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ABSTRACT 

Finite element analysis used for detailed electromagnetic analysis and design of electric 

machines is computationally intensive.  A means of accelerating two-dimensional transient finite 

element analysis, required for induction machine modeling, is explored using graphical processing 

units (GPUs) for parallel processing.  The graphical processing units, widely used for image 

processing, can provide faster computation times than CPUs alone due to the thousands of small 

processors that comprise the GPUs.   Computations that are suitable for parallel processing using 

GPUs are calculations that can be decomposed into subsections that are independent and can be 

computed in parallel and reassembled.  The steps and components of the transient finite element 

simulation are analyzed to determine if using GPUs for calculations can speed up the simulation.  

The dominant steps of the finite element simulation are preconditioner formation, computation of 

the sparse iterative solution, and matrix-vector multiplication for magnetic flux density calculation.  

Due to the sparsity of the finite element problem, GPU-implementation of the sparse iterative 

solution did not result in faster computation times.  The dominant speed-up achieved using the 

GPUs resulted from matrix-vector multiplication.  Simulation results for a benchmark nonlinear 

magnetic material transient eddy current problem and linear magnetic material transient linear 

induction machine problem are presented. The finite element analysis program is implemented 

with MATLAB R2014a to compare sparse matrix format computations to readily available GPU 

matrix and vector formats and Compute Unified Device Architecture (CUDA) functions linked to 

MATLAB.  Overall speed-up achieved for the simulations resulted in 1.2-3.5 times faster 

computation of the finite element solution using a hybrid CPU/GPU implementation over the 



iii 

 

CPU-only implementation.  The variation in speed-up is dependent on the sparsity and number of 

unknowns of the problem.   
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CHAPTER 1  

INTRODUCTION 

Electric machines constitute approximately two-thirds of all industrial electric power 

consumption [1].  An improvement in efficiency to a large number of electric machines thus 

conserves large amounts of electrical energy.  This motivates improvements to electric machine 

design to reduce inefficiencies. 

 Specifically, induction machines and permanent-magnet synchronous machines are two 

types of machines that interest engineers and researchers.  Induction machines are considered the 

“work horse” of electric machines [2].  Specific uses of induction machines include air 

conditioning units, pumps, hoists, servos, and bench tools.  Most induction machines used today 

use the same design for induction machines developed in the 1960s.  Those induction machines 

were intended to use electric line power from the power grid, i.e., at a fixed frequency.  The 

technology available today in power electronics enables variable-frequency control of induction 

machines.  Such a different control necessitates a change in design of induction machines in order 

to efficiently operate them with this different control.   

Present commonly used tools for electric machine design include analytical circuit 

equivalents and finite-element models (FEM) [2], [3].  Analytical circuit equivalents of electric 

machines are a fast way to design a machine but do not model the machines as accurately as finite-

element models because they cannot model the nonlinear magnetic behavior used in the 

construction of electric machines.  This is important because induction machines may be operated 

near or at the magnetic saturation of the magnetically permeable material.  However, finite-element 

models can model the nonlinear magnetic material used in electric machines, but they can be time-

consuming to set up and simulate the machine.  As a result, many electric machine designers use 
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analytical models to create an initial design, and then use finite-element models to verify the 

design.   

Decreasing the simulation time of a finite-element model of an electric machine makes the 

finite-element model a more desirable design tool for electric machine design.   Several approaches 

have been used to decrease the simulation time.  Numerical approaches include the shooting-

Newton method used to compute fewer iterations to obtain a steady-state solution [4].  Domain 

decomposition is another technique used to divide a finite-element domain into smaller domains 

for more efficient computation [5].  The approach examined in this thesis is to use parallel 

programming to reduce the simulation time.   
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CHAPTER 2  

MAGNETIC VECTOR POTENTIAL FORMULATION AND  

FINITE ELEMENT IMPLEMENTATION 

The electromagnetic fields for an electric machine involve magnetic flux density ( )B  

through materials with different conductivity ( )σ , permeability ( )µ , permittivity (ε ), stationary 

and moving parts, and excitation by applying voltage or current.  The magnetic flux density is 

solved for in a domain Ω  with boundary Γ .  The fields are described by Maxwell’s equations and 

constitutive relations [6]:   

 
t

∂∇× = −
∂
B

E  (2.1) 

 
t

∂∇× = +
∂
D

H J  (2.2)  

 0∇⋅ =D  (2.3) 

 0∇⋅ =B  (2.4) 

 ( ) 0σ∇ ⋅ =E  (2.5) 

 ε=D E  (2.6)  

 µ=B H  (2.7) 

where E is the electric field intensity, D is the electric flux density, H is the magnetic field 

intensity, ε  is the permittivity, and J is current density.   Current density can be decomposed into 

three parts: the impressed current sJ , eddy current σ E , and current induced by motion vσ ×B

where v is the velocity of the conductor with respect to B [3].  J is expressed as 

2.1 Magnetic Vector Potential Formulation
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 vs σ σ= + ×J J E + B  (2.8) 

The magnetic vector potential A is used to simulate the electromagnetic fields.  It is related 

to the magnetic flux density by the equation 

 = ∇×B A  (2.9) 

These equations can be combined to form one equation that describes the electromagnetic 

behavior of an electric machine.  Substituting equation (2.1) into equation (2.9) and rearranging 

yields 

 0
t

∂ ∇ × = ∂ 

A
E +  (2.10) 

The electric scalar potential V is defined as 

 
t

V
∂= −∇ −
∂
A

E  (2.11) 

Using the constitutive relations described by equations (2.6) and (2.7), substituting equations (2.8), 

(2.9), and (2.11) into equation  (2.2), and rearranging yields 

 ( )
2

2

1
+ v

t t t s

V
Vσ ε ε σ σ

µ
  ∂ ∂ ∂ ∇× ∇× + + = −∇ + + × ∇×   ∂ ∂ ∂  

A A
A J A  (2.12) 

The derivation considered here applies to isotropic media using scalars instead of dyads to 

represent material properties [6].  Within each finite element subdomain, each type of material is 

represented by scalar quantities of permittivity, permeability, and conductivity according to: 

( , , , ) 

( , , , )

( . , , )

x y z t

x y z t

x y z t

ε ε
µ µ
σ σ

=

=

=
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Using the vector identity ( ) 21 1 1 1

µ µ µ µ
 ∇× ∇× = ∇ ∇⋅ − ∇ ∇ ×∇× 
 

A A A + A , equation 

(2.12) simplifies to 

 

( )

2
2

2

1 1

t t

1
     v

t s

V
V

σ ε
µ µ

ε σ σ
µ

∂ ∂∇ − ∇ ×∇× − − =
∂ ∂

 ∂∇ + + ∇ ⋅ − − × ∇× ∂ 

A A
A A

A J A

 (2.13) 

Equation  (2.13) includes the behavior of inhomogeneous material with the 
1

µ
∇ term.  This 

formulation only includes homogeneous and uniform magnetic material properties, so the 
1

µ
∇

vanishes [7] resulting in the standard wave equation  

 ( )
2

2
2

1 1
v

t t t s

V
Vσ ε µε µσ σ

µ µ
∂ ∂ ∂ ∇ − − = ∇ + + ∇⋅ − − × ∇× ∂ ∂ ∂ 

A A
A A J A  (2.14) 

Next, the divergence of A should be specified since it is not fully determined by equation 

(2.9).  For a unique solution to the wave equation, a gauge condition, i.e., the choice of ∇⋅A , 

should be specified, although that may not be necessary since B is the value of interest in machine 

behavior [6].  In cases where the value of eddy current is desired, the gauge condition must be 

specified since the value of A is directly used to calculate eddy current.  Not specifying the gauge 

condition can lead to numerical instability in iterative solutions and may reduce computational 

precision [7].  The selected gauge condition is the diffusion gauge defined by 

 
V

t
ε ∂∇⋅ = −

∂
A  (2.15) 

Applying the gauge condition to equation (2.14) yields 

 ( ) ( )
2

2
2

1
v

t t sVσ ε σ σ
µ

∂ ∂∇ − − = ∇ − − × ∇×
∂ ∂
A A

A J A  (2.16) 
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This equation is simplified by neglecting the gradient of the electric scalar potential term, which is 

a function of the current density resulting from low-frequency voltage source excitation and 

resistance, and the magnetic vector potential second-derivative term, which is the displacement 

current and is small for low-frequency applications [7].  These assumptions reduce equation (2.16) 

to 

 ( )21
v

t sσ σ
µ

∂∇ − = − − × ∇×
∂
A

A J A  (2.17) 

This equation is the main equation that describes the electromagnetic behavior of electric 

machines using magnetic vector potential.  In a two-dimensional simulation, with impressed 

current density applied in the z-direction, the magnetic vector potential only has a single 

component, zA .  Reducing the problem to two dimensions means that the simulation assumes the 

electric machine has infinite axial length.  When conducting simulation studies of electric machine 

designs, this assumption is appropriate for preliminary and semi-detailed machine analysis.  This 

two-dimensional simplification of the electric machine analysis enables significantly faster 

analysis.  However, for detailed machine design and analysis, a three-dimensional simulation that 

captures end turn effects should be conducted.   

The velocity term of equation (2.17) can be eliminated by setting velocity to zero and 

neglecting motion or by employing a frame of reference that is fixed with respect to the moving 

component so that the relative velocity v  becomes zero.  This reference frame is created by fixing 

the mesh to the surface of the moving component and moving or remeshing only the elements in 

the air around the component [3].  To simplify the meshing and finite element implementation, 

motion is neglected in this formulation. 
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Using the fact that magnetic vector potential only has a single component in the z-direction 

for the two-dimensional analysis and neglecting motion, equation (2.17) reduces to 

 
2 2

2 2

1

t

A A A
J

x y
σ

µ
 ∂ ∂ ∂+ − = − ∂ ∂ ∂ 

 (2.18) 

where A is understood to be z-directed and only varies in the x- and y-directions, and J is the 

impressed z-directed current density.  Equation (2.18) is referred to as a magnetic diffusion 

equation. 

The Galerkin approach is used to derive the finite element equations.  It is a special case of 

the method of weighted residuals.  The Galerkin method uses the weighting function of the same 

form as the finite element shape function [6], [3], [7].  The magnetic vector potential within an 

element is approximated by the sum of shape functions.  With Â denoting the approximation of A, 

the magnetic vector potential within an element e is approximated by 

 
1

ˆ ˆ( , )
m

e e e
i i

i

A N x y A
=

=∑  (2.19) 

for m nodes in the element and eiN  element shape functions.     

The residual r of equation (2.18) with the approximation of A denoted as ̂A is 

 
2 2

2 2

ˆ ˆ ˆ1

t

A A A
r J

x y
σ

µ
 ∂ ∂ ∂= + − +  ∂ ∂ ∂ 

 (2.20) 

The weighted residual for element e is  

 
2 2

2 2

ˆ ˆ ˆ1
         1, 2,...,

te

e e e
i i e

A A A
R N J dxdy i m

x y
σ

µΩ

  ∂ ∂ ∂= + − + =   ∂ ∂ ∂   
∫∫  (2.21) 

2.2 Finite Element Discretization
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where eΩ denotes the element domain.   Integrating by parts, equation (2.21) can be written as 

 

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ   

ˆ
                                  

t

e e

e e

e e
e e e ei i
i ie e

e e e
i i

N NA A A A
R dxdy N x y n d

x x y y x y

A
N dxdy N J dxdy

µ µ

σ

Ω Γ

Ω Ω

   ∂ ∂∂ ∂ ∂ ∂= + − + ⋅ Γ      ∂ ∂ ∂ ∂ ∂ ∂   

∂− +
∂

∫∫ ∫

∫∫ ∫∫

�
 (2.22) 

where eΓ denotes the contour enclosing  eΩ  and ˆen is the outward unit vector normal to eΓ .   

To solve for the finite-element domain solution, the element weighted residuals, 

represented by equation (2.22), are assembled by summation with the same equation with shape 

functions for the other elements.  The system residual should be zero so that the approximated Â

equates to the actual A.  For M elements, this system residual is described by 

 

1

1

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ   

ˆ
                           0

t

                      

e e

e e

e eM
e e ei i
ie e

e

M
e e e
i i

e

N NA A A A
dxdy N x y n d

x x y y x y

A
N dxdy N J dxdy

µ µ

σ

= Ω Γ

= Ω Ω

    ∂ ∂∂ ∂ ∂ ∂ + − + ⋅ Γ +       ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ − + = ∂  

∑ ∫∫ ∫

∑ ∫∫ ∫∫

�

          

 (2.23) 

From the derivation in [6], the internal element sides do not contribute to the line integral.  By 

imposing the homogeneous Neumann boundary condition, which is defined by 
ˆ

0
ˆe

A

n

∂ =
∂

, the line 

integral is zero.  When the finite element method is used with other solution techniques, such as the 

boundary element method or an analytical expression to represent techniques the air-gap region 

solution [3], this may not be a suitable boundary condition.  In that case, the line integral must be 

evaluated [3].  This formulation only uses the finite element method, so the homogeneous 

Neumann boundary condition is satisfactory and simplifies the solution calculation.   
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The reluctivity term is introduced, which is simply 1ν
µ

= .  With the line integral term equal 

to zero, the following equation shows equation (2.23) written in matrix form: 

 [ ] { } [ ] { } { }
1 1 1

ˆ
ˆ 0

t

M M M
e e e

e e e

A
S A T Q

= = =

 ∂ + − = ∂  
∑ ∑ ∑  (2.24) 

or even more compactly as  

 [ ]{ } [ ] { } { }
ˆ

ˆ 0
t

A
S A T Q

 ∂ + − = ∂  
 (2.25) 

where it is understood that the S, T, and Q matrices are assembled by summing over the elements.  

Entries in these matrices are given by: 

  
e ee e
j je e i i

ij

N NN N
S dxdy

x x y y
ν

 ∂ ∂∂ ∂= +  ∂ ∂ ∂ ∂ 
∫∫  (2.26) 

  e e e e
ij i jT N N dxdyσ= ∫∫  (2.27) 

  e e e
i iQ J N dxdy= ∫∫  (2.28) 

for , 1,2,...,i j m= nodes per element.  { }Â and 
ˆ

t

A ∂ 
 ∂  

correspond to the jth node.   The integrals in 

these matrices can be evaluated analytically or numerically.  The matrices depend on the element 

order and corresponding shape function. 

  First-order elements consist of three nodes connected by three edges to form a triangle. 

Figure 2.1 illustrates a first-order triangular element.  For mesh consistency, they must be 

2.2.1 First-order elements 
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numbered counterclockwise.  The unknown function Â varies linearly within each element and is 

approximated as 

 ˆ ( , )e e e eA x y a b x c y= + +  (2.29) 

 

 

 

 

 

 

With m = 3, the shape functions which approximate ˆ eA according to equation (2.29) satisfy 

equation (2.19).  The derivation of the first-order shape functions can be found in [6] and [3].  For 

first-order elements, the shape functions are given by 

 
1

( , ) ( )       1,2,3
2

e e e e
j j j je

N x y x y jα β γ= + + =
∆

 (2.30) 

with 

 
1 2 3 2 3 1 2 3 1 3 2

2 3 1 3 1 2 3 1 2 1 3

3 1 2 1 2 3 1 2 3 2 1

;      ;        =x

;      ;        =x

;      ;        =x

e e e e e e e e e e e

e e e e e e e e e e e

e e e e e e e e e e e

x y y x y y x

x y y x y y x

x y y x y y x

α β γ
α β γ
α β γ

= − = − −

= − = − −

= − = − −

 (2.31) 

and 

 ( )1 2 2 1

1

2
     area of the element 

e e e e e

e

β γ β γ∆ = −

=
 (2.32) 

Using these shape functions, equations (2.26), (2.27), and (2.28) evaluate to 

 
( ) ( )1

,  ,   Q T   =
4 12 3

 
e e e e e e

i j i j ije e e e e
ij ij i

e

e
S J

ν β β γ γ δ
σ

+ + ∆= =
∆

∆
 (2.33) 

Figure 2.1 First-order triangular element 
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1 2

3

e

4

56

where ijδ = 1 when i = j, otherwise, ijδ = 0.  Note that for this implementation, reluctivity and 

conductivity are constant throughout the element.   

 Second-order elements consist of six nodes connected by three edges to form a triangle. 

Figure 2.2 illustrates a second-order triangular element.  For mesh consistency, they must be 

numbered in increasing order as shown in Figure 2.2.  Higher-order elements are used to improve 

element accuracy.  Another method of improving accuracy is to solve the system with a greater 

mesh density, i.e., smaller elements.  Results and discussion about these options are presented for a 

benchmark problem in Section 4.3 Simulation Results.  The unknown function ̂A is a quadratic 

function within each element and is approximated as 

 2 2ˆ ( , )e e e e e e eA x y a b x c y d x e xy f y= + + + + +  (2.34) 

 

 

 

 

 

 

With m = 6, the shape functions which approximate ˆ eA according to equation  (2.34) satisfy 

equation (2.19).  The derivation of the second-order shape functions can be found in [6].  For 

second-order elements, the shape functions are given by 

 
( )

4 1 2 5 2 3 6 3 1

( , ) 2 1 ,        1,2,3

( , ) 4 ,   ( , ) 4 ,    ( , ) 4

e e e
j j j

e e e e e e e e e

N x y L L j

N x y L L N x y L L N x y L L

= − =

= = =
 (2.35) 

2.2.2 Second-order elements

Figure 2.2 Second-order triangular element 
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with 

 
1

( , ) ( )       1,2,3
2

e e e e
j j j je

L x y x y jα β γ= + + =
∆

 (2.36) 

and the same ,  , , and e e e e
j j jα β γ ∆ as defined for first-order elements. 

Using these shape functions, equations (2.26), (2.27), and (2.28) evaluate to 

 

( )

( ) ( )

( ) ( )

14 24 12 16 36 13

25 35 23 15 26 34

2 2

44 1 2 1 2

2 2

55 2 3 2 3

66

4 1
         , 1,2,3

12
4 4

,      
3 3
4

,      0
3

2

3
2

3
2

ije e e e e e
ij i j i je

e e e e e e

e e e e e e

e e e e e e
e

e e e e e e
e

e e

S i j

S S S S S S

S S S S S S

S

S

S

δ
ν β β γ γ

ν β β γ γ

ν β β γ γ

ν

−
= + =

∆

= = = =

= = = = =

 = + + +  ∆
 = + + +  ∆

= ( ) ( )

( ) ( )

( ) ( )

2 2

3 1 3 1

22 2
45 2 3 1 3 1 2 2 2 3 1 3 1 2 2

22 2
46 1 3 2 3 1 2 1 1 3 2 3 1 2 1

56 3 1 2 1 2 3

3
1

2 2
3
1

2 2
3
1

2
3

e e e e
e

e e e e e e e e e e e e e e e e
e

e e e e e e e e e e e e e e e e
e

e e e e e e e e
e

S

S

S

β β γ γ

ν β β β β β β β γ γ γ γ γ γ γ

ν β β β β β β β γ γ γ γ γ γ γ

ν β β β β β β

 + + +  ∆
 = + + + + + + +  ∆
 = + + + + + + +  ∆

= + +
∆

( ) ( )22 2
3 3 1 2 1 2 3 32e e e e e e e eβ γ γ γ γ γ γ γ + + + + +  

 (2.37) 

 

 

6 1 1 0 4 0

1 6 1 0 0 4

1 1 6 4 0 0

0 0 4 32 16 16

4 0 0 16 32 16

0 4 0 1

1

6 32

0

1

8

6

e
e e

ijT σ

− − − 
 − − − 
 − − −
 − 
 −
 

−

∆=

 

 (2.38) 
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 e

0         1,2,3

   4,5,6
3

e

e
i

i

J i
Q

=

∆ =

=



 (2.39) 

The discretized system of equations for magnetodynamic finite-element analysis varies 

with time.  To emphasize this, equation (2.25) can be written as 

 [ ]{ } [ ] { } { }
ˆ ( )ˆ( ) ( ) 0
t

A t
S A t T Q t

 ∂ + − = ∂  
 (2.40) 

In the case where motion is not modeled or a fixed reference frame is used, the S, T, and mesh-

dependent sections of Q matrices are not time-dependent.  Note that the Q matrix is shown to vary 

with time, but that is only because the applied current density J may vary with time.  If motion 

were modeled with a reference frame, then elements in air are deformed with respect to time while 

all other elements remain the same.  In air, the conductivity is zero, so this element deformation 

would not affect T and the mesh-dependent sections of Q.  The S matrix would change with respect 

to time [3]. 

For induction machines, the magnetic field is time-varying within a conducting region 

which induces an electromotive force (emf) according to Faraday’s law described by equation 

(2.1).  This induced emf produces current, called eddy current, in conducting material normal to 

the magnetic flux.  The eddy currents in the rotor create magnetic poles that interact with the stator 

poles created by the excitation current, causing the rotor to move.  Modeling eddy current is 

essential to simulate an induction machine, so a magnetostatic formulation is not suitable.  Either a 

time-harmonic or time-domain simulation can be used.  Time-harmonic steady-state simulations, 

2.3 Time Discretization 
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where the time-varying fields are sinusoidal and represented by a single frequency, are typically 

represented by the Fourier transform of equation (2.18) [3]: 

 
2 2

2 2

1 A A
j A J

x y
ωσ

µ
 ∂ ∂+ − = − ∂ ∂ 

 (2.41) 

The use of the time-domain simulation over the time-harmonic simulation is discussed in section 

2.6 Nonlinear Formulation, where nonlinear magnetic material is addressed.  For linear magnetic 

material simulations, time-harmonic analysis described by equation (2.41) can be used for steady-

state simulations at a specified frequency.  For linear or nonlinear magnetic material problems, 

simulations not at steady-state or involving non-sinusoidal excitation require the solution of the 

time-domain equation (2.40).  For the simulations in this thesis, the time-domain formulation is 

used to model all possible frequencies of electromagnetic behavior.   

The stator ( sω ) and rotor ( rω ) frequencies are related according to the rotor slip s  

according to 

 s r

s

s
ω ω

ω
−=  (2.42) 

For a stationary time-domain formulation, the impressed current density is applied at slip 

frequency instead of the stator frequency in order to represent the mechanical power and torque 

produced on the rotor. 

While the time-domain simulation enables eddy current simulation, the two-dimensional 

simulation limits the accurate simulation of total machine core losses.  The eddy currents in the 

stator produce losses, called core losses, which the electric machine designer would like to 

minimize.  Core losses are reduced by using laminated sheets which are electrically insulated from 

each other.  The insulation is parallel to the direction of the magnetic flux density so that the eddy 

currents which flow normally to the magnetic flux density can only flow in each laminated sheet  
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[1].  A two-dimensional time-varying simulation thus only models the eddy current due to one 

lamination cross section.   

 The time-discretization of equation (2.40) follows the derivation in [3].  The time-

discretization method used is based on: 

 ( ) { } { }
1

t t tt t t A AA A

t t t
β β

+∆+∆ −∂ ∂   + − =   ∂ ∂ ∆   
 (2.43) 

The t∆ symbol indicates the change in time.  The constant β  allows the difference method to be 

easily changed.  Note that when 0,β = the algorithm is forward difference, when 1,β = the 

algorithm is backward difference, or when 0 1,β< < the algorithm is an intermediate type.  When 

1
,

2
β =  the algorithm is the Crank-Nicolson method [8].   

Using equation (2.43) to discretize time in equation (2.40) yields  

 [ ] [ ] { } [ ] [ ] { } { } { }1 1 1 1ˆ ˆt t t t t t
S T A T S A Q Q

t t

β β
β β β β

+∆ +∆   − −+ = − + +   ∆ ∆   
 (2.44) 

When reluctivity is linear, equation (2.44) is used to solve for { }ˆ t t

A
+∆

at each time step. 

The system defined by equation (2.44) is essentially a sparse linear system equivalent to the 

typical 

x b=A  

This sparse linear system also applies to the nonlinear formulation described in section 2.6 when 

solving for the change in magnetic vector potential used to update the next iteration.  The matrix A 

is sparse, b is a vector, and the system is solved for the vector x.  For the sparse matrices solved 

2.4 Sparse Iterative Linear Solvers 
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later in this thesis for time-domain formulations, the average density of nonzero elements in the 

matrix relative to the total number of elements is 0.0012.  For example, given this density, for a 

10,000 by 10,000 element matrix, approximately 117,430 elements of the matrix are nonzero out 

of the total 108 elements.   An example of the matrix sparsity patterns is shown in Figure 2.3.   

 

 
 

 

The assignment of the element and node numbering upon mesh generation affect the 

sparsity structure of the matrix.  For first-order elements, each element contributes nine nonzero 

entries (3x3 matrix according to node numbering).  For first-order elements, each element 

contributes 36 nonzero entries (6x6 matrix according to node numbering).    

There are several ways to solve the system.  LU decomposition can be used.  To solve the 

system using LU decomposition with forward and backward substitution for n unknowns, 3( )O n  

multiplication operations are performed if A and b are full.  The number of operations required 

when employing sparse LU decomposition techniques, such as those in [9]- [10], depends on the 

number and ordering of nonzero entries in the matrix.   
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Figure 2.3 Matrix sparsity pattern for example time-domain meshes for 

(a) first-order elements and (b) second-order elements 



17 

 

Sparse iterative linear solvers are another option to solve the system. In particular, Krylov 

subspace methods can be used to solve the finite-element discretized system [11].  To solve the 

system using a sparse iterative linear solver for n unknowns, A is no longer treated as having n n×

values, but rather only p nonzero values, and its inverse is found in terms of a linear combination 

of its powers.  For well-conditioned matrices, this should reduce the number of operations that are 

performed to solve the system.  Krylov subspace methods that use the Arnoldi [12] or Lanczos [13] 

process, such as generalized minimum residual method (GMRES) method [14], [15], conjugate 

gradient (CG) method [14], [16], bi-conjugate gradients (BiCG) method, and the bi-conjugate 

gradients stabilized (BiCGStab) method [14], [17], are 2( )O n per iteration [18].  

 Finite element matrices can be ill-conditioned for the sparse iterative linear solvers.  This 

means that the iterative solvers require many iterations to solve the system to a specified tolerance.  

Using a preconditioner can accelerate the convergence of the iterative solvers.  While it takes a 

certain number of operations to create the preconditioner, the decrease in number of iterations 

required to solve the system using the preconditioner with the iterative solver may still require 

fewer operations than using iterative solver without the preconditioner.  A preconditioner is used 

by solving the system 

 1 1x b− −=P A P  (2.45) 

Preconditioners used with iterative solvers are a computationally efficient way to find a matrix P 

such that 1−P A is better conditioned than A.  Two readily available preconditioners are the 

incomplete LU (ILU) preconditioner [11] and incomplete Cholesky factorization preconditioner 

[11], [19].   
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After computing the solution for the nodal magnetic vector potential, other values may be 

computed from the solution in order to evaluate the physical behavior of the simulated problem.  

These other values are considered to be “post-processed” values since they are computed after the 

solution for A is found.  The three post-processing values of interest in this thesis are the magnetic 

flux density B, eddy current, and force.   

The magnetic flux density is the first post-processed value of interest.  Magnetic flux 

density has physical meaning and can be measured, unlike magnetic vector potential.  For the 

linear ferromagnetic material model, magnetic flux density may be calculated outside of the 

magnetic vector potential finite-element solution.  To minimize memory storage, it is beneficial to 

calculate the magnetic flux density at desired nodes or elements at each time step and store only 

those values rather than both of the entire magnetic vector potential and magnetic flux density 

solutions at each time step.  For the nonlinear ferromagnetic material model, it is necessary to 

calculate the magnetic flux density magnitude at each node or element at every iteration in order to 

determine nonlinear reluctivity since reluctivity is a function of the square of magnetic vector 

potential.   

Recalling from equation (2.9) that B is the curl of A, so B varies in each element with one 

degree of freedom less than A.  For first-order elements, B is constant throughout the element.  For 

second-order elements, B  varies linearly throughout the element.  Theoretically, the lower order 

elements decrease the accuracy of B.  The element order accuracy and mesh density is examined in 

the benchmark problem simulation results in Chapter 4.   

2.5 Post-Processing

2.5.1 Magnetic flux density 
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Since B is the curl of A, and A only has a single component zA , 

 ˆ ˆz zA A
x y

y x

∂ ∂−
∂ ∂

B =  (2.46) 

The partial derivatives of zA are computed from the shape functions that describe ˆ
zA .  B in terms 

of shape functions is 

 
1 1

( , ) ( , )ˆ ˆˆ ˆ
e em m

e i i
i i

i i

N x y N x y
x A y A

y x= =

∂ ∂−
∂ ∂∑ ∑B =  (2.47) 

For first-order elements, this equates to 

 
3 3

1 1

1 1ˆ ˆˆ ˆ
2 2

e e e
i i i ie e

i i

x A y Aγ β
= =

−
∆ ∆∑ ∑B =  (2.48) 

Notice that the magnetic flux density is constant throughout the element.  For second-order 

elements, the expressions becomes more complicated and equates to 

 

( )
( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )

3

2
1

2 1 1 1 1 2 2 2 42

3 2 2 2 2 3 3 3 52

3 12

1 ˆ
2

1 ˆ              

1 ˆ               

1
               

e
e e e e e i
x i i i i iee

i

e e e e e e e e

e

e e e e e e e e

e

e e

e

B x y A

x y x y A

x y x y A

γγ α β γ

γ α β γ γ α β γ

γ α β γ γ α β γ

γ α

=

 
 + + − +
 ∆∆ 

 
 + + + + + +
 ∆ 

 
 + + + + + +
 ∆ 

∆

∑=

( ) ( )( )1 1 1 3 3 3 6
ˆe e e e e ex y x y Aβ γ γ α β γ

 
 + + + + +
 
 

 (2.49) 
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( )
( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )

3

2
1

2 1 1 1 1 2 2 2 42

3 2 2 2 2 3 3 3 52

3 12

1 ˆ
2

1 ˆ              

1 ˆ               

1
               

e
e e e e e i
y i i i i iee

i

e e e e e e e e

e

e e e e e e e e

e

e

e

B x y A

x y x y A

x y x y A

γβ α β γ

β α β γ β α β γ

β α β γ β α β γ

β α

=

 
 − + + − −
 ∆∆ 

 
 + + + + + −
 ∆ 

 
 + + + + + −
 ∆ 

∆

∑=

( ) ( )( )1 1 1 3 3 3 6
ˆe e e e e e ex y x y Aβ γ β α β γ

 
 + + + + +
 
 

 (2.50) 

 ˆ ˆe e e
x yB x B y+B =  (2.51) 

The eddy current density is modeled by magnetic vector potential derived from Maxwell’s 

equations.  Using equation (2.11) that relates electric field to magnetic vector potential, neglecting 

the electric scalar potential, and knowing that  

 eddy σ=J E  (2.52) 

then eddy current in terms of magnetic vector potential is 

 
teddy σ ∂= −

∂
A

J  (2.53) 

In terms of time discretization using equation (2.43), eddy current density is calculated from the 

magnetic vector potential solution at each time step by 

 
( ) ( )1

t t t

t t t
eddy eddy

A A
J J

t

β
σ

β β

+∆
+∆

−−
= −

∆
 (2.54) 

 

2.5.2 Eddy current density 
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The purpose of an electric machine is to produce force or torque to do work.  Measuring or 

computing these quantities is useful to evaluate the performance of the machine.  There are several 

methods to compute the force from a finite element simulation.  The Ampere’s Force Law, 

Maxwell Stress Method, and Virtual Work Method are considered in [3].  In this thesis, the 

Maxwell Stress Method is used to compute force.  It is used to find the total, not the local, force on 

an object.  Additionally, the Maxwell Stress Tensor formulation in the air gap should result in 

accurate force calculation for linear and nonlinear magnetic material representation.   

Following the derivation from [3], the volume force density can be written as the 

divergence of the Maxwell Stress Tensor (MST) T 

 vp = ∇ ⋅T  (2.55) 

where T is derived as 

 

22

22

0

22

1

2
1 1

2
1

2

x x y x z

y x y y z

z x z y z

B B B B B

B B B B B

B B B B B

µ

 − 
 
 = −
 
 
 − 
 

B

T B

B

 (2.56) 

 Integrating and using the vector divergence theorem, the total force can be expressed as 

 
S

F dS= ⋅∫ T�  (2.57) 

Taking this surface integration to be a cylindrical surface through the machine airgap, this 

integration is reduced to a line for two-dimensional simulation to give force per unit depth.  The 

tangential ( tF ) and normal ( nF ) force components in newtons per meter can be calculated 

according to 

2.5.3 Force from Maxwell Stress Tensor 
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( )

0

2 2

0

2 2 2 2

2 2 2 2 2 2 2 2 2 2

22 2 2 2

2

( ) ( )

2 2

1
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2

n t
t t

L L

n t
n n
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n t x y x y x y y x

n t x y x y x y y x x x x y x y y y

x y x y x y y x

B B
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B B
F dF dl

B B B B s s s s B B

B B B s B B s s B s B s B B s s B s

B s B B s s B s B

µ

µ

= =

−= =

= − + −

− = − + − + +
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∫ ∫

∫ ∫

� �

� �

 (2.58) 

where the unit normal and tangential vectors to the integration path and tangential and normal 

components of flux density are defined as 

 

ˆ ˆ ˆ

ˆ ˆ ˆ
n x x y y

t y x x y

t x x y y

n x y y x

a s a s a

a s a s a

B B s B s

B B s B s

= +

= − +

= +

= − +

 (2.59) 

Including the nonlinear permeability of the ferromagnetic material involved in an electric 

machine problem is necessary to obtain accurate simulations of magnetic flux saturation.  Most 

induction machines operate near or in the saturation region, so only modeling linear permeability 

may yield inaccurate simulation results.  To push the electric machines to their torque and power 

density limitations, the machines are likely to operate near saturation.   

The permeability or equivalent reluctivity in the constitutive relation shown by equation 

(2.7) is nonlinear.  It is a function of the local magnetic field.  The most accurate physical 

representation of the B-H relationship includes nonlinearity and hysteresis.  The family of 

hysteresis curves can be represented by a normal magnetization curve.   

          Figure 2.4 shows an example family of hysteresis curves.  The dotted line represents a 

2.6 Nonlinear Formulation 
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normal magnetization curve.  For a specific steel, Figure 2.5 shows the initial magnetization 

nonlinear B-H curve.  This steel curve is used for the nonlinear simulation of the benchmark 

problem described in Chapter 4.   From this data, the reluctivity versus the square of magnetic flux 

density is computed and illustrated in Figure 2.6.   

 

 

 
          Figure 2.4 Hysteresis curves and                        

          normal magnetization curve 
 

 
 

 
Figure 2.5  Nonlinear B-H curve for steel 
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          Figure 2.6  Nonlinear reluctivity versus square of 
magnetic flux density for steel 

 
As previously referenced, a time-domain simulation is preferred to accurately simulate how 

nonlinear magnetic material affects the magnetic flux density.  An effective permeability 

approximation method based on average energy [3] can be used with the time-harmonic approach.  

The time-domain method allows permeability to vary throughout the domain at each instant in 

time, providing a more intuitive model of the nonlinearity of the magnetic permeability.  

Additionally, time-domain simulation can include permeability hysteretic effects.   

To model the nonlinearity of reluctivity, an iterative process is used to find the solution that 

is consistent with the field solution.  The process is summarized by first assuming an initial value, 

solving the system, then correcting the reluctivity based on magnetic flux density solution.  This 

process continues until the change in either the magnetic vector potential or reluctivity is less than 

a specified tolerance.   

A common method of linearizing the system of nonlinear equations is the Newton-Raphson 

method.  For the nonlinear iterative solution, the existence and uniqueness of a unique stable 

mathematical solution requires that the magnetization curve be monotonically increasing with their 

first derivatives monotonically decreasing [7].  If the nonlinear function is monotonically 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

B2 (T2)

ν 
(m

/H
)

Nonlinear Reluctivity versus B2



25 

 

increasing, the solution from the Newton-Raphson method will converge quadratically.  The curve 

in Figure 2.4 is not monotonically increasing.  In order to guarantee convergence, the reluctivity in 

the low flux density region can be approximated as constant.  Most electric machinery is not 

designed to operate in this region in steady-state, so this approximation is acceptable.  For 

applications where the low flux density behavior is important, the Newton-Raphson method may 

use the change in permeability from one iteration to the next as the convergence criterion rather 

than the change in magnetic vector potential [3].   

A review of the Newton-Raphson method for a system of nonlinear equations follows.  

Consider a system of nonlinear equations 

 ( ) 0f x =  (2.60) 

where f represents a system of n equations, and xrepresents n variables 1 2, ,..., nx x x .  An estimate 

of the solution is ( )kx .  An initial guess is used as the solution to (0)x .  The iteration number is 

represented by the superscript (k).  The error is ( ) ( 1) ( )k k kx x x+∆ = − .  The system of equations can 

at iteration 1k + can be represented by 

 ( ) ( )( ) 0k kf x x+ ∆ =  (2.61) 

This equation expanded in a Taylor series is 

 
( )

( )( )
( )

2( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) 0,   1,2,...,
k

n n
k k k ki k

i i j
j jj

j

x

f
f x x f x x O

x
x i n

= =

+ ∆ = ∂
∂

+ ∆ + ∆ = =∑ ∑  (2.62) 

Omitting the higher order term, this equation can be written in matrix form as 

 [ ] { } { }( ) ( )

1 1
( )k k

n n n n
J x f x

× × ×
∆ = −  (2.63) 

where the Jacobian matrix J is given by 
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( ) ( ) ( )

1 1 1
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1 2
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n n n
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x x x

x x x

x x x

f f f

x x x

f f f

x x x

f f f

x

J

x x

 
 
 
 
 
 =  
 
 
 
 
 

∂

 

∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

M M O M

 (2.64) 

Equation (2.63) is solved for ( )kx∆ .  Then, ( 1)kx + is found by ( 1) ( ) ( )k k kx x x+ = + ∆  .  The method 

continues to iterate until  

 ( )kx ε∆ <  (2.65) 

where ε is a specified tolerance.  

The Newton-Raphson method is applied to the time-discretized finite-element equation 

(2.44) to linearize the reluctivity.  This derivation follows aspects of the magnetostatic and time-

domain modeling linearization using the Newton-Raphson method in [3] with some modifications 

for handling second-order elements.  The implementation of the Newton-Raphson method is 

slightly different depending on the element order.  For first-order elements, the reluctivity is 

constant throughout each element, so the calculation of the Jacobian only involves the terms 

2

2
j jA A

ν ν∂ ∂ ∂=
∂ ∂ ∂

B
B

for j = 1,2,3.  B is the magnitude of the magnetic flux density calculated from A.  

More information about how B is calculated from A is included in section 2.6 about post-

processing.  For second-order elements, the reluctivity now varies throughout the element.  Since 

reluctivity is not an analytical function of B, it is represented numerically as the reluctivity derived 
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from B at each element node.  In that case, the Jacobian involves 
2

2
i i

j jA A

ν ν∂ ∂ ∂=
∂ ∂ ∂

B
B

for i, j = 

1,2,3,4,5,6.   

Consider the time-discretized equation (2.44) per element for first-order elements. 
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 (2.66) 

The subscripts denote local nodes 1, 2, and 3 for the element.  Let , 1,2,3iF i =  denote the ith 

equation.   
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 (2.67) 

To find the derivatives necessary to form the Jacobian, equation (2.67) is differentiated with 

respect to the nodal magnetic vector potential.  Using the product and chain rules, the result is 
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e e
e t ti

ij ij iq qt t e
qj j
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A B A

νν +∆
+∆

=

 ∂ ∂ ∂= + +  ∂ ∂ ∂ 
∑  (2.68) 

2.6.1 Nonlinear formulation for first-order elements
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for , 1,2,3.i j =  The ith Newton-Raphson equation is 
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A F
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+∆ +∆ +∆
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 (2.69) 

This can be written in matrix notation per element as 
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where 
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 (2.71) 

 

Note the “hats” are dropped from the nodal magnetic vector potential, but it is understood that 

those values are estimated values.  All values at time t t+ ∆ are the kth iteration values.  The 

Newton-Raphson equations for each are assembled to obtain a global system of equations.   

For each time step, the Newton-Raphson iteration process can be summarized as follows: 

1. Start with an initial guess 0A A= .  When solving for t tA+∆ , set 1 .t t tA A+ ∆ =  

2. Calculate ,e t t
kB + ∆ , ,e t t

kν + ∆ ,  and the Jacobian values in equations (2.70) and (2.71) from 

t t
kA + ∆ values.  

3. Assemble global matrices from element values according to equation (2.70) and (2.71). 
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4. Solve linear system of equations for { } .
t t

k
A

+∆∆  

5. Update 1 .t t t t t t
k k kA A A+ ∆ + ∆ + ∆

+ = + ∆                                            (2.72) 

6. If t t
kA ε+∆∆ < , stop the iteration process and set 1

t t t t
kA A+ ∆ + ∆

+= .  Otherwise, repeat the 

iteration process from step 2 and continue. 

Several calculations are required for step 2.  The value of t t
kν + ∆  is calculated by first determining 

t t
kB + ∆  from equation (2.46), then determining the value of t t

kν + ∆  according to the non-linear 2Bν −

curve at the point for ( )2t t
kB +∆ .  Note that the Jacobian values in equation (2.71) are calculated 

differently for first- and second-order elements.  The value of 
( )

,

2,

e t t
k

e t t
kB

ν +∆

+∆

∂

∂
is determined by taking 

the derivative of the non-linear 2Bν − curve.   The value of 
( )2,

,

e t t
k

t t
i k

B

A

+∆

+∆

∂
∂

, i = 1,2,3, for first-order 

elements is derived from equations (2.46) and (2.48) that describes B as a function of Az.  First, 

note that  
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2e z zA A
B

x y

 ∂ ∂  +   ∂ ∂   
=  (2.73)  

Squaring the x- and y-components of equation (2.48) and taking the derivative as a function of Aj 

for j = 1,2,3 yields 
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∂
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∑ ∑  (2.74) 

The author has not found specific implementation methods for modeling nonlinear second-

order time-domain finite element methods.  In [3], the nonlinear magnetostatic formulation is 

2.6.2 Nonlinear formulation for second-order elements
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described for first-order elements, but not for second-order elements nor for the magnetodynamic 

(time-harmonic or time-domain) formulation.  In [6], the linear two-dimensional time-harmonic 

formulation is described for first- and second-order elements, and the general time-domain 

discretization is discussed, but neither the nonlinear time-harmonic nor the nonlinear time-domain 

formulation for second-order elements is described.  In [7], first- and second-order element 

implementations for the Helmholtz equation are described, first-order element solutions of the 

Newton-Raphson iterations are shown, and time- and frequency-domain problems are discussed 

including eddy-current analysis using magnetic vector potential, but the time-domain, nonlinear 

implementation for second-order or higher-order elements is not explicitly described.  In [20] 

which is more mathematically based rather than application based for [3], [6], [7], higher-

dimensional element formulation is presented, and iterative methods are discussed, but the 

application of second-order elements for a time-domain, nonlinear problem is not presented.  The 

following formulation was derived for second-order elements as an extension of the nonlinear 

formulation for first-order elements. 

For elements with nonlinear reluctivity which is a function of 2B , and B depends on 

position within an element, reluctivity is also a function of position within an element and is no 

longer constant as it is for first-order elements.  As a result, the finite element discretization, time 

discretization, and linearization should be repeated with elemental reluctivity replaced by ( ),x yν .   

To numerically include the reluctivity variation within the element, the value of B is calculated at 

each local node per element.  Then, using the local nodal B values, the reluctivity and 

corresponding 2B

ν∂
∂

 at each local node belonging to elements in the nonlinear material region is 

calculated according to the nonlinear v-B2 curve for the magnetic material.  If an analytical 
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expression is available for the v-B2 relationship, it may be analytically possible to determine the 

variation of v across the element.  In this case, a value and gradient could be assigned at each local 

node per element.  As seen in the example v-B2 in Figure 2.6, the derivative of this curve is 

constant for certain ranges of B2.  The reluctivity at each node belonging to elements in the linear 

material region is assigned according to the relative reluctivity to that region.  For elements in the 

linear material region, the reluctivity is constant throughout the element.   

With the reluctivity variation in mind, the matrix defined by equation (2.37) is redefined by 

replacing eν with e
iν .  In this way, the finite element formulation is still the same as for first-order 

elements, but a variation in reluctivity within an element is included.    

The nonlinear finite-element formulation is the same as first-order elements except the 

Jacobian values are different because reluctivity varies at each node.  The Jacobian values become  
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for , 1,2,...,6.i j =  The Newton-Raphson equation can be written in matrix notation per element as
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where 
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The value of ,
t t
i kν +∆  is calculated in the same manner as for first-order elements by first determining 

,
t t
i kB +∆  from equation (2.46), then determining the value of ,

t t
i kν +∆  according to the non-linear 2Bν −
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curve at the point for ( )2

,
t t
i kB +∆ .  The value of 

( )
,

2

,

t t
i k

t t
i kB

ν +∆

+∆

∂

∂
is determined by taking the derivative of 

the non-linear 2Bν − curve.   The value of 
( )2

,

,

t t
i k

t t
j k

B

A

+∆

+∆

∂
∂

, i,j = 1,2,…,6 for second-order elements is 

derived from equations (2.46), (2.49), and (2.50) that describe B as a function of Az.  First, note that  

 
22

2 z zA A
B

x y

 ∂ ∂  +   ∂ ∂   
=  (2.78)  

Rewriting equations (2.49) and (2.50) to simplify these expressions, 
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Squaring the x- and y-components of B from equations (2.79) and (2.80) and taking the derivative 

as a function of Aj for j = 1,2,…,6 yields 
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The Newton-Raphson equation for each element is assembled to obtain a global system of 

equations. 

Rather than always updating the next iteration value of the nodal magnetic vector potential 

by , a relaxation factor α may be used according to 

 1
t t t t t t
k k kA A Aα+ ∆ + ∆ + ∆

+ = + ∆  (2.82) 

to either over-relax or under-relax the update.  The updated value is over-relaxed if 1α > , and this 

theoretically reduces the number of iterations to achieve convergence as long as the update does 

not overshoot the exact solution in which the method may not converge.  The updated value is 

2.6.3 Relaxation factor
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under-relaxed if 0 1α< < .  This may be necessary to achieve convergence with the Newton-

Raphson method so that the next updated value does not overshoot the solution.   

A method of determining the relaxation factor to find the value ofα  that minimizes the 

objective function in equation (2.83) which is a function of the Galerkin residual [21], [22].  The 

objective function is the sum of the values of the Galerkin residual each raised to the nth power.  

Objective functions to the second and fourth powers were explored.   Equation (2.84) shows the 

Galerkin residual.  Note that it is a function of the updated 1
t t
kA + ∆

+ which is a function of α .  

 { }1 , 1

nt t
k i k

i

W H +∆
+ +=∑  (2.83) 
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The value of t t
kν + ∆ may be updated to the value of 1

t t
kν + ∆

+ which is a function of { } 1

t t

k
A

+∆

+ .  This option 

was experimentally explored and did not seem to improve the convergence or reduce the number 

of iterations to achieve convergence.  Additionally, updating the value of 1
t t
kν + ∆

+ for each updated 

{ } 1

t t

k
A

+∆

+  for the values of α  examined ( )0,0.1,0.2,...,2α = increases the computation time of each 

iteration without necessarily any benefit.  Instead, the relaxation  factor α  that allowed the solution 

value to achieve convergence was determined through numerical experiments for the specific 

problem.  When an appropriate under-relaxation factor still does not yield a converged solution, the 

mesh may need to be refined.   

2.7 Implementation 

Each of the time-domain finite-element simulations was programmed for and run using 

MATLAB.  While other programs, such as Maxwell Ansoft and JMAG, are available for finite 
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element simulations of electric machines, a program needed to be created so that the lines of code 

could be manipulated in order to experiment with acceleration of the simulation.  The time 

discretization used for each of these simulations is the Crank-Nicolson method with β = 0.5 

according to equation (2.43).   

In addition to the Neumann boundary condition applied in the derivation described in 

section 2.2 Finite Element Discretization, other boundary conditions must be applied to create a 

nonsingular global matrix and obtain a unique solution for the finite element problem [3].  At each 

point on the boundary of the mesh domain, the magnetic vector potential unknown or the normal 

derivative must be specified.  Additionally, in order for the global matrix to be nonsingular, the 

magnetic vector potential must be defined for at least one specific node.  For this application, the 

homogeneous Dirichlet boundary condition is applied, resulting that for all nodes on the boundary 

of the mesh domain,� 0A = .  

This section describes computer simulation implementation specifics for each type of 

problem – first or second order elements, and linear or nonlinear simulations.  For all matrices and 

vectors stored and manipulated on the CPU, the MATLAB sparse matrix format is utilized to 

improve computational efficiency and reduce memory usage.   

2.7.1 First-order, linear simulation 

The first-order element mesh for the benchmark and induction machine simulation was 

generated using the MATLAB Partial Differential Equation (PDE) toolbox.  This toolbox provides 

the ability to create a mesh using the Delaunay triangulation algorithm for a specified geometry.  It 

generates a point matrix with the x- and y-coordinates of the points in the mesh, edge matrix, and 
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triangle matrix describing the element triangle corner points in counterclockwise order and the 

corresponding element subdomain number.   

For the simplest simulation using linear magnetic material and first-order elements, note 

that conductivity and reluctivity are constant throughout the element.  From implementation of 

equation (2.44) using first-order matrices defined by equations (2.31)-(2.33), it is apparent that for 

a fixed geometry and linear reluctivity, the [S] and [T] matrices do not vary with time, but the 

magnetic vector potential and {Q} vectors do vary with time.  As a result, the [S] and [T] matrices 

only need to be computed once.   

For a MATLAB script implementation, the [S] and [T] matrices are computed using the 

MATLAB sparse matrix format.  For each element, the contributions from each node are 

calculated then summed over the elements to assemble the total [S] and [T] matrices.  Because for 

first-order, linear simulations these matrices are only calculated once, they are computed on the 

CPU since the GPU will not yield a significant speed-up with this assembly, especially since the 

matrices are sparse.   

For each time step, the solution for the next time-step value of the magnetic vector potential 

of equation (2.44) is solved for using the sparse iterative Krylov subspace solver biconjugate 

gradients stabilized method using a function that implements the biconjugate gradients stabilized 

method with preconditioner algorithm [11], [14], [17].  A similar MATLAB function “bicgstab” is 

also available for comparison.  Several types of solvers for use with preconditioners are readily 

available functions in MATLAB.  In addition to the biconjugate gradients stabilized method, the 

biconjugate gradients, conjugate gradients squared, generalized minimum residual, least squares, 

minimum residual, preconditioned conjugate gradients, quasi-minimal residual, and symmetric LQ 

methods are available MATLAB functions.  For the first-order, linear simulation, each of these 
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preconditioned solvers, except the quasi-minimal residual which was much slower, calculated the 

solution in similar times.  The biconjugate gradients stabilized method is chosen as the solver for 

each type of simulation for consistency and calculation time comparison for different problem 

sizes.  For the biconjugate gradients stabilitized method used, the solver tolerance was 10-5.  The 

MATLAB built-in function “ichol” to form the sparse incomplete Cholesky factorization was used 

to form the preconditioner.  For this problem, the matrix is symmetric, positive definite, so the 

incomplete Cholesky factorization is a suitable preconditioner. The modified incomplete Cholesky, 

lower triangle preconditioner was formed using threshold dropping of tolerance 10-3.  Once the 

value for the magnetic vector potential was solved, the corresponding magnetic flux density per 

element was computed by equation (2.48), and the eddy current density was computed by equation 

(2.54) 

2.7.2 Second-order, linear simulation 

The second-order element mesh, specifically for the three additional nodes per element and 

edges between elements used to determine boundary nodes, was generated with the MATLAB 

PDE toolbox and the LehrFEM 2D finite element toolbox [23].   

The second-order linear simulation follows the same simulation process as the first-order 

linear simulation except with second-order defined matrices.  These matrices are the [S] and [T] per 

equations (2.37) and (2.38).  Additionally, the magnetic flux density is calculated for each local 

node per element according to equations (2.49) and (2.50).  The same preconditioner was not used 

for the second-order linear simulation as for the first-order linear simulation since it did not result 

in a converging sparse iterative solution to the specified 10-5 tolerance.  Instead, the lower 

triangular, unmodified incomplete Cholesky factorization with zero fill was used for the 

preconditioner.   
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2.7.3 First-order, nonlinear simulation 

The nonlinear problem mesh is formed the same way as the linear problem mesh.  The 

nonlinear reluctivity vs. 2B  and nonlinear  2B

ν∂
∂

vs. 2B are each represented by a piecewise linear 

interpolation function according to the nonlinear magnetic material properties.   

The nonlinear simulation is set up to solve equation (2.70) with equation (2.71) using the 

Newton-Raphson method to solve the nonlinear system of equations.  The matrices [ ]T and [ ]S

without the associated ν are computed once at the beginning of the simulation.  The nonlinear 

iterative process outlined in section 2.6, Nonlinear Formulation, is implemented.  For first-order 

elements, the magnetic flux density and reluctivity are constant throughout the element and are 

thus assigned per element.  The Newton-Raphson residual ε used was 10-6.  The incomplete 

Cholesky factorization preconditioner resulted in pivoting errors when it was called to compute 

and did not enable the biconjugate gradient stabilized solver to converge.  Instead, the sparse 

incomplete LU factorization preconditioner was used according to the MATLAB function “ilu.”  

The row-sum modified incomplete LU Crout version factorization with drop tolerance 10-5 was 

used and resulted in converged solutions for the biconjugate gradient stabilized solver.  The sparse 

iterative linear solver tolerance was 10-5.   

An under-relaxation factor according to equation  (2.82) was used for each Newton-

Raphson iteration and time step.  The value of the relaxation factor was determined experimentally 

using the value closest to 1 but still allowing the Newton-Raphson iteration to converge and not 

overstep the solution.  This approach minimizes the number of Newton-Raphson iterations while 

still resulting in a converging solution.   
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In addition to the relaxation factor, the element size and time step difference t∆ affect the 

Newton-Raphson convergence.  For the first-order, nonlinear simulation, both coarse and fine 

meshes for the benchmark problem and t∆ = 1 ms result in a converged solution.   

2.7.4 Second-order, nonlinear simulation 

The second-order, nonlinear simulation follows the same process as for the first-order, 

nonlinear simulation.  The second-order matrices were computed according to equations (2.37), 

(2.38), (2.39), (2.76), (2.77), and (2.81).  As described previously, the nonlinear reluctivity and 

resulting 2B

ν∂
∂

 and 
2B

A

∂
∂

are computed for each local node per element.  The magnetic flux density 

is calculated for second-order elements by equations (2.49)-(2.51).  The same incomplete LU 

factorization type of preconditioner and iterative solver used for the first-order, nonlinear 

simulation was used for this simulation.   

The  second-order, nonlinear simulation had Newton-Raphson convergence issues that did 

not arise for the other simulation types.  For the benchmark problem, the coarse mesh problem 

could only converge for t∆ = 1 ms for simulation times 1-4 ms.  Beyond that, smaller t∆ values 

had to be used in order for the Newton-Rapshon iterations to converge to the 10-6 residual.  

Solutions were calculated up to 27.487 ms with a t∆ = 0.001 ms.  For subsequent times, it was 

determined that for a reasonable computation time, the fine mesh needed to be used in order to 

achieve convergence for a larger t∆ .   

For the benchmark problem fine mesh, the solution converged for t∆ =1 ms for times 1-18 

ms.  For subsequent times, t∆ =0.5 ms resulted in converged solutions for times 18-20 ms, and t∆

=0.1 ms resulted in converged solutions for times 20-21.7 ms.  The remaining part of the 
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simulation was not conducted due to the nonlinear convergence problems.  Results are presented 

for times 1-18 ms to show scalability of the GPU solution.   

For the linear induction machine problem, the large air gap and excitation resulted in the 

operation of the magnetic material in the linear region.  Nonlinear problem solutions did achieve 

convergence for the M19 steel representation using continuous analytical functions to represent v-

B2  and 2B

ν∂
∂

.  However, the results were similar to the linear magnetic material results, so they are 

not presented.   

A complete nonlinear solution of the benchmark problem is available for the first-order 

elements, but not for the second-order elements due to the nonlinear convergence problem.  This 

convergence issue could potentially be resolved by using an even smaller t∆ , finer mesh, or a 

continuous analytical expression of the nonlinear magnetic material properties instead of the 

piecewise linear representation.  For electric machine design and analysis problems, the higher-

order element simulations with nonlinear magnetic material should result in higher fidelity 

solutions than for first-order elements.  As part of the tradeoff of simulation detail and computation 

time, the higher-order element simulations require a smaller time step or finer mesh than the first-

order element simulations to achieve convergence, resulting in a longer computation time.  This 

trade-off may be reasonable when detailed simulation results are desired, such as for magnetic 

material saturation near tooth tips.   
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CHAPTER 3  

ACCELERATING THE FINITE ELEMENT SIMULATION 

The finite element simulation of a low-frequency nonlinear electromagnetic problem can be 

accelerated using a numerical or parallel computing method or both.  The Shooting-Newton [4] 

numerical method was investigated.  Multi-core and GPU parallel computation methods were also 

studied. 

3.1.1 Numerical methods 

When the steady-state analysis of an electromagnetic problem is desired, there are 

numerical approaches, such as the shooting-Newton method [4], that can be utilized.  Additionally, 

domain decomposition techniques can be utilized to subdivide the problem for different processing 

techniques [5].   

Methods for steady-state analysis reduce the need for a transient solution to achieve the 

steady-state solution.  For an induction machine, eddy current is represented through transient 

analysis.  For different machine topologies such as permanent magnet synchronous machines, 

steady-state analysis can be utilized for machine nominal performance design.   

One approach of the shooting-Newton method, which requires Gaussian elimination, 

assessed for simulation acceleration involves a matrix-free Krylov-subspace approach [4].  The 

shooting method approach is to find the periodic steady-state solution of the problem by comparing 

the computed solution at the end of the period and determining if it matches the initial condition at 

the start of the period.  The method outlined in [4] was experimented for the benchmark problem 

3.1 Methods of Accelerating Finite Element Simulations
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later presented.  For this specific type of finite element analysis, this method did not appear to 

reduce the computation time because the numerical integration required a small change in time, 

resulting in a longer computation time than the transient finite element analysis formulation.   

3.1.2 Parallel processing methods 

3.1.2.1 Multiple core 

 

Multiple-core processors provide a means to accelerate certain simulations such as ordinary 

differential equations.  For an implementation in which each equation is independent, not related to 

the solution of a separate set of equations or other variables, and can be implemented in any order, 

the solution of these equations is easily solved in parallel.  For the time-domain finite element 

simulation, each time step of the solution must be computed sequentially, but it may be possible to 

decompose the domain for each time step and compute the solution of each subsection in parallel 

[5].   

For example, MathWorks has developed a parallel for-loop that enables parallel for-loop 

implementation across each core of a processor [24], [25].  The parallel ordinary differential 

equation example describes the use of the parallel for-loop to solve a parameter sweep study of a 

second-order ODE system [26].  First, the example solves 3500 ODEs in serial using the ode45 

solver.  Then, the example solves the same number of ODEs using the parallel for-loop.  For a 

processor with four cores, the speed-up of this example is tested to be approximately 3.63, which is 

nearly linearly proportional to the number of cores.  This is due to the fact that this loop has 

minimal overhead in terms of data transfer.   

Another means of multi-core processing and parallel loops is using single program multiple 

data (SPMD) [27].  This type of processing is suitable for simulations that can be implemented in 
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any order and be solved in parallel.  SPMD is a shared-memory approach using message passing.  

One task per processor is executed, and each processor executes the same code.  In this way, a 

parallel loop can be implemented.   An API readily available for shared memory multiprocessing is 

Open Multi-Processing (OpenMP).  It provides a means of multithread processing whereby a block 

of code is executed in parallel [27].   

Message Passing Interface (MPI) is a message-passing communication protocol developed 

for parallel programming such as scalable cluster computing [27].  The computing nodes do not 

share memory and interact through message passing.  Programs that use MPI use a set of routines 

callable from several types of programming languages, making MPI portable.   

There are several examples from the literature about parallel processing applied to finite 

element simulations using MPI and domain decomposition (DD) [5], [28], [29], [30], [31].  

Applications of such simulations include structural dynamics and electromagnetic simulation of 

electric machines.  The application described in this thesis is the time-domain, nonlinear simulation 

of an induction machine in two dimensions for a fixed position.  The time domain simulation of 

this problem is essential in order to simulate the eddy currents of the induction machine.   

Examples from the literature include aspects of this type of simulation but not all in a single 

simulation using one or more parallel processing methods.   

A simulation by engineers in Tokyo [30] describes a method to parallelize the 2D, steady-

state analysis of nonlinear induction machine magnetic fields.  The approach, called the parallel 

time-periodic finite-element method (PTPFEM), parallelizes the simulation in the time-axis 

direction rather than in each time step.  The simulation approach taken in this thesis and typical 

with domain decomposition is by each time step.  By solving the equations for all nonlinear 

unknowns at every time step for a period simultaneously, the problem is posed for a larger number 
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of equations which lends itself to greater speed up from parallelization in this approach.  This is 

useful for the steady-state analysis of the induction machine and not the transient.  This thesis does 

not necessarily focus on the steady-state simulation of the induction machine.  In the early stages of 

a machine design, it may be beneficial to understand the steady-state behavior of the machine.  In 

this case, an approach such as this may be useful.  The authors use MPI communications for the 

parallel processing.  The BiCGstab2 method and localized ILU preconditioning are used.  To 

stabilize the convergence of the Newton-Raphson method, the authors apply the line search based 

on the minimization of energy function.  The authors claim, but do not quantify, that the 

communication overhead associated with domain decomposition for parallel performance causes 

the performance to suffer for small scale analysis.  The example simulation described for an 

induction machine includes 13,198 elements, 256 time steps to form a period, and 3,252,480 

unknowns.  A supercomputer is used for the simulation where each node consists of four AMD 

Opteron 8356 processors, and the backward Euler method is used for time integration.  The 

PTPFEM simulation results were compared for 1, 8, 16, 32, 64, and 128 processes, as well as for 

the transient approach called the time-periodic explicit error correction method, which is a time-

domain approach to find the steady-state solution faster than traditional time-domain approaches.  

For a slip of 1, the PTPFEM approach achieved a speed-up of 7.06, and for a slip of 0.0588, the 

PTPFEM approach sped up the solution by a factor of 8.4.  The authors did not describe a means to 

parallelize the time-domain approach and compare those results to the PTPFEM approach.  As the 

number of processes increases, the speed-up increases, showing the effectiveness of the PTPFEM 

approach for highly parallel computation.   

Another example of the use of MPI was done by researchers at the University of Alberta 

[29].  A two-dimensional, transient, nonlinear simulation of an induction machine was 
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implemented using the Newton-Raphson method for linearization and domain decomposition.   

The induction machine was simulated with an interbar rotor circuit model.  The parallelization was 

done with three PCs using 3.2 GHz Pentium D processors and MPICH2.  The problem was of 

similar size in this thesis for the first-order element simulation of the benchmark problem.  In [29], 

the finite element simulation consisted of 1941 nodes and 3534 first-order elements per time step.  

For the simulation of 1000 time steps, three simulations were completed using different methods: 

the traditional Newton-Raphson (NR) method, NR method with domain decomposition, and 

parallelized NR with domain decomposition.   The simulation times for these methods were 2270 

s, 1581 s, and 395 s respectively.  Comparing the serial and parallel NR with domain 

decomposition techniques, the parallelized simulation resulted in a speed-up of 4.  Note also that 

domain decomposition resulted in a speed-up of 1.43, and comparing traditional NR with 

parallelized NR with DD resulted in a speed-up of 5.75.  This may show that depending on the 

implementation of domain decomposition, further simulation speed-up may be obtained by using 

domain decomposition with parallel processing such as with MPI.   

 A variation of parallel processing using MPI for a domain decomposition technique for 

nonlinear dynamic finite element analysis was simulated for a structural dynamics problem [31].  

The simulated problem requires the solution of second derivative differential equations, and the 

unconditionally stable Newmark-β method is used for the time integration of the problem.  The 

parallel algorithm uses a method with overlapped domains with a predictor-corrector scheme.  The 

parallel algorithm is implemented on a cluster workstation using MPI. The number of partitioned 

subdomains matches the number of processors.  The algorithm was implemented for a mesh size 

with 4710 unknowns and for a finer mesh with 17,322 unknowns.  The larger mesh size provides a 

slightly better speed-up than for a smaller mesh size, indicating the typical trend that the 
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performance of the parallel algorithm improves with increase in problem size.  For 8 processors, 

the smaller mesh speed-up was 4.7, and for the larger mesh the speed-up was approximately 5.   

Researchers at the University of Tokyo and Kyushi University have also researched 

domain-decomposition techniques applied to electromagnetic finite-element simulation [28]. They 

applied the Heirarchical Domain Decomposition Method (HDDM) to a 3D nonlinear 

magnetostatic problem.  The domain decomposition technique allowed them to use parallel 

computing with a supercomputer consisting of 64 nodes and 1024 cores.  They investigated 

different magnitudes of convergence criterion of two iterative solvers and how that affects the 

computation time and convergence of the subdomain interface problem.  The two iterative solvers 

compared are the incomplete Cholesky-conjugate gradient method with shifted incomplete 

Cholesky factorization preconditioner and the LU decomposition with pivoting.   The specific 

speed-up of the domain decomposition problem solved by the Supercomputer is not specified, but 

they indicate that the problem had 1.2 billion degrees of freedom and solved in 4.8 hours with 

approximately 80% of the time dedicated to computing and 16% of the time to communication.  A 

sequential solution for a smaller problem with 100 million degrees of freedom was solved in 4.5 

hours.  Assuming the supercomputer can solve the smaller 100 million degrees of freedom 

problem in a proportional amount of time (which is not the case – the communication overhead 

will likely increase), then the supercomputer may be able to solve this problem in 0.32 hours, 

resulting in a potential speed-up of 14 due to the application of domain decomposition to multiple 

cores and processors. 

3.1.2.2 Graphical processing units 

Graphical Processing Units (GPUs) can be utilized not only for graphics processing but 

also for parallel computing [32], [33].  A GPU may consist of hundreds of cores that can be 

utilized for multithreaded, single-instruction computation.  Depending on the application, the 
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numerous cores could yield a large speed-up compared to CPUs.  The fundamental design 

differences between CPUs and GPUs can be utilized to achieve a faster simulation.  Figure 3.1 

from [33] illustrates the CPU and GPU design differences.  The CPU is optimized for sequential 

execution with a larger amount of memory, while the GPU has higher bandwidth, approximately 

10 times on average [32].   

 

Figure 3.1  CPU and GPU design illustration [33] 
 

 The general architecture of a GPU is illustrated in Figure 3.2.  Each block shows an array 

of highly threaded streaming multiprocessors.  In each block, there are two streaming 

multiprocessors.  Each of these has several streaming processors, represented by the green square.   

 

Figure 3.2  Example GPU architecture [34] 
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Figure 3.3 illustrates how the GPU memory, data transfer, and threads are structured.  Each 

device is composed of multiple grids which contain multiple blocks.  Each block contains multiple 

threads that can each be used to execute a single process.  Each thread has access to local, global, 

and shared memory.  The shared memory is shared among the threads in each block.  The kernel 

function specifies the code that all threads should execute in parallel.  This process is the SPMD 

process.  When the kernel is launched, it executes the parallel threads in the grid [32].  To utilize 

the full capability of the GPU hardware, the threads should be adequately allocated to maximize 

the parallelism.   

The amount of speed-up that can be expected from GPU parallel processing depends on the 

portion of the application that can be computed in parallel [32].  In most applications, only a 

portion of the problem can be computed in parallel.  Additionally, a practical speed-up ceiling 

exists, such as a possible maximum of 100 times speed-up, which limits the expected simulation 

speed-up.     

 

 

Figure 3.3  Abstract representation of GPU structure [33], [32] 
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Interaction between the CPU and GPU within a program is similar to message passing 

since there is limited shared memory between the processors.  The data transfer between the CPU 

and GPU thus contributes to the overhead of a hybrid CPU/GPU simulation and should be 

minimized [32].  

3.2 GPU Parallel Processing for the Finite Element Simulation 

3.2.1 Components of FEA suitable for GPU parallel processing 

There are several components in the finite element simulation, some of which may be 

suitable for parallel processing and some which may not be.  The components that are suitable are 

parts where the computation can be distributed to multiple processors for parallel processing, then 

reassembled for the domain solution to that component.  The time-domain finite element 

simulation for eddy-current problems requires the solution for each time step to be computed, and 

the previous time step solution is required for the next time step computation.  Thus, multiple time 

steps cannot be distributed for parallel processing; one time step at a time must be considered 

unless a different numerical method is used.  Within each time step, there are several components 

to the finite element simulation, as discussed in section 2.3 Time Discretization, section 2.6 

Nonlinear Formulation, and section 2.7 Implementation.   

1. Matrix assembly 

2. Matrix multiplication: Magnetic flux density calculation (post processing for linear 

formulation, used to determine nonlinear reluctivity for nonlinear formulation) 

3. Matrix multiplication: [ ] t t
kG +∆  for nonlinear formulation only based on nonlinear 

reluctivity 
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4. Solution of the next time step { }t t
A

+∆
for the linear formulation, or iteration { }t t

k
A

+∆∆  

for the nonlinear formulation.  Solution is computed using a sparse iterative solver with 

preconditioner.   

5. Nonlinear reluctivity and 2B

ν∂
∂

determination based on 2Bν − for nonlinear magnetic 

material only 

6. Post processing: eddy current density, force calculation using multiplication 

 

The finite-element mesh creation and assembly prior to computations for the magnetic vector 

potential are not considered.  

 In addition to identifying the components where GPU parallel processing can speed up the 

simulation, the CPU computation time percentage of each component should be understood.  To 

gain the most speed-up, ideally the components that require the longest computation time should 

lend themselves to GPU parallel processing.  In Chapter 4, Simulation of the Benchmark Problem, 

the component computation time will be discussed for the linear and nonlinear formulation for 

different mesh densities.  The component with the longest computation time is formulation of the 

preconditioner and sparse iterative solver solution, followed by matrix multiplication for the 

magnetic flux density and [ ] t t
kG +∆ , with the remaining components of matrix assembly, nonlinear 

reluctivity determination, and eddy current density calculations requiring the shortest computation 

times.   

With the sparse iterative solver and matrix multiplications requiring longer computation 

time than the other components, these components were chosen to study how GPUs can be used 

for parallel processing with the goal to provide speed-up relative to the CPU simulation.  The 
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remaining components are left on the CPU to form a hybrid CPU/GPU MATLAB-based 

simulation.  In particular, the MATLAB sparse matrix assembly and storage yields fast 

computation times not readily achievable with the gpuArray format.  There are numerous research 

efforts that have studied how GPUs can be used for sparse matrix-vector multiplication and sparse 

iterative solvers [35], [36], [37], [38], [39], [40], [41], [42], as is discussed in section 3.2.2.1 

NVIDIA CUDA.  This research studies how GPUs can be used to speed up these components to 

form a hybrid CPU/GPU desktop-based MATLAB simulation for the time-domain finite element 

analysis required for detailed electromagnetic induction machine analysis.   

3.2.2 Implementation methods for GPU parallel processing for FEA 

Several programming languages are available to use GPUs for parallel computing, 

including OpenGL, OpenCL, Compute Unified Device Architecture (CUDA), and higher-level 

language tools such as the parallel computing toolbox with MATLAB script programming 

language.  OpenGL is utilized for graphics programming and requires in-depth knowledge of the 

programming language.  CUDA, developed by NVIDIA, is an extension of C.  This makes it more 

accessible to programmers without the need to know graphics programming.  This section focuses 

on the use of CUDA, MATLAB extensions, and the MATLAB parallel computing toolbox.   

3.2.2.1 NVIDIA CUDA 

CUDA is a C-based programming language that extends C-programming for use with 

GPUs for scientific parallel computing.  In addition to the CUDA language, libraries have been 

built to allow functions to be accessible to the average programmer and expand the use of CUDA. 

In particular, for CUDA used for numerical solutions of partial differential equations, such as for 

electromagnetic finite element simulation, the sparse linear algebra library CUSP [43] and 

cuSPARSE library [44] provide useful functions.  CUSP expands the Basic Linear Algebra Library 
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(BLAS) to apply linear algebra to sparse matrices.  It supports several sparse matrix formats: 

coordinate (COO) storage of sparse matrices (similar to sparse matrix storage in MATLAB), 

compressed sparse row (CSR), diagonal (DIA), ell (ELL), and hybrid (HYB).  According to 

NVIDIA, the diagonal and ell formats are the most efficient for computing sparse matrix-vector 

products, and therefore are the fastest formats for solving sparse linear systems with iterative 

methods, such as the conjugate gradient method.  The coordinate and CSR formats are more 

flexible than DIA and ELL and easier to manipulate.  Additional useful functions within the CUSP 

library are preconditioners and iterative solvers.  Iterative solvers include the conjugate-gradient, 

biconjugate gradient, biconjugate gradient stabilized, generalized minimum residual, multi-mass 

conjugate gradient, and multi-mass biconjugate gradient stabilized.  CUSP provides the 

preconditioners algebraic multigrid based on smoothed aggregation, approximate inverse, and 

diagonal.   

A comparison of ILU and Cholesky preconditioned iterative methods using CUSPARSE 

and CUBLAS was made by researchers with NVIDIA [35].  Numerical experiments with the 

incomplete factorization performed on the CPU and iterative method on the GPU were conducted.  

The experiment shows that the ILU and Cholesky preconditioned iterative methods achieved an 

average of two times speed-up using the CUSPARSE and CUBLAS libraries on the GPU over the 

MKL implementation on the CPU.  The test matrices ranged from square matrix sizes with 

147,900 to 1,585,478 rows and columns, and the number of nonzero elements of the test matrices 

ranged from approximately 1 to 17 million.  The speed-up for different problems ranged from less 

than 1 to 5.5 and is highly dependent on the sparsity pattern of the coefficient matrix.  For each 

iteration of the incomplete-Cholesky preconditioned CG method, one sparse matrix-vector 

multiplication and two triangular solves are performed.  For each iteration of the incomplete-LU 
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preconditioned BiCGStab iterative method, two sparse matrix-vector multiplications and four 

triangular solves are performed.  The total speed-up that can be achieved for a complete solution 

will depend on the preconditioning time and number of iterations, not just the computation 

required to perform one iteration.  The majority of the computation time for both of these iterative 

methods is spent for the triangular solve.  Generally, the speed-up was greater for solutions 

requiring a larger number of iterations and for less dense factorization.  Denser factorization 

inhibits the parallelism of these algorithms due to the dependence between rows in the sparse 

triangular solver.   

In [36], the authors also explore the use of GPUs for sparse matrix-vector products and 

several preconditioning and iterative solver methods.  Comparing CPU and GPU implementations 

of the sparse triangular solve, the use of level scheduling can result in an improved matrix structure 

more suitable for parallel computing.  This type of sorting groups several unknowns into levels 

such that the unknowns for one level can be computed at the same time, or in parallel [11].  The 

ability of the GPU to speed up the computation of the parallel triangular solve depends on the 

number of levels.  Minimization of the number of levels improves the GPU computation time 

speed-up.  An example technique to reduce the number of levels is the Multiple Minimal Degree 

ordering [45].  The greatest speed-up achieved using the GPU level scheduling sparse triangular 

solve technique for the matrices tested was approximately 2.6 for a square matrix with 2.1 million 

nonzero elements for a matrix size 525,000 x 525,000.   The preconditioned iterative methods 

considered were for the incomplete LU factorization, incomplete Cholesky factorization, block 

Jacobi preconditioner, multi-color SSOR, and least-squares polynomial preconditioner.  Certain 

preconditioners were paired with the CG or GMRES iterative solver.  For each of these 

experiments, in many cases the triangular solves in the preconditioner were computed on the CPU 
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because the CPU computation time was faster than the GPU computation time. The greatest GPU 

speed-up achieved for the cases considered was 4.3 for the GPU-accelerated ILUT-GMRES 

method for the matrix with 8.8 million nonzeros for a matrix 1.27 million x 1.27 million.  For the 

sparse matrices used for the numerical experiments, the GPUs can be used to speed up the 

computations, but their performance is limited for the sparse matrices compared to dense matrices.   

3.2.2.2 MATLAB and extensions 

 

There are several approaches to using GPUs with MATLAB script programs.  With the 

parallel computing toolbox, there is a gpuArray type that readily allows the user to convert an array 

into this type and store the array on GPU as a full, single-precision array.  This allows for direct 

manipulation of the gpuArray with the MATLAB script.  Another option is the use of mex files to 

link a C, C++, or Fortran source file with the MATLAB program.  This provides a means to pass 

MATLAB variables to and from this function.  With CUDA being an extension of C, this readily 

allows the MATLAB program to call the CUDA program via the mex file.  Additionally, a sparse 

gpuArray format was developed by MATLAB users as an extension of the gpuArray type to 

readily allow sparse matrix computation using gpuArray.     

3.2.2.2.1 MATLAB gpuArray 

 

A MATLAB gpuArray is stored on the GPU.  Data can be created on the CPU and then 

transferred to the GPU, resulting in communication time overhead, or created on the GPU.  This is 

accomplished using the gpuArray type.  There are limitations to this type: the matrix must be non-

sparse (full) and of the data type single, double, int8, int16, int32, int64, uint8, uint16, uint64, or 

logical.  Thus, for problems well-suited to sparse matrix solvers, the use of GPUs and MATLAB 

built-in functions will not inherently provide a faster computational speed.  MathWorks has 
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adapted built-in functions to support the gpuArray type.  For this list of functions, see Appendix D 

Built-In MATLAB Functions that Support GPUArray for MATLAB 2012A, and Appendix E 

Built-In MATLAB Functions that Support GPUArray for MATLAB 2014A.  When one of these 

functions is called with at least one gpuArray input argument, the function is executed on the GPU 

and returns a gpuArray result.   

An example of the use of gpuArrays with MATLAB functions to accelerate the matrix fast-

Fourier transform (FFT) is the solution of the second-order wave equation using spectral methods 

[26].  The solution to the equation 

2 2

2 2

u u u

t x y

∂ ∂ ∂= +
∂ ∂ ∂

 

with boundary conditions 0u = is implemented using a second-order central finite difference in 

time, and a Chebyshev spectral method in space using the FFT.  The implementations with CPUs 

and GPUs are identical with the exception of gpuArrays used for vectors and matrices for the GPU 

implementation.  The real, fft, ifft and matrix multiplication functions are used with gpuArrays to 

accelerate the computation.  The iteration is also calculated using element-wise multiplication, 

addition, and subtraction.  Each time iteration solution depends on calculations for the previous and 

current iteration.   The previous iteration solution is merely saved in a gpuArray and stored in a 

separate matrix used to calculate the current solution.  This previous time iteration solution does 

not need to be transferred between the CPU and GPU.  Testing of this implementation with a CPU 

running Windows 7 SP1 with Intel core i5-2400 CPU @ 3.10 GHz, 4.00 GB RAM, 64-bit OS and 

with a GPU GeForce GTX 570 with 1024 threads per block and 15 multiprocessors, results in the 

computation speeds shown in Figure 3.4 and speed-up shown in Figure 3.5.  As is expected, the 

speed-up improves as the grid size increases due to the reduced data storage overhead relative to 

computation time for larger problem sizes.   
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Figure 3.4  Computation speed for CPU and GPU simulations using MATLAB ifft 
function with gpuArrays 

 

Figure 3.5  Speed-up for MATLAB ifft function with 
gpuArrays 

 

Another benchmark example of GPUs to CPUs developed by MathWorks is the mldivide 

or backslash operator (\) used to calculate x from the system of equations x = A\b [24].  The time 

measured is only the computation time to calculate x; it does not include the cost of transferring 

data between the CPU and GPU or the time it takes to create a matrix.   Note that since gpuArray 

matrices are only defined for full matrices, the A matrix used with mldivide is a full matrix.  
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Compared to CPU sparse matrix solutions with mldivide or CPU sparse iterative solvers, the full 

matrix gpuArray mldivide computation time is much longer.  Figure 3.6 shows the calculated 

speed-ups for the mldivide function for several matrix sizes and single or double precision 

matrices.  The computation time for these calculations was done with the same CPU and GPU as 

described for the previous example.  Especially for single precision, the larger the matrix size, the 

greater the speed-up.  These matrix sizes are multiples of 1024 which facilitates greater speed-up 

than for other multiples based on the single and double precision byte size.  Although there are 15 

processors available with the GeForce GTX 570, the speed-up for the largest matrix size with 

single precision is approximately 4.  The speed-up achieved depends on the algorithm 

implementation.   

 

Figure 3.6  Speed-up results for single and double precision 
calculations for MATLAB mldivide 

 

3.2.2.2.2 MATLAB and MEX files 

 

MEX files can be used to link MATLAB arrays with C files.  They provide a means to link 

CUDA code and libraries to gpuArray data on 64-bit platforms.  Support for MEX files containing 
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CUDA code was developed for MATLAB version 2013a and later.  Programs using C, C++, or 

CUDA with functions developed for external libraries can be linked to MATLAB data types and 

formats with the MEX files.  Since the gpuArray type does not yet support a sparse matrix format, 

it is advantageous to make use of MEX files as a means to perform GPU computation in a sparse 

matrix format linking to already developed CUDA libraries enabling sparse computation of GPU 

data.  As discussed in Section 3.2.2.1 NVIDIA CUDA, such sparse data and matrix CUDA 

libraries are CUBLAS, CUSP, and cuSPARSE.  CUDA version 4.0 with CUSP version 0.4.0 and 

Thrust v1.2 is used in experimental simulations.   

The entry point to the MEX-file is the mexFunction.  The mexFunction contains the CUDA 

or C code that interacts with the MATLAB objects (on CPU or gpuArray) and runs the CUDA 

code.  MEX files can allocate memory within the mexFunction.    MATLAB links the 

mexFunction C or CUDA source file to MATLAB by compiling the source file into a binary 

MEX-file.  The MEX-file only needs to be created once to compile the source file.  For example, 

executing the command for the CUDA source  file “cusp_solve.cu” containing the mexFunction,  

mex –largeArrayDims cusp_solve.cu 

will compile this CUDA source file into a binary MEX-file.  From there, this source code can be 

executed with other MATLAB code similarly to a MATLAB function.  MATLAB function or 

workspace variables can be passed into and out of this source code.  The “largeArrayDims” option 

uses the MATLAB large-array-handling APLI and must be used when calling Linear Algebra 

Package (LAPACK) or Basic Linear Algebra Subprograms (BLAS) functions in the source file.   

Alternatively, a MATLAB kernel object can be used to execute a CUDA thread.  Files 

developed using the CUDA programming language (CU files or kernels) and PTX files can be 

executed on the GPU using MATLAB.  PTX files are parallel thread execution files.  The CU file 
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must be compiled to create the PTX file using the nvcc compiler in the NVIDIA CUDA Toolkit.  

For example,  

nvcc -ptx myfun.cu 

generates the file named myfun.ptx.  Using the .cu and .ptx files, a MATLAB kernel object can be 

created and used to evaluate the kernel 

k = parallel.gpu.CUDAKernel('myfun.ptx', 'myfun.cu' ); 

The feval function is then used to evaluate the kernel on the GPU.  Inputs can be from the 

MATLAB workspace data on the CPU or gpuArray type.  It may be more efficient to use 

gpuArray objects as inputs to the kernel.  The outputs of the kernel evaluation are gpuArray.  The 

CUDAKernel object is already compiled CUDA.  Access to GPU memory must be pre-allocated 

before execution of the kernel.  The evaluation of the kernel returns a gpuArray, so transfer is not 

required between the GPU and CPU.   

3.2.2.2.3 Sparse gpuArray format 

While the gpuArray format allows the user to readily convert CPU matrices and vectors to 

GPU matrices and vectors, the gpuArray format is limited.  As stated previously, a limited number 

of MATLAB built-in functions are overloaded and useable with the gpuArray format.  

Additionally, as of the time of this research, the gpuArray format is only available for full vector 

and matrix formats.  Only since MATLAB version R2015a has the gpuArray sparse format been 

available, and the only function available with this format that could increase GPU performance 

for the FEA problem is the matrix multiplication function.  Finite element simulations involve 

sparse matrices by nature, and they are typically large, involving at least thousands of unknowns.  

The sparse matrix format allows this type of problem to be solved faster and with less memory 

than an equivalent full matrix format.  This motivated the need for a sparse gpuArray format.   
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Several research institutions have developed gpuArray sparse formats for MATLAB.  In 

late 2013, researchers from the Lawrence Berkeley National Laboratory released a set of code for 

MATLAB users for the gpuArray sparse class, called gcsparse, using the CUSP library [46].  This 

code defines the class gcsparse.  The sparse gpuArray formats available are COO and CSR.  

Overloaded functions for this class are defined for transposition, sparse matrix multiplication 

(mtimes), real, complex, find, size, type, ptr2row, and row2ptr.  The sparse matrix multiplication 

function uses a MEX file created for the mexFunction containing CUDA code.   This CUDA code 

uses the input arguments consisting of the sparse gpuArray matrix and vector (which can be sparse 

or full gpuArray).  Based on the specified sparse matrix storage format (COO or CSR), CUDA 

pointers to the matrix and vector are created.  The CUSP “multiply” function is used to implement 

the sparse GPU matrix-vector multiplication.  The mexFunction output is the result of the 

multiplication on the GPU.  The MATLAB output of the MEX file is the gpuArray result.   
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CHAPTER 4  

SIMULATION OF THE BENCHMARK PROBLEM 

The benchmark problem used to develop and test the finite element simulation programs is 

the TEAM 10 benchmark problem [47].  It consists of steel plates around a coil as an example 

nonlinear transient eddy current problem.  The nonlinear initial magnetization B-H curve 

describing the steel magnetic properties is shown in Figure 4.1.  The dimensions of the problem are 

shown in Figure 4.2.  It is a three-dimensional problem.  For the purpose of this set of simulations, 

the problem is reduced to two dimensions by simulating the cross section shown in Figure 4.2a 

with current excitation in the coils simplified by assuming infinite length into and out of the page.  

The conductivity of the steel is given as 67.505 10⋅ S/m.  The excitation current is  

 ( )/0.05
0 5.64 1  AtI e−= −  (4.1)  

 

Figure 4.1  Normal magnetization curve of steel 

4.1 Problem Description
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Figure 4.2  Geometry of TEAM problem 10 (dimensions in millimeters): 
(a) side view, (b) top view 

 
For use to evaluate the accuracy of finite element simulations, three search coils were 

positioned on the steel plates to measure the average flux densities and eddy current densities on 

the surface of the steel plates.  Reduced to two dimensions, the search coils are positioned at the 

points shown in Table 4.1.  Figure 4.3 shows the measured magnetic flux densities at these search 

coil positions and eddy current densities on the steel plate surface at these positions.   

Table 4.1  Benchmark Problem Measured Positions 

Search Coil Number x (mm) y (mm) 

1 0-1.6 0 
2 41.8 60-63.2 
3 122.1-125.3 0 

 

Figure 4.3  TEAM 10 benchmark problem magnetic flux density and eddy current 
density measured at three search coils 
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The hybrid GPU/CPU time-domain finite element program was developed to incorporate 

GPU computation for the suitable FEA program components based on the CPU MATLAB linear 

and nonlinear program implementation discussed in section 2.7 Implementation.  For each type of 

program – first-order linear, second-order linear, first-order nonlinear, and second-order nonlinear 

– a hybrid GPU/CPU program was developed.  The GPU parallel processing methods were the 

same for each type of program.   

For each program, the matrix assembly was computed on the CPU using MATLAB’s 

sparse matrix storage and sparse matrix functions.  Once the matrices are assembled, they are 

converted to the sparse gpuArray format using the gcsparse class.  This requires a conversion from 

the CPU double format to the GPU single format.  The CSR sparse matrix storage format is 

utilized.  The vectors used for computation including the magnetic vector potential solution are 

stored as gpuArray vectors.   

The gcsparse class is used in order to explore the GPU speed-up of the sparse matrix-vector 

multiplication  CUSP function “multiply.”  Sparse matrix-vector multiplication using the CSR 

sparse matrix storage format yielded accurate results, but when the COO storage format was used, 

the results were inaccurate or nonsensical.  As discussed in section 3.2.2.2.3 Sparse gpuArray 

format, the gcsparse class overloaded multiplication function is defined using a MEX file that links 

the MATLAB gpuArray inputs with the compiled CUDA source file mexFunction.  The MEX 

function uses the mxGPUArray type from the MATLAB mxGPU API to create pointers to the 

MEX function inputs, perform calculations, and return outputs to MATLAB.  The sparse matrix 

multiplication source file for the CSR storage format creates pointers to the appropriate CSR-

format input matrix, allocates memory for the vector output, and calls the CUSP function multiply.  

4.2 GPU Parallel Processing Methods 
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This MEX file is created once using the mex function to compile the CUDA source file.  This 

compilation time is not included in the GPU program computation time and only takes a few 

seconds.    

Using the sparse gpuArray matrix and gpuArray vector formats, the GPU sparse matrix-

vector multiplication is used to calculate the magnetic flux density for the linear and nonlinear 

program, and 
2B

A

∂
∂

 and SAterms for [ ] t t
kG +∆ for the nonlinear program.   The same syntax using the 

“*” operator for matrix-vector multiplication is used.  With the operator overloaded for the 

gcsparse and gpuArray formats, MATLAB will use the gcsparse class multiplication function.  

This allows the hybrid GPU/CPU program to be readily converted from the CPU program once the 

sparse gpuArray and overloaded functions with MEX files are created.   

The preconditioner is computed using the MATLAB function on the CPU given the CPU 

sparse matrix inputs.  As described in section 2.7 Implementation, the incomplete Cholesky 

factorization is used for the linear simulation using the MATLAB “ichol” function, and the 

incomplete LU factorization is used for the nonlinear simulation using the MATLAB “ilu” 

function.  These preconditioners are not defined in the CUSP library.  The available 

preconditioners in the CUSP library are variations on the Bridson outer product formulation 

(approximate inverse), diagonal, and smoothed aggregation.  In [35], the author investigates the 

CPU and GPU computation time for the incomplete-LU factorization preconditioner formation 

using different fill-ins from the preconditioner functions available in the cuSPARSE library from 

the NVIDIA CUDA toolkit.  The speed-up was highly dependent on the sparsity of the matrix, and 

the matrix sizes were much larger, 3-17 million nonzero elements, than the matrix size for this 

application, several thousand elements.  In this application, only the CUSP library functions were 
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investigated.  Using the preconditioner algorithm, a MATLAB script could be written using the 

gpuArray matrix format.  However, directly using the algorithm with the gpuArray matrix will not 

yield speed-up since the direct algorithm steps through each element in the matrix sequentially.  A 

specialized CUDA program utilizing multithreading is needed in order to utilize the GPUs for 

parallel processing.  With the desire for direct CPU and GPU computation time comparisons for 

the same functions and implementation, since the CUSP library did not have the same 

preconditioners defined as used for the MATLAB CPU implementation, the preconditioner 

formation was left on the CPU.   

The biconjugate gradients stabilized sparse iterative solver computation time was explored 

using the CPU and GPU.  Using the CPU, the MATLAB “bicgstab” sparse iterative solver was 

used.  Additionally, two equivalent biconjugate gradient functions following the known algorithm, 

with or without a preconditioner, were written [11].  These function can receive inputs that are 

either CPU double sparse matrices/vectors or sparse or full gpuArray matrices/vectors.  Note that 

the bicgstab algorithm without a preconditioner requires two sparse matrix-vector multiplications 

per iteration, and the bicgstab algorithm with a preconditioner requires two sparse matrix-vector 

multiplications and two sparse matrix-vector solutions per iteration.  For the CPU preconditioned 

biconjugate gradient algorithm function, the matrix-vector solution is calculated using the 

MATLAB “mldivide” function for sparse matrices.   

For GPU biconjugate gradients iterative solver computation, several methods were 

explored.  The gpuArray matrix and vectors were used with the implemented algorithms with and 

without preconditioners.  The implementation of the bicgstab function without the preconditioner 

is the same for the gpuArray format as for the CPU double sparse format.  However, for the 

implementation of the bicgstab function with the preconditioner, the same implementation for the 
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GPU cannot be used as for the CPU since the MATLAB “mldivide” function is only available for 

full gpuArray formats.  Instead, to implement this algorithm, the inverse of the preconditioner is 

computed on the CPU using the MATLAB “inv” function.  Then, in the bicgstab implemented 

function with preconditioner for gpuArray and gcsparse, the preconditioner inverse is used to 

require four sparse matrix-vector multiplications per iteration instead of two sparse matrix-vector 

multiplications and two sparse matrix-vector solutions.  The overhead required to compute the 

preconditioner inverse is acceptable for small problems but not for larger problems such as the fine 

mesh used for this benchmark problem.  As a result, the bicgstab implemented function with 

preconditioner for the gpuArray is not usable.   

Another method for the sparse iterative solver explored is the CUSP “bicgstab” function 

without a preconditioner through the MEX file.  A CUDA mexFunction given MATLAB CPU 

sparse input matrix and vectors to solve, allocates memory and transfers the matrix and vector to 

the GPU in COO format, allocates space on the GPU for the solution, calls the Krylov “bicgstab” 

function, and outputs the solution.  This mexFunction was compiled as previously described to 

create the mexFunction.  This function with the CUSP bicgstab solver computed accurate results 

for small problems, but for larger matrices applied to the benchmark problem, the solver did not 

converge and output a diverging solution for the same problem that did converge using the CPU 

MATLAB bicgstab function.  As a result, this mexFunction was not usable for the finite element 

simulations.   

For several problem sizes, Table 4.2 shows a comparison of multiple CPU and GPU-

implemented un-preconditioned solver computation times.  Speed-up is computed for the fastest 

CPU solution over the fastest GPU solution.  From this sample of problems analyzed, the density 

of the matrix affects the speed-up achieved by the hybrid CPU/GPU program over the CPU 
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program.  Assessing the mldivide function using CPU sparse format and full gpuArray format, the 

gpuArray format achieves speed-up over the CPU for random sparse matrices.  However, for 

matrices with similar sparsity as for the finite element simulations, speed-up is not achieved.  

Comparing the CPU and GPU biconjugate gradient iterative solver implementations, speed-up is 

only achieved for the dense random matrix, not for the finite element sparse matrix.  Additional 

CPU and GPU iterative solver computation times for the specific problems are discussed in section 

4.3 Simulation Results.   

Table 4.2  CPU and GPU Comparison Times for Multiple Problem Sizes for Different Solvers Without the 
Preconditioner 

 CPU or GPU CPU GPU GPU 

Speed-
up 

CPU CPU GPU GPU 

Speed-
up 

 Sparse or Full 
Matrix 

Sparse Full Full Sparse Sparse Sparse Sparse 

 Data Structure MATLAB 
CPU 
sparse 

gpuArray gpuArray MATLAB 
CPU 
sparse 

MATLAB 
CPU 
sparse 

CUSP 
COO 
(original 
MATLAB 
CPU 
sparse) - 
includes 
transfer to 
COO 
format 

gcsparse 

 Solver \ \ \ MATLAB 
bicgstab 

m file 
bicgstab 

CUSP 
bicgstab 

m file 
bicgstab 

 Single or Double Double Single Double Double Double Single Single 

So
lu

ti
on

 T
im

e 
fo

r 
P

ro
bl

em
 (

s)
 

Wilk 21x21 matrix 0.00002 0.10132 0.00051 0.04630 0.00153 0.00130 0.02783 0.05980 0.04676 

Random 100x100 
matrix, symmetric, 
diagonal 

0.1485 0.2868 0.0312 4.7661 0.0082 0.0050 6.8788 0.3328 0.0151 

Random 1000x1000 
matrix, symmetric, 
diagonal 

0.1092 0.1150 0.0209 5.2202 0.0125 0.0261 12.5315 0.1141 0.1094 

Random 5000x5000 
matrix, symmetric, 
diagonal 

5.2423 0.4186 0.7420 12.5241 0.0694 0.1589 28.3397 0.0539 1.2876 

Random 5000x5000 
matrix, symmetric, 
diagonal, sparse 
with density 
9.95533e-4 

0.0029 0.2837 0.6708 0.0101 0.0052 0.0099 11.9676 0.0482 0.1085 

Random 6927x6927 
matrix, symmetric, 
diagonal, sparse 
with density 
9.95533e-4 

0.0053 0.6371 1.5931 0.0083 0.0078 0.0139 0.0000 0.0483 0.1618 

Linear problem at t 
= 50 ms, 6927x6927 
matrix, 7219 nnz 

0.0134 0.9051 1.5910 0.0148 0.3697 0.3559 0.0000 1.8540 0.1920 

Nonlinear problem 
at t = 5 ms, first 
order elements fine 
mesh 

0.0413 3.6364 0.0000 0.0113 0.2439 0.6854 0.0000 4.0792 0.0598 
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4.3 Simulation Results 

Following the finite element derivations for first-order and second-order linear and 

nonlinear simulations, each of these simulations was developed for the TEAM 10 benchmark 

problem geometry and material properties.  The simulations were developed using MATLAB 

scripts.  On the CPU, the MATLAB sparse vector and matrix storage and operations were used.  

On the GPU, the gpuArray, sparse gpuArray, and MEX files linked to CUDA file were used.  

Computation time for the CPU and hybrid CPU/GPU simulations is determined using the “tic” and 

“toc” MATLAB functions.  All of the simulations for this thesis were conducted on the CPU using 

an Intel Core i5-2400 CPU with 4 gigabytes of random-access memory.  The Windows 7 64-bit 

operating system was used.  The GPU for personal computing used for these simulations is the 

NVIDIA GeForce GTX 780 (Kepler architecture) GPU with 3 gigabytes of memory and compute 

capability 3.5.  The GTX 780 has 2304 CUDA cores.  Final MATLAB simulation implementations 

were developed for MATLAB R2014a.   

For each type of simulation, a coarse and fine mesh of the geometry was used to assess 

scalability of the GPU simulation.  Table 4.3 describes the number of elements and nodes for each 

type of simulation.  Figure 4.4 illustrates the coarse mesh, and Figure 4.5 illustrates the fine mesh.  

The blue elements represent the coils with impressed current density, magenta elements represent 

the magnetic steel, and white elements represent air.  The elements and nodes that are colored 

differently show the tracked nodes and elements in the simulations.  The magnetic vector potential 

and magnetic flux density solution is calculated for the entire domain for each iteration or time 

step, but only specified nodes and element solutions are saved for the entire transient simulation.   
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Table 4.3  Benchmark Problem Mesh Descriptions 

   Total Domain Nonlinear Region 

Magnetic 
Material 
Model 

Element 
Order 

Mesh Number of 
Nonzero 

Elements in 
Matrix 

Number of 
Elements 

Number 
of Nodes 

Number of 
Elements 

Number of 
Nodes 

Li
ne

ar
 First Fine 47769 14144 7219 0 0 

Second Coarse 62973 3536 7219 0 0 

Second Fine 257873 14144 28581 0 0 

N
on

-
Li

ne
ar

 First Coarse 11444 3536 1842 932 725 

First Fine 47769 14144 7219 3728 2379 

Second Fine 257873 14144 28581 3728 8483 

 

 

 

Figure 4.4  Coarse mesh for benchmark problem  
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Figure 4.5  Fine mesh for benchmark problem 

 

4.3.1.1 First-order elements with linear magnetic material 

The first-order element, linear magnetic material solutions for the benchmark problem are 

shown in Figure 4.6 for magnetic flux density and Figure 4.7 for eddy current density for the fine 

mesh.  The computed solutions at the nodes nearest to the search coils are used to compare to the 

measured solutions, and those coordinates are shown in Table  4.4  The steel permeability is 

represented linearly with relative permeability 1000rµ = .  The CPU simulation uses the 

biconjugate gradient algorithm implemented function with preconditioner using the MATLAB 

double sparse format.  The GPU simulation uses the same iterative solver function with the sparse 

gpuArray single format.   
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4.3.1 Linear magnetic material simulation results
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Table  4.4  Tracked Solution Points for First-Order, Linear Program 
for Benchmark Problem 

 Measured Points Simulated Points 

Search Coil Number x (mm) y (mm) x (mm) y (mm) 
1 0-1.6 0 1.6 0 
2 41.8 60-63.2 41 61.6 
3 122.1-125.3 0 123.2 0 

 

To show CPU and GPU program simulation time, Figure 4.8 shows the computation time 

for the major components of the linear program for each time step. The major components 

measured for each time step are the right-hand side vector calculation from equation (2.44), time to 

solve for the magnetic vector potential using the sparse iterative solver, post-processing for 

magnetic flux density, and post-processing for eddy current density.  For the magnetic flux density 

and iterative solver component computation times per time step, Figure 4.9 shows the CPU and 

GPU computation times and speed-up.  Note that the GPU computation times presented throughout 

this thesis include the overhead to transfer data to the GPU from the CPU, and from the GPU back 

to the CPU.  The GPU computation time for the magnetic flux density results in approximately 4 

times speed-up, but no speed-up – approximately 0.3 – for the sparse iterative solver with 

preconditioner.   

 
Figure 4.6 First-order element, linear material, magnetic flux density solution 
for fine mesh, compared to TEAM problem measured results at three points 
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Figure 4.7 First-order element, linear material, eddy current density solution for 
fine mesh, compared to TEAM problem measured results at three points 

 

Figure 4.8 First-order element, linear material, CPU and GPU computation 
time for each time step 
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Figure 4.9 First-order element, linear material, CPU and GPU computation time 
comparison for magnetic flux density and magnetic vector potential 

 
 

Table 4.5.  CPU and GPU Simulation Computation Time Comparison for First-
Order Elements, Linear Magnetic Material, Fine Mesh.  Iterative solver is 
preconditioned.   
 

 Total for Simulation  

Simulation 
Time(s)/Speed-
up 

Preconditioner 
Formation on 
CPU 

Iterative 
Solver 

Magnetic 
Flux 
Density 

Total 

CPU Time (s) 0.004 20.075 33.858 54.082 
GPU Time (s) 0.746 66.733 8.388 78.968 
Speed-up N/A 0.301 4.036 0.685 
Hybrid CPU/GPU 
Time (s) 0.004 18.417 8.454 29.414 
Speed-up N/A N/A  4.005 1.839 

 

Table 4.5 summarizes the CPU and GPU computation time for the first-order, linear 

element simulation for the fine mesh using the preconditioned iterative solver.  For the CPU 

simulation, the total magnetic flux density computation time was 33.86 seconds.  Comparatively, 

the total magnetic flux density computation for the GPU simulation was only 8.39 seconds due to 

sparse gpuArray matrix-vector multiplication.  This yields a total speed-up for the magnetic flux 
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density calculation of 4.04.  However, the sparse gpuArray format did not yield a speed-up for the 

sparse iterative solver.  The total CPU sparse iterative solver calculation time was 20.075 seconds, 

while the total GPU sparse iterative solver calculation time was 66.73 seconds.  As a result, the 

total computation time for the GPU simulation did not speed up the simulation compared to the 

CPU simulation.  For a hybrid CPU/GPU simulation that uses the sparse gpuArray format for 

magnetic flux density calculation and the CPU sparse format for the CPU iterative solver 

calculation, the simulation time is reduced by the GPU speed-up for the magnetic flux density 

calculation.  This saves approximately 25.4 seconds of computation time.  With minimal GPU to 

CPU transfer overhead, the resulting overall CPU/(hybrid CPU-GPU) speed-up is 1.84.   

 

4.3.1.2 Second-order elements with linear magnetic material 

 

 
Figure 4.10 Second-order element, linear material, magnetic flux density solution for coarse and 

fine meshes, compared to TEAM problem measured results at three points 
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Figure 4.11 Second-order element, linear material, eddy current density solution for 

coarse and fine meshes, compared to TEAM problem measured results at three points 
 

 

The coarse and fine mesh computed solutions near the measured points for the second-

order, linear element simulation are shown in Figure 4.10 for magnetic flux density and Figure 

4.11 for eddy current density.  The solutions shown for the coarse and fine meshes are for the 

tracked points shown in Table 4.6.   

 

Table  4.6  Tracked Solution Points for Second-Order, Linear Program for Benchmark Problem 

 Measured Points Coarse Mesh Simulated 
Points 

Fine Mesh Simulated 
Points 

Search Coil Number x (mm) y (mm) x (mm) y (mm) x (mm) y (mm) 
1 0-1.6 0 1.6 0 0.55 0 
2 41.8 60-63.2 41 61.6 41 61.6 
3 122.1-125.3 0 123.7 0 123.2 0 
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Table 4.7  CPU and GPU Simulation Computation Time Comparison for Second-Order Elements, Linear 
Magnetic Material 
 Total for Simulation  

M
e

sh
 Solver With or 

Without 

Preconditioner 

Simulation 

Time(s)/Speed-up 

Preconditioner 

Formation on 

CPU 

Iterative 

Solver 

Magnetic 

Flux 

Density 

Total Total for 

Hybrid 

CPU/GPU 

C
o

a
rs

e
 M

e
sh

 

Without 

preconditioner 

CPU Time (s) 0 50.041 41.271 91.567 91.567 

GPU Time (s) 0 266.572 27.597 295.940 77.893 

Speed-up N/A 0.188 1.495 0.309 1.176 

With 

preconditioner 

CPU Time (s) 0.008018164 24.213 40.944 65.371 65.371 

GPU Time (s) 1.115737855 73.364 29.688 117.886 54.114 

Speed-up N/A 0.330 1.379 0.555 1.208 

F
in

e
 M

e
sh

 

Without 

preconditioner 

CPU Time (s) 0 173.999 296.619 471.564 471.564 

GPU Time (s) 0 274.234 25.267 301.561 200.212 

Speed-up N/A 0.634 11.739 1.564 2.355 

With 

preconditioner 

CPU Time (s) 0.005682121 261.100 298.550 560.593 560.593 

GPU Time (s) 0.120006674 291.103 44.060 338.000 306.102 

Speed-up N/A 0.897 6.776 1.659 1.831 

 

The computation time for each major component and total simulation are shown in Table 

4.7.  It is important to note that in the linear simulation case, the preconditioner is only formed 

once.  As a result, the total simulation time is not as sensitive to the time to form the 

preconditioner, but rather to the iterative solver computation time.  For the coarse and fine mesh, 

the gpuArray sparse format used with the iterative solver with and without the preconditioner did 

not achieve speed-up.  However, for the coarse mesh, approximately 1.4 times speed-up was 

achieved for the magnetic flux density calculation.  For the fine mesh, approximately 6-11 times 

speed-up was achieved for the magnetic flux density calculation.  Comparing the CPU iterative 

solver computation time with and without the preconditioner, the coarse mesh solution using the 

preconditioner was computed approximately twice as fast as compared to the solution without the 

preconditioner.  However, for the preconditioner used, the fine mesh solution with the 

preconditioner was computed approximately 1.5 times slower than without the preconditioner.  In 

this case, using a different preconditioner may result in faster computation of the next magnetic 
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vector potential time step solution.  Comparing the total CPU and GPU simulation times for the 

GPU solution using the sparse gpuArray for the iterative solver, speed-up was only achieved for 

the fine mesh.  For the hybrid CPU/GPU simulation where the sparse iterative solver is computed 

on the CPU and the magnetic flux density is computed on the GPU, a total speed-up of 

approximately 1.2 is achieved for the coarse mesh, and approximately 1.8-2.3 for the fine mesh.  

The speed-up is limited in this case to the percentage of the simulation where GPUs can be utilized 

to compute the solution faster than the CPU.  In this case, this is for the magnetic flux density, 

which accounts for approximately 45-63% of the CPU total simulation time. 

 

4.3.2 Nonlinear magnetic material simulation results 

Given the magnetic steel material properties for the benchmark problem shown in Figure 

4.1, the magnetic reluctivity vs. magnetic flux density squared and 2B

ν∂
∂

vs. magnetic flux density 

squared were computed.  These curves are represented using piecewise-linear representation in 

MATLAB.  The curves used to simulate the nonlinear magnetic steel properties are shown in 

Figure 4.12.  The discontinuities in the representation of the magnetic reluctivity vs. magnetic flux 

density squared result in discontinuities in the derivative representation. 

 

Figure 4.12 Nonlinear magnetic material representation for benchmark problem simulation 
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4.3.2.1 First-order elements with nonlinear magnetic material 

 

Solutions for the computed magnetic vector potential, magnetic flux density, and eddy 

current density were tracked at several elements and nodes.  The first measured solution is tracked 

at an outer node between the steel and air with an element in the middle of the steel.  The second 

and third measured solutions are each tracked at inner, middle, and outer nodes and elements.  The 

computed solutions at the middle nodes and elements match the measured solutions more closely 

than those on the inner or outer elements or nodes.  The inner computed solutions were calculated 

at higher magnetic flux densities and eddy currents than measured, and the outer computed 

solutions were at lower values than measured.  The following solutions shown are for the middle 

elements and nodes close to the measured solutions described by the coordinates in Table  4.8 

Table  4.8  Tracked Solution Points for First-Order, Non-linear 
Program for Benchmark Problem 

 Measured Points Coarse Mesh Simulated 
Points 

Fine Mesh Simulated 
Points 

Search Coil Number x (mm) y (mm) x (mm) y (mm) x (mm) y (mm) 
1 0-1.6 0 1.6 0 1.6 0 
2 41.8 60-63.2 44.6 60 41 61.6 
3 122.1-125.3 0 122.1 0 123.2 0 

 

The computed transient solutions at the designated points for the coarse and fine mesh are 

shown in Figure 4.13 for the magnetic flux density, Figure 4.14 for the eddy current density, and 

Figure 4.15 for CPU and GPU calculations of eddy current density.  The points tracked for the 

coarse mesh more closely track the measured magnetic flux density solution than the fine mesh 

points.  Both mesh solutions show the nonlinear magnetic material impact on the solution 

compared to the linear simulations.  The fine mesh solution for the first eddy current density point 

near the origin closely tracks the measured solution, but the other calculated solutions do not match 
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well.  Again, the nonlinear representation of the magnetic material is evident.  Figure 4.16 shows 

the comparison of the CPU and GPU calculated magnetic vector potential, magnetic flux density, 

and eddy current density.   The magnetic vector potential and magnetic flux density calculations 

match closely, but there are some differences in the first point eddy current density later in the 

transient solution.   

 

Figure 4.13 First-order element, nonlinear material, magnetic flux density solution for 
coarse and fine mesh, compared to TEAM problem measured results at three points 

 
 

 
Figure 4.14 First-order element, nonlinear material, eddy current density solution 

magnitude for coarse and fine mesh, compared to TEAM problem measured results 
at three points 
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Figure 4.15 First-order element, nonlinear material, eddy current density 
solution magnitude for fine mesh, GPU and CPU solutions, compared to 

TEAM problem measured results at three points 
 

 

Figure 4.16 First-order element eddy current solution for fine mesh, GPU and CPU 
solutions, percentage difference for magnetic vector potential, magnetic flux density, 

and eddy current density computed solutions 
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In the following subsections, results are shown for CPU and GPU simulation times for the 

coarse and fine mesh complete solutions for each time step broken down by section of the time 

step solution.  These results use the MATLAB (CPU, sparse matrix) ILU preconditioner function 

with the Crout version of ILU, drop tolerance of 1e-5, and row-sum modified incomplete LU 

factorization.  Due to results also shown for the CPU and GPU iterative solver, these results use the 

fastest implementation with the CPU and MATLAB’s bicgstab solver with the ILU preconditioner. 

4.3.2.1.1 Iterative solver numerical experiments 

The following numerical experiments were conducted for the first-order elements, 

nonlinear magnetic material simulation with the fine mesh.  Experiments were conducted to 

determine the shortest computation time achievable for the iterative solver.  Methods using the 

bicgstab algorithm on the CPU and GPU and with or without a preconditioner were explored.  

Figure 4.17 shows the difference in the number of iterations when the preconditioner is not used 

and when it is used.  Accordingly, Figure 4.18 shows that the higher number of iterations results in 

longer total solver computation time, shown as “timesolveA.”  Figure 4.19 shows that even with 

the preconditioner formation time, shown as “timePrec,” the overall solver time including the 

preconditioner formation time is shorter than the iterative solver time without the preconditioner.   

 

Figure 4.17 Number of bicgstab iterations without and with preconditioner to solve each Newton-Raphson iteration.  
Example solution for time setup = 14 ms. 
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Figure 4.18 Iterative solver time for MATLAB bicgstab function without preconditioner 
 

 

Figure 4.19 Iterative solver time for MATLAB bicgstab function with preconditioner 
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Table 4.9  CPU and GPU Bicgstab Iterative Solver Algorithm Comparison with and without Preconditioner 
   Average Newton-Raphson Iteration Computation Time (s)  

CPU or 

GPU 

Solver Preconditioner 

Used 

Magnetic 

Flux 

Density 

Setup  Magnetic 

Vector 

Potential 

Iterative 

Solution 

Precon-

ditioner 

Approximate 

Total 

Iterative Solver 

Percentage (%) 

CPU MATLAB 

bicgstab 

No 0.21274 0.27914 0.92945 0.00000 1.42133 65.39 

CPU bicgstab 

algorithm 

No 0.21571 0.27969 0.83654 0.00000 1.33194 62.81 

GPU bicgstab 

algorithm 

No 0.05041 0.13759 4.94796 0.00000 5.13596 96.34 

CPU MATLAB 

bicgstab 

Yes 0.21184 0.27810 0.02297 0.28577 0.79868 38.66 

CPU bicgstab 

algorithm 

Yes 0.21765 0.27738 1.56864 0.34742 2.41109 79.47 

 

Table 4.9 summarizes timing results for the CPU and GPU bicgstab iterative solver 

algorithms with and without the preconditioner.  The results are for time step solutions from 1 to 

15 ms.  Note that for the CPU bicgstab algorithm with preconditioner implemented, the two linear 

solutions of Ax = b use the MATLAB mldivide function.  This dominates the solution time and is 

much slower than the MATLAB bicgstab with preconditioner function.  Also, the GPU bicgstab 

algorithm with preconditioner implemented requires the inverse of the preconditioner to be 

computed since the mldivide function is not available for sparse GPUArray types.  As a result, this 

GPU bicgstab algorithm is extremely slow and is not included in this comparison.  As previously 

stated, further research using developed preconditioner formation and bicgstab with preconditioner 

algorithms implemented using CUDA, such as in the cuSPARSE library, could be used and 

integrated with MATLAB to determine if GPU speed-up can be achieved for this specific problem.  

For the fastest implementation compared, the iterative solver for the magnetic vector potential is 

approximately 39% of the average Newton-Raphson iteration computation time.  With further 

research, this component may be further reduced with GPU computing, but based on other 

research, this is not conclusive based on the problem size and sparsity [35], [36], [37], [38].  Based 
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on these results, the iterative solver method used for the hybrid CPU/GPU solutions is the CPU-

based MATLAB bicgstab function with the ILU preconditioner.   

4.3.2.1.2 Iteration setup time breakdown 

The results in Figure 4.20 and Figure 4.21 show the CPU and hybrid CPU/GPU simulation 

setup computation time for the fine mesh solution.   

 

Figure 4.20 Setup time breakdown for CPU 
 
 

 
Figure 4.21 Setup time breakdown for GPU sparse 
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The setup computation required for each Newton-Raphson iteration is broken down into 

four subsections.  The subsections along with the hybrid CPU/GPU simulation implementation are: 

• timeSetup-sub1 = look up ν and
( )

,

2,

e t t
k

e t t
kB

ν +∆

+∆

∂

∂
 based on B from fitted ν-B2 and 2B

ν∂
∂

 

equations (CPU) 

• timeSetup-sub2 = compute S with elemental ν (CPU), and compute right-hand side 

vector (matrix multiplication and subtraction) (GPU sparse) 

• timeSetup-sub3 = compute G from equation .  
2e

i

B

A

∂
∂

and SAare computed on the 

GPU, and the sparse matrix assembly of G is done on the CPU.   

• timeSetup-sub4 = compute the left-hand side matrix final addition (CPU). 

The setup computation time results averaged over the Newton-Raphson iterations are 

summarized by Table 4.10.  The largest part of the CPU setup calculation time, subsection 3 to 

compute G, can be parallel processed using the sparse gpuArray matrix-vector multiplication.  This 

subsection results in a speed-up of approximately 2.3, allowing for an overall setup time speed-up 

of approximately 1.8.    

 
 Table 4.10  CPU and GPU Setup Time Comparison  

 Average Newton-Raphson Iteration Computation Time (s) 

CPU or GPU Setup - sub 1 Setup - sub 2 Setup - sub 3 Setup - sub 4 Total 

CPU 0.013749 0.018930 0.245237 0.000185 0.278102 

GPU 0.013549 0.033317 0.107026 0.000175 0.154068 

Speed-up CPU/GPU 1.014726 0.568162 2.291392 1.057076 1.805060 

 

4.3.2.1.3 Transient CPU and hybrid CPU/GPU simulation results 

The figures and tables in this section describe the transient simulation computation time for 

the CPU and hybrid CPU/GPU implementations.  In Figure 4.22, for a few sample time steps, the 
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CPU and hybrid CPU/GPU simulation computation times are broken down by major component to 

illustrate the computation time percentage for each component and the GPU speed-up for each 

component.  The components are: 

• timesolveB – time to compute the magnetic vector potential   

• timePrec – time to form the preconditioner 

• timeSetup – time to set up the Newton-Raphson iteration as described in Section 4.3.2.1.2 

Iteration setup time breakdown 

• timesolveA – time to solve for the next Newton-Raphson iteration magnetic vector 

potential 

• timeQ – time to calculate the next impressed current density 

• timeS – time to assemble the S matrix 

• timeUpdate – time to update the next magnetic vector potential iteration given the solution 

for A∆  

• timeUpdateT – when the A∆ is less than the specified tolerance, this is the time to save the 

iteration solution as the time step solution and update the magnetic flux density and 

reluctivity 

• timesolveJ – time to compute the eddy current density  
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Figure 4.22 CPU and GPU computation time comparison for first-order elements, nonlinear 
magnetic material, fine mesh.  Subset of CPU and GPU computation time for several time 

steps including breakdown of computation time for key computations. 
 
 
 
 
 
 

Table 4.11 CPU and GPU Computation Time Comparison for Average Newton-Raphson Iteration, First-Order 
Elements, Nonlinear Magnetic Material Problem   

  Average Newton-Raphson Iteration Computation Time  

Over Total Transient Solution (s) 

Mesh CPU or GPU Magnetic 

Flux Density 

Setup  Magnetic Vector 

Potential Iterative 

Solution 

Precon-

ditioner 

Approx. 

Total 

C
o

a
rs

e
 CPU 0.027664 0.053201 0.005250 0.019420 0.105535 

GPU 0.022935 0.066776 0.005671 0.019508 0.114890 

Speed-up  1.206207 0.796699 N/A N/A 0.918568 

F
in

e
 CPU 0.218303 0.280088 0.036713 0.341196 0.876300 

GPU 0.060477 0.151496 0.035943 0.283171 0.531087 

Speed-up  3.609685 1.848813 N/A N/A 1.650013 
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Table 4.12 CPU and GPU Computation Time Comparison for Total Transient Solution, First-Order Elements, 

Nonlinear Magnetic Material Problem   

  Total Transient Solution Computation Time (s) 

Mesh CPU or GPU Magnetic 

Flux Density 

Setup  Magnetic Vector 

Potential Iterative 

Solution 

Precon-

ditioner 

Total 

C
o

a
rs

e
 CPU 67.597 128.695 12.771 46.817 263.609 

GPU 57.563 162.282 14.021 48.600 299.995 

Speed-up  1.174 0.793 N/A N/A 0.879 

F
in

e
 CPU 856.000 1084.896 138.784 1319.007 3439.980 

GPU 253.529 622.615 149.140 1164.800 2214.928 

Speed-up  3.376 1.742 N/A N/A 1.553 

 

Note that the preconditioner formation and magnetic vector potential solver are computed 

on the CPU for the total GPU solution.  From previous discussions, this method was used to 

improve the total computation time since it was not previously shown that speed-up was achieved 

with the sparse GPU format using the same bicgstab algorithm.  From these results averaging over 

all the time step solutions and the average Newton-Raphson iteration computation times, Table 

4.11 shows that the magnetic flux density GPU computation achieved an average speed-up of 1.2 

for the coarse mesh and 3.6 for the fine mesh, and the setup achieved an average speed-up of 1.8 

for the fine mesh.  This is primarily due to the parallel processing of GPU sparse matrix-vector 

multiplication.  From the total transient computation time shown in Table 4.12, the GPU 

implementation does not achieve speed-up for the coarse mesh, but for the fine mesh it achieves 

approximately 1.55 speed-up.   

 
4.3.2.2 Second-order elements with nonlinear magnetic material 

The simulation of the second-order elements, nonlinear program required more 

manipulation of the relaxation factor and time step difference in order to achieve convergence.  For 

the coarse mesh, the solution only converged for times 1 to 4 ms with a time step of 1 ms.  For 
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solutions beyond that, time steps of 0.25 ms and incrementally smaller were required in order to 

achieve convergence.  A reason for the convergence issue is due to too large of a time step given 

the mesh density, resulting in a larger change in magnetic vector potential for each iteration.  As a 

result, solutions are shown for the fine mesh only.  The higher mesh density reduced the 

convergence issues.  For the fine mesh, solutions for times 1-18 ms converged for a time step of 1 

ms.  For solutions beyond 18 ms, a smaller time step is required to achieve convergence.  Full 

transient solutions are not presented.  For the partial simulations up to 18 ms for the fine mesh, the 

CPU and hybrid CPU/GPU simulation results are presented in Figure 4.23 and Figure 4.24 for the 

points described in Table  4.13.  As previously discussed, the iterative solver used for both the 

CPU and hybrid CPU/GPU simulation is on the CPU using the MATLAB “bicgstab” function with 

row-sum modified incomplete LU Crout version factorization with drop tolerance 10-5 for the 

preconditioner.  This was the fastest iterative solver implementation tested for this problem.   

 

 

 

Table  4.13  Tracked Solution Points for Second-Order, Non-linear Program for 
Benchmark Problem 

 Measured Points Fine Mesh Simulated Points 

Search Coil Number x (mm) y (mm) x (mm) y (mm) 
1 0-1.6 0 0.5 0 
2 41.8 60-63.2 41 61.6 
3 122.1-125.3 0 123.2 0 
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Figure 4.23 Second-order element, nonlinear material, magnetic flux density solution 
for fine mesh, compared to TEAM problem measured results at three points 

 

 

Figure 4.24 Second-order element, nonlinear material, eddy current density 
solution magnitude for fine mesh, compared to TEAM problem measured 

results at three points 
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Figure 4.25 Setup time breakdown for CPU, second-order elements 

 
Figure 4.26 Setup time breakdown for GPU, second-order elements 

 

To show the setup calculation time scalability, the setup calculation time by subsection is 

shown in Figure 4.25 for the CPU and in Figure 4.26 for the GPU.  Table 4.14 summarizes the 

setup calculation time for the average Newton-Raphson iteration.  Like for the first-order elements, 

the subsection 3 dominates the setup calculation time and can be parallel processed using GPUs for 

sparse matrix-vector multiplication.  The larger problem size for the second-order elements results 

in a subsection 3 speed-up of approximately 3.4, and an overall setup time speed-up of 2.9.   
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Table 4.14  CPU and GPU Average Setup Computation Time per Iteration for Second-Order Elements, Fine Mesh 

 Average Newton-Raphson Iteration Computation Time (s) 

CPU or GPU Setup - sub 1 Setup - sub 2 Setup - sub 3 Setup - sub 4 Total 

CPU 0.017544 0.096670 1.976303 0.002136 2.092652 

GPU 0.018379 0.124870 0.574369 0.002113 0.719731 

Speed-up CPU/GPU 0.954584 0.774167 3.440821 1.010553 2.907546 
 

Figure 4.27 shows the transient solution CPU and GPU computation time by component.  It 

is clear that the preconditioner formation time constitutes a large portion of the calculation time, 

followed by the setup time and magnetic flux density time.  Due to the preconditioner, the sparse 

iterative solver time is relatively short.  Table 4.15 summarizes these results showing the average 

component calculation time for a Newton-Raphson iteration.  The magnetic flux density 

calculation speed-up is approximately 6.9, and the setup calculation speed-up is approximately 2.9.  

However, because the preconditioner formation is approximately 56% of the total iteration 

computation time, the overall iteration speed-up is approximately 1.4.  Compared to the first-order 

nonlinear element problem, the overall speed-up is not as high but is comparable.  The first-order 

nonlinear problem achieved a speed-up of 1.55 with the preconditioner formation accounting for 

38% of the simulation time.  For the second-order nonlinear  problem, while the component speed-

ups are greater due to the larger number of unknowns, the preconditioner formation accounting for 

54% of the computation time limits the overall speed-up to 1.4.   

 

Table 4.15  CPU and GPU Computation Time Comparison for Average Newton-Raphson Iteration, Second-Order 
Elements, Nonlinear Magnetic Material Problem.  For simulation 1-18 ms.   

  Average Newton-Raphson Iteration Computation Time  

Over Total Transient Solution (s) 

Mesh CPU or GPU Magnetic 

Flux Density 

Setup  Magnetic Vector 

Potential Iterative 

Solution 

Precon-

ditioner 

Approx. 

Total 

F
in

e
 CPU 1.888694 2.092652 0.177723 5.241148 9.400217 

GPU 0.271298 0.719731 0.080714 5.429043 6.500786 

Speed-up  6.961708 2.907546 N/A N/A 1.446012 
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Figure 4.27 CPU and GPU computation time comparison for second-order 
elements, nonlinear magnetic material, fine mesh. 

 

4.3.3 Benchmark problem simulation results summary 

Table 4.16  Simulation Results Summary for Benchmark Problem 
     Computation Time (s)  

Magnetic 
Material 
Model 

Element 
Order 

Mesh Preconditioned Number of 
Nodes 

CPU Hybrid 
CPU/GPU 

Speed-
up 

Li
ne

ar
 First Fine Yes 7219 54.082 29.414 1.839 

Second Coarse Yes 7219 65.371 54.114 1.208 
Second Fine No 28581 471.564 200.212 2.355 

N
on

-
Li

ne
ar

 First Coarse Yes 1842 263.609 299.995 0.879 
First Fine Yes 7219 3439.980 2214.928 1.553 
Second Fine Yes 28581 3417.101 2395.973 1.426 

 

For the discussed simulations, Table 4.16 summarizes the CPU and GPU simulation 
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simulations, the speed-up achieved also increases.  For the nonlinear simulation, due to the 

significance of the preconditioner formation time which is only computed on the CPU for these 

simulations, the overall speed-up is limited as the problem size increases.   

 

 

 

 

 



95 

 

CHAPTER 5  

LINEAR INDUCTION MACHINE EXPERIMENT AND SIMULATION 

The induction machine experiment chosen to estimate the validity of the finite element 

CPU and GPU models is the double-sided stator linear induction machine (LIM).  The machine is 

described in [48].  Measurable experiments for the LIM with a solid aluminum rotor were 

conducted.  For the applied stator current and frequency from a constant volts-per-Hertz drive, the 

force on the rotor for a steady-state locked position was measured by a spring scale.  The linear 

induction machine and experiment are depicted in Figure 5.1 from [49]. 

 

 
(a) 
 

Figure 5.1(a) Laboratory LIM setup 

5.1 Experiment Description
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(b) 

 

 

(c) 

 
(d) 

 

Figure 5.1(cont.) (b) subset of LIM geometry for 5 stator slots, (c) cross section of double 
stator and rotor showing 36 stator slots, and (d) experimental setup with calibration mass 

 
The LIM is excited using symmetric three-phase excitation for a single-layered, series-

wound stator.  There are 35 turns per slot, and the pole pitch is 3 cm accordingly.  The stator 
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laminations are constructed with M19 steel.  The solid aluminum rotor (alloy Al6061 with T611 

temper) has conductivity 72.4662 x 10  S/mσ = .  The rotor is free to move laterally parallel to the 

stator.   

The experiment conducted from [49] attached a nylon string to the LIM rotor.  On one end, 

the string was attached to a stabilizing spring scale, and on the other end, it was attached to a mass 

through a pulley.  The mass was known and used to calibrate the spring scale.  For specified 

operating frequencies, the drive excited the rotor so that force was created away from the spring 

scale.  The total force measured was read by the spring scale.  In addition, the stator excitation 

current was measured for the operating frequency.   

From the measured results recorded in [49], the data point chosen for finite element 

simulation is shown in Table 5.1.  The volts-per-Hertz drive ratio excitation used is 40/60 Vs.   

Table 5.1  LIM Experiment Measurements 
 

fs (Hz) Is,RMS
 (A) F (meas.) (N) 

14 8.64 7.20 

 

Based on the LIM geometry shown in Figure 5.1, a mesh was created for a subset of the 

geometry for the partial differential equation simulation.  Taking advantage of the periodicity of 

the machine, six stator slots were simulated.  The fine mesh is shown in Figure 5.2.  The a-, b-, and 

c-phase excitation polarity is such that the windings for the three left-most slots are out of the page, 

and the three right-most slots are into the page.  This applies to both the upper and lower stators.  

Additional domains are created in the air gap to more readily compute the force in it.  The elements 

or nodes along the specified y coordinate along the edge of the domain are used for force 

5.2 FE Simulation of Experiment
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calculation using the Maxwell stress tensor method.   Figure 5.3 shows the fine mesh closer to the 

rotor and air gap.  The green-filled elements are the first-order elements used to calculate the force 

in the air gap.  The force along the edge of the rotor is also calculated.   

 

Figure 5.2 Linear induction machine fine mesh for six stator slots 
 

Several assumptions are made for numerical simulation of the LIM experiment.  The steel 

conductivity is assumed to be zero.  The steel magnetic permeability is simulated as linear with an 

approximate relative permeability of 8754rµ =  [50].  The resulting solution is not as sensitive to 

the saturation of the magnetic steel as other machine problems because the air gap is relatively 

large.  The winding slot fill is assumed to be 100%, resulting in the impressed current density 

calculated over the entire winding area.  The impressed current density is also even over the 

winding area.   As with the benchmark problem, the two-dimensional approximation of the LIM 

results in the impressed current density simulated as infinite in the z-direction.   

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

x (m)

y 
(m

)



99 

 

 

Figure 5.3 Linear induction machine fine mesh view near air gap.  Green-filled 
elements are used for force calculation in the air gap for first-order elements. 

 

For the above assumptions, the CPU and GPU simulations of the LIM are calculated for the 

first- and second-order elements.  Magnetic vector potential, magnetic flux density, and eddy 

current solutions are tracked at four elements or nodes: the middle of the air gap, on the aluminum 

rotor surface, in the middle of the aluminum rotor, and on the stator steel near the air gap.  The 

coordinates for these tracked solutions are given in Table 5.2.     

 

Table  5.2  Tracked Solution Points for LIM Problem 

Tracked Node Description 
Simulated Points 

x (m) y (m) 

Middle Air Gap 0.00455 -0.00466 
On Rotor Surface 0.00266 -0.00308 
Middle of Rotor 0.00187 -0.00059 
Stator Steel 0.00750 -0.00696 
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(a)                                                             (b) 

Figure 5.4  Simulated magnetic flux density magnitude at tracked points 
for (a) first-order elements, and (b) second-order elements 

 

The computed LIM magnetic flux density magnitude solutions for the first- and second-

order elements are shown in Figure 5.4.  For both simulations, the highest magnetic flux density is 

in the stator steel as expected for induction machine design.  The periodicity of the solutions shown 

for a 14 Hz excitation is due to the periodic excitation.  Since the magnetic flux density magnitude 

is shown, all values are positive. The oscillation within each period may be due to the numerical 

time discretization of the simulation.  The results shown are for a time step of 1 ms.  When the time 

step was reduced, the same oscillation within each period occurred, with one time step solution 

lower or higher than the next.  Comparing the first- and second-order magnetic flux density 

solution magnitudes, the simulations match closely.  The second-order elements simulated slightly 

higher magnetic flux density in the stator steel.   
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Figure 5.5  Simulated eddy current density magnitude at rotor tracked points for first- 
and second-order elements 

 

The simulated eddy current density is shown in Figure 5.5 for the rotor surface and middle 

of the rotor.  The eddy current density is zero for the tracked stator steel and air gap points and is 

not shown in Figure 5.5.  As expected, the eddy current density is significant and greater on the 

rotor surface compared to the middle of the rotor.  The second-order eddy current density on the 

rotor surface continues to increase over time while the first-order eddy current density on the rotor 

surface increases then remains constant on average after approximately 0.35 seconds.  However, 

the first- and second-order simulated solutions are on the same order of magnitude.   

The force per unit length is calculated according to the Maxwell Stress Tensor method in 

section 2.5.3 Force from Maxwell Stress Tensor.  The force density (N/m2) is calculated at each 

point around the desired path.  To numerically integrate along the path, the trapezoidal rule is used. 

The numerical integration yields the force per unit length for the given time step solution.  The 
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results shown in Figure 5.6 are calculated in newtons based on multiplying the force per unit length 

times the stator height for the air gap force or the rotor height for the force on the rotor surface.   

             The upper and lower forces are summed to calculate the force on the rotor.  The total force 

taken over the average of the last cycle simulated is shown in Table 5.3.  Both the first- and 

second-order simulated forces on the aluminum rotor edge are lower than the measured force.  The 

simulated force along the rotor edge is closer to the measured result than the simulated force along 

the air gap.  Factors that could contribute to the differences between measured and simulated 

results are the two-dimensional approximation, and simulating a subset of the stator and stator 

windings.   

Table 5.3 Measured and Simulated LIM Force Calculations 

 Force (N) 

Region Measured First-Order Elements  

Simulation 

Second-Order Elements 

Simulation 

Al Rotor Edge 7.20 4.40 3.61 

Along Air Gap 7.20 0.16 0.08 
 

 
(a) 

 
Figure 5.6 Calculated tangential and normal force along LIM rotor 

edge and middle of the air gap for (a) first-order elements 
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(b) 

 
Figure 5.6 (cont.) Calculated tangential and normal force along LIM rotor edge and middle of the 

air gap for (b) second-order elements 
 

 

The CPU and hybrid CPU/GPU simulations of the linear LIM problem were conducted to 

compare computation time.  The hybrid CPU/GPU simulation follows the implementation for the 

benchmark problem for the first- and second-order elements with linear magnetic material.  Due to 

the large air gap, the steel will not normally saturate for this LIM experiment. As a result, the 

magnetic permeability of the steel can be approximated linearly.  The hybrid CPU/GPU simulation 

uses the GPU for matrix-vector multiplication to form the right-hand side vector and to compute 

the magnetic flux density.  As discussed previously, the biconjugate gradient iterative solver is 

implemented on the CPU using the MATLAB built-in function bicgstab, and the preconditioner is 

formed on the CPU using the incomplete Cholesky factorization function ichol.  Additionally, the 

force density calculation is done on the CPU since it is computed element-wise.  This type of 

calculation is much faster on the CPU than the GPU.   
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Table 5.4  LIM Problem Mesh Description 

   Total Domain 

Magnetic 
Material 
Model 

Element 
Order 

Mesh Number of 
Nonzero 

Elements in 
Matrix 

Number of 
Elements 

Number 
of Nodes 

Li
ne

ar
 First Fine 56517 16416 8281 

Second Fine 297219 16416 32977 

 

 
Table 5.5  CPU and hybrid CPU/GPU simulation times for LIM linear problem, 

first- and second-order elements over 500 ms simulation  

   Total Time (s)  

  Preconditioner 

Time (s) 

Iterative 

Solver 

Magnetic Flux 

Density 

Total Time 

(s) 

F
ir

st
 

O
rd

e
r 

CPU 0.006 23.984 73.330 111.322 

GPU 0.005 9.973 15.353 38.567 

Speed-up N/A N/A 4.776 2.886 

S
e

co
n

d
 

O
rd

e
r 

CPU 0.007 1550.500 676.252 2235.600 

GPU 0.006 496.544 110.618 638.870 

Speed-up N/A N/A 6.113 3.499 

 

Table 5.4 shows the first- and second-order mesh descriptions.  Table 5.5 shows the CPU 

and hybrid CPU/GPU simulation times.  While the iterative solver was calculated on the CPU for 

both simulations, the hybrid CPU/GPU simulation calculated the iterative solution faster.  For the 

larger problem size for the second-order elements, greater speed-up is achieved.  A speed-up of 

approximately 4.7 and 6.1 was achieved for the first- and second-order magnetic flux density 

calculation, respectively.  The overall speed-up resulted in 2.8 for the first-order elements, and 3.5 

for the second-order elements.  The problem size for the LIM mesh is slightly larger than for the 

benchmark problem.  Using similar techniques, greater speed-up is achieved with the larger 

problem size.   
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

The use of GPUs for parallel processing of the two-dimensional transient finite element 

analysis problem was explored.  Simulation results for the benchmark and linear induction 

machine problems show which simulation GPUs can be used to speed up the finite element 

analysis simulation computation time and where their functionality is limited.  MATLAB 

implementations of first- and second-order elements for linear and nonlinear magnetic material 

were created, and the simulation results for these finite element analysis programs were presented.  

For the sparsity and problem sizes simulated, the GPUs provided speed-up for a range of 

approximately 4 to 11 times for sparse matrix-vector multiplication required for magnetic flux 

density calculation and Jacobian formulation.  However, GPUs did not speed up the sparse 

iterative solver simulation time for each type of simulation.  The CPU iterative solver used was the 

MATLAB sparse-format based preconditioned biconjugate gradient stabilized method.  These 

CPU iterative solver times were compared to the CUDA biconjugate gradient functions explored 

and linked to MATLAB and the preconditioned and un-preconditioned biconjugate gradient 

stabilized method algorithm implementation using the sparse gpuArray format.   Based on these 

simulation results and prior research for GPU iterative solver implementations [35], [36], the 

current algorithms available and implemented on the GPU do not result in faster computation times 

for the GPU implementations for problems of this size (1842-32977 nodes).  From [35], for 

problem sizes ranging from 150,000 to 1.5 million rows and columns, speed-up achieved for the 

incomplete-LU and Cholesky preconditioned BiCGStab and CG methods ranged from 1 to 5.5.  

Different speed-up was achieved for different values of the preconditioner fill-in threshold.  For 

problems of varying sparsity, the average speed-up was approximately 2.2.  From [36], the level 
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scheduling technique was used for the sparse triangular solve and several preconditioned iterative 

methods on the GPU were explored for problems from 5,000 to 1.4 million rows and columns.   

The greatest GPU speed-up achieved was 4.3 for the GPU-accelerated ILUT-GMRES method for 

the matrix with 1.27 million rows and columns.  Through use of algorithms favorable to 

maximizing the parallel thread computations given the sparsity of the finite element matrix, such as 

level scheduling in [36], it may be possible to improve the GPU performance of the biconjugate 

gradient or GMRES solver over the CPU for two-dimensional finite element problem sizes.  

However, the author expects these algorithms will provide limited improvements if any for this 

problem size compared to the speed-up achieved for sparse matrix-vector multiplication.    

To combine the simulation components with the fastest CPU and GPU computation times, 

hybrid CPU/GPU simulation experiments were conducted.  Matrix assembly, vector addition and 

subtraction, preconditioner formation, and the sparse iterative solver were implemented on the 

CPU, while the sparse matrix-vector multiplication operations were implemented on the GPU.  

This required transferring matrices and vectors to and from the CPU and GPU.  Such transfers 

should be minimized since they contribute to GPU processing overhead.  For the two-dimensional 

problem sizes, this transfer time was minimal compared to the speed-up achieved for GPU sparse 

matrix-vector multiplication.  As a result, it was still advantageous to use GPUs for these parts of 

the simulation.    

These hybrid CPU/GPU simulation results were compared to the CPU-only simulation 

results.  Depending on the problem size, overall simulation speed-ups achieved for the benchmark 

and LIM problems ranged from 2.3 to 3.5, with the largest problem size simulated consisting of 

32977 nodes.  The speed-up is limited by the component speed-up achieved and percentage of the 

faster component computation time relative to the remainder of the simulation computation time.   
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The use of GPUs for parallel processing for even larger finite element analysis problems, 

such as three-dimensional domains, will show the scalability and limitations of their processing 

capabilities for electromagnetic analysis of electric machines.  For larger scale problems, the 

CUDA preconditioner and sparse iterative solver functions may provide speed-up, but this is 

highly dependent on the sparsity of the problem.  From three-dimensional mechanics finite element 

problems with 147,900 rows and columns with 3.5 million nonzero elements analyzed in [35], 

speed-up was not achieved for the fastest overall method tested - the preconditioned CG and 

BiCGStab methods with 0 fill.  For slower overall methods using higher fill in thresholds, 

moderate speed-up of 1.1-6.28 was achieved.  Ideally, speed-up on the GPU should be achieved for 

the CPU fastest possible available method.  For the triangular solve with level scheduling for the 

3D Poisson problem in [36], the GPU implementation had a speed-up of approximately 2.3, and 

the triangular solve of multi-color ILU with zero fill in had a speed-up of approximately 5.34 on 

the GPU over the CPU.   

Additionally, the scalability of the sparse matrix-vector multiplication can be explored for 

the larger problem.  For the sparse-matrix vector results presented, the GPU speed-up over the 

CPU increased from 1.49 to 11 with increasing problem size in terms of the matrix number of 

nonzero elements and the number of nodes in the mesh.  From the 3D Poisson problem analyzed in 

[36] with 85,000 rows and columns and 2.3 million nonzero elements, the greatest GPU sparse 

matrix-vector multiplication achieved was approximately 5.3 using double precision floating point 

arithmetic.  As a result, the speed-up for sparse matrix-vector multiplication applied to three-

dimensional finite element problems is expected to be in the range of 5-10.     

Along with finite element analysis, GPU parallel computing can be used for magnetic 

equivalent circuits (MEC) [51], the boundary-element method [52], and finite element analysis 
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coupled to circuit equivalent models [3].  Each of these types of models requires the solution of a 

system of equations.  GPUs can be applied to the components of these types of models where they 

are suitable for parallel processing, such as sparse matrix-vector multiplication or sparse iterative 

solvers for large problem sizes.   

Additionally, numerical and parallel processing techniques can be explored in conjunction 

to further accelerate the more detailed electromagnetic simulation of the electric machine.  Such an 

approach could involve creating a hybrid three-dimensional MEC-FEA simulation by using MEC 

to simulate flux density and field intensity for a certain transient duration, providing an estimated 

initial condition for an FEA transient simulation.  The MEC reluctance network could be mapped 

to a similar FEA mesh, and then the FEA simulation could be used for more detailed analysis to 

capture eddy current.  GPUs could be applied to certain components of the MEC and FEA 

simulations to further speed-up the simulation.  Compared to an FEA-only CPU-based transient 

analysis solution, such a hybrid approach along with the use of GPUs could result in faster 

computation times.   
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APPENDIX A 

CUDA SOURCE CODE FOR MATLAB MEX FUNCTION: SPARSE MATRIX-

VECTOR MULTIPLICATION USING CSR FORMAT  

/* 
 * Copyright (c) 2013, The Regents of the University of California, 
 * through Lawrence Berkeley National Laboratory (subject to receipt of 
 * any required approvals from U.S. Dept. of Energy) All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or 
 * without modification, are permitted provided that the 
 * following conditions are met: 
 * 
 *     * Redistributions of source code must retain the above 
 * copyright notice, this list of conditions and the following 
 * disclaimer. 
 * 
 *     * Redistributions in binary form must reproduce the 
 * above copyright notice, this list of conditions and the 
 * following disclaimer in the documentation and/or other 
 * materials provided with the distribution. 
 * 
 *     * Neither the name of the University of California, 
 * Berkeley, nor the names of its contributors may be used to 
 * endorse or promote products derived from this software 
 * without specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
 * CONTRIBUTORS "AS IS" AND ANY EXVPRESS OR IMPLIED WARRANTIES, 
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
 * SPECIAL, EXVEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
 * SUCH DAMAGE. 
 * 
 * Stefano Marchesini, Lawrence Berkeley National Laboratory, 2013 
 */ 
 
#include <cuda.h> 
#include <cusp/complex.h> 
#include <cusp/blas.h> 
#include<cusp/csr_matrix.h> 
#include<cusp/multiply.h> 
#include <cusp/array1d.h> 
#include <cusp/copy.h> 
#include <thrust/device_ptr.h> 
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#include "mex.h" 
#include "gpu/mxGPUArray.h" 
 
/* Input Arguments */ 
#define VAL prhs[0] 
#define COL prhs[1] 
#define ROWPTR prhs[2] 
// #define NCOL    prhs[3] 
// #define NROW    prhs[4] 
// #define NNZ    prhs[5] 
#define XV    prhs[3] 
 
 
/* Output Arguments */ 
#define Y plhs[0] 
 
void mexFunction(int nlhs, mxArray * plhs[], int nrhs,const mxArray * prhs[]){ 
     
    mxGPUArray const *Aval; 
    mxGPUArray const *Acol; 
    mxGPUArray const *Aptr; 
    mxGPUArray const *x; 
    mxGPUArray  *y; 
     
//     int nnzs = lrint(mxGetScalar(NCOL)); 
//     int nrows = lrint(mxGetScalar(NROW)); 
//     int nptr=nrows+1; 
//     int nnz  = lrint(mxGetScalar(NNZ)); 
//      
     
    /* Initialize the MathWorks GPU API. */ 
    mxInitGPU(); 
     
    /*get matlab variables*/ 
    Aval = mxGPUCreateFromMxArray(VAL); 
    Acol = mxGPUCreateFromMxArray(COL); 
    Aptr = mxGPUCreateFromMxArray(ROWPTR); 
    x    = mxGPUCreateFromMxArray(XV); 
     
    int nnz=mxGPUGetNumberOfElements(Acol); 
    int nrowp1=mxGPUGetNumberOfElements(Aptr); 
    int ncol =mxGPUGetNumberOfElements(x); 
 
     
    mxComplexity isXVreal = mxGPUGetComplexity(x); 
    mxComplexity isAreal = mxGPUGetComplexity(Aval); 
    const mwSize ndim= 1; 
    const mwSize dims[]={(mwSize) (nrowp1-1)}; 
 
    if (isAreal!=isXVreal) 
    { 
        mexErrMsgTxt("Aval and X must have the same complexity"); 
        return; 
    } 
 
    if(mxGPUGetClassID(Aval) != mxSINGLE_CLASS|| 
   mxGPUGetClassID(x)!= mxSINGLE_CLASS|| 
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   mxGPUGetClassID(Aptr)!= mxINT32_CLASS|| 
   mxGPUGetClassID(Acol)!= mxINT32_CLASS){ 
     mexErrMsgTxt("usage: gspmv(single, int32, int32, single)"); 
     return; 
    } 
     
    //create output vector 
    y = mxGPUCreateGPUArray(ndim,dims,mxGPUGetClassID(x),isAreal, 
MX_GPU_DO_NOT_INITIALIZE); 
      
     
    /* wrap indices from matlab */ 
    typedef const int  TI;  /* the type for index */ 
    TI *d_col =(TI  *)(mxGPUGetDataReadOnly(Acol)); 
    TI *d_ptr =(TI  *)(mxGPUGetDataReadOnly(Aptr)); 
    // wrap with thrust::device_ptr 
    thrust::device_ptr<TI>    wrap_d_col  (d_col); 
    thrust::device_ptr<TI>    wrap_d_ptr  (d_ptr); 
    // wrap with array1d_view  
    typedef typename cusp::array1d_view< thrust::device_ptr<TI> >   idx2Av; 
    // wrap index arrays 
    idx2Av colIndex (wrap_d_col , wrap_d_col + nnz); 
    idx2Av ptrIndex (wrap_d_ptr , wrap_d_ptr + nrowp1); 
            
    if (isAreal!=mxREAL){ 
 
        typedef const cusp::complex<float> TA;  /* the type for A */ 
        typedef const cusp::complex<float> TXV; /* the type for X */ 
        typedef cusp::complex<float> TYV; /* the type for Y */ 
 
        // wrap with array1d_view  
        typedef typename cusp::array1d_view< thrust::device_ptr<TA > >   val2Av; 
        typedef typename cusp::array1d_view< thrust::device_ptr<TXV > >   x2Av; 
        typedef typename cusp::array1d_view< thrust::device_ptr<TYV > >   y2Av; 
         
        /* pointers from matlab */ 
        TA *d_val =(TA  *)(mxGPUGetDataReadOnly(Aval)); 
        TXV *d_x   =(TXV  *)(mxGPUGetDataReadOnly(x)); 
        TYV *d_y   =(TYV  *)(mxGPUGetData(y)); 
         
        // wrap with thrust::device_ptr 
        thrust::device_ptr<TA >    wrap_d_val  (d_val); 
        thrust::device_ptr<TXV >    wrap_d_x    (d_x); 
        thrust::device_ptr<TYV >    wrap_d_y  (d_y); 
         
        // wrap  arrays 
        val2Av valIndex (wrap_d_val , wrap_d_val + nnz); 
        x2Av xIndex   (wrap_d_x   , wrap_d_x   + ncol); 
        y2Av yIndex(wrap_d_y, wrap_d_y+ nrowp1-1); 
//        y2Av yIndex(wrap_d_y, wrap_d_y+ ncol); 
         
        // combine info in CSR matrix 
        typedef  cusp::csr_matrix_view<idx2Av,idx2Av,val2Av> DeviceView; 
         
        DeviceView As(nrowp1-1, ncol, nnz, ptrIndex, colIndex, valIndex); 
                 
        // multiply matrix 
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        cusp::multiply(As, xIndex, yIndex); 
         
    } 
     else{ 
          
        typedef const float TA;  /* the type for A */ 
        typedef const float TXV; /* the type for X */ 
        typedef float TYV; /* the type for Y */ 
    
        /* pointers from matlab */ 
        TA *d_val =(TA  *)(mxGPUGetDataReadOnly(Aval)); 
        TXV *d_x   =(TXV  *)(mxGPUGetDataReadOnly(x)); 
        TYV *d_y   =(TYV  *)(mxGPUGetData(y)); 
         
        // wrap with thrust::device_ptr! 
        thrust::device_ptr<TA >    wrap_d_val  (d_val); 
        thrust::device_ptr<TXV >    wrap_d_x    (d_x); 
        thrust::device_ptr<TYV >    wrap_d_y  (d_y); 
        // wrap with array1d_view  
        typedef typename cusp::array1d_view< thrust::device_ptr<TA > >   val2Av; 
        typedef typename cusp::array1d_view< thrust::device_ptr<TXV > >   x2Av; 
        typedef typename cusp::array1d_view< thrust::device_ptr<TYV > >   y2Av; 
         
        // wrap  arrays 
        val2Av valIndex (wrap_d_val , wrap_d_val + nnz); 
        x2Av xIndex   (wrap_d_x   , wrap_d_x   + ncol); 
        //y2Av yIndex(wrap_d_y, wrap_d_y+ ncol);         
        y2Av yIndex(wrap_d_y, wrap_d_y+ nrowp1-1); 
         
        // combine info in CSR matrix 
        typedef  cusp::csr_matrix_view<idx2Av,idx2Av,val2Av> DeviceView; 
         
        DeviceView As(nrowp1-1, ncol, nnz, ptrIndex, colIndex, valIndex); 
                 
        // multiply matrix 
        cusp::multiply(As, xIndex, yIndex); 
         
    } 
 
    Y = mxGPUCreateMxArrayOnGPU(y); 
     
    mxGPUDestroyGPUArray(Aval); 
    mxGPUDestroyGPUArray(Aptr); 
    mxGPUDestroyGPUArray(Acol); 
    mxGPUDestroyGPUArray(x); 
    mxGPUDestroyGPUArray(y); 
 
    return; 
} 
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APPENDIX B 

CUDA SOURCE CODE FOR MATLAB MEX FUNCTION: BICONJUGATE 

GRADIENT SPARSE ITERATIVE SOLVER 

#include "mex.h" 
#include "cuda.h" 
#include "gpu/mxGPUArray.h" 
#include <string.h> 
#include <iostream> 
#include <time.h> 
#include <windows.h> 
#include <float.h> 
 
#define DEBUG 1 
 
#include <cusp/blas.h> 
#include <cusp/copy.h> 
#include <cusp/gallery/random.h> 
#include <cusp/coo_matrix.h> 
 
#include <cusp/krylov/bicg.h> 
#include <cusp/krylov/bicgstab.h> 
#include <cusp/krylov/cg.h> 
#include <cusp/krylov/gmres.h> 
 
#include <cusp/io/matrix_market.h> 
 
void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{ 
 /* define timer variables */ 
    /* unsigned int kernelTime; 
    cutCreateTimer(&kernelTime); 
    cutResetTimer(kernelTime);*/ 
 LARGE_INTEGER frequency, start, end; 
    double seconds; 
    
    /* Read in one sparse matrix */ 
    mwSize nnz_A = mxGetNzmax(prhs[0]); 
     
    /* Create the three arrays needed to represent matrix in COO format */ 
    mxArray *matlab_coo_A[] = { 
        mxCreateNumericArray(1, &nnz_A, mxDOUBLE_CLASS, mxREAL), 
        mxCreateNumericArray(1, &nnz_A, mxDOUBLE_CLASS, mxREAL), 
        mxCreateNumericArray(1, &nnz_A, mxDOUBLE_CLASS, mxREAL) 
    }; 
    mexCallMATLAB(3, matlab_coo_A, 1, (mxArray**)(&prhs[0]), "find"); 
 
    /* Create a cusp matrix on the host */ 
    cusp::coo_matrix<int, double, cusp::host_memory> A(mxGetM(prhs[0]), 
                                                       mxGetN(prhs[0]), 
                                                       nnz_A); 
    double *row = (double*)mxGetData(matlab_coo_A[0]); 
    double *col = (double*)mxGetData(matlab_coo_A[1]); 
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    for (int i = 0; i < nnz_A; i++) 
    { 
        A.row_indices[i] = row[i] - 1; 
        A.column_indices[i] = col[i] - 1; 
    } 
    memcpy(&A.values[0],         mxGetData(matlab_coo_A[2]), sizeof(double) * nnz_A); 
     
    /* Copy to GPU */ 
    cusp::coo_matrix<int, double, cusp::device_memory> gpuA = A; 
    /* A = gpuA; */ 
     
#if DEBUG 
    cusp::io::write_matrix_market_file(A, "A.mtx"); 
#endif 
 
    /* Read in a full vector */ 
    mwSize A_num_rows = mxGetM(prhs[0]); 
    cusp::array1d<double, cusp::host_memory> B(A_num_rows); 
    memcpy(&B[0], mxGetData(prhs[1]), sizeof(double) * A_num_rows); 
     
    /* Copy to GPU */ 
    cusp::array1d<double, cusp::device_memory> gpuB = B; 
    /* B = gpuB; */ 
     
#if DEBUG 
    cusp::io::write_matrix_market_file(B, "B.mtx"); 
#endif 
 
    /* Read in a full vector */ 
    cusp::array1d<double, cusp::host_memory> x(A_num_rows); 
    memcpy(&x[0], mxGetData(prhs[2]), sizeof(double) * A_num_rows); 
     
    /* Copy to GPU */ 
    cusp::array1d<double, cusp::device_memory> gpux = x; 
    /* x = gpux; */ 
     
#if DEBUG 
    cusp::io::write_matrix_market_file(x, "x.mtx"); 
 
#endif 
 
 /* Read in one sparse matrix */ 
    mwSize nnz_M = mxGetNzmax(prhs[3]); 
     
    /* Create the three arrays needed to represent matrix in COO format */ 
    mxArray *matlab_coo_M[] = { 
        mxCreateNumericArray(1, &nnz_M, mxDOUBLE_CLASS, mxREAL), 
        mxCreateNumericArray(1, &nnz_M, mxDOUBLE_CLASS, mxREAL), 
        mxCreateNumericArray(1, &nnz_M, mxDOUBLE_CLASS, mxREAL) 
    }; 
    mexCallMATLAB(3, matlab_coo_M, 1, (mxArray**)(&prhs[3]), "find"); 
 
    /* Create a cusp matrix on the host */ 
    cusp::coo_matrix<int, double, cusp::host_memory> M(mxGetM(prhs[3]), 
                                                       mxGetN(prhs[3]), 
                                                       nnz_M); 
    double *rowM = (double*)mxGetData(matlab_coo_M[0]); 
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    double *colM = (double*)mxGetData(matlab_coo_M[1]); 
    for (int i = 0; i < nnz_M; i++) 
    { 
        M.row_indices[i] = rowM[i] - 1; 
        M.column_indices[i] = colM[i] - 1; 
    } 
    memcpy(&M.values[0],         mxGetData(matlab_coo_M[2]), sizeof(double) * nnz_M); 
     
    /* Copy to GPU */ 
    cusp::coo_matrix<int, double, cusp::device_memory> gpuM = M; 
    /* A = gpuA; */ 
     
#if DEBUG 
    cusp::io::write_matrix_market_file(M, "M.mtx"); 
#endif 
 
    /* Allocate space for solution */ 
    cusp::array1d<double, cusp::host_memory> x1(A_num_rows, 0); 
    cusp::array1d<double, cusp::device_memory> gpux1 = x1; 
     
    cusp::verbose_monitor<double> monitor(gpuB, 8000, 1e-5); 
 
    //cutStartTimer(kernelTime); 
    /* solve the linear systems */ 
 QueryPerformanceFrequency(&frequency); 
    QueryPerformanceCounter(&start); 
 cusp::krylov::bicgstab(gpuA, gpux, gpuB, monitor); 
    //cusp::krylov::cg(gpuA, gpux, gpuB, monitor); 
    //cusp::krylov::gmres(gpuA, gpux, gpuB, 20, monitor); 
     
 cudaDeviceSynchronize(); 
    QueryPerformanceCounter(&end); 
 
// if any error, such as launch timeout, return maximum run time,  
    seconds = (cudaGetLastError() == cudaSuccess) ? ((double)(end.QuadPart - 
start.QuadPart) / (double)frequency.QuadPart) : DBL_MAX; 
    std::cout << seconds << std::endl; 
    /*cudaThreadSynchronize(); 
    cutStopTimer(kernelTime); 
    printf("Time for the kernel: %f ms\n", cutGetTimerValue(kernelTime));*/ 
    /* Copy result back */ 
    x1 = gpux; 
     
    /* Store in output array */ 
    double *output = (double*)mxCalloc(A_num_rows, sizeof(double)); 
    memcpy(output, &x1[0], A_num_rows * sizeof(double)); 
 
#if DEBUG 
    cusp::io::write_matrix_market_file(x1, "xsolve.mtx"); 
#endif 
     
    plhs[0] = mxCreateNumericArray(1, &A_num_rows, mxDOUBLE_CLASS, mxREAL); 
    mxSetData(plhs[0], output); 
} 
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APPENDIX C 

MATLAB SOURCE CODE FOR GCSPARSE CLASS DEFINITION 

classdef  gcsparse < handle  
    % sparse array GPU class  
    % Usage:  
    % A=gcsparse(A,[format]);  
    % A=gcsparse(col,row,val,[nrows,[ncols,[format]]]);  
    % format: 0 for COO, 1 for CSR (0 is default);  
    % A: can be  matlab full/sparse array or gcsparse i tself  
    % 
    % overloaded operators:  
    % transpose: B=A.';  
    % transpose: B=A';  
    % multiply: x=A*y; (spmv)  
    % size: [row, columns]  
    % type: class/real/complex  
    % 
    % format conversion:  
    %          B=real(A);  
    %          A=complex(B);  
    %          B=gcsparse(A,format);  
    %          rowptr= ptr2row(A);  
    %          row   =grow2ptr(A);  
    % row <-> offset pointer conversion may crash insid e the function,  
    % but manually does not:  
    %       so, to convert from A COO, to B CSR one can  use this instead:  
    %          B=A; %copy  
    %          B.row= gptr2row(A.row,int32(A.nrows+1),A .nnz);  
    %          B.format=1;  
    % 
    % S. Marchesini, LBNL 2013  
     
     
    %    properties (SetAccess='private')  
    properties  
        nrows=int32(0); % number of rows  
        ncols=int32(0); % number of columns  
        nnz=int32(0);   % non zero elements  
        val=gpuArray([]); %values  (gpu real/complex, single)  
        col=gpuArray(int32([])); % column index (gpu int32)  
        row=gpuArray(int32([])); % row/ptr index (gpu int32)  
        format=int32(0); %0 for COO 1 for CSR  
    end  
    methods  (Access = private)  
    end  
    methods  (Static)  
    end  
    methods  
        function  obj = gcsparse(col,row,val,nrows,ncols,format)  
  
            if  nargin<6         %default is COO  
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                format=int32(0); %COO 
            else  
                format=int32(format);  
            end  
             
            if  (nargin<=2); %gcsparse(A,[format])  
                % get the sparse structure of A  
                if  nargin==2    %gcsparse(A,format) (format=row, second 
input)  
                    format=int32(row); %row is actually the second input  
                else  
                    format=0;  
                end  
                 
                if  isa(col, 'gcsparse' ) % we are just converting here  
                      obj=col; %col is actually the fisrt input  
                    if  obj.format==format %nothing to do...  
                        return  
                    elseif  (obj.format==0 && format==1)  
                         obj.row=row2ptr(obj); %COO->CSR 
                        obj.format=format;  
                    elseif  (obj.format==1 && format==0);  
                         %nptr=obj.nrows+1;  
                         %rowptr= gptr2row(obj.row,nptr,obj.nnz);  
                                                 ro wptr=ptr2row(col);  %CSR-> 
COO 
                         %                        
obj.row=gptr2row(obj.row,nptr,obj.nnz);  
                         obj.row=rowptr;  
                         obj.format=format;  
                    else  
                        fprintf( 'invalid' );  
                    end  
                    return  
                else  
                    % get  val,col,row triplets from A (first input)  
                    [obj.nrows,obj.ncols]=size(col) ; %col is actually the 
fisrt input  
                    obj.nrows=gather(obj.nrows);  
                    obj.ncols=gather(obj.ncols);  
                     
                    [obj.row,obj.col,obj.val]=find( col);  
                     
                    obj.col=gpuArray(int32(obj.col( :)));  
                    obj.row=gpuArray(int32(obj.row( :)));  
                    obj.val=gpuArray((single(obj.va l(:))));  
                end  
                if  nargin==2     
                    format=int32(row); %row is actually the second input  
                end  
            else  
                obj.col=gpuArray(int32(col(:)));  
                obj.row=gpuArray(int32(row(:)));  
                obj.val=gpuArray(val(:));  
                obj.nrows=gather(int32(max(obj.row( :))));  
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                obj.ncols=gather(int32(max(obj.col( :))));  
                obj.nnz=int32(obj.nnz);  
            end  
             
            obj.nnz=gather(int32(numel(obj.val)));  
             
            % matlab to c indexing...:  
            obj.col=obj.col-1;  
            obj.row=obj.row-1;  
            % increase nrows if input [nrows] is given  
            if  nargin>3  
                if (~isempty(nrows))  
                    obj.nrows=gather(int32(max(obj. nrows,nrows)));  
                end  
                if  nargin>4  
                    if  (~isempty(ncols))  
                        obj.ncols=int32(max(obj.nco ls,ncols));  
                    end  
                end  
            end  
            % sort by rows  
            [obj.row,unsort2sort]=sort(obj.row);  
            obj.col=obj.col(unsort2sort);  
            obj.val=obj.val(unsort2sort);  
            obj.format=0;  
             
            if   format==1;  
                %                 obj.row=coo2csr(obj);  
                obj.row= row2ptr(obj);  
                obj.format=1;  
            end  
            %                'hi'  
        end  
        function  B=real(A)  
            B=A;  
            B.val=real(B.val);  
        end  
        function  B=complex(A)  
            B=A;  
            if  isreal(A.val);  
                B.val=complex(B.val);  
            end  
        end  
        function  y = mtimes(A,x) %SpMV 
            %SpMV with CUSP  
            if  A.format==0  
                % y=0;  
                wait(gpuDevice())  
                y=gspmv_coo(A.val,A.col,A.row,A.nro ws, x);  
            elseif  A.format==1  
                %  y=gspmv_csr(A.col,A.row,A.val,A.nrows,A.ncols,x) ;  
                wait(gpuDevice());  
                y=gspmv_csr(A.val,A.col,A.row,x);  
            end  
        end  
        function  C= ctranspose(obj)  
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            % format->coo->transpose->format  
            C=gcsparse(obj,0); %convert to COO  
            tmprow=C.col; %swap row and columns  
            C.col=C.row;  
            C.row=tmprow;  
            tmp=C.nrows;  
            C.nrows=obj.ncols;  
            C.ncols=tmp;  
            C.val=conj(obj.val); %conjugate  
            C=gcsparse(C,obj.format); %revert to original format  
        end  
         
        function  C= transpose(obj)  
            C=gcsparse(obj,0); %convert to COO  
            tmprow=C.col;  %swap row and columns  
            C.col=C.row;  
            C.row=tmprow;  
            tmp=C.nrows;  
            C.nrows=obj.ncols;  
            C.ncols=tmp;  
            C=gcsparse(C,obj.format);  
        end  
        function  [row,col,val]= find(obj)  
           if  obj.format==1;  
                fprintf( 'it may not work, use COO\n' )  
                fprintf( '[col,row,val]=find(gcsparse(A,0))' );  
%                 [~,row,~]=find(gcsparse(A,0));  
                nptr=int32(obj.nrows+1);  
                ptr=obj.row+0;  
                nnz=obj.nnz+0;  
                row=gptr2row(ptr,nptr,nnz);  
%                row=ptr2row(obj);  
                row=row+1;  
                if  numel(row)<obj.nnz  
                    fprintf( 'did not work, use COO\n' )  
                end  
%                 row=gptr2row(obj.row,int32(obj.nr ows+1),obj.nnz);  
           else  
                row=obj.row+1;  
           end  
           col=obj.col+1;  
           val=obj.val;  
  
        end  
           
                     
        function  m = size(obj)  
            m=[obj.nrows obj.ncols];  
        end  
        function  m = type(obj)  
            f0= classUnderlying(obj.val);  
            if  (isreal(obj.val))  
                fmt= 'Real' ;  
            else  fmt= 'Complex' ;  
            end  
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            m=[f0 ' '  fmt];  
        end  
        function  row= ptr2row(obj)  
            %  offset pointer to row conversion  
            row= gptr2row(obj.row,int32(obj.nrows+1 ),obj.nnz);  
        end  
        function  rowptr= row2ptr(obj)  
            %  row to offsets  
            rowptr=grow2ptr(obj.row,(obj.nrows+1),( obj.nnz));  
        end  
         
    end  
     
end  
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APPENDIX D 

BUILT-IN MATLAB FUNCTIONS THAT SUPPORT GPUARRAY FOR MATLAB 

2012A 

Table D.1 shows the built-in functions that support gpuArray type that are available in the 

parallel computing toolbox for MATLAB version 2012a.   

Table D.1  Available Built-In Functions for MATLAB 2012a 
Parallel Computing Toolbox that Support GPUArray 

abs conv2 floor log 
acos cos fprintf log10 
acosh cosh full log1p 
acot cot gamma log2 
acoth coth gammaln logical 
acsc csc gather lt 
acsch csch ge lu 

all ctranspose gt mat2str 
any cumprod horzcat max 

arrayfun cumsum hypot meshgrid 
asec det ifft min 
asech diag ifft2 minus 
asin diff ifftn mldivide 
asinh disp imag mod 
atan display ind2sub mrdivide 
atan2 dot int16 mtimes 
atanh double int2str ndgrid 
beta eig int32 ndims 

betaln eps int64 ne 
bitand eq int8 norm 
bitcmp erf inv not 
bitor erfc ipermute num2str 

bitshift erfcinv isempty numel 
bitxor erfcx isequal permute 
bsxfun erfinv isequaln plot (and related) 

cast exp isfinite plus 
cat expm1 isinf power 
ceil filter islogical prod 
chol filter2 isnan qr 

circshift find isreal rdivide 
classUnderlying fft issorted real 

colon fft2 ldivide reallog 
complex fftn le realpow 

conj fix length realsqrt 
conv    
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APPENDIX E 

BUILT-IN MATLAB FUNCTIONS THAT SUPPORT GPUARRAY FOR MATLAB 

2014A 

Table E.1 shows the built-in functions that support gpuArray type that are available in the 

parallel computing toolbox for MATLAB version 2014a.   

Table E.1 Available Built-In Functions for MATLAB 2014a Parallel Computing Toolbox that Support GPUArray 
abs blkdiag display gammaln isinf mod real times 

acos bsxfun dot gather isinteger mpower reallog trace 

acosh cast double ge islogical mrdivide realpow transpose 

acot cat eig gt ismatrix mtimes realsqrt tril 

acoth ceil eps horzcat ismember NaN rem triu 

acsc chol eq hypot isnan ndgrid repmat TRUE 

acsch circshift erf ifft isnumeric ndims reshape uint16 

all classUnderlying erfc ifft2 isreal ne rot90 uint32 

and colon erfcinv ifftn isrow nnz round uint64 

angle complex erfcx ifftshift issorted norm sec uint8 

any cond erfinv imag issparse normest sech uminus 

arrayfun conj exp ind2sub isvector not shiftdim uplus 

asec conv expm1 Inf kron num2str sign var 

asech conv2 eye int16 ldivide numel sin vertcat 

asin convn FALSE int2str le ones single xor 

asinh cos fft int32 length or sinh zeros 

atan cosh fft2 int64 log pagefun size 
 

atan2 cot fftn int8 log10 perms sort 
 

atanh coth fftshift interp1 log1p permute sprintf 
 

besselj cov filter interp2 log2 plot (and related) sqrt 
 

bessely cross filter2 interp3 logical plus squeeze 
 

beta csc find interpn lt pow2 std 
 

betaln csch fix inv lu power sub2ind 
 

bitand ctranspose flip ipermute mat2str prod subsasgn 
 

bitcmp cumprod fliplr iscolumn max qr subsindex 
 

bitget cumsum flipud isempty mean rand subsref 
 

bitor det floor isequal meshgrid randi sum 
 

bitset diag fprintf isequaln min randn svd 
 

bitshift diff full isfinite minus rank tan 
 

bitxor disp gamma isfloat mldivide rdivide tanh 
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