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ABSTRACT

Rapid advances in high-throughput sequencing (HTS) technologies have led

to an exponential increase in the amount of sequencing data. HTS sequencing

reads, however, contain far more errors than does data collected through

traditional sequencing methods. Errors in HTS reads degrade the quality

of downstream analyses. Correcting errors has been shown to improve the

quality of these analyses.

Correcting errors in sequencing data is a time-consuming and memory-

intensive process. Even though many methods for correcting errors in HTS

data have been developed, no one could correct errors with high accuracy

while using a small amount of memory and in a short time. Another prob-

lem in using error correction methods is that no standard or comprehensive

method is yet available to evaluate the accuracy and effectiveness of these

error correction methods.

To alleviate these limitations and analyze error correction outputs, this

dissertation presents three novel methods. The first one, known as BLESS

(Bloom-filter-based error correction solution for high-throughput sequencing

reads), is a new error correction method that uses a Bloom filter as the main

data structure. Compared to previous methods, it allows for the correction

of errors with the highest accuracy at an average of 40 × memory usage

reduction. BLESS is parallelized using hybrid OpenMP and MPI program-

ming, which makes BLESS one of the fastest error correction tools. The

second method, known as SPECTACLE (Software Package for Error Correc-

tion Tool Assessment on Nucleic Acid Sequences), supplies a standard way

to evaluate error correction methods. SPECTACLE is the comprehensive

method that can (1) do a quantitative analysis on both DNA and RNA cor-

rected reads from any sequencing platforms and (2) handle diploid genomes

and differentiate heterozygous alleles from sequencing errors.

Lastly, this research analyzes the effect of sequencing errors on variant
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calling, which is one of the most important clinical applications for HTS

data. For this, the environments for tracing the effect of sequencing errors on

germline and somatic variant calling was developed. Using the environment,

this research studies how sequencing errors degrade the results of variant

calling and how the results can be improved. Based on the new findings,

ROOFTOP (RemOve nOrmal reads From TumOr samPles) that can improve

the accuracy of somatic variant calling by removing normal cells in tumor

samples.

A series of studies on sequencing errors in this dissertation would be helpful

to understand how sequencing errors degrade downstream analysis outputs

and how the quality of sequencing data could be improved by removing errors

in the data.
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CHAPTER 1

INTRODUCTION

All living cells keep their hereditary information in the form of double-

stranded molecules of deoxyribonucleic acid (DNA). Genomic information

encoded in the DNA sequences define the species and individuals, which

makes the DNA sequence fundamental to research on the functions of cells.

DNA sequencing is the process that determines the order of nucleotides,

an essential step in retrieving the information encoded. The recent advent of

next-generation sequencing (NGS) has revolutionized the study of genetics

and has also provided valuable resources for other scientific disciplines. As

NGS has become more widely accessible, its use has extended beyond basic

research into broader clinical contexts.

NGS sequencing technologies, however, have shortcomings. In addition to

short read length, a main challenge in analyzing NGS data is its higher error

rate than traditional sequencing technology [1, 2]. The most straightforward

approach to prevent sequencing errors from degrading the output quality of

downstream analyses is to increase sequencing read coverage [3]. However,

increasing read coverage cannot be a universal solution because (1) high

read coverage cannot solve the issues that arise from the batch effect that

is the statistical bias observed in samples that go through the same sample

preparation and sequencing processes [4] and (2) it costs more to generate

high coverage reads.

Many error correction methods have been developed to alleviate the degra-

dation of downstream analysis outputs. These methods can be divided into

four major categories [5]: (1) k-mer spectrum based [6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16], (2) suffix tree/array based [17, 18, 19, 20] (3) multiple sequence

alignment (MSA) based [21, 22], and (4) hidden Markov model (HMM) based

[23, 24]. None of them, however, has successfully corrected errors in HTS

reads from large genomes without consuming large amounts of memory un-

available to most researchers. Previous evaluations have shown that some
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error correction tools require over 128 GB of memory to correct errors in

genomes with 120 Mbp, and that others need tens of GBs of memory [5].

For a human genome, previous approaches would need hundreds of GBs of

memory.

An additional problem in applying error correction methods to HTS data

is that there is no standard way to compare error correction tools or to

quantitatively analyze their outputs, which is needed to choose a method

suitable for the user's purpose. Such scarcity is mainly due to the effort

involved in discerning how many errors are corrected and how many are

newly generated in the error correction process. Errors in HTS reads can

be categorized into substitutions (bases in reads are different from the bases

in original genome sequences), insertions (bases that do not exist in original

genome sequences are added to reads), and deletions (bases in an original

genome are not shown in corresponding reads). While checking whether

substitution errors have been corrected is straightforward, it is not so simple

to evaluate how exactly errors are corrected when insertions and deletions

also exist. The evaluation becomes more complex when corrected reads have

different lengths compared to precorrection reads. Many error correction

tools produce reads of shorter length because they trim both ends of the

reads to remove the errors that they cannot correct.

Motivated by the two aforementioned problems, this dissertation presents

three methods. The first is a new Bloom filter-based error correction algo-

rithm called BLESS. It belongs to the k-mer spectrum-based method but

is designed to remove the limitations of the previous k-mer spectrum based

solutions. Our approach has four important new features: (1) It is designed

to target high memory efficiency in order for error correction to be run on

a commodity computer. The k-mers that exist more than a certain number

of times in reads are sorted out and programmed into a Bloom filter. (2) It

can handle repeats in genomes better than previous k-mer spectrum-based

methods, which leads to higher accuracy because BLESS is able to use longer

k-mers compared to previous methods. Longer k-mers resolve repeats better.

(3) It can extend reads to correct errors at the end as accurately as in other

parts. Sometimes an erroneous k-mer may be identified as error-free because

of an irregularly large multiplicity of k-mers. False positives from the Bloom

filter can also cause the same problem. BLESS extends the reads to find

multiple k-mers that cover the erroneous bases at the end of the reads to
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improve error correction. (4) It can be parallelized either on a server with a

multi-core CPU using OpenMP or on multiple servers using MPI.

The second method presented in this dissertation is known as SPECTA-

CLE, which stands for Software Package for Error Correction Tool Assess-

ment on Nucleic Acid Sequences. SPECTACLE is a new error correction tool

evaluation algorithm that can evaluate any error correction tool for NGS and

TGS reads and work for both DNA and RNA sequencing data, and differen-

tiate heterozygous alleles from sequencing errors.

The last one is ROOFTOP that is a tool that improves the accuracy of so-

matic variant calling. This research studies the effect of sequencing errors on

variant calling—one of the most important applications from a clinical point

of view—using in silico experiments. In this study, a new environment that

generates ground truth variants and reads with sequencing errors was devel-

oped, and the effect of the errors on different variant calling algorithms have

been analyzed using the outputs from the environment. The experiments

suggest that, by removing sequencing errors from input reads, a meaningful

number of false negatives can be removed from variant calling results. It

is also found that correcting sequencing errors in reads from tumor samples

and removing reads from normal cells in tumor samples are highly effective

ways to increase sensitivity of somatic mutation calling especially when the

ratio of tumor cells in the tumor samples is low. Based on the results, new

software ROOFTOP is developed to remove reads from normal cells in tumor

samples.

These comprehensive studies on sequencing errors could be of help in un-

derstanding how sequencing errors happen in each sequencing technology,

how the errors could degrade downstream analysis results, and how sequenc-

ing data could be improved by removing sequencing errors to get better

results with the data.

This dissertation is organized as follows. Chapter 2 compares the different

HTS platforms and discusses what types of errors are common and why.

Chapters 3, 4, and 5 present BLESS and SPECTACLE, examining their

performance through a series of analyses. Finally, discussed in Chapter 6 are

the effects of sequencing errors on variant calling and how to improve the

analysis results.
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CHAPTER 2

HIGH-THROUGHPUT DNA SEQUENCING
TECHNOLOGIES

During the past ten years, many different HTS technologies have been intro-

duced. They use different methods to determine the order of nucleotides in

DNA sequences from samples, which gives each HTS technology a different

error characteristic in the output of the sequencing process.

2.1 Illumina

2.1.1 Sequencing Process

The Illumina technology is currently considered to be the most popular se-

quencing technology. The sequencing process is shown in Figure 2.1. First,

DNA samples are randomly fragmented and adapters are ligated to both ends

of the fragments. The single stranded fragments are randomly bound to the

surface of the flow cell–an eight-channel sealed glass device (Figure 2.1A).

In order to later reach sufficient signal intensity during following sequencing

steps, each of the fragments is then replicated using bridge amplification,

and multiple identical copies of the original fragments are created in close

proximity. A set of fragments made from the same original fragment is called

a cluster (Figure 2.1B).

To determine each nucleotide in the fragments, the Illumina technology

uses a method called sequencing by synthesis (SBS) in which all four mod-

ified nucleotides, sequencing primers, and DNA polymerases are added si-

multaneously to the flow cell channels, and the primers are hybridized to

the fragments. Then, polymerases are used to extend the primers using the

modified nucleotides. To each of the four types of nucleotides, fluorescent

dye with four different colors is added in order for each type to be unique.

The 3’-OH group of nucleotides is chemically blocked such that, after the

4



Figure 2.1: The Illumina sequencing technology.
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nucleotides are incorporated, further incorporation cannot happen.

In the next step, a laser is used to excite each cluster, and the colors

emitted are captured using a charge-coupled device (CCD). The images are

then processed to be determined through the process called base calling.

After base calling, the 3’ blocking group is removed to prepare for the next

incorporation. The incorporation and base calling are repeated for a specific

number of cycles (Figure 2.1C).

2.1.2 Sequencing Errors

The most popular error type in the Illumina technology is substitutions [25],

and there are several sources of sequencing errors. The first one is phas-

ing. Phasing means nucleotides are incorporated at different positions in

the fragments of a cluster during the same cycle. The effect of phasing on

base calling accumulates in each cycle, making the bases determined in the

later cycles have more errors. Second, clusters initiated from more than one

DNA fragment can be made, resulting in mixed signals or crosstalk when the

sequencer identifies the signals in the base calling step.

2.2 Roche 454

2.2.1 Sequencing Process

The 454 sequencing is a technology introduced in 2004 that uses pyrosequenc-

ing. DNA samples are randomly fragmented, and each fragment is attached

to a bead whose surfaces carries primers (Figure 2.2A). Then, emulsion PCR

is conducted to make each bead contain thousands of copies of the initial

fragment (Figure 2.2B).

The beads are then arrayed into picotiter plate (PTP) wells that fix each.

In pyrosequencing, each incorporation of a nucleotide releases pyrophosphate,

which initiates a series of downstream reactions that ultimately produce light

by luciferase. At each cycle during sequencing, a single type of nucleotide is

added, and the incorporation of the nucleotide, complementing the next base

in the fragments on beads, releases light that is detected by a CCD (Figure

2.2C).
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Figure 2.2: The Roche 454 sequencing technology.
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2.2.2 Sequencing Errors

In pyrosequencing, multiple incorporation events occur in homopolymers;

hence the length of a homopolymer should be determined by the intensity of

the light, which is prone to errors [26]. Moreover, strong light signals in one

well of the PTP may make insertions in neighboring ones, even though no

incorporation happens here [27]. Phasing is also observed as in the Illumina

technology, and it worsens the signal-to-noise ratio.

The error rate increases with the position in the sequence. This is because

the efficiency DNA polymerases and luciferases drops over the sequencing

cycles.

2.3 Life Technologies SOLiD

2.3.1 Sequencing Process

The SOLiD platform uses adapter-ligated fragments and an emulsion PCR

approach with small beads to amplify the fragments, which is similar to

the 454 sequencing technology. However, unlike the 454 technology, the

SOLiD technology uses DNA ligase instead of DNA polymerase to identify

nucleotides in the fragments.

The SOLiD sequencing process consists of multiple sequencing rounds.

After primes are annealed, 8-mers with a fluorescent label at the end are

sequentially ligated to the DNA fragments, and the color emitted from the

label is recorded (Figure 2.3A). Then, the end of the 8-mers is chemically

cleaved to allow for the next ligation cycle.

The output of the SOLiD platforms is in a so-called color space which is

the encoded form of the nucleotide sequence where four colors are used to

represent 16 combinations of two bases. After a certain number of ligation

cycles, the complementary strand is removed and a new sequencing round

is started using a primer annealed one base further upstream. This means

that the positions assessed by the 8-mers change in each round, and the

sequencing stops once every base has been probed twice (Figure 2.3B). The

color space data can then be decoded given prior knowledge of the leading

base, usually the last base of the adapter (Figure 2.3C).
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Figure 2.3: The Life Technologies SOLiD sequencing technology.
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2.3.2 Sequencing Errors

Types of sequence errors in the SOLiD platform are diverse [27]. Hybridiza-

tion is a stochastic process; this reduces the number of molecules participat-

ing in subsequent ligation reactions and, therefore, substantial signal decline.

Consequently, the error rate increases as the ligation cycles progresses. In-

complete cleavage of the dyes is another source of phasing, and it can make

noise in the identification process of the next ligation cycle.

2.4 Life Technologies Ion Torrent

2.4.1 Sequencing Process

The Ion Torrent sequencing is relatively new and the first sequencer to use

technology introduced in 2010. An overview is shown in Figure 2.4. It uses

a chip that has a a high-density array of wells on its surface, and each has a

bead with multiple identical fragments. The chip is flooded with one type of

nucleotide at each cycle. When a base is incorporated with a fragment in the

bead, a hydrogen ion is released, which changes the pH of the solution. The

chip has Ion sensors for each well and used to detect how many nucleotides

are incorporated.

2.4.2 Sequencing Errors

The Ion Torrent should detect the number of nucleotides in a homopolymer

by precisely detecting the pH change; it frequently causes indel errors like

the 454 technology.

2.5 Pacific Biotechnology SMRT

2.5.1 Sequencing Process

The first single molecule real-time (SMRT) technology-based sequencer was

commercially released in 2011. The name implies that (1) no amplification is
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Figure 2.4: The Ion Torrent sequencing technology.
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Figure 2.5: The Pacific Bioscience SMRT sequencing technology.
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needed, and (2) it observes enzymatic reaction in real time. It is considered

a third-generation sequencing (TGS) technology because it does not require

any amplification before sequencing.

A SMRT cell has many zero-mode waveguides (ZMWs) as illustrated in

Figure 2.5A. Since the ZMW is very small, the wavelength of the light excited

from the bottom of the ZMW cannot pass through. Consequently, the light

can just penetrate the lower 20-30 nm of the ZMW; the tiny space works as

detection volume.

Each ZMW houses a molecule of a single-stranded DNA template and a

DNA polymerase at the bottom. Nucleotides attached with four correspond-

ing fluorescent dye molecules are then introduced, as the DNA polymerase

performs DNA synthesis naturally. While a nucleotide is held in the detec-

tion volume by the incorporation process, light is produced and is recorded

in a movie format (Figure 2.5B).

2.5.2 Sequencing Errors

The causes of sequencing errors in the SMRT technology are (1) two short

intervals between two incorporation events, and (2) binding and release of

nucleotides in the active site before incorporation [25]. The most common

error types are insertions and deletions, and they are uniformly distributed

along reads [28].

2.6 Oxford Nanopore

2.6.1 Sequencing Process

Oxford Nanopore is another TGS technology; the first commercial device was

introduced in 2012. A nanopore is a nanoscale hole made up of protein or

synthetic material such as silicon nitride or graphene. An ionic current passes

through a nanopore by setting a voltage across this membrane as shown in

Figure 2.6. If a single-stranded DNA sequence passes through the pore, a

characteristic disruption appears in the ionic current. Measuring the current

makes it possible to identify the nucleotide in question.
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Figure 2.6: The Oxford Nanopore sequencing technology.

2.6.2 Sequencing Errors

This technology is very young and its characteristics have not been thor-

oughly studied. It is thought that the substitution error rate is similar to the

insertion error rate, and the deletion error rate is two times higher than the

error rate of the other two errors [29]. The errors are caused by the uneven

movement of the DNA strand through the nanopore [30].
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CHAPTER 3

BLESS: BLOOM-FILTER-BASED ERROR
CORRECTION ALGORITHM

3.1 Introduction

Recent advances in HTS technologies have made it possible to rapidly gen-

erate high-throughput data at a much lower cost than traditional Sanger

sequencing technology [25]. HTS technologies enable cost-efficient genomic

applications, including de novo assembly of many non-model organisms [31],

identifying functional elements in genomes [32], and finding variations within

a population [33, 34, 35, 36]. In addition to short read length, a main chal-

lenge in analyzing HTS data is its higher error rate than traditional sequenc-

ing technology [1, 2], and it has been demonstrated that error correction

can improve the quality of genome assembly [37] and population genomics

analysis [38, 36].

Previous error correction methods can be divided into four major cate-

gories [5]: (1) k-mer spectrum based [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 39],

(2) suffix tree/array based [17, 18, 19, 20], (3) MSA based [21, 22], and

(4) HMM based [23, 24, 40]. However, none of these previous methods has

successfully corrected errors in HTS reads from large genomes without con-

suming a large amount of memory that is not accessible to most researchers.

Previous evaluations showed that some error correction tools require over 128

GB of memory to correct errors in genomes with 120 Mbp and the others

need tens of GB of memory [5]. For a human genome, previous approaches

would need hundreds of GB of memory. Even if a computer with hundreds of

GB of memory is available, running such memory-hungry tools degrades the

efficiency of the computer. While the error correction tool runs, we cannot

do any other job using the computer if most of the memory is occupied by

the error correction tool. This can be a critical problem for data centers,

where a large amount of data should be processed in parallel.
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In several works, Bloom filters [41] or counting Bloom filters [42] were

used to save a k-mer spectrum, which includes all the strings of length k

(i.e. k-mers) that exist more than a certain number of times in reads [43, 44,

45, 46]. Although the Bloom filter is a memory-efficient data structure, the

memory reduction by previous Bloom filters-based methods did not reach

their maximum potential because of the following four reasons: (1) The size

of a Bloom filter should be proportional to the number of distinct k-mers

in reads, and the number of distinct k-mers was conservatively estimated,

thus could be much higher than the actual number. (2) They could not

remove the effect of false positives from Bloom filters. In order to make the

false positive rate of the Bloom filters small, the size of Bloom filters was

made large. (3) Because they could not distinguish error-free k-mers from

erroneous ones before a Bloom filter was constructed, both of the k-mers

needed to be saved in Bloom filters. (4) Multiple Bloom filters (or counting

Bloom filters) were needed to count the multiplicity of each k-mer.

Besides the large memory consumption of the existing methods, another

problem encountered during the error correction process is that there exist

many identical or very similar subsequences in a genome (i.e. repeats). Be-

cause of these repeats, an erroneous subsequence can sometimes be converted

to multiple error-free subsequences, making it difficult to determine the right

choice.

In this dissertation, we present a new Bloom-filter-based error correc-

tion algorithm, called BLESS. BLESS belongs to the k-mer spectrum based

method but it is designed to remove the aforementioned limitations existed

in the k-mer spectrum based solutions. Our new approach has three impor-

tant new features: (1) BLESS is designed to target high memory efficiency in

order for error correction to be run on a commodity computer. The k-mers

that exist more than a certain number of times in reads are sorted out, and

programmed into a Bloom filter. (2) BLESS can handle repeats in genomes

better than previous k-mer spectrum based methods, which leads to higher

accuracy. This is because BLESS is able to use longer k-mers compared to

previous methods. Longer k-mers resolve repeats better. (3) BLESS can ex-

tend reads to correct errors at the end of reads as accurately as other parts of

the reads. Sometimes an erroneous k-mer may be identified as an error-free

one because of an irregularly large multiplicity of the k-mer. False positives

from the Bloom filter can also cause the same problem. BLESS extends the
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reads to find multiple k-mers that cover the erroneous bases at the end of

the reads to improve error correction at the end of the reads.

To identify erroneous k-mers in reads, we need to count the multiplicity

of each k-mer. Counting k-mers without extensive memory is challenging

[47, 48, 49, 50, 51]. BLESS uses the disk-based k-mer counting algorithm

like Disk Streaming of k-mers (DSK) [50] and k-mer Counter (KMC) [47].

However, BLESS needs to save only half of the k-mers that DSK does in hash

tables because it does not distinguish a k-mer and its reverse complement.

To evaluate the performance of BLESS, this dissertation used real HTS

reads generated with the Illumina technology as well as simulated reads.

These reads were corrected using BLESS as well as six previously published

methods. Our results show that the accuracy of BLESS is the best while it

only consumes 2.5 percent of the memory usage of all the compared methods

on average. Our results further show that correcting errors using BLESS

allowed us to align 69 percent of previously unaligned reads to the reference

genome accurately. BLESS also increased NG50 of scaffolds by 50 percent

and decreased assembly errors by 66 percent based on the results from Velvet

[52].

3.2 Methods

3.2.1 Overview of the BLESS Algorithm

BLESS belongs to the k-mer spectrum based error correction category [12].

A k-mer is called solid if it exists more than M , the k-mers multiplicity

threshold, times in the entire reads, and weak otherwise. If a k-mer extracted

from a read is a weak k-mer, it can be considered as having sequencing errors.

Figure 3.1 depicts the high-level diagram of BLESS. In this figure, the

cylinders and the rectangle with extra lines depict data written to disk and

memory, respectively. To convert weak k-mers to solid k-mers, we need to

save the list of the solid k-mers and to query a k-mer to the list efficiently. In

Step 1, k-mers in reads are distributed into multiple files, and the multiplicity

of k-mers in each file is counted. Then in Step 2, only solid k-mers are

programmed into a Bloom filter, and errors in reads are corrected using the

Bloom filter. The final step of BLESS is to restore the false corrections made
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Figure 3.1: The high-level block diagram of BLESS.

by the false positives from the Bloom filter.

3.2.2 Counting the Multiplicity of k-mers

The first step in BLESS is to count the multiplicity of each k-mer, followed by

finding the solid k-mers, and programming those solid k-mers into a Bloom

filter. By counting the multiplicity of k-mers, we can sort out the solid k-mers

that are needed for further analysis. We can also create a k-mer multiplicity

histogram to be used to determine the multiplicity threshold M , if M is

not predetermined by the user. The total number of solid k-mers is used to

determine the size of the Bloom filter.

Figure 3.2 shows how to count the multiplicity of each k-mer. Fs contains

unique solid k-mers in the reads and Ns is the number of unique solid k-mers.

First, all the k-mers in the reads are distributed into N (default 100) files

in order to reduce the required memory for this process. In BLESS, a k-mer

and its reverse complement are treated as the same k-mer, which is called a

canonical k-mer. If the middle base of a k-mer is A or C (k is always an odd

number), the k-mer can be used as a canonical k-mer of itself. If the middle

base is G or T, the reverse complement of the k-mer becomes the canonical

k-mer of the original k-mer. A hash value is calculated for each canonical

k-mer and the file that the k-mer will be written into is determined by using

the hash value. Next, the k-mer is written to the file. After this process,

all the identical k-mers and their reverse complements are written into the

same file. The next step is to open each file that contains k-mers and count

the number of k-mers using a hash table. After all the k-mers in the file are

updated in the hash table, we check the multiplicity of each k-mer in the

hash table. If the multiplicity of a particular k-mer is larger than M , it is a
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Figure 3.2: The procedure for counting the multiplicity of each k-mer.
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solid k-mer and is subsequently written to the solid k-mer list file Fs.

If M is not given by the user, the k-mer multiplicity histogram is generated

and M is determined using the histogram. The process of determining M

using the k-mer multiplicity histogram is explained later (see Section 3.2.4).

After completing this process for all the N files, we can create the solid k-mer

list file Fs and determine the number of distinct solid k-mers Ns. The time

complexity of counting the multiplicity of k-mers is O(RL), where R is the

number of reads and L is the read length.

3.2.3 Correcting Errors Using a Bloom Filter

In order to convert weak k-mers into solid k-mers, we must know the solid

k-mer list. If this list was stored in file Fs, it would be impossible to rapidly

check whether a k-mer is in the list or not. BLESS solves this problem by

recording all the solid k-mers in a Bloom filter, which supports fast mem-

bership test while using little memory. An open source C++ Bloom filter

library [53] is used in BLESS. When implemented, the size of the bit vector

and number of hash functions in the Bloom filter are determined using Ns

and a target false positive probability. After constructing the Bloom filter,

all the solid k-mers in Fs are programmed into the Bloom filter. The weak

k-mers are then converted into solid ones using this Bloom filter.

Let read r be a sequence of symbols A, C, G, T with length L. The i-th

base of read r is denoted by r[i], where 0 ≤ i ≤ L - 1. The form r[i, j] is

a substring from the i-th base to the j-th base of r. The pseudo code of

the correction process for a read r is shown in Figure 3.3. SIall is the set of

solid k-mer islands in r, and Z is the number of solid k-mer islands in SIall.

This process is initiated from finding all the solid k-mer islands in r. A solid

k-mer island consists of consecutive solid k-mers, which is in neighborhoods

with weak k-mers or the end of the read. To find them, all the k-mers from

r[0, k - 1], to r[L - k, L - 1] are converted to their canonical forms and the

canonical forms are queried to the Bloom filter. If the Bloom filter output

for a k-mer is true, then the k-mer is solid. If a solid k-mer island has a

solid k-mer with quality scores below 10, the k-mer is removed from the solid

k-mer island.

The relation between solid k-mer islands and weak k-mers is shown in Fig-
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Figure 3.3: The procedure for correcting errors in a read r.
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Figure 3.4: An example of solid k-mer islands and weak k-mers.

ure 3.4. Weak k-mers have errors but the errors cannot be in the bases that

overlap solid k-mers. This is because the errors that are in the overlapped

bases would make the solid k-mers erroneous, while we assume that solid

k-mers do not have errors. Therefore a weak k-mer can be converted to a

solid one by modifying bases that do not overlap with solid k-mers.

The weak k-mers that exist between two consecutive solid k-mer islands

SIi and SIi+1 can be corrected by using the rightmost k-mer of SIi and the

leftmost k-mer of SIi+1. This makes all the corrected bases between SIi and

SIi+1 covered by k consecutive solid k-mers. If an erroneous base exists in

the first or last k - 1 bases of a read, it is not possible to get consecutive

k-mers covering the erroneous base. BLESS solves this problem by extending

a read on both ends.

When there is no solid k-mer island in a read, BLESS tries to change the

first k-mer to a solid one by substituting low-quality bases with different

bases. If the first k-mer is successfully converted to solid k-mer(s), the solid

k-mer(s) are traced to the right.

3.2.4 Determining Parameters

Output quality of BLESS is affected by the choice of the k-mer multiplicity

threshold, M . The distribution of k-mer multiplicity in the original reads is
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Figure 3.5: The histogram of the multiplicity of 21-mers in S. aureus reads.

the mixture of error-free k-mers and erroneous k-mers. The multiplicity of

error-free k-mers is known to follow the Poisson distribution and the mul-

tiplicity of erroneous k-mers can be fit to the gamma distribution [8, 15].

The histogram of the multiplicity of k-mers usually has the curve like the

red line in Figure 3.5 if k is in a reasonable range. Such a histogram can be

decomposed into the histogram of error-free k-mers (blue line) and erroneous

k-mers (gray line). If M is too small, many erroneous k-mers may be recog-

nized as solid k-mers (i.e. larger false positives and smaller false negatives).

On the other hand, if M is too large, many error-free k-mers become weak

k-mers (i.e. larger false negatives and smaller false positives).

We define the optimal value of M , Moptimal, as the M value that minimizes

the sum of false positives and false negatives. In BLESS, the histogram like

the red line in Figure 3.5 can be easily generated because BLESS already

calculated the multiplicity of each k-mer. In the histogram, the sum of

false positives and false negatives becomes the minimum when M is the

valley point of the U-shape curve with the following two assumptions: (1) As

M increases from the value point, the corresponding value of the gray line

becomes smaller and the corresponding value of the blue line becomes larger.

(2) As M decreases from the valley point, the corresponding value of the gray

line becomes larger and the corresponding value of the blue line becomes

smaller. This is a reasonable assumption if error-free k-mers and erroneous
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k-mers can be fit into the Poisson and gamma distribution respectively, and

two distributions are away from each other.

If we assume that the current M value is the valley point and M moves

to the right, the sum of false positives and false negatives increases even

though the number of false positive decreases. Similarly, if M moves to the

left, the sum of false positives and false negatives also increases even though

the number of false negatives decreases. Therefore, the sum of false positives

and false negatives becomes its minimum when M is the valley point of the

histogram of the multiplicity of k-mers.

Choosing the appropriate k is also needed to get more accurate results

from BLESS. If k is too long, the average multiplicity of solid k-mers be-

comes smaller. On the other hand, if k is too short, there may be too many

unnecessary paths in the error correction process. This will increase not only

the probability that wrong corrections are made but also BLESS’s runtime.

Unfortunately, BLESS currently cannot automatically determine the optimal

k value. However, our empirical analysis shows that the k value that satisfies

the following two conditions usually generates the results close to the best

one: (1) Ns / 4k ≤ 0.0001 where Ns represents the number of unique solid

k-mers (BLESS reports Ns) and (2) the number of corrected bases becomes

the maximum at the chosen k value.

3.3 Results

To assess the performance of BLESS, we corrected errors in five different

read sets from various genomes using BLESS and six other error correction

methods. All the evaluations were done on a server with two Intel Xeon

X5650 2.67 GHz processors, 24 GB of memory, and Scientific Linux.

3.3.1 Data Sets Used in the Evaluation

We used three data sets generated by the Illumina sequencing technology and

two simulated read sets. The characteristics of each read set are summarized

in Table 3.1. The first read set, labeled D1, is the fragment library of S.

aureus used in the GAGE competition [37]. The second genome (D2) is high

coverage (160 ×) low error rate (0.5 percent) E. coli reads. The third read
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Table 3.1: Details of the HTS read sets used to evaluate BLESS.

Genome
Accession number Genome

length
Read
length

Number
of reads

Coverage
(×)

Per-base
error rate (%)Reference Read

D1: S. aureus
NC010079

SRR022868 2,903,080 101 1,096,140 38.1 2.1NC010063.1
NC012417.1

D2: E. coli NC000913 SRR001665 4,639,675 36 20,693,240 160.6 0.5
D3: Human Chr14 NC000014.8 N/A 88,289,540 101 36,172,396 41.4 1.4
D4: Human Chr1 NC000001.10 N/A 225,280,621 101 89,220,048 40.0 0.6
D5 (10 ×):
Human Chr1 10 Mbp

NC000001.10 N/A 10,000,000 101 990,100 10.0 0.6

D5 (20 ×):
Human Chr1 10 Mbp

NC000001.10 N/A 10,000,000 101 1,980,198 20.0 0.6

D5 (30 ×):
Human Chr1 10 Mbp

NC000001.10 N/A 10,000,000 101 2,970,298 30.0 0.6

D5 (40 ×):
Human Chr1 10 Mbp

p NC000001.10 N/A 10,000,000 101 3,960,396 40.0 0.6

Note: [Genome Length] Length of genomes without Ns, [Number of Reads] Number of
reads after all paired reads that contain Ns are removed. [Coverage] Number of Reads ×
Read Length / Genome Length; [Per-base Error Rate] Mismatches / ((Number of Reads
- Unaligned Reads) × Read Length).

set is the fragment library of human chromosome 14 reads (D3) that were also

used in the GAGE competition. To check the scalability of BLESS, we also

used simulated reads generated from GRCh37 human chromosome 1 (D4).

The reads were generated using simLibrary and simNGS [54], after all Ns in

the reference sequence were removed. The head of each read indicates the

index of the reference sequence where the read is from. Using the information,

we also generated an error-free version of D4 (D4Error-Free hereafter). The last

data set D5 was generated to evaluate the improvement of de novo assembly

results after error correction. Four read sets with 10-40 × of read coverage

and their error-free versions were generated from the first 10 Mbp of the

reference sequence for D4 using simNGS.

To provide a controlled assessment of the accuracy of corrections made by

BLESS, errors in the input read sets are identified using the error correction

evaluation toolkit (ECET hereafter) [5]. ECET first aligns reads to the ref-

erence sequence using BWA [55] and identifies a set of differences between

the reads and the reference. ECET evaluates corrected reads by counting

how many differences in the set are removed. In our evaluations, insertions

and deletions were not included in the set because insertions and deletions

can be corrected by substitutions and ECET regards these substitutions as

wrong modifications. For example, if a genome sequence contains ACGT and

a read from the genome has one insertion between C and G (i.e. ACAG), the
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insertion error can be corrected by substituting the third (fourth) base A (G)

with G (T). ECET counts the third and fourth bases as wrong modifications.

3.3.2 Error Correction Accuracy

We compared BLESS with the following existing error correction tools: Quake

[8], Reptile [16], HiTEC [17], ECHO [21], and Musket [10]. We chose these

tools to compare mainly because they cover the three major categories of

error correction methods, i.e., k-mer spectrum based, suffix tree based, and

MSA based methods. To the best of our knowledge, PREMIER [24] is the

only HMM based error correction tool for DNA reads, and it was not included

in our comparison because its source code is not available. In addition, we

also considered Bloom filter based methods that were previously published.

We selected DecGPU [43] to compare with BLESS because it is the only

Bloom filter based method that can run without a Graphics Processing Unit

(GPU).

The comparison results of BLESS and the other six error correction tools

are summarized in Table 3.2. The outputs of the error correction tools were

converted to target error format (TEF) files using the software in ECET in

order to measure the accuracy of the corrected reads. In each data set, we

counted the following: erroneous bases successfully corrected (true positive,

TP), correct or erroneous bases erroneously changed (false positives, FP),

erroneous bases untouched (false negatives, FN), and the remaining bases

(true negative, TN). Then, sensitivity, gain, and specificity were calculated

using these four values. Sensitivity, defined as TP / (TP + FN), shows how

many errors in the input reads are corrected. Gain, defined as (TP - FP) /

(TP + FN), represents the ratio of the reduction of errors to the total number

of errors in the original reads. Gain can be negative if the number of newly

generated (FP) errors is greater than the number of corrected errors. Speci-

ficity, defined as TN / (TN + FP), shows the fraction of error-free bases

left unmodified. DecGPU and Quake cut bases that they cannot correct,

and these trimmed bases are considered as FPs in ECET. In our evaluation,

trimmed bases were excluded from FPs and thus not used to calculate sensi-

tivity, gain, and specificity because considering trimmed bases as FPs made

gain of DecGPU and Quake worse than what they really were.
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Table 3.2: Details of the HTS read sets used to evaluate BLESS.

Data Software
Accuracy Memory

(MB)
Wall-clock
Time (min)

Number
of ThreadsSensitivity Gain Specificity

D1

BLESS 0.895 0.894 1.000 11 6 1
DecGPU 0.076 0.002 0.998 1,556 2 12
ECHO 0.710 0.707 1.000 6,063 96 12
HiTEC 0.859 0.838 0.999 2,127 12 1
Musket 0.709 0.703 1.000 362 2 12
Quake 0.145 0.144 1.000 644 8 12
Reptile 0.564 0.518 0.999 1,232 7 1

D2

BLESS 0.968 0.967 1.000 14 23 1
DecGPU 0.333 0.028 0.998 2,171 5 12
HiTEC 0.920 0.880 1.000 14,096 83 1
Musket 0.934 0.926 1.000 347 3 12
Quake 0.838 0.837 1.000 8,339 74 12
Reptile 0.957 0.951 1.000 1,008 52 1

D3

BLESS 10.674 0.644 1.000 150 180 1
DecGPU 0.096 0.058 0.998 2223 28 12
Musket 0.575 0.537 1.000 3763 31 12
Quake 0.128 0.126 1.000 2126 62 12
Reptile 0.577 0.529 0.999 11783 453 1

D4

BLESS 0.892 0.870 1.000 372 459 1
DecGPU 0.358 0.017 0.998 2473 82 12
Musket 0.888 0.866 1.000 7815 56 12
Quake 0.583 0.539 1.000 8863 188 12
Reptile 0.807 0.704 0.999 19007 1775 1
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While some error correction tools such as HiTEC are able to independently

choose appropriate parameters, the error correction quality of other tools

depends on parameters that have to be set by the users. We generated the

corrected read sets that provided the best gain using each error correction

tool in order to compare the best results from the methods. To generate such

read sets, the values of all the key parameters of each tool were scanned in a

continuous fashion within their respective ranges until the gain of each tool

reached the maximum. BLESS, Musket, Quake, Reptile, and DecGPU were

able to generate results for all the four data sets. ECHO did not complete

the error correction for D2 even after 60 hours of running, so we could not

produce ECHO results for D2 and larger data sets (i.e. D3 and D4). HiTEC

also failed to correct errors in D3 and D4 because it ran out of memory.

As shown in Table 3.2, BLESS consistently outperforms the other correc-

tion tools for all the input data sets. For D1-D4, the sensitivity of BLESS

is higher than that of the other methods, while the difference between sensi-

tivity and gain of BLESS is smaller than those of the other methods. This

suggests that BLESS can correct more errors in the reads and that the results

from BLESS always have fewer errors than those from other tools.

The higher accuracy of BLESS comes from its ability to use longer k-mers.

If k is too short, an erroneous k-mer may be recognized as solid, because it

is more probable that a short erroneous k-mer exists in other parts of the

genome. Even though an erroneous k-mer is recognized as a weak k-mer, it

may be possible to convert it to multiple solid k-mers if k is too short. Figure

3.6 shows how the number of distinct k-mers changes and approaches Nideal

in the reference sequence of D2 and D4 as k increases. Nideal represents the

number of distinct k-mers in the reference sequence when all the k-mers in

it are distinct. Indeed, more repeats can be differentiated by using longer

k, which is helpful in removing ambiguities in the error correction process.

The number of distinct k-mers for E. coli becomes 96 percent of Nideal,

when k is 15. However, the same ratio for human chromosome 1 is only 50

percent for the same k value. When k becomes 31, this ratio for human

chromosome 1 surpasses 90 percent. Note that a longer k value does not

always guarantee better error correction results, as the average multiplicity

of k-mers decreases as k increases. However, if k is too short, it would be

more difficult to differentiate solid k-mers from weak ones and k should be

increased until a sufficient average k-mer multiplicity is guaranteed.

28



Figure 3.6: The ratio of the number of distinct k-mers in the D2 and D4
reference sequences to their Nideal values.

In the HTS reads that were generated using the Illumina technology, errors

are usually clustered at the 3-end of the reads. Therefore correcting errors

in that region is an important feature of error correction methods although

correcting such errors is more difficult than correcting errors in the middle of

the reads. BLESS can correct errors at the end of the reads as accurately as

in other parts through a reads extension. To assess the number of corrected

errors in each position of the reads, we calculated the number of TPs and

sensitivity at each position. Figure 3.7A shows the number of TPs in each

corrected read set for D1.

In this graph, Reference refers to the number of errors in each position of

the original reads, which rapidly increases at the 3-end of the reads. Figure

3.7B shows the ratio of TPs to the number of errors (i.e. sensitivity) in

each position of the reads in D1. We observed that BLESS maintains high

sensitivity even in the regions where most of the errors are clustered, as

indicated by the overall flat contour of the line shown in the figure.

3.3.3 Memory Usage

The peak memory usage and runtime of each method is also displayed in

Table 3.2. BLESS’ average memory usage is only 2.5 percent of the other
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Figure 3.7: The number of TPs and per-base sensitivity calculated in each
position of the D1 reads.

30



methods. On average, BLESS consumes 5.6 percent of the memory that

DecGPU does, which is another Bloom filter based method. DecGPU pro-

grams k-mers into a counting Bloom filter, which helps the multiplicity of

k-mers to be saved with small memory with a certain false positive proba-

bility.

BLESS requires less memory than previous Bloom filter based methods for

the following reasons. First of all, BLESS can count the multiplicity of k-

mers and find out the list of solid k-mers without constructing Bloom filters.

Therefore, we eliminate the need to estimate the number of distinct k-mers.

We also do not need to program weak k-mers into the Bloom filter. Second,

BLESS uses a Bloom filter instead of a counting Bloom filter. Previous

methods use counting Bloom filters to count the multiplicity of k-mers, and

this information is then used to identify solid k-mers. In BLESS, however,

we already know the list of solid k-mers. Therefore it is not necessary to

know the multiplicity of k-mers to identify solid k-mers anymore, and solid

k-mers can be programmed into a Bloom filter instead of a counting Bloom

filter. Finally, BLESS is able to remove false corrections that are generated

by false positives from the Bloom filter. Therefore the target false positive

probability of the Bloom filter used in BLESS does not need to be very small,

which helps to reduce the size of the Bloom filter.

3.3.4 Alignment

To evaluate the impact of error correction on read mapping, we compared the

number of reads that could be aligned to the reference sequence with Bowtie

[56] before and after error correction. In Table 3.3, each column denotes the

percentage of exactly aligned reads out of all the reads. We used the paired-

end alignment capability of Bowtie, and the reads that could not be aligned

uniquely in the reference sequences were counted.

All error correction methods reduced the number of unaligned reads, but

BLESS outperformed the others for all the four inputs. After errors were

corrected using BLESS, 81 percent of the entire reads and 69 percent of the

initially unaligned reads could be aligned to the reference on average without

any mismatches. This ratio was higher than the ratio of the other methods.

D4 is a simulated read set, and we know where each read should be aligned.
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Table 3.3: Ratio of the number of exactly aligned reads to the number of
entire reads in percentage.

Software D1 D2 D3 D4
Uncorrected 19.5 73.5 42.8 36.4
Error-Free N/A N/A N/A 80.3
BLESS 75.1 96.5 74.1 77.2
DecGPU 36.6 90.7 55.7 63.8
ECHO 53.6 N/A N/A N/A
HiTEC 70.1 95.0 N/A N/A
Musket 66.9 95.3 69.6 74.3
Quake 58.1 94.3 72.0 65.9
Reptile 48.5 96.1 66.4 67.5

Note: Alignment was performed using the paired-end alignment of Bowtie. [Error-Free]
Result for D4Error-Free. When we ran Bowtie, the maximum and minimum values of insert
length were set, and this prevented 19.7 percent of the reads from being aligned to the
reference sequence.

For each aligned read in the BLESS output, we compared the aligned position

and the position where it originated. There were 99.94 percent of the aligned

reads aligned to the correct positions. Even though this evaluation could not

be done for D1-D3, the percentage of D1-D3 will not be very different from

the D4 result because the same strict Bowtie options were used for all the

data sets.

3.3.5 De Novo Assembly

Error correction can improve not only read alignment but also de novo as-

sembly results. To compare the effect of error correction methods on de novo

assembly, scaffolds were generated using two de Bruijn graph (DBG) based

assemblers [52] and [9] with four D5 read sets (10 ×, 20 ×, 30 ×, and 40 ×
read coverage). A string graph based assembler SGA [57] was also used in

order to show the effect on non-DBG based assemblers. Scaffolds were also

made using the output reads of each error correction tool, and all the scaffold

sets were compared with one another.

The output quality of Velvet and SOAPdenovo is sensitive to the choice

of k. Therefore, all the odd numbers between 35 and 89 were applied to

Velvet and SOAPdenovo as k for each input read set. The k value that gave

the longest corrected scaffold NG50 was selected. NG50 is the length of the
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Table 3.4: Summary of Velvet assembly results for D5 (40 ×).

Software
Scaffold
corrected
NG50 (kbp)

Number of
errors
in contigs

Number of
errors
in scaffolds

Genome
coverage (%)

Uncorrected 671.0 1,321 0 99.5
Error-Free 1,239.1 543 7 99.8
BLESS 1,004.1 447 2 99.8
DecGPU 751.6 566 2 99.8
ECHO 665.4 827 8 99.8
HiTEC 805.2 813 0 99.7
Musket 1,004.1 476 3 99.8
Quake 850.4 553 2 99.8
Reptile 1,004.0 466 4 99.8

Note: [Error-Free] Assembly results for D5Error-Free (40 ×). An inversion error means that
part of a contig or scaffold comes from a different strand with respect to the true genome.
A relocation means that part of a contig or scaffold is matched with a different part within
a chromosome. [Number of errors in contigs] Single mismatches + Indels + Inversions +
Relocations in contigs. [Number of errors in scaffolds] Inversions + Relocations + Indels
in scaffolds.

longest scaffold, S, that the sum of the lengths of scaffolds whose lengths

are greater than or equal to S is greater than or equal to half the length of

the genome length [58]. For SGA, since the most important parameter is the

minimum overlap, all the numbers from 50 to 90 were tested for each data

set in order to find the value that generated the longest corrected scaffold

NG50. Each scaffold set was evaluated using the GAGE assembly evaluation

toolkit [37].

Table 3.4 shows the Velvet assembly results for D5 (40 ×). Corrected NG50

is equal to NG50 except that corrected NG50 is calculated after the scaffolds

are broken at places where assembly errors occur [37]. The GAGE software

generates contigs by splitting scaffolds whenever a run of Ns is found. Er-

rors in contigs include single mismatches, indels, inversions, and relocations.

Errors in scaffolds are the summation of indels, inversions, and relocations.

Genome coverage shows how many bases in the reference sequence are covered

by the scaffolds. Error-Free row shows the assembly results for D5Error-Free(40

×).

The assembly results of BLESS were better than the others in terms of

assembly length and accuracy. Corrected NG50 was improved from 670 kbp

to 1,004 kbp after errors were corrected by BLESS. BLESS also reduced the
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Table 3.5: Summary of Velvet assembly results for D5 (40 ×).

Data
Best value BLESS’ choice

M Gain M Gain
D1 4 0.894 4 0.894
D2 26 0.968 24 0.967
D3 6 0.644 6 0.644
D4 4 0.870 5 0.870

number of errors in the contigs from 1,321 to 449, and improved genome

coverage from 99.5 percent to 99.8 percent.

3.3.6 Choosing Parameters Automatically

In BLESS, M affects the output quality, and BLESS can automatically

choose this value. Table 3.5 shows how close the values chosen by BLESS

are to the best M that makes the gain of BLESS’s output the highest. The

second column represents the best M ; the third column is the corresponding

gain when M is the value in the second column. The fourth and fifth columns

represent M chosen by BLESS and the corresponding gain. For D1 and D3,

the values that BLESS chose were the same as the best M in the second

column. For D2 and D4, there are small differences between M chosen by

BLESS and the best M . However, the difference between the third and fifth

column was 0.001 and 0, respectively. Therefore BLESS’s auto M selection

capability achieves the best gain or the nearly best gain in all the four input

sets.
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CHAPTER 4

ACCELERATING THE ERROR
CORRECTION PROCESS

4.1 Introduction

Correcting errors in sequencing reads is a time-consuming and memory-

intensive process. The occurrences of patterns (k-mers in many tools) in

reads should be counted, and patterns with small occurrences should be sub-

stituted with ones that have high occurrences. Saving patterns requires a lot

of memory for large genomes, and searching for alternative patterns usually

takes a long time. Therefore, memory efficiency and fast runtime in error

correction methods are as important as their accuracy.

To provide a memory-efficient error correction method, BLESS was devel-

oped. While BLESS could generate accurate results with a much smaller

amount of memory than previous works, it was too slow to be applied to

reads from large genomes.

Recently, some new error correction methods that can correct errors in a

large data set in a short period of time have been developed [59, 60]. However,

to the best of our knowledge, none of them satisfy all the three constraints

(i.e., memory efficiency, runtime, and accuracy).

To address the three requirements, we developed a new version of BLESS,

BLESS 2. In BLESS 2, the accuracy of the error correction algorithm has

been further improved over that of BLESS by using the quality score distri-

bution for finding solid k-mers with low-quality scores. Also, the algorithm

was parallelized using the hybrid Message Passing Interface (MPI) and Open

Multi-Processing (OpenMP) programming, which makes BLESS 2 the fastest

tool without loss of memory efficiency.

We compared BLESS 2 with five top-performing error correction tools us-

ing reads from a human genome. BLESS 2 showed at least seven percent

higher gain than its counterparts, and it could correct errors in reads from
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the entire human genome with only 5.6 GB of memory. In addition to these

features, BLESS 2 became the fastest when it was parallelized on two com-

puting nodes using MPI.

4.2 Methods

BLESS 2 is parallelized using the hybrid MPI and OpenMP programming.

Therefore, the overall process can be parallelized on a server with multiple

CPU cores and shared memory, and it can be accelerated further by running

it on multiple servers.

The overall BLESS 2 architecture is shown in Figure 4.1. Rectangles and

parallelograms mean procedures and data, respectively. Rectangles with di-

agonal lines are parallelized using OpenMP. The large gray boxes represent

computing nodes in a cluster. First, Node 1 builds a quality score histogram

that can be used for the error correction step. Then, all nodes start to fetch

input reads to count the occurrence of k-mers. In order to accelerate the k-

mer counting step, MPI was applied to KMC [61], which is one of the fastest

and the most memory-efficient k-mer counters, and the modified KMC was

integrated into BLESS 2. In KMC, k-mers are sent to one of 512 bins, and

k-mers in each bin are counted separately. In BLESS 2, each of the N nodes

invokes KMC, and counts k-mers in 512 / N bins.

Then Node 1 collects the outputs of N nodes and constructs a k-mer

occurrence histogram. This histogram is used to determine the threshold

for solid k-mers. Each node separates k-mers in its private bin that have

occurrences larger than the threshold, and programs them into its own Bloom

filter.

Each Bloom filter thus contains solid k-mers in private to the corresponding

node. Bloom filter data in each node is broadcast to all the other nodes,

and all the Bloom filter data from N nodes is reduced using a bit-wise OR

operation. Now each Bloom filter stores all the solid k-mers in the entire

read set. Each node then corrects R / N reads where R is the total number

of input reads.

The accuracy of BLESS 2 has been significantly improved over its prede-

cessor. The gain is due to (1) analyzing the distribution of quality scores to

find solid k-mers with errors and (2) speculating the locations of errors in
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uncorrected regions and trimming these bases.

Corrected reads from all nodes are concurrently written, using MPI, to a

final output file.

4.3 Results

In order to evaluate the performance of BLESS 2, it was compared with

five state-of-the-art error correction tools. All the experiments were done on

servers with two hexa-core Xeon X5650 CPUs and 24 GB of memory.

Human reads from NA12878 were used as the evaluation input. The high-

confidence variant set for NA12878 was downloaded from [62], and a new

reference sequence RNEW was made by merging the variants with the hg19

sequence. Then ERR194147, which is a read set from NA12878, was aligned

to RNEW using BWA [55]. Errors were extracted from the alignment result

using SPECTACLE [63]. The input reads were corrected using BFC-KMC

r157 [60], BLESS 1.01, Lighter 02/20/2015 [59], Musket 1.1, QuorUM 1.0.0

[64], SGA 01/29/2015 [57], and the accuracy of the outputs was evaluated

using SPECTACLE. Each tool was executed multiple times with consecutive

k-mer length values from 25 to 60, and the result with the best gain for

substitutions, deletions, and insertions was chosen.

The evaluation results are summarized in Table 4.1. D2 is a set of reads

that could be aligned to RNEW . D1 is a set of reads from human chr1-3,

which is a subset of D2. We prepared D1 because only BLESS 2, BFC-

KMC, and Lighter could handle D2 with 24 GB of memory on our server.

For D1, BLESS 2 generated corrected reads with the best accuracy; its gain

was higher than those of the others by at least seven percent and ten percent

on average. Also, there was little accuracy degradation in D2. While BLESS

2 consumed the smallest amount of memory for D2, Lighter used less memory

than BLESS for D1. This is because KMC that BLESS invokes to count k-

mers requires up to 4 GB of memory. For D2, the size of the Bloom filter in

BLESS 2 was larger than 4 GB and KMC was no longer a memory bottleneck.

The runtime of BLESS 2 on one computing node was comparable to that

of the other methods, and BLESS 2 became the fastest tool when more nodes

were available. When four nodes were used, BLESS 2 became 2.3 times faster

than when one node was used. The current version of BLESS 2 reads input
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Table 4.1: Error correction results.

Data Software Gain Memory (GB) Runtime (min)

D1

BLESS
BLESS 2 (1 node) 0.565 3.7 65
BLESS 2 (2 nodes) 0.565 3.7 41
BLESS 2 (3 nodes) 0.565 3.7 33
BLESS 2 (4 nodes) 0.565 3.7 30
BFC-KMC 0.505 11.2 60
Lighter 0.439 3.2 54
Musket 0.454 13.2 133
QuorUM 0.477 10.5 120
SGA 0.448 12.0 396

D2

BLESS 2 (1 node) 0.563 5.6 320
BLESS 2 (2 nodes) 0.563 5.6 203
BLESS 2 (3 nodes) 0.563 5.6 160
BLESS 2 (4 nodes) 0.563 5.6 139
BFC-KMC 0.496 20.5 274
Lighter 0.434 13.9 231

Note: [TP] erroneous bases that are correctly modified; [FP] all bases that are incorrectly
modified; [FN] erroneous bases that are not modified; [Gain] (TP - FP) / (TP + FN);
twelve threads were used in a node for all the tools.
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read files three times (i.e., for analyzing quality scores, counting k-mers using

KMC, and correcting errors), consuming a significant amount of time. Since

there is no efficient way to read a compressed file in parallel, this part cannot

be accelerated even though the number of involved nodes increases. In the

next version, KMC will be merged with BLESS 2 and quality scores could

be analyzed while k-mers are counted.
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CHAPTER 5

SPECTACLE: SOFTWARE PACKAGE FOR
ERROR CORRECTION TOOL

ASSESSMENT

5.1 Introduction

Rapid improvements in next-generation sequencing (NGS) technologies have

allowed us to generate a huge amount of sequencing data at a low cost.

However, the quality of the data has not improved at the same pace as

the throughput of the NGS technologies. For example, the latest Illumina

sequencing machine HiSeq X Ten can produce 1.8 tera base pairs (bp) in each

run, but only about 75 percent of the bases are guaranteed to have Phred

scores of over 30 [65].

Errors in HTS reads degrade the quality of downstream analysis, which

could be improved by correcting the errors [66, 67, 37]. Many stand-alone

methods for correcting the errors in DNA sequencing data have been devel-

oped [68, 69, 17, 70, 21, 8, 10, 22, 59, 16]. Some DNA assemblers have their

own error correction modules, which can be also used as error correction tools

[71, 72, 57].

HTS has also been used for transcriptome analysis [73], and such RNA

sequencing data have sequencing errors as well. However, not all the error

correction methods for DNA sequencing data can correct errors in lowly ex-

pressed transcripts. To solve this problem, [23] developed an error correction

tool dedicated for RNA sequencing data.

Recently, third-generation sequencing (TGS) technologies that do not re-

quire amplification have been developed [74], and single-molecule real-time

(SMRT) sequencing technology from Pacific Biosciences is one of them. Even

though the sequencing system that uses the SMRT sequencing technology

can generate reads with up to tens of thousands of base pairs long, it has

about 12 percent of error rate and errors are evenly distributed in reads [75].

Also, the dominant error types of the technology are insertions and deletions
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that are rare in Illumina reads. Due to these characteristics, dedicated error

correction methods for PacBio reads have been developed [76, 77, 28, 78].

Despite such a large number of error correction methods, only a few stud-

ies have been carried out on the evaluation of the accuracy of these methods.

Such scarcity is mainly due to the difficulty involved in discerning how many

errors were corrected and how many were newly generated in the error cor-

rection process. While checking whether substitution errors are corrected

can be easily done by measuring the Hamming distance between a reference

sequence and a corrected read, it is not so simple to evaluate how accu-

rately errors are corrected when insertions and deletions also exist as errors.

The evaluation becomes more complex when reads are trimmed during er-

ror correction. Aligning a read to the source genome does not always solve

this problem since multiple best alignments can exist [79]. Heterozygosity

also makes the evaluation hard. In a diploid genome, the same locus in a

pair of chromosomes could have different alleles. Therefore, one of them will

be recognized as a sequencing error if reads from heterozygous genomes are

compared with one reference sequence.

To the best of our knowledge, only three research works have been done to

quantitatively evaluate how exactly errors in NGS reads have been corrected.

The first, called Error Correction Evaluation Toolkit (ECET) [5] consists of

two software packages, one of which evaluates Illumina reads and the other,

454 or Ion Torrent reads. The reason for having two separate algorithms for

dealing with the different technologies is that the dominant error models of

454 and Ion Torrent reads are insertions or deletions in homopolymers while

most errors in Illumina reads are substitutions [80, 81].

In the second research work, Molnar et al. [82] try to find out the correct-

ness of reads or k-mers in the outputs from Illumina error correction tools

instead of directly checking the correctness of bases. Their method calculates

(1) how many error-free reads or k-mers cover each base in a genome and (2)

how many bases in a reference sequence are covered by error-free reads or

k-mers, then checks how the two numbers are changed by error correction.

The last one is compute gain that is a part of an error correction tool

package Fiona [79]. It aligns both a read and its corrected version to a

reference sequence, and calculate the difference in edit distance between the

two alignments. Ambiguities in alignments are resolved by placing gaps at

the leftmost or rightmost possible position.
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Even though the three methods opened up ways of evaluating the outputs

from error correction methods, all of them have limitations. The software

package for Illumina reads in ECET can only work with the tools that ex-

plicitly specify the number of bases trimmed from both ends of reads. Even

when this information is available, separate programs for each error correc-

tion tool are needed to extract the number of trimmed bases, because the

tools output the number in different ways.

The software package for 454 or Ion Torrent reads in ECET can evaluate

reads with insertions and deletions but the evaluation results could be wrong

for trimmed reads.

Even though the software developed by Molnar et al. [82]. can be applied

to the outputs from any Illumina error correction method, it cannot be ex-

tended to other sequencing technologies. Since PacBio reads, for example,

have a high error rate and errors are evenly distributed in the reads, it is

hard to get error-free long k-mers. If short k-mers are used by this tool for

the evaluation of PacBio reads, specificity would be low because it is likely

that the same or similar k-mers exist in other parts of the genome sequence.

Also, it would be hard to get sufficient number of error-free corrected reads

due to high error rate and long length of PacBio reads.

The evaluation result of compute gain, like that of ECET, could be wrong.

Because the alignment scores used in compute gain were designed to evaluate

edit distance and users cannot change the values, a read could be aligned to a

reference sequence in totally different ways before and after error correction,

which makes a wrong evaluation result.

Addressing the limitations in these evaluation works, we have developed a

Software Package for Error Correction Tool Assessment on nuCLEic acid se-

quences (SPECTACLE), and we used it to evaluate error correction methods

for Illumina and SMRT that are the most popular NGS and TGS technolo-

gies. The key contributions of this work can be summarized as follows:

1. We have developed a new error correction tool evaluation algorithm

that is independent of underlying error models, and have implemented it

with 20,000 lines of Perl and C++ code. It can evaluate any error correction

tool for NGS and TGS reads. It works for both DNA and RNA sequencing

data, and differentiates heterozygous alleles from sequencing errors.

2. We have designed input read sets that stress the challenges in error

correction such as heterozygosity, coverage variation, and repeats, and the
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input sets are available in our website with the software parameters. These

reads can be used as standard inputs for the evaluation of error correction

tools.

3. We have compared 21 state-of-the-art error correction tools for NGS and

TGS reads using our data set. This will give readers systematic evaluations

of strengths and weaknesses of the tools and indicate potential ways for their

further improvement.

In the sections that follow, we will explain how we prepared the inputs

for our evaluation and how the evaluation algorithm works. We then present

and discuss the evaluation results and what should be done in the future.

5.2 Evaluation Methods

Figure 5.1 shows the SPECTACLE flows for evaluating error correction tools

with DNA simulated reads and DNA real reads. Each flow consists of two

steps. In the first step, the locations of errors in input reads are determined,

and in the next step this information is used to evaluate the output of an error

correction tool. The two steps will be explained in detail in the following

subsections. The basic flow for evaluating RNA error correction tools is

similar and is explained in the supplementary document.

5.2.1 Preparing Input Data

SPECTACLE supports using both simulated reads and real reads to utilize

their unique strengths. When simulated reads are used, we can determine

the exact locations of errors in the reads. Moreover, reads can be generated

from multiple reference sequences with some differences in order to check

whether an error correction tool is able to differentiate heterozygosity from

sequencing errors. However, if a read simulator cannot exactly model real

reads, using such reads could produce misleading results.

The biggest advantage of using real reads is that no assumptions or mod-

eling artifacts exist behind the sequencing data. Therefore, real reads can

have some interesting properties that may not be accurately modeled in sim-

ulated reads. On the other hand, there can be ambiguities in finding error

locations in real reads. In order to find the error locations in real reads, the
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reads need to be aligned to a reference sequence, and this can cause some

problems. First, it is possible that a read is aligned to multiple similar lo-

cations in a reference sequence (or to the same location in different ways),

and determining the correct alignment is sometimes impossible. In the case

of highly repetitive genomes, ambiguous alignments occur frequently, raising

the chances of inaccurate evaluation results. Second, reads and a reference

sequence might come from different samples, and the differences between

them (i.e., variants) will also be recognized as errors. Third, the evaluation

results depend on the accuracy of the alignment tool.

Even though SPECTACLE can work with the output reads from any read

simulator that gives error location information in a Sequence Alignment/Map

(SAM) format, we used pIRS [83] for generating simulated Illumina reads.

Error correction becomes challenging when there are heterozygosity and read

coverage variations [66, 83], and pIRS can produce reads that stress these

characteristics. First, pIRS can generate reads using a diploid genome, and

consequently the reads have both sequencing errors and heterozygosity. Sec-

ond, pIRS can change read coverage depth of a specific genomic region ac-

cording to the GC-content of the region. Figure 5.1A depicts the evaluation

flow for simulated reads. First, two reference sequences Ref1 and Ref2

that represent a pair of chromosomes in a diploid genome are generated by

adding different variant sets to the input reference sequence Ref0. Once the

two sequences are created, reads are generated from Ref1 and Ref2. The

maximum ploidy level that SPECTACLE supports is two.

After the reads are generated, the locations of errors in the reads should

be written in an error location file FL. FL contains (1) the positions where

reads originate in the genome, (2) the locations of substitutions, insertions,

and deletions in each read, and (3) reference sequences from which each

read was sampled (i.e. Ref1 or Ref2). When pIRS generates reads, it also

produces a file containing the error locations (i.e. .info file) and .info file is

converted into FL. In order to simulate PacBio reads, we used PBSIM [84].

PBSIM generates a Mutation Annotation Format (MAF) file for indicating

error locations, and the file is converted to FL. Because SMRT sequencing

technology does not use amplification, coverage variation due to different

GC-content values was not considered in simulated PacBio read generation.

The PacBio reads are generated from one reference sequence because the

error rate of PacBio reads is much higher than the frequency of heterozygous
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sites and we do not expect the evaluation results to be altered appreciably

by adding heterozygous points.

Figure 5.1B shows the evaluation flow for real reads. If input reads and

a reference sequence Ref0 do not come from the same sample, there can be

variants between them; the variants would be recognized later in the flow

as sequencing errors. To overcome this problem, a new reference sequence,

Ref1, is generated by calling the variants and applying them to Ref0. In our

evaluation, BWA [55] and SAMtools [85] were used for variant calling. The

variants are added to Ref0 using VCFtools [86], the input reads are aligned

to Ref1, and the alignment results in the SAM file are converted to FL.

Among the substitution errors in FL, the errors generated by heterozygous

alleles are removed by comparing FL with the variant calling result.

5.2.2 Evaluating the Accuracy of Corrected Reads

Let RC be the corrected version of a read R. In order to evaluate the accu-

racy of RC , we should find corrected errors and newly added errors in RC .

SPECTACLE first takes the segment GR from a reference sequence where

read R was sampled. Then, RC is aligned to GR for finding the errors in

RC (errors missed by a tool, or introduced by a tool). We used a modified

version of the Gotoh algorithm [87] for handling trimmed bases and extract

all the alignment with the best alignment score.

There can be a set of alignments ALNBEST having the same highest align-

ment score for a read RC , but each alignment would imply different numbers

of corrected and newly introduced errors. In this case, SPECTACLE cal-

culates the penalty of the newly introduced errors in RC of each alignment

utilizing the scores used in the alignment step. Then, the alignment alnBEST

from ALNBEST that has the least penalty is chosen. SPECTACLE makes

the choice using the following equation, where ERR(aln) and ERR(R) are

the sets of errors in an alignment aln and R:

alnc = arg max
aln∈ALBEST

∑
err∈E((aln)\E(R))

penalty(err) (5.1)

After alnBEST is chosen, we can discern from it which errors in ERR(R)
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are corrected and how many errors are newly added during correction. In

order to classify the bases in input reads, we introduce a triplet notation,

each character of which should be either Y or N. The first character indicates

whether the base in the original read is correct (Y) or not (N), the second

character indicates whether the base has been modified by an error correction

tool (Y) or not (N), and the third one indicates whether the base in the

corrected read at that position is correct (Y) or not (N). For example, NYY

describes a base that is erroneous in R, modified by an error correction

tool, and error-free in RC . All the bases should fall into one of the five

categories: NNN, NYN, NYY, YNY, and YYN because YYY, YNN, and

NNY are logically impossible. Using these triplets, the accuracy metrics

that are summarized in Table 5.1 are calculated. Because substitutions,

insertions, and deletions are counted separately, we can get three different

sets of statistics for each error type, respectively.

Table 5.1: Accuracy metrics.

Metrics Equations
Sensitivity sum(NYY) / (sum(NYY) + sum(NYN) + sum(NNN))

Gain (sum(NYY) - sum(YYN) - sum(NYN)) / (sum(NYY) + sum(NYN) + sum(NNN))
Specificity sum(YNY) / (sum(YYN) + sum(YNY))
Precision sum(NYY) / (sum(NYY) + sum(YYN) + sum(NYN))
F-score 2 sum (NYY) / (sum(NYY) + sum(YYN) + 2sum(NYN) + sum(NNN))

Though the above evaluation metric applies to PacBio reads as well, it may

take a long time to apply the above algorithm to a large number of PacBio

reads owing to their long length and high error rate. In order to evaluate

long reads with high error rate in a reasonable amount of time, SPECTACLE

supplies an alternative mode that calculates percentage similarity of reads.

Percentage similarity of a read set SR is defined using the follow equation,

where NRM , NRMM , NRI , and NRD are the number of matched bases, the

number of mismatched bases, the number of inserted bases, and the number

of deleted bases in the alignment result of R, respectively:

Percentage Similarity =
∑
R∈SR

NRM

NRM + NRMM + NRI + NRD

(5.2)

SPECTACLE calculates percentage similarity both for input reads and for
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their error correction results, and shows how this number is improved after

error correction. Most PacBio error correction methods trim uncorrected

regions in reads. After this process, RC could be split into multiple pieces and

become much shorter than R. Therefore, SPECTACLE reports read coverage

that indicates how long total read length is and NG50 [37] that shows how

long the average read length is. In addition to these metrics, SPECTACLE

can report other detailed analyses such as related to supporting read coverage

that help users understand the characteristics of an error correction tool in

depth.

Figure 5.2: Supporting reads and supporting read coverage.

Figure 5.2 explains a supporting read, supporting read coverage, and differ-

ential supporting read coverage. Supporting reads are the reads that include

a specific position of a reference sequence with a specific base at the position.

In the left side, there is a read CGTTAA with an erroneous base T, and three

more correct reads are also sampled there. In this example, the number of

supporting reads (i.e. supporting read coverage) for T at that position of the

reference sequence is 1, while supporting read coverage for C is 3. However,

there is another similar sequence in the reference sequence (i.e. repeats) and

the reads sampled at the right region could be supporting vector for T at

the left side, which makes it hard to correct the error. Differential support-

ing read coverage of an erroneous base can be defined as (supporting read

coverage of correct base) - (supporting read coverage for the erroneous base).

An error in a read becomes difficult to correct if the corresponding correct

base has low supporting read coverage. This is because most error correc-

tion tools recognize bases with low supporting read coverage as errors. Low

differential supporting read coverage also makes error correction harder, be-

cause then both a correct base and an erroneous base have a similar number

of supporting reads. SPECTACLE gives the percentage of corrected bases

against supporting read coverage for correct bases, and the percentage of

corrected bases against differential supporting read coverage.
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SPECTACLE also collects the percentage of corrected bases in each posi-

tion of reads (i.e., point sensitivity). Based on this, users can judge whether

an error correction tool can correct errors in a specific region of reads or not.

This report can lead SPECTACLE users to discern how the output of an

error correction tool can be polished further, how multiple error correction

algorithms can be combined, and how an error correction algorithm can be

improved further. There are some indirect measurements that provide an

idea about how good the corrected reads are in the context of downstream

analyses. One of the most intuitive ways to evaluate these is to count the

number of corrected reads that can be aligned to a reference sequence with-

out mismatches or indels. However, this result can be misleading when reads

are aligned to wrong positions in a reference sequence. In order to avoid this,

SPECTACLE has the capability to compare the aligned locations of reads

in a SAM format with FL. If insertions or deletions in a read are corrected,

the aligned position of the read can be shifted. SPECTACLE determines

the largest shift amount of aligned positions for each read using the num-

ber of insertions and deletions, and checks whether reads are aligned within

this range. It then reports the number of reads aligned correctly within this

predicted range. The average number of times each base in the reference

sequence is covered by error-free reads (i.e. error-free read coverage) and the

fraction of a reference sequence that is covered by error-free reads (i.e. chro-

mosome coverage) are important metrics that indicate the quality of a read

set [82]. SPECTALCE collects the two numbers using the exact alignment

result above.

5.3 Results

We evaluated 17 Illumina read error correction tools and four PacBio read

error correction methods using SPECTACLE. All the experiments were done

on a cluster, each computing node of which has two six-core Intel Xeon X5650

processors and 24 GB of memory.

In the following sections, we have included only selected results that high-

light the strengths and weaknesses of the tools. The remaining results, soft-

ware versions, and software command line options are available in the sup-

plementary document of [63].
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5.3.1 Data Preparation

Preparing Illumina Read Sets

Table 5.2: Details of Illumina read sets.

ID
Reference Read

Species
Accession
Number

GL (Mbp)
GC (%)

Length
Cov.
(X)

Error Rate
(%)Avg. Std.

I1-10X

R. sphaeroids

NC 007488.1
NC 007489.1
NC 007490.1
NC 007493.1

4.6 68.8 6.3

100 10 0.4
I1-20X 100 20 0.4
I1-30X 100 30 0.4
I1-40X 100 40 0.4
I2-10X

B. cereus
ATCC 10987

NC 003909.8
NC 005707.1

5.4 35.5 6.3

100 10 0.4
I2-20X 100 20 0.4
I2-30X 100 30 0.4
I2-40X 100 40 0.4
I3-10X

O. sativa Chr. 5 NC 008398.2 29.9 44.0 13.5

100 10 0.4
I3-10X 100 20 0.4
I3-10X 100 30 0.4
I3-10X 100 40 0.4
I4-10X

Mouse Chr. Y NC 000087.7 88.1 38.9 8.0

100 10 0.4
I4-20X 100 20 0.4
I4-30X 100 30 0.4
I4-40X 100 40 0.4
I5-10X

Human Chr. 1 NC 00001.11 230.5 41.7 10.6

100 10 0.4
I5-20X 100 20 0.4
I5-30X 100 30 0.4
I5-40X 100 40 0.4

I6
B. cereus
ATCC 10987

NC 003909.8
NC 005707.1

5.4 35.5 6.3 100 40 0.2

Note: [GL] genome length without Ns; [GC] average GC contents; [Cov.] read coverage;
[Error Rate] ((total number of substitutions) + (total number of inserted bases) + (total
number of deleted bases)) / (total number of bases in reads).

As discussed above, coverage variation, heterozygosity, and repeats com-

plicate error correction, and all the three factors were considered when we

prepared input reads for our evaluation. The Illumina read sets we pre-

pared are described in Table 5.2. Five different genomes I1-I5 were used to

generate simulated read sets. Even though high coverage read sets are pop-

ular, correcting errors in low coverage reads is still important. For example,

cancer genome samples could be the mixture of cancer genomes and normal

genomes, and the portion of one of the genomes could be very low [88]. Error

correction tools for such genomes should have the capability to correct errors

in low coverage reads. Therefore, read sets having both high and low cover-

age values are considered, and the coverage of each set is indicated using the
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postfix -10X, -20X, -30X, and -40X.

I1, I2, and I3 are bacterium genomes that have different GC-content values.

I4 is the mouse chromosome Y known as a highly repetitive genome [89]. I5 is

human chromosome 1, the largest genome sequence used in our experiments.

To evaluate the results for real reads, we downloaded D6 from the Illumina

website [90]. The reads were sequenced from the exact same strain as I2 using

the Illumina MiSeq sequencer. Because the coverage of the reads is over 2,500

X, we down-sampled the reads to 40 X. Details regarding the down-sampling

can be found in the supplementary document.

Even though SPECTACLE can assess the outputs from error correction

tools for RNA sequencing reads, the evaluation results for such tools have

been excluded from the main document. SEECER [23] is the only soft-

ware available for correcting RNA sequencing reads; for some input param-

eters, however, SEECER would occasionally terminate abnormally. So we

ran SPECTACLE with SEECER with the parameters for which the tool had

merely completed execution.

Preparing PacBio Read Sets

The read sets used for evaluating PacBio error correction tools are shown in

Table 5.3. The PacBio error correction tools evaluated in this study require,

in addition to PacBio reads, Illumina reads that are much more accurate than

the PacBio reads. These Illumina reads are described in the “Illumina” col-

umn of Table 5.3. In order to evaluate the effect of Illumina read coverage on

the accuracy of error correction for PacBio reads, we prepared four different

Illumina read sets with different read coverage values (suffixed -10X, -20X,

-30X, and -40X). 40X-EF is an error-free version of 40X and the read set was

used to evaluate the effects of sequencing errors in Illumina reads on error

correction for PacBio reads. P1 is E. coli K12 M1665 strain, and both the

PacBio reads and the Illumina reads are real reads. The PacBio reads were

downloaded from Pacific Biosciences DevNet [91], and reads shorter than

500 bp were filtered out. Four Illumina read sets with different read coverage

values were generated by taking different number of reads from SRR922409.

P2 is the first 10 Mbp region of human chromosome 19, which was used

for evaluating the scalability of the PacBio error correction tools. We first

tried using the entire human chromosome 19. However, only LoRDEC could
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be finished within 70 hours, which is the maximum allocated runtime in our

cluster; as a result, we had to use a portion of the chromosome. The PacBio

reads and the Illumina reads for P2 were simulated using PBSIM and pIRS,

respectively.

5.3.2 Running Error Correction Tools

Running Illumina Read Error Correction Tools

The input read sets were corrected using the 17 error correction tools that had

shown good accuracy in the previous evaluations or had been newly published

at the time of running the evaluations. Among these, the stand-alone error

correction tools are BFC [60], BLESS, Blue [68], Coral [22], ECHO [21],

HiTEC, Fiona, Lighter [59], Musket, Quake, QuorUM [64], RACER [70],

Reptile [16], and Trowel [92]. The remaining three tools are parts of DNA

assemblers, ALLPATHS-LG [71], SGA [57], and SOAPdenovo [9].

For each error correction method, we applied successive numbers to the key

parameters of the tools, and generated multiple corrected output read sets

corresponding to each parameter. The output read sets were assessed using

SPECTACLE and the read set that had the highest gain for substitutions,

insertions, and deletions was chosen. The maximum k-mer length for Quake

was limited to 18, beyond which the memory capacity of our server was

exhausted.

ALLPATHS-LG, BFC, BLESS, Blue, Musket, Quake, QuorUM, RACER,

Reptile, SGA, and SOAPec succeeded in generating outputs for all the input

read sets. Coral, HiTEC, Fiona, and Trowel failed to correct errors in large

genomes because of insufficient memory. ECHO had not finished after 70

hours for the I4 and I5 read sets. Lighter finished correcting all the read sets

but it made no correction for the read sets with 10 X coverage.

Running PacBio Read Error Correction Tools

Widely used PacBio read error correction tools LoRDEC [76], LSC [77],

PBcR [28], and Proovread [78] were evaluated using P1 and P2. No pa-

rameter tuning was needed for LSC, PBcR, and Proovread. For LoRDEC,
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we generated multiple output sets by applying successive values for k-mer

length and solid k-mer occurrence threshold, and chose the result that gave

the highest percentage similarity explained in Section 5.2.2. We could not

assess LSC using P2 because it had not finished after 70 hours.

5.3.3 Evaluation Results for Illumina Error Correction Tools

Accuracy of Illumina Error Correction Tools

Sensitivity and gain for substitution errors for the 40 X input read sets are

summarized in Table 5.4. For all the bacterium genomes I1, I2, and I3,

ALLPATHS-LG, BLESS, Lighter, Musket, Quake, QuorUM, and SGA gen-

erated outputs with gain above 0.95. For the highly repetitive genome I4,

BLESS and Quake outperformed the others, and only these two tools ob-

tained gain above 0.8. For I5, the largest input genome, ALLPATHS-LG,

BFC, BLESS, Lighter, Musket, Quake, QuorUM, and SGA showed gain

above 0.9. Other than BFC, these are the same tools that worked well for

I1-I3. In the evaluation using I6, most tools showed similar performance as

they did for I2 since both I2 and I6 were generated from B. cereus. However,

Coral, Quake, Reptile, SOAPec, and Trowel showed a degradation of above

0.1 for the gain value in I6 when compared with I2.

The difference between sensitivity and gain shows how many false correc-

tions were made by each tool. In general, BFC, BLESS, Quake, SGA, and

SOAPec generated fewer false corrections than the others.

Table 5.5 shows variation in gain with different read coverage values for I5.

Only BLESS, Musket, and Quake generated gain above 0.85 for all the read

sets. Lighter showed good results for 20-40 X reads, but it could not correct

the errors in I5-10X. BFC, BLESS, Musket, Quake, SGA, and SOAPec made

a small number of false corrections for low coverage read sets. Gain was

saturated in most tools when read coverage became 30 X.

The percentage of corrected bases as a function of supporting read cover-

age for I5-40X is shown in Figure 5.3. ALLPATHS-LG, Quake, and QuorUM

corrected more errors than the others when supporting read coverage of cor-

rect bases was close to 1. Even though ALLPATHS-LG and QuorUM have

the capability to correct errors with low supporting read coverage, gain for
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Table 5.5: Sensitivity and gain of substitution errors for the I5 read sets
with different coverage values.

Software
I5-10X I5-20X I5-30X I5-40X

Sensitivity Gain Sensitivity Gain Sensitivity Gain Sensitivity Gain
ALLPATHS-LG 0.911 0.811 0.964 0.886 0.968 0.897 0.969 0.904
BFC 0.810 0.749 0.919 0.891 0.929 0.912 0.934 0.920
BLESS 0.931 0.898 0.961 0.946 0.975 0.960 0.975 0.964
Blue 0.848 0.690 0.894 0.809 0.896 0.818 0.896 0.819
Fiona 0.942 0.837 N/A N/A N/A N/A N/A N/A
Lighter N/A N/A 0.918 0.867 0.938 0.907 0.939 0.913
Musket 0.889 0.860 0.905 0.882 0.907 0.885 0.909 0.886
Quake 0.908 0.896 0.917 0.910 0.920 0.912 0.920 0.913
QuorUM 0.894 0.810 0.952 0.907 0.952 0.922 0.951 0.925
RACER 0.819 -2.287 0.898 -0.164 0.902 0.052 0.902 0.114
Reptile 0.805 0.612 0.869 0.728 0.876 0.754 0.878 0.760
SGA 0.852 0.803 0.941 0.917 0.955 0.936 0.959 0.939
SOAPec 0.585 0.545 0.622 0.609 0.624 0.613 0.624 0.614

Note: [Sens.] Sensitivity.

Figure 5.3: The percentage of corrected errors in I5-40X for various
supporting read coverage of correct bases.
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I5-10X of the tools in Table 5.5 was not as impressive as this result. This

is because they also generated many false positives for this input set. The

effect of differential supporting read coverage on error correction was signifi-

cant only when read coverage was low.

Figure 5.4: Point sensitivity of the I5-40X reads.

As shown in Figure 5.4, tools can correct different percentages of errors in

different locations in reads. The plots for ALLPATHS-LG, BFC, BLESS, and

Lighter show relatively flat lines, which means that they corrected almost the

same proportion of errors in all the positions in reads. On the other hand,

plots for QuorUM and SGA have deep valley points, and the positions of these

regions with little correction match with the k-mer length used with these

tools for generating the respective outputs. In addition, Quake could only

correct a relatively small number of errors at both ends of reads compared

to the others.

Alignment Results for Illumina Error Correction Tools

Table 5.6 shows how many corrected reads can be exactly aligned to reference

sequences. Reads were aligned using the paired-end alignment feature of

Bowtie [56] without allowing any mismatches or indels. The genomes I1-I5

have two reference sequences, and corrected read sets were aligned to the
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reference sequence from which they originated among the two sequences.

The alignment results are well matched with the results in Table 5.4, and

the tools that showed high sensitivity also had more reads aligned correctly

to the reference sequences.

In almost all the cases, the ratio of correctly aligned reads to the total

number of aligned reads was over 99 percent with the exception of I4. For

I4, only the corrected reads from BLESS, Lighter, and Racer showed the

accuracy of over 99 percent.

Runtime and Memory Usage of Illumina Error Correction Tools

Table 5.7: Memory usage and runtime of Illumina error correction tools for
I5-20X and I5-40X.

Software
Memory Usage (MB) Runtime (min)
I5-20X I5-40X I5-20X I5-40X

ALLPATHS-LG 12,287 18,424 122 435
BFC 10,753 10,889 12 21
BLESS (1 node) 3,813 3,825 9 15
BLESS (2 nodes) 3,809 3,799 5 9
Blue 20,286 20,398 29 46
Lighter 1,107 1,109 9 13
Musket 4,215 6,647 19 36
Quake 13,760 21,643 74 143
QuorUM 8,163 8,686 10 22
RACER 12,623 14,490 17 35
Reptile 13,016 17,422 815 1,711
SGA 1,874 3,508 61 125
SOAPec 4,985 9,708 42 71

To compare how the runtime and memory usage of various tools scale with

size of the input, we compared each Illumina error correction method for two

cases, I5-20X and I5-40X which has twice the number of reads as I5-20X.

These results are summarized in Table 5.7. Except Reptile, all the evaluated

Illumina error correction tools support parallelization, and 12 threads were

used for the tools. In addition to running parallel threads on a single node,

BLESS can also be parallelized across multiple nodes using MPI. BLESS

results on two computing nodes are reported separately. For I5-40X, BLESS,
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Lighter, and SGA could correct the read set using under 4 GB of memory.

BFC, BLESS, Blue, Lighter, QuorUM, and RACER used almost the same

memory for both 20 X and 40 X coverage reads. The fastest tools were

BLESS and Lighter and they were over 13 times faster than ALLPATHS-

LG. ALLPATHS-LG required 3.6 times longer time for correcting I5-20X

than I5-40X.

Effect of Using Different Alignment Tools on the Evaluation of Real Reads

For real reads, we compare the errors corrected by an error correction tool

against mismatches and indels obtained in aligning the reads to a reference

sequence. Therefore, the number and the locations of errors could vary ac-

cording to alignment tools. We generated two FL files from I6 using BWA

[55] and Bowtie 2 [93] with default options, and the two files were com-

pared. While BWA found 473,090 substitution errors in D6, Bowtie 2 found

632,705. About 97 percent of substitutions in the BWA set were also found

in the Bowtie 2 set, which means Bowtie 2 is more aggressive than BWA and

it could indicate more errors in reads. When the error correction results were

evaluated using the FL file from Bowtie 2, sensitivity and gain dropped by

up to 8 percent compared to the results with the FL file from BWA because

some of the new errors found by Bowtie 2 were not corrected in the error

correction tools.

5.3.4 Evaluation Results for PacBio Error Correction Tools

Due to the high error rate of PacBio reads, error correction outputs could

have many uncorrected bases. Therefore, most PacBio error correction tools

generate two types of reads: (1) trimmed reads that only contain corrected

regions in input reads and (2) untrimmed reads that include both corrected

and uncorrected regions in input reads. While PBcR only produces trimmed

reads, LSC and Proovread generate both trimmed reads and untrimmed

reads, and they were assessed separately. For LoRDEC, trimmed reads were

generated from the untrimmed reads using lordec-trim-split that is included

in the LoRDEC package.
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Accuracy of PacBio Error Correction Tools

Figure 5.5: Point sensitivity of the I5-40X reads.

In Figure 5.5A, percentage similarity of the outputs from PacBio read error

correction methods for P1 are compared. Percent similarity of the input

reads was 76.6 percent before error correction, and all the output results

were better than this number. Among the four tools, three tools except LSC

showed percent similarity over 95 percent for the trimmed reads. For the

untrimmed reads, LoRDEC and Proovread generated more accurate reads

than LSC. Except the untrimmed LoRDEC reads, read coverage of Illumina

reads gave almost no impact on percentage similarity.

Figure 5.5B and Figure 5.5C show read coverage and NG50 of the outputs

of the compared tools. The two charts have similar shapes and the values be-

came high when percentage similarity in Figure 5.5A was low. The trimmed

LoRDEC reads and the PBcR outputs were improved a lot by increasing Illu-

mina read coverage. The trimmed reads from Proovread were also improved
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Figure 5.6: Percentage similarity, read coverage, and NG50 of PacBio read
error correction methods for P2.

but the values were saturated for 30 X coverage.

Percentage similarity, read coverage, and NG50 are compared for P2-

40X and P2-40X-EF that is the error-free version of P2-40X in Figure 5.6.

Both the trimmed Proovread reads and the trimmed LoRDEC reads showed

high percentage similarity. Percentage similarity and read coverage of the

untrimmed Proovread reads were almost the same compared to those of the

trimmed Proovread reads. However, NG50 of the trimmed Proovread reads

was shorter than that of the untrimmed Proovread reads. LoRDEC gener-

ated the trimmed reads with high percent similarity but it removed too many

bases and read coverage and NG50 of the read set became much lower than

those of the original input reads.

For all the three metric, P2-40-EF did not make a meaningful difference

when it was compared with P2-40. This means sequencing errors in Illumina

reads are not important when Illumina read coverage is about 40 X.

Alignment Results for PacBio Error Correction Tools

We aligned input PacBio reads and their error correction results using BWA

with “-x pacbio” option, and evaluated the alignment results. Before error

correction, over 95 percent of P1 PacBio reads and over 98 percent of P2

PacBio reads could be aligned to the reference sequences, hence the number

was not improved much after error correction.

The ratio of the number of reads that were aligned without any mismatches

or indels to the total number of corrected reads is shown in Figure 5.7. The
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Figure 5.7: Ratio of the number of reads aligned without any mismatches
or indels to the number of corrected reads for P1-40X and P2-40X.

ratio was 0 both for P1 and for P2 before error correction, and some error

correction methods improved the number a lot. For P1, over 50 percent of

trimmed reads from PBcR and Proovread could be aligned to the reference

sequence without any differences. Proovread also showed a good result for

P2. However, PBcR generated much worse results for P2 than for P1. The

ratio of the LSC trimmed reads for P1 was 0.3 percent and no untrimmed LSC

read could be aligned to the reference sequence with no difference. Among

untrimmed corrected reads, the quality of the reads from Proovread was the

best, and 4.3 percent and 14.5 percent of the reads could be aligned without

mismatches or indels for P1 and P2, respectively.

Memory Usage and Runtime of PacBio Error Correction Tools

Memory usage of the PacBio error correction methods is summarized in Fig-

ure 5.8A. LoRDEC was the most memory efficient method and it could cor-

rect all the reads with under 1 GB of memory. Memory usage of LSC was

sensitive to Illumina read coverage, and correcting P1-40X required two times

larger memory than that for correcting P1-20X. PBcR corrected errors with

relatively small memory for P1, but memory usage increased by four times

from P1 to P2. Memory usage of Proovread was constant for all the inputs.

This was because Proovread splits PacBio reads into chunks with the small
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Figure 5.8: Memory usage and runtime of PacBio error correction tools for
P1-20X, P1-40X, P2-20X, and P2-40X.

size (20 MB in the experiments).

Runtime of the tools are shown in Figure 5.8B. LoRDEC was much faster

than the others and the difference became larger as the size of genome and

Illumina read coverage increased. Runtime of LSC was not that long for

P1 but it could not finish error correction for P2 even after 40 times longer

duration was allowed compared to the runtime for P1. Runtime of PBcR

was sensitive both to genome length and Illumina read coverage. Proovread

was the slowest among the assessed tools for P1 but it was less sensitive to

genome size than PBcR and it became the second fastest for P2.
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CHAPTER 6

ENHANCING VARIANT CALLING
ACCURACY BY IMPROVING THE
QUALITY OF SEQUENCING DATA

6.1 Introduction

Earlier chapters have gone over what sequencing errors are, how they can be

corrected, and how the accuracy of corrected outputs can be evaluated. This

chapter discusses how sequencing errors affect downstream analyses that use

sequencing data as inputs.

One of the most important aspect of research in genetics is to associate

genetic variations with heritable phenotypes. To find germline genetic vari-

ations, reads should be aligned to a reference sequence. If many reads that

span a specific position of the reference sequence have the same base that is

different from the reference base, we can suppose that the sample from which

the reads were generated have a variant at the position.

In some cases, new genetic variations that were not inherited from the

parents could happen in a cell in the course of cell division. These variants

are called somatic variants as distinguished from germline variants. From a

clinical point of view, finding somatic variants is a very important process,

as they are related to many diseases like cancer. Variants found in tumor

samples should be partitioned into germline variants and somatic variants.

This is usually done by comparing variants in tumor samples with those in

normal samples that are taken from the same patient [94].

When sequencing errors exist in reads, the errors could dilute the signal

from variants, and consequently the variant might not be detected (i.e., false

negatives). It is also possible that multiple sequencing errors that exist at

the same position could cause a variant calling tool to report a wrong variant

(i.e., false positives).

In this research, the effect of sequencing errors on germline and somatic

variant calling has been analyzed. In order to do it, an environment that can
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generate reads and ground truth variants with different properties was cre-

ated, and variant calling results for the generated reads were compared with

the corresponding ground truth variants. Based on the results, it has been

studied how to improve the accuracy of variant calling by manipulating in-

put reads, and new software called ROOFTOP (RemOve nOrmal reads From

TumOr samPles) has been implemented using the new knowledge. The per-

formance of ROOFTOP was evaluated using reads from the environment and

another read set that was used for a somatic variant calling challenge. The

results showed that ROOFTOP improved the accuracy of somatic variant

calling by up to 23 percent.

The sections that follow explain the process to prepare reads and the ex-

perimental results using the read sets.

6.2 Method

6.2.1 Germline Variant Calling

Preparing Input Reads

Figure 6.1 shows how to generate data sets for germline variant calling. This

environment is built using VarSim [95] as a baseline framework. First, sin-

gle nucleotide variants (SNVs) and indels that are shorter than 50 bp are

randomly sampled from the Single Nucleotide Polymorphism Database (db-

SNP) [96]. Structural variations (SVs) that are longer than or equal to 50 bp

are also randomly chosen from Database of Genomic Variants (DGV) [97].

These two variant sets are used as the inputs for VarSim. These variants

VN can be used as a ground truth variant set with which a germline variant

calling result is compared.

VarSim generates a new diploid reference genome REFN by adding VN to

an input reference sequence REFIN . Then, reads are simulated from REFN

using ART [98]. In order to generate multiple read sets with different read

coverage values, C read sets RNPi (1 ≤ i ≤ C) are generated. Each of RNPi

has reads with 1 × read coverage, and reads sets with different coverage

can be made by merging different number of RNPi. RNEFPi that are error-

free versions of RNPi are also generated. When ART simulates reads, it can
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Figure 6.1: Overall flow of generating data sets for germline variant calling.
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generate SAM files that have no sequencing errors, and RNEFPi are generated

by converting the SAM files to FASTQ files using Picard [99].

RN10, RN30, RN50, RN100, and RN200 are the final output read sets with 10,

30, 50, 100, and 200 × read coverage values, and they are made by concate-

nating a different number of RNPi. RNEF10, RNEF30, RNEF50, RNEF100, and

RNEF200 are the error-free versions of RN10, RN30, RN50, RN100, and RN200;

they are generated by concatenating RNEFPi.

Running Germline Variant Calling Tools

Germline mutation calling is done using GATK [100]. GATK is executed

multiple times using RN10, RN30, and RN50, and these results are compared

with the results for RNEF10, RNEF30, and RNEF50 to see the effect of sequenc-

ing errors.

Before GATK is executed, the reads are aligned to the reference REFIN

using BWA. The alignment output BAM file is then polished using the indel

realignment and the base quality recalibration capability of GATK. GATK

calls germline variants using the polished BAM file, and the variant calling

result is compared with VN using bcftools [101].

It is also necessary to check whether sequencing errors show the same effect

on other variant calling tools. Therefore, the experiments that are done for

GATK are repeated using samtools.

6.2.2 Somatic Variant Calling

Preparing Input Reads

The process to generate reads for somatic variant calling is shown in Figure

6.2. A new set of somatic variants VT are sampled from the COSMIC [102]

database and used as inputs to VarSim. Then a new diploid genome sequence

REFT is generated by adding both VT and VN to REFIN . REFT represents

the DNA sequence of the tumor samples in the specimen that was used in

6.2.1.

Multiple read sets RTPi, each of which has reads with 1 × read coverage,

are simulated from REFT using ART. RTEFPi, which are error-free versions
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Figure 6.2: Overall flow of generating data sets for somatic variant calling.
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of RTPi, are also generated as in the germline variant calling data generation

flow.

The final read sets for somatic variant calling are generated by mixing the

four read sets RNPi, RNEFPi, RTPi, and RTEFPi. To represent normal tissues

and tumor tissues in tumor samples, RNPi and RTPi are mixed at a different

ratio to generate the final read sets for tumor samples. In a similar way,

the error-free version of the read sets for tumor samples can be generated by

mixing RNEFPi and RTEFPi.

Running Somatic Variant Calling Tools

MuTect [103] is used to find somatic variants. MuTect is executed multiple

times using read sets with different coverage values and different fractions

of tumor reads, and these results are compared with the results for their

error-free versions to see the effect of sequencing errors.

Before MuTect is executed, as in the germline variant calling flow, the

reads are aligned to the reference REFIN using BWA. The alignment output

BAM file is then polished using the indel realignment and the base quality

recalibration capability of GATK. MuTect calls somatic variants using the

polished BAM file, and the variant calling result is compared with VT using

bcftools.

It is also necessary to check whether sequencing errors show the same effect

on other variant calling tools. Therefore, the experiments that are done for

MuTect are repeated using Strelka [104].

6.3 Results

6.3.1 Data Preparation

It takes a great deal of time to prepare multiple read sets for the entire human

genome and to run variant calling tools for them. Hence, all the experiments

were done using one chromosome of the human genome instead of using the

entire human genome. Chromosome 22 in GRCh37 was used as REFIN . For

germline variants, dbSNP 138 and DGV 2013-07-23 were used as the input

variant database. Somatic variations were randomly sampled from COSMIC
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V72. In these experiments, only SNVs were investigated despite small indels

and SVs also being inserted when a new diploid genome was made.

All the preliminary read sets RNPi, RNEFPi, RTPi, and RTEFPi were gen-

erated using VarSim 0.5.1 and ART 03.19.15. Input read sets for the exper-

iments were made by mixing the above four read sets at a different ratio. A

recent study showed that the ratio of tumor cells in biopsy samples could be

7-87 percent [105]. Based on the results, four reads sets, the tumor cell ratios

of which were 20, 50, 80, and 100 percent were generated. The final read

sets for germline variant calling and somatic variant calling are summarized

in Table 6.1 and Table 6.2.

Table 6.1: Input read sets for germline variant calling.

ID Type Coverage (X)
RN10 10 Original
RN30 30 Original
RN50 50 Original
RN100 100 Original
RN200 200 Original
RNEF10 10 Error-free
RNEF30 30 Error-free
RNEF50 50 Error-free
RNEF100 100 Error-free
RNEF200 200 Error-free

6.3.2 Effect of Sequencing Errors on Germline Variant Calling

GATK results for the original reads RN10, RN30, and RN50 were compared

with those for the matched error-free reads RNEF10, RNEF30, and RNEF50,

and they are summarized in Figure 6.3. TP, FP, and FN mean true positives,

false positives, and false negatives. When read coverage is 10 ×, true posi-

tives increased by 11.3 percent, from RN10 to RNEF10. When read coverage

was 30 × and 50 ×, however, the difference in true positives was just 1.6

and 0.9 percent. The ratios for RN30 and RN50 do not look significant but

the numbers of the true positives that were newly detected by using error-

free reads were 6,692; 952; and 562 for RN10, RN30, and RN50, respectively.

The input reads were generated only using chromosome 22, and had the en-
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Table 6.2: Input read sets for somatic variant calling.

ID
Normal Tissue Tumor Tissue

Type Coverage (X) Type Coverage (X)
RNNI000 −RTO010 Not Included 0 Original 10
RNO002 −RTO008 Original 2 Original 8
RNO005 −RTO005 Original 5 Original 5
RNO008 −RTO002 Original 8 Original 2
RNNI000 −RTEF010 Not Included 0 Error-free 10
RNEF002 −RTEF008 Error-free 2 Error-free 8
RNEF005 −RTEF005 Error-free 5 Error-free 5
RNEF008 −RTEF002 Error-free 8 Error-free 2
RNEF008 −RTO002 Error-free 8 Original 2
RNO008 −RTEF002 Original 8 Error-free 2
RNNI000 −RTO002 Not Included 0 Original 2
RNNI000 −RTEF002 Not Included 0 Error-free 2
RNNI000 −RTO030 Not Included 0 Original 30
RNO006 −RTO024 Original 6 Original 24
RNO015 −RTO015 Original 15 Original 15
RNO024 −RTO006 Original 24 Original 6
RNNI000 −RTEF030 Not Included 0 Error-free 30
RNEF006 −RTEF024 Error-free 6 Error-free 24
RNEF015 −RTEF015 Error-free 15 Error-free 15
RNEF024 −RTEF006 Error-free 24 Error-free 6
RNEF024 −RTO006 Error-free 24 Original 6
RNO024 −RTEF006 Original 24 Error-free 6
RNNI000 −RTO006 Not Included 0 Original 6
RNNI000 −RTEF006 Not Included 0 Error-free 6
RNNI000 −RTO050 Not Included 0 Original 50
RNO010 −RTO040 Original 10 Original 40
RNO025 −RTO025 Original 25 Original 25
RNO040 −RTO010 Original 40 Original 10
RNNI000 −RTEF050 Not Included 0 Error-free 50
RNEF010 −RTEF040 Error-free 10 Error-free 40
RNEF025 −RTEF025 Error-free 25 Error-free 25
RNEF040 −RTEF010 Error-free 40 Error-free 10
RNEF040 −RTO010 Error-free 40 Original 10
RNO040 −RTEF010 Original 40 Error-free 10
RNNI000 −RTO010 Not Included 0 Original 10
RNNI000 −RTEF010 Not Included 0 Error-free 10
RN080 −RTO020 Original 80 Original 20
RNNI000 −RTO020 Not Included 0 Original 20
RNNI000 −RTEF020 Not Included 0 Error-free 20
RN160 −RTO040 Original 160 Original 40
RNNI000 −RTO040 Not Included 0 Original 40
RNNI000 −RTEF040 Not Included 0 Error-free 40
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Figure 6.3: Germline variant calling results from GATK.

tire human genome been used the number of newly detected true positives

would have been much larger. Figure 6.3 shows that the number of false

positives slightly increased when sequencing errors were removed from the

reads, regardless of read coverage. Many of the newly generated false posi-

tives were falsely reported because of the limitation of bcftools that was used

to compare two variant calling results.

One example of false positives that GATK reports is shown in Figure 6.4.

GATK found a false positive variant at the 32,609,590th base of chromosome

22 (Figure 6.4A). This variant was reported as a false positive because the

same variant does not exist in VN . However, VN contains the variant in a

different form, as shown in Figure 6.4B. The specimen has a heterozygous

variant from the 32,609,590th base to the 32,609,591st base. One chromo-

some of the diploid genome has a deletion CA from the 32,609,590th base to

the 32,609,591st base, and the other chromosome has SNVs at those bases.

Because one of the chromosomes has an SNV at the 32,609,590th base, the

variant in Figure 6.4A is not a false positive but a true positive. It was,

nonetheless recognized as a false positive because the same variant was de-

scribed as a variant at the 32,609,589th base in VN .

The same experiment was repeated using samtools, and the results are

summarized in Figure 6.5. Samtools was much less sensitive to sequencing

errors than GATK. The numbers of true positives increased by 672, 8, and

22, for 10 X, 30 ×, and 50 × read coverage, when RNEF10, RNEF30, and

RNEF50 were used instead of RN10, RN30, and RN50. There were almost no

changes in the number of false positives.

The effect of sequencing errors on GATK results for extremely high cover-
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Figure 6.5: Germline variant calling results from samtools.

Figure 6.6: Germline variant calling results from GATK for 100 × and 200
× coverage read sets.
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age reads is summarized in Figure 6.6. When read coverage was 100 ×, 0.5

percent of false negatives could be removed by removing sequencing errors

in input reads. When read coverage increased from 100 × to 200 ×, the

fraction of false negatives was improved by 0.4 percent. For 200 × coverage,

0.4 percent of false negatives could be still improved by removing sequencing

errors.

6.3.3 Effect of Sequencing Errors on Somatic Variant Calling

Figure 6.7 shows how MuTect results were changed by removing sequencing

errors when read coverage and the ratio between normal cells and tumor cells

in the tumor samples varied. The input reads used in Figure 6.7 consist of

the three read sets: reads from the normal sample, reads from normal cells in

the tumor sample, and reads from tumor cells in the tumor samples. Figure

6.7A depicts the results for 10 × read coverage. When the read coverage was

just 10 ×, the percentage of true positives increased regardless of the fraction

of tumor cells in the tumor sample.

On the other hand, for 30 × of read coverage (Figure 6.7B), the percentage

of true positives increased only when the fraction of tumor cells in the tumor

samples was low. When the fraction of tumor cells was 100 percent, there was

no improvement in the percentage of true positives. The improvement was

just 0.5 percent when the fraction was 80 percent. If the fraction decreased

to 20 percent, the improvement of true positives became 6.2 percent.

A similar tendency was shown in 50 × coverage as shown in Figure 6.7C.

The number of true positives changed little even when the fraction of tumor

cells was 50 percent or higher. However, when the fraction was 20 percent,

the percentage of true positives improved from 70.3 percent to 79.2 percent.

As explained above, the input reads used in Figure 6.7 consist of the three

read sets (i.e., reads from the normal sample, reads from normal cells in the

tumor sample, and reads from tumor cells in the tumor samples). Additional

experiments were done to find out which read set was sensitive to sequencing

errors when the read coverage was 50 ×. These results are summarized in

Figure 6.8. The left chart depicts the MuTect result when a normal sample is

RNEF50 and a tumor sample is RNO40-RTO10. Similarly, the middle chart lays

out the results for the combination of RN50 and RNEF40-RTO10. These results
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Figure 6.7: Somatic variant calling results from MuTect.

Figure 6.8: MuTect results for 50 × normal sample reads and 50 × tumor
sample (40 × normal cells in the tumor sample + 10 × tumor cells in the
tumor sample) reads.
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Figure 6.9: Effect of removing normal reads from the tumor sample on
MuTect results.

look similar to the result for the combination of RN50 and RNO40-RTO10 in

Figure 6.7C. This means that sequencing errors in the normal sample and

normal cells in the tumor sample do not much affect the quality of somatic

mutation calling for the read coverage and the tumor cell fraction.

However, when the combination of RN50 and RNO40-RTEF10 was used,

the MuTect result was improved, and it was similar to the result for the

combination of RNEF50 and RNEF40-RTEF10. Therefore, we can conclude

that the improvement that was made in RNEF50 and RNEF40-RTEF10 was

caused by removing errors in reads from tumor cells in the tumor sample.

However, it would be hard to correct sequencing errors in reads from tumor

cells in tumor samples when the fraction of the tumor cells is low. While

correcting errors in reads from low coverage tumor cells is difficult, it could

be relatively easier to identify reads from normal cells in the tumor samples

because high coverage reads from normal samples are available. The left

chart in Figure 6.9 shows the MuTect result when reads from normal cells

were removed from tumor samples, and it shows that removing reads from

normal cells can give a better result than correcting errors in reads in tumor

cells. The right chart in Figure 6.9 says that the quality of the MuTect results

could be improved further by the combination of removing normal cells in

tumor samples and correcting sequencing errors in tumor cells in the tumor

samples.

The same experiments were repeated using Strelka and the results are

shown in Figure 6.10, Figure 6.11, and Figure 6.12. In all the three charts,

Strelka showed the same tendency as MuTect. Removing sequencing errors

in the reads from tumor cells in tumor samples managed to improve the

accuracy of somatic mutation calling when the ratio of tumor cells was low.
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Figure 6.10: Strelka results for different ratio between normal tissues and
tumor tissues in tumor samples.

Figure 6.11: Strelka results for different ratio between normal tissues and
tumor tissues in tumor samples.
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Figure 6.12: Effect of removing normal reads from the tumor sample on
Strelka results.

Figure 6.13: Somatic variant calling results from GATK for 100 × and 200
× coverage read sets.

Also, removing reads from normal cells in tumor samples gave a better result

than removing the sequencing errors in tumor cells, and the best result could

be made by combining the two methods. The only difference is the result

for 10 × read coverage. Strelka could call almost no variant regardless of the

existence of sequencing errors and the fraction of tumor cells in the tumor

samples.

The effect of sequencing errors MuTect results for extremely high read

coverage is summarized in Figure 6.13. The left three charts are for 100

× coverage reads and the remaining three are for 200 × reads. Even for

100 × of read coverage, 4.7 percent of false negatives could be removed

by removing reads from normal tissues in tumor samples. False negatives

could be improved further by removing sequencing errors in reads from tumor

tissues in tumor samples.

For 200 × reads, even though the amount of improvement was not as

significant as for 100 × reads, false negatives could be reduced using the

same way. False negatives dropped by 0.5 percent by removing reads from

normal tissues. For 200 × read coverage, removing sequencing errors in reads

from tumor tissues could not improve the accuracy of somatic variant calling
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further.

6.3.4 Effect of Sequencing Errors on Alignment Runtime

A significant amount of time is spent for aligning reads in the variant calling

process and the runtime can be reduced by removing sequencing errors. Table

6.3 compares the runtime of BWA for RN50 and RNEF50.

Table 6.3: BWA runtime for RN50 and RNEF50.

Reads BWA Runtime (sec)
# of Calls

of the Extension Procedure
Average CPU Time of the Extension

Procedure (sec)
Original 612 6,000,962 2.8 × 10−4

Error-free 382 2,735,732 2.4 × 10−4

The runtime of BWA for RNEF50 was 38 percent shorter than that for

RN50. BWA first finds super-maximal exact matches between reads and a

reference sequence and they are extended using a dynamic programming

algorithm that consumes a significant amount of time [106]. When RNEF50

were aligned, many reads could be exactly matched with a reference sequence,

which reduced the number of calls of the dynamic programming procedure.

In addition, as shown in the fourth column, the average runtime of the

dynamic programming procedure became shorter when RNEF50 was aligned.

This is because longer super-maximal exact matches could be made in RNEF50

compared to RN50, and the extension had to be done for shorter sequences.

6.3.5 Improving Germline Variant Calling Accuracy Using
BLESS

As shown in Section 6.3.2, germline variant calling results can be improved by

removing sequencing errors. Sequencing errors in RN50 were corrected using

BLESS and the variant calling results for the BLESS output are summarized

in Figure 6.14.

RN50 is the input of BLESS and the result for RNEF50 indicates the best

result that can be made by removing sequencing errors in RN50. The dif-

ference of the number of false negatives between RN50 and RNEF50 was 562,

and the difference between RN50 and BLESS was 490. This result shows that
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Figure 6.14: Germline variant calling results for BLESS outputs.

BLESS can improve the accuracy of germline variant calling results as high

as possible.

6.3.6 Improving Somatic Variant Calling Accuracy Using
ROOFTOP

When the fraction of tumor tissues in tumor samples is low, correcting se-

quencing errors in reads from the tumor tissues can improve the accuracy of

somatic variant calling. However, it is hard to correct such errors because

reads from normal samples have higher read coverage than reads from tu-

mor tissues. Error correction tools would modify reads from tumor tissues

based on the information on reads from normal tissues. It was shown in

Section 6.3.3 that removing reads from normal tissues is a good alternative

solution for removing errors in reads from tumor tissues. ROOFTOP has

been developed to remove normal reads in tumor samples.

Figure 6.15 shows how ROOFTOP works. ROOFTOP tries to filter out

reads from normal samples and reads that might have sequencing errors.

In order to remove reads from normal samples, ROOFTOP should know

which bases normal samples have at a specific location of the genome. To

identify this, germline variants VG in reads from normal samples RN are

found by running a variant calling tool with RN (Line 1). For each location

of the genome, ROOFTOP finds out which bases normal samples have at the

position, and the bases are saved in AREF . If a location refindex has germline

variants, the variants become AREF . If there is no variant at the location,
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Figure 6.15: The overall procedure of ROOFTOP.
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Figure 6.16: Accuracy of ROOFTOP outputs for the inputs from VarSim.

the base in REF at the location REF [refindex] becomes AREF (Line 7-11).

After AREF is found, each base p in PT [refindex] that is the tumor sample

pileup data at refindex is compared with bases in AREF . If p is not included

in AREF and its quality score is higher than QT , the multiplicity of p is

incremented by one. Checking quality scores is needed because erroneous

bases in normal samples could also be different from the bases in AREF .

After this process is finished, we can know the multiplicity of high-quality

bases in the pileup data at the position (Line 12-16).

Then, the multiplicity of each p is checked. If the multiplicity of p is very

low, they are thought of as erroneous bases. If the multiplicity of p is higher

than a threshold CT , READp, a read including p is regarded as a tumor

read and it is written to an output file (Line 17-23). In all the following

experiments, QT and CT were set to 20 and 3.

The performance of ROOFTOP was compared with the results in Figure

6.8, and the comparison results are summarized in Figure 6.16. Read cover-

age of the input reads is 50 ×, and only 10 × among them are reads from

tumor tissues. When the 40 × of reads from normal tissues were removed the

fraction of false negatives was reduced to 17.2 percent, which is the best result

that we can get by removing reads from normal tissues. When ROOFTOP

was applied to the input, the fraction of false negatives was reduced from

29.7 percent to 22.9 percent. On the other hand, ROOFTOP only increased

the number of false positives by three when it was compared with the best

result, which corresponds to 1.6 percent of increase in false positives from

the second chart to the third one.

In order to evaluate ROOFTOP with more realistic inputs, the same exper-

iments were repeated using IS1, one of the read sets used in the International

Cancer Genome Consortium (ICGC)-The Cancer Genome Atlas (TCGA) Di-
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Figure 6.17: Accuracy of ROOFTOP outputs for the ICGC-TCGA
DREAM Somatic Mutation Calling Challenge input.

alogue for Reverse Engineering Assessments and Methods (DREAM) Somatic

Mutation Calling Challenge [107]. Among the input BAM files, the reads that

were aligned to chromosome 22 were used to the experiments. These exper-

imental results are summarized in Figure 6.17. Unlike the results for the

inputs from VarSim, MuTect generated many false positives and the fraction

of false negatives was negligible (left chart in Figure 6.17). ROOFTOP could

improve the accuracy of somatic variant calling results and the fraction of

false positives was reduced from 86.6 percent to 70.5 percent (right chart in

Figure 6.17). The original MuTect results had only two false negatives and

they were not reduced further even after ROOFTOP was applied.
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CHAPTER 7

CONCLUSIONS

This dissertation has studied why sequencing errors occur in HTS data, how

they can be corrected, and how corrected reads are evaluated. It has also

studied how to analyze the effect of sequencing errors on clinical applications

and how to improve them.

Sequencing errors in each HTS technology have different characteristics.

The major error type in the most popular sequencing platform—Illumina—

is substitution errors. Substitution errors are usually corrected using the

k-mer spectrum based algorithm. This algorithm requires a large amount

of memory to save solid k-mers, which was the obstacle to correcting errors

in reads from large genomes using conventional servers. To address this

limitation, BLESS was developed. BLESS could correct errors in Illumina

reads with higher accuracy while using only 2.5 percent of the memory usage

that existing tools used. BLESS was also accelerated using hybrid OpenMP

and MPI programming, and it became the fastest error correction method

by using more than one computing node.

To compare the accuracy of the different error correction algorithms, a

novel software package called SPECTACLE has been developed. It can

quantitatively assess the accuracy of corrected reads regardless of sequencing

technologies. It can also differentiate heterozygous alleles from sequencing

errors, which gives more accurate evaluation results than previous ones.

Finally, the effect of sequencing errors on variant calling has been studied.

It was investigated how sequencing errors affect germline variant calling and

somatic variant calling results and how sequencing data can be modified to

improve the quality of variant calling results.

Taken together, the studies provide a source of understanding of the char-

acteristics of sequencing errors and of correcting errors in sequencing data.

The research in Chapter 6 in particular could be adapted to other appli-

cations to develop a new way for improving the quality of the application
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outputs.

Even though many different aspects of sequencing errors have been studied

in Chapter 5, it will be extended in different ways. First, not discussed

here were correcting errors in some sequencing technologies such as 454,

Ion Torrent, and Oxford Nanopore. Since dominant error models in the

sequencing data are indels, the k-mer spectrum based algorithm in BLESS

is not the best method of correcting such errors. Also, the characteristics of

errors in each platform are not equal. For example, indels mainly happen

in homopolymers 454 and Ion Torrent, but the errors in PacBio reads are

known to exist at random positions. Therefore, correcting the errors in each

platform calls for totally different algorithms.

It would also be desirable to study how sequencing errors degrade the

quality of detection for other types of variants such as small indels and SVs,

because these variants also play an important role in many diseases. The size

of some SVs could be longer than the Illumina read length. It would thus

be necessary to combine this study with research on errors in the sequencing

platforms that can generate much longer reads than Illumina.
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