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ABSTRACT

The airline schedule planning process is an important component of airline
operations, and it involves considerably complex problems. This research focuses
on the aircraft routing phase. We introduce the concept of robustness in aircraft

routing problems, and find solutions that can stand uncertainty.

We categorize the delays in flight operations into two components - independent
delay and propagated delay. In the data driven approach, independent delay can be
regarded as constant, but propagated delay can be worked on. An example of
aircraft swap is given to show that aircraft routing can potentially reduce the flight
delays. To solve robust aircraft routing problems, we propose a list of formulations.
They are in three categories - Lan, Clarke, Barnhart’s approach, chance-constrained

programming approach, and extreme value approach.

We conduct experiments with two airline networks - a 50-flight network and a 165-
flight network. The K-fold cross validation approach is incorporated into aircraft
routing problems to eliminate overfitting. According to the three evaluation metrics
- on time performance, average total propagated delay and passenger disruptions,
several good formulations are identified, which are recommended for airline

schedule planners. We also explain the reasons behind the solution differences.
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CHAPTER 1 INTRODUCTION

1.1 Background of Airline Schedule Planning

The airline schedule planning process is an important component of airline
operations, and it involved high complexity. The airline schedule comprises a
number of elements. A normal-sized airline schedule is a very large-scale network,
with hundreds of flights per day. Modeled mathematically, the network contains
hundreds of nodes (representing airports at various points in time) and millions of
arcs (representing flights between these airports). In addition, we need to take into
account many factors, such as airport gates, slots, aircraft types, crew restrictions,
aircraft maintenance requirements and passenger demands. Therefore, airline
schedule planners decompose the problem into four subproblems: (i) Schedule
Design, (ii) Fleet Assignment, (iii) Aircraft Maintenance Routing, and (iv) Crew

Scheduling. Next we briefly introduce each problem [1].

(i) Schedule Design

The objective of the Schedule Design problem is to determine a set of flight legs,
with specified origin, destination, scheduled departure time, and scheduled arrival
time. The main design criteria is the market demand estimation. It usually requires
the collaboration of many business units of an airline to design the schedule.
Therefore, though the main goal is to optimize the estimated profit of this schedule,

this problem is rarely solved using mathematical models.



(ii) Fleet Assignment

Given an airline schedule from the previous subproblem, we need to determine the
type of aircraft that will operate each flight leg, taking into account the total number
of aircraft of each fleet type available. Airline schedule planners consider both
economic profitability and operational feasibility. They minimize the total cost,
which includes the cost of operating a flight leg with a specified type of aircraft and
spill cost (the opportunity cost of having insufficient seating capacity to satisfy
passenger demands). Constraining the assignment of aircraft type to flights is the
total number of aircraft of each type available, and the requirement that each
aircraft have a feasible itinerary. This is verified by creating a balanced network,

where the inflow and outflow of each node is balanced for each type of aircraft.

(iii) Aircraft Maintenance Routing

In practice, each aircraft has to enter maintenance after a limited number of flying
hours. Given a flight schedule and a fleet assignment, the Aircraft Maintenance
Routing subproblem ensures that each individual aircraft, described by its tail
number, has a feasible route between two maintenance periods. Constraints in this
mathematical optimization model are that each flight leg should be operated by one
and exactly one aircraft, aircraft flow balance should hold, and the number of

aircraft used is less than the number available.

(iv) Crew Scheduling



Given the solutions to the three previous problems, Crew Scheduling is the final
subproblem. It aims at assigning cockpit crew and cabin crew to all the flight legs at
the least possible cost. This problem is the most complex among the four
subproblems due to various labor restrictions and mutual agreements between
airline companies and employees. Because of complexity, crew scheduling is divided
into two subproblems, crew pairing and crew assignment. In the crew pairing
problem, we create multi-day sequences of flight legs with lower costs, which are
called pairings. These pairings must satisfy labor restrictions. In the crew
assignment problem, we combine the pairings into month long crew schedules,
which are called bidlines or rosters, then the schedules are assigned to each crew

member according to each one’s preferences.

In the past, the airline scheduling problems have been mostly solved in sequence, as
described above. However, solving four problems sequentially typically gives a
suboptimal solution. Therefore, in the past few decades, airline schedule planners
have made lots of efforts to integrate some problems. On the other hand, due to high
level of complexity, these problems are mostly solved assuming that the flights will
be operated as planned. Ignoring the potential disturbances will cause the flight
schedule to be vulnerable to delays and cancellations. Therefore it calls for a robust

airline schedule planning process.

1.2 Delays in Airline Operations

In practice, airline schedule planners used to solve the four subproblems of airline
scheduling as deterministic process. That is, they optimize the schedule based upon

the assumption that the aircraft depart and arrive on the exact time as planned. In
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reality, it is almost never the case. Therefore, factoring in the inevitability of delays

and disruptions is a factor of high importance.

According to the on-time performance statistics given by Department of
Transportation (DoT), the percentage of aircraft arrival delays has been around 20%

from the year 2005 to the year 2014 (see Table 1).

Year Ontime Ontime Arrival Delayed Flights Cancelled | Diverted Flight
Arrivals (%) Delays (%) Cancelled (%) Operations

2005 | 5,526,773 | 77.40% | 1,466,065 | 20.53% | 133,730 | 1.87% 14,027 | 7,140,595

2006 | 5,388,265 | 75.45% | 1,615,537 | 22.62% | 121,934 | 1.71% 16,186 | 7,141,922

2007 | 5,473,439 | 73.42% | 1,804,028 | 24.20% | 160,809 | 2.16% 17,182 | 7,455,458

2008 | 5,330,294 | 76.04% | 1,524,735 | 21.75% | 137,432 | 1.96% 17,265 | 7,009,726

2009 | 5,127,157 | 79.49% | 1,218,288 | 18.89% | 89,377 1.39% 15,463 | 6,450,285

2010 | 5,146,504 | 79.79% | 1,174,884 | 18.21% | 113,255 | 1.76% 15,474 | 6,450,117

2011 | 4,845,032 | 79.62% | 1,109,872 | 18.24% | 115,978 | 1.91% 14,399 | 6,085,281

2012 | 4,990,223 | 81.85% | 1,015,158 | 16.65% | 78,862 1.29% 12,519 | 6,096,762

2013 | 4,990,033 | 78.34% | 1,269,277 | 19.93% | 96,012 1.51% 14,160 | 6,369,482

2014 | 4,437,850 | 76.25% | 1,240,528 | 21.32% | 126,984 | 2.18% 14,449 | 5,819,811

Table 1 On-time Performance from 2005 to 2014

Delays have a negative economic impact. According to the Ball et al. [2], delays
result in costs for airlines, for passengers, and in terms of lost demands. It estimated
that the annual cost of U.S. flight delays is $31 billion. Airlines for America [3] also
estimated that in 2013, the cost of aircraft block (taxi plus airborne) time for U.S.

passenger airlines was $76.22 per minute.

Because of such high economic loss caused by airline delays, the planners should
take into consideration flight schedule feasibility and profitability, as well as
robustness. According to Federal Aviation Administration (FAA), we can categorize

the detailed reasons of flight delays into five main types [4].
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e Air Carrier Delay
Delay is within the control of the air carrier. Examples of occurrences that
may determine carrier delay are: aircraft cleaning, awaiting the arrival of
connecting passengers or crew, baggage, cargo loading, crew legality (pilot or
attendant rest), fueling, handling disabled passengers, late crew, oversales,
slow boarding or seating delays.

e Late Arrival Delay
Arrival delay at an airport due to the late arrival of the same aircraft from a
previous airport. The ripple effect of an earlier delay at downstream airports
is referred to as delay propagation.

e NAS Delay
Delay that is within the control of the National Airspace System (NAS) may
include: non-extreme weather conditions, airport operations, heavy traffic
volume, air traffic control, etc.

e Security Delay
Security delay is caused by evacuation of a terminal or concourse, re-
boarding of aircraft because of security breach, inoperative screening
equipment and/or long lines in excess of 29 minutes at screening areas.

e Weather Delay
Weather delay is caused by extreme or hazardous weather conditions that
are forecasted or manifest themselves on point of departure, enroute, or on

point of arrival.

From January to December 2014, 23.75% of flights are delayed, and 34.6% of the

flight delays are caused by Late Arrival Delay (Chart 1). More importantly, among
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the delay reasons, airline planners can only control the Air Carrier Delays and Late
Arrival Delays. Therefore, this thesis mainly focuses on the mathematical models to

minimize Late Arrival Delays.

§ On Time: 76.25%

§ Air Carrier Delay: 6.13%

§ Weather Delay: 0.6%

§ National Aviation System Delay: 6.33%
0 Security Delay: 0.03%

0 Aircraft Arriving Late : 8.22%

f Cancelled: 2.18%

0§ Diverted: 0.25%

Chart 1 Airline Delay Cause Statistics in December 2014

Source: Bureau of Transportation Statistics, DoT

1.3 Motivation

Conventionally, optimization problems are solved assuming that the input data is
deterministic. Models are typically solved using mean values, best-guess values or
worst-case values. But in many occasions, these formulations fail to generate
satisfactory solutions. These kinds of optimization models are called nominal
models [5]. Robust optimization, an approach that specifically considers model
vulnerability, is designed to address the problems of nominal models. The solutions

produced from such models are called robust solutions. This thesis mainly focuses on



different types of robust models, and focuses on demonstrating their effectiveness

through the Aircraft Maintenance Routing problem.

In the previous section, we have seen that more than one third of the flight delays
are caused by Late Arrival Delays. This indicates that the delay from a previously
late arriving aircraft is propagated to the following flight operated by that aircraft.
The aircraft routing problem determines the sequence of flights to be operated by
the same aircraft, and because of that, the aircraft routing solution directly impacts
the late arrival delays. Also, conventionally, the purpose of the Aircraft Routing
problem is to find a feasible solution that is amenable to maintenance rather than to
find an optimal solution with respect to a specific objective function. Therefore, it is
easy for aircraft routing planners to model the consequence of late arrivals, as well
as to perform various other kinds of experiments and then analyze different
solutions. Due to this feature, this thesis focuses on the aircraft maintenance routing
problem. This thesis proposes several models, with each modeling different aspects
of flight delays and disruptions. The robust models consider the probability
distribution of flight delay performance, and include aspects of the distribution into
the formulation (such as quantiles and worst-case values), and thus they can be

better in terms of dealing with potential delays.

In earlier practice, the responses to flight delays were reactive, which means, after a
delay or disruption occurs, recovery actions will be implemented to mitigate the
effects of the disruption and bring the schedule back to the plan. This can be usually
far more expensive and complex than a pro-active approach. Robust methods are
pro-active, that is, seek to build solutions that are more robust a priori (though may

be more expensive), but will reduce the sum of the planning and recovery costs.



To analyze the different solutions derived from the different formulations, this
thesis utilizes a set of evaluation metrics to understand the advantage and

disadvantage of each aircraft routing solution.

1.4 Outline of Thesis

In Chapter 2, we present a review of the literature on the topic of robustness in
airline scheduling. First, we briefly browse the important results in the field of
robust airline scheduling problems. Second, we have a closer look at the aircraft
maintenance routing problem. We explain the modeling concept and formulations,
followed by a discussion of existing work in the area. Third, we summarize the
general evaluation criteria used by researchers, and then we outline the evaluation

metrics used by this thesis to analyze the solutions.

In Chapter 3, we present three categories of robust aircraft routing models. We
begin with the deterministic approach, then we move on to Lan, Clarke, Barnhart’s
robust approach; then Charnes and Cooper’s Chance-Constrained Programming
approach; and finally Bertsimas and Sim’s extreme-value based robust optimization
method. In each category we present multiple models that capture different aspects
of the problem. To evaluate the solutions that arise from these models, we use a 5-
fold cross validation approach that avoids overfitting and allows for generalizability

of our results.



In Chapter 4, we discuss the experimental setup for two real-world instances of
different sizes. We then explain the solution process and analyze the solutions from

the various models in terms of the evaluation metrics.

In Chapter 5, we summarize our findings.



CHAPTER 2 LITERATURE REVIEW

2.1 Robustness of Airline Schedule Planning

2.1.1 Airline Schedule Planning Literature Review

Most of the literature on robust airline scheduling focuses on identifying attributes
of the subproblem or subproblems of interest that contribute to robustness of the
schedule. Most approaches then define optimization-based or simulation-based
approaches that maximize the presence of these attributes and increase robustness.
Such attributes are defined in different ways in terms of move-up crews, hub

connectivity, propagated delays, station purity, etc., as we describe below.

Shebalov and Klabjan [6] build a robust model on crew schedule planning. They
introduce two objectives - minimizing the crew cost, and maximizing the number of
move-up crews - which means the crews that can potentially be swapped in
operations. They use delayed column generation, and Lagrangian decomposition for
solving the restricted master problem. Their experimental results show that a

robust crew scheduling solution sacrifices the total crew cost.

Rosenberger, Johnson, and Nemhauser [7] extend the fleet assignment model with
the concept of cancellation cycles and hub connectivity. A cancellation cycle is a
sequence of flights that begins and ends at the same airport. Hub connectivity is the
number of legs in a rotation that are in a route that begins at a hub, ends at a
different hub, and only stops at spokes in between. They point out that a fleet
assignment and aircraft rotation with many short cancellation cycles is more robust

to a flight cancellation. Low hub connectivity also mitigates the impact of
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propagated disruptions from one hub to others. They use a simulation of airline

operations, SimAir, to solve the assignments.

Schaefer et al. [8] consider algorithms for finding crew schedules that perform well
in practice. They introduce two ways of measuring pilot compensation - planned
cost of a crew schedule and operational cost of a crew schedule. Planned cost is a
deterministic value traditionally used. They calculate operational cost, a random
variable which features planned cost, and finally minimize the expected operational
cost. They provide a lower bound on the cost of an optimal crew schedule in
operations, and prove that their method gives the expected cost very close to the

lower bound.

Yen and Birge [10] consider the crew scheduling problem with uncertainty. They
first formulate it as a stochastic integer programming model, and then transfer it to
a nonlinear recourse model. To solve the problem, flight-pair branching algorithm is
used. It branches simultaneously on multiple variables by allowing or disallowing
key flight pairs where crews switch planes. They provide hierarchy for flight pairs to
branch, based on the delay costs. Their method results in overall savings in the

expected cost of a crew schedule when disruptions are considered.

Smith and Johnson [11] extend fleet assignment models by imposing station purity,
limiting the number of fleet types allowed to serve each airport in the schedule. For
the computational efficiency, they use station decomposition - a column generation
approach, to solve the fleet assignment problem. They further improve the
performance of station decomposition by developing a primal-dual method.

Additionally, they develop a “fix-and-price” heuristic to efficiently find integer
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solutions, because station decomposition solutions can be highly fractional. Their
estimation shows there can be significant reduction in cost for a major U.S. domestic

airline by applying station purity.

Burke et al. [12] propose a mimetic approach for multi-objective improvement of
robustness objectives in airline schedules. They consider two objectives - schedule
reliability and schedule flexibility. Their variables characterize flight retiming and
aircraft rerouting simultaneously, subject to a fixed fleet assignment. They
approximate the Pareto optimal front by applying a multi-meme mimetic algorithm.
The experiment is based on real world schedules from KLM Royal Dutch Airlines.
They are able to obtain schedules with significant improvements for the considered
objectives. Rigorous sensitivity analysis of the results shows that the influence of the
schedule reliability is dominant and that increased schedule flexibility could

improve the operational performance.

The multi-objective approach is extended in Burke et al. [13]. This approach
maintains a good balance between the individual robustness objectives that
maximize the operational performance of the schedule. They adopt time window
approaches for incremental and integrated multi- objective improvement of
robustness objectives in airline schedules. Their simulation result shows the
reliability of the scheduled times has a dominant influence on the punctuality of the
schedule. The flexibility of the schedule was shown to become more important for
smaller schedules. Balance between the reliability at hub and spoke stations results

in an improved operational performance of the overall schedule.
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Sohoni, Lee, and Klabjan [15] provide two service level metrics - flight service level
and network service level. Flight service level is similar to the on-time performance
measure of the U.S. DoT, and network service level features completion of passenger
itineraries. Then they develop a stochastic integer programming formulation that
maximizes expected profit while ensuring the two service levels. They apply cut

generation algorithm to solve the models.

Arikan, Deshpande, and Sohoni [20] develop stochastic models, use empirical data,
to analyze the propagation of delays through air-transportation networks. Based on
the analysis, they make policy recommendations regarding managing bottleneck
resources in the air-travel infrastructure. They concluded that the DOT on-time
metric can significantly inflate true on-time performance and can be misleading,
particularly to passengers with short connections. If providing accurate information
to passengers is desirable, then the DOT OTP metric should be modified so that on-
time really means “on-time”. A careful cost benefit analysis of this proposal needs to

be conducted.

2.1.2 Robust Aircraft Routing Literature Review

Lan, Clarke, and Barnhart [9] present two new approaches to minimize passenger
disruptions and achieve robust airline schedule plans. The first approach involves
aircraft routing. They formulate a mixed-integer programming problem with
stochastically generated inputs to reduce delay propagation. The second involves
retiming flight departure times. It considers passengers who miss their flight legs

due to insufficient connection time. Their objective is to minimize the number of
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passenger misconnections, realized by retiming the departure times of flight legs

within a small time window.

Weide, Ryan, and Ehrgott [14] develop an iterative approach to robust and
integrated aircraft routing and crew scheduling. To bypass the computational
difficulty, they start from a minimal cost solution, and then produce a series of
solutions which are increasingly robust. The program stops when the crew penalty
exceeds the predetermined threshold. Their algorithm can now generate solutions

for the aircraft routing and two crew pairing problems in one integrated procedure.

Marla and Barnhart [16] compare the results to aircraft maintenance routing
problems by using the chance-constrained programming approach of Charnes and
Cooper [17], the extreme value approach of Bertsimas and Sim [18], [19], with the
results of Lan et al. [9]. They perform an empirical experiment and propose a set of
metrics to evaluate the results. They also extend the formulation to general

network-based resource allocation problems.

Yan and Kung [21] extend the robust aircraft routing problem by Lan et al. [9]. The
objective is to minimize the maximum possible total propagated delay, assuming
flight leg delays lie in a pre-specified uncertainty set. They propose an exact
decomposition solution approach under a column-and-row generation framework.
By using delay correlation, their robust model outperforms the state-of-the-research
stochastic optimization approach in reducing standard deviation and maximum

value of total propagated delay.
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Robust airline scheduling approaches proposed in the literation (Section 2.1.1 and
2.1.2) apply to different phases of the airline schedule planning process. They are

summarized in Table 2.

Schedule Design ~ Fleet Assignment  Aircraft Routing Crew Scheduling
Shebalov and Klabjan (2006) [6] .
Rosenberger et al. (2004) [7] ° °
Schaefer et al. (2005) [8] .
Yen and Birge (2006) [10] .
Smith and Johnson (2006) [11] °
Burke etal. (2009) [12] ° .
Burke etal. (2015) [13] ° .
Sohoni, Lee, and Klabjan (2010) [15] °
Arikan et al. (2012) [20] °
Lan, Clarke, and Barnhart (2006) [9] ° °
Weide, Ryan, and Ehrgott (2009) [14] ° .
Marla and Barnhart (2010) [16] °
Yan and Kung (2014) [21] °

Table 2 Robust Schedules Literature by Planning Phase

2.1.3 Robustness Literature Review

There are also some works that provide important mathematical background for
robust airline scheduling problems, but not directly solving them. They are listed as

follows.

Bertsimas and Sim [18] study robust models for some discrete optimization
problems. They present a model for cost uncertainty in which each coefficient is
allowed to vary within an interval, with no more than a limited number of

coefficients allowed to vary. In this way, the robust version of a combinatorial
15



problem may be solved by solving no more than n + 1 instances of the underlying,
nominal problem. This result extends to approximation algorithms for
combinatorial problems. For network flow problems, the above model can be
applied and the robust solution can be computed by solving a logarithmic number of

nominal, network flow problems.

Bertsimas and Sim [19] use cardinality constrained uncertainty to address robust
linear optimization. They define a family of polyhedral uncertainty sets that encode
a budget of uncertainty in terms of cardinality constraints: the number of
parameters of the problem that are allowed to vary from their nominal values. By
relaxing and taking the dual of the inner maximization problem, one can transfer the
cardinality problem to a linear formulation, and therefore the problem is tractable,

and moreover can be cast equivalently as a linear optimization problem.

Bertsimas and Thiele [22] assume lack of perfect information about system
parameters. Accordingly, they develop two methods to solve decision-making
models under uncertainty - robust optimization and data driven optimization. In
robust optimization, random variables are modeled as uncertain parameters
belonging to a convex uncertainty set and the decision-maker protects the system
against the worst case within that set. Data-driven optimization uses observations of
the random variables as direct inputs to the mathematical programming problems.
They take advantage of some examples in inventory management and portfolio
management to describe the robust optimization paradigm in detail, and to address
the issue of constructing uncertainty sets using historical realizations of the random

variables.
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Limited work has been done on applying these models in the airline scheduling
context. These include Marla and Barnhart [16] and Yan and Kung [21]. Marla and
Barnhart model the robustness according to chance-constrained approach and
extreme-value approach; Yan and Kung extend Lan et al’s approach by adding
modeling uncertainty set. This thesis uses 5-cross validation approach, which
incorporates Lan et al.’s approach, chance-constrained approach and extreme-value
approach, but further improves the solutions of these approaches by avoiding

overfitting.

2.2 Aircraft Routing Problem Fundamentals

We focus on the aircraft routing step of the airline scheduling process. The aircraft
maintenance routing problem is to design a set of sequential flight legs, which can
also be called routes or routings, to be operated by each aircraft, such that each

aircraft is subject to regular and periodic maintenance checks.

e  Cover constraints
Each flight leg in the schedule is operated by exactly one aircraft.

e Balance constraints
The number of aircraft entering an airport is the same as the number
departing from the airport

e  Count constraints

The number of aircraft used is limited by the number of available aircrafts

Before we demonstrate how aircraft routing can change the on-time performance

(OTP), we first introduce the concept of propagated delays. Assume there is a pair of
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connecting flights. Flight f; departs from airport 1 and arrives at airport 2, then
flight f, departs from airport 2 and arrives at airport 3 (Figure 1). f; and f, are
operated by the same aircraft. Minimum turn time is required for this aircraft. And
slack time is the difference of aircraft connection time and minimum turn time. If no
delay occurs, f; arrives at time A4,, and f, arrives at time B;, and some slack time can
be used for connection. However, if flight f; is delayed, denoted as f;, and the
amount of delay exceeds the slack time, then the departure of f, is consequentially

delayed, denoted as f;.

IAD l

TDD

Figure 1 Demonstration of Propagated Delay

Glossary:

PDT: Planned departure time
ADT: Actual departure time
PAT: Planned arrival time
AAT: Actual arrival time

PD: Propagated delay

18



IDD: Independent departure delay
[AD: Independent arrival delay
TDD: Total departure delay

TAD: Total arrival delay

Then the total delay of flight f, comprises of two parts, propagated delay and
independent delay, as introduced by Lan, Clarke and Barnhart [9]. Propagated delay
is the delay caused by the late arrival of the previous flight. Independent delay is the
delay irrelevant with the previous flight, for example, delay due to weather issues,

taxing delays, etc. The equation is given as follows:

PD of f, = max{0, delay of f, —Slack}
IAD of f, =TAD of f, — PD of f,

In a macro viewpoint of the flight operation, the expected independent delays of all
flights can be considered as a constant. Therefore, the objective of the aircraft

routing planers is to reduce the total propagated delays.

Now we show an example where robust aircraft routing can make a difference.
Assume there are four flight legs. f; and f, travel from airport 1 to airport 2, and f;
and f, travel from airport 2 to airport 3. The original routing is such that, one
aircraft operates f; and f3, and another aircraft operates f, and f; (Figure 2). If flight
f1 is delayed by a longer time than its available slack time, in the original routing, f;
will also be delayed due to propagation, while in the new routing, no flights will be
delayed. If flight delay information isn’t considered systematically, planners usually

adopt the original routing, because it grants more slack time for both the aircrafts.
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However, we can see that the new routing is better than the original routing if f;
often experiences extreme delays. The new routing ensures longer slack time for
aircraft 1 to deal with highly possible delays. This example tells that the choice of

routing schedules should be made based on the delay information of flight legs.

min turn time |
! A
min turn time fs f4
Original routing
min turn time |
min turn time fs fa

New robust routing

Figure 2 Demonstration of Optimal Slack Allocation

The concept of propagated delays has been discussed in significant detail by
Ahmadbeygi et al. [23] and Chirapadhanakul [24], who focus on how robust
schedules can be constructed by modeling propagated delays effectively. While this
thesis also uses the concept of propagated delays, it differs significantly from
existing work by applying the robust models developed by Bertsimas and Sim [19]
and Charnes and Cooper [17] and extensions by Marla and Barnhart [16] to this

problem.

20



2.3 Evaluation Metrics

In the field of airline scheduling, there is no single most effective evaluation metric.
Moreover, different players in the market tend to consider different metrics. Lan et
al. [9], and Marla and Barnhart [16] assess the robustness of routing solutions by
three kinds of metrics. (i) Expected on-time performance for all legs in the flight
schedule; (ii) Total expected number of passenger disruptions; (iii) Total expected
daily flight delay. These metrics are commonly accepted by researchers, and the

three can amend each other, and build up a comprehensive set of evaluation metrics.

(i) On-Time Performance

On-Time Performance, such as 15-minute On-Time Performance (15-0OTP),
measures the percentage of flights that arrive no later than a specific number of
minutes (15 minutes) after the scheduled time, which is indicated in the
Computerized Reservation System (CRS). It is commonly used by airlines and
governments (US DoT) to evaluate airline performance. For the purpose of catching
most important delay information, this thesis uses expected on-time performance

for all legs in the flight schedule for 15 minutes, 30 minutes, and 90 minutes.

However, merely using On-Time Performance can’t evaluate overall performance of
airline. The reasons are:
e It does not provide any information about the distribution of delays. Two

airlines having the same 15-OTP can have different average delay.
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e It does not consider the occurrence of propagated delays in the network.
Late Arrival Delay is responsible for a high proportion of delays. Planners
need to give larger slack time to the network so that it is robust against
delay propagation.

e It does not consider passenger delays. The passenger delays, and passenger
missed connections, are considered to be important by both airlines and
passengers. If a flight is 10 minutes late, which is not counted in 15-OTP, but
it causes a missed connection, the case still needs to be considered as a

negative effect of delays.

Therefore, we have the other two metrics in the thesis.

(ii) Total Expected Flight Delay

As Section 2.2 states, total delay of flights is comprised of propagated delay and
independent delay. Independent delay can be regarded as a constant when we

evaluate the performance, thus total expected flight delay is of concern to us.

Given a routing of an aircraft, mathematically we can calculate the propagated delay

and independent delay as follows.

TDD = max{ADT — PDT ,0}

TAD = max{AAT — PAT ,0}

Slack; = PDT; — PAT, —min turn time
PD;; = max{TAD, — Slack;,0}

IDD, =TDD, - PD,

IAD, =TAD, - PD,
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(iii) Total Expected Number of Passenger Disruptions

A passenger’s itinerary is called disrupted if one or more flights in his/her schedule
are cancelled, or the connection time of some pair of consecutive flights is not
enough for him/her to catch the second flight in the pair. The impact of passenger
disruptions is often underestimated because the passenger has to wait for a long
time before he/she takes an alternative flight. The number of hours delayed for each
such case can be large. Moreover, passenger disruptions cause the airline company
to react manually for each individual case. The airline employees need to re-
accommodate the disrupted passenger. The average delay for passengers on
cancelled flights can be large. Consequently, it is important for airlines to consider

passenger delays and disruptions.
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CHAPTER 3 ROBUST AIRCRAFT ROUTING MODELS

3.1 The Deterministic Aircraft Routing Model

We start by introducing the standard deterministic aircraft routing formulation,
denoted as AR. The objective of this model is typically to find a feasible aircraft
routing solution such that all aircraft can be subject to mandatory periodic

maintenance checks.

The AR formulation is set up on a timeline network. This network is similar to a
time-space network where each node is a point in space and time. Each node
represents either the start point of a flight at the origin airport at the scheduled
departure time, or the end point of a flight at the destination airport at the
scheduled arrival time. Arcs in this network are divided into flight arcs and ground
arcs. Flight arcs connect the starting point of a flight at the origin airport and
scheduled departure time with its ending point at the destination airport and
scheduled arrival time. Ground arcs connect nodes that are at the same airport and
succeed each other in time, to capture aircraft waiting on the ground at a particular
airport. Thus, flight arcs represent a flight, and ground arcs represent the period
when the aircraft is on the ground. The timeline network spans the maximum time

between mandatory maintenance checks of aircraft, which is typically 72 hours.

Figure 3 shows a timeline network with 4 airports. Each solid arrow represents a

flight arc, and each dotted arrow represents a ground arc.

24



Timeline
6:00 12:00 18:00 24:00

Figure 3 Illustration of a Timeline Network

The decision variables in this formulation are modeled on composite variables
called strings. Composite variables capture multiple decisions simultaneously, such
that they can be modeled using easier constraints and can result in formulations
with structures that are easier to solve. In the context of aircraft routing, each string
is a sequence of flights, beginning at a maintenance station (airport where
maintenance can be performed) and ending at a maintenance station, operated by a

single aircraft, and followed by maintenance at the destination of the final flight.

We now present the standard formulation for aircraft maintenance routing [9]. We
first introduce some set notation. Let F be the set of all daily flights, F* be the set of
flight legs which originate at a maintenance station, and F~ be the set of flight legs
which end at a maintenance station. Let S be the set of all possible strings (aircraft
routes). The set of ground arcs is denoted as G. The set of flight legs beginning with
flight leg i is denoted by S;', and the set of flight legs ending with flight leg i is

denoted by S; .
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Second, there are two sets of decision variables. For each strings € S, x, = 1 if
string s is selected in the aircraft routing; and 0 otherwise. For each ground arc
g € G, y, is the number of aircraft on g. Some special notations of y, are included in
Constraint (3.3) and (3.4). These are as follows. Variable y;; represents the number
of aircraft on the ground just before flight leg i departs and y;’; is the number of
aircraft on the ground just after flight leg i departs, for all flight legs i. Similarly, y;,
is the number of aircraft on the ground just before flight leg i arrives and y; , is the

number of aircraft on the ground just after flight leg i arrives, for all flight legs i.

Third, we specify the parameters in this formulation. a; is the cover parameter. a;;
is 1 if flight leg i € F is contained in string s € S and 0 otherwise. We also use in this
formulation the concept of count line, which is a particular timestamp, at the same
time on each day in the timeline network, to count the total number of aircraft. The
count line is a specific time point on the timeline network, for example, midnight on
each day. A string can cross the count line multiple times, depending on its length,
because the timeline network is multiple days long. ; is the number of times each
string s crosses the count line, p, is the number of times ground arc g crosses the
count line, and N is the number of aircraft available. By setting the length of the
timeline network to the time period between maintenance checks, and by setting
each string to end with maintenance time, we ensure that by construction, each

aircraft is maintained at least once in that time period.

The formulation of the basic aircraft maintenance routing problem, denoted AR, is

as follows.
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AR:

min O (3.1)
sty a.x =1 VieF (3.2)
seS
DX, =Y+, =0 VieF* (3.3)
seS;
=Y x =y, v, =0 VieF~ (3.4)
seS;
Srx +Y,py, <N (3.5)
seS geG
y, 20 VgeG (3.6)
x, €{0,1} VseS 3.7)

Expression (3.1) is the objective function. In its basic form, the aircraft routing
problem is typically a feasibility problem, therefore AR has objective zero. The AR
model does not have a specified objective function, so a solver returns any one of
the feasible aircraft routing solutions. Constraint (3.2) ensures each flight leg is
operated exactly once, so it is called the cover constraint. Constraints (3.3) and (3.4)
ensure aircraft flow balance, that is, when flights depart from a node or arrive at a
node, the total number of aircraft entering the node and the total number of aircraft
leaving the node is equal. This is done by ensuring that the flow of aircraft into a
node through the incoming flight and ground arcs is the same as the flow of aircraft
outgoing from the node through the outgoing flight and ground arcs. Constraint (3.5)
ensures that the number of aircraft utilized is constrained by N, which is the
available number of aircraft of that fleet type. Because flow balance is already
ensured, it is sufficient to ensure that the number of aircraft at a specific point in
time, specifically, at the count line, is constrained by N. At the count line, we ‘count’
the total number of aircraft using the flight arcs and the ground arcs that intersect
the count line. We refer to this constraint as the count constraint. Constraint (3.6)

and (3.7) ensure positive values for the y variables and binary values for the x
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variables. While both y and x are required to be integer, the integrality of the y
variables can be relaxed because constraints (3.3) and (3.4) will ensure that if x is

integer, y will also be integer.
3.2 Lan, Clarke, Barnhart’s Approach

To make the aircraft routing solution robust to delays, Lan, Clarke, Barnhart [9]
attempt to generate robust solutions by considering total expected propagated
delay in the objective. As is explained in Section 2.2, the difference between total
expected delays and total expected propagated delays is total independent delays,
which is a constant in a data-driven approach. Therefore, minimizing total expected

propagated delay is equivalent to minimizing total expected delays.

Assuming flight j immediately follows flight i in string s, and the propagated delay

between flight leg i and j in s is pd;. Then the total expected propagated delay is

written as follows.

E[Z[ > Pd,;jjxs]=2(xs Y E[pd;]j =Y xd. (3.8)

seS \ (i,j)es ses (i,j)es seS

where d, = 2 E[pd;]

(i.))es

Lan, Clarke, and Barnhart impute the independent and propagated delays of each
flight leg based on the operated strings in the historical data. Having computed the
independent delay of each flight, they then compute 4, the expected propagated
delay of each string s. Based on this, they formulate the robust model, which is the
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same as AR, with an objective of minimizing total expected propagated delay. We

denote their robust approach as LCB, as follows.

LCB:

min 2 dx, (3.9)

se§

s.t. Cover, Balance, Count, and Integrality (3.2) - (3.7) (3.10)

3.3 Chance-Constrained Programming Approach

Chance-Constrained Programming (CCP) specifies that the probability of a
constraint being satisfied exceeds a pre-specified threshold probability, considering
the fact that the various parameters in the constraint are uncertain. The idea of
Chance-Constrained Programming is that the probability that the constraint of the
model with uncertain parameters is satisfied must be over a predetermined

threshold level.

Applied to the aircraft routing problem, it specifies that the probability that each
string is operated without potential risks of disruption, exceeds a certain user-
specified probability level a. We will define the ‘potential risk of disruption’ below.
Under this framework, the general formulation of a chance-constrained model for

the AR model is as follows:

max 0 (3.11)

s.t. P(Zamxx :1]2% VieF (3.12)
se§

Balance, Count, and Integrality (3.3) - (3.7) (3.13)
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We define p, as the probability in the historical data, that flight leg i in string s is

operated with a certain pre-specified service level, that is, the total delay
(independent and propagated delay combined) of i when operated by string s, is

below a pre-specified threshold of ¢ minutes. By this definition of p, , the probability

p; of flight i being delayed less than ¢ minutes in the chosen solution is p, = z‘pmx‘Y .

ses
The real-world interpretation of this is as follows. In our experiments, to be
described in the next chapter, we solve this model with different values of t, at 15,
30 and 90 minutes. At delay levels of 15 minutes, flights incur on-time performance
delays; at delay levels of 30 minutes, passengers might risk missing their connecting
flight; and at delay levels of 90 minutes, flight cancellations may occur, because
when a flight is delayed by 15 or 30 minutes, passengers might have risks in
catching the following connection flight; whereas if a flight is delayed by 90 minutes,
flight cancellation, and thus flight non-coverage can occur. We then write the

Chance-Constrained Programming formulation, denoted as CCP, as follows.

ccpe

max 0 (3.14)

st Y ax =1 VieF (3.15)
seS§
Y px, 2a, VieF (3.16)
]geesllance, Count, and Integrality (3.3) - (3.7) (3.17)

Constraints (3.16) are the ‘robustness constraints’. ¢, is the protection level, such

that the probability that flight leg i has a delay less than t for at least o, percent of
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the time. In other words, the probability that flight i is delayed more than ¢ minutes

in the chosen solution should be smaller than or equal to 1-¢,.

Similar to AR, this model has a feasibility objective function (minimize zero).

However, feasible solutions may not exist if the protection level ¢, is chosen such to

be ‘too high’, such that no solution exists. Thus, the challenge in CCP is the

determination of the ‘right’ values ¢, that are high enough to decrease the delays
but do not result in infeasibility. In practice, we determine the maximum ¢, which

can generate feasible solution by repeated re-solving to find the appropriate a-
values. Repeated model execution, however, is not ideal in determining a-values,
because of the trial-and-error process involved, as well as because of the loss of

tractability arising from re-solving.

We therefore propose the CCP min EPD (CCP with minimize Expected Propagated
Delay objective) model to incorporate the features of CCP models and LCB models,
and direct the search towards solutions that satisfy multiple criteria. This model has
the objective function of the LCB model, and the constraints of the CCP model. It is
expected that with an objective function added, CCP min EPD model will work better

than CCP model. The ¢, values are determined in the same method as in CCP model.

CCP min EPD

min d x, (3.18)

st Y ax =1 VieF (3.19)
ses
D pix, 20, VieF (3.20)
];E:ﬂance, Count, and Integrality (3.3) - (3.7) (3.21)
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3.4 Extended Chance-Constrained Programming Approach

As discussed in Section 3.3, the CCP model has the limitation that it needs to be re-
solved multiple times to find the best values of protection levels, by trading off
feasibility and robustness; resulting in poor tractability. To overcome these
limitations, Marla and Barnhart [16] develop the a-CCP model. In the a-CCP model,

the protection levels o, do not need to be specified in advance. Instead, the

protection levels are decision variables in the model.

Various objective functions may be used. One possibility, as shown in the
formulation a-CCP-1 (3.22) is to maximize the sum of protection levels of all flights

in the network.

a-CCP-1
max Y ¢, (3.22)
ieF
st ax =1 VieF (3.23)
ses
> pux, 20, VieF (3.24)
];Eesllance, Count, and Integrality (3.3) - (3.7) (3.25)

Another possible objective function a-CCP-2 (3.26) is to maximize the minimum

protection level over all flights in the network, which would be written as:
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a-CCP-2

max rgn{ai} (3.26)
st Y ax =1 VieF (3.27)
seS§
D px 20, VieF (3.28)
seS
Balance, Count, and Integrality (3.3) - (3.7) (3.29)

The objective function contains the minimum ¢, values. Optimization models with

this kind of objective function can be linearized, as follows.

max z (3.30)
st. Y a.x =1 VieF (3.31)
seS
P T VieF (3.32)
se§
z<a, VieF (3.33)
Balance, Count, and Integrality (3.3) - (3.7) (3.34)

3.5 Bertsimas and Sim’s Extreme Value Approach

We apply the extreme-value robust optimization approach of Bertsimas and Sim to
the aircraft routing problem. The essential idea of the extreme-value approach is to
minimize the impact of a certain controlled number of uncertain parameters
assuming their worst-case values simultaneously. Bertsimas and Sim use a
robustness parameter I, to express the number of uncertain parameters that are
allowed to simultaneously take on their respective worst-case values. For details

about the approach, we refer the reader to Bertsimas and Sim [18][19].
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Marla and Barnhart [16] apply this to the aircraft routing problem, as follows. Let
a, =—1 if flight i € F in string s € S has extreme value of delay exceeding t minutes.

Then if flight i is in string s, and the delay exceeds the threshold t in the extreme case

(that is, in even one instance in the historical data), it will result in a, =-1, and thus
a,+a, =0, so flight i is not covered at the required service level by that string s, in

the worst-case. Similar to the CCP approach, t can be set to 15, 30, or 90 minutes,

depending on the kind of delay or disruption we would like to capture.

We use a set of ‘robustness’ or ‘protection’ parameters I';, for each flight leg i. For
each flight ie F, T', represents the number of strings in which flight i cannot

experience delays greater than t minutes in any extreme case. The extreme value
(EV) formulation developed by using the robust optimization approach of Bertsimas

and Sim is as follows.

EV
min O (3.35)
st ax, + max{z a.x, ,—rl} =1 VieF (3.36)
se§ seS§
Balance, Count, and Integrality (3.3) - (3.7) (3.37)

The second term in Constraint (3.36) represents the protection level. If

Z&iS ,2-T,, it ensures that each flight i is covered by at least one string that

seS

doesn’t have extreme delays. If Eé.x <-I',, it ensures that each flight i is

AN 1
ses

protected against I'; extreme-delay situations. The constraint (3.36) can be easily

linearized as follows.
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Zaisxs +u, =1 VieF (3.38)
u, > Z&isxs VieF (3.39)

u>-T. VieF (3.40)

Because the formulation seeks to protect against extreme cases, some flights may be
present in multiple strings to ensure that the worst-case is not violated in at least
one string, for each flight. The solution given by EV formulation might not be a
practical solution for the aircraft routing problem, but it can be a reference to other

formulations.
3.6 Delta Extreme Value Approach

Similar to the CCP approach, the EV formulation requires multiple executions with
different values of parameters I';, because the ‘best’ level of protection available
cannot be ascertained a priori. To avoid the need to repeatedly solve EV models,
Marla and Barnhart [16] propose an alternative method, denoted 4-EV. Instead of
setting the values I'; a priori, T, are set as variables and the sum of coverages of all
flights in the worst-case is maximized. The objective of A-EV is to minimize the
number of the total number of flight legs that experience extreme delays, provided

that each flight leg is covered at least once. The formulation is as follows.
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max Zri (3.41)

ieF

s.t. Z%xs +u, =1 VieF (3.42)
seS
u; 2 Z&isxs VieF (343)
se§
u, 2=T, VieF (3.44)
Balance, Count, and Integrality (3.3) - (3.7) (3.45)

In the special structure of this formulation, maximizing Zl“l. is equivalent to
ieF

minimizing —Z I'., and thus minimizing ZMi . Because the upper bound of z&ixxs

ieF ieF seS

is u,, equivalently, we can minimize ZZ&LYxX. Therefore, the simplified A-EV
ieF se§

formulation is as follows:

A-EV
min Y Y ax, (3.46)
ieF seS
sty ax 21 VieF (3.47)
];E;Iance, Count, and Integrality (3.3) - (3.7) (3.48)

3.7 Delta Objective Extreme Value Approach

Because the extreme value robust optimization framework also allows uncertainty
to be modeled in the objective function, we present an alternative extreme value
formulation, denoted A4-Obj-EV. The idea of A-Obj-EV is to protect against the
scenario when certain number (I') of strings in the solution simultaneously
experience extreme value of propagated delays, while the other strings in the

solution experience no uncertainty, that is, have a propagated delay value of zero.
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We present a parameter - maximum propagated delay D, such that D exceeds the
sum of the extreme (worst-case) propagated delays of any subset of I" strings. While
this particular scenario is hardly realized in practice, it serves the purpose of
choosing strings that have some slack in their propagated delays relative to the

threshold D.

As Marla and Barnhart [16] note in their work regarding the a priori specification of
the protection parameter [, it is more intuitive to allow the formulation to maximize
the level of protection within a pre-specified threshold of delay. The A-Obj-EV
formulation allows the largest number of strings to realize their worst-case
propagated delays without exceeding the maximum propagated delay threshold D.

This model is presented as follows.

A-Obj-EV
min A (3.49)
s.t. zglsxs - ZCAZSVS <D (3.50)
seS seS
Az 2 v, (3.51)
seS
Vs < Xy Vs e § (352)
Ve S W, VseS (3.53)
ve2x +w —1 VseS (3.54)
W 2w, Vse\S\—|§‘+1,...,S—1 (3.55)
Wit <1 (3.56)
Wy 2 0 (3.57)
Cover, Balance, Count, and Integrality (3.2) - (3.7) (3.58)
v, €[0,1] VseS (3.59)
w,€{0,1} VseS (3.60)
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D is a threshold on total propagated delay, set by examining historical data and
choosing a reasonable value that represents a low level of propagated delay in the

network. We set the nominal propagated delay value for any string s to be zero, and
let cAZX represent the extreme or worst-case propagated delay value for string s in the
historic data. Let S be the set of strings s €S with non-zero extreme values of
propagated delay in the historic data, which means, cAZX >0. v, is a set of
intermediate variables. v =1 if string s takes its nominal propagated delay value
zero, and v, =0 if it takes its worst-case value. To maximize the size of the minimal
subset of strings that realize their worst-case values, we sort the strings by
increasing order of their ﬁx values, such that cAll s&z S...SaA,"S|. 4 is the maximum
number of strings with propagated delays assumed to be nominal. Therefore, by

minimizing 4, we are allowing the maximum number of strings to assume their

worst-case values within the allowable threshold D.

Objective function (3.49) minimizes the value 4, which counts the number of strings
in the solution that cannot be protected against realizing their worst-case (extreme)

propagated delay values. Constraint (3.50) requires that the total worst-case

propagated delay, when ‘§|—A strings realize worst-case delay values, is less or

equal to D. The number of non-zero v, values, which is equal to the number of

strings not protected against the realization of their extreme values of propagate

delay, is limited by A. Constraints (3.52) force v, =0, unless string s is in the solution.
Constraints (3.53) introduce another intermediate variable w_, such that w =1 for
string s € S, if there exists a k> s such that v, =1. v, =1 only if w,=1. Constraints

(3.54) allow v, =1 only if both w =1 andx, =1. These constraints jointly ensure
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that maximum number of strings can assume nominal value by forcing those strings

with smallest 4, values to have v, =1 if x, =1. Constraints (3.55) - (3.56) ensure

that w_is decreasingly ordered. Along with the binary constraints and the d,
parameters, it makes the maximal set of w_be set to 1. Constraints (3.59) and (3.60)
specify that v, and w, are binary variables. It is enough to specify that w_is

continuous between zero and one to ensure that w, takes on binary values.
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CHAPTER 4 EVALUATION AND RESULT ANALYSIS

In this chapter, we discuss the results from the application of the models described

in Chapter 3 to real-world data, and the insights obtained from our experiments.

4.1 Experimental Set-up

4.1.1 Description of the Raw Data Sources

To understand the performance of the models presented in Chapter 3, we conduct
experiments on the network data of a major airline in the United States. The airline
operates a hub-and-spoke network with three major hubs. We obtain the historical
schedule, and flight leg delay and cancelation data from the Airline On-Time
Performance (AOTP) database, made available by the Bureau of Transportation

Statistics (BTS) [25].

The ASQP database records the planned and operated schedule of each flight
operated in the US. The fields in this database that are relevant to this work are: the
basic flight information in the ‘Date’, ‘Origin’, ‘Destination’, ‘Carrier’, and ‘Tail
number’ fields, on-time performance in the ‘Planned departure time’, ‘Actual
departure time’, ‘Wheels off time’, “‘Wheels on time’, ‘Planned arrival time’, ‘Actual
arrival time’, and ‘Reason of delay if exists’ fields, and disruption information in the

‘Cancelled’, ‘Diverted’, ‘Reasons for cancelation or diversion’ fields.
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4.1.2 Pre-processing of the Data

Step 1: Inferring routings based on tail numbers: We create a database of the
relevant raw data for the airline of interest. We then separate the flights in the data
based on fleet type, filling in information for canceled flights based on the original
planned fleet type. This is because the aircraft routing problem is solved separately
for flights of each fleet type. We then sequence the flights based on the planned
routing, that is, the sequence of flights operated by each aircraft (by its tail number);

in order to compute the independent and propagated delays.

Step 2: Finding independent delays: The total delay of each flight is separated into
independent and propagated delay based on the procedure described in Lan, Clarke
and Barnhart [9]. These equations have been described in detail in Section 2.3. By
this procedure, we find independent delay for each flight in the historical data, over

various days in the data.

Step 3: Generating fleet sub-networks: Once the independent delays of all flights
have been determined, we divide the flight networks into subnetworks that are all
operated by the same aircraft type (for example, B737-824 would be one aircraft
type). Among these networks, we focus on those that are operated as daily networks,
that is, those which are operated more than 200 times in a year (on all days of the
week, excluding weekends). We also ensure that these networks are balanced, that
is, the number of incoming flights is equal to the number of outgoing flights for each

location. We select two such networks for our experiments.
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4.1.3 Description of Selected Networks

We provide descriptive statistics for the two selected networks in Table 3. Both are

networks where the schedule is repeated daily. Network N, has 50 flights and
network N, has 165 flights. We then set up the timeline network corresponding to
networks N, and N,, that spans four days, because the maintenance period is

assumed to be 72 hours. 72 hours must be covered within a 4-day span, because in
the worst case, the first flight starts at the end of day 1 and the last flight ends at the
beginning of day 4, and thus a 3-day span cannot cover the maintenance period. We
then generate the strings in each network that are of length less than or equal to 72
hours. Recall that by definition, each string is a series of flights, beginning and
ending at a maintenance station, followed by maintenance at the destination
maintenance station. Therefore, we ensure that each aircraft is available to depart
before the end of the fourth day. Upon enumeration, we see that there are 9,639

strings in N, and 878,207 strings in N,. The number of available aircraft is 20 for

the first network, and 61 for the second.

We then evaluate the performance of each of the models described in Chapter 3 on

all the scenarios for each network. For N,, because of limited number of scenarios

available, we fit the historical independent delay values to a distribution, and these
were seen to best fit a lognormal distribution. We then sampled from this
distribution to generate 5000 scenarios for the daily network. The specifications can

be found in Appendix A.1. For N,, there are a significant number of scenarios

available in the historical data, that is, 200 realized scenarios of 365 days in the year
are available. Therefore, we directly use these independent delay data as scenarios

in our experiments.
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Network No. | Daily Flights Aircraft Strings Scenarios
N, 50 20 9,639 5000
N, 165 61 878,207 200

Table 3 Summary of network characteristics

4.1.4 Generating Strings in each Network

We generate a timeline network for each network in our experiments and
enumerate strings using a depth-first search process. The process of enumerating
the strings automatically incorporates feasibility constraints, by definition. Each
string consists of a sequence of flight legs beginning and ending at a maintenance
station, with minimum turn time between successive legs, and the last flight
followed by maintenance. For any two successive flights, the destination airport of
the first flight is the same as the origin airport of the second, with turn time for the
aircraft between the legs at least as large as the minimum turn time. The duration of
each string is at least two days (to eliminate too-short routes) and less than 72

hours, thus satisfying the constraint of maintaining the aircraft every 72 hours.

4.1.5 Generating Inputs to Mathematical Models

We introduce the idea of scenario here. In the historical data, each flight leg is
operated several times, and we compute its independent delay value as described
above. We regard each independent delay value (for each day) as one scenario for
this flight leg. In our data-driven approach, we assume the independent delay of the

flight legs has the same distribution as the historical independent delay values. In
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the case of network N;, we have sufficient daily data of the independent delays in
the year of historical data considered. Therefore we use that data as the scenarios in
our experiments. In the case of network N;, we have a limited number of scenarios
where all flights are operated. The number of scenarios is sufficient to fit the data to
distributions but fall short for testing the model performance. Therefore, after
fitting the distributions, we simulate 5000 scenarios to capture the distributions. We
assume that the delay distributions of different flights’ independent delays are

statistically independent of each other for N; but not so for N..

We then compute the propagated delay of strings over the various scenarios. In
doing so, because the strings are of length greater than a day, we make sure to
consider the correct value of independent delay corresponding to that scenario.
Therefore, for each string beginning on a certain day (scenario), we compute the
propagated delay of the entire string by the method described in Chapter 2. We thus

have the propagated delay of each string for all scenarios.

From this data, we generate the inputs to these models, such as the matrix for Cover

constraint parameters, the matrix for Balance constraint parameters, the matrix for

Count constraint parameters, and vectors for statistics of propagated delay data.

4.1.6 Running Robust Aircraft Routing Models

The final step of our experimental procedure is to run all the models written in

Chapter 3. We solve our models in Java, integrated with IBM ILog CPLEX v12.5.1.
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In running our models, we assume that there will not be recovery interventions
such as flight cancellation or aircraft swaps, but allow the delays to be propagated
along the strings. In this way, we can estimate the robustness of solutions before
intervention. Because cancelation and swap strategies vary among different airlines,
this would enable us to analyze solution robustness in a fair manner across all

airlines.

4.1.7 K-Fold Cross Validation

Statistically, overfitting occurs when a statistical model describes random error or
noise instead of the underlying relationship. Overfitting generally occurs when a
model is excessively complex, and fits to the available data too well, however, when
the same model is used on a different data set, it proves to be poor in explaining the
phenomena or in predicting the outcomes of those observations. If we take a
different sample of validation data from the training data, it might turn out that the

solution doesn’t fit the validation data as well as the training data.

To overcome overfitting, we use a k-Fold Cross Validation approach for the various
models discussed in Chapter 3 (AR, LCB, CCP, a-CCP, EV, A-EV, A-Obj-EV). We
partition the sample data randomly into k equal-size subgroups. From the k
subgroups, k-1 subgroups are used as training data to fit the parameters of the
models described in Chapter 3. Once the models are solved, the kth subgroup is used
as validation data, to evaluate the performance of the solutions of the models. The
cross validation process is executed k times, such that each of the k subgroups is
treated as validation data exactly once. The k results thus obtained are then

averaged for analysis. In our experiments, we set k=5.
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4.2 Analysis of Results

4.2.1 Computation Time

Table 4 reports the average computation times for the network N;. For network N;,
the computational times are usually under 1 second, so it cannot accurately

represent the computational complexity of the models.

Model Parameters [terations Run time per iteration (sec)
AR None 1 25.14
LCB None 1 42.81
CcCcpP o, Vi 1 for each a 52.30
a-CCP-1 None 1 72.91
a-CCP-2 None 1 60.61
EV I'\Vi 1foreach I 45.33
A-EV None 1 42.13

A-Obj-EV 1 1 6018.39

Table 4 Complexity and Run Times

For the CCP and EV models, multiple iterations are required to determine the
appropriate a and I" values. So the run time is calculated as the average of several

runs of the same type of model.

According to the run times in Table 3, we can see that all the models except for

A-0bj-EV model are all at the same level of complexity. Although a-CCP and 4-EV
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tend to have more specifications in constraints and objective function, they
experience the same level of run times with CCP and EV, respectively. On the other
hand, 4-0bj-EV has a very high run time, due to the large number of strings. It is
worth some caution if we need to use it in an even larger network, because the
number of constraints grows exponentially (same as the number of strings) as the

number of flights grows.

4.2.2 Comparison of Solution Quality

In this section, we compare the quality of solutions from all the models in terms of
three evaluation metrics: on-time performance, average total propagated delay and
passenger disruptions. In particular, for on-time performance, we look at 15-min
on-time performance (OTP), 30-min OTP, 60 min OTP, 90 min OTP, 120 min OTP
and 180 min OTP. As described in Chapter 3, 15-min OTP relates to whether a flight
is denoted ‘late’ by the Bureau of Transportation Statistics, the 30-min OTP to
whether passengers can make their connecting flights, the 60-minute OTP to
whether crew can make connections; and the 90-min, 120-min and 180-min OTP to
policies of potential flight cancelations. We use the 5-fold cross validation method to
generate 5 sets of evaluation values, and then we average them to eliminate the

overfitting effect, and have a fair comparison.

Table 5 and Table 6 are the on-time performance, total propagated delay and
passenger disruptions metrics for network N,. For N,, we notice that a-CCP-1 and
A-EV model perform the best in terms of on-time performance and disrupted
passengers, and the propagated delays are also close to the best. LCB, CCP min EPD

and a-CCP-2 perform second best in terms of our metrics of interest. CCP, EV and 4-
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Obj-EV perform rather poorly compared to the other models. Nevertheless, they are

still better than the routing used by the airline.

Flight On-Time Performance
<15 min < 30 min < 60 min <90 min <120 min <180 min
Airline’s Routing 82.61% 91.21% 96.37% 98.00% 98.80% 99.44%
LCB 89.63% 95.39% 98.36% 99.18% 99.55% 99.82%
ccp 84.36% 92.71% 97.24% 98.56% 99.16% 99.63%
CCP Min EPD 89.60% 95.37% 98.35% 99.18% 99.55% 99.82%
a-CCP-1 90.89% 95.87% 98.50% 99.24% 99.59% 99.83%
a-CCP-2 89.83% 95.32% 98.26% 99.10% 99.49% 99.78%
EV 83.68% 93.04% 97.37% 98.61% 99.19% 99.63%
A-EV 90.89% 95.87% 98.50% 99.24% 99.59% 99.83%
A-Obj-EV 82.76% 91.42% 96.47% 98.06% 98.84% 99.46%
Table 5 On Time Performance Results for Network Ny
Propagated Delay Passenger Disruptions
Total Average # Disrupted Passengers Percentage

Airline’s Routing 95.90 109 6.50%

LCB 61.88 74 4.40%

ccp 81.35 96 5.74%

CCP Min EPD 61.87 74 4.39%

a-CCP-1 62.35 66 3.94%

a-CCP-2 65.51 74 4.41%

EV 107.06 78 4.68%

A-EV 61.43 66 3.94%

A-Obj-EV 93.85 108 6.46%

Table 6 Propagated Delay and Passenger Disruption Results for Network N;

Table 7 and Table 8 present the same set of performance metrics for network Nz. In

N,, we notice that CCP min EPD performs best across all the three metrics. LCB,
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a-CCP-1 and A-EV continue to perform very well. By contrast with N,, where 4-0bj-
EV does quite badly, in N,, the performance of A-Obj-EV is reasonable and can be

regarded as a second-best solution.

Flight On-Time Performance
<15 min < 30 min < 60 min <90 min <120 min <180 min
Airline’s Routing 72.92% 81.40% 89.45% 93.66% 96.23% 98.58%
LCB 73.43% 81.92% 89.90% 93.95% 96.46% 98.63%
ccp 73.61% 82.01% 89.90% 93.91% 96.37% 98.60%
CCP Min EPD 74.55% 82.82% 90.41% 94.27% 96.63% 98.68%
a-CCP-1 73.79% 82.07% 89.96% 93.96% 96.44% 98.62%
a-CCP-2 73.16% 81.69% 89.68% 93.76% 96.30% 98.58%
EV 72.73% 81.33% 89.48% 93.66% 96.25% 98.58%
A-EV 73.54% 81.80% 89.75% 93.83% 96.31% 98.55%
A-Obj-EV 73.55% 81.98% 89.90% 93.92% 96.43% 98.62%

Table 7 On Time Performance Results for Network N

Propagated Delay Passenger Disruptions
Total Average # Disrupted Passengers Percentage
Airline’s Routing 458.59 870922 6.35%
LCB 412.77 73149 5.33%
ccp 342.26 67170 4.89%
CCP Min EPD 342.56 71241 5.19%
a-CCP-1 394.61 68798 5.01%
a-CCP-2 437.61 76487 5.57%
EV 443.18 88562 6.45%
A-EV 516.15 87695 6.39%
A-Obj-EV 371.25 69185 5.04%

Table 8 Propagated Delay and Passenger Disruption Results for Network N:
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For both the networks, we notice that the a-CCP solution is better than the CCP
solution, and the A-EV solution is better than the EV solution. This verifies our
expectations, because these models were intended to maximize protection level of

the solutions. We discuss the reason behind our observations in the next section.

4.2.3 Comparison of Model Performances

According to the comparisons in Section 4.2.2, we synthesize the performances of

the models in Table 9.

Tier Models Comments

1 LCB, CCP min EPD, a-CCP-1, A-EV Recommend

2 A-Obj-EV Neutral

3 CCP,EV, a-CCP-2 Not Recommend

Table 9 Levels of Recommendation

The models designated as ‘Tier 1’ perform consistently well in the two networks and
across the variety of performance criteria that we considered. LCB has the objective
of minimum total propagated delay. This tends to decrease propagation between
successive flights, resulting in high correlation with better on-time performance and
lower passenger disruption rate. CCP min EPD performs the same or better than LCB
in our experiments. Because it constrains the probability of delay of each flight, and
has the objective of minimizing propagated delay, it can explicitly control flight on-
time performance as well as propagated delay. The fact that it incorporates two

modeling paradigms facilitates its superior performance. a-CCP-1 improves CCP
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models by considering the overall summation of protection levels. This leads to a
better on-time performance. 4-EV improves the EV model by adding an objective
function that minimizes the total number of potentially delayed flights. In addition

to the definition of g, that defines the level of potential delay, the objective function

drives the search towards a solution that has the highest protection level possible.
Therefore, it works towards higher on-time performance and lower passenger
disruption rate. Moreover, all models designated as ‘Tier 1’ have run times that are
acceptable for a planning problem. We therefore recommend that airline planners
execute these four models in the planning phase to find robust solutions, and choose
the best solution using simulation and other customized criteria of interest to the

airline.

In Tier 2, consider A-Obj-EV. This model performs poorly for N, but well forN,.

This is because the model considers the worst-case propagated delay, but that does
not necessarily correlate well with the flight-level delay or propagations between
flights. This inconsistency decreases the reliability of this model. The constraints of
this model are related to worst-case propagated delay, but not directly to any of the
metrics of interest. Moreover, the level of complexity of A4-Obj-EV is quite high, due
to which it might not be solvable in limited time for a larger network. So this would

not be superior that the models in Tier 1.

We categorize CCP, EV and a-CCP-2 as ‘Tier 3’. These models, even by our theoretical
judgment, as described in Chapter 3, do not perform very well because of the trial-
and-error nature of CCP and EV, as well as the difficulty in setting the parameters.
Therefore, they are dominated by their respective counterparts. Our results strongly

concur with this theory. Similarly, a-CCP-2 only focuses on maximizing the
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minimum protection level and so does not focus on the individual protection levels.
Therefore, we do not recommend these models, because they are strictly dominated

theoretically and empirically by the models in Tier 1.
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CHAPTER 5 CONCLUSIONS

In this work, we studied the problem of robust aircraft routing. We built upon the
concept of propagated delay proposed by Lan, Clarke and Barnhart [9]. To find a
robust aircraft routing in terms of on-time performance (at various thresholds) and
passenger disruptions, we propose a series of models based on the work of Marla
and Barnhart [16]. Primarily they use the Chance-Constrained Programming (CCP)
approach and the Robust Optimization or Extreme-Value (EV) approach of
Bertsimas and Sim, and apply them to the aircraft routing problem. They also
propose advanced models that overcome the shortcomings of the original Chance-
Constrained Programming model and the Robust Optimization approach. The CCP
model applies a protection level to each flight in the network. a- CCP models extend
CCP by having an objective function that considers overall protection levels. EV
model specifies that each flight is protected against I worst-case occurrences. The
A-EV model extends EV by minimizing the number of potentially delayed flights.
Additionally, the A-Obj-EV was proposed with the objective of maximizing the
number of flights that can achieve their worst-case propagated delay values within a

pre-specified threshold.

We test these models on the aircraft routing problem. Our experiments are
conducted on two daily networks, one with 50 flights and the other with 165 flights,
over a four-day planning horizon. We use a K-fold cross validation method to avoid
the overfitting effect. We solve the models and compare the results according to
three metrics - on time performance (at various thresholds), total expected
propagated delay, and passenger disruptions. We found that LCB, CCP min Obj, a-

CCP-1, A-EV work best to generate robust solutions for the aircraft routing problem.
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We also find that these models perform better because they allow protection levels
to be variable, and maximized by the formulation. Moreover, we also find that
minimizing average propagated delay also is key in reducing delay propagation

from flight to flights, thus constraining total delay.

Further research in the area of robust aircraft routing can be along three different
directions. One is to explore other ways of capturing risk in the context of aircraft
routing. For example, metrics beyond constraint satisfaction used in CCP or the
protection parameter in EV, such as the conditional-value-at-risk, or kurtosis, might
prove more helpful to understand the risk involved with aircraft routings. Another
direction of exploration is to examine the properties of strings and explain the
associated distribution of delays related to these metrics. Another important aspect
is to find the relationship between solution robustness and network characteristics.
We can relate the solution metrics to the prerequisites of modeling - the graph
features of network, and the statistical distribution of the independent delays. By
studying this relationship, we may be able to predict the goodness of the solutions
based on the network structure, and recommend appropriately applicable models.
The third direction is to compare different robust routing models under recovery
strategies. Currently we didn’t incorporate recovery strategies but modeling those
can potentially give more accurate understanding of how well these models perform

relative to each other.
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APPENDIX A INDEPENDENT DELAY DATA

A.1 Independent Delay Simulation for the 50-flight network

For the 50-flight network, we randomly generate a series of 5,000 scenarios, by

using lognormal distribution, based on the mean value y and standard deviation o .

We use the equation as follows.

X — e/,H—O'Z (A 1)

where X is the random variable to be simulated, and Z is a standard

normal variable.

The specific mean and standard deviation data are as in Table 10.

Flight Number U o
1 24.05 40.40
2 8.74 18.74
3 12.53 30.63
4 7.53 17.94
5 23.63 44.88
6 3.21 3.79
7 6.05 17.23
8 5.21 13.81
9 23.05 44.37

10 6.84 8.11
11 6.53 21.47
12 38.26 62.18
13 19.58 64.69
14 0.26 0.93
15 10.11 16.06
16 25.00 49.59

Table 10 Simulation mean and standard deviations for the 50-flight network
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17 7.11 13.34
18 13.74 33.58
19 7.63 12.24
20 11.16 23.37
21 10.21 19.77
22 5.53 14.75
23 9.26 15.22
24 11.16 16.95
25 2247 35.70
26 4.37 8.08
27 16.32 51.06
28 13.42 18.26
29 24.42 65.06
30 1.11 2.83
31 23.26 34.40
32 43.89 96.06
33 4.84 7.43
34 7.16 5.92
35 4.11 6.22
36 6.58 14.90
37 4.26 7.38
38 11.00 21.04
39 28.53 89.19
40 1.42 4.29
41 8.53 16.99
42 3.32 9.27
43 12.95 25.46
44 10.21 9.49
45 5.26 8.16
46 6.68 20.64
47 6.42 6.25
48 2.26 7.96
49 16.42 11.56
50 2.79 6.46

Table 10 (Continued)

Simulation mean and standard deviations for the 50-flight network
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