
ON THE CONVEXITY OF RIGHT-CLOSED SETS AND ITS APPLICATION TO LIVENESS
ENFORCEMENT IN PETRI NETS

BY

EHSAN SALIMI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Associate Professor Ramavarapu Sreenivas, Chair, Director of Research
Professor Tamer Basar
Associate Professor Carolyn L. Beck
Associate Professor Negar Kiyavash
Professor Rakesh Nagi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158311099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

A set of n-dimensional integral vectors, Ω ⊆ N n, is said to be right-closed if for any x ∈ Ω, any

vector y ≥ x also belongs to it. An integral-set Ω ⊆ N n is convex if and only if there is a convex set

C ⊆ Rn such that Ω = Int(C), where Int(•) denotes the integral points in the set argument. In this

dissertation, we show that the problem of verifying convexity of a right-closed set is decidable. Following

this, we present a polynomial time, LP-based algorithm, for verifying the convexity of a right-closed

set of integral vectors, when the dimension n is fixed. This result is to be viewed against the backdrop

of the fact that checking the convexity of a real-valued, geometric set can only be accomplished in an

approximate sense; and, the fact that most algorithms involving sets of real-valued vectors do not apply

directly to their integral counterparts. Also, we discuss a grid-search based algorithm for verifying the

convexity of such a set, although not a polynomial time procedure, it is a method that verifies the

convexity of right-closed sets in a reasonable time complexity.

On the application side, right-closed sets feature in the synthesis of Liveness Enforcing Supervisory

Policies (LESPs) for a large family of Petri Nets (PNs). For any PN structure N from this family,

the set of initial markings, ∆(N), for which there is a LESP, is right-closed. A LESP determines the

transitions of a PN that are to be permitted to fire at any marking in such a manner that, irrespective

of the past, every transition can be fired at some marking in the future. A system that is modeled by a

live PN does not experience livelocks, which serves as the motivation for investigating implementation

paradigms for LESPs in practice.

If a transition is prevented from firing at a marking by a LESP, and all LESPs, irrespective of

the implementation-paradigm that is chosen, prescribe the same control for the marking, then it is a

minimally restrictive LESP. It is possible to synthesize the minimally restrictive LESP for any instance

ii

N of the aforementioned family that uses the right-closed set of markings ∆(N). The literature also

contains an implementation paradigm called invariant-based monitors for liveness enforcement in PNs.

This paradigm is popular due to the fact that the resulting supervisor can be directly incorporated

into the semantics of the PN model of the controlled system. In this work, we show that there is an

invariant-based monitor that is equivalent to the minimally restrictive LESP that uses the right-closed

set ∆(N) if and only if ∆(N) is convex. This result serves as the motivation behind exploring the

convexity of right-closed sets.

iii

To Mom, Dad, Amir and Neda for their endless love and support.

iv

Acknowledgment

I would like to express my deepest gratitude to my advisor, Dr. Ramavarapu Sreenivas, whom I owe

most of what I have learned through the course of my doctoral study at the University of Illinois.

His constant encouragement and understanding, as well as our many long discussions and his helpful

comments, have been the source of inspiration for me. Being his student and working with him, has

been an honor for me and will remain this way.

I also want to extend my appreciation to my committee members: Dr. Tamer Basar, Dr. Rakesh

Nagi, Dr. Carolyn L.Beck and Dr. Negar Kiyavash, for agreeing to serve on my committee. I truly

appreciate our fruitful discussions regarding my work and possible future research directions. I also

want to thank them all for their helpful comments and suggestions for preparing this manuscript.

I would like to give special thanks to my parents for their endless supports during all these years,

from miles away. It would have not been possible for me to graduate without their encouragement. I

also would like to thank my brother, Amir, who was the engine behind my motivation for successfully

finishing my PhD and always was on my side during tough times.

At the end, I would like to thank my friends for all the care and support they provided. While the

limits of space will not permit me to thank them all individually, I hope they will find some bit of

themselves expressed in the pages that follow.

v

Table of Contents

Chapter 1 Introduction . 1
1.1 Outline of the thesis . 5

Chapter 2 Notation and Definitions . 6
2.1 Petri Net . 6
2.2 Supervisory Policy for PNs . 9
2.3 Liveness Enforcement using Monitors . 11
2.4 Review of Polyhedral Theory . 14
2.5 Convex Hull . 16

2.5.1 Vertex and Facet Enumeration problems . 16
2.5.2 Convex Hull Algorithms . 17

2.6 Discrete Volume . 24
2.6.1 Generating Functions . 25
2.6.2 Lattice Points in Simplex . 27

Chapter 3 Right-closed Integral sets and the Liveness Problem 32
3.1 On Existence of LESPs for certain PN Models . 32
3.2 Right-Closed ∆(N) . 34

3.2.1 Synthesizing ∆(N) . 34
3.2.2 PNs with Right-Closed ∆(N) . 35
3.2.3 Why Convexity? . 42

Chapter 4 Convexity of Right-Closed Set . 45
4.1 Polyhedral Representation . 45
4.2 Convexity Condition . 46

4.2.1 Some Additional Observations and an Illustrative Example 47
4.3 Computing min(Int(conv(M))): Illustrative Examples 49
4.4 Convexity Testing . 51
4.5 Example of Section 4.3 Revisited . 56

Chapter 5 Convexity Testing Algorithms . 59
5.1 On verifying the condition of theorem 4.4.4 . 59

5.1.1 LP- based Algorithm . 60
5.1.2 Convexity Testing Algorithm . 63
5.1.3 Algorithm 4 and the Examples of Section 4.3 . 65

vi

5.2 Grid Search Algorithm . 66
5.2.1 Step Size for λ . 68

Chapter 6 Discussion . 73
6.1 Heuristic Methods . 73
6.2 The Invariant-Based Monitor of Figure 2.3 Revisited 75
6.3 An illustration of Corollary 1 of Chapter 5 . 79

Chapter 7 Future Work . 81

Chapter 8 Conclusions . 88

References . 90

vii

Chapter 1

Introduction

A right-closed (or upward-closed) set [1], Ω ⊆ N n, of n-dimensional integral-vectors satisfies the condi-

tion

(x ∈ Ω) ∧ (y ≥ x)⇒ y ∈ Ω.

Every right-closed set of integral vectors, Ω ∈ N n, contains a finite set called minimal elements,

min(Ω) ⊂ Ω, such that:

1. ∀x ∈ Ω,∃y ∈ min(Ω) such that x ≥ y, and

2. if ∃x ∈ Ω,∃y ∈ min(Ω) such that y ≥ x, then x = y.

Any integer-valued right-closed set can be constructed uniquely based on its minimal elements. If

Ω1,Ω2 ⊆ N n are two right-closed sets of n-dimensional integral vectors, then (Ω1 = Ω2)⇔ (min(Ω1) =

min(Ω2)).

What motivates us to take a deeper look at the geometric properties of these sets, convexity in

particular, is that the set of initial markings of a large class of Petri Nets (PNs), for which there exists

a liveness enforcing supervisory policy (LESP) is right-closed. This right-closed set plays a critical role

in the synthesis and implementation of LESPs. By studying the geometric properties of right-closed

sets, we hope to develop a better understanding of synthesis procedures for LESPs for PN models.

Our discourse centers on a class of dynamical systems called Discrete-Event/Discrete-State (DEDS)

systems. The (discrete-)states of these systems have a logical, as opposed to numerical, interpretation.

At each state, there are potential (discrete-)events that can occur, the occurrence of any one of them

would change the state of the system, which then results in a new set of potential events, and this

1

process can be repeated as often as necessary. DEDS systems are regulated by a supervisory policy,

which determines which event is to be permitted at each state, in such a manner that some behavioral

specification is satisfied. Our focus is on the synthesis and implementation of liveness enforcing su-

pervisory policies (LESPs). A DEDS system is live [2], if irrespective of the past, every event can be

executed, not necessarily immediately, in the future. A live DEDS system does not experience livelocks,

and serves as the main motivation for investigations into the synthesis and implementation of LESPs.

A DEDS system is in a livelocked -state, if some event has entered into a state of suspended-animation

for perpetuity. If every event of the DEDS system is in a state of suspended animation, the DEDS

system is deadlocked. A livelock-free DEDS system does not have deadlocked-states, but a deadlock-

free DEDS system can still experience livelocks. Livelock freedom is harder to achieve, compared to

deadlock freedom.

There are two paradigms for the supervisory control of DEDS systems: (1) State-Based supervisory

control, and (2) Event-Based supervisory control. In event-based control, the supervisory policy uses

the string of past event-occurrences to decide the appropriate control action for any given instant.

References [3–12] deal with various aspects of event-based supervisory control of DEDS systems. In

contrast, the control action of a state-based supervisory policy is determined by the current discrete-

state of the DEDS system (cf. [13, 14]). These two paradigms are equivalent, but based on specific

applications, one paradigm might be preferred over the other.

DEDS systems with asynchronous events are usually modeled by PNs [15–17]. Each task is repre-

sented by a transition and the state of the system is represented by a marking. These terms are formally

defined in the next chapter. Examples of such systems can be manufacturing systems, computer oper-

ating systems, and command, control, communications, computers and intelligence (C4I) systems. We

consider state-based LESPs for PN models of DEDS systems in this thesis.

As an arbitrary PN model is not necessarily live, it is important to design a supervisory policy [3],

that makes sure that the system will not be trapped in a livelock -state. In the context of computer

operating systems, a livelock -state would occur once some task hangs, while the rest of the tasks proceed

without impediment. In many cases, rebooting the system is the only way to resolve this problem. Such

2

an action can be costly when a safety critical system like avionics is involved, which motivates us to

take a deeper look at this particular problem. We aim to design a LESP which makes sure that none

of the processes enter to a perpetual state of livelock along with two additional conditions:

1. Tasks external to the systems, which are modeled as uncontrollable transitions in the PN, should

not be prevented from execution, and

2. The LESP should be minimally restrictive, meaning if the LESP prevents a (controllable) tran-

sition from execution, all the other LESPs should prevent the same transition from execution as

well.

The LESP is basically a set of rules which determines which controllable transition is not allowed to be

executed at a particular marking.

The LESP can be implemented by altering the original PN and augmenting it with additional places

called monitors. There are arcs between the transitions in the PN and the monitors. The monitor is

initialized appropriately, after which the augmented PN functions as if it were a PN. That is, the LESP’s

functionality is absorbed into the semantics of the PN. This is the main reason behind the popularity

of monitor-based control for PNs. There is a specific technique, called invariant-based monitors that

has been extensively studied in the DEDS literature. The disadvantage of this method is that applying

the invariant-based monitors often times will not result in a minimally restrictive policy, meaning it will

stop events from occurring unnecessarily.

To tackle this problem we are going to focus on a family of PNs that is defined in Chapter 3. This

family is large and includes a class of PNs called Free Choice Petri Nets (FCPNs), which are expressive

enough to model the flow of material in manufacturing/logistic systems, and the flow of control in

data-flow computation [18,19]. This family of PNs possesses several desirable properties:

1. If there exists an LESP for a member of this family of PNs for a given initial marking, there is an

LESP when the same PN is initialized with a larger initial marking. That is, the PN structure N

belongs to the above mentioned family, and if ∆(N) denotes the set of initial markings of the PN

structure N for which there is an LESP, then the set ∆(N) is right-closed.

3

2. As a consequence of the above property, the existence of a LESP for an arbitrary PN from this

family is decidable. To appreciate the import of this property, it is worth pointing out that neither

the existence, nor the non-existence of a LESP for arbitrary PNs is not even semi-decidable [20].

3. For any reachable marking in ∆(N), the minimally restrictive LESP prevents the firing of a

controllable transition if the new marking that would result from its firing is not in ∆(N). An

additional property of ∆(N) is that the firing of an uncontrollable transition at any marking

in ∆(N) will always result in a new marking that is in ∆(N), that is the set ∆(N) is control-

invariant [3] with respect to N .

In this dissertation, we first show that there is an invariant-based monitor that is equivalent to

the minimally restrictive LESP identified above if and only if ∆(N) is convex. This result identifies

the condition when the invariant-based monitor that enforces liveness is minimally restrictive. This

motivates us to find an efficient algorithm which can test the convexity for a given right-closed set. It

is worth mentioning that even testing the convexity for an arbitrary, real-valued, scalar-set can only

be done in an approximate sense. For example, if a single point is deleted from a convex, real-valued,

scalar-set, its convexity testing can take “forever” [21]. It gets worse for integral sets, as most of the

convexity-testing algorithms on real-valued sets cannot be extended to integral sets. First, we show

that testing the convexity of an arbitrary right-closed set is decidable, and there exists a procedure that

can test the convexity of an arbitrary right-closed integral set. Following this we present an algorithm

that can execute this test in in polynomial time, when the dimension of the integral vectors is fixed.

The work that has been accomplished in this dissertation includes:

1. A characterization of the largest family of PN structures with a right-closed ∆(N)-set for any

member N of the family [22,23];

2. A characterization of supervisory policies that enforces liveness in PNs that are “similar” [24];

3. A necessary and sufficient condition for the existence of a minimally restrictive invariant-based

monitor that enforces liveness [25] for an arbitrary PN;

4

4. A procedure that shows that testing the convexity of a right-closed set of integral vectors is

decidable1; and

5. A polynomial time algorithm for testing the convexity of a right-closed integral set.

These results make no assumptions regarding the boundedness of the PN models. Following reference

[26], the results listed above can be serve as critical milestones in the synthesis of asymptotically efficient

LESP synthesis procedures.

1.1 Outline of the thesis

Chapter 2 formally introduces Petri Nets (PNs), their properties, and the paradigm of supervisory

control of PNs. Preliminaries of polyhedral theory and convexity theory is also presented in this chapter,

along with a brief review of the procedure of counting the number of lattice points within a real-valued

polytope. This enumeration procedure is used to analyze a grid-search procedure for convexity-testing in

a subsequent chapter. In Chapter 3, we review the results on synthesizing liveness enforcing supervisory

policy (LESP). We show that if the set of initial markings of a PN structure N for which there is a LESP,

∆(N), is convex, then we can use a procedure known to the literature as invariant-based-monitors to

enforce liveness in a class of PNs with where the ∆(N)-set is right-closed. This is the motivation behind

the testing of convexity of right-closed sets. In Chapter 4, we show that testing the convexity for an

arbitrary right-closed set is decidable. Chapter 5, introduces two algorithms for testing convexity of

right-closed integral sets. The first algorithm tests convexity in polynomial time and second algorithm,

although not polynomial, still can perform the same test in an efficient manner. Chapter 6 discusses

possible heuristic methods to tackle the problem along with illustrative examples. Chapter 7 suggests

few possible directions to be explored in the future and Chapter 8 concludes this dissertation.

1 That is, there is a program P that takes min(Ω) as input, for an arbitrary right-closed set Ω ⊆ Nn, and eventually
halts after producing an output of unity (resp. zero) if Ω is convex (resp. not convex).

5

Chapter 2

Notation and Definitions

In this chapter, some basic concepts and definitions involving Petri Nets (PNs) are reviewed. This is

followed by a brief review of concepts from polyhedral theory. Specific attention is paid to the problem

of counting the number of lattice points in real-valued polyhedra, which is used in the analysis of a

grid-search algorithm for convexity testing in Chapter 5.

2.1 Petri Net

A Petri Net Structure is a weighted, directed bipartite graph with a two classes of vertices called

transitions and places. It can be described as an ordered 4-tuple N = (Π, T,Φ,Γ) where Π =

{p1, p2, · · · , pn} is the set of places, T = {t1, t2, · · · , tm} describes the m possible transitions in the

system, Φ is the collection of arcs where Φ ⊆ (Π×T)∪ (T ×Π) and Γ is the weight function associated

with each arc described as Γ : Φ → N where N is the set of non-negative integers. The amount of

available resource at each place will be shown as black dots called tokens. The initial state of the system

which is called initial marking is the number of tokens in each place at the beginning of the process,

which is defined by initial marking function as m0 : Π→ N . The state of the system at each time will

be defined similar to the initial marking function as m : Π→ N . The PN is called ordinary if the weight

of each arc is 1, otherwise it is general. Arcs with weight of 1 will not be labeled for simplicity. We use

the term Petri Net (PN) to denote a Petri net structure together with its initial marking: N(m0).

The notations •x and x• will be used to denote sets {y | (y, x) ∈ Φ} and {y | (x, y) ∈ Φ} respectively.

A transition (event), t ∈ T in order to fire (occur) at a marking mi should be enabled, meaning

∀p ∈ •t, mi(p) ≥ Γ(p, t). The set of enabled transitions at marking mi will be denoted by Te(N,m
i).

6

The marking of the system after firing the enabled transition t will change to mi+1(p) = mi(p)−Γ(p, t)+

Γ(t, p). If the firing of a string of transitions σ ∈ T ∗, starting from a marking mi results in a marking

mj, we denote it as mi σ→mj. The set of markings reachable for a PN with initial marking m0 will be

denoted by <(N,m0), which is the set of markings generated through a sequence of enabled transitions.

The change in markings can also be described in a matrix form as each marking is understood as a

non-negative integer vector. In those contexts, it is useful to define the input matrix IN and output

matrix, OUT as two n×m matrices, where

INi,j =

Γ(pi, tj) if pi ∈• tj

0 otherwise

OUTi,j =

Γ(tj, pi) if pi ∈ t•j

0 otherwise

The incidence matrix C then can be defined as: C = OUT− IN. If we define σ ∈ T ∗ as the string of

transitions and x(σ) denotes the Parikh vector of σ, where the i-th element of the vector corresponds

to the number of occurrences of transition ti in the sequence, then the marking mj which results from

the firing of σ in the initial marking of mi can be written as mj = mi + Cx(σ). A marking mi is called

potentially reachable from m0 if ∃y ∈ Nm such that the equation Cy = (mi −m0) is satisfied. While

every reachable marking is also potentially reachable, there can be potentially reachable markings that

cannot be reachable.

As an illustration, consider the PN N1(m0
1) = (Π1, T1,Φ1,Γ1) shown in figure 2.1(a). The place-set

Π1 = {p1, p2}, the transition-set T1 = {t1, t2, t3}, and the set of arcs Φ1 = {(p1, t1), (t1, p2), (p2, t2), (t2, p1),

(p1, t3), (p2, t3)}. Each arc of this PN has a unitary weight associated with it. The initial marking m0
1

can be interpreted as a vector (1 0)T ; or, as a function where m0
1(p1) = 1 and m0

1(p2) = 0. From the

definition, it follows that Te(N1,m
0
1) = {t1}, and the firing of t1 at marking m0

1 will result in a new

7

marking m1
1 = (0 1)T . The IN,OUT and C matrices for this PN are:

IN =

 1 0 1

0 1 1

 ,OUT =

 0 1 0

1 0 0

 , and C =

 −1 1 −1

1 −1 −1

 .

If we interpret markings as vectors, the process of firing t1 ∈ Te(N1,m
0
1) can be represented by the

equation: 0

1

︸ ︷︷ ︸

m1
1

=

 1

0

︸ ︷︷ ︸

m0
1

+

 −1 1 −1

1 −1 −1

︸ ︷︷ ︸

C

 1

0

︸ ︷︷ ︸

x(t1)

Similarly, the process of firing t2 ∈ Te(N1,m
1
1) can be represented as

 1

0

︸ ︷︷ ︸

m0
1

=

 0

1

︸ ︷︷ ︸

m1
1

+

 −1 1 −1

1 −1 −1

︸ ︷︷ ︸

C

 0

1

︸ ︷︷ ︸

x(t2)

The function- and vector-interpretation of the marking will be used interchangeably in this thesis. The

context will indicate the appropriate interpretation.

It is not hard to see that the marking (m n)T for m,n ≥ 1 is not potentially reachable for the PN

N1(m0
1) as <(N1,m

0
1) = {(1 0)T , (0 1)T}; this would mean that the marking (m n)T ,m, n ≥ 1 is not

reachable from m0
1 either. Consequently, there can be no marking that is reachable from m0

1 where the

transition t3 can fire.

A transition t ∈ T in a PN N(m0) is said to be live, if

∀m1 ∈ <(N,m0), ∃m2 ∈ <(N,m1), such that t ∈ Te(N,m2).

Transitions t1 and t2 are live in N1(m0
1) of figure 2.1(a), but transition t3 is not. In contrast, none

of the transitions in the PN N2(m0
2) shown in figure 2.1(b) are live, after t1 is fired. This is because,

(0 1 0 1 0 0)T ∈ <(N2,m
0
2) and Te(N2, (0 1 0 1 0 0)T) = ∅. If all transitions in a PN are live, then we

8

say the PN is live.

2.2 Supervisory Policy for PNs

Petri Nets are regulated by a supervisory policy, which determines which event is to be permitted

at each state, in such a manner that some behavioral specification is satisfied. Some of the transitions

represent local activities that can be prevented, while others that are external to system cannot be

prevented by the supervisor. As an illustration, transitions that represent failures cannot be prevented

from firing, but transitions that represent admission of an entity into a system, can be prevented

when the system is near full-capacity. Consequently, the set of transitions are partitioned into the

set of uncontrollable transitions Tu and, the set of controllable transitions Tc, where T = Tu ∪ Tc and

Tu ∩ Tc = ∅. Therefore, uncontrollable transitions cannot prevented from firing by the supervisor and

in graphical presentation will be showed by unfilled boxes.

The supervisory policy can be described as a function P : N n × T → {0, 1}, which returns 0 or 1 for

each transition at each reachable marking. For each transition t ∈ T at marking mi if t ∈ Te(N,mi)

then we say it is state-enabled and if P(mi, t) = 1 we say it is control-enabled. For a transition to

be allowed to fire under supervisory policy, it should be both state-enabled and control-enabled. It is

important to mention that supervisory policy cannot prevent an uncontrollable transition from firing,

meaning ∀t ∈ Tu, P(mi, t) = 1.

A string of transitions σ = t1t2 · · · tk, where ∀j, tj ∈ T , starting at an initial marking mi, is called

valid firing string, if two following conditions are met:

1. t1 ∈ Te(N,mi),P(mi, t1) = 1 and

2. for every transition tj for j ∈ {1, 2, · · · , k− 1} the firing of transition tj produces a marking mi+j

where transition tj+1 is both state and control enabled.

The set of reachable markings for a netN from the initial marking m0 under the supervisory policy P will

be denoted by <(N,m0,P). It is also important to note that if a marking mi is not potentially reachable

9

p1

p2

t1

t2
t3

Not Live: t3 can never fire
No Deadlock: t1 and t2 can fire all the time

(a) Non-Live PN N1(m0
1)

p1

p2

p3
p4

t1

t2

t3

t4

t5

p6
p5

Not Live: Firing t1 results in deadlock
Can be made Live (by Supervision): Fire t2t4t5t1t3, repeatedly

(b) Non-Live PN N2(m0
2)

Figure 2.1: Figure (a) shows a PN N1(m0
1) which is not live, but it is not in deadlock position

either. It cannot be made live by a LESP. Figure(b) shows a non-live PN N2(m0
2), where by a

LESP, it can be turn to a live PN

10

from m0, then it’s not reachable under the supervisory control as well, meaning mi /∈ <(N,m0,P).

Now we turn our attention to liveness problem [18, 27]. A PN N(m0) is called live if

∀t ∈ T,∀mi ∈ <(N,m0),∃mj ∈ <(N,mi) such that t ∈ Te(N,mj).

In other words, a Petri Net is live if no matter which marking has reached from the initial marking, all

the transitions have the possibility to fire after executing a valid firing string of transitions. It is close to

the concept of livelock-free operating systems. It is trivial to mention that we do not need a supervisory

policy for a live PN. A PN that is not live, can be made live under the influence of a supervisory policy.

A transition tk is said to be live under the policy P if

∀mi ∈ <(N,m0,P),∃mj ∈ <(N,mi,P) such that tk ∈ Te(N,mj) and P(mj, tk) = 1.

If all transitions in N(m0) are live under the policy P , then we call P the liveness enforcing supervisory

policy (LESP). If every LESP P̂ for the net N(m0) satisfies the condition P(mi, t) ≥ P̂(mi, t) for all

mi ∈ Nn and ∀t ∈ T , then the policy P is said to be minimally restrictive policy [28,29]. Figure 2.2(a)

presents the minimally restrictive liveness enforcing supervisory policy for the plant PN N3(m0
3), which

is not live in the absence of supervision. This policy permits the firing of controllable transitions t4 and

t5 at any marking if and only if the new marking that might result from their firing is greater than or

equal to one of the 43 vectors identified in figure 2.2(b). The structure of this LESP is explicated in

the discussion that follows theorem 3.2.10 in subsequent text.

2.3 Liveness Enforcement using Monitors

Another popular method to enforce liveness in PNs is to augment the original PN structure N by

adding extra places which are called monitors. Let N(m0) be a PN, where N = (Π, T,Φ,Γ). The

structure N can be augmented with the addition of extra places Πc = {c1, . . . , ck} (Π ∩ Πc = ∅), or

monitors, along with extra arcs Φc ⊆ (Πc × T) ∪ (T × Πc) and their associated weights Γ̂ : Φc → N+,

11

p1 p2

p3

p4 p5 p6
p7

t1

t2 t3 t4 t5 t6 t7

Plant

Permit t4 or t5 if the marking that would
result from their firing is in the set ∆(N4)
identified by the 43 minimal elements in
figure (b). Supervisory Policy

O
bservations: Token distribution in

all places

Co
nt

ro
l:

Pe
rm

it/
Di

sa
bl

e
t 4

(t 5) a
s

pe
r

su
pe

rv
is

or
y

po
lic

y

(a) Enforcing Liveness using supervisory policy

Delta_N4 Sun Aug 18 17:28:46 2013 1
Lexicographic Ordering of 43 Minimal Elements

 1: (0 0 0 0 1 0 2)
 2: (0 0 0 0 1 1 1)
 3: (0 0 0 0 1 2 0)
 4: (0 0 0 0 2 0 1)
 5: (0 0 0 0 2 1 0)
 6: (0 0 0 1 0 0 2)
 7: (0 0 0 1 0 1 1)
 8: (0 0 0 1 0 2 0)
 9: (0 0 0 1 1 0 1)
10: (0 0 0 1 1 1 0)
11: (0 0 0 2 0 0 1)
12: (0 0 0 2 0 1 0)
13: (0 0 1 0 0 0 1)
14: (0 0 1 0 0 1 0)
15: (0 0 1 0 1 0 0)
16: (0 0 1 1 0 0 0)
17: (0 0 2 0 0 0 0)
18: (0 1 0 0 1 0 1)
19: (0 1 0 0 1 1 0)
20: (0 1 0 0 2 0 0)
21: (0 1 0 1 0 0 1)
22: (0 1 0 1 0 1 0)
23: (0 1 0 1 1 0 0)
24: (0 1 0 2 0 0 0)
25: (0 1 1 0 0 0 0)
26: (0 2 0 0 1 0 0)
27: (0 2 0 1 0 0 0)
28: (1 0 0 0 0 0 2)
29: (1 0 0 0 0 1 1)
30: (1 0 0 0 0 2 0)
31: (1 0 0 0 1 0 1)
32: (1 0 0 0 1 1 0)
33: (1 0 0 1 0 0 1)
34: (1 0 0 1 0 1 0)
35: (1 0 1 0 0 0 0)
36: (1 1 0 0 0 0 1)
37: (1 1 0 0 0 1 0)
38: (1 1 0 0 1 0 0)
39: (1 1 0 1 0 0 0)
40: (1 2 0 0 0 0 0)
41: (2 0 0 0 0 0 1)
42: (2 0 0 0 0 1 0)
43: (2 1 0 0 0 0 0)

(b) 43 vectors

Figure 2.2: (a) A minimally restrictive Liveness Enforcing Supervisory Policy for the plant PN
N3(m0

3), and (b) the 43 vectors used in the policy of figure (a) obtained using the software of
reference [30].

12

to form a new structure Nc = (Π ∪ Πc, T,Φ ∪ Φc,Γc), where Γc(φ) = Γ(φ) if φ ∈ Φ, and Γc(φ) = Γ̂(φ))

if φ ∈ Φc.

In subsequent text, when we deal with markings of Nc as (n+k)-dimensional vectors, we suppose the

members of the place set of Nc are ordered as follows {p1, . . . , pn, c1, . . . , ck}, where Π = {p1, . . . , pn} and

Πc = {c1, . . . , ck}. The initial token load of the monitors in Πc are determined from the initial marking

m0, according to Θ : N n → N k. The PN structure Nc with an initial marking of ((m0)T Θ(m0)T)T

is represented as Nc(m
0,Θ(m0)). The set of markings that can be reached from the initial marking

((m0)T Θ(m0)T)T inNc is denoted by <(Nc,m
0,Θ(m0)). Following the aforementioned convention, each

m ∈ <(Nc,m
0,Θ(m0)) can be interpreted as m = (mT

1 mT
2)T , where the vector m1 ∈ N n (m2 ∈ N k)

corresponds to the token load of places in Π (Πc). Since there might be arcs in Φc that originate from

some ci ∈ Πc to some uncontrollable transition tu ∈ Tu, we must require ∀m ∈ <(Nc,m
0,Θ(m0)),

(∀p ∈ (•tu ∩ Π), m(p) ≥ Γc((p, tu)))⇒ (∀c ∈ (•tu ∩ Πc),m(c) ≥ Γc((c, tu))) .

That is, no uncontrollable transition is prevented from firing at some marking that is reachable in

Nc(m
0,Θ(m0)) due to a lack of sufficient tokens in the monitors. The requirement, (Πc× Tu)∩Φc = ∅,

is sufficient but not necessary, for the above condition to be true.

For A ∈ N k×n, b ∈ N k, an initial marking m0 ∈ N n where Am0 ≥ b, and Θ(m0) = Am0 − b, an

invariant-based monitor ensures ∀(mT
1 mT

2)T ∈ <(Nc,m
0,Θ(m0)),Am1 ≥ b and m2 = Am1 − b ≥ 0

[29]. That is, ∀(mT
1 mT

2)T ∈ <(Nc,m
0,Θ(m0)), the property Am1 ≥ b, remains invariant for all

reachable markings. When applicable, the invariant-based monitor is defined by the monitor incidence-

matrix AC, where C is the incidence matrix of the original PN structure N .

Liveness enforcement using invariant-based monitors seeks to augment the PN N(m0) as described

above, such that Nc(m
0,Θ(m0)) is live. When this objective is achieved, the influence of the monitors

can be interpreted as an implicit definition of a LESP for the PN N(m0). An illustrative example can

found in figure 2.3. The PN N3(m0
3) shown in black in figure 2.3, which is the same PN that was shown

in figure 2.2, is not live. However, when the structure of this PN is enhanced by the addition of monitors

13

{c1, c2}, along with arcs that involve the monitors (cf. {(c1, t4), (t5, c1), (c2, t5), (t4, c2)} in figure 2.3),

the resulting enhanced PN is live if a single token in placed in the monitor c2.

p1 p2

p3

p4 p5 p6
p7

t1

t2 t3 t4 t5 t6 t7

c1 c2

(a) Monitor Placement

Figure 2.3: Liveness enforcement using monitor placement. The PN N3(m0
3), shown in black, is

not live. The monitors, {c1, c2}, and the arcs involving them, {(c1, t4), (t5, c1), (c2, t5), (t4, c2)}, are
shown in red. A single token (shown in red) is placed in monitor c2. The resulting,
structurally-enhanced, PN is live, and the influence of the monitors is equivalent to a minimally
restrictive LESP (cf. section 6.2 for additional details about this construction).

2.4 Review of Polyhedral Theory

The set M ∈ Rn is called convex if the line segment connecting each pair of points in M also lies in

M. To expand this notion to integer-valued sets we have two different definitions:

• The integer setM∈ N n is called segmentally convex if all the integer points on the line segment

connecting each pair of points in M also belongs to M.

• The integer setM∈ N n is called intersection convex if there is a real convex set C such that its

set of integer points equals to M.

14

Although these two definitions are equivalent for real sets, they are not equivalent when it comes to

integral sets. If the set is intersection convex, it is also segmentally convex but the converse is not true.

Throughout this thesis, by convexity we mean intersection convexity.

The convex combination of a set of points, x1,x2, · · · ,xk in both integer and real set is defined as∑k
i=1 λixi, where λ1, λ2, · · · , λk are non-negative real numbers such that

∑k
i=1 λi = 1. If the latter

condition is dropped, then the combination is called conic combination and if only the second property

holds, it is called affine combination. The convex hull of these points is the set of all possible convex

combination of the points and will be shown as conv(x1,x2, · · · ,xk).

We present a polyhedron as P (A,b) := {x ∈ Rn|Ax ≥ b} where for n,m ∈ N , A is an n×m matrix

and b is an m−dimensional vector. If the entries of both A and b are rational numbers, the polyhedron

P (A,b) is called rational polyhedron. The set of integer points inside the polyhedron P (A,b) will be

denoted by Int(P (A,b)). A polytope is the convex hull of a finite set of points in Rn. It is easy to see

that polytope is a bounded polyhedron.

The Minkowski sum of two sets of vectors, A,B ⊆ Rn is a set of all possible summation between the

members of these sets, i.e, {a + b | a ∈ A,b ∈ B}. Also, the polyhedron P (A,b) can be defined in

another way by Affine Minkowski-Weyl Duality theorem: A subset P ⊆ Rn is a polyhedron if and only

if it is the Minkowski sum of a polytope and a finitely generated cone.

A half-space (w, t) is the set {x ∈ Rn | wTx ≥ t} for w ∈ Rn , t ∈ R. We use the notation {(wi, ti)}ki=1

to denote the intersection of a set of k-many half-spaces. A half-space (w, t) is a valid inequality for a set

S ⊂ Rn, if S ⊂ {x ∈ Rn | wTx ≥ t}. F is a face of the polyhedron P (A, b), if F ⊂ P (A,b) and there

exists a valid inequality (w, t) for P (A,b) such that F = {x ∈ P (A,b) | wTx = t}. If F 6= ∅, then

(w, t) supports the face F , and F = {x ∈ P (A,b) | wTx = t} is called the supporting hyperplane of F .

A supporting hyperplane is called right-closed supporting hyperplane if both w and t are non-negative.

F is called proper-face if F 6= P (A,b) and non-trivial if F 6= ∅. A facet of the polyhedron P (A,b),

F , is the proper face of P (A,b) such that it is not strictly contained in any proper or non-trivial

face of P (A,b). A right-closed facet of a polyhedron P (A,b) is a subset of a right-closed supporting

hyperplane.

15

2.5 Convex Hull

Since computing the convex hull will be a fundamental part of this dissertation, we devote this section

to the notion of convex hull and its computation. We will review the definition of the convex hull and

then discuss different methods of computing it and their complexities. For more in depth review of

these materials one can refer to references [31] and [32].

The convex hull of a set of points is the set of all possible convex combination of the points. Essentially,

the convex hull of a set of points, M ∈ Rn is the smallest convex set in Rn that contains the set M.

The problem of computing the convex hull is to find the representation of conv(M) for the set M.

This can be done by enumerating the vertices or extreme points of the conv(M), which is called the

vertex enumeration problem. If conv(M) is full dimensional, n-polyhedron P (A,b), then the problem

reduces to finding proper A and b, and each row of A, along with the corresponding row of b will form

one facet of conv(M). This is called facet enumeration problem. As a side note, a polyhedron is full

dimensional if there is an interior point x ∈ conv(M) that satisfies all the inequalities strictly.

2.5.1 Vertex and Facet Enumeration problems

The foundation to these two problems is the Minkowski- Weyl theorem for convex polyhedra which can

be stated as following:

Theorem 2.5.1. For a convex polyhedron M⊂ Rn the following statements are equal:

• M = P (A, b) := {x ∈ Rn|Ax ≥ b}

• For a finite set of vertices, m1, . . . ,mk and finite set of vectors, r1, . . . , rl, M is defined as:

M = conv(m1, . . . ,mk) + cone(r1, . . . , rl)

where cone(r1, . . . , rl) is the conic combination, defined earlier.

16

Minkowski-Weyl theorem suggests that every convex polyhedron has two representations: vertex

representation, V-representation and halfspace representation, H-representation. The problem of con-

verting the H-representation to V-representation is what is called the vertex enumeration and the reverse

process is the facet enumeration problem. If the polyhedronM is full dimensional and has at least one

vertex, then each representation is unique, for positive multipliers of the inequalities and ri. Although

a very fundamental problem in computational geometry, existence of a polynomial time algorithm for

converting these two representation to each other is still an open question. It is interesting to know

that, although facet enumeration and vertex enumeration are equivalent, for some classes of convex

polyhedra, one of these problems is much easier than the other.

2.5.2 Convex Hull Algorithms

In this section, we review common convex hull algorithms and discuss their complexities in number of

points and dimension. The standard practice is to consider the dimension to be fixed, because there is

no good algorithm for computing a convex hull if the dimension is permitted to change.

Brute Force Algorithm

This is the simplest of the algorithms and primarily is used in a 2-dimensional space. The algorithm

simply tests each line segment between two pairs of points and checks if all the other points lie in one

side of this line. With an input of n points, there will be O(n2) lines along with O(n) points to check

whether that line is an edge, which yields an O(n3) procedure. Using a similar argument, this algorithm

yields an O(nd+1) for a problem in d−dimensional space, which is not satisfactory. The figure 2.4 shows

the main idea behind this algorithm.

Gift Wrapping or Jarvis’s March Algorithm

This algorithm sorts the given points using one of the variants of the class of sorting algorithms. After

sorting the points lexicographically, or at least by one of its elements, it selects, let us say, the point

that is farthest left. The idea is to find the vertices of the convex hull at each iteration, rotating either

17

Figure 2.4: Brute Force Algorithm: The red edges are not acceptable as points are distributed at
each side of them; On the other hand, black lines are good candidates for the edges of the convex
hull

clockwise or counterclockwise. Let points mk−1 and mk are the last points added to the convex hull

computation. We connect all the remaining points to the point mk and will pick the one that generates

the largest angle with the mk−1mk line segment. The step of adding new point to the convex hull can

be completed in O(n) time. The essential question then becomes how many vertices the convex hull

will have. As the worst case scenario, all the given points will be a vertices of the convex hull. Hence,

the algorithm in worst case scenario, will take O(n2) time. Notice that this algorithm is much easier

again to perform in a 2-dimensional space, rather than in general dimension. Figure 2.5 illustrates each

step of this algorithm.

Divide-and-Conquer Algorithm

The idea of this algorithm, which uses the divide-and-conquer design, is to compute the convex hull for

the subsets of the main set and the merge these two set together. The algorithm is recursive in nature

and we will discuss the complexity in more depth. The algorithm is presented in algorithm 1:

The merging algorithm mentioned in algorithm 1, is essentially uses the tangent line between two

smaller convex hull, conv(M1) and conv(M2). For m1 ∈ conv(M1) and m2 ∈ conv(M2), observe that

18

Figure 2.5: Figures (a)-(d) show the steps involved in the Gift Wrapping algorithm. At each
point, an edge will be chosen if it can make the largest angle with the previous edge.

Algorithm 1 Divide-and-Conquer Algorithm

1: if Number of input points, |M| ≤ 3, then
2: Use brute force algorithm.

3: if |M| > 3 then
4: Sort the points based on their first element or lexicographically.
5: Divide the ordered set of points in M to two distinct set, M1 and M2, where the first one

has the firs half of the ordered point and the second one contains the rest.
6: Compute the conv(M1) and conv(M2) in recursive procedure.
7: Merge the conv(M1) and conv(M2) together using the merge algorithm

8: Exit.

19

(a) Divide-and-Conquer (b) Divide-and-Conquer

Figure 2.6: Figure (a) shows the convex hull of two smaller subsets; Figure (b) is the merging
step, using the tangent algorithm

line m1m2 is tangent, if all the points on both hulls are located on one side of this line. The tangent

algorithm is described in algorithm 2 and figure 2.7

Algorithm 2 Tangent Algorithm

1: Find the edge m1m2, that does not intersect two hulls, where m1 ∈ conv(M1) and m2 ∈
conv(M2)

2: while m1m2 is not the tangent line for both hulls do
3: while m1m2 is not tangent for conv(M1) do
4: Move m1 clockwise
5: while m1m2 is not tangent for conv(M2) do
6: Move m2 counterclockwise
7: Exit.

Algorithm 1, uses the brute force method if the input size is less than 3 which can be completed in

O(1) time. Therefore, using the simple divide-and-conquer time analysis we have:

T (n) =

O(1) if |M| ≤ 3

n+ 2T (n
2
) if |M| = n > 3.

Note that the tangent algorithm can be performed in O(n) time. Therefore, the time complexity for

divide-and-conquer algorithm is T (n) = O(n log n).

20

(a) Tangent Algorithm (b) Tangent Algorithm

(c) Tangent Algorithm (d) Tangent Algorithm

Figure 2.7: Steps of finding the tangent line for merging step

21

QuickHull Algorithm

The QuickHull algorithm is one of the widely used convex hull algorithms in practice. In this disser-

tation, we use QuickHull algorithm for computing the convex hull. The name of the algorithm comes

from the fact that it uses the divide-and-conquer approach used in the quicksort algorithm. The idea

behind this algorithm is to construct the convex hull over the small subsets of the main set and then

eliminate all the interior points. We describe the steps of the algorithm, for a 2-dimensional space, as

following:

Algorithm 3 QuickHull Algorithm

1: Sort the points by the first element.
2: while set of inner points are not ∅ do
3: draw a line between the first and last point in the ordered set, m1 and m1.
4: Find two points that have the maximum perpendicular distance form m1m2 for each side.
5: construct the two triangle(convex hull) of conv(M1) and conv(M2) by these 4 points.
6: Discard the points inside the conv(M1) and conv(M2)
7: Return to step 5 and do it over the remaining points

8: Exit.

Eliminating the inner point can be a challenging problem, specially when we are dealing with problems

in high dimension. This is is comparatively easy for problems in two dimensions. this can be easy. We

need to find the point that produces the largest perpendicular distance from the separating line and

then, forming a triangle over the separating line. All the inner points inside the triangle then will be

removed. We repeat the same process with each edge of the formed triangle: making new edges and

removing the inner edges. The computational complexity of the QuickHull algorithm heavily depends

on how the input points are distributed over the plane. If the number of points card(M) = n, then

for each element of the points, the maximum and minimum can be found O(n). Using only the first

element, can be a good start and then set can be split in half. Assuming that points are evenly spread

22

(a) QuickHull Algorithm (b) QuickHull Algorithm

(c) QuickHull Algorithm (d) QuickHull Algorithm

Figure 2.8: Steps of QuickHull Algorithm

23

in two side of the separating line, we can get:

T (n) =

O(1) if card(M) = 1

2T (n
2
) if card(M) = n > 1.

which gives us the computational time of T (n) = O(n log n). The worst case scenario happens when the

points are not distributed evenly, which makes it hard to estimate the complexity time of the algorithm.

It has been proved that the algorithm performs in T (n) = O(n2) time, when in the worst case possible.

In practice this algorithm performs well on average, and therefore we will use this algorithm.

In this dissertation, we deal with higher dimensional problems which simple form of the mentioned

algorithms cannot be used. We will utilize the software tool polymake developed in [33, 34]. Also for

general complexity of a convex hull computation algorithm, for a fixed dimension and specifically a

deterministic version of the algorithm, one can refer to theorem 4.2.4 and reference [35].

2.6 Discrete Volume

The discrete volume of a geometric set, M, is the number of lattice points inside the set or simply

M∩Zn, where Zn is the set of all integers in a n-dimensional Euclidean space. The discrete volume

can be computed by:

vol(M) = lim
t→∞

Int(M∩ 1

t
Zn)

1

tn

where it calculates the number of lattice points inside the geometrics set M where it has been shrunk

by a factor of t. The total volume, comes as a natural integration over the factor t. Unfortunately the

equation above is not easy to calculate for any geometry and can become a hard problem to solve in an

arbitrary setting. A detailed treatment can be found in reference [36]. In this section we will focus on

counting the lattice points inside an n-simplex, specially the standard simplex, which is used to analyze

the performance of a grid-search based algorithm in Chapter 5.

Before jumping to counting the lattice points, we will discuss the generating functions in brief, as

24

they are fundamental to the issue of computing the discrete volume of polyhedra.

2.6.1 Generating Functions

Herbert Wilf says in his book [37].

“ A generating function is a clothesline on which we hang up a sequence of numbers for

display .”

Essentially what it means is that if we have a sequence of numbers an, which are indexed by natural

numbers, by using generating functions, we can get more information about the sequence. Most of the

time, solving the sequence, finding the closed form solution for the sequence, will be impossible. Using

the power series, whose coefficients are the members of the sequence, is an standard tool to tackle this

problem. Solving a sequence in general, aims to find either an exact closed form solution or a recursive

formula for the members of sequence.

For the sequence of numbers, 〈an〉 = a0, a1, . . ., the generating function A(x) is defined as the formal

power series:

A(x) =
∞∑
i=0

aix
i

where the 〈an〉 are the coefficients of this series. This can be shown by the following notation: [xn]A(x).

Then, the problem reduces to find the [xn]A(x) for the defined power series. Note that generating

functions are not functions in their traditional definition and usually called generating series. The

following example will show how these series can become useful, when we are dealing with sequences.

Example

Let consider the Fibonacci Numbers, where each term is the sum of two previous terms:

Fn+2 = Fn+1 + Fn

We can write down the value of Fn when n is small, but when n is large, we will need an exact formula.

25

The generating function is particularly useful in this regard. We define the following generating function:

A(x) =
∞∑
n=0

Fnx
n

Plugging the formula for the sequence in the generating function above, we can write:

∞∑
n=0

Fn+2x
n =

∞∑
n=0

Fn+1x
n +

∞∑
n=0

Fnx
n

The left-hand side of the equation contains terms that are not presented on the right-hand side. So,

as a general technique in solving such a problem, we can expand left-hand side and write:

∞∑
n=0

Fn+2x
n =

1

x2

∞∑
n=2

Fnx
n =

1

x2
(A(x)− x)

where we know that the first two terms of the Fibonacci series are 0 and 1. We just take these two

numbers out in order to match the right-hand side. Applying the same technique for the right-hand

side, then multiplying both sides of the equality by xn, and summing over n ≥ 1 we have:

1

x2
(A(x)− x) =

1

x
A(x) + A(x)

Collecting the term A(x) from both sides yields:

A(x) =
x

1− x− x2

Using partial fraction decomposition and results in geometric series convergence of
∑∞

n=0 x
n = 1

1−x , we

can find a closed form solution for each term of Fibonacci numbers:

[xn]A(x) = Fn =
1√
5

((
1 +
√

5

2
)n − (

1−
√

5

2
)n)

In many enumeration problems, generating functions are used as the fundamental technique to recover

26

the solution. As we discuss in the next chapter, for counting the lattice points inside the polyhedron,

we will use a very well-known generating function, called Ehrhart series.

2.6.2 Lattice Points in Simplex

This subsection starts with a simple example before discussing the main problem. An square with

a length k, will have (k + 1)2 lattice points, given the fact that all the vertices are integral points.

Expanding this idea to a cube in 3-D will yield a result of (k + 1)3. Now take a unit cube, in a n-

dimensional space, where all for all the vertices v = (v1, . . . ,vn), each vi is either 0 or 1. By expanding

the cube by factor of t or dilate it by t, the resulting cube will have (t + 1)n lattice points overall, out

of which, (t− 1)n of them will be in the interior of the dilated cube.

1
0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

00

0.2

0.4

0.6

0.8

0.6

0.5

0.4

0.3

1

0.2

0

0.9

0.1

0.8

0.7

1

(a) Unit Cube

Figure 2.9: A unit cube, where the dilation factor t = 1; This means that it has (1 + 1)3 = 8
lattice points

For any geometric set M ∈ Rn, we define Ehrhart polynomial or Lattice-point enumerator function

27

as:

LM(t) = Int(M∩ 1

t
Zn)

which essentially is the discrete volume of the dilated set (by factor of t), defined previously. As we

discussed earlier, this term is easy to recover for the unit cube which is LM(t) = (t + 1)n, when M

is a unit cube. For complex geometries, this would not be easy. This calls for the use of generating

functions. The Ehrhart Series of bounded geometryM is defined as the generating function over LM(t)

:

EhrM(x) := 1 +
∞∑
t=1

LM(t)xt

By replacing LM(t) = (t+ 1)n, we get

EhrM(x) = 1 +
∞∑
t=1

(t+ 1)n =
∞∑
t=0

(t+ 1)n

Therefore, by applying the similar technique used in the solving the Fibonacci series problem, we can

get a closed form solution for the problem:

EhrM(x) =
1

(1− x)n+1

n∑
i=1

(
i∑

j=0

(−1)j
(
n+ 1

j

)
(i− j)n)xi−1

Although, in this case the lattice-point enumerator looks much easier than the Ehrhart series, but this

will be absolutely critical for more complex geometries. Now we can focus on the simplex, which is

essential to this dissertation.

An n-dimensional polytope with exactly n+1 vertices is called n−simplex. A polytope has dimension

n, if the dimension of its affine spaces is n. A standard simples M is a convex hull of n+ 1 vertices: n

unit vectors and origin.

The hyperplane representation of the M can be written as:

M = {x | x ∈ Rn and 1T · x ≤ 1 and x ≥ 0}

28

1
0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

01
0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

0

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

(a) Simple Simplex

Figure 2.10: Simple 3-simplex

29

where 1 is the vector of all ones. The number of lattice points in the simple simplex is similar to very

famous problem: number of integral solutions to a linear equality. For the dilation of the simplex by

factor of t, we can add an slack variable, and then problem becomes:

x1 + x2 + · · ·+ xn + xn+1 = t

Number of integer solution to the equation above is equal to the number of lattice points in a dilated

simple simplex. So, if pn is the number of integral solutions to the equation above when the right-hand

side is n, by using the generating function used in Frobenius problem and Coin Exchange Problem, we

can define the following generating function for the mentioned counting problem:

A(z) =
∞∑
n=0

pnz
n =

∞∑
x1=0

zx1

∞∑
x2=0

zx2 · · ·
∞∑

xn+1=0

zxn+1

By using the fact that:
∑

k≥0 z
k = 1

1−z , and multiplying the right-hand side by z−t, we can write:

A(z) = z−t
1

(1− z)(1− z) · · · (1− z)
=

1

(1− z)n+1zt
(2.1)

Hence, the pn will be the constant term of A(z), pn = [zn]A(z). Note that generating series A(z) is

the Ehrhart polynomial of the simple simplex. In order to recover the constant terms of such a series,

binomial series, can be beneficial. A general binomial series can be presented as: (1+x)n =
∑∞

k=0

(
n
k

)
xk

. By plugging in the −z and −t, we have:

1

(1− z)n+1
=
∞∑
k=0

(
−(n+ 1)

k

)
(−z)k

where by a simple expansion, we can find out that:

(
−(n+ 1)

k

)
= (−1)k

(
k + n

k

)

30

which means that:

1

(1− z)n+1
=
∞∑
k=0

(
n+ k

n

)
zk (2.2)

So the constant term of equation 2.1 is the same as coefficients in equation 2.2. Therefore, the number

of lattice points in a simple simplex, dilated by factor of t will be:

LM(t) =

(
n+ t

t

)
(2.3)

So, we can summarize all the discussion above with the following theorem.

Theorem 2.6.1. For a simple simplex M in an n-dimensional space, dilated by factor of t, we have:

• Lattice point enumerator function or Ehrhart polynomial will be: LM(t) =
(
n+t
t

)
• The Ehrhart series is defined as: EhrM(z) = 1

(1−z)n+1

To conclude this section, it is worth mentioning that equation 2.3, gives all the lattice points in the

simplex M, even the ones on the boundary of the polyhedron. To compute the points which locate

inside the boundaries of the simplex, Computing lattice points in the interior of such a geometry involves

more steps as one needs to eliminate the integral points on the facets of the simplex. The closed form

solution for the interior lattice-enumerator can be achieved by simply evaluating the LM(t) at the

negative integers which is (−1)nLM(−t). Additional information can be found in reference [36].

31

Chapter 3

Right-closed Integral sets and the Liveness
Problem

This chapter serves as the motivation behind exploring the properties of the right-closed sets and

in specific, the convexity of these sets. First, a short background is presented regarding the issues

with computing the minimally restrictive LESPs. Then preliminary results regarding specific PNs are

discussed, which show the importance of right-closed sets in liveness problem.

3.1 On Existence of LESPs for certain PN Models

It has been shown that the existence of an LESP for an arbitrary PN is undecidable [20], meaning

there is not a single algorithm which can answer whether or not an LESP exists for an arbitrary PN.

More interestingly, both existence and the non-existence of an LESP for an arbitrary PN are not semi-

decidable problems. These two arguments leads to the conclusion that every single heuristic algorithm

for finding an LESP for an arbitrary PN will not terminate in at least one instance where there is an

LESP, and at least in one instance which there is no LESP. Although, if there exists an LESP for an

arbitrary PN, then there should be a unique minimally restrictive LESP for that PN.

On the bright side, for some classes of PNs, including ordinary Free-ChoicePNs (FCPNs), and PNs

where all the transitions are controllable, the minimally restrictive LESP, when it exists is marking

monotone. That is, if a transition is control-enabled at some marking by a marking monotone policy,

it remains control-enabled for all larger markings. A PN structure N = (Π, T,Φ,Γ) is Free-Choice if

∀p ∈ Π, card(p• > 1) ⇒ •(p•) = {p}, where card(•) denotes the cardinality of the set argument.

FCPNs are widely used to model the flow of material in manufacturing/logistics systems, and the flow

of control in data-flow computation.

32

We say the set of markings M ∈ N n is control-invariant with respect to a partially controlled PN

structureN = (Π, T,Φ) ifM = Γ(M), where Γ(M) = {mi ∈ N n | ∃σ ∈ T ∗u ,∃mj ∈M such that mj σ→

mi}. In general, M ⊆ Γ(M). What we mean by control invariant is that firing an uncontrollable

transition will not produce a marking which does not belong to M and only firing a controllable

transition can result in marking out of M.

Let define the set ∆(N) for every PN as following:

∆(N) : {m0 | ∃ an LESP for N(m0)} (3.1)

This is the set of initial marking for which there is an LESP for a PN structure N . It has been

shown that ∆(N) is control invariant with respect to PN structure N , meaning if m1 ∈ ∆(N), tu ∈

Te(N,m
1) ∩ Tu, and m1 tu→ m2 in N , then m2 ∈ ∆(N). The following lemma utilizes this property to

re-define a minimally restrictive LESP.

Lemma 3.1.1. [20] The supervisory policy that control-disables a transition only if its firing at a

marking in ∆(N) would result in a new marking that is not in ∆(N), is the minimally restrictive LESP

for N(m0) for m0 ∈ ∆(N)

For a PN N , if any initial marking m0 belongs to ∆(N), then it is guaranteed to have an LESP.

Therefore, the problem of synthesizing the minimally restrictive LESP translates to problem of com-

puting the ∆(N)-set. Unfortunately ∆(N) is not computable in general. The following result from the

same reference [20], shows that membership problem to set ∆(N) is semi-decidable.

Lemma 3.1.2. For an arbitrary PN N(m0), and for an integral vector m ∈ N n, neither “m ∈ ∆(N)?”

nor “m0 /∈ ∆(N)?” is semi-decidable.

As a result, any heuristic algorithm for computing a LESP will hang indefinitely for at least one

instance where there is LESP and once for the case which there is not one. This leaves us with the only

option of finding PNs for which the ∆(N)-set has a specific structure that permits its computation.

33

3.2 Right-Closed ∆(N)

As discussed above, for some classes of PNs when the minimally restrictive LESP exists, it is marking

monotone. This observation gives rise to exploring the PNs for which the corresponding ∆(N) is

right-closed. The following two results from [20] resolve the computability issue for ∆(N).

Theorem 3.2.1. If N is any PN structure with all its transitions controllable (i.e Tc = T), then the

finite set min ∆(N) is computable.

This result is particularly interesting as for any PN, ∆(N) ⊆ ∆f (N) where ∆f (N) is the set of initial

marking for which there exists an LESP where all the transitions are controllable.

Theorem 3.2.2. The largest subset of any right-closed set of marking M ⊆ N n, that is control-

invariant with respect to a PN structure N can be computed.

Based on the aforementioned theorems, a feasible process can be built in order to synthesize the

minimally restrictive LESP for a PN.

3.2.1 Synthesizing ∆(N)

Suppose (1)N is a PN structure where ∆(N) is known to be right-closed, (2)Ψ is a set of markings that

are control invariant with respect to N and it is right-closed set, (3)PΨ is a supervisory policy which

control-disables any controllable transition at a marking which belongs to Ψ if its firing would result in

a marking which is not in Ψ and (4)m0 ∈ Ψ. The coverability graph of N(m0) under supervision of PΨ

is denoted by G(N(m0),PΨ). Then the policy PΨ is a liveness enforcing policy if and only if:

1. m0 ∈ Ψ and

2. Path-requirement : There is a vertex v, and a closed-path v
σ→ v in G(N(mi),PΨ), where σ ∈ T ∗,

for each mi ∈ min(Ψ), where

(a) all transitions appear at least once in σ(i.e.x(σ) ≥ 1), and

34

(b) the net-change in the token-load in each place after the firing of σ is non-negative (i.e.Cx ≥

0).

The conditions mentioned above can be checked easily with an Integer Linear Program (ILP). The

algorithm for synthesis of an LESP for a PN structure N that belongs to a class where ∆(N) is known

to be right-closed essentially involves a search for a right-closed set of marking Ψ that is control invariant

with respect to N , where each member of min(Ψ) meets the path-requirement on its coverability graph

described above. This is done in an interactive manner starting with an initial set:

Ψ0 = {m0 | ∃ an LESP for N(m0) if all transitions in N are controllable}

which is known to be right-closed. If Ψ is the largest subset that meets the aforementioned requirement,

min(Ψ), effectively represents the minimally restrictive LESP for the PN N(m0).

By discussion above, we have an structured method to compute the ∆(N), for specific class of PNs,

where ∆(N) is known to be right-closed. One can draw the direct comparison between ∆(N) and Ψ

The following theorem is the result of the mentioned procedure.

Theorem 3.2.3. If N is a PN structure such that ∆(N) is right-closed, then problem of whether or

not m0 ∈ ∆(N), is decidable.

3.2.2 PNs with Right-Closed ∆(N)

Theorem 3.2.3, brings about a considerable attention towards different calsses of PNs, such that

the corresponding ∆(N) is known to be right-closed. In this section, the preliminary results for such

classes of PNs is discussed.

Let Ω(t) = {t̂ ∈ T |•t ∩• t̂ 6= ∅}, denote the set of transitions that share a common input place with

t ∈ T for a PN structure N . Let H̃ denote a class of PN structures where the following property is true:

∀m ∈ ∆(N),∀tu ∈ Tu,∀t ∈ Ω(tu), (t ∈ Te(N,m))⇒ (tu ∈ Te(N,m)) (3.2)

35

That is, if a transition t, a member of the H̃ class of PNs, is state enabled at a marking in ∆(N), then

all uncontrollable transitions that share a common input place with t are also state-enabled at the same

marking. The following lemma finds use in the proof of theorem coming theorems.

Lemma 3.2.4. Let P be a LESP for N(m0), where m ∈ ∆(N), for a PN structure N ∈ H̃. Suppose

m0 σ→ mi under the supervision of P, and m̂0 σ̂→ m̂j without supervision in N , where the number of

occurrence of each controllable transition in σ and σ̂ are identical, and m̂0 ≥ m0. There exists strings

σ1, σ̂1 ∈ T ∗ such that:

1. m0 σσ1→ mk under the supervision of P in N .

2. m̂0 σ̂σ̂1→ m̂l without supervision in N , and

3. x(σσ1) = x(σ̂σ̂1), and m̂l ≥ m̂k

Proof. Let T̂u ⊆ Tu denote the set of uncontrollable transitions that appear more often in σ̂ as compared

to σ. If T̂ = ∅, then σ̂ = σ and the result holds trivially. If T̂u 6= ∅, there is a string σ1 such that

mi σ1→mi+1 under the supervision of the LESP P such that:

1. at least one member of tu ∈ T̂u is state-enabled at mi+1, and

2. none of the members of T̂u are state-enabled at any marking that results from the firing of a

proper prefix of σ1 at mi

It follows that m̂j σ̂1→ m̂j+1, without any supervision, in N . If this were not the case, there must be

a proper prefix of σ1 of the format σtm, such that m̂j σ1→ m in N , but tm ∈ Te(N,m). Additionally,

tm ∈ Ω(tu) for some tu ∈ T̂ . Since N ∈ H̃, and m ∈ ∆N , it follows that tu ∈ Te(N,m), which

contradicts the second requirement.

Suppose mi σ1tu→ mj+1 under P in N , and m̂j σ̂1→ m̂j+1 without supervision in N . We let mj ←mj+1,

m̂j ← m̂j+1, σ ← σσ1tu, and σ̂ ← σσ1tu. The result follows by repeating the above construction as

often as necessary till T̂u = ∅

The following theorem notes that ∆(N) is right-closed if N ∈ H̃.

36

Theorem 3.2.5. [25] ((m0 ∈ ∆(N)) ∧ (m̂0 ≥m0))⇒ (m̂0 ∈ ∆(N)), if N ∈ H̃

Proof. Since m0 ∈ ∆(N), there is an LESP P for N(m0). Following reference [20], we define an LESP

P̂ for N(m̂0) as follows:

1. ∀t ∈ T, P̂(m̂0, t) = P(m̂0, t)

2. if m̂0 σ̂→ m̂i under P̂ , then

• ∀tu ∈ Tu, P̂(m̂i, tu) = 1, and

• ∀tc ∈ Tc, P̂(m̂i, tc) = 1

which results in∃σ ∈ T ∗, such that m0 σ→ mk under P , and the number of occurrence of each

controllable transition in σ and σ̂tc are identical.

If m̂0 σ̂→ m̂i under P̂ , then ∃σ ∈ T ∗ such that m0 σ→ mj under P , and the number of occurrence

of each controllable transition in σ and σ̂ are identical. Using lemma 3.2.4, and the definition of P̂

, we know ∃σ̂1, σ1 ∈ T ∗ such that m̂0 σ̂σ̂1→ m̂i+1 under P̂ , m̂0 σ̂σ̂1→ m̂j+1 under P , and m̂i+1 ≥ m̂j+1.

Consequently, for any σ2 ∈ T ∗ such that mj+1 σ→ mj+2 under P , we have m̂i+1 σ̂2→ m̂i+2 under P̂ as

well. Since P is an LESP for N(m0), it follows that P̂ is an LESP for N(m̂0)

The lemma 3.2.4 and previous theorem together imply the following theorem.

Theorem 3.2.6. ∆N is right-closed if N ∈ H̃

The above condition is not necessary for the right-closure of ∆(N). For instance, ∆(N4) is right-

closed for the general PN N4 shown in figure 3.1(a), but N4 /∈ H̃. Specifically, ∆(N4) is identified by the

inequality (1 1 1 1 1)m ≥ 1, and m = (1 0 0 0 0)T ∈ ∆(N4), t2 ∈ Tu, t3 ∈ Te(N,m), but t2 /∈ Te(N1,m).

The PN structure N5 shown in figure 3.1(b) belongs to the class H, while the PN structure N6 of figure

3.1(c) does not.

There is an LESP for the PN N(m0) if and only if m0 ∈ ∆(N), and the existence of an LESP is

undecidable for a general PN [38]. This would mean that the set ∆(N) cannot be compute for an

37

arbitrary PN structure N . To overcome this limitation, we modify the requirement of equation 3.2 as:

∀m ∈ N n, ∀tu ∈ Tu,∀t ∈ Ω(tu), (t ∈ Te(N,m))⇒ (tu ∈ Te(N,m)) (3.3)

This requirement defines a class of PNs, which we denote as H(⊆ H̃), and from the previous theorem,

we conclude that ∆(N) is right-closed for any N ∈ H. The next theorem points out to the property of

this newly defined class.

t

t

ttt

t

1

P2
2

23

3 4

4 5

5

6

P

P

P

P

1

(a) N4 /∈ H̃

t
t

t

t

t

2

2 2

2 2
2

3

3

4

4

5

5

P P

P PP

1

1

(b) N5 ∈ H

t

t t
t

t
t

2

2

2

3

3

4

4

5

5
6

P

PPP

P

1

1

(c) N6 /∈ H

Figure 3.1: (a) The PN structure N4 is not a member of class H̃. However, ∆(N4) is right-closed.
(b) The PN structure N5 is a member of H as it meets the structural requirements of theorem
3.2.7. (c) The PN structure N6 is not a member of the class H, and
∆(N6) = {m ∈ N 3 | (m(p1) + m(p2) + m(p3) + m(p4) ≥ 1) ∨ (m(p5)mod2 = 1)} is not right-closed.

Theorem 3.2.7. A PN structure N belongs to the class H if and only if ∀p ∈ Π, ∀tu ∈ p• ∩ Tu, we

have:

(Γ(p, tu) = min
t∈p•

Γ(p, t)) ∧ (∀t ∈ Γ(tu),
• tu ⊆• t)

38

Proof. (If) Suppose, t ∈ Te(N,m), for m ∈ N n, and ∃tu ∈ Ω(T) ∩ Tu(⇒ t ∈ Ω(tu)). Since •tu ⊆• t and

∀p ∈•,Γ(p, tu) = mint∈p•Γ(p, t), it follows that tu ∈ Te(N,m).

(Only if) We will show that the violation of requirement in the statement if the theorem for a PN

structure N would imply that N /∈ H. Suppose ∃p ∈ Π,∃tu ∈ p• ∩ Tu such that either

1. Γ(p, tu) > mint∈p•Γ(p, t), or

2. ∃t ∈ Ω(tu),
• tu −• t 6= ∅

In each of these cases we construct a marking m ∈ N n, such that ∃t ∈ Ω(tu) ∩ Te(N,m) and

tu /∈ Te(N,m), which leads to the conclusion that N /∈ H.

For the first case, the marking m places exactly (mint∈p•Γ(p, t))-many token in p, and sufficient

tokens is the input places of any transition t̂ ∈ Ω(tu) such that Γ(p, t̂) = mint∈p•Γ(p, t) that will result

in t̂ ∈ Te(N,m) and tu /∈ Te(N,m).

Similarly, for the second case, the marking m places sufficient tokens in the input places of t such

that t ∈ Te(N,m), while ensuring that the places in (•tu,
• t) remain empty. Consequently, t ∈ Te(N,m)

and tu /∈ Te(N,m).

There is an O(n2m2) algorithm that decides if an arbitrary PN structure belongs to the class H,

where n = card(Π) and m = card(T). The right-closure of ∆(N) for any N ∈ H, along with the result

in the reference [20], which is discussed in the previous section, implies that the existence of an LESP

for N(m0) is decidable. Furthermore, the software package described in reference [30] can be used to

compute the minimally restrictive LESP for N(m0) when it exists. Note that, each decidable class

of PN structure identified in the references [20, 39, 40] are strictly contained in the class of H. As an

illustration, the PN structure N5 shown in figure 3.1(b) is a member of H as it meets the structure

requirement of theorem 3.2.7, and it does not belong to any of the classes of structure identified in the

reference [20,39,40]. Additionally,

min(∆(N5)) = {(0 0 0 1 0)T , (1 0 1 1 2)T , (0 0 2 0 2)T , (2 0 0 0 2)T , (1 1 1 0 1)T ,

39

(0 1 2 0 1)T , (2 1 0 0 1)T , (0 2 2 0 0)T , (1 2 1 0 0)T , (2 2 0 0 0)T}

There is an LESP for N5(m0
5) if and only if m0

5 ∈ ∆(N5).

A transition t ∈ T is said to be a choice-transition (resp. non-choice transition) if (•t)• 6= {t} (resp.

(•t)• = {t}. In reference [41] it is shown that the minimally restrictive LESP for a Free-choice PNs

does not control-disable a non-choice (controllable) transition. The following result shows that a similar

observation holds for any minimally restrictive LESP for N(m0) where N ∈ H.

tm m

m

m

c

ct

1 2

3

4

tc

tu tu

tc

tc

m2
m1

m5
m

m

m4m

m

6

3

7

8

t
m m

m

m

c

tu

tu

ct

2

m9 m10

4

m

1

3

11

Figure 3.2: A graphical illustration used in the proof of theorem 3.2.8

Theorem 3.2.8. [41] Suppose m0 ∈ ∆(N) for a PN N(m)0, where N ∈ H, then the minimally

restrictive LESP P∗ for N(m0) does not disable any controllable transition tc ∈ Tc that satisfies the

requirement (•tc)
• = {tc}

Proof. (Sketch) Suppose ∃m1 ∈ R(N,m0,P∗)(⊆ ∆(N)), ∃m2 ∈ R(N,m0), such that m1 tcm
2

in N for

some tc ∈ Tc that satisfies the requirement (•tc)
• = {Tc}. We will show that

1. ∃ω̃ ∈ T ∗ such that m2 ω̃→ m̃ in N , where m̃ ∈ ∆(N).

40

2. Additionally, if ω̃ = ω̃1ω̃2, m2 ω̃1→ m̂1 ω̃2→ m̃, and m̂1 tu→ m̂2 in N for some tu ∈ Tu, then

∃ω̂ ∈ T ∗,∃m̂3 ∈ R(N, m̂2), such that m̂1 tu→ m̂2 ω̃→ m̂3 and m̂3 ∈ ∆(N).

Following the repeated application of the above observation we conclude that m2 ∈ ∆(N)

Since P∗ is an LESP, ∃ω1 ∈ (T − {tc})∗ and m1 ω1→ m̂2 tc→ m4 in N under the supervision of P∗.

Since, (•tc)
• = {tc}, it follows that m2 ω1→ m4 in N , and {m1,m3,m4} ⊆ ∆(N). Suppose ω1 = ω2ω3,

m2 ω2→ m9 ω3→ m4, and tu ∈ Tu such that m9 tu→ m10. Also, ∃m2(∈ ∆(N)) such that m1 ω2→ m5. There

are two cases to consider

1. tu ∈ Te(N,m5) and,

2. tu /∈ Te(N,m5)

In the first case, ∃m6(∈ ∆(N)) such that m5 tu→ m6 (figure 3.2 (b)). Since P∗ is an LESP, ∃ω4 ∈

(T − {tc})∗, ∃m7,m8 ∈ ∆(N), such that m6 ω4→ m7 tc→ m8. Since, (•tc)
•, we have m10 ω4→ m4, where

m4 ∈ ∆N .

For the second case, where tu /∈ Te(N,m5), since tu ∈ Te(N,m9), it follows that ∃p ∈ Π such that

{(tc, p), (p, tu)} ⊆ Φ, and the prior-firing of tc is necessary to place sufficient tokens in p ∈ Π, for tu to be

state-enabled at m5 (figure 3.2 (c)). Since N ∈ H, it follows that none of the transitions in Ω(tu) can fire

at any marking that is reachable in the segment identified by m1 ω1→m3. Consequently, tu ∈ Te(N,m4),

and m4 tu→m11 under the supervision of P∗, where m11 ∈ ∆(N). Consequently, m10 ω4→m11

Theorem 3.2.8 does not hold for general PN structure. The PN structure N6 shown in figure 3.1(c)

does not belong to the class H. This is because mint∈p•5Γ(p5, t) = 1, while Γ(p5, t6) = 2, and t6 ∈ p•5∩Tu.

Additionally, ∆(N6) = {m ∈ N 5 | (m(p1) + m(p2) + m(p3) + m(p4) ≥ 1) ∨ (m(p5)mod2 = 1)}, which

is not right-closed. The minimally restrictive LESP for N6, for any m0
3 ∈ ∆(N6) control-disables a

controllable transition at a marking in ∆(N6) only if its firing result in a new marking that is not

∆(N6). The minimally restrictive LESP would control-disable the non-choice transition t2 ∈ Tc at the

marking (0 1 0 0 1)T ∈ ∆(N6).

41

As a consequence of theorem 3.2.8, without loss of generality, we can assume all non-choice transitions

are uncontrollable, even when they are not, for any instance of the class of PN structures H. This is

formally stated in the following theorem.

Theorem 3.2.9. Let N = (Π, T,Φ,Γ) be a PN structure from the family H, where the set of transition

is partitioned into the set of uncontrollable transitions Tu, and controllable transitions Tc (i.e T = Tc∪Tu

and Tu ∩ Tc = ∅). Suppose N̂ is another member of the family H that is structurally identical to N ,

but the set of transitions in N̂ are partitioned into a different set of uncontrollable and controllable

transitions, where

T̂u = Tu ∪ {t ∈ T | (•t)• = {t}}

and T̂c = T − T̂u. Then ∆(N) = ∆(N̂).

Proof. Since T̂c ⊆ Tc, it follows that ∆(N̂) ⊆ ∆(N). The reverse inclusion is shown by contradiction.

Suppose, ∆(N̂) ⊂ ∆(N), then ∆(N) is not control invariant with respect to N̂ . That is ∃m1 ∈

∆(N),∃t̂u ∈ T̂u, such that m1 tu→ m2 and m2 /∈ ∆(N). Since, ∆(N) is control invariant with respect

to N , it must be that t̂u ∈ {t ∈ T | (•t)• = {t}}. But, from theorem 3.2.8, we know that m2 ∈ ∆(N),

which establishes the result.

As an illustration, the non-choice, controllable transition t2 in the PN structure N5 of figure 3.1(b)

can be considered to be uncontrollable, which effectively results in a PN structure with no controllable

transitions. There is an LESP for a PN N(m0) with no controllable transitions if and only if the PN is

live. This leads to the observation that the PN N5(m0
5) is live for any m0

5 ∈ ∆(N5).

The observation that we can assume all non-choice transitions are uncontrollable, even when they

are not for any N ∈ H, is critical to the speeding-up the execution of the software package described in

reference [30].

3.2.3 Why Convexity?

The existence of a monitor-placement does not guarantee its equivalence to a minimally restrictive

LESP. This section discusses results from reference [25], which is about the necessary and sufficient

42

condition under which an invariant-based monitor exists which is equivalent to the LESP P̃ that ensures

the set of reachable markings under its supervision stays within some subset ∆̃(N) ⊆ ∆(N). Note that,

we assume that the PNs has an computable minimally restrictive LESP, which here, it translates to

having a right-closed ∆(N) or a right-closed subset of ∆(N). For following theorem, we use lemma

4.1.2, which will be introduced in the next chapter for readability.

Theorem 3.2.10. Let ∆̃(N) ⊆ ∆(N) be a right-closed set that is control-invariant with respect to a

PN structure N = (Π, T,Φ,Γ). Further, let us suppose that each member of min(∆̃(N)) meets the

path-requirement mentioned earlier. There exists an invariant-based monitor that is equivalent to the

LESP P̃ that ensures <(N,m0, P̃) ⊆ ∆̃(N) for each m0 ∈ ∆̃(N), if and only if ∆̃(N) is convex.

Proof. (If) If the right-closed set ∆̃(N) is convex, then from lemma 4.1.2, it can be represented as,

Int(P (A,b)), the set of integral points in a polyhedron P (A,b) in the positive orthant. From the

results in references [28, 29], the invariant-based monitor Nc(m
0,Θ(m0)), where Θ(m0) = Am0 −

b, and an incidence matrix for the monitors that is given by AC, will guarantee ∀(mT
1 mT

2)T ∈

<(N,m0,Θ(m0)),Am1 ≥ b, and mT
2 = Am1 − b ≥ 0.

The control-invariance of ∆̃(N) with respect to N guarantees that any firing of a state-enabled

uncontrollable transition at some marking in ∆̃(N) in N will always result in a marking that is in

∆̃(N). Consequently, in Nc(m
0,Θ(m0)), if there are any arcs from a monitor to an uncontrollable

transition, it will not be prevented from firing due to insufficient tokens in the monitor. On the flip-

side, if there is a controllable transition with a monitor as one of its input places, that is prevented from

firing only because there are insufficient tokens in a monitor at some marking, then it must be that the

new marking that would result if the controllable transition were permitted to fire would violate the

(invariance) requirement Am1 ≥ b, and m1 /∈ ∆̃(N). Therefore, the control exerted by the monitors

in Nc(m
0,Θ(m0)) is the same as the LESP P̃ .

(Only If) Suppose for any m0 such that Am0 ≥ b, there is an invariant-based monitorNc(m
0,Θ(m0)),

where Θ(m0) = Am0 − b, and an incidence matrix for the monitors that is given by AC, that is

equivalent to the LESP P̃ that ensures <(N,m0, P̃) ⊆ ∆̃(N). Then, ∆̃(N) = Int(P (A,b)), which in

43

turn implies ∆̃(N) is convex.

Therefore, in order to answer the question of existence of an invariant-based monitor that is equivalent

to the LESP, we need to first answer the question of convexity of the underlying right-closed set. Earlier,

in figure 2.2(a) we introduced a PN N3(m0
3) and its minimally restrictive LESP that used forty-three

vectors, identified in figure 2.2(b). It is worthwhile to note that the PN structure N3 is an ordinary

FCPN, which would mean that ∆(N3) is right-closed. The forty-three vectors of figure 2.2(b) are

essentially the members of min(∆(N3)) that were computed using the software of reference [30]. It can

be shown that ∆(N3) is convex, which in turn means there is monitor construction (cf. figure 2.3) that

is equivalent to the minimally restrictive LESP of 2.2(a).

44

Chapter 4

Convexity of Right-Closed Set

A set in euclidean space is called convex if for every pair of points in the set, the line segment

connecting them, lies completely in the set. While a well-established concept, unfortunately checking

this property for an arbitrary geometric set is not easy. For example, consider deleting a single point

from a convex set; determining that the set is non-convex is almost impossible as infinite pairs of points

should be tested [21]. Verifying convexity of a set of integral vectors gets even worse, as all the tests for

convexity over the real sets will collapse when dealing whit an integral set. In this chapter, we present

results which show that testing convexity for a right-closed integral set is decidable.

4.1 Polyhedral Representation

We start this section with a simple but important lemma about a polyhedral representation of an

arbitrary right-closed set of integral points. Since we concern ourselves with polyhedra that are in the

positive orthant, we implicitly require ∀x ∈ P (A,b),x ≥ 0 in this section.

Lemma 4.1.1. For i, j ∈ N , A ∈ Ri×j, b ∈ Ri, the set of integral points, Int(P (A,b)) = P (A,b) ∩

N n, in a polyhedron P (A,b) is right-closed if and only if A is non-negative.

Proof. (Only If) Suppose Int(P (A,b)) is right-closed and Al,m, the (l,m)-th entry of A, is negative.

From the right-closure of Int(P (A,b)), we have (x ∈ Int(P (A,b)))∧ (x̂ ≥ x)⇒ (x̂ ∈ Int(P (A,b))).

Suppose, x̂k = xk,∀k ∈ {1, 2, . . . , j}−{m}, and if x̂m is made arbitrarily large compared to xm, the l-th

component of Ax̂ can be made less than bm. This would mean m̂ /∈ Int(P (A,b)). A contradiction.

(If) Follows directly from the definition of Int(P (A,b)).

45

Additionally, without loss of generality b, can be assumed to be non-negative if P (A,b) is in the

positive orthant, as with a polyhedron whose integral points define a set of markings of a PN. If A is a

non-negative matrix and bl < 0, then bl ← 0 will yield the same polyhedron as before. Consequently,

b can be assumed to be non-negative as well for these instances.

Lemma 4.1.2. A right-closed setM⊆ N n is convex if and only ifM = Int(P (A,b)), for a polyhedron

for some non-negative A and a non-negative b.

Proof. (If) If A and b are non-negative, then Int(P (A,b)) is a (convex) right-closed set (cf. Lemma

4.1.1). Consequently, M = Int(P (A,b)) is a convex, right-closed set as well.

(Only If) A convex right-closed set M can be written as the set of integral points in a set A that is

the Minkowski sum of the convex combination of the members of min(M) and the cone generated by

the unit-vectors. From the Affine Minkowski-Weyl Duality Theorem we infer that A is a polyhedron.

From lemma 4.1.1 and the discussion that followed it, we can assume the polyhedron is of the form

P (A,b), where A and b are non-negative.

Conversely, if M⊆ N n is a right-closed set that is not convex, there can be no polyhedron P (A,b)

such that M = Int(P (A,b)). Or, any right-closed, polyhedral approximation to a non-convex, right-

closed M⊆ N n will inevitably exclude some members.

4.2 Convexity Condition

Following the results for polyhedral presentation of a right-closed set, we present a necessary and

sufficient condition under which, an arbitrary right-closed integral set is convex.

Lemma 4.2.1. A set M⊆ N n is convex if and only if M = Int(conv(M)).

Proof. (Only if) Since M is convex, there exists a convex set C ⊆ Rn such that M = Int(C). By

definition, conv(M) is the smallest convex set that contains all members ofM. Therefore, conv(M) ⊆

C and conv(M) ∩N n = C ∩N n(=M).

(If) Follows directly from the definition of convexity.

46

Lemma 4.2.2 notes that the set of integral vectors in the convex-hull of a right-closed set is also

right-closed.

Lemma 4.2.2. The set Int(conv(M)) is right-closed for any M⊆ N n that is right-closed.

Proof. Suppose m̂ ∈ Int(conv(M)), then without loss of generality m̂ =
∑k

i=1 λimi, where ∀i ∈

{1, 2, . . . , k},mi ∈ M and
∑k

i=1 λi = 1. If 1j ∈ N n is any one of the n-many unit vectors of N n, then

(m̂+1j) =
∑k

i=1 λi(mi+1j), and (mi+1j) ∈M asM is right-closed. Therefore, (m̂+1j) ∈ conv(M).

The result follows from this observation.

As a consequence of lemma 4.2.2, it follows that, min(Int(conv(M))), the set of minimal elements

of Int(conv(M)) is finite. Theorem 4.2.3 yields an effectively computable test for the convexity of a

right-closed set M⊆ N n and is a direct consequence of Lemmas 4.2.1 and 4.2.2.

Theorem 4.2.3. A right-closed set M⊆ N n is convex if and only if min(M) = min(Int(conv(M))).

Equivalently, M⊆ N n is convex if and only if M = Int(conv(M)).

4.2.1 Some Additional Observations and an Illustrative Example

Although aforementioned theorems will be a strong base to test the convexity of a right-closed

set, but it is also important to develop an effectively computable test for this test. Computing the

min(Int(conv(M))) can be a very computationally expensive task. Following is a very helpful theorem

in computing the desired set. An illustrative example will show the importance of this theorem.

The procedure to compute the convex hull of a set of vectors is foundational to this section. The

following result shows that this can be done in polynomial time.

Theorem 4.2.4. [35] It is possible to compute the convex hull of m points in n-space deterministically

in O(mlog(m) +mbn/2c)

The following lemma identifies a property of the convex hull of min(M) where M ⊆ N n is an

arbitrary right-closed set.

47

Lemma 4.2.5. If M ⊆ N n is an arbitrary right-closed set, then all vertices of the convex hull of

min(M) are minimal elements.

Proof. This observation follows directly from the fact that every vector in conv(min(M)) is a convex

combination of the finite set of vectors in min(M).

As the theorem 4.2.4 states, computing the convex hull of finite points in a finite dimension has a

polynomial-time complexity with respect to number of points for a fixed dimension. We will utilize this

theorem as a basis for our proposed algorithm presented in the next chapter. But in order to construct

an efficient procedure for testing the convexity, we cannot directly compute the convex hull of the set

M, as this set is an infinite set by definition. To overcome this issue, we proposed a finite subset of

the original right-closed set, V , which keeps the characteristics that can attest to the convexity of the

original right-closed set.

Let V ⊂M be a finite collection of vectors as defined below:

V = min(M) ∪
{

∪
p∈{1,··· ,k},q∈{1,··· ,n}

{mp + 1q}
}

(4.1)

where min(M) = {m1,m2, · · · ,mk} and {1q}nq=1 is the set of n-many unit-vectors. In general,

min(M) ⊆ min(Int(conv(V))). The following result notes that for a non-convex right-closed set

M⊆ N n, min(Int(conv(V)))−M 6= ∅.

The finite number of integral vectors in the polytope conv(V) can be enumerated using software

packages like Polymake [33, 34], which can be subsequently processed to compute the members of

min(Int(conv(M))). Consequently, we have a procedure for testing the convexity of M 4.2.3.

Lemma 4.2.6. Let min(M) = {m1,m2, · · · ,mk} be the minimal elements of a right-closed set M ⊆

N n. Then min(Int(conv(M))) ⊆ conv(V), where V = min(M) ∪ {
⋃
p∈{1,··· ,k},q∈{1,··· ,n}{mp + 1q}}.

Proof. Let x ∈ min(Int(conv(M))), and x = (
∑

i∈I λimi) + (
∑

j∈J µjpj) for appropriate index sets I

and J , where {pj}j∈J is a set of integral vectors in the set (M− min(M)),
∑

i∈I λi +
∑

j∈J µj = 1,

∀i ∈ I, λi ≥ 0, and ∀j ∈ J, µj ≥ 0. Let us suppose each pj > m̂j for j ∈ J , and m̂j ∈ min(M). Then

48

x = (
∑

i∈I λimi) + (
∑

j∈J µjpj) ≥ x = (
∑

i∈I λimi) + (
∑

j∈J µjm̂j) =
∑

i∈K λimi = y, where the set K

is obtained from the index set I and J through the appropriate operations.

Since y ≤ x, and x ∈ min(Int(conv(M))), we have x = dye. For any pair of setsA and B, conv(A+B) =

conv(A) + conv(B), where the summation operator is the Minkowski sum. This, together with the fact

that dye = y+w, where w ∈ conv({0}∪{1q}nq=1) and y ∈ conv(min(M)), it follows that x ∈ convV

Therefore, we can simply infer that:

Theorem 4.2.7. A right-closed set M⊆ N n is convex if and only if min(M) = min(Int(conv(V))).

4.3 Computing min(Int(conv(M))): Illustrative Examples

We turn our attention to a procedure for computing min(Int(conv(M))), which is introduced via

examples in this section.

Consider a right-closed setM1, where min(M1) = {(2 0)T , (0 3)T}. Figure 4.1(a) shows a truncated

view of conv(M1) along with the V-polytope for this example, defined by the vertex set {(2 0)T , (3 0)T ,

(2 1)T , (0 3)T , (1 3)T , (1 4)T}. As noted in the caption of figure 4.1(a), we concludeM1 is not convex.

The facet defining hyperplanes for conv(M1) are F1 : x ≥ 0, F2 : −x− y ≥ −4, F3 : 3x+ 2y ≥ 6, F4 :

y ≥ 0, and F5 : −3x− 2y ≥ −9. Of these, F1 and F4 are ignored as the convex hull is (trivially) in the

positive orthant. Of these, only F3 defines a right-closed set and consequently conv(M1) is identified

by the inequality (3 2)x ≥ 6 for x ∈ R2 (x ≥ 0).

We now consider M2 ⊂M1 identified by minimal elements

{(0 4)T , (1 3)T , (2, 1)T , (3 0)T}.

Figure 4.1(b) shows a truncated version of conv(M2) along with the (V)-polytope defined by the vertex

set that corresponds to these minimal elements together with their elevated counterparts. As noted

in the caption of figure 4.1(b), we conclude that M2 is convex. The facet defining hyperplanes for

49

(a) conv(M1) (b) conv(M2)

Figure 4.1: The convex hull of M1, where min(M1) = {(2 0)T , (0 3)T}, along with the V-polytope
that is defined by the vertex set {(2 0)T , (3 0)T , (2 1)T , (0 3)T , (1 3)T , (1 4)T}. The set of
minimal elements of the seven integral vectors in this polytope, min(Int(conv(M1))), is
{(0 3)T , (1 2)T , (2 0)T}(6= min(M1)), therefore M1 is not convex. (b) The convex hull of M2,
where min(M2) = {(0 4)T , (1 3)T , (2 1)T , (3 0)T}. The V-polytope defined by these minimal
elements and their elevated counterparts has ten integral vectors, and
min(Int(conv(M2))) = {(0 4)T , (1 3)T , (2 1)T , (3 0)T}(= min(M2)), which implies that M2 is
convex.

conv(M2) are (1 1)x ≥ 3 and (3 2)x ≥ 8 for x ∈ R2 (x ≥ 0). However, if x ∈ N 2, ((3 2)x ≥ 8) ⇒

((1 1)x ≥ 3), and consequently M2 = {x ∈ R2 | (3 2)x ≥ 8} ∩ N 2.

For the final example, consider the right-closed set M3 ⊆ N 3 that is defined by the minimal

elements {(1 4 2)T , (3 5 1)T , (5 1 3)T}. Figures 4.2(a) and 4.2(b) shows two different, truncated

views of the unbounded convex-hull of M3. At noted earlier, it is of interest to compute the min-

imal integral vectors in conv(M3), and to this end we introduced the V-polytope, that (1) shares

(right-closed) facets with conv(M3), and (2) contains all members of min(Int(conv(M3))). Figures

4.2(c) and 4.2(d) shows two different views of such a polytope, along with its position relative to

conv(M). This polytope is defined by a vertex set consisting of each member of min(M3), along

with three elevated versions of each member of min(M3) along each of the three axes. That is,

the polytope is defined by the vertex set {(1 4 2)T , (2 4 2)T , (1 5 2)T , (1 4 3)T , (3 5 1)T , (4 5 1)T ,

(3 6 1)T , (3 5 2)T , (5 1 3)T , (6 1 3)T , (5 2 3)T , (5 1 4)T}. Members of min(Int(conv(M3))) are

the minimal elements of the integral vectors in this newly introduced polytope, Using Polymake, we

50

note there are twenty integral points in this polytope, which includes the six minimal elements –

{(1 4 2)T , (3 3 3)T , (3 5 1)T , (4 2 3)T , (4 3 2)T , (5 1 3)T}. Since min(Int(conv(M3))) 6= min(M), from

theorem 4.2.3 it follows that M3 is not convex. This is verified by noting

(3 3 3)T︸ ︷︷ ︸
/∈M

=
4

10
(1 4 4)T︸ ︷︷ ︸
∈M

+
2

10
(3 5 1)T︸ ︷︷ ︸
∈M

+
4

10
(5 1 3)T︸ ︷︷ ︸
∈M

.

From lemmas 4.1.2 and 4.2.2 we infer that conv(M3) = P (A,b) for an appropriately defined, non-

negative A and b. The newly introduced polytope can be used to identify an appropriate A and b that

defines conv(M3). Polymake identifies ten facet defining hyperplanes in the polytope: F1 : x+3y+5z ≥

23, F2 : −y−z ≥ −7, F3 : x+2z ≥ 5, F4 : x ≥ 1, F5 : z ≥ 1, F6 : −x−3y−5z ≥ −28, F7 : x+ 4
3
y ≥ 19

3
,

F8 : y ≥ 1, F9 : y+2z ≥ 7, and F10 : −x−y−z ≥ −10. Of these, F1, F3, F4, F5, F7, F8 and F9 define

right-closed sets, and their intersection essentially defines conv(M3). Therefore, conv(M3) = P (A,b),

where

A =

1 3 5

1 0 2

1 0 0

0 0 1

3 4 0

0 1 0

0 1 2

and b =

23

5

1

1

19

1

7

4.4 Convexity Testing

Unfortunately, the proposed test for checking the convexity, still is not efficient. The volume of

conv(V) can increase drastically if the dimension grows. Distribution of the minimal elements in the

space can also contribute to it. This increase in volume, will also effect the computation time of deriving

the minimal elements of conv(V) adversely. Hence, eliminating the procedure of computing the minimal

elements for testing the convexity is desired. In the following section, we look deeper into properties

51

(a) Convex Hull - View 1 (b) Convex Hull - View 2

(c) Convex Hull & Polytope - View 1 (d) Convex Hull & Polytope - View 2

Figure 4.2: Figures (a) and (b) present two different views of (the polyhedral representation of)
conv(M3). The minimal elements of M3, represented using coordinates (x y z)T , are
A = (1 4 2)T , B = (3 5 1)T and C = (5 1 3)T . Although the convex-hull is unbounded, the above
plot is limited to the ranges 1 ≤ x ≤ 7, 1 ≤ y ≤ 7 and 1 ≤ z ≤ 5 for illustration purposes. The
minimal elements of Int(conv(M)) are restricted to lie within a polytope, shown in figures (c) and
(d), that is defined by a vertex set that is formed by each member of min(M3), that is
subsequently elevated by three unit-vectors. That is, the polytope is defined by the vertex set
{(1 4 2)T , (2 4 2)T , (1 5 2)T , (1 4 3)T , (3 5 1)T , (4 5 1)T , (3 6 1)T , (3 5 2)T , (5 1 3)T , (6 1 3)T ,
(5 2 3)T , (5 1 4)T}. The minimal elements of the integral points of this polytope are the minimal
elements of Int(conv(M3)).

52

of the set conv(V) in order to find a better way to tackle this problem. We show that constructing a

subset of conv(M) in a slightly different way, while keeping the properties of conv(V), results in efficient

procedures for testing the convexity.

The finite set V is a strict subset of M, hence we can infer that the set of supporting hyperplanes

defining conv(M) is a strict subset of supporting hyperplanes defining conv(V). On the other hand,

conv(M) is a right-closed set which means all its supporting hyperplanes are right-closed hyperplanes.

The following theorem shows that if a supporting hyperplane of conv(V) is not a supporting hyperplane

of conv(M), then it is not right-closed.

Theorem 4.4.1. The set of right-closed supporting hyperplanes defining conv(V) are the only supporting

hyperplanes defining conv(M).

Proof. Since M ⊆ N n is right-closed, conv(M) ⊆ Rn is also right-closed. From reference [25], ∃l ∈

N ,∃A ∈ Rl×n,∃b ∈ Rl, such that conv(M) = P (A,b). As conv(V) ⊂ conv(M), extra constraints

should be added to the mentioned polyhedron in order to construct conv(V). Let cTi x ≥ di for i =

1, · · · , K, be the K additional constraints. For any vector p ∈ conv(M)− conv(V), we obtain

cTi p < di, ∀i = 1, · · · , K

Additionally, for any y ≥ 0, p + y also does not belong to conv(V) either. Therefore,

cTi p + cTi y < di, ∀i = 1, · · · , K.

Comparing these two expressions, suggests that ci for i = 1, · · · , K has to have at least one negative

component, regardless of the sign of di. Hence, the additional constraints in the form of cTi x ≥ di

cannot be right-closed hyperplanes

For 1 ≤ i ≤ n, let γi denote the maximum value of the i-th component of each member of V . That

53

is, γi := max{xi | x ∈ V)}. We define P̃ ⊆ Rn as the polytope that is defined as:

conv(M) ∩ {(−1i,−γi)}ni=1 (4.2)

That is, each of the left-closed half-spaces ensures the i-th component is less than or equal to γi.

Therefore P̃ consists of either right-closed or left-closed hyperplanes.

Theorem 4.4.2. The set of right-closed supporting hyperplanes defining conv(V) are the only right-

closed supporting hyperplanes defining conv(M) and P̃

Proof. We first show that conv(V) ⊂ P̃ . Notice that conv(V) ⊂ conv(M). Also all the points in

conv(V) satisfy the previously mentioned left-closed hyperplanes that are added to conv(V) in order to

construct the P̃ . Hence, every point in conv(V) also belongs to P̃ .

Now we show that conv(V) is constructed from P̃ by adding only non-right-closed hyperplanes. Let

cx ≥ d be the constraint added to P̃ in order to construct the conv(V). For every v ∈ conv(V) we

have cv ≥ d. Define γmax = (γ1, · · · , γn). If c and d are to be non-negative, therefore cγmax ≥ d

as γmax ≥ v. But γmax /∈ conv(V) by its definition although γmax ∈ P̃ . Therefore cγmax < d. This

contradicts the assumption that both c, d are non-negative. Hence, the additional constraints to P̃

cannot be right-closed.

Therefore, the (half-space) description of P̃ can be obtained by adding additional half-spaces in the

form of {(−1, γi)}ni=1 to the set of right-closed facets of V . This presents an computational procedure

for constructing the polytope P̃ . It is straightforward to show that min(Int(conv(M))) = min(Int(P̃)).

Theorem 4.4.3. ∀x ∈ min(Int(P̃)), there is at least one right-closed facet of P̃ , F , such that αx ∈ F

for some 0 ≤ α ≤ 1.

Proof. The P̃ is bounded (by definition) and therefore a compact space. Let P (A,b) be the polyhedral

representation of P̃ , which is the intersection of right- and left-closed half-spaces. Therefore, for ∀x ∈ P̃ ,

α∗ = min
0≤α≤1

{α | αx ∈ P̃}

54

is defined uniquely. Let right-closed rows of the P (A,b) (non-negative rows) be represented by (Â, b̂),

then for any x ∈ P̃ , α∗ can be defined uniquely as following:

α∗ = max

{
b̂i

Âi,·x

}

where Âi,· and b̂i are the i−th row of the matrix Â and vector b̂ respectively.

This selection of α∗ will guarantee that (α∗x) will satisfy at least one of the right-closed hyperplanes

equation and also be in the feasible region defined by other right- and left-closed hyperplanes. Hence, for

the aforementioned α∗, the (α∗x) satisfies all the constraints (rows) of P (A,b), so (α∗x) ∈ P (A,b) = P̃ ,

which suggests that there exist at least one right-closed facet of P̃ , F , such that α∗x ∈ F .

Now we are ready to prove the following result.

Theorem 4.4.4. A right-closed set M is convex if and only if ∀x ∈ Fi, where Fi is a member of set

of right-closed facets defining the P̃ , dxe ∈ M.

Proof. (Only if) Suppose ∃x ∈ Fi (⇒ x ∈ P̃) and dxe /∈M . There are two different scenarios:

1. either dxe is a member of P̃ and as dxe /∈M, M is not convex, or

2. there is another minimal element of P̃ , m̃, which is smaller than dxe. m̃ cannot belong to M

either, because its membership to M implies dxe ∈ M; Therefore M is not convex.

(If) Suppose M is not convex, then from the fact that min(Int(conv(M))) = min(Int(P̃)), and

theorem 4.2.7, ∃x ∈ min(P̃) such that x /∈ M. From theorem 4.4.3, ∃α∗ such that 0 ≤ α∗ ≤ 1, ∃ a

facet Fi that is on a right-closed hyperplane of P̃ , such that α∗x ∈ Fi. Since α∗x ≤ x, x /∈M, andM

is right-closed, it follows that α∗x /∈M as well; since dα∗xe ≤ α∗x, dα∗xe /∈M

Essentially theorem 4.4.4 notes that

(∀ right-closed facets Fi of P̃ ,∀x ∈ Fi, dxe ∈ M)⇔ (M is convex). (4.3)

55

This leads to a polynomial time algorithm for verifying the convexity of a right-closed set of integral

vectors, which is presented in the next section.

4.5 Example of Section 4.3 Revisited

Earlier, we noted that each right-closed set M has a V-polytope that is generated by members of

min(M) and their elevated-counterparts. In the previous sections we introduced a P̃ -polytope that is

essentially the smallest polytope that is defined by just right- and left-closed facet defining hyperplanes

(i.e. every facet of P̃ must be either be a right-closed facet or a left-closed facet) that contains the

V-polytope. This concept is reinforced by computing the P̃ -polytopes for the examples of section 4.3

this section.

In figure 4.1 presented the V-polytopes for two right-closed sets M1 and M2, where

min(M1) = {(2 0)T , (0 3)T}, and

min(M2) = {(0 4)T , (1 3)T , (2, 1)T , (3 0)T}.

These polytopes along with their corresponding P̃ -polytopes are shown in figure 4.3(a) and 4.3(b),

respectively. Each V-polytope is shown in green, while its corresponding P̃ -polytope is shown in yellow

in these figures. It is not hard to see that the yellow P̃ -polytope is the smallest polytope that is defined

by just right- and left-closed facet defining hyperplanes that contains the green V-polytope.

We considered a right-closed set M3 with minimal elements A = (1 4 2)T , B = (3 5 1)T and C =

(5 1 3)T in the discussion that accompanied figure 4.2. For this example, the V-polytope is defined by the

vertex set {(1 4 2)T , (2 4 2)T , (1 5 2)T , (1 4 3)T , (3 5 1)T , (4 5 1)T , (3 6 1)T , (3 5 2)T , (5 1 3)T , (6 1 3)T ,

(5 2 3)T , (5 1 4)T}. We had noted earlier that Polymake identifies ten facet defining hyperplanes in

the polytope: F1 : x + 3y + 5z ≥ 23, F2 : −y − z ≥ −7, F3 : x + 2z ≥ 5, F4 : x ≥ 1, F5 : z ≥ 1,

F6 : −x− 3y − 5z ≥ −28, F7 : x+ 4
3
y ≥ 19

3
, F8 : y ≥ 1, F9 : y + 2z ≥ 7, and F10 : −x− y − z ≥ −10.

The polytope P̃ for this example is identified by the right-closed facets of the polytope V (i.e.

56

X Axis
0 0.5 1 1.5 2 2.5 3

Y
Ax

is

0

0.5

1

1.5

2

2.5

3

3.5

4

Elevated
Vector [0,4]

Minimal
Element

[0,3]

Minimal
Element

[2,0]

Elevated
Vector [1,3]

Elevated
Vector [3,0]

Elevated
Vector [2,1]

(a) conv(M1)

X Axis
0 0.5 1 1.5 2 2.5 3 3.5 4

Y
Ax

is

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Minimal
Element

[0,4]

Minimal
Element

[1,3]

Minimal
Element

[2,1]

Minimal
Element

[3,0]

Elevated
Vector

[0,5]
Elevated

Vector
[1,4]

Elevated
Vector

[2,3]

Elevated
Vector

[2,2]

Elevated
Vector

[3,1]

Elevated
Vector

[4,0]

(b) conv(M2)

Figure 4.3: Illustration of the V- and P̃ -polytopes for right-closed sets. The V-polytope is shown
in green, and the P̃ -polytope is shown in yellow. Figure (a) (resp. figure (b)) shows these
polytopes for the right-closed set M1 (resp. M2) introduced in section 4.3. In each of these
examples, we note: (1) there are facet defining hyperplaces in the green polytope that are neither
right- nor left-closed, (2) each face defining hyperplane of the yellow polytope is either left- or a
right-closed, and (3) the yellow polytope is the smallest polytope, described by right- and left-
closed facet defining hyperplanes, that contains the green polytope.

F1, F3, F4, F5, F7, F8 and F9, in the list of facets defined above), together with three left-closed facets

G1 : x ≤ 6, G2 : y ≤ 6 and G3 : z ≤ 4. These left-closed facets are identified by the maximal-vector of

the vertex set of V , viz. max{(1 4 2)T , (2 4 2)T , (1 5 2)T , (1 4 3)T , (3 5 1)T , (4 5 1)T , (3 6 1)T , (3 5 2)T ,

(5 1 3)T , (6 1 3)T , (5 2 3)T , (5 1 4)T} = (6 6 4)T .

Figure 4.4 shows two different views of the polytopes V and P̃ for this example. The polytope V is

shown in green, while the polytope P̃ is shown in yellow. It is not hard to see that the polytope P̃

contains the polytope V , and furthermore, every facet of P̃ is either left- or right-closed facet. This

observation plays a critical role in the convexity testing algorithms of the next chapter.

57

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

16

5

4

3

2

1

1

1.5

2

2.5

3

3.5

4

(a) Convex Hull - View 1

6543216
5

4
3

2
1

1

1.5

2

2.5

3

3.5

4

(b) Convex Hull - View 2

Figure 4.4: We revisit the example of figure 4.2, where we considered a right-closed set M1 with
minimal elements A = (1 4 2)T , B = (3 5 1)T and C = (5 1 3)T . As noted earlier, the polytope V
for this example is defined by the vertex set {(1 4 2)T , (2 4 2)T , (1 5 2)T , (1 4 3)T , (3 5 1)T ,
(4 5 1)T , (3 6 1)T , (3 5 2)T , (5 1 3)T , (6 1 3)T , (5 2 3)T , (5 1 4)T}. This polytope is shown in green

in the above figure. The polytope P̃ , shown in yellow in the above figure, is the smallest polytope
defined only by right- and left-closed facets (i.e. every facet of this polytope is either a left- or a
right-closed facet), that contains the polytope V .

58

Chapter 5

Convexity Testing Algorithms

In this chapter, we present two algorithms for testing the convexity of a right-closed integral set. The

first algorithm is an LP-Based algorithm, which takes a polynomial time to test the convexity. The

second one is based on the grid-search algorithm. Although not efficient as the first one, it still has a

reasonable computational time and it can be easily implemented.

5.1 On verifying the condition of theorem 4.4.4

Verifying the condition mentioned in theorem 4.4.4 and equation 4.3 is not a feasible task. There are

infinitely many points on each right-closed facet of the P̃ . To overcome this problem, we define a newer

set over each right-closed facet of P̃ to make the problem more tractable. Each right-closed facet Fi is

essentially defined by a collection of vertices. Each facet-defining vertex is either some mi ∈ min(M);

or some m̃i ≥mi, for some mi ∈ min(M). Let

Υ(Fi) := {mi ∈ min(M) | Either mi, or some m̃i ≥mi is a vertex that defines Fi}. (5.1)

The following result uses the set Υ(Fi) in the test identified in theorem 4.4.4.

Theorem 5.1.1.

(∀ right-closed facets F̃i of P̃ ,∀x̃ ∈ conv(Υ(F̃i), dx̃e ∈ M)⇔

(∀ right-closed facets Fi of P̃ ,∀x ∈ Fi, dxe ∈ M).

59

Proof. (⇒ Part) Suppose ∃ a right-closed facet Fi of P̃ , and ∃x ∈ Fi, such that dxe /∈ M. x ∈ Fi

can be written as the convex combination of the vertices for the given facet. By definition of the Fi in

theorem 4.4.2, we can infer that a vertex of Fi is either a minimal elements of original right-closed set,

or a vector vi of the form: vj = mj + yj, for some yj ∈ N n such that yj ≥ 0. Hence,

dxe =

⌈∑
i

λimi +
∑
j

µjvj

⌉
=

⌈∑
i

λimi +
∑
j

µj(mj + yj)

⌉
,

where
∑

i λi +
∑

j µj = 1. If x̃ =
∑

i λimi +
∑

j µjmj, then x̃ ∈ conv(Υ(Fi)), x̃ ≤ x(⇒ dx̃e ≤ dxe),

and since M is right-closed, dx̃e /∈M.

(⇐ Part) Suppose ∃ a right-closed facet F̃i of P̃ , and ∃x̃ ∈ F̃i, such that dx̃e /∈M. SinceM is right-

closed, the set of integral vectors in conv(M) is also right-closed (cf. Lemma III.5, [25]). Additionally,

x̃ ∈ conv(M), x̃ ≤ dx̃e(⇒ dx̃e ∈ conv(M)), and since dx̃e /∈M, it follows thatM is not convex. From

theorem 4.4.4, ∃ a right-closed facet Fi of P̃ , and ∃x ∈ Fi, such that dxe /∈M.

As a consequence of theorem 5.1.1, equation 4.3 can be written equivalently as

(∀ right-closed facets F̃i of P̃ ,∀x̃ ∈ conv(Υ(F̃i)), dx̃e ∈ M)⇔ (M is convex). (5.2)

This observation leads to the following corollary.

Corollary 1. If M⊆ N n is a right-closed set such that min(M) ⊆ {0, 1}n, then M is convex.

We present two efficient procedures that checks the condition (∀x̃ ∈ conv(Υ(Fi)), d x̃ e ∈ M) in the

next two subsections. The first method, yields a polynomial time algorithm for verifying convexity of a

right-closed set.

5.1.1 LP- based Algorithm

The presented test condition requires us to find the ceiling function for the convex combination of

the members of Υ(Fi). Instead of going through all the points inside the convex hull of Υ(Fi), one

60

approach can be creating a “box” over each right-closed facet; Basically, we can create a set of integer

vectors “proximal” to the right-closed facet, and then verify their representation as a ceiling of convex

combination of minimal elements, by a feasibility LP. Figure 5.1 clarifies this approach.

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

16
5

4
3

2
1

1

1.5

2

2.5

3

3.5

4

(3,3,3)

(a) Creating the “box” (View 1)

6
5

4
3

2
11

2

3

4

5

6

4

3.5

3

2.5

2

1.5

1

(3,3,3)

(b) Creating the “box” (View 2)

Figure 5.1: Illustration of LP-based algorithm - check if the integral vectors in the “box” are
proximal to the right-closed facet indicated above. Vector (3 3 3)T , shown above, is the only
integral vector that is proximal to the right-closed facet identified above.

We first present the feasibility LP and then describe the procedure to create the mentioned box, called

L(Fi). Note that the following theorem establishes the polynomial time solvability of a key membership

question that is used to test the condition of theorem 5.1.1.

Theorem 5.1.2. Let Υ(Fi) = {m1.m2, . . . ,mk} for a right-closed facet Fi of P̃ , and m̃ ∈ N n be an

integral vector. Then, m̃ = d
∑k

i λimie for a set {λi}ki=1 such that ∀i ∈ {1, . . . , k}, 0 ≤ λi ≤ 1 and

61

∑k
i=1 λi = 1, if and only if the Linear Program (LP) returns an optimal value α∗ 6= 0.

LP (m̃) : max(α)

subject to

(
m1 m2 . . . mk

)

λ1

λ2

...

λk

≥ (m̃− 1) + (α× 1)

(
m1 m2 . . . mk

)

λ1

λ2

...

λk

≤ m̃

∑k
i=1 λi = 1,∀i ∈ {1, . . . , k}, 0 ≤ λi ≤ 1, and 0 ≤ α,

where 1 ∈ N n is the vector of all ones.

Proof. (Only If) Suppose m̃ = d
∑k

i λimie for a set {λi}ki=1 such that ∀i ∈ {1, . . . , k}, 0 ≤ λi ≤ 1 and∑k
i=1 λi = 1. Then it follows that m̃− 1 <

∑k
i λimi ≤ m̃. It follows that

α∗ ≥ min
j

(

k∑
i=1

λimi

)
j

− (m̃j − 1) > 0,

where (•)j denotes the j-th component of a vector argument.

(If) From the constraints of LP, it follows that α∗ ≤ 1. If α∗ > 0 with a corresponding set – {λi}ki=1

– that is feasible for LP, we can infer that

m̃− 1 <
k∑
i=1

λimi ≤ m̃⇒

⌈
k∑
i=1

λimi

⌉
= m̃.

62

For each facet Fi of P̃ , let us define

L(Fi) := {x ∈ N n | ∃y ∈ Fi where x = dye}.

From theorem 5.1.1 the right-closed set M ⊆ N n is convex if and only if L(Fi) −M = ∅. For each

member m̃ of L(Fi), theorem 5.1.2 yields a polynomial time algorithm that decides if m̃ ∈ M. Now,

we address the issue of estimating an upper bound on the size of L(Fi).

Let:

εi := max(m1i ,m2i , . . . ,mki)−min(m1i ,m2i , . . . ,mki),

and c = maxi(εi), then it follows that card(L(Fi)) ≤ cn. The quantity c can be interpreted as a

measure-of-variation among the individual components of the members of Υ(Fi). For a fixed dimension

(i.e. n is fixed), it follows that the size of L(Fi) is polynomial in the measure-of-variation c. We argue

that the set L(Fi) can be constructed in polynomial time.

Let βi = min(m1i , . . . ,mki), and

S(Fi) := {x ∈ N n | ∀i ∈ {1, . . . , n},xi ∈ [βi, βi + c]} (5.3)

S(Fi) is the superset of L(Fi), where card(S(Fi)) = cn. Hence,

∀x ∈ S(Fi) if LP(x) > 0⇒ x ∈ L(Fi)

As a consequence of the polynomial time solvability of LPs, this condition can be checked in polynomial

time.

5.1.2 Convexity Testing Algorithm

Algorithm 4 tests the convexity of a right-closed setM⊆ N n. Its correctness follows directly from the

results in this thesis.

63

Algorithm 4 Testing Convexity Algorithm

1: Compute P̃ (cf. equation 4.2 and theorem 4.4.2).

2: for Each right-closed facet Fi of P̃ do
3: Compute Υ(Fi) = {m1,m2, . . . ,mk} (cf. equation 5.1)
4: for Each i ∈ {1, 2, . . . , n} do
5: Compute εi =: max(m1i ,m2i , . . . ,mki)−min(m1i ,m2i , . . . ,mki).
6: c = maxi(εi).
7: Compute S(Fi) (cf. equation 5.3)
8: L(Fi) = ∅
9: for Every element x ∈ S(Fi) do

10: if (LP(x) > 0) ∧ (x � m̃), ∀ m̃ ∈ L(Fi) then
11: L(Fi) = L(Fi) ∪ {x}
12: for Every m̃ ∈ L(Fi) do
13: if m̃ /∈M then
14: Not convex; Exit.

15: Convex; Exit.

The first step in the algorithm 4 is computing P̃ . From the discussion following theorem 4.4.2,

this can be accomplished in polynomial time. By theorem 4.2.4, such a procedure for m points in n-

dimension, can be done deterministically in O(mlog(m) +mbn/2c); when n is fixed, this is a polynomial

time operation. It is worth mentioning that we assume card(min(M)) = m . Next step calculates the

superset S(Fi), which can be done in O(m) time. For each x ∈ S(Fi), we need to compute LP (x), which

can be accomplished in polynomial time as well. This procedure has to be done card(S(Fi)) = cn times,

where c = maxi(εi) is a fixed number. Therefore, calculating L(Fi), also can be done in polynomial time.

Note that L(Fi), contains only the minimal elements of L(Fi), which can reduce the computational time

further. The last step, verifying the membership of elements in L(Fi) toM will take O(m) time. Since

the number of facets for P̃ is bounded above by O(mbn/2c), algorithm 4 will only execute polynomial

number of operations, giving us a polynomial time algorithm in m and c for testing the convexity of a

right-closed set, when n is fixed.

64

5.1.3 Algorithm 4 and the Examples of Section 4.3

Figures 4.3(a) and 4.3(b) presented the P̃ -polytope for the right-closed sets M1 and M2, respectively.

There is only one right-closed facet in the polytope(s) for M1, and this facet contains the minimal

elements (0 3)T and (2 0)T . There is a lattice point (1 2)T that is “proximal” to this facet (i.e. there is

no other lattice point in the polytope that is term-wise smaller and closer to the facet; cf. figure 5.2(a)).

The linear programming formulation in theorem 5.1.2 tests if a vector is proximal to a right-closed facet

Fi, when this formulation is used in the present example, we note

 1

2

 =

0.6×

 0

3

+ 0.4×

 2

0

 =

 0.8

1.8

 ,

and LP ((1 2)T) = 0.8 > 0, as expected. Since (1 2)T /∈ M1, algorithm 4 will conclude with the

pronouncement that M1 is not convex.

In contrast consider the P̃ -polytope for the right-closed set M2 of section 4.3, which is shown in

figure 5.2(b). There are four lattice points, {(0 4)T , (1 3)T , (2 1)T , (3 0)T}, that are proximal to the two

right-closed facets of this polytope (cf. figure 5.2(b)). Since each of these vectors are inM2, algorithm

4 will declare that M2 is convex.

In the example of figure 4.4, where we considered a right-closed set set M3 with minimal elements

A = (1 4 2)T , B = (3 5 1)T and C = (5 1 3)T . The polytope P̃ , shown in yellow, contains the right-closed

facet F1 : x+ 3y + 5z = 23, and Υ(F1) = {A,B,C}. If m̃ = (3 3 3)T , we get LP (m̃) = 0.5. Theorem

5.1.2 is verified by noting that

3

3

3

 =

1

2
×

5

1

3

+
1

2
×

1

4

2

=

3

2.5

2.5

.

Since (3 3 3)T /∈ M1, we conclude that M1 is not convex, which is confirms earlier findings, as well.

Figure 5.3 shows the location of the right-closed facet F1 in the V- and P̃ -polytopes for this example

65

X Axis
0 0.5 1 1.5 2 2.5 3

Y
Ax

is

0

0.5

1

1.5

2

2.5

3

3.5

4

Elevated
Vector [0,4]

Minimal
Element

[0,3]

Minimal
Element

[2,0]

Elevated
Vector [1,3]

Elevated
Vector [3,0]

Elevated
Vector [2,1]

The only
right-closed

facet in these
polytopes

Lattice points that are
proximal to the right-closed

facet of the polytope(s)

(a) conv(M1)

X Axis
0 0.5 1 1.5 2 2.5 3 3.5 4

Y
Ax

is

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Minimal
Element

[0,4]

Minimal
Element

[1,3]

Minimal
Element

[2,1]

Minimal
Element

[3,0]

Elevated
Vector

[0,5]

Elevated
Vector

[2,3]

Elevated
Vector

[4,0]

Right-closed
facets of the

polytopes

Lattice points that
are proximal to the
right-closed facets
of the polytope(s)Elevated

Vector
[1,4]

Elevated
Vector

[3,1]

Elevated
Vector

[2,2]

(b) conv(M2)

Figure 5.2: This figure illustrates the fact that the LP-formulation of theorem 5.1.2 is a test if a
vector is proximal to a right-closed facet Fi. A proximal lattice point in a polytope is essentially
an integral vector that is closest to a facet of the polytope. Figure (a) shows that there is a lattice
point, (1 2)T , that is proximal to a right-closed facet, that is not in M1. Figure (b) shows that all
proximal lattice points to right-closed facets are in M2.

along with the location of the (3 3 3)T vector that is proximal to this facet. Algorithm 4 would

consequently declare M3 be non-convex as expected.

5.2 Grid Search Algorithm

One other approach for verifying the condition mentioned in theorem 4.4.4 is to select the values

of λ which makes the change in ceiling function. We are looking at the ceiling function of convex

combination of the points inside the Υ(Fi). The ceiling function has a step-like property and changes

only for countably many values of λ’s. Therefore, there is no need to search for all values between 0

and 1 on a real interval; Selecting a proper step size for λ’s on this interval, can guarantee that all the

possible points will be explored. Second proposed algorithm is a grid-search algorithm with a proper

step size for the convex combination multiplier.

66

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

16
5

4
3

2
1

1

1.5

2

2.5

3

3.5

4

Facet 1

Lattice Point (3 3 3)T

(a) Convex Hull - View 1

6543216
5

4
3

2
1

1

4

3.5

3

2.5

2

1.5 Facet 1

Lattice Point (3 3 3)T

(b) Convex Hull - View 2

Figure 5.3: We revisit the example of figure 4.4, where we considered a right-closed set M1 with
minimal elements A = (1 4 2)T , B = (3 5 1)T and C = (5 1 3)T . As noted earlier, the polytope V
(resp. P̃) is shown in green (resp. yellow) in the above figure. Facet F1 : x+ 3y+ 5z = 23 contains
the vertices A,B and C. The grid-search procedure on facet F1, identified by the red-points in
the above views, finds the integral vector (3 3 3)T which is proximal to F1 that is not in M1.

67

5.2.1 Step Size for λ

Theorem 5.1.1 requires us to check the membership of ceiling function of all possible convex combination

of Υ(Fi), for every right-closed facet, Fi in set M. Implementing such a test condition is not possible.

Thus, we need to modify our search space to a finite set. The best candidate to such a modification is

the convex combination coefficients. The ceiling function is a step-like function which its value changes

only at some finite points. Therefore, instead of evaluating the λi’s over a continuous interval of [0, 1],

we can perform a grid-search with step size of ε∗. We can define εi =: (max(m1i ,m2i , . . . ,mki) −

min(m1i ,m2i , . . . ,mki)), for each i ∈ {1, 2, . . . , n}, and then assign each λj, j ∈ {1, 2, . . . , k}, on of the

ε∗ = (ε1ε2 . . . εn)-many values of l
ε∗

with regard to constraints of
∑

j λj = 1 and l ∈ {0, 1, . . . , ε∗}.

Although feasible to perform, still the number of operations to be done in this case is very large. By

slight modification in the εi’s definition we can greatly reduce the search space. By re-arranging the

test condition for Υ(Fi) = {m1,m2, . . . ,mk}, we can write:

dxe = dλ1m1 + λ2m2 + . . .+ λk−1mk−1 + (1− λ1 − λ2 − · · · − λk−1)mke

=

⌈
k−1∑
i=1

λi(mi −mk)

⌉
+ mk

where 0 ≤ λi ≤ 1, and
∑k−1

i=1 λi ≤ 1. Now, by slight modification we define εi =: (max((m1i −

mki), (m2i −mki), . . . , (mk−1i −mki))−min((m1i −mki), (m2i −mki), . . . , (mk−1i −mki))). Note that

each of the above elements are considered to be the absolute value of the difference. Then, we define

ε∗ =
∏n

i=1 εi. Hence, λj =
nj

ε∗
for nj = {0, 1, 2, . . . , ε∗}, such that:

∑k−1
j=1 λj ≤ 1

For computing the step size for λj’s over each right-closed facet, the first step will be the finding of

mk as the base point. To reduce the search space even more, one can easily find a mk by brute-force,

which produces the smallest ε∗. This point should be a point such that it’s distance to all point is

equal. We propose following optimization model, for finiding such a point. Note that the solution to

the optimization problem is not necessarily the desired point but it can give a good estimate of such a

68

point.

Min
n∑
i

‖mk −mi ‖2,∀mk ∈ Υ(Fi)

We will show that even choosing an arbitrary mk will not result in an exponential number of choices.

If λi = ni

ε∗
where ni ≤ ε∗, then

k−1∑
i=1

λi ≤ 1⇒
k−1∑
i=1

ni ≤ ε∗

Then the search space for all possible values for (n1, n2, . . . , nk−1) is significantly smaller than (ε∗)k−1.

This is very loose upper bound and in the following discussion we will tighten this bound even further

for the number of possible values for such a selection.

In general, we are looking to number of possible choice for
∑n

i=1 xi ≤ c where ∀i ∈ {1, 2, . . . , n},xi ≥ 0.

Basically we are looking at number of integer points in the bounded polyhedron defined by
∑n

i=1 xi ≤ c

with respect to the mentioned constraints. The next theorem deal with computing number of possible

selection.

Theorem 5.2.1. The number of lattice point inside the bounded polyhedron defined by
∑n

i=1 xi ≤ c

where ∀i ∈ {1, 2, . . . , n},xi ≥ 0 is defined by function f(c) which is computed as:

f(c) =
c∑
j=0

(
n+ j − 1

j

)

Proof. let ΦA(b) = card({x | Ax = b,x ≥ 0,x is integral }). The generating function for ΦA(b) when

A = (1, 1, . . . , 1), can be computed as following [42]:

∞∑
0

ΦA(b)tb =
1

(1− t)n

Using the following binomial series identity (section 2.3 in [36]):

1

(1− t)d+1
=
∞∑
k=0

(
d+ k

d

)
tk

69

By replacing 1
(1−t)n in former expression with the mentioned identity, we infer ΦA(b) =

(
n+b−1

b

)
. As we

are dealing with the polyhedron
∑n

i=1 xi ≤ c, with inequality, hence:

f(c) =
c∑
j=0

(
n+ j − 1

j

)

We can show that as n grows, the value of f(c) is dominated by cn completely.

Corollary 2. For any c > 1,

lim
n→∞

f(c)

cn
= 0

Proof. The term f(c) =
∑c

j=0

(
n+j−1

j

)
which is bounded above by (c+ 1)

(
(n+c−1)

c

)
. Therefore:

lim
n→∞

f(c)

cn
≤ lim

n→∞

(c+ 1)
(

(n+c−1)
c

)
cn

≤ lim
n→∞

(c+ 1) nc

cn c!

cn and c ! will grow much faster than nc and (c+ 1) receptively, as n→∞. Therefore:

lim
n→∞

f(c)

cn
= 0

The corollary shows that even choosing an arbitrary mk for computing the step-size for λi, will not

yield in an exponential number of selection. The figure 5.4 shows this comparison. As n grows, the

f(c) is dominated by cn. This is true, even for small n. This means that the grid search, although not

polynomial, but still is dominated by a exponential function in c, which in practice, does not seem to

be an inefficient algorithm

Among all the possible choices of λi’s, there are some values for which they will generate a similar value

for the ceiling function mentioned in the test. By eliminating these values, we can reduce the search

space even more. Each time, we evaluate λi = ni

c
which essentially translates to searching over a grid of

70

the type: (n1, n2, . . . , nk−1) ∈ N n, ∀i, 0 ≤ ni ≤ c and
∑k−1

i=1 ≤ c. Each points in such a grid, effectively

identifies an integral vector according to:

x =

⌈
k−1∑
i=1

ni
c

(mi −mk)

⌉
+ mk

With a slight abuse of notation, we say (n1, n2, . . . , nk−1) ∈ M if and only if x ∈ M. The following

corollary discusses cases in which we can eliminate the redundant grid points.

Corollary 3. Suppose (n̂1, n̂2, . . . , ˆnk−1) ∈ N n is a lattice point such that for each i ∈ {1, 2, . . . , n},

(1) n̂i ≥ ni and (x − mi)i ≥ 0 or (2) n̂i ≤ ni and (x − mi)i ≤ 0; If (n1, n2, . . . , nk−1) ∈ M then

(n̂1, n̂2, . . . , ˆnk−1) ∈M as well.

Proof. The proof is straight forward. If (n1, n2, . . . , nk−1) ∈M and the first condition is true, then:

x̂ =

⌈
k−1∑
i=1

n̂i
c

(mi −mk)

⌉
+ mk ≥ x

As the set x ∈ M and M is right-closed, therefore x̂ ∈ M. By the same argument, if condition (2)

holds, x̂ ≥ x and x̂ ∈M

On the other hand, slight modification of conditions in the previous corollary, can also eliminated

more unnecessary grid points in the search space. The proof will be similar as the previous one.

Corollary 4. Suppose (n̂1, n̂2, . . . , ˆnk−1) ∈ N n is a lattice point such that for each i ∈ {1, 2, . . . , n},

(1) n̂i ≥ ni and (x − mi)i ≤ 0 or (2) n̂i ≤ ni and (x − mi)i ≥ 0; If (n1, n2, . . . , nk−1) /∈ M then

(n̂1, n̂2, . . . , ˆnk−1) /∈M as well.

71

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

(a) f(c) and cn comparison- small n

1 2 3 4 5 6 7 8 9 10

#109

0

1

2

3

4

5

6

7

8

9

10

(b) f(c) and cn comparison- large n

Figure 5.4: The cn is dominant to f(c) function. In figure (a), although the n is so small, the cn is
very dominant. As the n grows in figure (b), the result of corollary 2 is more clear.

72

Chapter 6

Discussion

As we proposed in the previous chapter, the LP-based algorithm can verify the convexity of a

right-closed set in a polynomial time. Although efficient, the performance time can still be shortened.

In this chapter, we are aiming for a heuristic-type algorithm which can test the convexity of right-closed

set in much shorter time. This heuristic ables us to at least rule out the convexity for many instances.

This result is followed by an illustrative example which shows how this heuristic method can help us

verifying the convexity in a much shorter time. Lastly, we discuss an example on how to implement the

monitor placement paradigm on PNs.

6.1 Heuristic Methods

The vector x ∈ N n is lexicographically smaller than y ∈ N n, if ∃k > 0, such that ∀i < k,xi = yi and

xk < yk. We use x <d y to denote the fact that x is lexicographically smaller than y. We say x <d y

are consecutive elements of M if 6 ∃ z ∈M such that x <d z <d y.

Given two polytopes P1 and P2, Bemporad et al [43] show that P1∪P2 is convex if and only if for each

vertex v1 of P1, and each vertex v2 of P2, the line segment [v1, v2] is contained in P1 ∪P2. However, this

result does not yield a necessary and sufficient condition for the union of two convex right-closed sets

of integral vectors to be convex. A right-closed set with just one minimal element is convex, and the

following lemma identifies a sufficient condition when the union of two such right-closed sets is convex.

Lemma 6.1.1. Let m1 ∈ M and m2 ∈ M be two consecutive minimal elements of a right-closed

set M ⊆ N n. If the two sub-vectors obtained by removing/deleting each component in the set {i ∈

{1, 2, . . . , n} | | m1i − m2i |= 1} from m1 and m2, can be compared completely under the regular

73

ordering, then the set M̂ = {m ∈ N n | (m ≥m1) ∨ (m ≥m2)} is convex.

Proof. By removing/deleting each j-th component, where j ∈ {i ∈ {1, 2, . . . , n} | | m1i −m2i |= 1} of

m1 and m2, we create sub-vectors m̂1 and m̂2. By assumption m̂1 and m̂2 can be compared completely

under the regular ordering. Without loss of generality, let us suppose m̂1 ≤ m̂2. Let us suppose we

have a collection of vectors {m̃i}pi=1 ⊆ M̂ such that m3 =
∑p

i=1 λim̃i ∈ N n, where 0 ≤ λi ≤ 1 and∑p
i=1 λi = 1. By removing/deleting the same set of components as we did with m1 and m2 to create

the sub-vectors m̂1 and m̂2, we create the sub-vector m̂3. It follows that m̂3 ≥ m̂1 as m̂2 ≥ m̂1, and

each m̃i is greater than or equal to either m1 or m2.

Adding the components that were removed/deleted to form the sub-vector m̂3 to reconstruct that

vector m3 will result in m3 ≥ m1, as a consequence of the above observation. Towards this end, we

partition the set {m̃i}pi=1 into two sets {m̃1
i }
p1
i=1 and {m̃2

i }
p2
i=1, where ∀i ∈ {1, 2, . . . , p1}, m̃1

i ≥ m1,

and ∀i ∈ {1, 2, . . . , p2}, m̃2
i ≥ m2. Without loss of generality, we can assume p1 6= 0. So, m3 =

(
∑p1

i=1 λ
1
i m̃

1
i) + (

∑p2
i=1 λ

2
i m̃

2
i), where

∑p1
i=1 λ

1
i +
∑p2

i=1 λ
2
i = 1, and ∀i, j, 0 ≤ λji ≤ 1. The above argument

shows that if j /∈ {i ∈ {1, 2, . . . , n} | |m1i−m2i |= 1}, then m3j ≥m1j . Suppose j ∈ {i ∈ {1, 2, . . . , n} |

|m1i −m2i |= 1}, and m2j = m1j + 1, then m3j ≥m1j . Suppose j ∈ {i ∈ {1, 2, . . . , n} | |m1i −m2i |=

1}, and m2j = m1j − 1, then since m3 ∈ N n, m3j ≥
⌈
m1j −

∑p2
i=1 λ

2
i

⌉
. Since p1 6= 0, it follows that∑p2

i=1 λ
2
i < 1, and m3j ≥

⌈
m1j −

∑p2
i=1 λ

2
i

⌉
= m1j .

Consider a right-closed set, ∆(N1) with minimal elements {(0 2 0 0)T , (1 0 0 1)T}. The sub-vectors

obtained by removing/deleting those components of these minimal elements that differ by unity yields

the set {(2 0)T , (0 0)T}. The members of this set can be compared completely under the regular ordering.

From lemma 6.1.1, we conclude that this right-closed set is convex. This is confirmed by noting that

this right-closed set can be written as P (Â, b̂) ∩N 4 where

Â =

 2 1 0 0

0 1 0 2

 and b̂ =

 2

2

 .

74

Continuing further, consider the set ∆(N2) with minimal elements

{(0 0 0 2)T , (0 0 1 0), (0 2 0 0)T , (1 0 0 1), (2 0 0 0)}, where ∆(N2) ⊂ ∆(N1),

with the lexicographic ordering of the minimal elements of ∆(N2) is as follows

(0 0 0 2)T︸ ︷︷ ︸
m1

<d (0 0 1 0)T︸ ︷︷ ︸
m2

<d (0 2 0 0)T︸ ︷︷ ︸
m3

<d (1 0 0 1)T︸ ︷︷ ︸
m4

<d (2 0 0 0)T︸ ︷︷ ︸
m5

.

From lemma 6.1.1, we note that the right-closed set defined using each pair of consecutive minimal

elements define a convex set. That is, the sets S1 = {m ∈ N n | (m ≥ m1) ∨ (m ≥ m2)} S2 = {m ∈

N n | (m ≥ m2) ∨ (m ≥ m3)}, S3 = {m ∈ N n | (m ≥ m3) ∨ (m ≥ m4)}, and S4 = {m ∈ N n | (m ≥

m4) ∨ (m ≥m5)} are all convex. But, ∆(N2) =
⋃4
i=1 Si, is not convex as noted earlier.

6.2 The Invariant-Based Monitor of Figure 2.3 Revisited

Consider the PN structure N3 shown in figure 2.2(a). The right-closed set ∆(N3) is identified by the

forty-three minimal elements in the output of the C++ program described in references [44–46] shown in

figure 2.2(b). The lexicographic ordering of these forty-three minimal elements, {m̂N4
i }43

i=1 are presented

in figure 6.1. Following lemma 6.1.1, each of the forty-two sets

Si = {m ∈ Nn | (m ≥ m̂N3
i) ∨ (m ≥ m̂N3

i+1)} i ∈ {1, 2, . . . , 42},

are convex.

Additionally, ∆(N3) =
⋃42
i=1 Si is also convex. This follows from the fact that the P̃ polytope for this

75

example is identified by three facet-defining, right-closed inequalities:

F1 : (1 1 2 1 1 1 1)Tx ≥ 3

F2 : (0 1 1 0 0 1 1)Tx ≥ 1,

F3 : (1 0 1 1 1 0 0)Tx ≥ 1,

where x ≥ 0. Replacing the inequalities with strict equalities, we get three facets of P̃ where the

convexity-test of the previous chapter have to be conducted to test the convexity of ∆(N3). We will

refer to these facets, with a slight abuse of notation, as F1, F2, and F3 respectively. Members of the

forty-three minimal elements shown in figure 2.2(b) that lie on facets F2 and F3 belong to {0, 1}7 (i.e.

they are binary integral vectors), which in turn implies that Υ(F2) ⊂ {0, 1}7 and Υ(F3) ⊂ {0, 1}7.

Using the arguments that established corollary 1 of chapter 5, we infer that the convexity-test conducted

on these facets will yield positive results. Υ(F1) has twenty-four members, and they belong to the set

{0, 1, 2}7. Additionally, there are exactly two non-zero entries in each of the twenty-four members of

Υ(F1). It is a straightforward exercise to show that under these circumstances, the convexity-test of

the previous chapter will yield positive results on facet F1 as well. Thus establishing the convexity of

∆(N3) without explicit computation.

Specifically, ∆(N3) is the set of integral vectors in the polyhedron P (A3,b3) in the positive orthant

described by
1 1 2 1 1 1 1

0 1 1 0 0 1 1

1 0 1 1 1 0 0

︸ ︷︷ ︸

A3

x ≥

3

1

1

︸ ︷︷ ︸

b3

From theorem 3.2.10, there is an invariant-based monitor N̂c,3(m0
3, Θ̂3(m0

3)) (cf. figure 2.3) that is

equivalent to the minimally restrictive LESP described in figure 2.2(a). The incidence matrix for the

76

monitor places is given by

A3C3 =

0 0 0 0 0 0 0

0 0 0 −1 1 0 0

0 0 0 1 −1 0 0

 .

where C3 is the incidence matrix of the PN structure N3 shown in figure 2.2(a), As evidenced by the row

of zeros in the monitor incidence matrix above, the constraint m4(p1) + m4(p1) + 2m4(p3) + m4(p4) +

m4(p5) + m4(p6) + m4(p7) ≥ 3, which is the constraint articulated by the first row of A4m4 ≥ b4,

is invariant for any marking m4 reachable in N4(m0
4) for m0

4 ∈ ∆(N3) (even in the absence of any

supervision). There is no need to enforce this constraint with a monitor. The constraints enunciated

by the second and third row of A4m4 ≥ b4 are enforced by monitors c1 and c2 in figure 2.3. The initial

marking of c1 (c2) is given by the expression m0
4(p2)+m0

4(p3)+m0
4(p6)+m0

4(p7)−1 (m0
4(p1)+m0

4(p3)+

m0
4(p4)+m0

4(p5)−1). The efficacy gained when liveness can be enforced by an invariant-based monitor,

when it exists, should be clear with this example.

77

pn15_lex Sun Aug 18 18:06:50 2013 1

Lexicographic Ordering of 43 Minimal Elements

 1: (0 0 0 0 1 0 2)
 2: (0 0 0 0 1 1 1)
 3: (0 0 0 0 1 2 0)
 4: (0 0 0 0 2 0 1)
 5: (0 0 0 0 2 1 0)
 6: (0 0 0 1 0 0 2)
 7: (0 0 0 1 0 1 1)
 8: (0 0 0 1 0 2 0)
 9: (0 0 0 1 1 0 1)
10: (0 0 0 1 1 1 0)
11: (0 0 0 2 0 0 1)
12: (0 0 0 2 0 1 0)
13: (0 0 1 0 0 0 1)
14: (0 0 1 0 0 1 0)
15: (0 0 1 0 1 0 0)
16: (0 0 1 1 0 0 0)
17: (0 0 2 0 0 0 0)
18: (0 1 0 0 1 0 1)
19: (0 1 0 0 1 1 0)
20: (0 1 0 0 2 0 0)
21: (0 1 0 1 0 0 1)
22: (0 1 0 1 0 1 0)
23: (0 1 0 1 1 0 0)
24: (0 1 0 2 0 0 0)
25: (0 1 1 0 0 0 0)
26: (0 2 0 0 1 0 0)
27: (0 2 0 1 0 0 0)
28: (1 0 0 0 0 0 2)
29: (1 0 0 0 0 1 1)
30: (1 0 0 0 0 2 0)
31: (1 0 0 0 1 0 1)
32: (1 0 0 0 1 1 0)
33: (1 0 0 1 0 0 1)
34: (1 0 0 1 0 1 0)
35: (1 0 1 0 0 0 0)
36: (1 1 0 0 0 0 1)
37: (1 1 0 0 0 1 0)
38: (1 1 0 0 1 0 0)
39: (1 1 0 1 0 0 0)
40: (1 2 0 0 0 0 0)
41: (2 0 0 0 0 0 1)
42: (2 0 0 0 0 1 0)
43: (2 1 0 0 0 0 0)

Figure 6.1: The lexicographic-ordering of the forty-three minimal elements of ∆(N3) listed in
figure 2.2(b). By lemma 6.1.1, the forty-two integral sets that are defined by the consecutive pairs
in this ordering are convex, and the convex set ∆(N3) is the union of these forty-two sets.

78

6.3 An illustration of Corollary 1 of Chapter 5

The PN structure N7 shown in figure 6.2(a), has a ∆(N7)-set that is identified by the nine minimal

elements listed below

(1 1 0 0 0 0 0 0 0 0 0)T

(1 0 0 0 0 1 0 0 0 0 0)T

(1 0 0 0 0 0 0 1 0 0 0)T

(0 1 1 0 0 0 0 0 0 0 0)T

(0 0 1 0 0 1 0 0 0 0 0)T

(0 1 0 0 0 0 1 0 0 0 0)T

(0 0 0 0 0 1 1 0 0 0 0)T

(0 0 0 0 0 0 1 1 0 0 0)T .

Each of these minimal elements are members of {0, 1}11. The right-closed ∆(N8)-set for the PN structure

N8 of figure rebetagamma(b) is identified by the five minimal elements listed below

(0 0 1 0 0)T

(1 0 0 0 1)T

(0 0 0 1 1)T

(0 1 0 1 0)T

(1 1 0 0 0)T

79

which belong to the set {0, 1}5. From corollary 1 of chapter 5, we conclude that both these sets are

convex.

p1 p2

p3 p4

t1 t2

t3

t4 t5

p5 p6

p7 p8

p9

t6 t7 t8 t9 t10 t11

t12

t13 t14

t15

t16 t17

p10

p11

(a) N7

p1 p2

p3p4

t1 t2
t3

t4

t5

p5

(b) N8

Figure 6.2: Two PN structures with right-closed ∆(N)-sets.

80

Chapter 7

Future Work

In this section, we discuss some of the results that can be explored as a future research direction. In

previous chapter, we presented the lemma 6.1.1, where it presents a sufficient condition under which, the

union of two right-closed sets is convex. There are necessary and sufficient conditions for a finite union

of a set of convex polytopes to be convex [43, 47]. However, these results do not translate to necessary

and sufficient conditions for a finite union of right-closed sets of integral-points to be convex. Since every

right-closed set is a finite union of a collection of right-closed sets with just one minimal element, even

computationally tractable sufficient conditions for the convexity of right-closed sets can have an impact

on the development of algorithms for the synthesis of invariant-based monitors for liveness enforcement.

Also, as a future direction of research, we note that there is room to improve the efficiency of the

algorithm. Convexity tests that do not rely on the computation of the convex hull could possibly

yield faster algorithms. On the LP-based algorithm, there is still room to improve the efficiency of

the algorithm. The way that the set L(Fi) is constructed can be revised in such a manner that the

cardinality of the set is reduced. There is even a possibility that this construction can be done in a

way that the feasibility LP can be eliminated from the algorithm, which would result in a much faster

algorithm. If a probabilistic solution to testing convexity is satisfactory, randomized algorithms for

convexity testing can also be explored.

In the context of LESPs for PN models, there can be monitors that enforce liveness that are not

invariant-based. Figure 7.1(b) presents a monitor N̂9,c(m
0
9, Θ̂9(m0

9)), where Θ̂9(m0
9) = m0

9(p1)+m0
9(p2)−

3, that enforces liveness in the general FCPN N9(m0
9) of figure 7.1(a) for any m0

9 ∈ ∆(N9). The incidence

matrix for the monitor place c is given by the row vector (1 0 − 3), which is not in the row-space of

the incidence matrix C9 of the PN structure N7. Consequently, the liveness enforcing monitor of figure

81

7.1(b) is not an invariant-based monitor. The set ∆(N9) is characterized by the minimal elements

{(2 0)T , (0 3)T}, is not convex (cf. the discussion that accompanies figure 4.3(a) and the right-closed

set M1).

For a specific initial marking m̂0
9 = (2 0)T (∈ ∆(N9)), we have Θ̂9(m̂0

9) = −1, which is represented

by an unfilled token in p2 in figure 7.1(b). As the token loads of monitor places serve a book-keeping

purpose, we can permit a negative token load in monitor places as long as transition t3 is enabled

in N̂9,c(m
0
9, Θ̂9(m0

9)) only when there are at least three tokens in c. It can be shown that for any

m0
9 ∈ ∆(N9), none of the sub-markings in N 2 − ∆(N9) are potentially reachable in N9c(m

0
9,Θ(m0

9),

which means the N̂9,c(m
0
9, Θ̂9(m0

9)) is live. The control action affected by the monitor c implicitly defines

an LESP for N9(m0
9).

If we initialized the PN structure N9 with the marking m̂0
9 = (1 3)T (⇒ Θ(m̂0

9) = 1), transition t3

would be permitted to fire by the minimally restrictive LESP of figure 7.1(a), while the same transition

would not be permitted to fire in N̂9,c(m
0
9, Θ̂9(m0

9)) of figure 7.1(b). That is, the LESP implicitly defined

by the action of the monitor place in figure 7.1(b) is not minimally restrictive. Investigating the parallel

of theorem 3.2.10 for monitors that enforce liveness that are not invariant-based, where we permit the

presence of negative tokens in monitors, is suggested as a future research topic.

Reference [48] notes that the minimally restrictive LESP for a PN N(m0) with a right-closed ∆(N)-set

can be implemented using a Disjunctive Normal Form (DNF) formula associated with each controllable

transition of N . This is best illustrated by example.

Consider the PN structure N9 of figure 7.1, operating under the supervision of a policy that permits

the firing of the controllable transition t3 at a marking m if and only if the DNF

Θt3(m) = (m(p1) ≥ 1) ∨ (m(p2) ≥ 3).

is true. This supervisory policy is equivalent to the minimally restrictive LESP of figure 7.1(a). For

illustrative purposes, this policy is shown in figure 7.2(a). Since ∆(N9) (=M1 (cf. section 4.3)) is not

convex, there can be no invariant-based monitor that is equivalent to the minimally restrictive LESP

82

Permit t3 if the marking that would result
from its firing is greater than or equal to
(2 0)T or (0 3)T

Supervisory Policy

p1

p2

t1
t2

t3

Plant

O
bservations: Token distribution in

all places

Co
nt

ro
l:

Pe
rm

it/
Di

sa
bl

e
t 3 a

s
pe

r
su

pe
rv

is
or

y
po

lic
y

2

3

3

3 3

(a) The minimally restrictive LESP

c

monitor

p1

p2

t1
t2

t3

Plant

2

3

2

3 3

3

(b) Alternate Monitor Place-
ment

Figure 7.1: (a) A minimally-restrictive LESP that ensures all reachable markings of the plant
FCPN PN N9(m0

9) are in the right-closed set ∆(N9) identified by the minimal elements
{(2 0)T , (0 3)T}. This policy is a minimally restrictive LESP for any m0

7 ∈ ∆(N7). There is no
LESP for N9(m0

9) if m0
9 /∈ ∆(N9). (b) An illustration of liveness enforcement for N9(m0

9) of figure

(a) using a monitor N̂9,c(m
0
9, Θ̂9(m0

9)) that is not invariant-based, where m0
9 ∈ ∆(N9). The

incidence matrix for the monitor is (1 0 − 3) which is not in the row-space of the incidence matrix
of the PN structure N9. The unfilled circle in the monitor c represents a token load of -1.
However, transition t3 is enabled if and only if there are at least three tokens in p2 and c.

83

of figure 7.1(a), which is equivalent to the LESP of figure 7.2(a).

There is theoretical support to show that the set of markings that make DNFs like Θt3(m) true is

right-closed. In some cases, this right-closed set may be convex. For instance, the set of markings that

make Θt3(m) true, satisfy the inequality

 1 0

0 1

m ≥

 1

6

 .

Therefore, this set is convex.

Inspired by the results of this thesis, derived in the context of invariant-based monitors that are

equivalent to ∆(N)-set based LESPs, we infer that there should be a construction where the presence

of a non-zero token loads in monitor places implies membership in the set of markings that makes Θt3(m)

true. This requires us to enhance the standard PN-semantics with the addition of record-keeping places

whose token loads can be negative. This is in addition to the regular PN-semantics that requires each

input place of a transition to have sufficient tokens, ex ante, to permit its firing, which is accompanied

by an appropriate change in the token loads, ex post the firing of the transition. The record-keeping

places do not prevent firings of transitions due to insufficient tokens, as with regular places. This is

illustrated in figure 7.2(b).

The incidence matrix for the record-keeping monitor c1 is given by

(
1 0

) −2 3 1

3 −3 −3

 =

(
−2 3 1

)
,

while that for the record-keeping monitor c2 is given by

(
0 1

) −2 3 1

3 −3 −3

 =

(
3 −3 −3

)
.

This is appropriately shown by the arcs and arc-weights associated with c1 and c2 in figure 7.2(b). The

84

initial marking of c1 is determined by the expression m0(c1) = m0(p1)− 1 + 1 = m0(p1), and the initial

marking of c2 is given by the expression m0(c2) = m0(p2)− 6 + 1 = m0(p2)− 5. For the initial marking

(2 0)T , we obtain m0(c1) = 1 and m0(c2) = −5 (cf. figure 7.2(b)). Let us suppose we have a policy

that permits t3 if and only if c1 or c2 has a positive token load.

Consider the following firing string under the influence of the aforementioned policy:

2

0

2

−5

︸ ︷︷ ︸

permit t3:Y es

t1→

0

3

0

−2

︸ ︷︷ ︸
permit t3:No

t2→

3

0

3

−5

︸ ︷︷ ︸

permit t3:Y es

t1→

1

3

1

−2

︸ ︷︷ ︸

permit t3:Y es

t3→

2

0

2

−5

︸ ︷︷ ︸

permit t3:Y es

The control action prescribed by the aforementioned policy is placed below each marking. The con-

trollable transition t3 is permitted if c1 or c2 has a positive token load. It is not hard to see that this

policy is equivalent to the minimally restrictive LESP of figures 7.1(a) and 7.2(a). The monitors c1 and

c2 are record-keeping places, whose token loads can be negative. Additionally, the fact that there is an

insufficient number of tokens in any of them does not prevent the firing of transitions – this should be

apparent in the firing string presented above. We refer to this construction as a Generalized monitor

construction. There are PNs (like N9 as shown here) where there is no invariant-based monitor that

is equivalent to the minimally restrictive LESP, but there is a generalized monitor construction that

yields a LESP that is minimally restrictive. We suggest explorations into this class of problems as a

future research topic, as well.

The computational examples in this thesis utilized the various functional primitives in the software

package Polymake [33,34], and the mathematical programming components were executed using lp solve

[49]. Results from each of these computational tools were integrated manually, and it was very time

consuming. Another direction for future work could be the seamless integration of the polyhedral

computation with the mathematical programming concepts developed in this thesis in a manner that

is transparent to the user. The convexity testing procedures of chapter 5 are inherently amenable to

85

Permit t3 at marking m if and only if the
DNF Θt3(m) = ((m(p1)≥1) ⋎ (m(p2)≥6))
is true

Supervisory Policy

p1

p2

t1
t2

t3

Plant
O

bservations: Token distribution in
all places

Co
nt

ro
l:

Pe
rm

it/
Di

sa
bl

e
t 3 a

s
pe

r
su

pe
rv

is
or

y
po

lic
y

2

3

3

3 3

(a) DNF-based minimally restrictive LESP

p1

p2

t1
t2

t3

Plant

2

3

3

3 3

2

3

c1 c23

3

3

2 -5

(b) Generalized Monitor Placement

Figure 7.2: (a) A DNF-based minimally restrictive LESP for the PN N9(m0
9) of figure 7.1 obtained

using the methods of reference [48]. (b) A generalized monitor construction that is equivalent to
the minimally restrictive LESP for N9(m0

9). The monitors c1 and c2 are record-keeping places,
whose token-loads can be negative in course of transition firings. That is, the lack of sufficient
tokens in these special-places does not prevent the firing of transitions. The supervisory policy
permits t3 if and only if one of the monitors has a positive token load. Based on the results in
thesis, there is no invariant-based monitor that is equivalent to his generalized monitor.

86

GPU-accelerated computing. Explorations into the implementation-side of the work presented in this

thesis will be valuable.

The literature on supervisory control of PNs contains explorations into the fault-tolerant implemen-

tation of supervisory policies, that are meant to combat sensor failures. A sensor failure could result in

incorrect information about the tokens in places, which could lead to incorrect supervision – and The

literature on supervisory control of PNs contains explorations into the fault tolerant implementation of

supervisory policies, that are meant to combat sensor failures. A sensor failure could result in incorrect

information about the tokens in places, which could lead to incorrect supervision- and eventually to

a livelocked-state. The methods used in references [50, 51] rely on coding-theoretic techniques that

involve the replication of information in a manner such that incorrect information can be be corrected

by carefully placed redundancies within the system. Just as with monitor place constructions, this

scheme for fault-tolerance involves enhancements to the original PN structure with extra places and

arcs to- and from- existing transitions. There are necessary and sufficient conditions for the existence

of a fault-tolerant version of a supervisory for a given PN model of a DEDS system that parallels the

convexity condition for the existence of a minimally restrictive monitor construction for liveness. A

fruitful direction for future research could include investigations into paralleling the results in this the-

sis in the domain of fault-tolerant implementations of supervisory policies for DEDS systems modeled

as PNs. corrected by carefully placed redundancies within the system. Just as with monitor place

constructions, this scheme for fault-tolerance involves enhancements to the original PN structure with

extra places and arcs to- and from- existing transitions. There are necessary and sufficient conditions

for the existence of a fault-tolerant version of a supervisory for a given PN model of a DEDS system

that parallels the convexity condition for the existence of a minimally restrictive monitor construction

for liveness. A fruitful direction for future research could include investigations into paralleling the

results in this thesis in the domain of fault-tolerant implementations of supervisory policies for DEDS

systems modeled as PNs.

87

Chapter 8

Conclusions

Throughout this dissertation, we have focused on a family of PN structures where for any instance N ,

the existence of a liveness enforcing supervisory policy (LESP) for N(m0) is sufficient to infer that there

is an LESP for N(m̂0), where m̂0 ≥ m0. Consequently, the set of initial markings for which there is

an LESP, ∆(N), is right-closed, and is characterized by its finite set of minimal elements min(∆(N).

Additionally, ∆(N) is control-invariant with respect to N , that is, the firing of any uncontrollable

transition at mi ∈ ∆(N) will result in a new marking that is also in ∆(N). For m0 ∈ ∆(N), the

minimally restrictive LESP for N(m0) disables the firing of any controllable transition at a reachable

marking, if its firing would result in a new marking that is not in ∆(N). We showed that for these

type of PNs, the necessary and sufficient condition to have equivalent minimally restrictive LESP and

invariant-based monitor is the integer-convexity of the ∆(N). Additionally for those cases where there

is no invariant-based monitor that is equivalent to the minimally restrictive LESP, we presented a

synthesis procedure for a more restrictive invariant-based monitor that implicitly defines an LESP for

N(m0).

As an algorithmic approach to test this necessary and sufficient condition, we showed that a right-

closed set M is integer-convex if and only if the condition

min(M) = min(Int(conv(M)))

is satisfied. Given the fact that computing the min(Int(conv(M))) can be computationally an infeasible

procedure, we presented an alternative condition for verifying the convexity. We suggested that using

the convex hull of the minimal elements of M along with their elevated counterparts can help us to

88

present a more feasible condition.

We defined new sets V and P̃ as subsets of the original set M. These two sets share all the right-

closed facets, defining the conv(M). By utilizing this fact, we presented a new criteria for verifying the

convexity of a right-closed set M:

∀x̃ ∈ conv(Υ(Fi)), d x̃ e ∈ M)

Based on this observation we presented the LP-based algorithm for testing the convexity of a right-

closed set, which for a fixed dimension n, can verify the convexity of such a set in a polynomial time. We

then proposed a gird-search based algorithm, for testing the convexity of integral right-closed set, which

although not a polynomial time procedure, is a method that verifies the convexity in a reasonable time

complexity. The complexity analysis of this algorithm showed that the number of lattice points inside a

polytope does not increase in a exponential manner when its volume increases by an exponential factor.

We concluded this thesis by presenting possible approaches to improve the running time of convexity

testing by developing sufficient conditions for integer-convexity. The violation of these conditions, which

can be tested easily, will rule out convexity without additional computation.

We suggest explorations into probabilistic convexity testing as another approach to mitigating the

inevitable computational issues that we would have to contend with for high-dimensional polytopes. The

development of a family of probabilistic algorithms with a high probability of detection of convexity/non-

convexity would be highly desirable.

89

References

[1] R. Valk and M. Jantzen, “The residue of vector sets with applications to decidability problems in
Petri nets,” Acta Informatica, vol. 21, pp. 643–674, 1985.

[2] B. Alpern and F. B. Schneider, “Defining liveness,” Information Processing Letters, vol. 21, no. 4,
1985.

[3] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,”
SIAM journal on control and optimization, vol. 25, no. 1, pp. 206–230, 1987.

[4] W. Wonham and P. Ramadge, “On the supremal controllable sublanguage of a given language,”
SIAM Journal of Conrol and Optimization, vol. 25, no. 3, pp. 637–659, May 1987.

[5] R. Sreenivas, “Towards a system theory for interconnected condition/event systems,” Ph.D. dis-
sertation, Carnegie Mellon University, 1990.

[6] R. Sreenivas, “An application of independent, increasing, free-choice petri nets to the synthesis of
policies that enforce liveness in arbitrary petri nets,” Automatica, vol. 34, no. 12, pp. 1613–1615,
December 1998.

[7] R. Sreenivas, “On supervisory policies that enforce liveness in in a class of completely controlled
petri nets obtained via refinement,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp.
173–177, January 1999.

[8] R. Sreenivas, “On supervisory policies that enforce liveness in completely controlled petri nets with
directed cut-places and cut-transitions,” IEEE Transactions on Automatic Control, vol. 44, no. 6,
pp. 1221–1225, June 1999.

[9] R. Sreenivas and B. Krogh, “On condition/event systems with discrete state realizations,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 1, pp. 209–236, 1991.

[10] R. Sreenivas, “A note on deciding the controllability of a language K with respect to a language
L,” IEEE Trans. on Automatic Control, vol. 38, no. 4, April 1993.

[11] R. Sreenivas, “On a weaker notion of controllability of a language K with respect to a language
L,” IEEE Trans. on Automatic Control, vol. 38, no. 9, September 1993.

[12] R. Sreenivas, “On minimal representations of petri net languages,” IEEE Transactions on Auto-
matic Control, vol. 51, no. 5, pp. 799–804, May 2006.

90

[13] P. Ramadge and W. Wonham, “The control of Discrete Event Systems,” Proceedings of the IEEE,
vol. 77, no. 1, pp. 81–98, January 1989.

[14] P. Ramadge and W. Wonham, “Modular feedback logic for discrete event systems,” SIAM J.
Control and Optimization, vol. 25, no. 5, pp. 1202–1218, September 1987.

[15] J. L. Peterson, Petri net theory and the modeling of systems. Prentice Hall PTR, 1981.

[16] C. Reutenauer, The mathematics of Petri nets. Prentice-Hall, Inc., 1990.

[17] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77,
no. 4, pp. 541–580, 1989.

[18] M. H. T. Hack, “Analysis of production schemata by petri nets,” DTIC Document, Tech. Rep.,
1972.

[19] J. Desel and J. Esparza, Free choice Petri nets. Cambridge university press, 2005, vol. 40.

[20] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in partially controlled
free-choice petri nets,” Automatic Control, IEEE Transactions on, vol. 57, no. 2, pp. 435–449,
2012.

[21] L. Rademacher and S. Vempala, “Testing geometric convexity,” in FSTTCS 2004: Foundations of
Software Technology and Theoretical Computer Science. Springer, 2005, pp. 469–480.

[22] E. Salimi, N. Somnath, and R. Sreenivas, “A tutorial on the synthesis of the maximally permis-
sive liveness enforcing supervisory policy in discrete-event/discrete-state systems modeled by a
class of general petri nets,” in Proceedings of The First Indian Control Conference (ICC 2015),
M. Vidyasagar, Ed., Indian Institute of Technology, Madras, January 2015.

[23] E. Salimi, N. Somnath, and R. Sreenivas, “A Software Tool for Live-Lock Avoidance in Systems
Modeled Using a Class of Petri Nets,” International Journal of Computer Science, Engineering
and Applications (IJCSEA), vol. 5, no. 2, pp. 1–13, April 2015.

[24] E. Salimi, N. Somnath, and R. Sreenivas, “On supervisory policies that enforce liveness in controlled
petri nets that are similar,” in Proceedings of the 7th IEEE International Conference on Cybernetics
and Intelligent Systems (CIS) and the 7th IEEE International Conference on Robotics, Automation
and Mechatronics (RAM), Angkor Wat, Cambodia, July 2015.

[25] E. Salimi and R. Sreenivas, “On invariant-based monitors that enforce liveness in a class of partially
controlled general petri nets,” IEEE Transactions on Automatic Control, 2015, to appear.

[26] R. Sreenivas, “On asymptotically efficient solutions for a class of supervisory control problems,”
IEEE Transactions on Automatic Control, vol. 41, no. 12, pp. 1736–1750, December 1996.

[27] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive petri net controller
using the theory of regions,” Robotics and Automation, IEEE Transactions on, vol. 19, no. 1, pp.
137–141, 2003.

91

[28] A. Giua, “Petri nets as discrete event models for supervisory control,” Ph.D. dissertation, Rensse-
laer Polytechnic Institute, 1992.

[29] J. Moody and P. J. Antsaklis, Supervisory control of discrete event systems using Petri nets.
Springer, 1998, vol. 8.

[30] S. Chandrasekaran, N. Somnath, and R. Sreenivas, “A software tool for the automatic synthesis of
minimally restrictive liveness enforcing supervisory policies for a class of general petri net models
of manufacturing-and service-systems,” Journal of Intelligent Manufacturing, pp. 1–14, 2014.

[31] K. Fukuda et al., “Frequently asked questions in polyhedral computation,” Report
http://www.inf.ethz.ch/personal/fukudak/polyfaq/polyfaq.html, ETH, Zürich, accessed: 2015-6-
1.

[32] D. M. Mount, “Geometric intersection,” in Handbook of Discrete and Computational Geometry,
chapter 33. Citeseer, 1997.

[33] E. Gawrilow and M. Joswig, Polymake: a framework for analyzing convex polytopes. Springer
Basel AG, 2000, pp. 43–73.

[34] “Polymake.org,” http://polymake.org/doku.php, accessed: 2013-08-7.

[35] B. Chazelle, “An optimal convex hull algorithm in any fixed dimension,” Discrete & Computational
Geometry, vol. 10, no. 1, pp. 377–409, 1993.

[36] M. Beck and S. Robins, Computing the continuous discretely: Integer-point enumeration in poly-
hedra. Springer, 2007.

[37] H. S. Wilf, generatingfunctionology. Elsevier, 2013.

[38] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in discrete-event dy-
namic systems modeled by controlled Petri nets,” IEEE Transactions on Automatic Control, vol. 42,
no. 7, pp. 928–945, July 1997.

[39] N. Somnath and R. Sreenivas, “On deciding the existence of a liveness enforcing supervisory policy
in a class of partially controlled general free-choice petri nets,” IEEE Transactions on Automation
Science and Engineering, vol. 10, no. 4, pp. 1157–1160, 2013.

[40] R. Sreenivas, “On a decidable class of partially controlled petri nets with liveness enforcing super-
visory policies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5,
pp. 1256–1261, August 2013.

[41] R. S. Sreenivas, “Some observations on supervisory policies that enforce liveness in partially con-
trolled free-choice petri nets,” Mathematics and Computers in Simulation, vol. 70, no. 5, pp. 266–
274, 2006.

[42] J. A. De Loera, “The many aspects of counting lattice points in polytopes,” Mathematische
Semesterberichte, vol. 52, no. 2, pp. 175–195, 2005.

92

[43] A. Bemporad, K. Fukuda, and F. D. Torrisi, “Convexity recognition of the union of polyhedra,”
Computational Geometry, vol. 18, no. 3, pp. 141–154, 2001.

[44] S. Chandrasekaran and R. Sreenivas, “On the automatic generation of the minimally restrictive
liveness enforcing supervisory policy for manufacturing- and service-systems modeled by a class of
general free choice petri nets,” in Proceedings of the IEEE International Conference on Networking,
Sensing and Control (ICNSC-13), Paris, France, April 2013, session WeC01.3.

[45] S. Chandrasekaran, “Object-oriented implementation of the minimally restrictive liveness enforcing
supervisory policy in a class of petri nets,” M.S. thesis, University of Illinois at Urbana-Champaign,
Industrial and Enterprise Systems Engineering, December 2012.

[46] S. Chandrasekaran and R. Sreenivas, “A software tool for the synthesis of supervisory policies that
avoid livelocks in petri net models of manufacturing- and service-systems,” in Proceedings of the
XVI Annual International Conference of the Society of Operations Management (SOM-12), New
Delhi, India, December 2012.

[47] I. Bárány and K. Fukuda, “A case when the union of polytopes is convex,” Linear Algebra and its
Applications, vol. 397, pp. 381–388, 2005.

[48] V. Deverakonda and R. Sreenivas, “On a sufficient information structure for supervisory policies
that enforce liveness in a class of general petri nets,” IEEE Transactions on Automatic Control,
vol. 60, no. 7, pp. 1915–1921, July 2015.

[49] “lp solve 5.5.2.0,” http://lpsolve.sourceforge.net/5.5/, accessed: 2015-06-2.

[50] L. Li, C. Hadjicostis, and R. S. Sreenivas, “Designs of bisimilar petri net controllers with fault
tolerance capabilities,” IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems
and Humans, vol. 38, no. 1, pp. 207–217, January 2008.

[51] L. Li, C. Hadjicostis, and R. S. Sreenivas, “Fault detection and identification in petri net con-
trollers,” in Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), Bahamas,
December 2004, pp. 5248–5253.

93

