nr ows+1),obj.nnz);
 else
 row=obj.row+1;
 end
 col=obj.col+1;
 val=obj.val;

 end

 function m = size(obj)
 m=[obj.nrows obj.ncols];
 end
 function m = type(obj)
 f0= classUnderlying(obj.val);
 if (isreal(obj.val))
 fmt= 'Real' ;
 else fmt= 'Complex' ;
 end

120

 m=[f0 ' ' fmt];
 end
 function row= ptr2row(obj)
 % offset pointer to row conversion
 row= gptr2row(obj.row,int32(obj.nrows+1),obj.nnz);
 end
 function rowptr= row2ptr(obj)
 % row to offsets
 rowptr=grow2ptr(obj.row,(obj.nrows+1),(obj.nnz));
 end

 end

end

121

APPENDIX D

BUILT-IN MATLAB FUNCTIONS THAT SUPPORT GPUARRAY FOR MATLAB

2012A

Table D.1 shows the built-in functions that support gpuArray type that are available in the

parallel computing toolbox for MATLAB version 2012a.

Table D.1 Available Built-In Functions for MATLAB 2012a
Parallel Computing Toolbox that Support GPUArray

abs conv2 floor log
acos cos fprintf log10
acosh cosh full log1p
acot cot gamma log2
acoth coth gammaln logical
acsc csc gather lt
acsch csch ge lu

all ctranspose gt mat2str
any cumprod horzcat max

arrayfun cumsum hypot meshgrid
asec det ifft min
asech diag ifft2 minus
asin diff ifftn mldivide
asinh disp imag mod
atan display ind2sub mrdivide
atan2 dot int16 mtimes
atanh double int2str ndgrid
beta eig int32 ndims

betaln eps int64 ne
bitand eq int8 norm
bitcmp erf inv not
bitor erfc ipermute num2str

bitshift erfcinv isempty numel
bitxor erfcx isequal permute
bsxfun erfinv isequaln plot (and related)

cast exp isfinite plus
cat expm1 isinf power
ceil filter islogical prod
chol filter2 isnan qr

circshift find isreal rdivide
classUnderlying fft issorted real

colon fft2 ldivide reallog
complex fftn le realpow

conj fix length realsqrt
conv

122

APPENDIX E

BUILT-IN MATLAB FUNCTIONS THAT SUPPORT GPUARRAY FOR MATLAB

2014A

Table E.1 shows the built-in functions that support gpuArray type that are available in the

parallel computing toolbox for MATLAB version 2014a.

Table E.1 Available Built-In Functions for MATLAB 2014a Parallel Computing Toolbox that Support GPUArray
abs blkdiag display gammaln isinf mod real times

acos bsxfun dot gather isinteger mpower reallog trace

acosh cast double ge islogical mrdivide realpow transpose

acot cat eig gt ismatrix mtimes realsqrt tril

acoth ceil eps horzcat ismember NaN rem triu

acsc chol eq hypot isnan ndgrid repmat TRUE

acsch circshift erf ifft isnumeric ndims reshape uint16

all classUnderlying erfc ifft2 isreal ne rot90 uint32

and colon erfcinv ifftn isrow nnz round uint64

angle complex erfcx ifftshift issorted norm sec uint8

any cond erfinv imag issparse normest sech uminus

arrayfun conj exp ind2sub isvector not shiftdim uplus

asec conv expm1 Inf kron num2str sign var

asech conv2 eye int16 ldivide numel sin vertcat

asin convn FALSE int2str le ones single xor

asinh cos fft int32 length or sinh zeros

atan cosh fft2 int64 log pagefun size

atan2 cot fftn int8 log10 perms sort

atanh coth fftshift interp1 log1p permute sprintf

besselj cov filter interp2 log2 plot (and related) sqrt

bessely cross filter2 interp3 logical plus squeeze

beta csc find interpn lt pow2 std

betaln csch fix inv lu power sub2ind

bitand ctranspose flip ipermute mat2str prod subsasgn

bitcmp cumprod fliplr iscolumn max qr subsindex

bitget cumsum flipud isempty mean rand subsref

bitor det floor isequal meshgrid randi sum

bitset diag fprintf isequaln min randn svd

bitshift diff full isfinite minus rank tan

bitxor disp gamma isfloat mldivide rdivide tanh

123

REFERENCES

[1] F. J. Bartos, "Efficient motors can ease energy crunch," Control Engineering, pp. 63-70,
May 2001.

[2] P. C. Krause and O. Wasynczuk, Electromechanical Motion Devices, McGraw-Hill, 1989.

[3] S. J. Salon, Finite Element Analysis of Electrical Machines, Norwell: Kluwer Academic
Publishers, 1995.

[4] R. Telichevesky, K. Kundert and J. White, "Efficient steady-state analysis based on matrix-
free Krylov-subspace methods," in 32nd ACM/IEEE Design Automation Conference, pp.
480-484, 1995.

[5] W. Yao, "Accurate, efficient, and stable domain decomposition methods for analysis of
electromechanical problems," Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Urbana, IL, 2013.

[6] J. Jin, The Finite Element Method in Electromagnetics, New York: John Wiley & Sons,
2002.

[7] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Melbourne: Press
Syndicate of the University of Cambridge, 1996.

[8] J. Crank and P. Nicolson, "A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type," Proc. Camb. Phil. Soc., vol. 43,
no. 1, pp. 50-67, 1947.

[9] W. F. Tinney, V. Brandwajn and S. M. Chan, "Sparse vector methods," Power Apparatus
and Systems, IEEE Transactions on, vols. PAS-104, no. 2, pp. 295-301, 1985.

[10] S. M. Chan and V. Brandwajn, "Partial matrix refactorization," IEEE Transactions on Power
Systems, vol. 1, no. 1, pp. 193-199, 1986.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems, Cambridge University Press, 2003.

[12] W. E. Arnoldi, "The principle of minimized iterations in the solution of the matrix,"
Quarterly of Applied Mathematics, vol. 9, pp. 17-29, 1951.

[13] C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators," Res. Nat’l Bur. Std, vol. 45, no. 4, pp. 255-282, 1950.

[14] R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, Philadelphia, PA: SIAM, 1994.

[15] Y. Saad and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems," SIAM J. Sci. Stat. Comput, vol. 7, no. 3, pp. 856-869, 1986.

[16] P. Sonneveld, "CGS: A fast Lanczos-type solver for nonsymmetric linear systems," SIAM J.
Sci. Stat. Comput., vol. 10, no. 1, pp. 36-52, 1989.

[17] H. A. van der Vorst, "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for
the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., vol. 13, no. 2, pp.
631-644, 1992.

124

[18] M. T. Heath, Scientific Computing: An Introductory Survey, New York, NY: McGraw-Hill,
2002.

[19] T. A. Manteuffel, "An incomplete factorization technique for positive definite linear
systems," Math. Comput, vol. 34, no. 150, pp. 473-497, 1980.

[20] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, New
York: Springer Science + Business Media, 2010.

[21] T. Nakata, N. Takahashi, K. Fujiwara, N. Okamoto and K. Muramatsu, "Improvements of
convergence characteristics of Newton-Raphson method for nonlinear magnetic field
analysis," in IEEE Transactions on Magnetics, vol. 28, no. 2, pp. 1048-1051, 1992.

[22] K. Fujiwara, T. Nakata, N. Okamoto and K. Muramatsu, "Method for determining relaxation
factor for modified Newton-Raphson method," in IEEE Transactions on Magnetics, vol. 29,
no. 2, pp. 1962-1965, 1993.

[23] A. Burtscher, E. Fonn and P. Meury, "Swiss federal institute of technology Zurich
department of mathematics handouts and lecture notes," [Online]. Available:
https://www.math.ethz.ch/education/bachelor/lectures/fs2013/other/n_dgl/serien/edit/LehrFE
M.zip. [Accessed April 2011].

[24] Mathworks Technical Staff, Parallel Computing Toolbox Documentation, The Mathworks,
Inc., 2014.

[25] Mathworks Technical Staff, Parallel for-Loops (parfor) Documentation, The Mathworks,
Inc., 2014.

[26] J. Doke, "MATLAB central file exchange - demo files for parallel computing with
MATLAB on multicore desktops and GPUs webinar," 11 May 2011. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/31336-demo-files-for--parallel-
computing-with-matlab-on-multicore-desktops-and-gpus--webinar/content/. [Accessed June
2011].

[27] M. J. Quinn, Parallel Programming in C with MPI and OpenMP, New York: McGraw-Hill,
2003.

[28] S.-I. Sugimoto, H. Kanayama, M. Ogino and S. Yoshimura, "Introduction of a direct method
at subdomains in non-linear magnetostatic analysis with HDDM," in 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications, 2010,
pp. 304-309.

[29] Y. Zhan and A. M. Knight, "Parallel time-stepped analysis of induction machines with
Newton-Raphson iteration and domain decomposition," in IEEE Transactions on Magnetics,
vol. 44, no. 6, pp. 1546-1549, 2008.

[30] Y. Takahashi et al., "Parallel time-periodic finite-element method for steady-state analysis of
rotating machines," in IEEE Transactions on Magnetics, vol. 28, no. 2, pp. 1019-1022, 2012.

[31] C. Fu, "A parallel algorithm for nonlinear dynamic finite element analysis," Information
Science and Engineering (ICISE), 2009 1st International Conference on, 2009, pp. 59-62.

[32] D. B. Kirk and W.-M. W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach, Burlington: Morgan Kaufmann Publishers, 2010.

[33] NVIDIA Corporation, "NVIDIA CUDA toolkit documentation: CUDA C programming
guide," March 2015. [Online]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html. [Accessed March 2015].

125

[34] NVIDIA Corporation Technical Staff, "Technical brief: NVIDIA GeForce 8800 GPU
architecture overview," NVIDIA Corporation, Santa Clara, CA, Tech. Rep. TB-02787-
001_v01, 2006.

[35] M. Naumov, "Incomplete-LU and Cholesky preconditioned iterative methods using
CUSPARSE and CUBLAS," NVIDIA Corporation, Santa Clara, CA, White Paper Tech.
Rep., Jun. 2011.

[36] R. Li and Y. Saad, "GPU-Accelerated preconditioned iterative linear solvers," The Journal of
Supercomputing, vol. 63, no. 2, pp. 443-466, 2013.

[37] A. Dziekonski, A. Lamecki and M. Mrozowski, "Jacobi and Gauss-Seidel preconditioned
complex conjugate gradient method with GPU acceleration for finite element method," in
Proceedings of the 40th European Microwave Conference, 2010, pp. 1305-1308.

[38] A. Dziekonski, A. Lamecki and M. Mrozowski, "Tuning a hybrid GPU-CPU V-cycle
multilevel preconditioner for solving large real and complex systems of FEM equations,"
Antennas and Wireless Propagation Letters, IEEE, vol. 10, pp. 619-622, June 2011.

[39] N. Bell and M. Garland, "Efficient sparse matrix-vector multiplication on CUDA," NVIDIA
Corporation, Santa Clara, CA, Tech. Rep. NVR-2008-004, 2008.

[40] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath and P. Sadayappan, "Fast sparse
matrix-vector multiplication on GPUs for graph applications," in High Performance
Computing, Networking, Storage and Analysis, SC14: International Conference for, 2014,
pp. 781-792.

[41] Z. A. Taylor, M. Cheng and S. Ourselin, "High-speed nonlinear finite element analysis for
surgical simulation using graphics processing units," IEEE Transactions on Medical
Imaging, vol. 27, no. 5, pp. 650-663, 2008.

[42] R. Couturier and S. Domas, "Sparse systems solving on GPUs with GMRES," The Journal
of Supercomputing, vol. 59, no. 3, pp. 1504-1516, 2012.

[43] NVIDIA Corporation, "Sparse linear algebra library based on thrust," [Online]. Available:
http://cusplibrary.github.io/. [Accessed 2014].

[44] NVIDIA Corporation, "NVIDIA CUDA toolkit v7.0 documentation: cuSPARSE," 5 March
2015. [Online]. Available: http://docs.nvidia.com/cuda/cusparse/. [Accessed 2015].

[45] A. George and W. H. Liu, "The evolution of the minimum degree ordering algorithm,"
SIAM, vol. 31, no. 1, pp. 1-19, 1989.

[46] S. Marchesini, "MATLAB central file exchange: GPU sparse, accumarray, non-uniform
grid," Lawrence Berkeley National Laboratory, December 2013. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/44423-gpu-sparse--accumarray--
non-uniform-grid. [Accessed 2013].

[47] T. Nakata, N. Takahashi and K. Fujiwara, "Summary of results for benchmark problem 10
(steel plates around a coil)," in COMPEL - The International Journal for Computation and
Mathematics in Electrical and Electronics Engineering, vol. 15, no. 2, pp. 103-112, 1995.

[48] J. Wells, P. Chapman and P. Krein, "Development and application of a linear induction
machine for instructional laboratory use," in Proc. IEEE Power Electronics Specialists
Conference, 2002, pp. 479-482.

[49] M. Magill, "A composite material approach towards induction machine design using planar
layer models," M.S. thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2011.

126

[50] P. Pillay, "Improved design of motors for increased efficiency in residential and commerical
buildings," U.S. Department of Energy, Washington, DC, Building Technologies Program
Topical Report, 2008.

[51] M. Amrhein and P. T. Krein, "3-D magnetic equivalent circuit framework for modeling
electromechanical devices," Energy Conversion, IEEE Transactions on, vol. 24, no. 2, pp.
397-405, 2009.

[52] A. J. Adzima, P. T. Krein and T. C. O'Connell, "Investigation of accelerating numerical-field
analysis methods for electric machines with the incorporation of graphic-processor based
parallel processing techniques," in Electric Ship Technologies Symposium, 2009. ESTS 2009.
IEEE, 2009, pp. 59-64.

