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ABSTRACT

Finite element analysis used for detailed electgmatic analysis and design of electric
machines is computationally intensive. A meangogklerating two-dimensional transient finite
element analysis, required for induction machinel@liag, is explored using graphical processing
units (GPUSs) for parallel processing. The gragdipcacessing units, widely used for image
processing, can provide faster computation timas ®PUs alone due to the thousands of small
processors that comprise the GPUs. Computati@ste suitable for parallel processing using
GPUs are calculations that can be decomposedubtestions that are independent and can be
computed in parallel and reassembled. The staps@nponents of the transient finite element
simulation are analyzed to determine if using GRiggalculations can speed up the simulation.
The dominant steps of the finite element simulatimpreconditioner formation, computation of
the sparse iterative solution, and matrix-vectoltiplication for magnetic flux density calculation.
Due to the sparsity of the finite element probl&RU-implementation of the sparse iterative
solution did not result in faster computation tim@he dominant speed-up achieved using the
GPUs resulted from matrix-vector multiplicationimslation results for a benchmark nonlinear
magnetic material transient eddy current problethle@ar magnetic material transient linear
induction machine problem are presented. The felgeent analysis program is implemented
with MATLAB R2014a to compare sparse matrix forroamputations to readily available GPU
matrix and vector formats and Compute Unified DevAechitecture (CUDA) functions linked to
MATLAB. Overall speed-up achieved for the simwas resulted in 1.2-3.5 times faster

computation of the finite element solution usingyarid CPU/GPU implementation over the



CPU-only implementation. The variation in speedsugependent on the sparsity and number of

unknowns of the problem.
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CHAPTER 1
INTRODUCTION

Electric machines constitute approximately twoethiof all industrial electric power
consumption [1]. An improvement in efficiency téaage number of electric machines thus
conserves large amounts of electrical energy. mvates improvements to electric machine
design to reduce inefficiencies.

Specifically, induction machines and permanentimagynchronous machines are two
types of machines that interest engineers andnasa. Induction machines are considered the
“work horse” of electric machines [2]. Specifieegsof induction machines include air
conditioning units, pumps, hoists, servos, and béocls. Most induction machines used today
use the same design for induction machines dewveliopthe 1960s. Those induction machines
were intended to use electric line power from tbegr grid, i.e., at a fixed frequency. The
technology available today in power electronicdégsvariable-frequency control of induction
machines. Such a different control necessitatdsmage in design of induction machines in order
to efficiently operate them with this different ¢a.

Present commonly used tools for electric machirsggdanclude analytical circuit
equivalents and finite-element models (FEM) [2], [Bnalytical circuit equivalents of electric
machines are a fast way to design a machine babtimodel the machines as accurately as finite-
element models because they cannot model the eanlimagnetic behavior used in the
construction of electric machines. This is impettaecause induction machines may be operated
near or at the magnetic saturation of the magrigtiparmeable material. However, finite-element
models can model the nonlinear magnetic matered uselectric machines, but they can be time-

consuming to set up and simulate the machine. r&swdt, many electric machine designers use
1



analytical models to create an initial design, gnah use finite-element models to verify the
design.

Decreasing the simulation time of a finite-elemmoidel of an electric machine makes the
finite-element model a more desirable design tookfectric machine design. Several approaches
have been used to decrease the simulation timeneNcal approaches include the shooting-
Newton method used to compute fewer iterationgtaio a steady-state solution [4]. Domain
decomposition is another technique used to divifigta-element domain into smaller domains
for more efficient computation [5]. The approaglamined in this thesis is to use parallel

programming to reduce the simulation time.



CHAPTER 2
MAGNETIC VECTOR POTENTIAL FORMULATION AND
FINITE ELEMENT IMPLEMENTATION

2.1 Magnetic Vector Potential Formulation

The electromagnetic fields for an electric machinvelve magnetic flux densit{(B)

through materials with different conductivi(xﬁ ) permeability(,U) , permittivity (¢), stationary

and moving parts, and excitation by applying vadtag current. The magnetic flux density is
solved for in a domaif2 with boundaryr . The fields are described by Maxwell’s equatiand

constitutive relations [6]:

OxE :—‘Z—? 2.1)
OxH :%_[t)-'-J (2.2)
OMm=0 (2.3)
OB =0 (2.4)
OQoE) =0 (2.5)
D=¢E (2.6)
B=uH 2.7)

where E is the electric field intensity is the electric flux densityid is the magnetic field
intensity, £ is the permittivity, andl is current density. Current density can be deas®ag into

three parts: the impressed currépt eddy currenoE , and current induced by motiarnv xB

where v is the velocity of the conductor with redpeB [3]. Jis expressed as

3



J=J,+0E+0vxB (2.8)
The magnetic vector potentidlis used to simulate the electromagnetic fieldss related
to the magnetic flux density by the equation
B=0xA (2.9)
These equations can be combined to form one equétid describes the electromagnetic
behavior of an electric machine. Substituting éigng2.1) into equation (2.9) and rearranging

yields

DX(E+6—A):O (2.10)
at

The electric scalar potentidlis defined as

e--—nv-2A (2.11)
ot

Using the constitutive relations described by equat(2.6) and (2.7), substituting equations (2.8),

(2.9), and (2.11) into equation (2.2), and reaag yields

2
x| Loxa +aa—A+sa?:—D(ga—vmvjuswvx(mxA) (2.12)
U ot ot ot

The derivation considered here applies to isotropdia using scalars instead of dyads to
represent material properties [6]. Within eacltdielement subdomain, each type of material is
represented by scalar quantities of permittivigrnpeability, and conductivity according to:

E(x, v, zt)=¢

XY,z )= p
E(x.y, zt)=0



Using the vector identity] X(ED XA] -1 O(0®) earodioxa , equation

U U U U

(2.12) simplifies to

2
iDZA—DEXDXA—JG—A—fa—':‘:
Y7 U ot ot
; (2.13)
D(s—v+ov +1o U\j—JS—JVX(DXA)
ot U

Equation (2.13) includes the behavior of inhomegers material with th@iterm. This
U

. , . . . . 1
formulation only includes homogeneous and uniforagnetic material properties, so thie—
U

vanishes [7] resulting in the standard wave equoatio

1DZA —0——f—;
Y7 ot ot

2
0A A _1 (ﬂgaa_\t/_l_luov_'_mu\j_\]s—g\/x(DxA) (2.14)

Next, the divergence & should be specified since it is not fully deternditiy equation
(2.9). For a unique solution to the wave equatgguge conditioni.e., the choice of 1A,
should be specified, although that may not be sacgsinceB is the value of interest in machine
behavior [6]. In cases where the value of eddyeritiis desired, the gauge condition must be
specified since the value Afis directly used to calculate eddy current. NumcHying the gauge
condition can lead to numerical instability in @&ve solutions and may reduce computational
precision [7]. The selected gauge condition igdiffesion gaugealefined by

na=-eY (2.15)
ot

Applying the gauge condition to equation (2.14)dge

2
EDZA—Ja—A—ga?
7 ot ot

=0(oV)-Jd,~ovx(OxA) (2.16)

5



This equation is simplified by neglecting the geadiof the electric scalar potential term, which is
a function of the current density resulting fromirequency voltage source excitation and
resistance, and the magnetic vector potential sedenivative term, which is the displacement
current and is small for low-frequency applicatipns These assumptions reduce equation (2.16)
to

iDZA—aa—A=—JS—av><(D><A) (2.17)
Y7 ot

This equation is the main equation that describe®ltectromagnetic behavior of electric
machines using magnetic vector potential. In advmeensional simulation, with impressed
current density applied in the z-direction, the metg vector potential only has a single

component,A, . Reducing the problem to two dimensions mearigstieassimulation assumes the

electric machine has infinite axial length. Whenducting simulation studies of electric machine
designs, this assumption is appropriate for prelary and semi-detailed machine analysis. This
two-dimensional simplification of the electric mawd analysis enables significantly faster
analysis. However, for detailed machine designaaradysis, a three-dimensional simulation that
captures end turn effects should be conducted.

The velocity term of equation (2.17) can be elindaby setting velocity to zero and
neglecting motion or by employing a frame of refeethat is fixed with respect to the moving
component so that the relative velocitypecomes zero. This reference frame is creatditinyg
the mesh to the surface of the moving componentandng or remeshing only the elements in
the air around the component [3]. To simplify theshing and finite element implementation,

motion is neglected in this formulation.



Using the fact that magnetic vector potential drdg a single component in the z-direction

for the two-dimensional analysis and neglectingiomtequation (2.17) reduces to

62A 0°A| 0A
o—=-J 2.18
,u(ax ayj ot (2.18)

whereA is understood to be z-directed and only varieh@wxt and y-directions, anlds the
impressed z-directed current density. Equatiob8)2s referred to as a magnetic diffusion

equation.
2.2 Finite Element Discretization
The Galerkin approach is used to derive the figliégnent equations. It is a special case of

the method of weighted residuals. The Galerkireuses the weighting function of the same

form as the finite element shape function [6], [3], The magnetic vector potential within an

element is approximated by the sum of shape fumgti@Vith A denoting the approximation 8§

the magnetic vector potential within an elemerst approximated by
~ m ~
=Y N(% ) A (2.19)
i=1
for mnodes in the element amd® element shape functions.

The residuat of equation (2.18) with the approximationftienoted ad\ is

OAL A OA (2.20)
,u e ay ot

The weighted residual for elemenis

R = HN { (ax ayZAJ—a ‘;—f+ J} dxdy — E 1,2,..n (2.21)



where Q°denotes the element domain. Integrating by pamisation (2.21) can be written as

R° J‘J’ aid_Aaia_Addm_NaaA AA[jﬁae
0Xx 0X 0y 0y ox 0y

_[ _[ Néo dxdy+ H N° J dxdy

(2.22)

where I ® denotes the contour enclosir@® and i®is the outward unit vector normal fo°.
To solve for the finite-element domain solutiore #lement weighted residuals,

represented by equation (2.22), are assembledrbgation with the same equation with shape

functions for the other elements. The system vasishould be zero so that the approxima@ed

equates to the actual ForM elements, this system residual is described by

y -

Z” aNa—Ama—Addm r\raA Cha¥fa T
0x ox 0y dy ay

e=1 Qe
i e eaA e —

e=1

From the derivation in [6], the internal elementes do not contribute to the line integral. By

imposing the homogeneoMgeumanrboundary condition, which is defined tglft: 0, the line
ne

integral is zero. When the finite element metreodsed with other solution techniques, such as the
boundary element method or an analytical expregsiogpresent techniques the air-gap region
solution [3], this may not be a suitable boundamydition. In that case, the line integral must be
evaluated [3]. This formulation only uses thetérelement method, so the homogeneous

Neumann boundary condition is satisfactory and Bfiep the solution calculation.



The reluctivity term is introduced, which is simp,lyel. With the line integral term equal
7

to zero, the following equation shows equation32wWritten in matrix form:
IIE %}ﬁ[ﬂe{?}—i{ Q" =(g 2:24)
or even more compactly as
EEELEARERE 225)

where it is understood that tBeT, andQ matrices are assembled by summing over the elsment

Entries in these matrices are given by:

e ON? ¢ ON°
s = [[ve] DS LI | gy (2.26)
ox 0x 0dy 0y

T = HaeNeNje dxdy (2.27)

Q =] 3°N° dxdy (2.28)

N

fori,j =1,2,...m nodes per element{. A} and {g—?} correspond to thgh node. The integrals in

these matrices can be evaluated analytically oremigally. The matrices depend on the element

order and corresponding shape function.

2.2.1 First-order elements

First-order elements consist of three nodes atirdey three edges to form a triangle.

Figure 2.1 illustrates a first-order triangulament. For mesh consistency, they must be



numbered counterclockwise. The unknown funct#fowaries linearly within each element and is

approximated as

AS(x, y)= &+ b°x+ (2.29)

1 2

Figure 2.1 First-order triangular element

With m = 3, the shape functions which approximét%according to equation (2.29) satisfy
equation (2.19). The derivation of the first-ordeape functions can be found in [6] and [3]. For

first-order elements, the shape functions are goyen

e 1 e e e H ¢
N](X7 y):2Ae (aJ +ﬁj X+J/J 9 J: 1!2" (230)
with
Ay =X Y5~ YoXa  Bi= Yo Ve ViTXT X
0’; = XseY1e_ ysexﬁ lgze: yse_ y1? yzelee_ X3 (2-31)
a3e = Xleyg_ ylexze1 18392 yle_ y2? y3e=X29_ X
and

e_1( e o 9
a° =2 (Bevs - ) (2.32)

= area of the elemea

Using these shape functions, equations (2.26)7)2ahd (2.28) evaluate to

(5” +1)Ae o A°
o QR (2.33)

V(BB

§ = =

10



where g, = 1 wheni =j, otherwise,g, = 0. Note that for this implementation, reluctyvénd

conductivity are constant throughout the element.

2.2.2 Second-order elements

Second-order elements consist of six nodes coatést three edges to form a triangle.
Figure 2.2 illustrates a second-order triangulamgint. For mesh consistency, they must be
numbered in increasing order as shown in Figure Bigher-order elements are used to improve
element accuracy. Another method of improving eacyis to solve the system with a greater

mesh density, i.e., smaller elements. Resultgdaudission about these options are presented for a

benchmark problem in Section 4.3 Simulation Resultse unknown functior is a quadratic

function within each element and is approximated as

AS(x, y)= a+b°x+ Gy d°k+ Exy F3 (2.34)
3
\
\
6 5
. ®
\
\
® o
1 4 2

Figure 2.2 Second-order triangular element

With m = 6, the shape functions which approximét"eaccording to equation (2.34) satisfy
equation (2.19). The derivation of the second-+ostieape functions can be found in [6]. For
second-order elements, the shape functions ara give

Ne(x y)=(2-7) 17, j= 1,23
N7 (x ¥) =455, NJ(xy)=4LL, N°(xyF 4L,

(2.35)

11



with

and the samer;, B°, y°

504 Y) =5 L@+ pxpty  j= 120

, and\ ‘as defined for first-order elements.

Using these shape functions, equations (2.26)7)2ahd (2.28) evaluate to

S =V BB ) =123

S=S.75S  §° §°5 §

=535 5 § §0

St =v s (B B + (v

So=v g (BB v

So=v e (B+B) +(reen)

st=Vegie (BiB:+28.85+ BB+ B+ (v 1 2y P i#y P #7Y |
szazvesie (BB 285+ BB B2 (vt 2v sty v #73Y |
Se =V 3; (BsB+288.5+ BB B2)+(vave+ vy vy y ey 2|

-1 0 -4 O
-1 0 0 -4
-1 6 -4 0 O
-4 32 16 1§
0 16 32 16
0 B 16 32|

e eAe
i =0
: 180/ 0 O

12

(2.36)

(2.37)

(2.38)



0 =12,

=] pe 2.39
< %Je i=4,5¢ (2.39)

2.3 Time Discretization

The discretized system of equations for magnetadjménite-element analysis varies

with time. To emphasize this, equation (2.25) loanvritten as
[S]{%(t)}Jf[T]{?}—{ Q) ={0} (2.40)

In the case where motion is not modeled or a frederence frame is used, t8€T, and mesh-
dependent sections Qf matrices are not time-dependent. Note thaQtineatrix is shown to vary
with time, but that is only because the appliedentrdensity] may vary with time. If motion

were modeled with a reference frame, then elemeratis are deformed with respect to time while
all other elements remain the same. In air, timelactivity is zero, so this element deformation
would not affecil and the mesh-dependent section®.0fTheS matrix would change with respect
to time [3].

For induction machines, the magnetic field is tmagying within a conducting region
which induces an electromotive force (emf) accadmFaraday’s law described by equation
(2.1). This induced emf produces current, callddlyecurrent, in conducting material normal to
the magnetic flux. The eddy currents in the roteate magnetic poles that interact with the stator
poles created by the excitation current, causiegator to move. Modeling eddy current is
essential to simulate an induction machine, so gnetastatic formulation is not suitable. Either a

time-harmonic or time-domain simulation can be usdne-harmonic steady-state simulations,

13



where the time-varying fields are sinusoidal argtesented by a single frequency, are typically

represented by the Fourier transform of equatiotB8{43]:

2 2
%(‘3—)?#;—;]— jwoA=-] (2.41)

The use of the time-domain simulation over the tlhraemonic simulation is discussed in section
2.6 Nonlinear Formulation, where nonlinear magneiaterial is addressed. For linear magnetic
material simulations, time-harmonic analysis désctiby equation (2.41) can be used for steady-
state simulations at a specified frequency. Fadr or nonlinear magnetic material problems,
simulations not at steady-state or involving nanisoidal excitation require the solution of the
time-domain equation (2.40). For the simulationthis thesis, the time-domain formulation is
used to model all possible frequencies of electgmatic behavior.

The stator ¢, ) and rotor ¢ ) frequencies are related according to the rotprsl

according to

== (2.42)

For a stationary time-domain formulation, the ingse current density is applied at slip
frequency instead of the stator frequency in otdeepresent the mechanical power and torque
produced on the rotor.

While the time-domain simulation enables eddy amirsemulation, the two-dimensional
simulation limits the accurate simulation of tatechine core losses. The eddy currents in the
stator produce losses, called core losses, wheklgttric machine designer would like to
minimize. Core losses are reduced by using lamihslheets which are electrically insulated from
each other. The insulation is parallel to thediom of the magnetic flux density so that the eddy

currents which flow normally to the magnetic fluergity can only flow in each laminated sheet
14



[1]. A two-dimensional time-varying simulation ghonly models the eddy current due to one
lamination cross section.
The time-discretization of equation (2.40) follotle derivation in [3]. The time-

discretization method used is based on:

5 {BA}HN +(1-5) {GA}t _{(A™ {4 (2.43)

ot ot At
The At symbol indicates the change in time. The consfhallows the difference method to be
easily changed. Note that whe¢h=0,the algorithm is forward difference, wheh=1,the

algorithm is backward difference, or wh8r< S <1,the algorithm is an intermediate type. When

) :%, the algorithm is the Crank-Nicolson method [8].

Using equation (2.43) to discretize time in equa(.40) yields

(8 A = 1208 [ R 92 8 s

When reluctivity is linear, equation (2.44) is usedolve for{ A}Hm at each time step.

2.4 Sparselterative Linear Solvers

The system defined by equation (2.44) is essepntatparse linear system equivalent to the

typical
Ax=Db
This sparse linear system also applies to the meatiformulation described in section 2.6 when

solving for the change in magnetic vector potentsad to update the next iteration. The mairix

is sparseb is a vector, and the system is solved for theorect For the sparse matrices solved

15



later in this thesis for time-domain formulatiotise average density of nonzero elements in the
matrix relative to the total number of element8.83012. For example, given this density, for a
10,000 by 10,000 element matrix, approximately 43 elements of the matrix are nonzero out

of the total 18elements. An example of the matrix sparsity pastés shown in Figure 2.3.

1000

L L il .
3000 4000 5000 6000 .
nz = 47769 nz = 257873

(@) (b)
Figure 2.3 Matrix sparsity pattern for example tid@main meshes for
(a) first-order elements and (b) second-order efeme

fe . > i
0 1000 2000

The assignment of the element and node numberiog mq@sh generation affect the
sparsity structure of the matrix. For first-oreéégments, each element contributes nine nonzero
entries (3x3 matrix according to node numberirig)r first-order elements, each element
contributes 36 nonzero entries (6x6 matrix accgrdnnode numbering).

There are several ways to solve the system. Ldrdposition can be used. To solve the
system using LU decomposition with forward and eak substitution fon unknowns,O(n®)
multiplication operations are performediifandb are full. The number of operations required

when employing sparse LU decomposition technigsiesh as those in [9]- [10], depends on the

number and ordering of nonzero entries in the matri

16



Sparse iterative linear solvers are another opticolve the system. In particular, Krylov
subspace methods can be used to solve the fieiteesit discretized system [11]. To solve the
system using a sparse iterative linear solvenfanknownsA is no longer treated as having n
values, but rather onlynonzero values, and its inverse is found in tesfreslinear combination
of its powers. For well-conditioned matrices, tli®uld reduce the number of operations that are
performed to solve the system. Krylov subspacédatst that use the Arnoldi [12] or Lanczos [13]
process, such as generalized minimum residual d€BBRES) method [14], [15], conjugate
gradient (CG) method [14], [16], bi-conjugate geads (BiCG) method, and the bi-conjugate
gradients stabilized (BiCGStab) method [14], [Efg O(n*) per iteration [18].

Finite element matrices can be ill-conditionedtfar sparse iterative linear solvers. This
means that the iterative solvers require manytitera to solve the system to a specified tolerance.
Using a preconditioner can accelerate the convesgehthe iterative solvers. While it takes a
certain number of operations to create the pretionér, the decrease in number of iterations
required to solve the system using the preconditianth the iterative solver may still require
fewer operations than using iterative solver wititbe preconditioner. A preconditioner is used
by solving the system

P"Ax=Pb (2.45)
Preconditioners used with iterative solvers areraputationally efficient way to find a matrix
such thatP™Ais better conditioned thah. Two readily available preconditioners are the
incomplete LU (ILU) preconditioner [11] and incoraf® Cholesky factorization preconditioner

[11], [19].

17



2.5 Post-Processing

After computing the solution for the nodal magnegctor potential, other values may be
computed from the solution in order to evaluatephysical behavior of the simulated problem.
These other values are considered to be “post-gsedé values since they are computed after the
solution forAis found. The three post-processing values ef@st in this thesis are the magnetic

flux densityB, eddy current, and force.

2.5.1 Magnetic flux density

The magnetic flux density is the first post-proeeksalue of interest. Magnetic flux
density has physical meaning and can be measurkkk magnetic vector potential. For the
linear ferromagnetic material model, magnetic liexsity may be calculated outside of the
magnetic vector potential finite-element solutidro minimize memory storage, it is beneficial to
calculate the magnetic flux density at desired saeelements at each time step and store only
those values rather than both of the entire magrettor potential and magnetic flux density
solutions at each time step. For the nonlineaofieagnetic material model, it is necessary to
calculate the magnetic flux density magnitude ahe®de or element at every iteration in order to
determine nonlinear reluctivity since reluctivitya function of the square of magnetic vector
potential.

Recalling from equation (2.9) thBtis the curl ofA, soB varies in each element with one
degree of freedom less thAn For first-order elementB, is constant throughout the element. For
second-order elemen®, varies linearly throughout the element. Theosadly, the lower order
elements decrease the accuracB.ofThe element order accuracy and mesh densigaisi@ed in

the benchmark problem simulation results in Chagter
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SinceB is the curl ofA, andA only has a single componenA

B= —AZ - 9A y (2.46)
ay ax

The partial derivatives of\, are computed from the shape functions that des@iheB in terms
of shape functions is

Be = ZaNe(X.y) i (x»

(2.47)
=1
For first-order elements, this equates to

A1 S s 1S A
=X CA - A 2.48
ZAEIZ:J;}/I ) yme;ﬁ i ( )

Notice that the magnetic flux density is constanbaighout the element. For second-order

elements, the expressions becomes more compliaatedquates to

Bf=i[ﬁ( “(as+ B+ y))- VEJ“A+

2Ae

L (v:(ac+ B yy)+ va s By ) | Ar
(a°)

(2.49)

(] (V2 (az+Bex+yy)+yas Bx+y)) | A+

(Ae)z (y§ (ale+,8fx+ yley) + yle(a3e+ Bx+ y;y)) :DB
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e I

B§=—Zgl:((Ale)2 (,B’ie(afie+,6’lex+yiey))—zyAie }A—

—

{ Ai)z (ﬂf(af+ﬂfx+yﬁ/)+ﬁf(af+ﬁ;>'<+y2‘3/))J A~

(2.50)
(A]e-)z (/8;e (af + Box+ yzeY) +ﬂze(ase+ Bx+ }/3%/)) 'As_
(Aﬁ)z (8:(a¢ + Bix+ yy) + Bo{ass e v) | A
B® =BX+ Bﬁ/ (2.51)

2.5.2 Eddy current density

The eddy current density is modeled by magnetitovgaotential derived from Maxwell’s

equations. Using equation (2.11) that relategrdield to magnetic vector potential, neglecting

the electric scalar potential, and knowing that

‘J eddy = JE (252)
then eddy current in terms of magnetic vector pakis
0A
Jog=—0— 2.53
eddy at ( )

In terms of time discretization using equation 8,4ddy current density is calculated from the

magnetic vector potential solution at each timp ste

. -1 A - A
Jédﬁ; = (,818 ) Jteddy_a( ANt ) (2.54)
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2.5.3 Force from Maxwell Stress Tensor

The purpose of an electric machine is to produceefor torque to do work. Measuring or
computing these quantities is useful to evaluatetrformance of the machine. There are several
methods to compute the force from a finite elensanulation. The Ampere’s Force Law,

Maxwell Stress Method, and Virtual Work Method eomsidered in [3]. In this thesis, the
Maxwell Stress Method is used to compute forces dised to find the total, not the local, force on
an object. Additionally, the Maxwell Stress Tengmmulation in the air gap should result in
accurate force calculation for linear and nonlimeagnetic material representation.

Following the derivation from [3], the volume fordensity can be written as the

divergence of the Maxwell Stress Tensor (M3$T)

p, =0T (2.55)
whereT is derived as
1, .2
B? —§|B| BB, B B
1 1,02
T " BB, E —§|B| BB (2.56)
B,B, B,B, B?Z—%|B|2

Integrating and using the vector divergence thaopthe total force can be expressed as

F :LﬂT S (2.57)

Taking this surface integration to be a cylindrieaiface through the machine airgap, this
integration is reduced to a line for two-dimensimsiaulation to give force per unit depth. The

tangential F ) and normal E,) force components in newtons per meter can beileddcl

according to
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F :LLﬁdE :L!j B;f* dl

F =[ﬂan=[j]Mdl

L L 2II’[O
B.B=BB(S-$+ s B B (2.58)
Bi-B'=BS-2BBss+ 8% ( B®2 BBss ‘B

1
=B§-2BB 55+ §5| B
where the unit normal and tangential vectors tarttegration path and tangential and normal

components of flux density are defined as

a,=sa+s7g

ét :‘S«/%&"’ s[q, (2.59)
B=Bs+Bs '
B,=-Bs+Bs

2.6 Nonlinear For mulation

Including the nonlinear permeability of the ferragnatic material involved in an electric
machine problem is necessary to obtain accurat@aiions of magnetic flux saturation. Most
induction machines operate near or in the saturaéigion, so only modeling linear permeability
may yield inaccurate simulation results. To puhdlectric machines to their torque and power
density limitations, the machines are likely to i@be near saturation.

The permeability or equivalent reluctivity in thenstitutive relation shown by equation
(2.7) is nonlinear. It is a function of the locahgnetic field. The most accurate physical
representation of thB-H relationship includes nonlinearity and hystere3ike family of
hysteresis curves can be represented by a norngalatization curve.

Figure 2.4 shows an example family oftéyesis curves. The dotted line represents a
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normal magnetization curve. For a specific stéigiure 2.5 shows the initial magnetization
nonlinear B-H curve. This steel curve is usedfiernonlinear simulation of the benchmark
problem described in Chapter 4. From this dagse¢luctivity versus the square of magnetic flux

density is computed and illustrated in Figure 2.6.

Figure 2.4 Hysteresis curves and
normal magnetization curve

B-H Curve for Steel

BM

55
x 10"

Figure 2.5 Nonlinear B-H curve for steel
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x 10" Nonlinear Reluctivity versus B2

v (m/H)

Figure 2.6 Nonlinear reluctivity verssgguare of
magnetic flux density for steel

As previously referenced, a time-domain simulaisopreferred to accurately simulate how
nonlinear magnetic material affects the magnatix dlensity. An effective permeability
approximation method based on average energy fB8peaised with the time-harmonic approach.
The time-domain method allows permeability to vilanpughout the domain at each instant in
time, providing a more intuitive model of the nowarity of the magnetic permeability.
Additionally, time-domain simulation can includerpeability hysteretic effects.

To model the nonlinearity of reluctivity, an itaxat process is used to find the solution that
is consistent with the field solution. The processsummarized by first assuming an initial value,
solving the system, then correcting the reluctibiédged on magnetic flux density solution. This
process continues until the change in either thgnet#c vector potential or reluctivity is less than
a specified tolerance.

A common method of linearizing the system of nagdinequations is the Newton-Raphson
method. For the nonlinear iterative solution, ékestence and uniqueness of a unique stable
mathematical solution requires that the magnetinaturve be monotonically increasing with their
first derivatives monotonically decreasing [7].tHE nonlinear function is monotonically

24



increasing, the solution from the Newton-Raphsothotewill converge quadratically. The curve
in Figure 2.4 is not monotonically increasing.ohder to guarantee convergence, the reluctivity in
the low flux density region can be approximated@sstant. Most electric machinery is not
designed to operate in this region in steady-ssatéhis approximation is acceptable. For
applications where the low flux density behaviomgortant, the Newton-Raphson method may
use the change in permeability from one iteratoothée next as the convergence criterion rather
than the change in magnetic vector potential [3].

A review of the Newton-Raphson method for a syséémonlinear equations follows.
Consider a system of nonlinear equations

f(x)=0 (2.60)

where f represents a systemmequations, an&represents variablesx,, X,,...,%,. An estimate

of the solution isx® . An initial guess is used as the solutiorkt®. The iteration number is

represented by the superscrigt (The error isAX® =X - % The system of equations can
at iterationk +1can be represented by

f(x® +Ax9) =0 (2.61)
This equation expanded in a Taylor series is

K9 +8X9) = ((K0)+ 3 2L

J=L YA

A>{k)+Zn:O((Ax§k>)2):o, i=1,2,.n (2.62)
(X(k)) j=1

Omitting the higher order term, this equation cawhitten in matrix form as

[9],.{x¥} =~{Fx*) (2.63)

nx1

where the Jacobian matkixs given by
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A LA
M) Pelper) Pl
[J] =| 0% (x9) 0%, (x9) 0%, (x) (2.64)
of, of, of .
axl (y(k)) 6X2 (W)) a)ﬂq (y(k))

Equation (2.63) is solved fa&x™®. Then,x**is found byx®**? =x% + AX* . The method
continues to iterate until
AxXM < g (2.65)

where ¢ is a specified tolerance.

The Newton-Raphson method is applied to the tirserdtized finite-element equation
(2.44) to linearize the reluctivity. This derivatifollows aspects of the magnetostatic and time-
domain modeling linearization using the Newton-Ragshmethod in [3] with some modifications
for handling second-order elements. The implentiemaf the Newton-Raphson method is
slightly different depending on the element ordeor first-order elements, the reluctivity is

constant throughout each element, so the calcolafithe Jacobian only involves the terms

ov _ 0v 0B?

=— forj =1,2,3.B is the magnitude of the magnetic flux density clated fromA.
0A, 0B® 0A

More information about how is calculated fromd\ is included in section 2.6 about post-
processing. For second-order elements, the reityctiow varies throughout the element. Since

reluctivity is not an analytical function &, it is represented numerically as the reluctidityived
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. Qdv, _0dv, oB*, . . _
from B at each element node. In that case, the Jacabialvées —- = — fori,j =
0A, 0B” 0A

1,2,3,4,5,6.

2.6.1 Nonlinear formulation for first-order elements

Consider the time-discretized equation (2.44) pement for first-order elements.

A~ N t+AL

St S S| [bob G[|A
VEISy Sp Selt| b by by =

A

S S S %1 tez t33 A3
t (2.66)
A t+AL t
t11 t12 t13. 1—ﬂ Siu Sz Si3 'fl Ql 1—,8 Q1
t21 t22 t23 _TVe S, Sy Si Az + Qz +7 Qz
t31 t32 t33 a1 Sz S Ag Qs Qs

The subscripts denote local nodes 1, 2, and hiéoelement. LeE, i =1,2,& denote théth

equation.
éit'FAt
E:[Ve[sl $, 53]+[it1 it its]] A’% -
A
ot (2.67)
1-8 A 1- 8
{[til t, '%3]_71/ [$1 $2 53]} A’? _Q _7 Q

To find the derivatives necessary to form the Jaeglequation (2.67) is differentiated with

respect to the nodal magnetic vector potentiaindJthe product and chain rules, the result is

oF S ov° aB%
_=p®s +t + s AT 2.68
O™ 5% [;% ! jaBez 0A (2.89)
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for i,] =1,2,3 Theith Newton-Raphson equation is

t+At

AA
{aﬁm s atFim} L =-F (269)
0A™ OA™  OA DA,

This can be written in matrix notation per elemant

v [s]+[T+1 gy oA =
(v [S]+[ T A + {[1] V[ﬂ{ Koo @AtJr%{ 3 (2.70)

where
M3 3 t+At —aBez —t+At
2 %A 2L %A Zisq s 00
= =] A
At — aVke'HAt 2 s 0B* 2.71

[G], 3y ;sm Z S¢ A Z A0 4 O (2.71)
3 3 aBeZ
2 SA 2 SA Z§q 0o 0
L a=1 a=1 Jk L aAS Jk

Note the “hats” are dropped from the nodal magnedator potential, but it is understood that
those values are estimated values. All valuasnattt+ At are thekth iteration values. The
Newton-Raphson equations for each are assembtdatdam a global system of equations.

For each time step, the Newton-Raphson iterationgss can be summarized as follows:
1. Start with an initial guesé = A . When solving forA™ , set A" = Al,

2. CalculateBZ ", pe**t, and the Jacobian values in equations (2.70J2id) from

A values.

3. Assemble global matrices from element values a@egitd equation (2.70) and (2.71).
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. . t+At
4. Solve linear system of equations {ds},”

5. Update A2 = A& 4 AN (2.72)

6. If aA™

iteration process from step 2 and continue.

<&, stop the iteration process and s&t* = A*?'. Otherwise, repeat the

Several calculations are required for step 2. vidhee ofy, " is calculated by first determining

B from equation (2.46), then determining the valfie'¢™ according to the non-linear— B?

curve at the point fo(BEm)z. Note that the Jacobian values in equation (2avd ralculated

e t+At
differently for first- and second-order elementse value of vy

~is determined by taking
9 ( Bke,t+At)

e t+at)2
the derivative of the non-linear— B?curve. The value of(atiw) i=1,2,3, for first-order

K
elements is derived from equations (2.46) and j2i8 describeB as a function of,. First,

note that

B2 = (G_AZJZ + (G_AZJ (2.73)
0x oy

Squaring the- andy-components of equation (2.48) and taking the dévig as a function o
forj=1,2,3 yields

B
2

2(a%)" =

a ( B:,HAt)z 3 At
= . +
2 2L VEA;

i
= BEALA! 2.74
aA}TkAt Z(Ae) i L ( )

2.6.2 Nonlinear formulation for second-order elements

The author has not found specific implementatiothios for modeling nonlinear second-

order time-domain finite element methods. In {B§ nonlinear magnetostatic formulation is

29



described for first-order elements, but not forosetzorder elements nor for the magnetodynamic
(time-harmonic or time-domain) formulation. In [@)e linear two-dimensional time-harmonic
formulation is described for first- and second-orelements, and the general time-domain
discretization is discussed, but neither the nealirtime-harmonic nor the nonlinear time-domain
formulation for second-order elements is descridad7], first- and second-order element
implementations for the Helmholtz equation are died, first-order element solutions of the
Newton-Raphson iterations are shown, and time{rggiency-domain problems are discussed
including eddy-current analysis using magnetic aepotential, but the time-domain, nonlinear
implementation for second-order or higher-ordemelets is not explicitly described. In [20]
which is more mathematically based rather thaniegapmn based for [3], [6], [7], higher-
dimensional element formulation is presented, &rdtive methods are discussed, but the
application of second-order elements for a time-alagmonlinear problem is not presented. The
following formulation was derived for second-oréégments as an extension of the nonlinear

formulation for first-order elements.

For elements with nonlinear reluctivity which iguaction of BZ, andB depends on

position within an element, reluctivity is alsoum€tion of position within an element and is no

longer constant as it is for first-order elemers. a result, the finite element discretizatiomdi

discretization, and linearization should be repatigh elemental reluctivity replaced lW(X, Y).

To numerically include the reluctivity variationtivin the element, the value Bfis calculated at

each local node per element. Then, using the lou@ddlB values, the reluctivity and
.oV . . : . o
correspondlnga? at each local node belonging to elements in timimear material region is

calculated according to the nonlineeB? curve for the magnetic material. If an analytical
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expression is available for theB?relationship, it may be analytically possible toetmine the
variation ofv across the element. In this case, a value amtiegitecould be assigned at each local
node per element. As seen in the exanyB@ in Figure 2.6, the derivative of this curve is
constant for certain rangesBt. The reluctivity at each node belonging to eleméntbke linear
material region is assigned according to the redaeluctivity to that region. For elements in the
linear material region, the reluctivity is constédmpbughout the element.

With the reluctivity variation in mind, the matrdefined by equation (2.37) is redefined by

replacingv®with v°. In this way, the finite element formulation t8l$he same as for first-order

elements, but a variation in reluctivity within element is included.
The nonlinear finite-element formulation is the saas first-order elements except the

Jacobian values are different because reluctiatieg at each node. The Jacobian values become
oF _ A av, 0B’
a’%t+A’[ VSJ [Z% qt tjaaza (275)
fori,j =1,2,...,6 The Newton-Raphson equation can be written iniratitation per element as
|diag[v], " [S+[ M+1 G [{a K =

[dlag[V]tmt[qu]} “At {[1]__ d|a{;|/] [ ]5} }A\+ p+At+%{ }Q

(2.76)

where

G {GBZ[Z% J AJ (2.77)

The value ofl/it;At is calculated in the same manner as for first1oetEments by first determining

* from eqguation (2.46), then determining the valtje'it{gAt according to the non-linear— B
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aV_HAt
curve at the point fo( B )2. The value of(%km)2 is determined by taking the derivative of
(B

t+at )2
the non-lineaw — B? curve. The value OM ,,j=1,2,...,6 for second-order elements is

a At +At

ik

derived from equations (2.46), (2.49), and (2.5@}) tescrib® as a function of,. First, note that

B = (a—Azjz + (a—AZJ (2.78)
()4 ay

Rewriting equations (2.49) and (2.50) to simpligs$e expressions,

Bf?i( - Z(Ke(aie’fﬂ.exwey»-;e J:“

( ! (VS(af+ﬁfX+yfy)+yf(aze+ﬂ2‘3<+yz‘3/))] At

(2)

(Ae)2 (V; (a§+ﬂzeX+ yzey) + yze(ase+,333(+ yslay)) As'*' (2.79)

(Vé’ (ac+ Box+yey) +yi(as+ Bix+ ygey)) A

(&)

=> 1,0 NA,
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{ - 2(ﬂ:(af+ﬂfx+yfy)+ﬁf(a;+ﬁ2&+y5/))] A-

(2°)
(&

(B (az+ Boxryey)+ Bass B v) | A

(2)

=ZG_‘,gm(x,y)A1

(B (az+ Bex+yy)+ Bla s Bx+y ) | A- (2.80)

Squaring thex- andy-components oB from equations (2.79) and (2.80) and taking thévdgve

as a function o forj =1,2,...,6 yields
0 ( But,;m )2 : +At S LRAL
Wﬂﬁ(x ,M)Zl B OGY) A +2g (%, y)Zl g(x Y A& (2.81)
1 m= m=
The Newton-Raphson equation for each element erassd to obtain a global system of

equations.

2.6.3 Relaxation factor

Rather than always updating the next iterationevaliithe nodal magnetic vector potential
by , a relaxation factar may be used according to
AL = AT +ab AT (2.82)
to either over-relax or under-relax the updatee Uipdated value is over-relaxedif>1, and this
theoretically reduces the number of iterationsctiieve convergence as long as the update does

not overshoot the exact solution in which the meétimay not converge. The updated value is
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under-relaxed i0D < a <1. This may be necessary to achieve convergenbetiigtNewton-
Raphson method so that the next updated valuersiwesershoot the solution.

A method of determining the relaxation factor todfthe value af that minimizes the
objective function in equation (2.83) which is adtion of the Galerkin residual [21], [22]. The
objective function is the sum of the values of @aerkin residual each raised to tite power.
Objective functions to the second and fourth powesse explored. Equation (2.84) shows the

Galerkin residual. Note that it is a function lo¢ tupdateda,?* which is a function otr.

W, =D {H} (2.83)

et = (S THAL - -2 3[R 8728

The value ofv,** may be updated to the valueugts* which is a function o{ A}

t+A . .
w1 - This option

+1

was experimentally explored and did not seem taawvgthe convergence or reduce the number

of iterations to achieve convergence. Additionaliydating the value of’%" for each updated

{A}tkf for the values ofr examined(a’:0,0.l,O.Z, ...,)Eincreases the computation time of each

iteration without necessarily any benefit. Instahé relaxation factogr that allowed the solution
value to achieve convergence was determined througterical experiments for the specific
problem. When an appropriate under-relaxatiorofagtill does not yield a converged solution, the

mesh may need to be refined.
2.7 Implementation

Each of the time-domain finite-element simulatiares programmed for and run using

MATLAB. While other programs, such as Maxwell Aftsand JMAG, are available for finite
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element simulations of electric machines, a prognaeded to be created so that the lines of code
could be manipulated in order to experiment witbederation of the simulation. The time
discretization used for each of these simulatierieé Crank-Nicolson method wit= 0.5
according to equation (2.43).

In addition to the Neumann boundary condition agpin the derivation described in
section 2.2 Finite Element Discretization, otheudary conditions must be applied to create a
nonsingular global matrix and obtain a unique sofutor the finite element problem [3]. At each
point on the boundary of the mesh domain, the magwector potential unknown or the normal
derivative must be specified. Additionally, in erdor the global matrix to be nonsingular, the
magnetic vector potential must be defined for asi@ne specific node. For this application, the

homogeneous Dirichlet boundary condition is appliedulting that for all nodes on the boundary

of the mesh domaith =0.

This section describes computer simulation impldaatemn specifics for each type of
problem — first or second order elements, and tioeaonlinear simulations. For all matrices and
vectors stored and manipulated on the CPU, the M¥8 Eparse matrix format is utilized to

improve computational efficiency and reduce memmage.

2.7.1 First-order, linear simulation

The first-order element mesh for the benchmarkiaddction machine simulation was
generated using the MATLAB Partial Differential Egion (PDE) toolbox. This toolbox provides

the ability to create a mesh using the Delaunapgrulation algorithm for a specified geometry. It

generates a point matrix with tlkkeandy-coordinates of the points in the mesh, edge matng
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triangle matrix describing the element trianglenesrpoints in counterclockwise order and the
corresponding element subdomain number.

For the simplest simulation using linear magnetaterial and first-order elements, note
that conductivity and reluctivity are constant thgbout the element. From implementation of
equation (2.44) using first-order matrices defibgaquations (2.31)-(2.33), it is apparent that for
a fixed geometry and linear reluctivity, tHg find [T] matrices do not vary with time, but the
magnetic vector potential an@f vectors do vary with time. As a result, tt# nd [T] matrices
only need to be computed once.

For a MATLAB script implementation, th&[and [T] matrices are computed using the
MATLAB sparse matrix format. For each element,c¢batributions from each node are
calculated then summed over the elements to assdhebtotal § and [T] matrices. Because for
first-order, linear simulations these matricesanly calculated once, they are computed on the
CPU since the GPU will not yield a significant speg with this assembly, especially since the
matrices are sparse.

For each time step, the solution for the next tstep value of the magnetic vector potential
of equation (2.44) is solved for using the spaesaiive Krylov subspace solver biconjugate
gradients stabilized method using a function thdléments the biconjugate gradients stabilized
method with preconditioner algorithm [11], [14]7]1 A similar MATLAB function “bicgstab” is
also available for comparison. Several types bfess for use with preconditioners are readily
available functions in MATLAB. In addition to th®conjugate gradients stabilized method, the
biconjugate gradients, conjugate gradients squgesteralized minimum residual, least squares,
minimum residual, preconditioned conjugate gradiegiasi-minimal residual, and symmetric LQ

methods are available MATLAB functions. For thastfiorder, linear simulation, each of these
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preconditioned solvers, except the quasi-minimsiteal which was much slower, calculated the
solution in similar times. The biconjugate gradisestabilized method is chosen as the solver for
each type of simulation for consistency and catadaime comparison for different problem
sizes. For the biconjugate gradients stabilitiedthod used, the solver tolerance was. 10he
MATLAB built-in function “ichol” to form the sparseacomplete Cholesky factorization was used
to form the preconditioner. For this problem, thatrix is symmetric, positive definite, so the
incomplete Cholesky factorization is a suitablecpralitioner. The modified incomplete Cholesky,
lower triangle preconditioner was formed using shad dropping of tolerance £0 Once the

value for the magnetic vector potential was soltled,corresponding magnetic flux density per
element was computed by equation (2.48), and ttlg earrent density was computed by equation

(2.54)

2.7.2 Second-order, linear simulation

The second-order element mesh, specifically fothhee additional nodes per element and
edges between elements used to determine bounoldeg nvas generated with the MATLAB
PDE toolbox and the LehrFEM 2D finite element tanij23].

The second-order linear simulation follows the saimeuilation process as the first-order
linear simulation except with second-order definetrices. These matrices are t8ednd [T] per
equations (2.37) and (2.38). Additionally, the mettc flux density is calculated for each local
node per element according to equations (2.49Y250). The same preconditioner was not used
for the second-order linear simulation as for tre-brder linear simulation since it did not resul
in a converging sparse iterative solution to thecified 10° tolerance. Instead, the lower
triangular, unmodified incomplete Cholesky factatian with zero fill was used for the

preconditioner.
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2.7.3 First-order, nonlinear simulation

The nonlinear problem mesh is formed the same walgealinear problem mesh. The

ov
82

nonlinear reluctivity vsB* and nonlinear vs. B?are each represented by a piecewise linear

interpolation function according to the nonlineaagnetic material properties.

The nonlinear simulation is set up to solve equatib70) with equation (2.71) using the

Newton-Raphson method to solve the nonlinear sysfeequations. The matric¢%]and| 9]

without the associateglare computed once at the beginning of the simulatithe nonlinear
iterative process outlined in section 2.6, Nonlimearmulation, is implemented. For first-order
elements, the magnetic flux density and reluctigity constant throughout the element and are
thus assigned per element. The Newton-Raphsaiugesi used was 18 The incomplete
Cholesky factorization preconditioner resultedivofing errors when it was called to compute
and did not enable the biconjugate gradient stagullsolver to converge. Instead, the sparse
incomplete LU factorization preconditioner was uaedording to the MATLAB function “ilu.”
The row-sum modified incomplete LU Crout versiootéaization with drop tolerance favas
used and resulted in converged solutions for tberfpugate gradient stabilized solver. The sparse
iterative linear solver tolerance was®.0

An under-relaxation factor according to equati@i82) was used for each Newton-
Raphson iteration and time step. The value ofelexation factor was determined experimentally
using the value closest to 1 but still allowing Newton-Raphson iteration to converge and not
overstep the solution. This approach minimizesilmaber of Newton-Raphson iterations while

still resulting in a converging solution.
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In addition to the relaxation factor, the elemen¢ &ind time step differendt affect the
Newton-Raphson convergence. For the first-ordamlinear simulation, both coarse and fine

meshes for the benchmark problem @id 1 ms result in a converged solution.

2.7.4 Second-order, nonlinear simulation

The second-order, nonlinear simulation followsghme process as for the first-order,
nonlinear simulation. The second-order matricesewemputed according to equations (2.37),

(2.38), (2.39), (2.76), (2.77), and (2.81). Asali=ed previously, the nonlinear reluctivity and

0B?
0A

. adv . .
resultlnga? and are computed for each local node per element. nfdgnetic flux density

is calculated for second-order elements by equai@49)-(2.51). The same incomplete LU
factorization type of preconditioner and iteratbaver used for the first-order, nonlinear
simulation was used for this simulation.

The second-order, nonlinear simulation had NevRaphson convergence issues that did
not arise for the other simulation types. Forlibachmark problem, the coarse mesh problem
could only converge foAt = 1 ms for simulation times 1-4 ms. Beyond thataller At values
had to be used in order for the Newton-Rapshoatiters to converge to the i @esidual.
Solutions were calculated up to 27.487 ms witet & 0.001 ms. For subsequent times, it was
determined that for a reasonable computation tiheefine mesh needed to be used in order to
achieve convergence for a largstr.

For the benchmark problem fine mesh, the solutamverged forAt =1 ms for times 1-18
ms. For subsequent time&t =0.5 ms resulted in converged solutions for tim&20Q ms, andAt

=0.1 ms resulted in converged solutions for tim@22.7 ms. The remaining part of the
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simulation was not conducted due to the nonlinearvergence problems. Results are presented
for times 1-18 ms to show scalability of the GPUL8on.

For the linear induction machine problem, the laagegap and excitation resulted in the
operation of the magnetic material in the linegior. Nonlinear problem solutions did achieve
convergence for the M19 steel representation usingjnuous analytical functions to represent

av
B’

B2 and

However, the results were similar to the lin@agnetic material results, so they are

not presented.

A complete nonlinear solution of the benchmark pewbis available for the first-order
elements, but not for the second-order elementsaltiee nonlinear convergence problem. This
convergence issue could potentially be resolveddiyg an even smallekt , finer mesh, or a
continuous analytical expression of the nonlineagnetic material properties instead of the
piecewise linear representation. For electric rmectiesign and analysis problems, the higher-
order element simulations with nonlinear magnetitanal should result in higher fidelity
solutions than for first-order elements. As pdithe tradeoff of simulation detail and computation
time, the higher-order element simulations reqaisenaller time step or finer mesh than the first-
order element simulations to achieve convergerselting in a longer computation time. This
trade-off may be reasonable when detailed simulaBsults are desired, such as for magnetic

material saturation near tooth tips.
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CHAPTER 3
ACCELERATING THE FINITE ELEMENT SIMULATION

3.1 Methods of Accelerating Finite Element Simulations

The finite element simulation of a low-frequencyhieear electromagnetic problem can be
accelerated using a numerical or parallel computiethod or both. The Shooting-Newton [4]
numerical method was investigated. Multi-core &Rl parallel computation methods were also

studied.

3.1.1 Numerical methods

When the steady-state analysis of an electromagmetblem is desired, there are
numerical approaches, such as the shooting-Newathad [4], that can be utilized. Additionally,
domain decomposition techniques can be utilizesibmivide the problem for different processing
techniques [5].

Methods for steady-state analysis reduce the realtfansient solution to achieve the
steady-state solution. For an induction machiddyeurrent is represented through transient
analysis. For different machine topologies sucheamanent magnet synchronous machines,
steady-state analysis can be utilized for machameimal performance design.

One approach of the shooting-Newton method, wredires Gaussian elimination,
assessed for simulation acceleration involves aixAiate Krylov-subspace approach [4]. The
shooting method approach is to find the perioddady-state solution of the problem by comparing
the computed solution at the end of the perioddetdrmining if it matches the initial condition at

the start of the period. The method outlined infds experimented for the benchmark problem
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later presented. For this specific type of fi@tlement analysis, this method did not appear to
reduce the computation time because the numentjriation required a small change in time,

resulting in a longer computation time than thegrent finite element analysis formulation.

3.1.2 Parallel processing methods

3.1.2.1 Multiplecore

Multiple-core processors provide a means to acatlerertain simulations such as ordinary
differential equations. For an implementation imet each equation is independent, not related to
the solution of a separate set of equations or etlréables, and can be implemented in any order,
the solution of these equations is easily solvegaallel. For the time-domain finite element
simulation, each time step of the solution mustdraputed sequentially, but it may be possible to
decompose the domain for each time step and contpaisolution of each subsection in parallel
[5].

For example, MathWorks has developed a paralldoimp that enables parallel for-loop
implementation across each core of a processoy[[28]} The parallel ordinary differential
equation example describes the use of the pafatiop to solve a parameter sweep study of a
second-order ODE system [26]. First, the exampldes 3500 ODEs in serial using the ode45
solver. Then, the example solves the same nunili@D&s using the parallel for-loop. For a
processor with four cores, the speed-up of thismga is tested to be approximately 3.63, which is
nearly linearly proportional to the number of cor@is is due to the fact that this loop has
minimal overhead in terms of data transfer.

Another means of multi-core processing and parkltgds is using single program multiple

data (SPMD) [27]. This type of processing is salédor simulations that can be implemented in
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any order and be solved in parallel. SPMD is aeshanemory approach using message passing.
One task per processor is executed, and each poo@cutes the same code. In this way, a
parallel loop can be implemented. An API readigilable for shared memory multiprocessing is
Open Multi-Processing (OpenMP). It provides a nseafmmultithread processing whereby a block
of code is executed in parallel [27].

Message Passing Interface (MPI) is a message-gassmmunication protocol developed
for parallel programming such as scalable clustarputing [27]. The computing nodes do not
share memory and interact through message pasBiograms that use MPI use a set of routines
callable from several types of programming langsageking MPI portable.

There are several examples from the literature tgtemallel processing applied to finite
element simulations using MPI and domain decomipos{DD) [5], [28], [29], [30], [31].
Applications of such simulations include structudghamics and electromagnetic simulation of
electric machines. The application describedimtthesis is the time-domain, nonlinear simulation
of an induction machine in two dimensions for a&ébposition. The time domain simulation of
this problem is essential in order to simulategtidy currents of the induction machine.

Examples from the literature include aspects & type of simulation but not all in a single
simulation using one or more parallel processinthous.

A simulation by engineers in Tokyo [30] describaaethod to parallelize the 2D, steady-
state analysis of nonlinear induction machine magfields. The approach, called the parallel
time-periodic finite-element method (PTPFEM), pkeledes the simulation in the time-axis
direction rather than in each time step. The s approach taken in this thesis and typical
with domain decomposition is by each time step.s@lying the equations for all nonlinear

unknowns at every time step for a period simultasggo the problem is posed for a larger number
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of equations which lends itself to greater speettam parallelization in this approach. This is
useful for the steady-state analysis of the indaathachine and not the transient. This thesis does
not necessarily focus on the steady-state simualatiche induction machine. In the early stages of
a machine design, it may be beneficial to undedstaa steady-state behavior of the machine. In
this case, an approach such as this may be usifel authors use MPI communications for the
parallel processing. The BiCGstab2 method andiimxhlLU preconditioning are used. To
stabilize the convergence of the Newton-Raphsohadethe authors apply the line search based
on the minimization of energy function. The authcdiaim, but do not quantify, that the
communication overhead associated with domain dposition for parallel performance causes
the performance to suffer for small scale analy$ise example simulation described for an
induction machine includes 13,198 elements, 256 staps to form a period, and 3,252,480
unknowns. A supercomputer is used for the simutatthere each node consists of four AMD
Opteron 8356 processors, and the backward Euldratiés used for time integration. The
PTPFEM simulation results were compared for 168 3P, 64, and 128 processes, as well as for
the transient approach called the time-periodidieixgrror correction method, which is a time-
domain approach to find the steady-state soluastef than traditional time-domain approaches.
For a slip of 1, the PTPFEM approach achieved adsp@ of 7.06, and for a slip of 0.0588, the
PTPFEM approach sped up the solution by a fact8rskf The authors did not describe a means to
parallelize the time-domain approach and comparsethesults to the PTPFEM approach. As the
number of processes increases, the speed-up iesret®wing the effectiveness of the PTPFEM
approach for highly parallel computation.

Another example of the use of MPI was done by rebeas at the University of Alberta

[29]. A two-dimensional, transient, nonlinear slation of an induction machine was
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implemented using the Newton-Raphson method fealization and domain decomposition.
The induction machine was simulated with an interbtor circuit model. The parallelization was
done with three PCs using 3.2 GHz Pentium D pracsessd MPICH2. The problem was of
similar size in this thesis for the first-orderralent simulation of the benchmark problem. In [29],
the finite element simulation consisted of 1941ewwdnd 3534 first-order elements per time step.
For the simulation of 1000 time steps, three sitmia were completed using different methods:
the traditional Newton-Raphson (NR) method, NR rétvith domain decomposition, and
parallelized NR with domain decomposition. Thawdation times for these methods were 2270
s, 1581 s, and 395 s respectively. Comparingehalsand parallel NR with domain
decomposition techniques, the parallelized simutatesulted in a speed-up of 4. Note also that
domain decomposition resulted in a speed-up of, hd@ comparing traditional NR with
parallelized NR with DD resulted in a speed-up .@65 This may show that depending on the
implementation of domain decomposition, furtherdation speed-up may be obtained by using
domain decomposition with parallel processing saskwith MPI.

A variation of parallel processing using MPI fod@main decomposition technique for
nonlinear dynamic finite element analysis was satad for a structural dynamics problem [31].
The simulated problem requires the solution of sdaterivative differential equations, and the
unconditionally stable Newmaikmethod is used for the time integration of thebpgm. The
parallel algorithm uses a method with overlappeth@aias with a predictor-corrector scheme. The
parallel algorithm is implemented on a cluster vetakion using MPI. The number of partitioned
subdomains matches the number of processors. |gttlam was implemented for a mesh size
with 4710 unknowns and for a finer mesh with 17,88Rnowns. The larger mesh size provides a

slightly better speed-up than for a smaller mesé, sndicating the typical trend that the
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performance of the parallel algorithm improves viittrease in problem size. For 8 processors,
the smaller mesh speed-up was 4.7, and for therlangsh the speed-up was approximately 5.

Researchers at the University of Tokyo and Kyughiversity have also researched
domain-decomposition techniques applied to elecuigmatic finite-element simulation [28]. They
applied the Heirarchical Domain Decomposition MetildDDM) to a 3D nonlinear
magnetostatic problem. The domain decompositicmigue allowed them to use parallel
computing with a supercomputer consisting of 64ascahd 1024 cores. They investigated
different magnitudes of convergence criterion a iterative solvers and how that affects the
computation time and convergence of the subdoméanface problem. The two iterative solvers
compared are the incomplete Cholesky-conjugataegrachethod with shifted incomplete
Cholesky factorization preconditioner and the LWdataposition with pivoting. The specific
speed-up of the domain decomposition problem sdbyetthe Supercomputer is not specified, but
they indicate that the problem had 1.2 billion éegrof freedom and solved in 4.8 hours with
approximately 80% of the time dedicated to compmuéind 16% of the time to communication. A
sequential solution for a smaller problem with b@0ion degrees of freedom was solved in 4.5
hours. Assuming the supercomputer can solve tlalesn100 million degrees of freedom
problem in a proportional amount of time (whicinct the case — the communication overhead
will likely increase), then the supercomputer mayable to solve this problem in 0.32 hours,
resulting in a potential speed-up of 14 due toaghygication of domain decomposition to multiple
cores and processors.

3.1.2.2 Graphical processing units
Graphical Processing Units (GPUs) can be utilizetcbnly for graphics processing but

also for parallel computing [32], [33]. A GPU megnsist of hundreds of cores that can be

utilized for multithreaded, single-instruction comtg@tion. Depending on the application, the
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numerous cores could yield a large speed-up compar€PUs. The fundamental design
differences between CPUs and GPUs can be utilzedhieve a faster simulation. Figure 3.1
from [33] illustrates the CPU and GPU design défezes. The CPU is optimized for sequential
execution with a larger amount of memory, while 8f@U has higher bandwidth, approximately

10 times on average [32].
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Figure 3.1 CPU and GPU design illustration [33]

The general architecture of a GPU is illustrateffigure 3.2. Each block shows an array
of highly threaded streaming multiprocessors. dcheblock, there are two streaming

multiprocessors. Each of these has several stinggonocessors, represented by the green square.
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Figure 3.2 Example GPU architecture [34]
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Figure 3.3 illustrates how the GPU memory, datadfier, and threads are structured. Each
device is composed of multiple grids which contamitiple blocks. Each block contains multiple
threads that can each be used to execute a shogless. Each thread has access to local, global,
and shared memory. The shared memory is sharexdgatine threads in each block. The kernel
function specifies the code that all threads shewktute in parallel. This process is the SPMD
process. When the kernel is launched, it exe¢hteparallel threads in the grid [32]. To utilize
the full capability of the GPU hardware, the thiealould be adequately allocated to maximize
the parallelism.

The amount of speed-up that can be expected frobh @@Pallel processing depends on the
portion of the application that can be computeparallel [32]. In most applications, only a
portion of the problem can be computed in paralfeditionally, a practical speed-up ceiling
exists, such as a possible maximum of 100 timesdspp, which limits the expected simulation

speed-up.

Host Device Grid
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Figure 3.3 Abstract representation of GPU strci88], [32]
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Interaction between the CPU and GPU within a progsasimilar to message passing
since there is limited shared memory between tbegssors. The data transfer between the CPU
and GPU thus contributes to the overhead of a AyDIFU/GPU simulation and should be

minimized [32].

3.2 GPU Parallel Processing for the Finite Element Simulation

3.2.1 Components of FEA suitable for GPU parallel processing

There are several components in the finite elersiemlation, some of which may be
suitable for parallel processing and some which naypbe. The components that are suitable are
parts where the computation can be distributedutbiphe processors for parallel processing, then
reassembled for the domain solution to that componéhe time-domain finite element
simulation for eddy-current problems requires thletson for each time step to be computed, and
the previous time step solution is required forribgt time step computation. Thus, multiple time
steps cannot be distributed for parallel processing time step at a time must be considered
unless a different numerical method is used. Widach time step, there are several components
to the finite element simulation, as discussecettisn 2.3 Time Discretization, section 2.6
Nonlinear Formulation, and section 2.7 Implemeatati

1. Matrix assembly

2. Matrix multiplication: Magnetic flux density calation (post processing for linear

formulation, used to determine nonlinear relucgivdr nonlinear formulation)

3. Matrix multiplication: [G]}"* for nonlinear formulation only based on nonlinear

reluctivity
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t+At
k

4. Solution of the next time ste{péx}t+At for the linear formulation, or iteratiopAA}
for the nonlinear formulation. Solution is complitesing a sparse iterative solver with

preconditioner.
: . ov o . .
5. Nonlinear reluctivity anda? determination based an— B* for nonlinear magnetic

material only

6. Post processing: eddy current density, force caiicud using multiplication

The finite-element mesh creation and assembly pricomputations for the magnetic vector
potential are not considered.

In addition to identifying the components wherel3parallel processing can speed up the
simulation, the CPU computation time percentageash component should be understood. To
gain the most speed-up, ideally the componentgdgaire the longest computation time should
lend themselves to GPU parallel processing. Inp@&hal, Simulation of the Benchmark Problem,
the component computation time will be discussedHhe linear and nonlinear formulation for
different mesh densities. The component with dmgést computation time is formulation of the
preconditioner and sparse iterative solver solyfioliowed by matrix multiplication for the

magnetic flux density anpi5],"* , with the remaining components of matrix assermdylinear

reluctivity determination, and eddy current densiculations requiring the shortest computation
times.

With the sparse iterative solver and matrix multgions requiring longer computation
time than the other components, these componemesaliesen to study how GPUs can be used

for parallel processing with the goal to provideeg-up relative to the CPU simulation. The
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remaining components are left on the CPU to fotmglarid CPU/GPU MATLAB-based

simulation. In particular, the MATLAB sparse matassembly and storage yields fast
computation times not readily achievable with theAyrray format. There are numerous research
efforts that have studied how GPUs can be usesbianrse matrix-vector multiplication and sparse
iterative solvers [35], [36], [37], [38], [39], [4041], [42], as is discussed in section 3.2.2.1
NVIDIA CUDA. This research studies how GPUs carubed to speed up these components to
form a hybrid CPU/GPU desktop-based MATLAB simuatfor the time-domain finite element

analysis required for detailed electromagnetic atidn machine analysis.

3.2.2 Implementation methods for GPU parallel processing for FEA

Several programming languages are available t&EXdés for parallel computing,
including OpenGL, OpenCL, Compute Unified Devicelitecture (CUDA), and higher-level
language tools such as the parallel computing tooliath MATLAB script programming
language. OpenGL is utilized for graphics prograngnand requires in-depth knowledge of the
programming language. CUDA, developed by NVIDI&an extension of C. This makes it more
accessible to programmers without the need to lgrawhics programming. This section focuses
on the use of CUDA, MATLAB extensions, and the MAAR parallel computing toolbox.

3.22.1NVIDIA CUDA

CUDA is a C-based programming language that ext@gsogramming for use with
GPUs for scientific parallel computing. In additito the CUDA language, libraries have been
built to allow functions to be accessible to therage programmer and expand the use of CUDA.
In particular, for CUDA used for numerical solutsoof partial differential equations, such as for
electromagnetic finite element simulation, the spdinear algebra library CUSP [43] and

CuUSPARSE library [44] provide useful functions. ERJexpands the Basic Linear Algebra Library
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(BLAS) to apply linear algebra to sparse matricksupports several sparse matrix formats:
coordinate (COOQ) storage of sparse matrices (sinalaparse matrix storage in MATLAB),
compressed sparse row (CSR), diagonal (DIA), ellLjEand hybrid (HYB). According to
NVIDIA, the diagonal and ell formats are the md$teent for computing sparse matrix-vector
products, and therefore are the fastest formatsdieing sparse linear systems with iterative
methods, such as the conjugate gradient method.cdt¢rdinate and CSR formats are more
flexible than DIA and ELL and easier to manipulafedditional useful functions within the CUSP
library are preconditioners and iterative solvdtsrative solvers include the conjugate-gradient,
biconjugate gradient, biconjugate gradient stadiljgeneralized minimum residual, multi-mass
conjugate gradient, and multi-mass biconjugateigradtabilized. CUSP provides the
preconditioners algebraic multigrid based on smedtiggregation, approximate inverse, and
diagonal.

A comparison of ILU and Cholesky preconditionedatse methods using CUSPARSE
and CUBLAS was made by researchers with NVIDIA [3Bjumerical experiments with the
incomplete factorization performed on the CPU aeachtive method on the GPU were conducted.
The experiment shows that the ILU and Choleskygrditioned iterative methods achieved an
average of two times speed-up using the CUSPARSECAIBLAS libraries on the GPU over the
MKL implementation on the CPU. The test matricasged from square matrix sizes with
147,900 to 1,585,478 rows and columns, and the puwftmonzero elements of the test matrices
ranged from approximately 1 to 17 million. Theegeip for different problems ranged from less
than 1 to 5.5 and is highly dependent on the Sygattern of the coefficient matrix. For each
iteration of the incomplete-Cholesky preconditiol@d method, one sparse matrix-vector

multiplication and two triangular solves are pemnfied. For each iteration of the incomplete-LU
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preconditioned BiCGStab iterative method, two spanatrix-vector multiplications and four
triangular solves are performed. The total spgethat can be achieved for a complete solution
will depend on the preconditioning time and numifaterations, not just the computation
required to perform one iteration. The majorityttué computation time for both of these iterative
methods is spent for the triangular solve. Gehgtdle speed-up was greater for solutions
requiring a larger number of iterations and fosldense factorization. Denser factorization
inhibits the parallelism of these algorithms du#hi® dependence between rows in the sparse
triangular solver.

In [36], the authors also explore the use of GRisparse matrix-vector products and
several preconditioning and iterative solver metho@omparing CPU and GPU implementations
of the sparse triangular solve, the uséewél schedulingan result in an improved matrix structure
more suitable for parallel computing. This typesofting groups several unknowns into levels
such that the unknowns for one level can be condpaitéhe same time, or in parallel [11]. The
ability of the GPU to speed up the computatiorhefparallel triangular solve depends on the
number of levels. Minimization of the number ofdés improves the GPU computation time
speed-up. An example technique to reduce the nuaofbevels is the Multiple Minimal Degree
ordering [45]. The greatest speed-up achievedyubm GPU level scheduling sparse triangular
solve technique for the matrices tested was apprabely 2.6 for a square matrix with 2.1 million
nonzero elements for a matrix size 525,000 x 5Zb,00he preconditioned iterative methods
considered were for the incomplete LU factorizationomplete Cholesky factorization, block
Jacobi preconditioner, multi-color SSOR, and lesagtares polynomial preconditioner. Certain
preconditioners were paired with the CG or GMRES®aiive solver. For each of these

experiments, in many cases the triangular solvéisaipreconditioner were computed on the CPU
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because the CPU computation time was faster tlea@GHU computation time. The greatest GPU
speed-up achieved for the cases considered wégr4t® GPU-accelerated ILUT-GMRES

method for the matrix with 8.8 million nonzeros Bomatrix 1.27 million x 1.27 million. For the
sparse matrices used for the numerical experimémr@s;PUs can be used to speed up the
computations, but their performance is limitedtfoe sparse matrices compared to dense matrices.

3.2.2.2 MATLAB and extensions

There are several approaches to using GPUs with IMMSTscript programs. With the
parallel computing toolbox, there is a gpuArrayeypat readily allows the user to convert an array
into this type and store the array on GPU as adingle-precision array. This allows for direct
manipulation of the gpuArray with the MATLAB scripAnother option is the use of mex files to
link a C, C++, or Fortran source file with the MAAB program. This provides a means to pass
MATLAB variables to and from this function. WithUDA being an extension of C, this readily
allows the MATLAB program to call the CUDA prograra the mex file. Additionally, a sparse
gpuArray format was developed by MATLAB users agatension of the gpuArray type to
readily allow sparse matrix computation using gpasr

3.2.2.2.1 MATLAB gpuArray

A MATLAB gpuArray is stored on the GPU. Data candyeated on the CPU and then
transferred to the GPU, resulting in communicatiore overhead, or created on the GPU. This is
accomplished using the gpuArray type. There anédtions to this type: the matrix must be non-
sparse (full) and of the data type single, doubl8, int16, int32, int64, uint8, uintl6, uint64, o
logical. Thus, for problems well-suited to sparsatrix solvers, the use of GPUs and MATLAB

built-in functions will not inherently provide adeer computational speed. MathWorks has
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adapted built-in functions to support the gpuArye. For this list of functions, see Appendix D
Built-In MATLAB Functions that Support GPUArray fdAATLAB 2012A, and Appendix E
Built-In MATLAB Functions that Support GPUArray fGAATLAB 2014A. When one of these
functions is called with at least one gpuArray inargument, the function is executed on the GPU
and returns a gpuArray result.

An example of the use of gpuArrays with MATLAB fuions to accelerate the matrix fast-
Fourier transform (FFT) is the solution of the seborder wave equation using spectral methods

[26]. The solution to the equation

ou _d°u 0d°u
+

at a2 oy
with boundary conditionsi = 0is implemented using a second-order central ftifference in
time, and a Chebyshev spectral method in spacg tisnFFT. The implementations with CPUs
and GPUs are identical with the exception of gpapsrused for vectors and matrices for the GPU
implementation. Theeal, fft, ifft and matrix multiplication functions are used wgibuArrays to
accelerate the computation. The iteration is eddoulated using element-wise multiplication,
addition, and subtraction. Each time iteratiousoh depends on calculations for the previous and
current iteration. The previous iteration solatis merely saved in a gpuArray and stored in a
separate matrix used to calculate the currentisalufThis previous time iteration solution does
not need to be transferred between the CPU and @lekting of this implementation with a CPU
running Windows 7 SP1 with Intel core i5-2400 CPWB@0 GHz, 4.00 GB RAM, 64-bit OS and
with a GPU GeForce GTX 570 with 1024 threads peclbbnd 15 multiprocessors, results in the
computation speeds shown in Figure 3.4 and speeatiaypn in Figure 3.5. As is expected, the
speed-up improves as the grid size increases dbhe teduced data storage overhead relative to

computation time for larger problem sizes.
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Figure 3.4 Computation speed for CPU and GPU sitiurls using MATLAB ifft
function with gpuArrays
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Figure 3.5 Speed-up for MATLAB ifft function with
gpuArrays

Another benchmark example of GPUs to CPUs develbgedathWorks is the mldivide
or backslash operator (\) used to calcukdi®m the system of equatiors= A\b [24]. The time
measured is only the computation time to calcutaiiedoes not include the cost of transferring
data between the CPU and GPU or the time it takessiate a matrix. Note that since gpuArray

matrices are only defined for full matrices, thenAtrix used with mlidivide is a full matrix.
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Compared to CPU sparse matrix solutions with mitivar CPU sparse iterative solvers, the full
matrix gpuArray mldivide computation time is mudmger. Figure 3.6 shows the calculated
speed-ups for the mldivide function for severalnmaizes and single or double precision
matrices. The computation time for these calootetiwas done with the same CPU and GPU as
described for the previous example. Especiallysiogle precision, the larger the matrix size, the
greater the speed-up. These matrix sizes arepiesliof 1024 which facilitates greater speed-up
than for other multiples based on the single andbioprecision byte size. Although there are 15
processors available with the GeForce GTX 570sgeed-up for the largest matrix size with
single precision is approximately 4. The spee@ahpeved depends on the algorithm
implementation.

Speedup of computations on GPU compared to CPU
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Figure 3.6 Speed-up results for single and dopi#eision
calculations for MATLAB midivide

3.2.2.2.2 MATLAB and MEX files

MEX files can be used to link MATLAB arrays withfiles. They provide a means to link
CUDA code and libraries to gpuArray data on 64pkatforms. Support for MEX files containing

57



CUDA code was developed for MATLAB version 2013a éater. Programs using C, C++, or
CUDA with functions developed for external librariean be linked to MATLAB data types and
formats with the MEX files. Since the gpuArray é/goes not yet support a sparse matrix format,
it is advantageous to make use of MEX files as ama¢o perform GPU computation in a sparse
matrix format linking to already developed CUDArhbies enabling sparse computation of GPU
data. As discussed in Section 3.2.2.1 NVIDIA CUBAch sparse data and matrix CUDA
libraries are CUBLAS, CUSP, and cuSPARSE. CUD/Asier 4.0 with CUSP version 0.4.0 and
Thrust v1.2 is used in experimental simulations.

The entry point to the MEX-file is the mexFunctiohhe mexFunction contains the CUDA
or C code that interacts with the MATLAB objects (GPU or gpuArray) and runs the CUDA
code. MEX files can allocate memory within the menction. MATLAB links the
mexFunction C or CUDA source file to MATLAB by coiitipg the source file into a binary
MEX-file. The MEX-file only needs to be createdcerto compile the source file. For example,
executing the command for the CUDA source filesfzusolve.cu” containing the mexFunction,

meXx —largeArrayDims cusp_solve.cu

will compile this CUDA source file into a binary M&file. From there, this source code can be
executed with other MATLAB code similarly to a MARAB function. MATLAB function or
workspace variables can be passed into and ohisasddurce code. The “largeArrayDims” option
uses the MATLAB large-array-handling APLI and mbstused when calling Linear Algebra
Package (LAPACK) or Basic Linear Algebra SubproggdBILAS) functions in the source file.
Alternatively, a MATLAB kernel object can be usedexecute a CUDA thread. Files
developed using the CUDA programming language ((&d br kernels) and PTX files can be

executed on the GPU using MATLAB. PTX files aregtlel thread execution files. The CU file
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must be compiled to create the PTX file using thecrcompiler in the NVIDIA CUDA Toolkit.
For example,

nvcce -ptx myfun.cu

generates the file named myfun.ptx. Using thearal.ptx files, a MATLAB kernel object can be
created and used to evaluate the kernel

k = parallel.gpu.CUDAKernel('myfun.ptx’, ‘myfun.cu’ );

The feval function is then used to evaluate thaddeon the GPU. Inputs can be from the
MATLAB workspace data on the CPU or gpuArray typemay be more efficient to use
gpuArray objects as inputs to the kernel. The atstpf the kernel evaluation are gpuArray. The
CUDAKernel object is already compiled CUDA. AccésssPU memory must be pre-allocated
before execution of the kernel. The evaluatiothefkernel returns a gpuArray, so transfer is not
required between the GPU and CPU.

3.2.2.2.3 Sparse gpuArray format

While the gpuArray format allows the user to readibnvert CPU matrices and vectors to
GPU matrices and vectors, the gpuArray formanmstéid. As stated previously, a limited number
of MATLAB built-in functions are overloaded and akde with the gpuArray format.
Additionally, as of the time of this research, gmiArray format is only available for full vector
and matrix formats. Only since MATLAB version R&alhas the gpuArray sparse format been
available, and the only function available withstformat that could increase GPU performance
for the FEA problem is the matrix multiplicationniction. Finite element simulations involve
sparse matrices by nature, and they are typicaigel involving at least thousands of unknowns.
The sparse matrix format allows this type of prable be solved faster and with less memory

than an equivalent full matrix format. This motied the need for a sparse gpuArray format.
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Several research institutions have developed gpyAsparse formats for MATLAB. In
late 2013, researchers from the Lawrence BerkebdioNal Laboratory released a set of code for
MATLAB users for the gpuArray sparse class, catiedparse, using the CUSP library [46]. This
code defines the class gcsparse. The sparse gpyuiadrmats available are COO and CSR.
Overloaded functions for this class are definedramsposition, sparse matrix multiplication
(mtimes), real, complex, find, size, type, ptr2rand row2ptr. The sparse matrix multiplication
function uses a MEX file created for the mexFunttontaining CUDA code. This CUDA code
uses the input arguments consisting of the spamgArgay matrix and vector (which can be sparse
or full gpuArray). Based on the specified sparsdrix storage format (COO or CSR), CUDA
pointers to the matrix and vector are created. GU8P “multiply” function is used to implement
the sparse GPU matrix-vector multiplication. Thexunction output is the result of the

multiplication on the GPU. The MATLAB output ofdtMEX file is the gpuArray result.
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CHAPTER 4
SIMULATION OF THE BENCHMARK PROBLEM

4.1 Problem Description

The benchmark problem used to develop and tesinites element simulation programs is
the TEAM 10 benchmark problem [47]. It consistsiael plates around a coil as an example
nonlinear transient eddy current problem. Theinear initial magnetization B-H curve
describing the steel magnetic properties is showkigure 4.1. The dimensions of the problem are
shown in Figure 4.2. ltis a three-dimensionabpem. For the purpose of this set of simulations,
the problem is reduced to two dimensions by sinmgahe cross section shown in Figure 4.2a

with current excitation in the coils simplified bgsuming infinite length into and out of the page.
The conductivity of the steel is given @&5059110S/m. The excitation current is

l,=5.64{1-e"°%) A (4.1)

0 1000 2000 3000 4000 5000 6000 7000 8000
H (A/m)

Figure 4.1 Normal magnetization curve of steel
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Figure 4.2 Geometry of TEAM problem 10 (dimensiansillimeters):
(a) side view, (b) top view

For use to evaluate the accuracy of finite elersentlations, three search coils were
positioned on the steel plates to measure the geditax densities and eddy current densities on
the surface of the steel plates. Reduced to tmesions, the search coils are positioned at the
points shown in Table 4.1. Figure 4.3 shows thasueed magnetic flux densities at these search

coil positions and eddy current densities on thelgilate surface at these positions.

Table 4.1 Benchmark Problem Measured Positions

Search Coil Number x (mm) y (mm)
1 0-1.6 0
2 41.8 60-63.2
3 122.1-125.3 0
Magnetic Flux Density at Three Different Points x 10° Eddy Current Density at Three Different Points
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Figure 4.3 TEAM 10 benchmark problem magnetic fliexsity and eddy current
density measured at three search coils
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4.2 GPU Parallel Processing M ethods

The hybrid GPU/CPU time-domain finite element peogrwas developed to incorporate
GPU computation for the suitable FEA program congois based on the CPU MATLAB linear
and nonlinear program implementation discusseéétian 2.7 Implementation. For each type of
program — first-order linear, second-order linéasi-order nonlinear, and second-order nonlinear
—a hybrid GPU/CPU program was developed. The @&tdllel processing methods were the
same for each type of program.

For each program, the matrix assembly was comparidde CPU using MATLAB's
sparse matrix storage and sparse matrix functiQme the matrices are assembled, they are
converted to the sparse gpuArray format using tsparse class. This requires a conversion from
the CPU double format to the GPU single formate TSR sparse matrix storage format is
utilized. The vectors used for computation inahgdihe magnetic vector potential solution are
stored as gpuArray vectors.

The gcsparse class is used in order to explor&Hig speed-up of the sparse matrix-vector
multiplication CUSP function “multiply.” Sparseatmnix-vector multiplication using the CSR
sparse matrix storage format yielded accuratetedult when the COO storage format was used,
the results were inaccurate or nonsensical. Asidsed in section 3.2.2.2.3 Sparse gpuArray
format, the gcsparse class overloaded multipliodtimction is defined using a MEX file that links
the MATLAB gpuArray inputs with the compiled CUDAugrce file mexFunction. The MEX
function uses the mxGPUArray type from the MATLAB@PU API to create pointers to the
MEX function inputs, perform calculations, and retoutputs to MATLAB. The sparse matrix
multiplication source file for the CSR storage fatroreates pointers to the appropriate CSR-

format input matrix, allocates memory for the veaotput, and calls the CUSP function multiply.
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This MEX file is created once using the mex funetio compile the CUDA source file. This
compilation time is not included in the GPU progremmputation time and only takes a few
seconds.

Using the sparse gpuArray matrix and gpuArray veittonats, the GPU sparse matrix-

vector multiplication is used to calculate the metgnflux density for the linear and nonlinear
BZ
program, andgf and SAterms for[G],"* for the nonlinear program. The same syntax uiag

“*” operator for matrix-vector multiplication is esl. With the operator overloaded for the
gcsparse and gpuArray formats, MATLAB will use tiesparse class multiplication function.

This allows the hybrid GPU/CPU program to be rgadinverted from the CPU program once the
sparse gpuArray and overloaded functions with MEe&fare created.

The preconditioner is computed using the MATLABdtion on the CPU given the CPU
sparse matrix inputs. As described in sectionr@piementation, the incomplete Cholesky
factorization is used for the linear simulationngsihe MATLAB “ichol” function, and the
incomplete LU factorization is used for the nonéinsimulation using the MATLAB “ilu”
function. These preconditioners are not definetthénCUSP library. The available
preconditioners in the CUSP library are variationghe Bridson outer product formulation
(approximate inverse), diagonal, and smoothed ggtjm. In [35], the author investigates the
CPU and GPU computation time for the incompletefattorization preconditioner formation
using different fill-ins from the preconditionenfctions available in the cuSPARSE library from
the NVIDIA CUDA toolkit. The speed-up was highlgmgendent on the sparsity of the matrix, and
the matrix sizes were much larger, 3-17 million zeno elements, than the matrix size for this

application, several thousand elements. In thidiegtion, only the CUSP library functions were
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investigated. Using the preconditioner algoritanMATLAB script could be written using the
gpuArray matrix format. However, directly usinggtalgorithm with the gpuArray matrix will not
yield speed-up since the direct algorithm stepsutin each element in the matrix sequentially. A
specialized CUDA program utilizing multithreadirggrieeded in order to utilize the GPUs for
parallel processing. With the desire for directGihd GPU computation time comparisons for
the same functions and implementation, since th8klibrary did not have the same
preconditioners defined as used for the MATLAB GRipglementation, the preconditioner
formation was left on the CPU.

The biconjugate gradients stabilized sparse itexalver computation time was explored
using the CPU and GPU. Using the CPU, the MATLAIR{jstab” sparse iterative solver was
used. Additionally, two equivalent biconjugatedjeamt functions following the known algorithm,
with or without a preconditioner, were written [1IThese function can receive inputs that are
either CPU double sparse matrices/vectors or spaifsél gpuArray matrices/vectors. Note that
the bicgstab algorithm without a preconditionermisgs two sparse matrix-vector multiplications
per iteration, and the bicgstab algorithm with @gonditioner requires two sparse matrix-vector
multiplications and two sparse matrix-vector san$ per iteration. For the CPU preconditioned
biconjugate gradient algorithm function, the matrector solution is calculated using the
MATLAB “mldivide” function for sparse matrices.

For GPU biconjugate gradients iterative solver cotaton, several methods were
explored. The gpuArray matrix and vectors weredwsigh the implemented algorithms with and
without preconditioners. The implementation of iegstab function without the preconditioner
is the same for the gpuArray format as for the @BUble sparse format. However, for the

implementation of the bicgstab function with thegonditioner, the same implementation for the
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GPU cannot be used as for the CPU since the MATLABlivide” function is only available for
full gpuArray formats. Instead, to implement thlgorithm, the inverse of the preconditioner is
computed on the CPU using the MATLAB “inv” functiohen, in the bicgstab implemented
function with preconditioner for gpuArray and gcsggg the preconditioner inverse is used to
require four sparse matrix-vector multiplicatiores ieration instead of two sparse matrix-vector
multiplications and two sparse matrix-vector sang. The overhead required to compute the
preconditioner inverse is acceptable for small lenols but not for larger problems such as the fine
mesh used for this benchmark problem. As a rebdtbicgstab implemented function with
preconditioner for the gpuArray is not usable.

Another method for the sparse iterative solvererqal is the CUSP “bicgstab” function
without a preconditioner through the MEX file. AJOA mexFunction given MATLAB CPU
sparse input matrix and vectors to solve, allocatesiory and transfers the matrix and vector to
the GPU in COO format, allocates space on the GIPthé solution, calls the Krylov “bicgstab”
function, and outputs the solution. This mexFutivas compiled as previously described to
create the mexFunction. This function with the @Uficgstab solver computed accurate results
for small problems, but for larger matrices apptiethe benchmark problem, the solver did not
converge and output a diverging solution for theeg@roblem that did converge using the CPU
MATLAB bicgstab function. As a result, this mexFtion was not usable for the finite element
simulations.

For several problem sizes, Table 4.2 shows a casgreof multiple CPU and GPU-
implemented un-preconditioned solver computatiore. Speed-up is computed for the fastest
CPU solution over the fastest GPU solution. Frbis $ample of problems analyzed, the density

of the matrix affects the speed-up achieved byntid CPU/GPU program over the CPU
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program. Assessing the mldivide function using Gipdrse format and full gpuArray format, the
gpuArray format achieves speed-up over the CPUafodom sparse matrices. However, for
matrices with similar sparsity as for the finitemlent simulations, speed-up is not achieved.
Comparing the CPU and GPU biconjugate gradierdtitex solver implementations, speed-up is
only achieved for the dense random matrix, notHerfinite element sparse matrix. Additional
CPU and GPU iterative solver computation timegherspecific problems are discussed in section

4.3 Simulation Results.

Table 4.2 CPU and GPU Comparison Times for Mudtiptoblem Sizes for Different Solvers Without the
Preconditioner

CPU or GPU CPU GPU GPU CPU CPU GPU GPU
Sparseor Full Sparse Full Full Sparse Sparse Sparse Sparse
Matrix
Data Structure MATLAB gpuArray  gpuArray MATLAB  MATLAB CUSP gcsparse
CPU CPU CPU COO
sparse sparse sparse (original
MATLAB
Speed- CPU Speed-
up sparse) - up
includes
transfer to
COO
format
Solver \ \ \ MATLAB  m file CUSsP m file
bicgstab bicgstab bicgstab bicgstab
Single or Double Double Single Double Double Double Single Single
Wilk 21x21 matrix 0.00002  0.10132  0.0005 0.04630| 0.00153  0.00130 0.02783  0.0598 0.04676
Random 100x100
matrix, symmetric, 0.1485 0.2868 0.031: 4.7661 0.0082 0.0050 6.8788 0.332¢ 0.0151
diagonal
Random 1000x1000
matrix, symmetric, 0.1092 0.1150 0.020¢ 5.2202 0.0125 0.0261 12.5315 0.114. 0.1094
diagonal
& Random 5000x5000
| matrix, symmetric, 5.2423 0.4186 0.742( 12.5241 0.0694 0.1589 28.3397 0.053¢ 1.2876
E diagonal
8| Random 5000x5000
& [ matrix, symmetric,
5| diagonal, sparse 0.0029 0.2837 0.670¢  0.0101 0.0052 0.0099 11.9676 0.048: 0.1085
‘o| with density
E| 9.95533¢4
[ Random 6927x6927
2| matrix, symmetric,
2| diagonal, sparse 0.0053 0.6371 1.593. 0.0083 0.0078 0.0139 0.0000 0.048: 0.1618
&| with density
9.95533e-4
Linear problem at t
=50 ms, 6927x6927 0.0134 0.9051 1.591( 0.0148 0.3697 0.3559 0.0000 1.854( 0.1920
matrix, 7219 nnz
Nonlinear problem
att=5ms first 00413 36364 0000 00113| 02439  0.6854 0.0000  4.079: 0.0598
order elementsfine
mesh
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4.3 Simulation Results

Following the finite element derivations for firstder and second-order linear and
nonlinear simulations, each of these simulations eeveloped for the TEAM 10 benchmark
problem geometry and material properties. The kitimms were developed using MATLAB
scripts. On the CPU, the MATLAB sparse vector aradrix storage and operations were used.
On the GPU, the gpuArray, sparse gpuArray, and MIEX linked to CUDA file were used.
Computation time for the CPU and hybrid CPU/GPUuations is determined using the “tic” and
“toc” MATLAB functions. All of the simulations fothis thesis were conducted on the CPU using
an Intel Core i5-2400 CPU with 4 gigabytes of raneiccess memory. The Windows 7 64-bit
operating system was used. The GPU for persomapeting used for these simulations is the
NVIDIA GeForce GTX 780 (Kepler architecture) GPUwB gigabytes of memory and compute
capability 3.5. The GTX 780 has 2304 CUDA corEmal MATLAB simulation implementations
were developed for MATLAB R2014a.

For each type of simulation, a coarse and fine noésiine geometry was used to assess
scalability of the GPU simulation. Table 4.3 déses the number of elements and nodes for each
type of simulation. Figure 4.4 illustrates thersgamesh, and Figure 4.5 illustrates the fine mesh.
The blue elements represent the coils with impresserent density, magenta elements represent
the magnetic steel, and white elements represenThe elements and nodes that are colored
differently show the tracked nodes and elementisdrsimulations. The magnetic vector potential
and magnetic flux density solution is calculatedtfe entire domain for each iteration or time

step, but only specified nodes and element solsitawa saved for the entire transient simulation.
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Table 4.3 Benchmark Problem Mesh Descriptions

Total Domain Nonlinear Region
Magnetic| Element Mesh Number of Number of Number | Number of Number of
Material Order Nonzero Elements of Nodes| Elements Nodes
Model Elements in
Matrix
- First Fine 47769 14144 7219 0 0
Q Second Coarse 62973 3536 7219 0 0
- Second Fine 257873 14144 28581 0 0
5 First Coarse 11444 3536 1842 932 725
é Q First Fine 47769 14144 7219 3728 2379
- Second Fine 257873 14144 28581 3728 8483

Coarse Mesh for Benchmark Problem
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Figure 4.4 Coarse mesh for benchmark problem
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Fine Mesh for Benchmark Problem
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Figure 4.5 Fine mesh for benchmark problem

4.3.1 Linear magnetic material simulation results

4.3.1.1 First-order elementswith linear magnetic material

The first-order element, linear magnetic matemdligsons for the benchmark problem are
shown in Figure 4.6 for magnetic flux density amgluife 4.7 for eddy current density for the fine
mesh. The computed solutions at the nodes nedartrst search coils are used to compare to the
measured solutions, and those coordinates are sinoliable 4.4 The steel permeability is

represented linearly with relative permeability=1000. The CPU simulation uses the

biconjugate gradient algorithm implemented functitih preconditioner using the MATLAB
double sparse format. The GPU simulation usesahe iterative solver function with the sparse

gpuArray single format.
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Table 4.4 Tracked Solution Points for First-Ordénear Program
for Benchmark Problem

Measured Points Simulated Points
Search Coil Number x (mm) y(mm) x(mm) y(mm)
1 0-1.6 0 1.6 0
2 41.8 60-63.2 41 61.6
3 122.1-125.3 0 1232 O

To show CPU and GPU program simulation time, Figu8shows the computation time
for the major components of the linear programefach time step. The major components
measured for each time step are the right-handveider calculation from equation (2.44), time to
solve for the magnetic vector potential using th&rse iterative solver, post-processing for
magnetic flux density, and post-processing for eddyent density. For the magnetic flux density
and iterative solver component computation timedipee step, Figure 4.9 shows the CPU and
GPU computation times and speed-up. Note thaB®ld computation times presented throughout
this thesis include the overhead to transfer aathg GPU from the CPU, and from the GPU back
to the CPU. The GPU computation time for the mégrikeix density results in approximately 4
times speed-up, but no speed-up — approximately @Bthe sparse iterative solver with

preconditioner.

Magnetic Flux Density at Three Different Points

B (T)

time (s)

Figure 4.6 First-order element, linear materialgmetic flux density solution
for fine mesh, compared to TEAM problem measuradits at three points
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4.5

x 10 Eddy Current Density at Three Different Points
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Figure 4.7 First-order element, linear materiatjyedurrent density solution for
fine mesh, compared to TEAM problem measured resiilthree points
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Figure 4.8 First-order element, linear materiallJG#hd GPU computation

time for each time step

72



Time to Solve B. Total Solve Time CPU = 54.0823, Total Solve Time GPU = 78.9681 Speedup = CPU/GPU for Time to Solve B
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Figure 4.9 First-order element, linear materiallJG#hd GPU computation time
comparison for magnetic flux density and magnegictor potential

Table 4.5. CPU and GPU Simulation Computation T@oenparison for First-
Order Elements, Linear Magnetic Material, Fine Me#brative solver is
preconditioned.

Total for Simulation
Simulation Preconditioner | Iterative  Magnetic | Total
Time(s)/Speed- Formation on Solver Flux
up CPU Density
CPU Time (s) 0.004 20.075 33.858  54.082
GPU Time (s) 0.746 66.733 8.388  78.968
Speed-up N/A 0.301 4.036 0.685
Hybrid CPU/GPU
Time (s) 0.004 18.417 8.454  29.414
Speed-up N/A N/A 4.005 1.839

Table 4.5 summarizes the CPU and GPU computatios fior the first-order, linear
element simulation for the fine mesh using the @nedioned iterative solver. For the CPU
simulation, the total magnetic flux density compigtatime was 33.86 seconds. Comparatively,
the total magnetic flux density computation for @U simulation was only 8.39 seconds due to

sparse gpuArray matrix-vector multiplication. Thislds a total speed-up for the magnetic flux
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density calculation of 4.04. However, the spas@Agray format did not yield a speed-up for the
sparse iterative solver. The total CPU sparsatiter solver calculation time was 20.075 seconds,
while the total GPU sparse iterative solver calboihatime was 66.73 seconds. As a result, the
total computation time for the GPU simulation dat speed up the simulation compared to the
CPU simulation. For a hybrid CPU/GPU simulatioatthses the sparse gpuArray format for
magnetic flux density calculation and the CPU spéosmat for the CPU iterative solver
calculation, the simulation time is reduced by&fU speed-up for the magnetic flux density
calculation. This saves approximately 25.4 secafdemputation time. With minimal GPU to

CPU transfer overhead, the resulting overall CPyifld CPU-GPU) speed-up is 1.84.

4.3.1.2 Second-order elementswith linear magnetic material

Magnetic Flux Density at Three Different Points
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| CPU coarse S2
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0 CPU fine S3
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Figure 4.10 Second-order element, linear matanalynetic flux density solution for coarse and
fine meshes, compared to TEAM problem measuredtsesiithree points
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x 10° Eddy Current Density at Three Different Points
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Figure 4.11 Second-order element, linear matezxddy current density solution for
coarse and fine meshes, compared to TEAM probleasuored results at three points

The coarse and fine mesh computed solutions neanéasured points for the second-
order, linear element simulation are shown in Fegud.0 for magnetic flux density and Figure
4.11 for eddy current density. The solutions shéwvithe coarse and fine meshes are for the

tracked points shown in Table 4.6.

Table 4.6 Tracked Solution Points for Second-@Qrdmear Program for Benchmark Problem

Measured Points Coarse Mesh Simulated Fine Mesh Simulated
Points Points
Search Coil Number x (mm) y (mm) x (mm) y (mm) X (mm) y (mm)
1 0-1.6 0 1.6 0 0.55 0
2 41.8 60-63.2 41 61.6 41 61.6
3 122.1-125.3 0 123.7 0 123.2 0
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Table 4.7 CPU and GPU Simulation Computation T@®oenparison for Second-Order Elements, Linear
Magnetic Material

Total for Simulation
. Solver With or  Simulation Preconditioner | Iterative Magnetic Total Total for
g | Without Time(s)/Speed-up | Formation on Solver Flux Hybrid
2 | Preconditioner CPU Density CPU/GPU
Without CPU Time (s) 0 50.041 41.271 91.567 91.567
< preconditioner  Gpy Time (s) 0 266.572 27.597 | 295.940 77.893
s Speed-up N/A 0.188 1.495 |  0.309 1.176
% With CPU Time (s) 0.008018164 24.213 40.944 65.371 65.371
S | preconditioner  Gpy Time (s) 1.115737855 73.364 29.688 | 117.886 54.114
Speed-up N/A 0.330 1.379 0.555 1.208
Without CPU Time (s) 0 173.999 296.619 471.564 471.564
< preconditioner  Gpy Time (s) 0 274.234 25.267 | 301.561 200.212
g Speed-up N/A 0.634 11.739 1.564 2.355
@ | With CPU Time (s) 0.005682121 261.100 298.550 | 560.593 560.593
& | preconditioner  Gpy Time (s) 0.120006674 291.103 44.060 | 338.000 306.102
Speed-up N/A 0.897 6.776 1.659 1.831

The computation time for each major component atal simulation are shown in Table
4.7. Itis important to note that in the lineanslation case, the preconditioner is only formed
once. As a result, the total simulation time isasensitive to the time to form the
preconditioner, but rather to the iterative solw@mputation time. For the coarse and fine mesh,
the gpuArray sparse format used with the iteragimdeer with and without the preconditioner did
not achieve speed-up. However, for the coarse nagginoximately 1.4 times speed-up was
achieved for the magnetic flux density calculatiéior the fine mesh, approximately 6-11 times
speed-up was achieved for the magnetic flux densigulation. Comparing the CPU iterative
solver computation time with and without the presibaner, the coarse mesh solution using the
preconditioner was computed approximately twictaasas compared to the solution without the
preconditioner. However, for the preconditionezdjghe fine mesh solution with the
preconditioner was computed approximately 1.5 tistewer than without the preconditioner. In

this case, using a different preconditioner maultes faster computation of the next magnetic
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vector potential time step solution. Comparingttital CPU and GPU simulation times for the
GPU solution using the sparse gpuArray for theattee solver, speed-up was only achieved for
the fine mesh. For the hybrid CPU/GPU simulatidrere the sparse iterative solver is computed
on the CPU and the magnetic flux density is conghotethe GPU, a total speed-up of
approximately 1.2 is achieved for the coarse masth approximately 1.8-2.3 for the fine mesh.
The speed-up is limited in this case to the peaganbf the simulation where GPUs can be utilized
to compute the solution faster than the CPU. imdhse, this is for the magnetic flux density,

which accounts for approximately 45-63% of the GBtal simulation time.

4.3.2 Nonlinear magnetic material simulation results

Given the magnetic steel material properties feriienchmark problem shown in Figure
4.1, the magnetic reluctivity vs. magnetic flux gignsquared an 152 vs. magnetic flux density

squared were computed. These curves are reprdsesitg piecewise-linear representation in
MATLAB. The curves used to simulate the nonlineegnetic steel properties are shown in
Figure 4.12. The discontinuities in the repreg@mtaof the magnetic reluctivity vs. magnetic flux

density squared result in discontinuities in thevaddéive representation.

x 10" Nonlinear Magnetic Material
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4.3.2.1 First-order elementswith nonlinear magnetic material

Solutions for the computed magnetic vector potemiagnetic flux density, and eddy
current density were tracked at several elememtshades. The first measured solution is tracked
at an outer node between the steel and air witdeanent in the middle of the steel. The second
and third measured solutions are each trackeahat,imiddle, and outer nodes and elements. The
computed solutions at the middle nodes and elenmeaiish the measured solutions more closely
than those on the inner or outer elements or nodks.inner computed solutions were calculated
at higher magnetic flux densities and eddy currér@a measured, and the outer computed
solutions were at lower values than measured. fdllmving solutions shown are for the middle

elements and nodes close to the measured soldsesibed by the coordinates in Table 4.8

Table 4.8 Tracked Solution Points for First-Ordéon-linear
Program for Benchmark Problem

Measured Points Coarse Mesh Simulated Fine Mesh Simulated
Points Points
Search Coil Number x (mm) y (mm) x (mm) y (mm) X (mm) y (mm)
1 0-1.6 0 1.6 0 1.6 0
2 41.8 60-63.2 44.6 60 41 61.6
3 122.1-125.3 0 122.1 0 123.2 0

The computed transient solutions at the desigradeuds for the coarse and fine mesh are
shown in Figure 4.13 for the magnetic flux dendtigure 4.14 for the eddy current density, and
Figure 4.15 for CPU and GPU calculations of eddyent density. The points tracked for the
coarse mesh more closely track the measured magiustidensity solution than the fine mesh
points. Both mesh solutions show the nonlinearmatig material impact on the solution
compared to the linear simulations. The fine nmedhtion for the first eddy current density point

near the origin closely tracks the measured salubat the other calculated solutions do not match
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well. Again, the nonlinear representation of theegmetic material is evident. Figure 4.16 shows

the comparison of the CPU and GPU calculated magwettor potential, magnetic flux density,

and eddy current density. The mag
match closely, but there are some di

transient solution.

B(T)

0.6

0.4

0.2

netic vectaerga@l and magnetic flux density calculations

fferencesdrfitst point eddy current density later in the
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Figure 4.13 First-order element, nonlinear matenagnetic flux density solution for
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mpared to TEAM problem oredsresults at three points
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x 10° Eddy Current Density at Three Different Points
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Figure 4.15 First-order element, nonlinear mateddty current density
solution magnitude for fine mesh, GPU and CPU smhst compared to
TEAM problem measured results at three points
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Figure 4.16 First-order element eddy current sofufor fine mesh, GPU and CPU
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and eddy current density computed solutions
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In the following subsections, results are showndBtJ and GPU simulation times for the
coarse and fine mesh complete solutions for eawh $step broken down by section of the time
step solution. These results use the MATLAB (CBphérse matrix) ILU preconditioner function
with the Crout version of ILU, drop tolerance of3.eand row-sum modified incomplete LU
factorization. Due to results also shown for tl8JCGand GPU iterative solver, these results use the
fastest implementation with the CPU and MATLAB’sdptab solver with the ILU preconditioner.

4.3.2.1.1 Iterative solver numerical experiments

The following numerical experiments were condudtedhe first-order elements,
nonlinear magnetic material simulation with theefmesh. Experiments were conducted to
determine the shortest computation time achieviabline iterative solver. Methods using the
bicgstab algorithm on the CPU and GPU and with itliaut a preconditioner were explored.
Figure 4.17 shows the difference in the numbetesétions when the preconditioner is not used
and when it is used. Accordingly, Figure 4.18 sttt the higher number of iterations results in
longer total solver computation time, shown as &swmlveA.” Figure 4.19 shows that even with
the preconditioner formation time, shown as “timex’tthe overall solver time including the
preconditioner formation time is shorter than tleeative solver time without the preconditioner.

MATLAB bicgstab function without preconditioner
900 . . . . 3.5

MATLAB bicgstab function with ILU preconditioner

800 -

700

600 -
2.5¢

500+

bicgstab Iteration Count
bicgstab Iteration Count

400
0

5 10 15 20 25 0 5 10 15 20 25
Newton-Raphson Iteration Newton-Raphson Iteration

Figure 4.17 Number of bicgstab iterations without avith preconditioner to solve each Newton-Raphtemation.
Example solution for time setup = 14 ms.
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Table 4.9 CPU and GPU Bicgstab Iterative Solveyofithm Comparison with and without Preconditioner

Average Newton-Raphson Iteration Computation Time (s)
CPU or | Solver Preconditioner Magnetic ~ Setup Magnetic Precon- Approximate | Iterative Solver
GPU Used Flux Vector ditioner  Total Percentage (%)
Density Potential
Iterative
Solution
CPU MATLAB No 0.21274  0.27914 0.92945  0.00000 1.42133 65.39
bicgstab
CPU bicgstab No 0.21571  0.27969 0.83654  0.00000 1.33194 62.81
algorithm
GPU bicgstab No 0.05041 0.13759 4.94796  0.00000 5.13596 96.34
algorithm
CPU MATLAB Yes 0.21184 0.27810 0.02297  0.28577 0.79868 38.66
bicgstab
CPU bicgstab Yes 0.21765 0.27738 1.56864  0.34742 2.41109 79.47
algorithm

Table 4.9 summarizes timing results for the CPU@RtU bicgstab iterative solver
algorithms with and without the preconditioner. eTrlesults are for time step solutions from 1 to
15 ms. Note that for the CPU bicgstab algorithrthygreconditioner implemented, the two linear
solutions ofAx = b use the MATLAB mldivide function. This dominatiée solution time and is
much slower than the MATLAB bicgstab with precoraer function. Also, the GPU bicgstab
algorithm with preconditioner implemented requittes inverse of the preconditioner to be
computed since the midivide function is not avdédbr sparse GPUArray types. As a result, this
GPU bicgstab algorithm is extremely slow and isinoluded in this comparison. As previously
stated, further research using developed preconéitiformation and bicgstab with preconditioner
algorithms implemented using CUDA, such as in thf@RARSE library, could be used and
integrated with MATLAB to determine if GPU speed-cgn be achieved for this specific problem.
For the fastest implementation compared, the iterablver for the magnetic vector potential is
approximately 39% of the average Newton-Raphsaeatiten computation time. With further
research, this component may be further reducdd®@RU computing, but based on other

research, this is not conclusive based on the @nolsize and sparsity [35], [36], [37], [38]. Based
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on these results, the iterative solver method tmetthe hybrid CPU/GPU solutions is the CPU-
based MATLAB bicgstab function with the ILU precainaher.

4.3.2.1.2 lteration setup time breakdown
The results in Figure 4.20 and Figure 4.21 showAb) and hybrid CPU/GPU simulation

setup computation time for the fine mesh solution.
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timeSetup Breakdown

15+ -
~ I timeSetup-subl
Iy [ timeSetup-sub2
3 10+ [ JtimeSetup-sub3 —
§ I timeSetup-sub4
I=1
o 5
E
S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time Step Number

Average Time Per NR lteration for timeSetup Breakdown

; ; ;
I timeSetup-subl

0.3 - u
[ timeSetup-sub2

0.251 [ timeSetup-sub3 ]

0.2F I timeSetup-sub4 ||

0.15
0.1
0.05

Average Iteration Computation Time (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time Step Number
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The setup computation required for each Newton-Baplteration is broken down into

four subsections. The subsections along with ffeitt CPU/GPU simulation implementation are:

e t+At

timeSetup-subl = look upandav"i based orB from fitted v-B? anda—V

2

d ( a?’HAt)

equations (CPU)

0B?

timeSetup-sub2 = compugwith elemental (CPU), and compute right-hand side

vector (matrix multiplication and subtraction) (GBparse)

e2

timeSetup-sub3 = compu&from equation .

GPU, and the sparse matrix assembl¢a done on the CPU.

and SAare computed on the

timeSetup-sub4 = compute the left-hand side métrat addition (CPU).

The setup computation time results averaged oeeNdwton-Raphson iterations are

summarized by Table 4.10. The largest part ofXR& setup calculation time, subsection 3 to

computeG, can be parallel processed using the sparse gayAratrix-vector multiplication. This

subsection results in a speed-up of approximat&yalowing for an overall setup time speed-up

of approximately 1.8.

Table 4.10 CPU and GPU Setup Time Comparison

Average Newton-Raphson Iteration Computation Time (s)
CPU or GPU Setup-sub1 Setup-sub2 Setup-sub3 Setup-sub4 Total
CPU 0.013749 0.018930 0.245237 0.000185 0.278102
GPU 0.013549 0.033317 0.107026 0.000175 0.154068
Speed-up CPU/GPU 1.014726 0.568162 2.291392 1.057076 1.805060

4.3.2.1.3 Transient CPU and hybrid CPU/GPU simulatresults

The figures and tables in this section describdrtdresient simulation computation time for

the CPU and hybrid CPU/GPU implementations. Irukegt.22, for a few sample time steps, the
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CPU and hybrid CPU/GPU simulation computation tiraesbroken down by major component to
illustrate the computation time percentage for eawhponent and the GPU speed-up for each
component. The components are:

* timesolveB — time to compute the magnetic vectdemimal

» timePrec — time to form the preconditioner

» timeSetup — time to set up the Newton-Raphsontiteras described in Section 4.3.2.1.2

Iteration setup time breakdown

» timesolveA — time to solve for the next Newton-Rsqiiteration magnetic vector

potential

* timeQ —time to calculate the next impressed ctuidensity

* timeS —time to assemble tBenatrix

» timeUpdate — time to update the next magnetic vgmitential iteration given the solution
for AA

« timeUpdateT — when thAAis less than the specified tolerance, this isithe to save the
iteration solution as the time step solution andate the magnetic flux density and

reluctivity

» timesolveJ — time to compute the eddy current dgnsi
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Time Step Timing, CPU Total Time = 3439.9804 seconds
GPU Total Time = 2214.9281 seconds

Time to compute (s)
T
|
|
|
|
|
|
|
|
|

Time Step Number
CPU and GPU Average Time Per heration for Key Computations

Time Step Number

Average Iteration Computation Time (s)

For Each Time Step, Number of Newton-Raphson Iterations to Comerge to Residual = 1e-06

Number of Iterations

Time Step Number
Relaxation Factor for Each Newton-Raphson lteration at Each Time Step

Time Step Number

Figure 4.22 CPU and GPU computation time comparigofirst-order elements, nonlinear
magnetic material, fine mesh. Subset of CPU and &mputation time for several time
steps including breakdown of computation time fey komputations.

Table 4.11 CPU and GPU Computation Time ComparisoAverage Newton-Raphson Iteration, First-Order
Elements, Nonlinear Magnetic Material Problem

Average Newton-Raphson Iteration Computation Time
Over Total Transient Solution (s)
Mesh | CPUor GPU  Magnetic Setup Magnetic Vector Precon- Approx.
Flux Density Potential Iterative ditioner Total
Solution
o CPU 0.027664 0.053201 0.005250 0.019420 0.105535
§ GPU 0.022935 0.066776 0.005671  0.019508 0.114890
© | Speed-up 1.206207 0.796699 N/A N/A  0.918568
CPU 0.218303 0.280088 0.036713  0.341196 0.876300
_g GPU 0.060477 0.151496 0.035943  0.283171 0.531087
- Speed-up 3.609685 1.848813 N/A N/A 1.650013
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Table 4.12 CPU and GPU Computation Time Comparigpitotal Transient Solution, First-Order Elements,
Nonlinear Magnetic Material Problem

Total Transient Solution Computation Time (s)
Mesh | CPUor GPU  Magnetic Setup Magnetic Vector Precon- Total
Flux Density Potential Iterative ditioner
Solution
@ CPU 67.597 128.695 12.771 46.817 263.609
§ GPU 57.563 162.282 14.021 48.600  299.995
© Speed-up 1.174 0.793 N/A N/A 0.879
o CPU 856.000 1084.896 138.784  1319.007 3439.980
£ GPU 253.529 622.615 149.140 1164.800 2214.928
Speed-up 3.376 1.742 N/A N/A 1.553

Note that the preconditioner formation and magnegtor potential solver are computed
on the CPU for the total GPU solution. From presgidiscussions, this method was used to
improve the total computation time since it was praviously shown that speed-up was achieved
with the sparse GPU format using the same bicgdtgdyithm. From these results averaging over
all the time step solutions and the average Newaphson iteration computation times, Table
4.11 shows that the magnetic flux density GPU cdatmn achieved an average speed-up of 1.2
for the coarse mesh and 3.6 for the fine meshttandetup achieved an average speed-up of 1.8
for the fine mesh. This is primarily due to thegliel processing of GPU sparse matrix-vector
multiplication. From the total transient computattime shown in Table 4.12, the GPU
implementation does not achieve speed-up for taeseanesh, but for the fine mesh it achieves

approximately 1.55 speed-up.

4.3.2.2 Second-order elementswith nonlinear magnetic material

The simulation of the second-order elements, nealiprogram required more
manipulation of the relaxation factor and time siéference in order to achieve convergence. For

the coarse mesh, the solution only convergedroegdil to 4 ms with a time step of 1 ms. For
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solutions beyond that, time steps of 0.25 ms aamentally smaller were required in order to
achieve convergence. A reason for the convergenue is due to too large of a time step given
the mesh density, resulting in a larger changeagmetic vector potential for each iteration. As a
result, solutions are shown for the fine mesh ofllge higher mesh density reduced the
convergence issues. For the fine mesh, solutmm#nfies 1-18 ms converged for a time step of 1
ms. For solutions beyond 18 ms, a smaller timg isteequired to achieve convergence. Full
transient solutions are not presented. For thisgpaimulations up to 18 ms for the fine mesh, the
CPU and hybrid CPU/GPU simulation results are preskin Figure 4.23 and Figure 4.24 for the
points described in Table 4.13. As previouslgdssed, the iterative solver used for both the
CPU and hybrid CPU/GPU simulation is on the CPugishe MATLAB “bicgstab” function with
row-sum modified incomplete LU Crout version faétation with drop tolerance TCfor the

preconditioner. This was the fastest iterativeeoimplementation tested for this problem.

Table 4.13 Tracked Solution Points for Seconde@rion-linear Program for
Benchmark Problem

Measured Points Fine Mesh Simulated Points
Search Coil Number x (mm) y (mm) x (mm) y (mm)
1 0-1.6 0 0.5 0
2 41.8 60-63.2 41 61.6
3 122.1-1253 0 123.2 0
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Magnetic Flux Density at Three Different Points
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Figure 4.23 Second-order element, nonlinear mateniagnetic flux density solution

for fine mesh, compared to TEAM problem measuradlte at three points
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To show the setup calculation time scalability, gb&ip calculation time by subsection is

shown in Figure 4.25 for the CPU and in Figure 4&26he GPU. Table 4.14 summarizes the

setup calculation time for the average Newton-Rapliteration. Like for the first-order elements,

the subsection 3 dominates the setup calculatioe éind can be parallel processed using GPUs for

sparse matrix-vector multiplication. The largeslem size for the second-order elements results

in a subsection 3 speed-up of approximately 3.d amoverall setup time speed-up of 2.9.
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Table 4.14 CPU and GPU Average Setup Computatimm® per Iteration for Second-Order Elements, FiresM

Average Newton-Raphson Iteration Computation Time (s)
CPU or GPU Setup-sub1l Setup-sub2 Setup-sub3 Setup-sub4 Total
CPU 0.017544 0.096670 1.976303 0.002136 2.092652
GPU 0.018379 0.124870 0.574369 0.002113 0.719731
Speed-up CPU/GPU 0.954584 0.774167 3.440821 1.010553 2.907546

Figure 4.27 shows the transient solution CPU and G#mputation time by component. It
is clear that the preconditioner formation timestdntes a large portion of the calculation time,
followed by the setup time and magnetic flux dgnihe. Due to the preconditioner, the sparse
iterative solver time is relatively short. Tabl&® summarizes these results showing the average
component calculation time for a Newton-Raphsamiien. The magnetic flux density
calculation speed-up is approximately 6.9, ands#tap calculation speed-up is approximately 2.9.
However, because the preconditioner formation jg@pmately 56% of the total iteration
computation time, the overall iteration speed-ugpproximately 1.4. Compared to the first-order
nonlinear element problem, the overall speed-upisas high but is comparable. The first-order
nonlinear problem achieved a speed-up of 1.55 thiétpreconditioner formation accounting for
38% of the simulation time. For the second-oramlinear problem, while the component speed-
ups are greater due to the larger number of unkagthie preconditioner formation accounting for

54% of the computation time limits the overall spe to 1.4.

Table 4.15 CPU and GPU Computation Time ComparisoAverage Newton-Raphson Iteration, Second-Order
Elements, Nonlinear Magnetic Material Problem. &ionulation 1-18 ms.

Average Newton-Raphson Iteration Computation Time
Over Total Transient Solution (s)
Mesh | CPUor GPU  Magnetic Setup Magnetic Vector Precon- Approx.
Flux Density Potential Iterative ditioner Total
Solution
o CPU 1.888694 2.092652 0.177723  5.241148 9.400217
i.% GPU 0.271298 0.719731 0.080714  5.429043 6.500786
Speed-up 6.961708 2.907546 N/A N/A 1.446012
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Time Step Timing, CPU Total Time = 3417.1014 seconds.
GPU Total Time = 2395.9733 seconds
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Figure 4.27 CPU and GPU computation time comparisosecond-order
elements, nonlinear magnetic material, fine mesh.

4.3.3 Benchmark problem simulation results summary

Table 4.16 Simulation Results Summary for BenclinPaoblem

Computation Time (s)

Magnetic| Element | Mesh | Preconditioned Number of CPU Hybrid Speed-

Material Order Nodes CPU/GPU up

Model

= First Fine Yes 7219 54.082 29.414 1.839
_g Second Coarse Yes 7219 65.371 54.114 1.208
- Second Fine No 28581 471.564 200.212 2.355
s First Coarse Yes 1842 263.609 299.995 0.879
é & | First Fine Yes 7219| 3439.980 2214.928 1.553
— | Second | Fine Yes 28581 3417.101 2395.973| 1.426

For the discussed simulations, Table 4.16 sumnmtireCPU and GPU simulation

computation times. It shows that as the probleaesacreases for both the linear and nonlinear
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simulations, the speed-up achieved also incredsasthe nonlinear simulation, due to the
significance of the preconditioner formation timbkigh is only computed on the CPU for these

simulations, the overall speed-up is limited aspgifablem size increases.
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CHAPTER 5
LINEAR INDUCTION MACHINE EXPERIMENT AND SIMULATION

5.1 Experiment Description

The induction machine experiment chosen to estithae®alidity of the finite element
CPU and GPU models is the double-sided statordimelaiction machine (LIM). The machine is
described in [48]. Measurable experiments forLtih with a solid aluminum rotor were
conducted. For the applied stator current andufrrqy from a constant volts-per-Hertz drive, the
force on the rotor for a steady-state locked pwsivas measured by a spring scale. The linear

induction machine and experiment are depictedguariéi 5.1 from [49].

Figure 5.1(a) Laboratory LIM setup
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Figure 5.1(cont.) (b) subset of LIM geometry fostator slots, (c) cross section of double
stator and rotor showing 36 stator slots, and xgeamental setup with calibration mass

The LIM is excited using symmetric three-phase taticin for a single-layered, series-
wound stator. There are 35 turns per slot, angofepitch is 3 cm accordingly. The stator
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laminations are constructed with M19 steel. THelsduminum rotor (alloy Al6061 with T611

temper) has conductivity = 2.4662 x 10 S/r. The rotor is free to move laterally paralletiie
stator.

The experiment conducted from [49] attached a ngtang to the LIM rotor. On one end,
the string was attached to a stabilizing sprindes@nd on the other end, it was attached to a mass
through a pulley. The mass was known and usedlitarate the spring scale. For specified
operating frequencies, the drive excited the retothat force was created away from the spring
scale. The total force measured was read by tiregsgcale. In addition, the stator excitation
current was measured for the operating frequency.

From the measured results recorded in [49], the pi@int chosen for finite element

simulation is shown in Table 5.1. The volts-perrtierive ratio excitation used is 40/60 Vs.

Table 5.1 LIM Experiment Measurements

fs(Hz) | Isrms(A) | F (meas.) (N)

14 8.64 7.20

5.2 FE Simulation of Experiment

Based on the LIM geometry shown in Figure 5.1, ahmeas created for a subset of the
geometry for the partial differential equation siation. Taking advantage of the periodicity of
the machine, six stator slots were simulated. fiffteemesh is shown in Figure 5.2. The a-, b-, and
c-phase excitation polarity is such that the wigdifor the three left-most slots are out of thegpag
and the three right-most slots are into the pages applies to both the upper and lower stators.
Additional domains are created in the air gap toemeadily compute the force in it. The elements

or nodes along the specifigatoordinate along the edge of the domain are usddrice
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calculation using the Maxwell stress tensor meth&eure 5.3 shows the fine mesh closer to the
rotor and air gap. The green-filled elements hedfitst-order elements used to calculate the force

in the air gap. The force along the edge of therrig also calculated.

0.08
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0.04 —

y (m)
°
|

0.04 —

0.06 —

00 \ ! ! ! !
-0.1 -0.05 0 0.05 0.1

Figure 5.2 Linear induction machine fine mesh farssator slots

Several assumptions are made for numerical siroulati the LIM experiment. The steel
conductivity is assumed to be zero. The steel miagpermeability is simulated as linear with an

approximate relative permeability of =8754 [50]. The resulting solution is not as sensitive

the saturation of the magnetic steel as other magtioblems because the air gap is relatively
large. The winding slot fill is assumed to be 100@@sulting in the impressed current density
calculated over the entire winding area. The ireged current density is also even over the
winding area. As with the benchmark problem,tth@-dimensional approximation of the LIM

results in the impressed current density simulatethfinite in thez-direction.

98



Figure 5.3 Linear induction machine fine mesh viear air gap. Green-filled
elements are used for force calculation in theyap for first-order elements.

For the above assumptions, the CPU and GPU sirontatif the LIM are calculated for the
first- and second-order elements. Magnetic vgobbential, magnetic flux density, and eddy
current solutions are tracked at four elementsodes: the middle of the air gap, on the aluminum
rotor surface, in the middle of the aluminum rotorg on the stator steel near the air gap. The

coordinates for these tracked solutions are ginéfrable 5.2.

Table 5.2 Tracked Solution Points for LIM Problem

_ | Simulated Points
Tracked Node Descriptiop
x(m) y(m)
Middle Air Gap 0.00455 -0.00466
On Rotor Surface 0.00266-0.00308
Middle of Rotor 0.00187 -0.00059
Stator Steel 0.00750-0.00696
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Magnetic Flux Density at Tracked Points - First-Order Elements Magnetic Flux Density at Tracked Points - Second-Order Elements

—#— middle air gap

—#— on rotor surface

—+— middle of rotor
stator steel

B(M

time (s) time (s)

(a) (b)
Figure 5.4 Simulated magnetic flux density magihétat tracked points
for (a) first-order elements, and (b) second-oalements

The computed LIM magnetic flux density magnitudeigons for the first- and second-
order elements are shown in Figure 5.4. For hathlations, the highest magnetic flux density is
in the stator steel as expected for induction nmectesign. The periodicity of the solutions shown
for a 14 Hz excitation is due to the periodic eaddiin. Since the magnetic flux density magnitude
is shown, all values are positive. The oscillatthin each period may be due to the numerical
time discretization of the simulation. The resshswn are for a time step of 1 ms. When the time
step was reduced, the same oscillation within aciod occurred, with one time step solution
lower or higher than the next. Comparing thefigstd second-order magnetic flux density
solution magnitudes, the simulations match closé&lye second-order elements simulated slightly

higher magnetic flux density in the stator steel.
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Figure 5.5 Simulated eddy current density mageitaidrotor tracked points for first-
and second-order elements

The simulated eddy current density is shown in f&du5 for the rotor surface and middle
of the rotor. The eddy current density is zerali@rtracked stator steel and air gap points and is
not shown in Figure 5.5. As expected, the eddseatidensity is significant and greater on the
rotor surface compared to the middle of the rofdte second-order eddy current density on the
rotor surface continues to increase over time whgsfirst-order eddy current density on the rotor
surface increases then remains constant on avaftegepproximately 0.35 seconds. However,
the first- and second-order simulated solutionsoarthe same order of magnitude.

The force per unit length is calculated accordmthe Maxwell Stress Tensor method in
section 2.5.3 Force from Maxwell Stress Tensore fbinice density (N/A) is calculated at each
point around the desired path. To numericallygrdaee along the path, the trapezoidal rule is used.

The numerical integration yields the force per amigth for the given time step solution. The
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results shown in Figure 5.6 are calculated in nag/tzased on multiplying the force per unit length
times the stator height for the air gap force errtitor height for the force on the rotor surface.

The upper and lower forces are sumioe@dlculate the force on the rotor. The totatéor
taken over the average of the last cycle simulsteiown in Table 5.3. Both the first- and
second-order simulated forces on the aluminum exdge are lower than the measured force. The
simulated force along the rotor edge is closeh¢éonheasured result than the simulated force along
the air gap. Factors that could contribute todifferences between measured and simulated

results are the two-dimensional approximation, gindilating a subset of the stator and stator

windings.
Table 5.3 Measured and Simulated LIM Force Calauat
Force (N)
Region Measured First-Order Elements Second-Order Elements
Simulation Simulation
Al Rotor Edge 7.20 4.40 3.61
Along Air Gap 7.20 0.16 0.08

Force Along Rotor Edge Force Along Middle Air Gap

N

-

Calculated Tangential Force (N)
Calculated Tangential Force (N)

Calculated Normal Force (N)
Calculated Normal Force (N)

time (s) time (s)

@)

Figure 5.6 Calculated tangential and normal fotoe@LIM rotor
edge and middle of the air gap for (a) first-ordiements
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Figure 5.6 (cont.) Calculated tangential and norimade along LIM rotor edge and middle of the
air gap for (b) second-order elements

The CPU and hybrid CPU/GPU simulations of the liid® problem were conducted to
compare computation time. The hybrid CPU/GPU sathoh follows the implementation for the
benchmark problem for the first- and second-orteEments with linear magnetic material. Due to
the large air gap, the steel will not normally sate for this LIM experiment. As a result, the
magnetic permeability of the steel can be approtachbnearly. The hybrid CPU/GPU simulation
uses the GPU for matrix-vector multiplication torfothe right-hand side vector and to compute
the magnetic flux density. As discussed previgublg biconjugate gradient iterative solver is
implemented on the CPU using the MATLAB built-imfiion bicgstab, and the preconditioner is
formed on the CPU using the incomplete Choleskiofaation function ichol. Additionally, the
force density calculation is done on the CPU sihisecomputed element-wise. This type of

calculation is much faster on the CPU than the GPU.
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Table 5.4 LIM Problem Mesh Description

Total Domain
Magnetic| Element Mesh Number of Number of Number
Material Order Nonzero Elements of Nodes
Model Elements in
Matrix
5 First Fine 56517 16416 8281
_% Second Fine 297219 16416 3297)

Table 5.5 CPU and hybrid CPU/GPU simulation tifeed.IM linear problem,
first- and second-order elements over 500 ms siionla

Total Time (s)
Preconditioner | Iterative Magnetic Flux Total Time
Time (s) Solver Density (s)
CPU 0.006 23.984 73.330 111.322
o E GPU 0.005 9.973 15.353 38.567
i S | speed-up N/A N/A 4.776 2.886
- CPU 0.007 1550.500 676.252 2235.600
S 3 |Gpu 0.006 | 496.544 110.618 638.870
& O | speed-up N/A N/A 6.113 3.499

Table 5.4 shows the first- and second-order mestriggions. Table 5.5 shows the CPU

and hybrid CPU/GPU simulation times. While thedt&e solver was calculated on the CPU for

both simulations, the hybrid CPU/GPU simulatiorcakdted the iterative solution faster. For the

larger problem size for the second-order elemgnéster speed-up is achieved. A speed-up of

approximately 4.7 and 6.1 was achieved for thé finsd second-order magnetic flux density

calculation, respectively. The overall speed-gulted in 2.8 for the first-order elements, and 3.5

for the second-order elements. The problem sizth&LIM mesh is slightly larger than for the

benchmark problem. Using similar techniques, grespteed-up is achieved with the larger

problem size.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

The use of GPUs for parallel processing of the divoensional transient finite element
analysis problem was explored. Simulation regaltshe benchmark and linear induction
machine problems show which simulation GPUs candeel to speed up the finite element
analysis simulation computation time and wherer thugictionality is limited. MATLAB
implementations of first- and second-order elem@mtBnear and nonlinear magnetic material
were created, and the simulation results for tfiege element analysis programs were presented.
For the sparsity and problem sizes simulated, tR&$provided speed-up for a range of
approximately 4 to 11 times for sparse matrix-veotaltiplication required for magnetic flux
density calculation and Jacobian formulation. HesveGPUs did not speed up the sparse
iterative solver simulation time for each type iofiglation. The CPU iterative solver used was the
MATLAB sparse-format based preconditioned biconjaggradient stabilized method. These
CPU iterative solver times were compared to the BWizonjugate gradient functions explored
and linked to MATLAB and the preconditioned andpreconditioned biconjugate gradient
stabilized method algorithm implementation using $parse gpuArray format. Based on these
simulation results and prior research for GPU tteeasolver implementations [35], [36], the
current algorithms available and implemented orGR&) do not result in faster computation times
for the GPU implementations for problems of thizeqj1842-32977 nodes). From [35], for
problem sizes ranging from 150,000 to 1.5 milliows and columns, speed-up achieved for the
incomplete-LU and Cholesky preconditioned BiCGStatd CG methods ranged from 1 to 5.5.
Different speed-up was achieved for different valokthe preconditioner fill-in threshold. For

problems of varying sparsity, the average speedagapproximately 2.2. From [36], the level
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scheduling technique was used for the sparse triangolve and several preconditioned iterative
methods on the GPU were explored for problems 8¢@00 to 1.4 million rows and columns.

The greatest GPU speed-up achieved was 4.3 f@Phéaccelerated ILUT-GMRES method for
the matrix with 1.27 million rows and columns. ®agh use of algorithms favorable to
maximizing the parallel thread computations givemsparsity of the finite element matrix, such as
level scheduling in [36], it may be possible to noye the GPU performance of the biconjugate
gradient or GMRES solver over the CPU for two-disienal finite element problem sizes.
However, the author expects these algorithms waliole limited improvements if any for this
problem size compared to the speed-up achievespose matrix-vector multiplication.

To combine the simulation components with the &s#U and GPU computation times,
hybrid CPU/GPU simulation experiments were condiictdatrix assembly, vector addition and
subtraction, preconditioner formation, and the spéterative solver were implemented on the
CPU, while the sparse matrix-vector multiplicatmperations were implemented on the GPU.
This required transferring matrices and vectona from the CPU and GPU. Such transfers
should be minimized since they contribute to GPatpssing overhead. For the two-dimensional
problem sizes, this transfer time was minimal corag#o the speed-up achieved for GPU sparse
matrix-vector multiplication. As a result, it wasill advantageous to use GPUs for these parts of
the simulation.

These hybrid CPU/GPU simulation results were coeghér the CPU-only simulation
results. Depending on the problem size, ovenallfation speed-ups achieved for the benchmark
and LIM problems ranged from 2.3 to 3.5, with thegkst problem size simulated consisting of
32977 nodes. The speed-up is limited by the compospeed-up achieved and percentage of the

faster component computation time relative to #meainder of the simulation computation time.

106



The use of GPUs for parallel processing for evegelafinite element analysis problems,
such as three-dimensional domains, will show tlaéabdity and limitations of their processing
capabilities for electromagnetic analysis of eleatrachines. For larger scale problems, the
CUDA preconditioner and sparse iterative solvecfiams may provide speed-up, but this is
highly dependent on the sparsity of the problemantthree-dimensional mechanics finite element
problems with 147,900 rows and columns with 3.3iomIinonzero elements analyzed in [35],
speed-up was not achieved for the fastest overthod tested - the preconditioned CG and
BiCGStab methods with O fill. For slower overaktinods using higher fill in thresholds,
moderate speed-up of 1.1-6.28 was achieved. Ydspked-up on the GPU should be achieved for
the CPU fastest possible available method. Fotritwegular solve with level scheduling for the
3D Poisson problem in [36], the GPU implementatiad a speed-up of approximately 2.3, and
the triangular solve of multi-color ILU with zerdl in had a speed-up of approximately 5.34 on
the GPU over the CPU.

Additionally, the scalability of the sparse matvigetor multiplication can be explored for
the larger problem. For the sparse-matrix ve@sults presented, the GPU speed-up over the
CPU increased from 1.49 to 11 with increasing pwbsize in terms of the matrix number of
nonzero elements and the number of nodes in the.mM&em the 3D Poisson problem analyzed in
[36] with 85,000 rows and columns and 2.3 milli@nrero elements, the greatest GPU sparse
matrix-vector multiplication achieved was approxieta 5.3 using double precision floating point
arithmetic. As a result, the speed-up for sparagixavector multiplication applied to three-
dimensional finite element problems is expecteletin the range of 5-10.

Along with finite element analysis, GPU parallehgqauting can be used for magnetic

equivalent circuits (MEC) [51], the boundary-elemeethod [52], and finite element analysis
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coupled to circuit equivalent models [3]. Eachiradse types of models requires the solution of a
system of equations. GPUs can be applied to thponents of these types of models where they
are suitable for parallel processing, such as spaegrix-vector multiplication or sparse iterative
solvers for large problem sizes.

Additionally, numerical and parallel processingteiques can be explored in conjunction
to further accelerate the more detailed electrom@égrimulation of the electric machine. Such an
approach could involve creating a hybrid three-disi@nal MEC-FEA simulation by using MEC
to simulate flux density and field intensity focertain transient duration, providing an estimated
initial condition for an FEA transient simulatiomfhe MEC reluctance network could be mapped
to a similar FEA mesh, and then the FEA simulationld be used for more detailed analysis to
capture eddy current. GPUs could be applied timicecomponents of the MEC and FEA
simulations to further speed-up the simulationm@Pared to an FEA-only CPU-based transient
analysis solution, such a hybrid approach along thi¢ use of GPUs could result in faster

computation times.
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APPENDIX A
CUDA SOURCE CODE FOR MATLAB MEX FUNCTION: SPARSE MATRIX-
VECTOR MULTIPLICATION USING CSR FORMAT

~
*

Copyright (c) 2013, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from U.S. Dept. of Energy) All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the University of California,
Berkeley, nor the names of its contributors may be used to
endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXVPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXVEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

¥ X K X X X X X X X X X X X X K ¥ X X X X X ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ %

Stefano Marchesini, Lawrence Berkeley National Laboratory, 2013

*
~

#include <cuda.h>

#include <cusp/complex.h>
#include <cusp/blas.h>
#include<cusp/csr_matrix.h>
#include<cusp/multiply.h>
#include <cusp/arrayld.h>
#include <cusp/copy.h>
#include <thrust/device ptr.h>
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#include "mex.h"
#include "gpu/mxGPUArray.h"

/* Input Arguments */
#define VAL prhs[0]

#define COL prhs[1]

#tdefine ROWPTR prhs[2]

// #define NCOL prhs[3]
// #define NROW prhs[4]
// #define NNZ prhs[5]
#tdefine XV prhs[3]

/* Output Arguments */
#tdefine Yplhs[Q]

void mexFunction(int nlhs, mxArray * plhs[], int nrhs,const mxArray * prhs[]){

mxGPUArray const *Aval;
mxGPUArray const *Acol;
mxGPUArray const *Aptr;
mxGPUArray const *x;
mxGPUArray *y;

// int nnzs = lrint(mxGetScalar(NCOL));
// int nrows = lrint(mxGetScalar(NROW));
// int nptr=nrows+1;

// int nnz = lrint(mxGetScalar(NNZ));
//

/* Initialize the MathWorks GPU API. */
mxInitGPU();

/*get matlab variables*/
Aval = mxGPUCreateFromMxArray(VAL);

Acol = mxGPUCreateFromMxArray(COL);
Aptr = mxGPUCreateFromMxArray (ROWPTR);
X = mxGPUCreateFromMxArray (XV);

int nnz=mxGPUGetNumberOfElements(Acol);
int nrowpl=mxGPUGetNumberOfElements (Aptr);
int ncol =mxGPUGetNumberOfElements(x);

mxComplexity isXVreal = mxGPUGetComplexity(x);
mxComplexity isAreal = mxGPUGetComplexity(Aval);
const mwSize ndim= 1;

const mwSize dims[]={(mwSize) (nrowpl-1)};

if (isAreall=isXVreal)

{

mexErrMsgTxt("Aval and X must have the same complexity");

return;

}

if (mxGPUGetClassID(Aval) != mxSINGLE_CLASS| |
mxGPUGetClassID(x)!= mxSINGLE_CLASS| |
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mxGPUGetClassID(Aptr)!= mxINT32_CLASS]| |
mxGPUGetClassID(Acol)!= mxINT32_CLASS){
mexErrMsgTxt("usage: gspmv(single, int32, int32, single)");
return;

}

//create output vector
y = mxGPUCreateGPUArray(ndim,dims,mxGPUGetClassID(x),isAreal,
MX_GPU_DO_NOT_INITIALIZE);

/* wrap indices from matlab */

typedef const int TI; /* the type for index */
TI *d_col =(TI *)(mxGPUGetDataReadOnly(Acol));

TI *d_ptr =(TI *)(mxGPUGetDataReadOnly(Aptr));

// wrap with thrust::device_ptr
thrust::device_ptr<TI> wrap_d col (d_col);
thrust::device_ptr<TI> wrap_d_ptr (d_ptr);

// wrap with arrayld_view

typedef typename cusp::arrayld_view< thrust::device_ptr<TI> > idx2Av;
// wrap index arrays

idx2Av colIndex (wrap_d_col , wrap_d col + nnz);
idx2Av ptrIndex (wrap_d_ptr , wrap_d_ptr + nrowpl);

if (isAreal!=mxREAL){

typedef const cusp::complex<float> TA; /* the type for A */
typedef const cusp::complex<float> TXV; /* the type for X */
typedef cusp::complex<float> TYV; /* the type for Y */

// wrap with arrayld_view

typedef typename cusp::arrayld_view< thrust::device ptr<TA > > val2Av;
typedef typename cusp::arrayld_view< thrust::device_ ptr<TXV > >  x2Av;
typedef typename cusp::arrayld_view< thrust::device ptr<TYV > >  y2Av;

/* pointers from matlab */

TA *d_val =(TA *)(mxGPUGetDataReadOnly(Aval));
TXV *d_x  =(TXV *)(mxGPUGetDataReadOnly(x));
TYV *d_y  =(TYV *)(mxGPUGetData(y));

// wrap with thrust::device_ptr
thrust::device_ptr<TA > wrap_d val (d_val);
thrust::device_ptr<TXV > wrap_d_x (d_x);
thrust::device_ptr<TYV > wrap_d_y (d_y);

// wrap arrays
val2Av valIndex (wrap_d_val , wrap_d_val + nnz);
x2Av xIndex (wrap_d x , wrap_d X + ncol);
y2Av yIndex(wrap_d_y, wrap_d_y+ nrowpl-1);

// y2Av yIndex(wrap_d_y, wrap_d_y+ ncol);

// combine info in CSR matrix
typedef cusp::csr_matrix_view<idx2Av,idx2Av,val2Av> DeviceView;

DeviceView As(nrowpl-1, ncol, nnz, ptrIndex, colIndex, valIndex);

// multiply matrix
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cusp::multiply(As, xIndex, yIndex);

}

else{

typedef const float TA; /* the type for A */
typedef const float TXV; /* the type for X */
typedef float TYV; /* the type for Y */

/* pointers from matlab */

TA *d_val =(TA *)(mxGPUGetDataReadOnly(Aval));
TXV *d_x  =(TXV *)(mxGPUGetDataReadOnly(x));
TYV *d_y  =(TYV *)(mxGPUGetData(y));

// wrap with thrust::device_ptr!

thrust::device_ptr<TA > wrap_d_val (d_val);

thrust::device_ptr<TXV > wrap_d_x (d_x);

thrust::device_ptr<TYV > wrap_d_y (d_y);

// wrap with arrayld_view

typedef typename cusp::arrayld_view< thrust::device ptr<TA > > val2Av;
typedef typename cusp::arrayld_view< thrust::device_ ptr<TXV > >  x2Av;
typedef typename cusp::arrayld_view< thrust::device ptr<TYV > >  y2Av;

// wrap arrays

val2Av valIndex (wrap_d val , wrap_d_val + nnz);
x2Av xIndex (wrap_d x , wrap_d X + ncol);
//y2Av yIndex(wrap_d_y, wrap_d_y+ ncol);

y2Av yIndex(wrap_d_y, wrap_d_y+ nrowpl-1);

// combine info in CSR matrix
typedef cusp::csr_matrix_view<idx2Av,idx2Av,val2Av> DeviceView;

DeviceView As(nrowpl-1, ncol, nnz, ptrIndex, colIndex, valIndex);

// multiply matrix
cusp::multiply(As, xIndex, yIndex);

}

Y = mxGPUCreateMxArrayOnGPU(y);

mxGPUDestroyGPUArray (Aval);
mxGPUDestroyGPUArray (Aptr);
mxGPUDestroyGPUArray(Acol);
mxGPUDestroyGPUArray(x);
mxGPUDestroyGPUArray(y);

return;
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APPENDIX B
CUDA SOURCE CODE FOR MATLAB MEX FUNCTION: BICONJUGATE
GRADIENT SPARSE ITERATIVE SOLVER

#include "mex.h"

#tinclude "cuda.h"

#include "gpu/mxGPUArray.h"
#include <string.h>
#tinclude <iostream>
#include <time.h>

#include <windows.h>
#tinclude <float.h>

#tdefine DEBUG 1

#include <cusp/blas.h>

#include <cusp/copy.h>

#include <cusp/gallery/random.h>
#include <cusp/coo_matrix.h>

#include <cusp/krylov/bicg.h>
#include <cusp/krylov/bicgstab.h>
#include <cusp/krylov/cg.h>
#include <cusp/krylov/gmres.h>

#include <cusp/io/matrix_market.h>

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
/* define timer variables */
/* unsigned int kernelTime;
cutCreateTimer(&kernelTime);
cutResetTimer(kernelTime);*/
LARGE_INTEGER frequency, start, end;
double seconds;

/* Read in one sparse matrix */
mwSize nnz_A = mxGetNzmax(prhs[0]);

/* Create the three arrays needed to represent matrix in COO format */

mxArray *matlab_coo A[] = {
mxCreateNumericArray (1, &nnz_A, mxDOUBLE_CLASS, mxREAL),
mxCreateNumericArray(1l, &nnz_A, mxDOUBLE_CLASS, mxREAL),
mxCreateNumericArray(1l, &nnz_A, mxDOUBLE_CLASS, mxREAL)

s

mexCallMATLAB(3, matlab_coo_A, 1, (mxArray**)(&prhs[@]), "find");

/* Create a cusp matrix on the host */

cusp::coo_matrix<int, double, cusp::host_memory> A(mxGetM(prhs[0]),
mxGetN(prhs[0]),
nnz_A);

double *row

double *col

(double*)mxGetData(matlab_coo_A[0]);
(double*)mxGetData(matlab_coo _A[1]);
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for (int i = 0; i < nnz_A; i++)

{
A.row_indices[i] = row[i] - 1;
A.column_indices[i] = col[i] - 1;
¥
memcpy (&A.values[0], mxGetData(matlab_coo A[2]), sizeof(double) * nnz_A);

/* Copy to GPU */
cusp::coo_matrix<int, double, cusp::device_memory> gpuA = A;
/* A = gpuA; */

#if DEBUG
cusp::io::write_matrix_market_file(A, "A.mtx");
#endif

/* Read in a full vector */

mwSize A_num_rows = mxGetM(prhs[0]);

cusp::arrayld<double, cusp::host_memory> B(A_num_rows);

memcpy (&B[0@], mxGetData(prhs[1]), sizeof(double) * A_num_rows);

/* Copy to GPU */
cusp::arrayld<double, cusp::device_memory> gpuB = B;
/* B = gpuB; */

#if DEBUG
cusp::io::write_matrix_market file(B, "B.mtx");
#endif

/* Read in a full vector */
cusp::arrayld<double, cusp::host_memory> x(A_num_rows);
memcpy (&x[@], mxGetData(prhs[2]), sizeof(double) * A_num_rows);

/* Copy to GPU */
cusp::arrayld<double, cusp::device_memory> gpux = X;
/* x = gpux; */

#if DEBUG
cusp::io::write_matrix_market_file(x, "x.mtx");

#tendif

/* Read in one sparse matrix */
mwSize nnz_M = mxGetNzmax(prhs[3]);

/* Create the three arrays needed to represent matrix in COO format */

mxArray *matlab_coo M[] = {
mxCreateNumericArray(1l, &nnz_M, mxDOUBLE_CLASS, mxREAL),
mxCreateNumericArray (1, &nnz_M, mxDOUBLE_CLASS, mxREAL),
mxCreateNumericArray (1, &nnz_M, mxDOUBLE_CLASS, mxREAL)

s

mexCallMATLAB(3, matlab_coo M, 1, (mxArray**)(&prhs[3]), "find");

/* Create a cusp matrix on the host */

cusp::coo_matrix<int, double, cusp::host_memory> M(mxGetM(prhs[3]),
mxGetN(prhs[3]),
nnz_M);

double *rowM = (double*)mxGetData(matlab_coo _M[0]);
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double *colM = (double*)mxGetData(matlab_coo_M[1]);
for (int i = @; 1 < nnz_M; i++)

{
M.row_indices[i] = rowM[i] - 1;
M.column_indices[i] = colM[i] - 1;
}
memcpy (&M.values[0], mxGetData(matlab_coo_M[2]), sizeof(double) * nnz_M);

/* Copy to GPU */
cusp::coo_matrix<int, double, cusp::device_memory> gpuM = M;
/* A = gpuA; */

#if DEBUG
cusp::io::write_matrix_market file(M, "M.mtx");
#endif

/* Allocate space for solution */
cusp::arrayld<double, cusp::host_memory> x1(A_num_rows, 9);
cusp::arrayld<double, cusp::device_memory> gpuxl = x1;

cusp::verbose_monitor<double> monitor(gpuB, 8000, le-5);

//cutStartTimer (kernelTime);

/* solve the linear systems */
QueryPerformanceFrequency (&frequency);

QueryPerformanceCounter(&start);
cusp::krylov::bicgstab(gpuA, gpux, gpuB, monitor);

//cusp::krylov::cg(gpuA, gpux, gpuB, monitor);

//cusp::krylov::gmres(gpuA, gpux, gpuB, 20, monitor);

cudaDeviceSynchronize();
QueryPerformanceCounter(&end);

// if any error, such as launch timeout, return maximum run time,

seconds = (cudaGetLastError() == cudaSuccess) ? ((double)(end.QuadPart -
start.QuadPart) / (double)frequency.QuadPart) : DBL_MAX;

std::cout << seconds << std::endl;

/*cudaThreadSynchronize();

cutStopTimer(kernelTime);

printf("Time for the kernel: %f ms\n", cutGetTimerValue(kernelTime));*/

/* Copy result back */

X1 = gpux;

/* Store in output array */
double *output = (double*)mxCalloc(A_num_rows, sizeof(double));
memcpy (output, &x1[@], A_num_rows * sizeof(double));

#if DEBUG
cusp::io::write_matrix_market file(x1l, "xsolve.mtx");
#endif

plhs[@] = mxCreateNumericArray(1l, &A_num_rows, mxDOUBLE_CLASS, mxREAL);
mxSetData(plhs[0], output);
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APPENDIX C

MATLAB SOURCE CODE FOR GCSPARSE CLASS DEFINITION

classdef gcsparse < handle

% sparse array GPU class

% Usage:

% A=gcsparse(A,[format]);

% A=gcsparse(col,row,val,[nrows,[ncols,[format]]]);
% format: O for COO, 1 for CSR (0 is default);

% A: can be matlab full/sparse array or gcsparse i
%

% overloaded operators:

% transpose: B=A.";

% transpose: B=A';

% multiply: x=A*y; (spmv)

% size: [row, columns]

% type: class/real/complex

%

% format conversion:

% B=real(A);

% A=complex(B);

% B=gcsparse(A,format);
% rowptr= ptr2row(A);

% row =grow2ptr(A);

% row <-> offset pointer conversion may crash insid
% but manually does not:
% so, to convert from A COO, to B CSR one can

% B=A,; %copy
% B.row= gptr2row(A.row,int32(A.nrows+1),A
% B.format=1,;

%
% S. Marchesini, LBNL 2013

% properties (SetAccess='private’)

properties

nrows=int32(0); % number of rows

ncols=int32(0); % number of columns

nnz=int32(0); % non zero elements

val=gpuArray([l); %values (gpu real/complex, single)
col=gpuArray(int32([])); % column index (gpu int32)
row=gpuArray(int32([])); % row/ptr index (gpu int32)
format=int32(0); %0 for COO 1 for CSR

end

methods (Access = private)

end

methods (Static)

end

methods

tself

e the function,
use this instead:

.nnz);

function  obj = gcsparse(col,row,val,nrows,ncols,format)

if nargin<6

%default is COO
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format=int32(0); %CO0
else

format=int32(format);
end

if (nargin<=2); %gcsparse(A,[format])
% get the sparse structure of A
if nargin==2 %gcsparse(A,format) (format=row, second
input)

format=int32(row); %row is actually the second input
else

format=0;
end

if isa(col, ‘gcsparse’ ) % we are just converting here
obj=caol; %col is actually the fisrt input
if obj.format==format %nothing to do...
return
elseif  (obj.format==0 && format==1)
obj.row=row2ptr(obj); %COO->CSR
obj.format=format;
elseif  (obj.format==1 && format==0);
%nptr=obj.nrows+1;
%rowptr= gptr2row(obj.row,nptr,obj.nnz);
ro wptr=ptr2row(col);
COO
%
obj.row=gptr2row(obj.row,nptr,obj.nnz);
obj.row=rowptr;
obj.format=format;

else
fprintf( "invalid' );
end
return
else
% get val,col,row triplets from A (first input)
[obj.nrows,obj.ncols]=size(col) ; %ocol is actually the

fisrt input
obj.nrows=gather(obj.nrows);
obj.ncols=gather(obj.ncols);

[obj.row,obj.col,obj.val]=find( col);
obj.col=gpuArray(int32(obj.col( N);
obj.row=gpuArray(int32(obj.row( N);
obj.val=gpuArray((single(obj.va 1CN);
end
if nargin==
format=int32(row); %row is actually the second input
end
else

obj.col=gpuArray(int32(col(:)));

obj.row=gpuArray(int32(row(:)));

obj.val=gpuArray(val(:));

obj.nrows=gather(int32(max(obj.row( M)
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obj.ncols=gather(int32(max(obj.col( N);
obj.nnz=int32(obj.nnz);
end

obj.nnz=gather(int32(numel(obj.val)));

% matlab to c indexing...:
obj.col=obj.col-1;
obj.row=0bj.row-1;
% increase nrows if input [nrows] is given
if nargin>3
if (~isempty(nrows))
obj.nrows=gather(int32(max(obj. Nrows,nrows)));
end
if nargin>4
if (~isempty(ncols))
obj.ncols=int32(max(obj.nco Is,ncols));
end
end
end
% sort by rows
[obj.row,unsort2sort]=sort(obj.row);
obj.col=obj.col(unsort2sort);
obj.val=obj.val(unsort2sort);
obj.format=0;

if format==1;

% obj.row=coo2csr(obj);
obj.row= row2ptr(obj);
obj.format=1;

end

% ‘hi'
end
function  B=real(A)
B=A;
B.val=real(B.val);
end
function  B=complex(A)
B=A;

if isreal(A.val);
B.val=complex(B.val);
end
end
function y = mtimes(A,X) %SpMV
%SpMV with CUSP
if A.format==0
% y=0;
wait(gpuDevice())
y=gspmv_coo(A.val,A.col,A.row,A.nro ws, X);
elseif  A.format==1
% y=gspmv_csr(A.col,A.row,A.val,A.nrows,A.ncols,x)
wait(gpuDevice());
y=gspmv_csr(A.val,A.col,A.row,x);
end
end
function  C= ctranspose(obj)
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%

%

%

% format->coo->transpose->format

C=gcsparse(obj,0); %convert to COO
tmprow=C.col; %swap row and columns
C.col=C.row;

C.row=tmprow;
tmp=C.nrows;
C.nrows=obj.ncols;

C.ncols=tmp;

C.val=conj(obj.val); %conjugate

C=gcsparse(C,obj.format); %revert to original format
end

function  C=transpose(obj)

C=gcsparse(obj,0); %convert to COO
tmprow=C.caol; %swap row and columns
C.col=C.row;

C.row=tmprow;
tmp=C.nrows;
C.nrows=obj.ncols;
C.ncols=tmp;
C=gcsparse(C,obj.format);
end
function  [row,col,val]= find(obj)
if obj.format==1;

fprintf( ‘it may not work, use COO\n' )
fprintf( '[col,row,val]=find(gcsparse(A,0))' );
[~,row,~]=find(gcsparse(A,0));
nptr=int32(obj.nrows+1);
ptr=obj.row+0;
nnz=obj.nnz+0;
row=gptr2row(ptr,nptr,nnz);
row=ptr2row(obj);
row=row+1;
if numel(row)<obj.nnz
fprintf( 'did not work, use COO\n' )
end
row=gptr2row(obj.row,int32(obj.nr ows+1),0bj.nnz);
else
row=obj.row+1;
end
col=obj.col+1;
val=obj.val;
end

function  m = size(obj)
m=[obj.nrows obj.ncols];
end
function  m = type(obj)
fO= classUnderlying(obj.val);
if (isreal(obj.val))
fmt= 'Real' ;
else fmt= 'Complex' ;
end
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m=[f0 " fmt);
end
function  row= ptr2row(obj)
% offset pointer to row conversion
row= gptr2row(obj.row,int32(obj.nrows+1
end
function  rowptr= row2ptr(obj)
% row to offsets
rowptr=grow2ptr(obj.row,(obj.nrows+1),(
end

end

end

120

),0bj.nnz);

obj.nnz));



APPENDIX D
BUILT-IN MATLAB FUNCTIONS THAT SUPPORT GPUARRAY FOR MATLAB
2012A

Table D.1 shows the built-in functions that supgmaArray type that are available in the

parallel computing toolbox for MATLAB version 2012a

Table D.1 Available Built-In Functions for MATLARO12a
Parallel Computing Toolbox that Support GPUArray

abs conv2 floor log
acos coS fprintf log10
acosh cosh full loglp
acot cot gamma log2
acoth coth gammaln logical
acsc csc gather It
acsch csch ge lu
all ctranspose ot mat2str
any cumprod horzcat max
arrayfun cumsum hypot meshgrid
asec det ifft min
asech diag ifft2 minus
asin diff ifftn midivide
asinh disp imag mod
atan display ind2sub mrdivide
atan2 dot intl6 mtimes
atanh double int2str ndgrid
beta eig int32 ndims
betaln eps int64 ne
bitand eq int8 norm
bitcmp erf inv not
bitor erfc ipermute num2str
bitshift erfcinv isempty numel
bitxor erfcx isequal permute
bsxfun erfinv isequaln| plot (and related)
cast exp isfinite plus
cat expml isinf power
ceil filter islogical prod
chol filter2 isnan qr
circshift find isreal rdivide
classUnderlying fft issorted real
colon fft2 Idivide reallog
complex fftn le realpow
conj fix length realsqrt
conv
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APPENDIX E
BUILT-IN MATLAB FUNCTIONS THAT SUPPORT GPUARRAY FOR MATLAB
2014A

Table E.1 shows the built-in functions that supgpaArray type that are available in the

parallel computing toolbox for MATLAB version 2014a

Table E.1 Available Built-In Functions for MATLABM 4a Parallel Computing Toolbox that Support GP@rr

abs blkdiag display gammaln isinf mod real timegs
acos bsxfun dot gather isinteger mpower reallpg cetra
acosh cast double ge islogical mrdivide realpow ndpase
acot cat eig ot ismatrix mtimes realsqrt tril
acoth ceil eps horzcat ismember NaN rem triy
acsc chol eq hypot isnan ndgrid repmat TRUE
acsch circshift erf ifft isnumeric ndims reshape ntl6
all classUnderlying erfc ifft2 isreal ne rot90 8at
and colon erfcinv ifftn isrow nnz round uint64
angle complex erfcx ifftshift issorted norm sec t8in
any cond erfinv imag issparse normest sech uminus
arrayfun conj exp ind2suk isvector not shiftdim uspl
asec conv expml Inf kron num2str sign var
asech conv2 eye intl6 Idivide numel sin vertcat
asin convn FALSH  int2str le ones single xor
asinh cos fft int32 length or sinh zerosg
atan cosh fft2 int64 log pagefun size
atan2 cot fftn int8 log10 perms sort
atanh coth fftshift| interpl loglp permute sprintf
besselj cov filter interp2 log2 plot (and related) sqrt
bessely cross filter2 interp3 logical plus squeeze
beta csc find interpn It pow2 std
betaln csch fix inv lu power sub2ing
bitand ctranspose flip ipermute  mat2sgr prod suipsas
bitcmp cumprod fliplr | iscolumn max qr subsindgex
bitget cumsum flipud| isempty mean rand subsref
bitor det floor isequal | meshgrid randi sum
bitset diag fprintf | isequaln min randn svd
bitshift diff full isfinite minus rank tan
bitxor disp gamma isfloat midivide rdivide tanh
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