
c© 2015 by Jason James Sauppe. All rights reserved.



BALANCE OPTIMIZATION SUBSET SELECTION:
A FRAMEWORK FOR CAUSAL INFERENCE

WITH OBSERVATIONAL DATA

BY

JASON JAMES SAUPPE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Sheldon H. Jacobson, Chair
Professor Allen Holder, Rose-Hulman Institute of Technology
Professor Chandra S. Chekuri
Assistant Professor P. Brighten Godfrey



Abstract

Observational data are prevalent in many fields of research, and it is desirable to use this data to explore po-

tential causal relationships. Additional assumptions and methods for post-processing the data are needed to

construct unbiased estimators of causal effects because such data is non-random. This dissertation describes

the Balance Optimization Subset Selection (BOSS) framework to apply causal inference to observational

data.

BOSS is designed to identify the subset of observational data that is most appropriate for computing

causal estimates. To do this, it compares the available treatment units to potential sets of control units on

a set of confounding factors, called covariates, with the goal of identifying a control group that minimizes a

measure of covariate imbalance. Which imbalance measure to use with BOSS is an important consideration

that depends both on the quality of the available observational data and on the assumptions that a researcher

is willing to make.

The standard assumption for observational data, known as strong ignorability, is extended in several ways

to be directly applicable to BOSS. Under these additional assumptions, specific levels of covariate balance

are both necessary and sufficient for the treatment effect estimate to be unbiased. There is a trade-off in that

weaker assumptions require a higher level of covariate balance in order to guarantee estimator unbiasedness.

These additional assumptions bridge the gap between existing parametric and non-parametric methods.

Each imbalance measure for BOSS leads to an associated optimization problem. The computational

complexity of these problems is discussed, and efficient algorithms are developed to handle several special

cases. A constant factor approximation algorithm is also presented for one imbalance measure.

Given the potential applications of BOSS, identifying optimal or near-optimal solutions for these problems

is of great practical interest. Heuristics and exact algorithms are considered, and computational tests demon-

strate their effectiveness at minimizing imbalance. Additional tests validate BOSS on a well-studied dataset

from the literature and highlight the value of alternate optima as a way to corroborate the assumptions that

are made.
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Chapter 1

Introduction

Researchers in many fields are interested in establishing causal relationships to answer questions such as

whether a new drug is effective in treating cancer or if a job training workshop improves the long-term

earnings of participants. Questions of this form involve actions, which are procedures that can potentially

be applied or withheld to the units in a study (e.g., patients can be given a new drug or a placebo; individuals

may or may not participate in a training workshop), and outcomes, which are measurable responses that

are exhibited by each of the units (e.g., quality of life, annual income). Actions are commonly referred to as

treatments; the application of the action to a unit is indicated by stating that the unit is treated, receives

treatment, or is exposed to treatment.

The process of determining if an action influences an outcome is known as causal inference. Causal infer-

ence is often applied by comparing the outcomes of units that were exposed to treatment with the outcomes

for units that were not exposed. In some situations, a researcher can determine which units receive treatment

and which do not. For example, in a randomized controlled trial (RCT), random assignments are used to

select which units will receive treatment. Randomization is powerful if applying causal inference because it

ensures that the measured outcomes are independent of confounding factors, and as such, randomized trials

are viewed as the gold standard.

In many situations randomized trials are impractical for a number of reasons, such as cost or ethics.

For example, it is unethical to intentionally expose units to a treatment that may potentially be harmful,

such as smoking. However, it may be possible to observe units that were exposed for other reasons (e.g., by

personal choice, by accident). By comparing exposed units with unexposed ones, a researcher may be able to

provide evidence to support a causal relationship between treatment and outcome. Studies of this kind are

called observational because they use data from observations rather than data generated from randomized

experiments. With the rapid expansion of data collection in recent years, sources of observational data are

burgeoning, resulting in numerous opportunities to apply causal inference.

Observational studies are prevalent in many fields. In medicine and health care, they have been used to
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understand the impacts of an extra chromosome on aggression (Witkin et al., 1976), compare generic drugs

against brand name counterparts (Rubin, 1991), analyze how birth weight is affected by smoking during

pregnancy (da Veiga and Wilder, 2008), determine the impact of hospital stay times on health outcomes for

preterm infants (Zubizarreta et al., 2013b), compare differences in health outcomes after surgery with either

general or regional anesthesia (Zubizarreta et al., 2012), and assess the impact of age and obesity on risk

levels for kidney injury following surgery (Kelz et al., 2013; Reinke et al., 2012). Within the social sciences,

observational studies have been used to explore the connections between the likelihood of revolution in a

country in the presence or absence of foreign threats (Sekhon, 2004), assess the impact of “get-out-the-vote”

calls on voter turnout (Imai, 2005), refute allegations of voter fraud for new election technologies (Herron and

Wand, 2007), and establish a relationship between earthquake severity and post-traumatic stress symptoms

(Zubizarreta et al., 2013a). There is increasing interest in using observational studies within comparative

effectiveness research in order to determine the most appropriate treatment options for different groups of

patients (Concato et al., 2010; Marko and Weil, 2010).

The lack of randomization in observational studies means that treatment units might differ from the

untreated units in some way (e.g., treatment units may be older, on average, than control units). If these

differences influence the response to treatment, then it becomes difficult to determine whether the observed

outcomes are a result of the treatment or are caused by confounding factors, called covariates. Distortion in

the estimated treatment effect due to differences in the underlying treatment and control populations is called

selection bias. Controlling or limiting this source of bias is one of the primary challenges in observational

studies (Cochran and Rubin, 1973).

This dissertation proposes the Balance Optimization Subset Selection (BOSS) framework to identify

causal relationships in observational data. BOSS addresses the above difficulties by searching for the subset

of control units that is most similar to the set of treatment units on the observed covariates. Subset

similarity is typically assessed through an imbalance measure that compares the values of the covariates

between two groups, or sets of units, and identifies differences between them. Two groups are similar if there

is no imbalance across their covariates. There are numerous ways to measure covariate balance, and the

BOSS framework is flexible with regards to the choice of imbalance measure. This allows researchers and

practitioners to select the imbalance measure that is most appropriate for the data at hand.

BOSS provides a number of benefits compared to existing methods. First, covariate imbalance is a major

source of bias in observational studies. By seeking to minimize covariate imbalance directly, BOSS ensures

that any measured difference in outcomes between the treatment units and the control units is attributable
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solely to the treatment itself (assuming that no unobserved covariates are present). BOSS can also provide a

guarantee on whether or not it is possible to remove all covariate imbalance. If the best set of control units

features significant imbalance with respect to the treatment group, then this serves as an indicator that the

researcher should focus his or her efforts on acquiring more data instead of continuing to search in vain for

a solution in the current dataset.

Another benefit of BOSS is that it can produce multiple estimates of the treatment effect by identifying

alternate optima. A comparison of these estimates might strengthen the evidence of a causal relationship or

call such a relationship into question. For example, if two sets of control units are both equally well-balanced

with respect to the set of treatment units but produce significantly different estimates of the treatment effect,

then a researcher should question and scrutinize his or her assumptions. On the other hand, if the estimates

are similar, then the researcher gains confidence in asserting a causal relationship.

The remainder of this dissertation is organized as follows. Chapter 2 provides some background on causal

inference in observational studies and common methods, such as matching and regression, that have been

proposed to address selection bias. An overview of the BOSS framework along with a discussion of several

potential imbalance measures is also included. Chapter 3 develops the necessary statistical assumptions for

BOSS. The theory builds on well-known assumptions from the causal inference literature in order to highlight

the requirements that must be met to use BOSS. Chapter 4 looks at BOSS from a complexity perspective

and explores the difficulty of solving the associated optimization problems for various imbalance measures.

In many cases, BOSS is shown to be NP-Hard, though there are a few exceptions. Several approximation

results are noted. Chapter 5 presents several methods for solving BOSS. These include heuristics and exact

algorithms based on integer programming models. A set of computational tests demonstrate the effectiveness

of BOSS with several different imbalance measures on both simulated and real datasets. A comparison to

matching methods is included. Chapter 6 provides concluding remarks and highlights several directions for

future research.
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Chapter 2

Background

This chapter reviews the Rubin Causal Model as well as the standard assumptions for observational data.

An overview of relevant methods for estimation, including regression and matching, is provided, along with

a review of the Balance Optimization Subset Selection framework.

2.1 Rubin Causal Model

The process of applying causal inference can be formalized using the Rubin Causal Model (Rubin, 1974;

Holland, 1986). The model considers an infinite population or universe U of units under study and is

concerned with how the presence or absence of an action or treatment influences an outcome. Each u ∈ U

has two potential responses, or values for the outcome of interest: a treatment response y1
u that is exhibited if

u receives the treatment, and a control response y0
u that is exhibited if u does not receive the treatment. For

each u ∈ U , the effect of the treatment relative to the control response is τu ≡ y1
u − y0

u. The Rubin Causal

Model assumes that the potential responses of one unit are unaffected by the treatment status (treated or

untreated) of other units. This is known as the Stable Unit Treatment Value Assumption (SUTVA) (Rubin,

1978; Sekhon, 2009).

The fundamental problem of causal inference is that it is impossible to observe both y1
u and y0

u for any

single unit u ∈ U . If u is exposed to the treatment, then y1
u is exhibited, otherwise y0

u is exhibited. In either

case, there is no way to observe both responses for any given unit (under identical conditions). Hence, it is

impossible to determine τu for any u ∈ U (Holland, 1986).

The statistical solution to the fundamental problem of causal inference is to shift attention from the

“impossible-to-observe” unit-level treatment effects to the “possible-to-estimate” average treatment effect

(ATE) for the population (Holland, 1986). This is accomplished by introducing the random variables Y 1

and Y 0, which are the treatment and control response, respectively, of a unit selected at random (uniformly)

Some of the material in this chapter has been adapted from Sauppe et al. (2014), INFORMS Journal on Computing 26(3),
with the permission of the copyright holder.
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from U . Then the average treatment effect is defined as

τ ≡ E
[
Y 1 − Y 0

]
= E

[
Y 1
]
−E

[
Y 0
]
. (2.1)

The average treatment effect, τ , is a parameter of the population U , and as such can be estimated. While

it is impossible to estimate τ directly from unit-level treatment effects τu for individual units because these

values are unknown, (2.1) reveals that it is possible to estimate τ by estimating both the average treatment

response, E
[
Y 1
]
, and the average control response, E

[
Y 0
]
, of the population. Most importantly, these two

estimates need not come from the same units; instead, they can be constructed using units for which the

appropriate potential response is observed.

As an example, a first attempt at estimating τ might sample a treated unit and an untreated unit and

compare the observed responses of the two units. Let zu indicate the treatment status for each u ∈ U , with

zu = 1 indicating that the unit is treated and zu = 0 indicating that the unit is untreated. Additionally,

let the random variable Z be the treatment status of a unit selected at random (uniformly) from U . The

treatment and control subpopulations are U1 ≡ {u ∈ U : zu = 1} and U0 ≡ {u ∈ U : zu = 0}, respectively,

with U = U1 ∪ U0. Units in U1 are referred to as treatment units and denoted by t, while units in U0 are

referred to as control units and denoted by c.

An estimator for τ can be calculated using the following procedure. Select a unit t ∈ U1 at random

(uniformly) and let the random variable Y 1
t be the sampled unit’s treatment response. Then select a unit

c ∈ U0 at random (uniformly) and let the random variable Y 0
c be the sampled unit’s control response.

Finally, construct the estimator for τ as τ̃ ≡ Y 1
t − Y 0

c .

The properties of τ̃ provide an indication as to its suitability for estimating τ . One such property is

estimator bias, computed as E [τ̃ ]−τ , where the expectation is taken over all possible pairs of treatment and

control units. The bias of τ̃ is computed by first observing that the selection procedures for t and c ensure

that

Pr
(
Y 1
t ≤ y

)
= Pr

(
Y 1 ≤ y | Z = 1

)
∀ y ∈ R, (2.2a)

Pr
(
Y 0
c ≤ y

)
= Pr

(
Y 0 ≤ y | Z = 0

)
∀ y ∈ R. (2.2b)

In words, (2.2) states that Y 1
t has the same distribution as Y 1 in the treatment subpopulation and Y 0

c has
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the same distribution as Y 0 in the control subpopulation. Using (2.1) and (2.2), the bias of τ̃ is

E [τ̃ ]− τ = E
[
Y 1
t − Y 0

c

]
− τ

=
(
E
[
Y 1
t

]
−E

[
Y 0
c

])
−
(
E
[
Y 1 − Y 0

])
=
(
E
[
Y 1 | Z = 1

]
−E

[
Y 0 | Z = 0

])
−
(
E
[
Y 1
]
−E

[
Y 0
])
.

Thus, τ̃ is not guaranteed to be unbiased.

The difficulty with the above procedure is that Y 1
t provides an estimate of the average treatment response

for the treatment subpopulation, E
[
Y 1 | Z = 1

]
, not an estimate of the average treatment response for the

entire population, E
[
Y 1
]
. In the absence of any additional assumptions, these two quantities need not be

the same. (A similar argument applies for E
[
Y 0 | Z = 0

]
and E

[
Y 0
]
.) In order to address this difficulty,

some additional assumptions are necessary.

2.1.1 Experimental Setting

One way to resolve the potential discrepancies between E
[
Y 1 | Z = 1

]
and E

[
Y 1
]

and E
[
Y 0 | Z = 0

]
and

E
[
Y 0
]

is to make an additional assumption about how the subpopulations U1 and U0 were formed. This

can be done using the concept of the assignment mechanism, which is the process by which units from U

are selected for exposure to treatment.

One particular assignment mechanism is random assignment, where each unit in the population has

the same probability of receiving treatment. Random assignment ensures that U1 and U0 form a random

partition of U . Because U is infinite, it follows that the distributions of treatment and control responses

in these subpopulations are identical to the distributions of treatment and control responses in the overall

population U . Specifically,

Pr
(
Y 1 ≤ y | Z = z

)
= Pr

(
Y 1 ≤ y

)
∀ y ∈ R, z ∈ {0, 1}, (2.3a)

Pr
(
Y 0 ≤ y | Z = z

)
= Pr

(
Y 0 ≤ y

)
∀ y ∈ R, z ∈ {0, 1}. (2.3b)

From (2.3), it follows that

E
[
Y 1 | Z = 1

]
= E

[
Y 1
]

= E
[
Y 1 | Z = 0

]
,

E
[
Y 0 | Z = 1

]
= E

[
Y 0
]

= E
[
Y 1 | Z = 0

]
,
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Figure 2.1: Possible distributions of treatment and control responses in the treatment and control subpopu-
lations under the independence assumption.

and thus, the estimator τ̃ is unbiased. The properties in (2.3) are often stated in the form of the Independence

assumption.

Assumption 2.1 (Independence). The random variables Y 1 and Y 0 are independent of the treatment status

variable Z:
(
Y 1, Y 0

)
⊥ Z.

Figure 2.1 shows possible distributions for the treatment and control responses in both the treatment and

control subpopulations under Assumption 2.1. The distributions for the treatment subpopulation are in the

top row, while the distributions for the control subpopulation are in the bottom row. The solid plots in the

figure represent distributions whose values can be sampled while the hatched plots represent distributions

whose values cannot be sampled because they are unobservable.

The consequences of the independence assumption motivate the use of random assignment in experimental

studies, where treatment assignment is not pre-determined. In this situation, a researcher can sample units

from the entire population U and then decide which potential response to observe for each sampled unit. By

using a random assignment mechanism, the researcher ensures that the resulting estimate of the treatment

effect computed from the units’ observed responses is unbiased. Experimental studies that use random

assignment are referred to as randomized controlled trials. Assumption 2.1 allows a researcher to gain the
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benefits of randomization when treatment assignment is beyond his or her control.

2.1.2 Observational Setting

In many situations the assignment mechanism is unknown and almost certainly non-random, rendering

Assumption 2.1 invalid. The data in these situations are classified as observational because they are observed

as is and not generated through a known mechanism. To estimate τ from observational data, additional

assumptions are needed. One assumption is an adaptation of Assumption 2.1. Instead of assuming that

treatment assignment is random, the researcher assumes that treatment assignment is random conditional

on a set of observed factors, called covariates. The covariates may influence the treatment and control

responses of a unit or its likelihood of being exposed to treatment.

As an example, consider the outcomes from a new surgical procedure. It would be unreasonable to

assume that the patients who received the procedure were selected completely at random. However, patients

who received the new procedure were likely selected on the basis of existing covariates such as weight, age,

gender, and prior medical history. So for two units with identical covariates, a plausible assumption is that

each unit had the same probability of being selected for treatment, regardless of whether or not either unit

actually received the treatment.

To formalize this assumption, let P ≡ {1, 2, . . . , p} be the set of labels for the covariates that describe

the units in U . For each u ∈ U , let xu be a vector of covariate values, with xui representing unit u’s

value for covariate i ∈ P. Let the random vector X ∈ Rp be the covariate values of a unit selected at

random (uniformly) from U , and let X denote the support of X. Additionally, let Xi be the component

of X corresponding to covariate i ∈ P. The conditional independence assumption is known as the Strong

Ignorability assumption (Rosenbaum and Rubin, 1983b).

Assumption 2.2 (Strong Ignorability). The random variables Y 1, Y 0, X, and Z satisfy the following:

(a)
(
Y 1, Y 0

)
⊥⊥ Z | X,

(b) 0 < Pr (Z = 1 | X = x) < 1 ∀ x ∈ X .

Assumption 2.2(a) states that Y 1 and Y 0 are conditionally independent of Z given X, where ⊥⊥ signifies

conditional independence (Dawid, 1979). In other words, given X, knowledge of Z provides no information

about either Y 1 or Y 0, and vice versa. So for any fixed value of x ∈ X , the distribution of the treatment

(control) responses for units in {t ∈ U1 : xt = x} is identical to the distribution of treatment (control)

responses for units in {c ∈ U0 : xc = x}. Assumption 2.2(b) states that there must be at least one
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control unit and at least one treatment unit at each possible value of x ∈ X . An immediate consequence of

Assumption 2.2 is that

E
[
Y 1 | X = x, Z = 1

]
= E

[
Y 1 | X = x

]
= E

[
Y 1 | X = x, Z = 0

]
∀ x ∈ X , (2.4a)

E
[
Y 0 | X = x, Z = 1

]
= E

[
Y 0 | X = x

]
= E

[
Y 0 | X = x, Z = 0

]
∀ x ∈ X . (2.4b)

Figure 2.2 provides an example of what the the distributions of the random variables might look like

under a non-random assignment mechanism. The plots in the first row show the distributions of X, Y 1, and

Y 0 within the entire population U , while the second and third rows show these distributions in U1 and U0,

respectively. While the treatment and control subpopulations may have different unconditional distributions,

Assumption 2.2 ensures that the distributions of Y 1 and Y 0 conditional on X are identical between U1 and

U0; in particular, these conditional distributions should possess the symmetry shown in Figure 2.1.

If Assumption 2.2 is valid, then an unbiased estimator for τ can be calculated using the following proce-

dure. Select a vector of covariate values X at random (uniformly) from the entire population U . Then select

a treatment unit t at random (uniformly) from
{
t ∈ U1 : xt = X

}
and let the random variable Y 1

t be the sam-

pled unit’s treatment response. Next, select a control unit c at random (uniformly) from
{
c ∈ U0 : xc = X

}
and let the random variable Y 0

c be the sampled unit’s control response. Finally, construct the estimator

τ̃ ≡ Y 1
t − Y 0

c .

To see that τ̃ is unbiased, observe that the above selection procedure for t and c ensures that

Pr
(
Y 1
t ≤ y | X = x

)
= Pr

(
Y 1 ≤ y | X = x, Z = 1

)
∀ y ∈ R, x ∈ X , (2.5a)

Pr
(
Y 0
c ≤ y | X = x

)
= Pr

(
Y 0 ≤ y | X = x, Z = 0

)
∀ y ∈ R, x ∈ X . (2.5b)

Let g(x) ≡ E
[
Y 1
t − Y 0

c | X = x
]
. Then (2.4) and (2.5) ensure that

g(x) = E
[
Y 1
t − Y 0

c | X = x
]

= E
[
Y 1
t | X = x

]
−E

[
Y 0
c | X = x

]
= E

[
Y 1 | X = x, Z = 1

]
−E

[
Y 1 | X = x, Z = 0

]
= E

[
Y 1 | X = x

]
−E

[
Y 0 | X = x

]
= E

[
Y 1 − Y 0 | X = x

]
.

(2.6)
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Figure 2.2: Possible distributions of covariate values and treatment and control responses for units in U , U1,
and U0 with a non-random assignment mechanism.
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The expected value of τ̃ is computed by conditioning on X and using (2.6):

E [τ̃ ] = EX

[
E
[
Y 1
t − Y 0

c | X
]]

= EX [g(X)]

= EX

[
E
[
Y 1 − Y 0 | X

]]
= E

[
Y 1 − Y 0

]
= τ.

Hence, τ̃ is an unbiased estimator for τ .

There are many situations in which the treatment effect for one of the subpopulations rather than the

population as a whole is of interest. For example, an estimate of the effectiveness of treatment for those

units that were actually treated may be sought, as the treatment subpopulation represents the set of units

most likely to be exposed to the treatment in the first place. In this case, the parameter of interest is the

average treatment effect for the treated (ATT), defined as

τ1 ≡ E
[
Y 1 − Y 0 | Z = 1

]
= E

[
Y 1 | Z = 1

]
−E

[
Y 0 | Z = 1

]
.

When estimating τ1, Assumption 2.2 can be relaxed.

Assumption 2.3 (Strong Ignorability for ATT). The random variables Y 0, X, and Z satisfy the following:

(a) Y 0 ⊥⊥ Z | X,

(b) Pr (Z = 1 | X = x) < 1 ∀ x ∈ X .

Assumption 2.3 asserts that only the control response Y 0 is conditionally independent of Z given X.

Similarly, it is only required that there be at least one control unit at every possible value of x ∈ X . An

immediate consequence of Assumption 2.3 is that

E
[
Y 0 | X = x, Z = 1

]
= E

[
Y 0 | X = x

]
= E

[
Y 0 | X = x, Z = 0

]
, (2.7)

for all x ∈ X 1, where X 1 is the support of X within the treatment subpopulation.

When Assumption 2.3 is valid, an unbiased estimator for τ1 can be constructed using the following

procedure (Rosenbaum, 1987a). Select a treatment unit t ∈ U1 at random (uniformly), and let the random

variables Xt and Y 1
t be the unit’s covariate vector and treatment response, respectively. Then select a
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control unit from {c ∈ U0 : xc = Xt} at random (uniformly), and let Y 0
c be the selected control unit’s

control response. Such a control unit is guaranteed to exist by Assumption 2.3(b). Finally, construct the

estimator for τ1 as τ̃1 ≡ Y 1
t − Y 0

c .

To see that τ̃1 is unbiased, observe that the above selection procedure ensures that

Pr
(
Y 1
t ≤ y | Xt = x

)
= Pr

(
Y 1 ≤ y | X = x, Z = 1

)
∀ y ∈ R, x ∈ X 1, (2.8a)

Pr
(
Y 0
c ≤ y | Xt = x

)
= Pr

(
Y 0 ≤ y | X = x, Z = 0

)
∀ y ∈ R, x ∈ X 1. (2.8b)

Let g1(x) ≡ E
[
Y 1
t − Y 0

c | Xt = x
]
. Then (2.7) and (2.8) ensure that

g1(x) = E
[
Y 1
t − Y 0

c | Xt = x
]

= E
[
Y 1
t | Xt = x

]
−E

[
Y 0
c | Xt = x

]
= E

[
Y 1 | X = x, Z = 1

]
−E

[
Y 0 | X = x, Z = 0

]
= E

[
Y 1 | X = x, Z = 1

]
−E

[
Y 0 | X = x, Z = 1

]
= E

[
Y 1 − Y 0 | X = x, Z = 1

]
.

(2.9)

The expected value of τ̃1 is computed by conditioning on Xt and using (2.9):

E
[
τ̃1
]

= EXt

[
E
[
Y 1
t − Y 0

c | Xt

]]
= EXt

[g (Xt)]

= EX|Z=1 [g (X)]

= EX|Z=1

[
E
[
Y 1 − Y 0 | X, Z = 1

]]
= E

[
Y 1 − Y 0 | Z = 1

]
= τ1.

Hence, τ̃1 is an unbiased estimator for τ1.

2.2 Observational Data in Practice

The processes described in Section 2.1.2 for estimating τ and τ1 both assume that units with specific covariate

values can be sampled from U1 and U0. In practice, however, a researcher is typically unable to sample

units at will and instead only has access to two subsets T ⊂ U1 and C ⊂ U0 (in most observational data,
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|C| � |T |). Let
{(

Xt, Y
1
t , Y

0
t

)}
t∈T and

{(
Xc, Y

1
c , Y

0
c

)}
c∈C be the random variables corresponding to the

covariate values and treatment and control responses of the units in T and C, respectively. While the values

Y 0
t and Y 1

c are never actually observed, it is helpful to include them for discussion.

The sample average treatment effect (SATE) is

τT,C ≡
1

|T |+ |C|

(∑
t∈T

(
Y 1
t − Y 0

t

)
+
∑
c∈C

(
Y 1
c − Y 0

c

))

and the sample average treatment effect for the treated (SATT) is

τ1
T ≡

1

|T |
∑
t∈T

(
Y 1
t − Y 0

t

)
.

Both τT,C and τ1
T are random variables that depend on the sampled units. To contrast these new terms, τ

and τ1 are often referred to as the population average treatment effect (PATE) and the population average

treatment effect for the treated (PATT), respectively (Imai et al., 2008). The variables τT,C and τ1
T cannot

be calculated because the values Y 0
t and Y 1

c are unobserved. Specifically, both τT,C and τ1
T require the

estimation of the average control response of the treatment units, Ȳ 0
T ≡

∑
t∈T Y

0
t /|T |, and τT,C further

requires the estimation of the average treatment response of the control units, Ȳ 1
C ≡

∑
c∈C Y

1
c /|C|. The

following assumption supports the calculation of estimates for these quantities.

Assumption 2.4. The random variables
{(

Xt, Y
1
t , Y

0
t

)}
t∈T and

{(
Xc, Y

1
c , Y

0
c

)}
c∈C are mutually (jointly)

independent. Conditional on the covariates, each unit is sampled at random (uniformly) from the appropriate

subpopulation:

Pr
(
Y 1
t ≤ y | Xt = x

)
= Pr

(
Y 1 ≤ y | X = x, Z = 1

)
∀ t ∈ T, y ∈ R, x ∈ X 1,

Pr
(
Y 0
t ≤ y | Xt = x

)
= Pr

(
Y 0 ≤ y | X = x, Z = 1

)
∀ t ∈ T, y ∈ R, x ∈ X 1,

Pr
(
Y 1
c ≤ y | Xc = x

)
= Pr

(
Y 1 ≤ y | X = x, Z = 0

)
∀ c ∈ C, y ∈ R, x ∈ X ,

Pr
(
Y 0
c ≤ y | Xc = x

)
= Pr

(
Y 0 ≤ y | X = x, Z = 0

)
∀ c ∈ C, y ∈ R, x ∈ X .

The Strong Ignorability assumptions 2.2 and 2.3 together with Assumption 2.4 make it possible to link

the observed responses from one set of units with the unobserved responses in the other set of units through

the units’ covariate values. These links can then be used to construct estimates of τT,C and τ1
T . Methods

for doing this are discussed in Section 2.3. An additional assumption allows these methods to be applied to

13



τ and τ1, as well.

Assumption 2.5. The sets T and C are simple random samples (i.e., units are sampled uniformly and

without replacement) from U1 and U0, respectively.

Assumption 2.5 subsumes Assumption 2.4. An immediate consequence of Assumption 2.5 is:

E
[
Y 1
t

]
= E

[
Y 1 | Z = 1

]
∀ t ∈ T, (2.10a)

E
[
Y 0
t

]
= E

[
Y 0 | Z = 1

]
∀ t ∈ T, (2.10b)

E
[
Y 1
c

]
= E

[
Y 1 | Z = 0

]
∀ c ∈ C, (2.10c)

E
[
Y 0
c

]
= E

[
Y 0 | Z = 0

]
∀ c ∈ C. (2.10d)

The results from (2.10) ensure that

E [τT,C ] = E

[
1

|T |+ |C|

(∑
t∈T

(
Y 1
t − Y 0

t

)
+
∑
c∈C

(
Y 1
c − Y 0

c

))]

=
1

|T |+ |C|

(∑
t∈T

E
[
Y 1
t − Y 0

t

]
+
∑
c∈C

E
[
Y 1
c − Y 0

c

])

=
1

|T |+ |C|

(∑
t∈T

E
[
Y 1 − Y 0 | Z = 1

]
+
∑
c∈C

E
[
Y 1 − Y 0 | Z = 0

])

=

(
|T |

|T |+ |C|

)
E
[
Y 1 − Y 0 | Z = 1

]
+

(
|C|

|T |+ |C|

)
E
[
Y 1 − Y 0 | Z = 0

]
(2.11)

and

E
[
τ1
T

]
= E

[
1

|T |

(∑
t∈T

(
Y 1
t − Y 0

t

))]

=
1

|T |
∑
t∈T

E
[
Y 1
t − Y 0

t

]
=

1

|T |
∑
t∈T

E
[
Y 1 − Y 0 | Z = 1

]
= E

[
Y 1 − Y 0 | Z = 1

]
= τ1.

(2.12)

Thus, under Assumption 2.5, SATT equals ATT in expectation. If it is further assumed that Pr (Z = 1) =
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|T |/ (|T |+ |C|) and Pr (Z = 0), then (2.11) simplifies to

E [τT,C ] = Pr (Z = 1) ·E
[
Y 1 − Y 0 | Z = 1

]
+ Pr (Z = 0) ·E

[
Y 1 − Y 0 | Z = 0

]
= E

[
Y 1 − Y 0

]
= τ,

so SATE equals ATE in expectation.

As mentioned previously, τ1 is often more important than τ . The results in (2.12) reveal that τ1 can be

estimated by estimating τ1
T under Assumption 2.5, which requires estimating Ȳ 0

T . The next section presents

several of the most common approaches that have been used for this purpose.

2.3 Existing Methods for Observational Data

Within the causal inference literature, two prominent methods for estimating τ1
T are regression and matching

(Rubin, 1973b, 1979). Regression attempts to construct a model of the relationship between the covariates

and the control responses using the units in C, and then uses this model to estimate Y 0
t from Xt for each

t ∈ T . The average of these estimates is then used as an estimate of Ȳ 0
T . Matching attempts to pair each

treatment unit t ∈ T with a similar control unit c ∈ C and then uses the average control response of the

matched control units as an estimator for Ȳ 0
T .

2.3.1 Regression

Regression methods for causal inference typically entail: (1) constructing a hypothetical model for the

relationship between the covariates and the control response; (2) estimating the parameters of the model

from the available data; (3) using the model and estimated parameters to predict each treatment unit’s

control response from its covariate values.

Linear regression is the most well-known of these methods, and it hypothesizes a linear relationship

between (functions of) the covariate values and the control responses. For example, a researcher may assume

that each unit’s control response is determined by the function

y0
u = βTxu + α+ ε0

u,

where β ∈ Rp and α ∈ R are parameters of the model and ε0
u is an error term for unit u ∈ U . The researcher
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then uses the available data, specifically
{(

Xc, Y
0
c

)}
c∈C , to determine likely values for β and α. Parameter

estimates β̃ and α̃ can be used to compute residuals for each of the control units as ε̃0
u ≡ y0

u − β̃Txu − α̃.

Many techniques have been developed to construct estimates of the model parameters β and α in linear

regression. The method of least squares provides an estimate that minimizes the sum of squared residuals,

while the least absolute deviations method minimizes the sum of absolute values of the residuals. Under

certain additional assumptions, several useful properties can be established. For example, if the error terms

ε0
u have conditional mean zero given the covariates and the model is correctly specified, then the least squares

estimate of β and α is unbiased (Cochran and Rubin, 1973).

Linear regression models can include higher-order terms such as γix
2
ui and βijxuixuj ; only the parameters

have to be linear. More complicated models between the covariates and the control responses (e.g., y0
u =

βix
γ
ui + βjxuj + α + ε0

u, where γ is a parameter to be estimated) require the use of nonlinear regression

techniques. Both linear and nonlinear regression are classified as parametric methods because they involve

the estimation of a finite number of parameters for a predetermined model. In contrast, nonparametric

regression does not require the specification of a model and instead attempts to estimate both the form of

the model and its parameters from the available data.

King and Zeng (2006) note that one of the primary difficulties when constructing causal estimates from

regression models is extrapolation, which occurs when the model is used to estimate Y 0
t from a value Xt

that lies outside the range of the covariate values {Xc}c∈C . The farther away Xt is from the control units’

covariate values, the more dependent the estimate of Y 0
t becomes on the model itself. In such a situation, a

misspecification of the model can lead to incorrect estimates of τ1
T .

2.3.2 Exact Matching

Exact matching is motivated by Assumption 2.3 and the estimation procedure described in Section 2.1.2 in

which a treatment unit is paired with a control unit having identical covariate values (Rubin, 1973a). One

of the most common forms of exact matching is one-to-one matching, which pairs each t ∈ T with a c ∈ C to

form a complete matched-pair sample M ≡ {(t, c)}t∈T (Rosenbaum, 1989). The matching may be done either

with replacement, in which case control units can be matched to more than one treatment unit, or without re-

placement, in which case each control unit can be used at most once. Let CM ≡ {c ∈ C : ∃ t ∈ T, (t, c) ∈M}

be the set of matched control units for a matched-pair sample M .

A matched-pair sample M is exact if each pair (t, c) ∈ M satisfies Xt = Xc. Under Assumptions 2.3

and 2.4, an exact matched-pair sample M satisfies the following after conditioning on the covariate values
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Xt = xt for each of the treatment units:

E

 1

|T |
∑

(t,c)∈M
Y 0
c | Xc = Xt = xt ∀ t ∈ T

 =
1

|T |
∑

(t,c)∈M
E
[
Y 0
c | Xc = xt

]
=

1

|T |
∑

(t,c)∈M
E
[
Y 0 | X = xt, Z = 0

]
=

1

|T |
∑

(t,c)∈M
E
[
Y 0 | X = xt, Z = 1

]
=

1

|T |
∑
t∈T

E
[
Y 0
t | Xt = xt

]
= E

[
1

|T |
∑
t∈T

Y 0
t | Xt = xt ∀ t ∈ T

]

= E
[
Ȳ 0
T | Xt = xt ∀ t ∈ T

]
.

(2.13)

That is, the expected value of the average control response of the matched control units equals the expected

value of the average control response of the treatment units, conditional on the observed covariate values of

the treatment units. Thus, the exact matched-pair sample M can be used to construct an unbiased estimate

of τ1
T . Under Assumption 2.5, this also provides an unbiased estimate of τ1.

The major difficulty with exact matching is that it is unlikely for each treatment unit to have an exact

match in C, even for a limited number of covariates. One way to address this is to use incomplete matching,

which drops treatment units that do not have an identical control unit (Rosenbaum and Rubin, 1985).

However, dropping treatment units is generally regarded as undesirable because it alters the quantity being

estimated from τ1
T to an estimate of the treatment effect for the matched treatment units.

2.3.3 Propensity Score Matching

Propensity score matching seeks to replace the problem of exactly matching treatment and control units

on a multi-dimensional covariate vector with that of exactly matching units on a scalar summary of their

covariates known as the propensity score (Rosenbaum and Rubin, 1983b). The propensity score represents

the probability of receiving treatment given the covariate values, defined as e(x) ≡ Pr (Z = 1 | X = x).

Rosenbaum and Rubin show that if Assumption 2.2 holds, then it is also the case that
(
Y 1, Y 0

)
⊥⊥ Z | e(X)

and 0 < Pr (Z = 1 | e(X) = r) < 1 ∀ r ∈ (0, 1). From this, it can be shown that a matched-pair sample M

that is exact with respect to the propensity score (i.e., e(Xt) = e(Xc) for all (t, c) ∈ M) yields an unbiased

estimate of τ1
T , conditioned on the covariate values of the treatment units.
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Propensity score matching is one of the most popular approaches for causal inference with observational

data. There are two major difficulties with the propensity score approach, however. The first is that exact

matches on the propensity score may still be difficult to obtain. The second is that the true propensity

score itself is almost always unknown, and thus must be estimated. This is typically done using a logistic

regression model relating the covariates with the treatment status (1 or 0) for each of the units, though it is

often impossible to determine if the correct model was used.

Rosenbaum and Rubin (1984) provide some guidance on how to assess the quality of the estimated

propensity score model by using a result from Rosenbaum and Rubin (1983b, Theorem 1), which states that

X ⊥⊥ Z | e(X). Intuitively, this result says that the distributions of covariate values in the subpopulations{
t ∈ U1 : e(xt) = r

}
and

{
c ∈ U0 : e(xc) = r

}
are identical for all r ∈ (0, 1). Under Assumption 2.4, this

means that any set of k treatment units t1, t2, . . . , tk from T and k control units c1, c2, . . . , ck from C that

have the same set of propensity scores r1, r2, . . . , rk satisfy

Pr (Xt1 ≤ x1, . . . , Xtk ≤ xk | e(Xt1) = r1, . . . , e(Xtk) = rk)

= Pr (Xc1 ≤ x1, . . . , Xck ≤ xk | e(Xc1) = r1, . . . , e(Xck) = rk) ,

(2.14)

for all x1,x2, . . . ,xk. From (2.14), it can be shown that any function f defined on the covariate values

satisfies

E [f(Xt1 , . . . ,Xtk) | e(Xt1) = r1, . . . , e(Xtk) = rk]

= E [f(Xc1 , . . . ,Xck) | e(Xc1) = r1, . . . , e(Xck) = rk] .

(2.15)

An example is the mean function fµ : X × X × . . . × X → Rp given by fµ(x1,x2, . . . ,xk) ≡ (1/k)
∑k
i=1 xi.

So if a complete matched-pair sample M matches units exactly on the propensity score, then

E

 1

|T |
∑

(t,c)∈M
(Xt −Xc) | e(Xt) = e(Xc) = rt ∀ (t, c) ∈M

 =

(
0 0 . . . 0

)T

. (2.16)

Hence the treatment units and the matched control units are stochastically balanced on their covariate means.

More generally, as (2.15) shows, the two sets of units are stochastically balanced with respect to any function

of the covariates.

A comparison of the function values for two (multi)sets of covariate vectors is referred to as a covariate

balance measure. If the result of the comparison is a score indicating dissimilarity, such as

‖fµ(x1, . . . ,xk)− fµ(xk+1, . . . ,x2k)‖1 ,
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then the comparison is referred to as an imbalance measure. Formally, an imbalance measure is a function

I : NX × NX → [0,∞), where N is the set of natural numbers (including zero), and NX is the set of all

multisets containing elements from X . To simplify notation, let I(S1, S2) ≡ I
(
{xu}u∈S1

, {xu}u∈S2

)
for any

finite sets of units S1 ⊂ U and S2 ⊂ U .

Rosenbaum and Rubin (1984) use (2.15) to propose the following procedure for constructing a propensity

score model: (1) construct a model for the propensity score and estimate the parameters from the sampled

units T and C; (2) match units on their estimated propensity scores; (3) compute covariate imbalance

measures for the matched samples; (4) if the imbalance is statistically significant, adjust the propensity

score model and repeat the process. Determining appropriate imbalance measures in step (3) is an open

question (Nikolaev et al., 2013).

In practice, Ho et al. (2007) advocate using propensity score matching not for its theoretical properties

but for its ability to produce a matched-pair sample that features covariate balance. They refer to the

process of estimating the propensity score as the propensity score tautology : if matching on the estimated

propensity score produces covariate balance in the matched-pair sample, then the estimated propensity score

is regarded as a reasonable estimate of the true propensity score. However, they argue that once covariate

balance is achieved, the estimated propensity score is no longer needed, since the quality of the estimates

from the matching can be shown by covariate balance alone (Ho et al., 2007, pg. 219).

2.3.4 Inexact Matching

Inexact matching is a general term for any matching method that does not require exactly matched pairs,

either on the covariates themselves or on an estimated propensity score. Because such pairs are rare in

practice, most matching methods are inexact. Reviews of inexact matching methods are provided by Imbens

(2004) and Stuart (2010).

Inexact matching requires a distance function δ : X × X → R+ that scores each potential pair (t, c) ∈

T × C. A matched-pair sample M that minimizes
∑

(t,c)∈M δ(Xt,Xc) is sought. Distance functions have

been constructed using the Mahalanobis metric (Rubin, 1980), subclassification on estimated propensity

scores (Rosenbaum and Rubin, 1983b), and matching calipers, which are maximum acceptable distances

for a matched pair (Althauser and Rubin, 1970). Combinations of these metrics have also been considered

(Rosenbaum and Rubin, 1985).

If matching is done with replacement, identifying an optimal matched-pair sample for a given distance

function δ is simply a matter of pairing each treatment unit with the closest control unit. If replacement is
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not allowed, however, then there may be competition between treatment units that share a closest control

unit. Deciding how to pair each treatment unit with a control unit then becomes an optimization problem,

specifically the assignment problem (Kuhn, 1955). The assignment problem is well-studied in combinatorial

optimization (Edmonds, 1965; Ahuja et al., 1993) and can be solved in polynomial time.

Researchers have undertaken several investigations into the theoretical properties of inexact matching.

Rubin (1976a,b) identifies matching methods that are equal percent bias reducing, meaning that the matched-

pair sample M reduces mean imbalance in each of the covariates by the same percentage compared to the

mean imbalance in the samples T and C. Abadie and Imbens (2006) investigate the properties of estimators

for τ constructed from an inexact matched-pair sample M . Abadie and Imbens (2011) incorporate a bias

correction factor into the estimator of Abadie and Imbens (2006) and analyzes its properties.

The theoretical results provide little guidance on which distance metric should be used in practice.

Instead, the generally accepted principle is that a researcher should try several metrics and use the one

that produces the matched-pair sample with the best covariate balance measures (Rosenbaum and Rubin,

1985; Diamond and Sekhon, 2013). However, there is no clear consensus regarding which covariate balance

measures should be used or when the balance is sufficient.

2.3.5 Matching for Covariate Balance

Several matching methods have been proposed that incorporate covariate balance measures more directly

into the selection process. Greenberg (1953) and Rubin (1973a) consider covariate balance as an objective

in matching methods. In particular, Rubin refers to the process of finding a matched-pair sample M that

minimizes

1

|T |
∑

(t,c)∈M
(Xt −Xc)

as mean matching and uses heuristics to solve the problem. However, mean matching has received little

attention in subsequent literature, most likely due to the fact that the relationship between the control

responses and the covariates needs to be linear in order for estimates from mean matching to be unbiased

(Cochran and Rubin, 1973).

Rosenbaum (1989) and Rosenbaum et al. (2007) formulate a matching objective based on both a dis-

tance metric and a covariate balance measure, referred to as balanced matching and fine balance in the

respective publications. Fine balance is defined as “exactly balancing a nominal variable, often one with

many categories, without trying to match individuals on this variable” (Rosenbaum et al., 2007, pg. 75).
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In this approach, one nominal covariate is selected for fine balance, and then an optimal matching (using

the remaining covariates to define the distance function) is constructed subject to the constraint that each

category of the balancing covariate contains an equal proportion of treatment units and matched control

units. The fine balance problem can be solved efficiently by transforming it into a network flow problem, or

by making appropriate modifications to the distance matrix. Zubizarreta et al. (2011) present a practical

application of fine balance and discuss some of the issues associated with fine balance and matching.

Yang et al. (2012) extend fine balance to near-fine balance, where the requirement of exact balance on

each category of the nominal covariate is relaxed by introducing upper and lower bounds on the accepted

deviation in each category. Yang et al. adapt the network for fine balance to handle near-fine balance.

Zubizarreta (2012) further extends fine balance and near-fine balance by seeking fine or near-fine balance for

multiple covariates that are not necessarily nominal. The model can also include alternate covariate balance

measures, provided that they can be modeled as linear functions. The resulting optimization problem can

be formulated as a mixed integer program (MIP) and solved using appropriate techniques.

Diamond and Sekhon (2013) argue in favor of using covariate balance measures as an optimization goal

in observational studies. In support of this position, they note that many current matching methods are

variably effective at recovering the correct treatment effect estimate in a well-studied dataset in the literature

(LaLonde, 1986), and they attribute these discrepancies to the matching methods’ failure to achieve sufficient

covariate balance. To remedy the lack of covariate balance, Diamond and Sekhon propose Genetic Matching,

a genetic algorithm that iteratively adjusts the distance metric used for matching until it produces a matched-

pair sample with optimal covariate balance. Diamond and Sekhon (2013) also argue that covariate imbalance

should be minimized as much as possible, instead of to the point where a statistical test indicates that the

imbalance is insignificant.

2.3.6 Related Work

The combination of matching and regression for constructing causal estimates has also been explored

(Cochran and Rubin, 1973; Rubin, 1979; Ho et al., 2007). These methods use matching as a pre-processing

step to identify control units from which the parameters of a regression model are estimated. If the treatment

units and the selected control units are similar, then there is less danger of extrapolation when estimating

the treatment units’ control responses. Ho et al. (2007) argue that this approach is doubly robust because it

provides an unbiased estimate if either the matching is successful or the regression model is correct. It also

allows for the correction of residual covariate imbalance after matching by the regression model.
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Other types of matching besides one-to-one have also been explored. In particular, one-to-k matching

pairs each treatment unit with k control units, while full matching seeks the best clustering of units from

T and C so that every unit has at least one paired unit in the opposite group (Rosenbaum, 1991). Hansen

and Klopfer (2006) shows how to solve the full matching problem using network flow techniques. Rosen-

baum (2012) presents an incomplete matching method in which unmatched treatment units incur a penalty.

This creates a trade-off between including treatment units with bad matches versus dropping these units

altogether. The resulting model can be solved using network optimization.

Another concern in observational studies is that Assumptions 2.2 and 2.3 may be invalid due to the

presence of an unobserved covariate. Detecting such situations is of interest in order to ensure that the

estimated treatment effect is not incorrectly attributed to the treatment itself. Rosenbaum and Rubin

(1983a) and Rosenbaum (1987b,a) present methods for detecting unobserved covariates. In particular,

Rosenbaum and Rubin identify the properties that an unobserved covariate would need to have in order

to explain the estimated treatment effect in terms of differences in the unobserved covariate instead of the

treatment itself.

Iacus et al. (2012) address the difficulty of finding exact matches by coarsening the covariate values used

for matching. Their procedure, Coarsened Exact Matching (CEM), makes it more likely that two units will

have identical (coarsened) values for all covariates. Treatment units without exact matches for the coarsened

values are dropped from further consideration.

Hainmueller (2012) proposes a maximum entropy re-weighting scheme, entropy balancing, that adjusts

weights for each of the control units in order to meet user-specified balance constraints placed on the moments

of the covariate distributions. Ratkovic (2012) adapts the support vector machine classifier to identify a set

of control units C ′ ⊆ C that is indistinguishable from T with respect to the covariates.

2.4 Balance Optimization Subset Selection

The Balance Optimization Subset Selection (BOSS) framework (Nikolaev et al., 2013; Cho et al., 2013) is

motivated by the emphasis on covariate balance measures for assessing the quality of matched-pair samples

in matching methods for observational studies (Rosenbaum and Rubin, 1985; Diamond and Sekhon, 2013).

Instead of pairing treatment and control units like matching methods, BOSS seeks a control group C ′ ⊆ C

from the control pool C that minimizes a given covariate imbalance measure I with respect to the treatment

group T . BOSS accommodates any scalar-valued imbalance measure of the covariates, and it permits size

constraints on the control group (e.g., |C ′| = |T |) and allows for selecting control units with repetitions (i.e.,
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C ′ can be a multiset). Following Diamond and Sekhon (2013), BOSS seeks to minimize imbalance rather

than to reduce it below statistical significance.

An optimal control group C ′ ⊆ C from BOSS is used to estimate τ1
T as

τ̃1
T (C ′) ≡ 1

|T |
∑
t∈T

Y 1
t −

1

|C ′|
∑
c∈C′

Y 0
c . (2.17)

Alternatively, BOSS can be used for pre-processing in the approach of Ho et al. (2007) where the parameters

of a regression model are estimated from C ′. Properties of (2.17) are explored in Chapter 3.

2.4.1 Imbalance Measures

BOSS can use any potential imbalance measure to compare T with C ′. Section 2.3.3 considered the difference

of covariate means in (2.16); as an imbalance measure, this is

IDOM (T,C ′) ≡
∥∥X̄T − X̄C′

∥∥
1

=
∑
i∈P

∣∣∣∣∣ 1

|T |
∑
t∈T

Xti −
1

|C ′|
∑
c∈C′

Xci

∣∣∣∣∣ ,
where X̄T ≡

∑
t∈T Xt/|T | and X̄C′ ≡

∑
c∈C′ Xc/|C ′|. A variant of IDOM is

ISDOM(T,C ′) ≡
∑
i∈P

∣∣∑
t∈T Xti/|T | −

∑
c∈C′ Xci/|C ′|

∣∣∣∣∑
t∈T Xti/|T | −

∑
c∈C Xci/|C|

∣∣ ,
which scales the imbalance for each covariate by the imbalance between T and C (assuming that the imbalance

is nonzero).

Another imbalance measure is based on a comparison of the marginal empirical distribution functions of

the covariates. For a covariate i ∈ P, the empirical distribution function is F̂i(S, x) ≡ |{u ∈ S : Xui ≤ x}| /|S|

for any finite set of units S ⊂ U and value x ∈ R. That is, F̂i(S, x) is the proportion of units in S with value

at most x for covariate i. The two-sample Kolmogorov-Smirnov statistic values for the individual covariates

lead to the imbalance measure

IKS (T,C ′) ≡
∑
i∈P

max
x∈Xi(T∪C)

∣∣∣F̂i(T, x)− F̂i(C ′, x)
∣∣∣ ,

where Xi(T ∪C) ≡ {Xui : u ∈ T ∪C} is the set of values for covariate i that are observed within the sampled

units in T and C. A variant of IKS which uses the maximum Kolmogorov-Smirnov two-sample test statistic
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value across all covariates is

IKS:max(T,C ′) ≡ max
i∈P

{
max

x∈Xi(T∪C)

∣∣∣F̂i(T, x)− F̂i(C ′, x)
∣∣∣} .

Another distribution-based balance measure relies on coarsening the covariate values through a histogram

binning process (Nikolaev et al., 2013; Iacus et al., 2012). For covariate i ∈ P, let ni be the number of

histogram bins and let

min
u∈T∪C

Xui ≡ bi0 < bi1 < . . . < bini
≡ max
u∈T∪C

Xui (2.18)

be the ni + 1 bin boundaries. Then let

Bi1 ≡ {u ∈ T ∪ C : bi0 ≤ Xui ≤ bi1} ,

Bij ≡ {u ∈ T ∪ C : bi,j−1 < Xui ≤ bij} ∀ j = 2, . . . , ni,

be the partition of T ∪ C determined by the bin boundaries in (2.18). For notational convenience, let

Ni ≡ {1, 2, . . . , ni}. For any S ⊆ T ∪C, let ηij(S) ≡ |S∩Bij |/|S| be the proportion of units in S that occupy

bin j ∈ Ni for covariate i ∈ P. Using these histogram bins, a marginal histogram imbalance measure is

IDiff (T,C ′) ≡
∑
i∈P

∑
j∈Ni

|ηij(T )− ηij(C ′)| ,

which compares the proportions of treatment units and control units in each histogram bin of each covariate.

As the granularity of the bins becomes finer, IDiff provides a stricter measure of marginal covariate imbalance.

Alternate ways to assess imbalance are possible. For example, IDiff can be adapted to use a quadratic

penalty for discrepancies within each bin, leading to

IDiff2 (T,C ′) ≡
∑
i∈P

∑
j∈Ni

(ηij(T )− ηij(C ′))
2
.

A control group C ′ that satisfies IDiff(T,C ′) = 0 will also satisfy IDiff2(T,C ′) = 0. However, when no control

group has zero imbalance with respect to these imbalance measures, IDiff2 helps BOSS find a control group

without extreme discrepancies in any bin. A variant of IDiff2 that is similar to the χ2 test-statistic for control

groups that satisfy |C ′| = |T | is

Iχ2(T,C ′) ≡
∑
i∈P

∑
j∈Ni

(|C ′ ∩Bij | − |T ∩Bij |)2

max (|T ∩Bij |, 1)
.
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The preceding imbalance measures focus on the marginal distributions of the covariates. Joint distribu-

tions of covariates can be incorporated through covariate clusters (Nikolaev et al., 2013). A covariate cluster

D ⊆ P is a (nonempty) subset of the covariates. As an example, the covariate cluster D = {i1, i2} captures

the pairwise joint distribution of covariates i1 and i2. Let PD be the p×p projection matrix associated with

covariate cluster D, with

PDij ≡


1 if i = j and i ∈ D

0 otherwise.

For a covariate cluster D ≡ {i1, i2, . . . , ik} with 1 ≤ i1 < i2 < . . . < ik ≤ p, let

ND ≡ Ni1 ×Ni2 × . . .×Nik

denote the set of tuples of indices for the histogram bins of the cluster. For j ≡ (j1, j2, . . . , jk) ∈ ND,

let BDj ≡
⋂k
l=1Bil,jl be the units that belong to the jth bin of cluster D. For any S ⊆ T ∪ C, let

ηDj ≡ |S ∩BDj | /|S| be the proportion of units in S that occupy bin j ∈ ND.

The joint empirical distribution function for a covariate cluster D ⊆ P is

F̂D(S,x) ≡
∣∣{u ∈ S : PDXu ≤ PDx

}∣∣
|S|

(2.19)

for all finite S ⊂ U and x ∈ Rp, where the vector inequality is component-wise so that Xui ≤ xi for all

i ∈ D. This definition is not invariant under a change of sign for the covariates because generally

|{u ∈ S : Xui ≤ xi, Xuj ≤ xj}| 6= |{u ∈ S : Xui ≤ xi, Xuj ≥ xj}| .

As a result, F̂D(S,x) does not lead to an immediate generalization of the Kolmogorov-Smirnov statistic to

the multivariate case (some possible extensions are presented by Peacock (1983), Fasano and Franceschini

(1987), and Justel et al. (1997)). However, for the purposes of defining an imbalance measure it suffices to

consider only one ordering with ≤ being used for all covariates, as indicated in (2.19).

For a set of covariate clusters D, two possible multivariate extensions of IKS and IDiff are

Iecdf:D (T,C ′) ≡
∑
D∈D

max
x∈XD(T∪C)

∣∣∣F̂D(T,x)− F̂D(C ′,x)
∣∣∣
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and

IDiff:D (T,C ′) ≡
∑
D∈D

∑
j∈ND

|ηDj(T )− ηDj(C ′)| ,

where

XD(T ∪ C) ≡
{
PDx : x ∈ Rp, xi ∈ Xi(T ∪ C) ∀ i ∈ P

}
is the set of covariate vectors whose nonzero entries come from Xi(T ∪ C) for each covariate i ∈ D. When

D = {{i} : i ∈ P} (i.e., there is a covariate cluster for each individual covariate), then Iecdf:D and IDiff:D

reduce to IKS and IDiff, respectively. Similar extensions apply to IKS:max, IDiff2 , and Iχ2 .

The above imbalance measures only serve to illustrate what BOSS can use; they are by no means

exhaustive. Other possibilities include using a combination of these measures (e.g., assessing mean balance

on some covariates and distribution balance on others) or measuring imbalance as the maximum deviation

across all covariates instead of the sum. The general form of the imbalance measure can also be used to

include matching metrics. For example, for a given distance function δ, the imbalance measure Iδ can be

defined so that Iδ(T,C ′) is equal to the minimum distance matching between T and C ′ if |C ′| = |T | and ∞

otherwise. For any Iδ, BOSS will not return the matched-pair sample itself, but Sauppe et al. (2014) show

how the BOSS framework can be extended to explicitly include a matching component if desired.

2.4.2 Ideal Covariate Balance

With appropriately defined covariate clusters, Iecdf:D and IDiff:D can be used to assess covariate imbalance

on any number of marginal and joint distributions of the covariates. For example, the full joint distribution

of covariates is captured by the covariate cluster D = P. An ideal control group C ′ ⊆ C would satisfy

Iecdf:D(T,C ′) = 0 with D = {P}. Such a group would exact match T in the sense that it could be

used to construct an exact matched-pair sample M , possibly by allowing replacement of control units if

|T | > |C ′|. This is because Iecdf:D(T,C ′) = 0 with D = {P} implies that F̂P(T,Xt) = F̂P(C ′,Xt) for all

t ∈ T , and so each treatment unit has at least one control unit in C ′ with which it can be paired. With

some modifications, the results of (2.13) can be extended to demonstrate that the BOSS estimator (2.17)

computed from C ′ provides an unbiased estimate of τ1
T conditional on the covariate values of the treatment

units.

In actuality, however, it is generally impossible to find a C ′ ⊆ C that satisfies Iecdf:D(T,C ′) = 0 for

D = {P}. As such, a control group with imbalance on at least some of the higher-order joint distributions

must generally be accepted. By appropriately defining the set of covariate clusters D, a researcher is able
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to focus on identifying control groups that are balanced on the marginal and joint distributions that he or

she deems relevant.

Identifying the covariate clusters to include in D is a challenging problem. Failing to include a covariate

cluster may leave residual imbalance on the associated joint distribution of covariates, while including too

many covariate clusters may make it impossible to identify a control group that is balanced with the treatment

group on all of the associated covariate distributions. Related issues for consideration include how balance

should be assessed and how residual imbalance should be handled. For example, it may be possible to exactly

balance the marginal means or to moderately balance the marginal distributions themselves. Which choice

is best is not always clear, and often depends on the assumptions that are made.
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Chapter 3

Statistical Theory

This chapter discusses the relationship between covariate balance and bias in the BOSS estimator (2.17). In

general, as covariate balance decreases, stronger assumptions are necessary to ensure that (2.17) provides an

unbiased estimate of τ1
T , which leads to a natural trade-off: weaker levels of covariate balance are easier to

obtain but require stronger assumptions to increase confidence in the estimated treatment effect.

3.1 Reframing the Strong Ignorability Assumption

In order to facilitate discussion regarding covariate balance, Assumption 2.3 will be expressed in an alternative

form. Define the control response error, hereafter referred to as error, for each u ∈ U as ε0
u ≡ y0

u −

E
[
Y 0 | X = xu

]
, and let E0 be the (unobservable) random variable that represents the error for a randomly

sampled unit from U . Define the control response function h0 : X → R as

h0(x) ≡ E
[
Y 0 | X = x

]
∀ x ∈ X .

Assumption 2.3(a) implies that E0 ⊥⊥ Z | X because

Pr
(
E0 ≤ r | X = x, Z = z

)
= Pr

(
Y 0 − h0(x) ≤ r | X = x, Z = z

)
= Pr

(
Y 0 − h0(x) ≤ r | X = x

)
= Pr

(
E0 ≤ r | X = x

)
,

for all r ∈ R, x ∈ X , and z ∈ {0, 1}, which is an alternate way of expressing conditional independence.

Additionally,

E
[
E0 | X = x

]
= E

[
Y 0 − h0(x) | X = x

]
= E

[
Y 0 | X = x

]
− h0(x) = 0,

Some of the material in this chapter has been adapted from Nikolaev et al. (2013), Operations Research 61(2), with the
permission of the copyright holder.
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for all x ∈ X , which implies that E
[
E0
]

= 0 and that X and E0 are uncorrelated. Assumption 2.3(a) can

now be restated as:

Assumption 3.1. The relationship between the control responses and the covariates is given by

Y 0 ≡ h0 (X) + E0,

where h0 is a (deterministic but unknown) function of the covariates, E0 represents an error term that

satisfies E
[
E0 | X = x

]
= 0 for all x ∈ X , and E0 ⊥⊥ Z | X.

This alternative expression for the first portion of the strong ignorability assumption is useful both for

understanding the intuition behind matching estimators and for extending this assumption to provide intu-

ition for the BOSS estimator using various imbalance measures. First, using Assumption 3.1, the difference

between the estimator (2.17) for a C ′ ⊆ C and τ1
T is:

τ̃1
T (C ′)− τ1

T =

(
1

|T |
∑
t∈T

Y 1
t −

1

|C ′|
∑
c∈C′

Y 0
c

)
− 1

|T |
∑
t∈T

(
Y 1
t − Y 0

t

)
=

1

|T |
∑
t∈T

Y 0
t −

1

|C ′|
∑
c∈C′

Y 0
c

=
1

|T |
∑
t∈T

(
h0(Xt) + E0

t

)
− 1

|C ′|
∑
c∈C′

(
h0(Xc) + E0

c

)
=

(
1

|T |
∑
t∈T

h0(Xt)−
1

|C ′|
∑
c∈C′

h0(Xc)

)
+

(
1

|T |
∑
t∈T
E0
t −

1

|C ′|
∑
c∈C′
E0
c

)
.

(3.1)

The second term with E0
t and E0

c is the averaged errors across the units in T and C ′. By Assumptions 2.4

and 3.1, each of these quantities has expected value zero. Therefore, the only potential source of bias in the

estimator τ̃1
T (C ′) is the first term in (3.1) with the control response function. Define the control response

function bias as

B(T,C ′) ≡ 1

|T |
∑
t∈T

h0(Xt)−
1

|C ′|
∑
c∈C′

h0(Xc).

For a matched-pair sample M consisting of pairs that are exactly matched on the covariates, the control

response function bias B(T,CM ) equals zero because h0(Xt)/|T |−h0(Xc)/|CM | = 0 for each pair (t, c) ∈M ,

regardless of how h0 is defined. If M contains inexact matches, B(T,CM ) is non-zero in general; however,

Rubin (1973b) noted that for any set of inexact matches, there exists a polynomial control response function

for which the bias equals zero. Despite this observation, researchers often justify causal estimates with

inexact matches by claiming that the matched pairs feature “sufficient” covariate balance. However, lesser
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balance levels (i.e., balance on covariate distributions other than the full joint distribution of all covariates)

are only sufficient to construct an unbiased estimate of the treatment effect if the control response function

follows a specific form. This point is explored in detail in the subsequent sections by extending Assumption

3.1 in various ways.

3.2 Assumptions for Moment Balance

Moment balance measures are covariate balance measures that compare the moments of the covariate dis-

tributions between two sets of units. As noted in Chapter 2, a common way to assess covariate balance

between T and C ′ ⊆ C is through a comparison of the means, or first moments, of the covariates in T and

C ′, given by X̄T ≡
∑
t∈T Xt/|T | and X̄C′ ≡

∑
c∈C′ Xc/|C ′|. Comparisons of higher raw moments (e.g., x2

i )

and interaction terms (e.g., xixj) are also moment balance measures.

3.2.1 Mean Balance

Many researchers have informally observed that mean balance between T and C ′ is sufficient to guarantee

an unbiased estimate of τ1
T only when there is a linear relationship between the covariates and the control

responses (Cochran and Rubin, 1973; Rubin, 1973a; Rosenbaum and Rubin, 1985). The following functional

form assumption for the control response function can be used to formally demonstrate this result.

Assumption 3.2. Assumption 3.1 holds with the additional requirement that h0(x) ≡ βTx + α for all

x ∈ X , where β ∈ Rp and α ∈ R (both β and α are fixed but unknown).

Theorem 3.3. Under Assumption 3.2, a control group C ′ ⊆ C with X̄C′ = X̄T (i.e., balance on first

marginal moments) is both necessary and sufficient for B(T,C ′) to equal zero for all possible β and α.

Proof. Sufficiency can be demonstrated for a C ′ with X̄C′ = X̄T as follows:

B(T,C ′) =
1

|T |
∑
t∈T

h0(Xt)−
1

|C ′|
∑
c∈C′

h0(Xc)

=
1

|T |
∑
t∈T

(
βTXt + α

)
− 1

|C ′|
∑
c∈C′

(
βTXc + α

)
= βTX̄T − βTX̄C′

= βT
(
X̄T − X̄C′

)
= 0.
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Necessity can be demonstrated by the contrapositive. Consider a C ′ with X̄C′ 6= X̄T , and let i∗ ∈ P be a

covariate for which
∑
c∈C′ Xci∗/|C ′| 6=

∑
t∈T Xti∗/|T |. Then for β with βi∗ = 1 and βi = 0 for all i ∈ P\{i∗},

the control response function bias is

B(T,C ′) =
1

|T |
∑
t∈T

h0(Xt)−
1

|C ′|
∑
c∈C′

h0(Xc)

=
1

|T |
∑
t∈T

(
βTXt + α

)
− 1

|C ′|
∑
c∈C′

(
βTXc + α

)
=

1

|T |
∑
t∈T

βi∗Xti∗ + α− 1

|C ′|
∑
c∈C′

βi∗Xci∗ − α

=
1

|T |
∑
t∈T

Xti∗ −
1

|C ′|
∑
c∈C′

Xci∗ ,

which does not equal zero by choice of i∗.

The proof of Theorem 3.3 establishes that B(T,C ′) = βT
(
X̄T − X̄C′

)
. The “for all possible β and α”

quantifier in Theorem 3.3 is needed because B(T,C ′) may equal zero when X̄C′ 6= X̄T . For example, if

X̄T 6= X̄C′ and β = X̄T × X̄C′ , the vector cross product of the vectors of covariate means, then βTX̄T = 0

and βTX̄C′ = 0, and consequently B(T,C ′) = 0. Such cases are the exception rather than the norm.

The parameters β and α in the control response function of Assumption 3.2 can be estimated through

linear regression techniques. Estimates of these parameters can then be used to construct a regression

estimator for τ1
T as

τ̃1
T ≡

1

|T |
∑
t∈T

(
Y 1
t − h̃0(Xt)

)
=

1

|T |
∑
t∈T

(
Y 1
t −

(
β̃TXt + α̃

))
= Ȳ 1

T − β̃TX̄T − α̃.

However, as Theorem 3.3 shows, there is no need to estimate β and α when a control group C ′ satisfying

IDOM(T,C ′) = 0 is available.

3.2.2 Bias from Mean Imbalance

If Assumption 3.2 is valid, then BOSS can be used with IDOM to identify a C ′ ⊆ C with X̄C′ = X̄T ,

assuming that such a group exists, in order to construct an unbiased estimate of the treatment effect. When

no control group meets this mean balance requirement, however, the residual imbalance between C ′ and T

will introduce some bias in the estimate from (2.17) (in general). The following lemma provides a relationship

between these two quantities.
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Lemma 3.4. Under Assumption 3.2, |B(T,C ′)| ≤ ‖β‖∞ · IDOM(T,C ′).

Proof.

|B(T,C ′)| =
∣∣∣βT

(
X̄T − X̄C′

)∣∣∣
=

∣∣∣∣∣∑
i∈P

βi
(
X̄Ti − X̄C′i

)∣∣∣∣∣
≤
∑
i∈P
|βi| ·

∣∣X̄Ti − X̄C′i

∣∣
≤ ‖β‖∞ ·

∑
i∈P

∣∣X̄Ti − X̄C′i

∣∣
= ‖β‖∞ · IDOM(T,C ′)

An immediate consequence of Lemma 3.4 is that |B(T,C ′)| = |β1| · IDOM(T,C ′) if there is only one

covariate. Thus, by minimizing IDOM(T,C ′), BOSS attempts to minimize the residual bias. The bound

provided by Lemma 3.4 is tight; the worst case occurs when all mean imbalance between T and C ′ is present

in covariates i ∈ P with βi = ‖β‖∞. Without knowing β, IDOM may end up reducing imbalance in one

covariate at the expense of increasing imbalance in another that has a larger impact on the value of the

control response function. This issue led to the development of equal percent bias reducing (EPBR) methods

(Rubin, 1976a,b) and later to monotonic imbalance bounding (MIB) methods (Iacus et al., 2011). The

imbalance measure

IDOM:max (T,C ′) ≡
∥∥X̄T − X̄C′

∥∥
∞ = max

i∈P

∣∣∣∣∣ 1

|T |
∑
t∈T

Xti −
1

|C ′|
∑
c∈C′

Xci

∣∣∣∣∣
alleviates this problem by minimizing the maximum difference of means across all covariates. It may be

necessary to normalize the covariate values in order for IDOM:max to provide a fair comparison between the

different covariate means.

Lemma 3.5. Under Assumption 3.2, |B(T,C ′)| ≤ ‖β‖1 · IDOM:max(T,C ′).
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Proof.

|B(T,C ′)| =

∣∣∣∣∣∑
i∈P

βi
(
X̄Ti − X̄C′i

)∣∣∣∣∣
≤
∑
i∈P
|βi| ·

∣∣X̄Ti − X̄C′i

∣∣
≤
∑
i∈P
|βi| · IDOM:max(T,C ′)

≤ ‖β‖1 · IDOM:max(T,C ′).

This bound is also tight, with the worst case occurring if the imbalance equals IDOM:max(T,C ′) for each

covariate. Estimates of β and α can be used to evaluate the bounds provided by Lemmas 3.4 and 3.5.

3.2.3 Balancing Additional Moments

While mean balance is necessary and sufficient for an unbiased estimate under Assumption 3.2, this is no

longer the case when higher-degree terms are included in the control response function. However, as in linear

regression, these higher-degree terms can also be incorporated into moment balance measures. To see how

this can be accomplished, it will be useful to focus on the contribution of each term in the control response

function h0(·) to the bias B(T,C ′) separately rather than in aggregate, as this avoids the possibility of bias

from terms canceling each other out (as in the case when β = X̄T × X̄C′).

For example, if the term γi (xi)
a

appears in the control response function for some i ∈ P with γi ∈ R

(fixed but unknown) and a known a ∈ R, then its contribution to B(T,C ′) is

1

|T |
∑
t∈T

γi (Xti)
a − 1

|C ′|
∑
c∈C′

γi (Xci)
a

= γi

(
1

|T |
∑
t∈T

(Xti)
a − 1

|C ′|
∑
c∈C′

(Xci)
a

)
.

This contribution is zero if and only if
∑
t∈T (Xti)

a
/|T | =

∑
c∈C′ (Xci)

a
/|C ′|. Similarly, if the term

γij (xi)
a

(xj)
b

appears in the control response function, then its contribution to B(T,C ′) is

γij

(
1

|T |
∑
t∈T

(Xti)
a

(Xtj)
b − 1

|C ′|
∑
c∈C′

(Xci)
a

(Xcj)
b

)
,

which is zero if and only if the two summations are equal. In both cases it is necessary to know the values of

the exponents on the terms in order to assess their contributions to B(T,C ′). However, this is no different

than if these terms were to be included in a linear regression model.
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The above examples and proofs can be used to show that if the control response function is of the form

h0(x) ≡ βTx +
∑
i∈P

γi (xi)
2

+
∑

(i,j)∈(P2)

γijxixj + α

for all x ∈ X , where
(P

2

)
is the set of all unordered pairs of covariates, then B(T,C ′) = 0 for all possible

parameter values if and only if

X̄Ti = X̄C′i ∀ i ∈ P,
1

|T |
∑
t∈T

(Xti)
2

=
1

|C ′|
∑
c∈C′

(Xci)
2 ∀ i ∈ P,

1

|T |
∑
t∈T

XtiXtj =
1

|C ′|
∑
c∈C′

XciXcj ∀ (i, j) ∈
(
P
2

)
.

(3.2)

A similar observation was made by Rosenbaum and Rubin (1985). The balance requirements in (3.2) were

also considered by Zubizarreta (2012), though the relationship to bias was not discussed. The imbalance

measure

IDOM:2 (T,C ′) ≡ IDOM (T,C ′) +
∑
i∈P

∣∣∣∣∣ 1

|T |
∑
t∈T

(Xti)
2 − 1

|C ′|
∑
c∈C′

(Xci)
2

∣∣∣∣∣
+

∑
(i1,i2)∈(P2)

∣∣∣∣∣ 1

|T |
∑
t∈T

Xti1Xti2 −
1

|C ′|
∑
c∈C′

Xci1Xci2

∣∣∣∣∣ ,
provides one way to assess whether or not these conditions are met.

3.3 Assumptions for Distribution Balance

Whereas moment balance measures require assumptions about the specific terms in the control response

function to provide guarantees on B(T,C ′), a stronger form of covariate balance such as distribution balance

can be used to ensure that there is no contribution to B(T,C ′) from a large set of potential terms. Some

assumptions regarding the functional form of the control response function are still necessary, however.

3.3.1 Marginal Distribution Balance

Marginal distribution balance measures are covariate balance measures that compare the marginal distribu-

tions of each covariate between two sets of units. Examples include IKS and IDiff. These balance measures

are appropriate if the control response function is separable.
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Assumption 3.6. Assumption 3.1 holds with the additional requirement that h0(x) ≡
∑
i∈P h

0
i (xi) for all

x ∈ X , where h0
i : R→ R is a (bounded but unknown) function on the support of covariate i for each i ∈ P.

Theorem 3.7. Under Assumption 3.6, a control group C ′ ⊆ C with F̂i(C
′, x) = F̂i(T, x) for all i ∈ P and

x ∈ Xi(T ∪ C) (i.e., identical marginal empirical distributions) is both necessary and sufficient for B(T,C ′)

to equal zero for all bounded functions h0
i for i ∈ P.

Proof. Sufficiency can be demonstrated for a C ′ that satisfies the required conditions by first reorganizing

the terms in B(T,C ′):

B(T,C ′) =
1

|T |
∑
t∈T

h0(Xt)−
1

|C ′|
∑
c∈C′

h0(Xc)

=
1

|T |
∑
t∈T

∑
i∈P

h0
i (Xti)−

1

|C ′|
∑
c∈C′

∑
i∈P

h0
i (Xci)

=
∑
i∈P

(∑
t∈T

h0
i (Xti)

|T |
−
∑
c∈C′

h0
i (Xci)

|C ′|

)
.

(3.3)

For any covariate i ∈ P, let x1 < x2 < . . . < xk be the covariate values in Xi(T ∪C), and let x0 = x1 − 1 so

that F̂i(T, x0) = F̂i(C, x0) = 0. Then

∑
t∈T

h0
i (Xti)

|T |
=

k∑
j=1

 ∑
t∈T : xj−1<Xti≤xj

h0
i (Xti)

|T |


=

k∑
j=1

 ∑
t∈T : xj−1<Xti≤xj

h0
i (xj)

|T |


=

k∑
j=1

h0
i (xj)

(
F̂i(T, xj)− F̂i(T, xj−1)

)
.

An identical argument can be applied to show that

∑
c∈C′

h0
i (Xci)

|C ′|
=

k∑
j=1

h0
i (xj)

(
F̂i(C

′, xj)− F̂i(C ′, xj−1)
)
.

From the fact that F̂i(T, x) = F̂i(C
′, x) for all x ∈ Xi(T ∪ C), it follows that

∑
t∈T

h0
i (Xti)

|T |
−
∑
c∈C′

h0
i (Xci)

|C ′|
=

k∑
j=1

h0
i (xj)

(
F̂i(T, xj)− F̂i(T, xj−1)

)

−
k∑
j=1

h0
i (xj)

(
F̂i(C

′, xj)− F̂i(C ′, xj−1)
)

= 0.
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Because this equality holds for all i ∈ P, (3.3) simplifies to

B(T,C ′) =
∑
i∈P

(∑
t∈T

h0
i (Xti)

|T |
−
∑
c∈C′

h0
i (Xci)

|C ′|

)
= 0.

Necessity can be demonstrated by contrapositive. Consider a C ′ with F̂i∗(C
′, x∗) 6= F̂i∗(T, x

∗) for some

i∗ ∈ P and x∗ ∈ Xi∗ . For the control response functions given by

h0
i (x) =


1 if i = i∗ and x ≤ x∗

0 otherwise

for all i ∈ P and x ∈ Xi, the control response function bias simplifies to

B(T,C ′) =
1

|T |
∑
t∈T

∑
i∈P

h0
i (Xti)−

1

|C ′|
∑
c∈C′

∑
i∈P

h0
i (Xci)

=
1

|T |
∑
t∈T

h0
i∗(Xti∗)−

1

|C ′|
∑
c∈C′

h0
i∗(Xci∗)

=
1

|T |
∑

t∈T : Xti∗≤x∗
1− 1

|C ′|
∑

c∈C′: Xci∗≤x∗
1

= F̂i∗(T, x
∗)− F̂i∗(C ′, x∗),

which does not equal zero by choice of i∗ and x∗.

As with Theorem 3.3, the “for all” quantifier is important, because there are functions h0
i for which

B(T,C ′) = 0 for a C ′ ⊆ C without F̂i(C
′, x) = F̂i(T, x) at every x ∈ Xi(T ∪ C) and i ∈ P. For example,

if h0
i (x) = ai for all x ∈ R and i ∈ P, where each ai is a constant, then B(T,C ′) = 0 for all C ′ ⊆ C.

Such functions are the exception, and in general the distribution imbalance measured by F̂i(·) coincides with

B(T,C ′) being nonzero under Assumption 3.6.

The role of Theorem 3.7 is to motivate methods for balancing the marginal distributions of the covariates

in C ′ and T . By focusing on marginal balance on each covariate separately instead of joint balance on

all covariates together, which leads to exact matches if achieved, marginal balancing methods avoid the

difficulties due to sparsity caused by the exponential growth in volume as the number of covariates increases.

One such marginal balancing method is BOSS with IKS, which identifies a C ′ ⊆ C with F̂i(C
′, x) = F̂i(T, x)

for all i ∈ P and x ∈ Xi(T ∪ C), if such a control group exists.
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3.3.2 Joint Distribution Balance

Distribution balance can also be assessed on higher-order distributions (e.g., pairwise joints) by using covari-

ate clusters and F̂D(·). The following theorem establishes the relationship between joint distribution balance

and the control response function bias.

Theorem 3.8. For a covariate cluster D ≡ {i1, i2, . . . , ik} ⊆ P, if F̂D(T,x) = F̂D(C ′,x) for all x ∈

XD(T ∪C), then any function h0
D(xi1 , xi2 , . . . , xik) that appears in the control response function contributes

nothing to B(T,C ′).

To prove Theorem 3.8, several additional definitions that depend on the samples T and C are needed.

For each covariate i ∈ P, let ρi : Rp → R denote the predecessor function for covariate i, defined as

ρi(x) ≡


xi − 1 if xi = min {Xui : u ∈ T ∪ C}

max {Xui : u ∈ T ∪ C, Xui < xi} otherwise.

Also, let νi : Rp → R denote the predecessor gap, defined as νi(x) ≡ xi − ρi(x), and let ei ∈ Rp be the unit

vector with value 1 for coordinate i and 0 otherwise. Additionally, for any S ⊆ T ∪ C and x ∈ R, let

Gi(S, x) ≡ {u ∈ S : Xui > x}

be the set of units in S whose values for covariate i are strictly greater than x.

For any covariate cluster D ⊆ P, set of units S ⊆ T ∪ C, and x ∈ Rp, let

ζD(S,x) ≡
∣∣{u ∈ S : PDXu = PDx

}∣∣ /|S|
be the proportion of units in S whose covariate values equal the values in x for the covariates in D, and let

LD(S,x) ≡
{
u ∈ S : PDXu ≤ PDx

}
be the set of units in S whose covariate values are no greater than the values in x for all covariates in D.

Lemma 3.9. For any S ⊆ T ∪ C, covariate cluster D ⊆ P, and x ∈ Rp,

ζD(S,x) =
1

|S|

∣∣∣∣∣LD(S,x) ∩

(⋂
i∈D

Gi(S, ρi(x))

)∣∣∣∣∣ .
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Proof.

ζD(S,x) =
1

|S|
∣∣{u ∈ S : PDXu = PDx

}∣∣
=

1

|S|
|{u ∈ S : ρi(x) < Xui ≤ xi ∀ i ∈ D}|

=
1

|S|
∣∣{u ∈ S : PDXu ≤ PDx, Xui > ρi(x) ∀ i ∈ D

}∣∣
=

1

|S|

∣∣∣∣∣LD(S,x) ∩

(⋂
i∈D

Gi(S, ρi(x))

)∣∣∣∣∣ .
Lemma 3.10. For any S ⊆ T ∪ C, covariate cluster D ⊆ P, and x ∈ Rp,

∣∣∣∣∣LD(S,x) ∩

( ⋂
i∈D′

Gi(S, ρi(x))

)∣∣∣∣∣ =
∑

D′′∈2D′

(−1)|D
′′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣
for all D′ ⊆ D, where 2D

′
is the set of all subsets of D′ including the empty set and D′.

Proof. This can be shown using induction on the size of D′.

Base Case: |D′| = 1

Let i be the covariate in D′. Then

|LD(S,x) ∩Gi(S, ρi(x))| =
∣∣{u ∈ S : PDXu ≤ PDx

}
∩ {u ∈ S : Xui > ρi(x)}

∣∣
=
∣∣{u ∈ S : PDXu ≤ PDx, Xui > ρi(x)

}∣∣
=
∣∣{u ∈ S : PDXu ≤ PDx

}∣∣− ∣∣{u ∈ S : PDXu ≤ PDx, Xui ≤ ρi(x)
}∣∣

= |LD(S,x)| −
∣∣{u ∈ S : PDXu ≤ PDx− νi(x)ei

}∣∣
= |LD(S,x)| − |LD(S,x− νi(x)ei)|

=
∑

D′′∈2D′

(−1)|D
′′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣ ,
which establishes the base case.

Inductive Step: |D′| > 1

Assume that the desired result holds for all D′′ with |D′′| < |D′|. Let i∗ be an arbitrary covariate in D′,
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and let D∗ ≡ D′ \ {i∗}. Then

∣∣∣∣∣LD(S,x) ∩

( ⋂
i∈D′

Gi(S, ρi(x))

)∣∣∣∣∣
=
∣∣{u ∈ S : PDXu ≤ PDx, Xui > ρi(x) ∀ i ∈ D′

}∣∣
=
∣∣{u ∈ S : PDXu ≤ PDx, xui∗ > ρi∗(x), Xui > ρi(x) ∀ i ∈ D∗

}∣∣
=
∣∣{u ∈ S : PDXu ≤ PDx, Xui > ρi(x) ∀ i ∈ D∗

}∣∣
−
∣∣{u ∈ S : PDXu ≤ PDx, xui∗ ≤ ρi∗(x), Xui > ρi(x) ∀ i ∈ D∗

}∣∣
=
∣∣{u ∈ S : PDXu ≤ PDx, Xui > ρi(x) ∀ i ∈ D∗

}∣∣
−
∣∣{u ∈ S : PDXu ≤ PDx− νi∗(x)ei∗ , Xui > ρi(x− νi∗(x)ei∗) ∀ i ∈ D∗

}∣∣
=

∣∣∣∣∣LD(S,x) ∩

( ⋂
i∈D∗

Gi(S, ρi(x))

)∣∣∣∣∣−
∣∣∣∣∣LD(S,x∗) ∩

( ⋂
i∈D∗

Gi(S, ρi(x
∗))

)∣∣∣∣∣ ,

(3.4)

where x∗ ≡ x− νi∗(x)ei∗ . The inductive hypothesis shows that

∣∣∣∣∣LD(S,x) ∩

( ⋂
i∈D∗

Gi(S, ρi(x))

)∣∣∣∣∣ =
∑

D′′∈2D∗
(−1)|D

′′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣
=

∑
D′′∈2D′ : i∗ /∈D′′

(−1)|D
′′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣
(3.5)

and∣∣∣∣∣LD(S,x∗) ∩

( ⋂
i∈D∗

Gi(S, ρi(x
∗))

)∣∣∣∣∣ =
∑

D′′∈2D∗
(−1)|D

′′|
∣∣∣∣∣LD

(
S,x∗ −

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣
=

∑
D′′∈2D∗

(−1)|D
′′|
∣∣∣∣∣LD

(
S,x− νi∗(x)ei∗ −

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣
= (−1) ·

∑
D′′∈2D′ : i∗∈D′′

(−1)|D
′′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣ .
(3.6)

Then (3.5) and (3.6) can be combined with (3.4) to show that

∣∣∣∣∣LD(S,x) ∩

( ⋂
i∈D′

Gi(S, ρi(x))

)∣∣∣∣∣ =
∑

D′′∈2D′

(−1)|D
′′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′′

νi(x)ei

)∣∣∣∣∣ ,
which completes the proof.
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Lemma 3.11. For any S ⊆ T ∪ C, covariate cluster D ⊆ P, and x ∈ Rp,

ζD(S,x) =
∑

D′∈2D

(−1)|D
′| · F̂D

(
S,x−

∑
i∈D′

νi(x)ei

)
.

Proof. Follows from Lemmas 3.9 and 3.10:

ζD(S,x) =
1

|S|

∣∣∣∣∣LD(S,x) ∩

(⋂
i∈D

Gi(S, ρi(x))

)∣∣∣∣∣
=

1

|S|

( ∑
D′∈2D

(−1)|D
′|
∣∣∣∣∣LD

(
S,x−

∑
i∈D′

νi(x)ei

)∣∣∣∣∣
)

=
1

|S|

( ∑
D′∈2D

(−1)|D
′|
∣∣∣∣∣
{
u ∈ S : PDXu ≤ PD

(
x−

∑
i∈D′

νi(x)ei

)}∣∣∣∣∣
)

=
1

|S|

( ∑
D′∈2D

(−1)|D
′| · |S| · F̂D

(
S,x−

∑
i∈D′

νi(x)ei

))

=
∑

D′∈2D

(−1)|D
′| · F̂D

(
S,x−

∑
i∈D′

νi(x)ei

)
.

Theorem 3.12. If T and C ′ satisfy F̂D(T,x) = F̂D(C ′,x) for all x ∈ XD(T ∪C), then ζD(T,x) = ζD(C ′,x)

for all x ∈ XD(T ∪ C).

Proof. Let C ′ ⊆ C be a control group that satisfies F̂D(T,x) = F̂D(C ′,x) for all x ∈ XD(T ∪ C). For an

arbitrary x ∈ XD(T ∪ C), Lemma 3.11 yields

ζD(T,x) =
∑

D′∈2D

(−1)|D
′| · F̂D

(
T,x−

∑
i∈D′

νi(x)ei

)

=
∑

D′∈2D

(−1)|D
′| · F̂D

(
C ′,x−

∑
i∈D′

νi(x)ei

)
= ζD(C ′,x).

Proof of Theorem 3.8. For the function h0
D(·), the treatment units in T contribute the following to B(T,C ′):

1

|T |
∑
t∈T

h0
D(Xti1 , . . . , Xtik) =

1

|T |
∑

x∈XD(T∪C)

 ∑
t∈T : PDXt=x

h0
D(Xti1 , . . . , Xtik)


=

1

|T |
∑

x∈XD(T∪C)

h0
D(xi1 , . . . , xik)

∑
t∈T : PDxt=x

1


=

∑
x∈XD(T∪C)

h0
D(xi1 , . . . , xik) · ζD(T,x).

(3.7)
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Similarly, control units in C ′ contribute

1

|C ′|
∑
c∈C′

h0
D(Xci1 , . . . , Xcik) =

∑
x∈XD(T∪C)

h0
D(xi1 , . . . , xik) · ζD(C ′,x). (3.8)

The total contribution of h0
D(·) to B(T,C ′) is the difference between (3.7) and (3.8):

1

|T |
∑
t∈T

h0
D(Xti1 , . . . , Xtik)− 1

|C ′|
∑
c∈C′

h0
D(Xci1 , . . . , Xcik)

=
∑

x∈XD(T∪C)

h0
D(xi1 , . . . , xik) · (ζD(T,x)− ζD(C ′,x)) .

(3.9)

By Theorem 3.12, ζD(T,x) = ζD(C ′,x) for all x ∈ XD(T ∪ C). As a result, the summation in (3.9) equals

zero, which ensures that h0
D(·) makes no contribution to B(T,C ′).

Corollary 3.13. Distribution balance on the cluster of all covariates D = P (i.e., F̂D(T,x) = F̂D(C ′,x)

for all x ∈ XD(T ∪ C)) ensures that B(T,C ′) = 0 under Assumption 3.1.

Corollary 3.13 shows that distribution balance (as measured by F̂D) on the full joint distribution of all

covariates provides the same guarantee on B(T,C ′) that exact matching provides under the strong ignorability

assumption. In fact, as noted in Chapter 2, if T and C ′ possess this level of distribution balance, then an

exact matched-pair sample can be constructed using the control units in C ′.

3.3.3 Coarsened Distribution Balance

Both Theorems 3.7 and 3.8 rely on T and C ′ having identical empirical cumulative distribution functions

for the appropriate covariates. As Theorem 3.12 shows, this essentially requires exactly matching units on

a subset of covariates. Because of this, achieving this form of covariate balance is likely to be difficult in

practice, particularly if continuous covariates are involved. However, as Iacus et al. (2012) note, one way

to reduce the difficulty of exact matching on continuous covariates is to coarsen or discretize the covariate

values using histogram bins. Nikolaev et al. (2013) propose the imbalance measure Iχ2 for this purpose; IDiff

and IDiff2 are reasonable alternatives.

When a control group C ′ has no imbalance with respect to T on a coarsened distribution imbalance

measure, the corresponding empirical joint distributions of the covariates are approximately equal for the

two sets of units. The quality of this approximation depends on the granularity of the histogram bins used

to coarsen the covariate values. This level of covariate balance is generally insufficient to remove all bias
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from the estimator (2.17), but under certain assumptions the residual bias can be bounded. The following

assumptions and results apply to an arbitrary covariate cluster D ≡ {i1, i2, . . . , ik} ⊆ P.

Assumption 3.14. The function h0
D(xi1 , xi2 , . . . , xik) is Lipschitz continuous with Lipschitz constant no

greater than KD for the Manhattan distance metric.

For each i ∈ D, label the histogram bin boundaries as

min
u∈T∪C

Xui ≡ bi0 < bi1 < . . . < bini
≡ max
u∈T∪C

Xui,

let bij ≡ (bij − bi,j−1) /2 be the midpoint of bin j ∈ Ni, and let mi ≡ maxj∈Ni {bij − bi,j−1} be the maximum

width of any bin for covariate i. Under Assumption 3.14, for any j ∈ ND and unit u ∈ BDj , the difference

between the function h0
D(·) evaluated at Xu and at the center of the bin is bounded by

∣∣h0
D(Xu,i1 , . . . , Xu1,ik)− h0

D(bii,j1 , . . . , bik,jk)
∣∣ ≤ KD

k∑
l=1

∣∣Xu,il − bil,jl
∣∣ ≤ KD

2

∑
i∈D

mi. (3.10)

Theorem 3.15. Under Assumption 3.14, if C ′ and T satisfy ηDj(T ) = ηDj(C
′) for all j ∈ ND, then the

contribution of the function h0
D(xi1 , . . . , xik) to B(T,C ′) is bounded by KD

∑
i∈Dmi.

Proof. ∣∣∣∣∣ 1

|T |
∑
t∈T

h0
D(Xti1 , . . . , Xtik)− 1

|C ′|
∑
c∈C′

h0
D(Xci1 , . . . , Xcik)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈ND

∑
t∈T∩BDj

h0
D(Xti1 , . . . , Xtik)

|T |
−
∑
j∈ND

∑
c∈C′∩BDj

h0
D(Xci1 , . . . , Xcik)

|C ′|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈ND

 ∑
t∈T∩BDj

h0
D(Xti1 , . . . , Xtik)

|T |
−

∑
c∈C′∩BDj

h0
D(Xci1 , . . . , Xcik)

|C ′|

∣∣∣∣∣∣
≤
∑
j∈ND

∣∣∣∣∣∣
∑

t∈T∩BDj

h0
D(Xti1 , . . . , Xtik)

|T |
−

∑
c∈C′∩BDj

h0
D(Xci1 , . . . , Xcik)

|C ′|

∣∣∣∣∣∣ .

(3.11)
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For each j ≡ (j1, j2, . . . , jk) ∈ ND, the associated term in the summation in (3.11) can be expanded to yield

∣∣∣∣∣∣
∑

t∈T∩BDj

h0
D(Xti1 , . . . , Xtik)

|T |
−

∑
c∈C′∩BDj

h0
D(Xci1 , . . . , Xcik)

|C ′|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

t∈T∩BDj

h0
D(Xti1 , . . . , Xtik)

|T |
− ηDj(T )h0

D

(
bi1,j1 , . . . , bik,jk

)

+ ηDj(C
′)h0

D

(
bi1,j1 , . . . , bik,jk

)
−

∑
c∈C′∩BDj

h0
D(Xci1 , . . . , Xcik)

|C ′|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

t∈T∩BDj

h0
D(Xti1 , . . . , Xtik)

|T |
− |T ∩BDj |

(
h0
D

(
bi1,j1 , . . . , bik,jk

)
|T |

)

+ |C ′ ∩BDj |

(
h0
D

(
bi1,j1 , . . . , bik,jk

)
|C ′|

)
−

∑
c∈C′∩BDj

h0
D(Xci1 , . . . , Xcik)

|C ′|

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|T |
∑

t∈T∩BDj

(
h0
D(Xti1 , . . . , Xtik)− h0

D

(
bi1,j1 , . . . , bik,jk

))

+
1

|C ′|
∑

c∈C′∩BDj

(
h0
D

(
bi1,j1 , . . . , bik,jk

)
− h0

D(Xci1 , . . . , Xcik)
)∣∣∣∣∣∣

≤ 1

|T |
∑

t∈T∩BDj

∣∣h0
D(Xti1 , . . . , Xtik)− h0

D

(
bi1,j1 , . . . , bik,jk

)∣∣
+

1

|C ′|
∑

c∈C′∩BDj

∣∣h0
D(Xci1 , . . . , Xcik)− h0

D

(
bi1,j1 , . . . , bik,jk

)∣∣ .

(3.12)

The results from (3.10) and (3.12) combine with (3.11) to yield

∣∣∣∣∣ 1

|T |
∑
t∈T

h0
D(Xti1 , . . . , Xtik)− 1

|C ′|
∑
c∈C′

h0
D(Xci1 , . . . , Xcik)

∣∣∣∣∣
≤
∑
j∈ND

 1

|T |
∑

t∈T∩BDj

(
KD

2

∑
i∈D

mi

)
+

1

|C ′|
∑

c∈C′∩BDj

(
KD

2

∑
i∈D

mi

)
=

(
KD

2

∑
i∈D

mi

) ∑
j∈ND

∑
t∈T∩BDj

1

|T |
+
∑
j∈ND

∑
c∈C′∩BDj

1

|C ′|


= KD

∑
i∈D

mi.

Theorem 3.15 reveals how the width of the histogram bins affects B(T,C ′). Any set of histogram bins

can be refined by subdividing each of the bins for the marginal distributions into two equal bins with half

the width of the original bin. This subdivision then cuts the bound on B(T,C ′) in half. Theorem 3.15
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is a modified version of Theorem 1 from Nikolaev et al. (2013), which shows that as the granularity of

the histogram bins improves (i.e., the maximum width shrinks), B(T,C ′) converges to zero as long as C ′

continues to satisfy ηDj(T ) = ηDj(C
′) for all j ∈ ND for each set of refined histogram bins.

3.4 The Balance Hierarchy

The results for moment balance and distribution balance are summarized in Table 3.1, which lists potential

terms in the control response function along with the balance requirements that are necessary and sufficient

to ensure that those terms contribute nothing to B(T,C ′). As the terms become more (less) specific, the

level of balance required to ensure no contribution to B(T,C ′) decreases (increases).

Table 3.1: Levels of covariate balance that are required to remove bias from various terms in the control
response function.

Term Balance Required

βixi, i ∈ P
1

|T |
∑
t∈T

Xti =
1

|C ′|
∑
c∈C′

Xci

γa1,a2,...,ap
∏
i∈P

(xi)
ai 1

|T |
∑
t∈T

∏
i∈P

(Xti)
ai =

1

|C ′|
∑
c∈C′

∏
i∈P

(Xci)
ai

h0
i (xi), i ∈ P F̂i(T, x) = F̂i(C

′, x) ∀ x ∈ Xi(T ∪ C)

h0
D(xi1 , xi2 , . . . , xik), D ⊆ P F̂D(T,x) = F̂D(C ′,x) ∀ x ∈ XD(T ∪ C)

h0(x) F̂P(T,x) = F̂P(C ′,x) ∀ x ∈ XP(T ∪ C)

The relationships between moment balance, marginal distribution balance, and joint distribution balance

are formally established in the next several results.

Lemma 3.16. For a covariate i ∈ P, if T and C ′ satisfy F̂i(T, x) = F̂i(C
′, x) for all x ∈ Xi(T ∪ C), then∑

t∈T (Xti)
a
/|T | =

∑
c∈C′ (Xci)

a
/|C ′| for any a ∈ R.

Proof. Let x1 < x2 < . . . < xk be the covariate values in Xi(T ∪ C), with x0 = x1 − 1. Then

1

|T |
∑
t∈T

(Xti)
a

=

k∑
j=1

 ∑
t∈T :

xj−1<Xti≤xj

(Xti)
a

|T |

 =

k∑
j=1

xaj

(
F̂i(T, xj)− F̂i(T, xj−1)

)
.

Similarly,

1

|C ′|
∑
c∈C′

(Xci)
a

=

k∑
j=1

xaj

(
F̂i(C

′, xj)− F̂i(C ′, xj−1)
)
.
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The desired result follows by applying the fact that F̂i(T, x) = F̂i(C
′, x) for all x ∈ Xi(T ∪ C).

Lemma 3.17. For a covariate cluster D = {i1, i2, . . . , ik}, if T and C ′ satisfy F̂D(T,x) = F̂D(C ′,x) for all

x ∈ XD(T ∪ C), then

1

|T |
∑
t∈T

k∏
j=1

(
Xtij

)aj
=

1

|C ′|
∑
c∈C′

k∏
j=1

(
Xcij

)aj
for any aj ∈ R, j ∈ {1, 2, . . . , k}.

Proof. Let aj ∈ R, j ∈ {1, 2, . . . , k} be arbitrary constants. Then

1

|T |
∑
t∈T

k∏
j=1

(
Xtij

)aj
=

1

|T |
∑

x∈XD(T∪C)

 ∑
t∈T : PDXt=x

 k∏
j=1

(
Xtij

)aj
=

∑
x∈XD(T∪C)

 k∏
j=1

(
xij
)aj · ζD(T,x).

A similar argument establishes that

1

|C ′|
∑
c∈C′

k∏
j=1

(
Xcij

)aj
=

∑
x∈XD(T∪C)

 k∏
j=1

(
xij
)aj · ζD(C ′,x).

Theorem 3.12 guarantees that ζD(T,x) = ζD(C ′,x) for all x ∈ XD(T ∪ C), so the result follows.

Lemma 3.18. For a covariate cluster D ⊆ P, if F̂D(T,x) = F̂D(C ′,x) for all x ∈ XD(T ∪ C), then

F̂D′(T,x
′) = F̂D′(C

′,x′) for all x′ ∈ XD′(T ∪ C) for any sub-cluster D′ ⊂ D.

Proof. Let D′ ⊂ D be an arbitrary sub-cluster of D. For an arbitrary x′ ∈ XD′(T ∪ C), define x∗ as

x∗i =


x′i if i ∈ D′

maxXi(T ∪ C) if i ∈ D \D′

0 otherwise.
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By construction, x∗ ∈ XD(T ∪ C). Then

F̂D′(T,x
′) =

∣∣∣{t ∈ T : PD
′
Xt ≤ PD

′
x′
}∣∣∣ /|T |

= |{t ∈ T : Xti ≤ x′i ∀ i ∈ D′}| /|T |

= |{t ∈ T : Xti ≤ x′i ∀ i ∈ D′, Xti ≤ x∗i ∀ i ∈ D \D′}| /|T |

= |{t ∈ T : Xti ≤ x∗i ∀ i ∈ D}| /|T |

=
∣∣{t ∈ T : PDXt ≤ PDx∗

}∣∣ /|T |
= F̂D(T,x∗).

A similar argument shows that F̂D′(C
′,x′) = F̂D(C ′,x∗). So

F̂D′(T,x
′) = F̂D(T,x∗) = F̂D(C ′,x∗) = F̂D′(C

′,x′),

which completes the proof.

Lemma 3.16 establishes that distribution balance is stronger than moment balance because distribution

balance simultaneously balances all moments of the covariate. Lemma 3.17 extends this result to covariate

clusters to show that distribution balance on a cluster D also balances any multivariate moment of covariates

in D. Finally, Lemma 3.18 establishes how joint distribution balance for a cluster D also ensures distribution

balance for joint distributions defined on subsets of D.

The results of Lemmas 3.16, 3.17, and 3.18 create a balance hierarchy that represents the general relation-

ships between various forms of balance. In the balance hierarchy, stronger forms of balance subsume weaker

ones. This hierarchy is a partial ordering because some forms of balance are incomparable (e.g., marginal

distribution balance on covariate i is incomparable to marginal distribution balance on covariate j). Because

there is a one-to-one correspondence between covariate balance levels and the terms in the control response

function (as indicated by Table 3.1), the balance hierarchy implies a relationship between control response

function terms. This relationship is illustrated in Figure 3.1 for three covariates (only low-degree terms are

included in order to simplify the figure). Arrows indicate if one term is subsumed by another. For exam-

ple, the arrow from the term h0
1(x1) to the term β1x1 indicates that the balance necessary to remove the

contribution of h0
1(x1) to B(T,C ′) is also sufficient to remove the contribution of β1x1.

Figure 3.1 illustrates how regression and matching methods differ in their approach to observational

data. Regression methods are typically used in a “bottom-up” fashion by including the low-degree terms
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h0{1,2,3}(x1, x2, x3)

h0{1,2}(x1, x2)

h0{1,3}(x1, x3)

h0{2,3}(x2, x3)

h01(x1)
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2
1x2x3
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2
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2
2
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2
1x2

γ1,1,0x1x2

γ2,0,1x
2
1x3

γ1,0,1x1x3

γ1,0,2x1x
2
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γ0,1,1x2x3
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2
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1 γ3,0,0x
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1 β2x2 γ0,2,0x

2
2 γ0,3,0x

3
2 β3x3 γ0,0,2x

2
3 γ0,0,3x

3
3

Figure 3.1: The balance hierarchy for three covariates, P = {1, 2, 3}. All possible one, two, and three-degree
terms and several four-degree terms are included. An arrow from one term to another indicates that the
first term includes the second term as a special case. Shading indicates approximate ordering of terms, with
darker terms requiring higher levels of covariate balance.

(the leaf nodes in the balance hierarchy) into a model of the control response function, estimating the model

parameters given the data, and then adding higher-degree terms as needed to improve the model fit. In

contrast, matching methods operate “top-down”, making no assumptions about the individual terms and

instead seeking exactly matched pairs in order to remove bias from all possible terms contained within the

function h0(x) simultaneously.

BOSS bridges the gap between matching and regression. In general, BOSS works from some assumptions

about the form of the control response function in order to identify which covariate balance measures are

important. These assumptions can be specific (e.g., by identifying individual terms) or they can be general

(e.g., by identifying which covariates are likely to have interactions). Once these assumptions are made, they

can be translated directly to the covariate balance requirements in Table 3.1, assembled into an imbalance

measure, and optimized using BOSS.

One claim of matching methods is that they are a non-parametric approach to causal inference in obser-

vational studies because they do not require any functional form assumptions. This is true if exact matches

are obtained. However, when inexact matches are found and a claim is made about the matches possessing

“sufficient covariate balance” to ensure an unbiased estimate, this is implicitly an assumption about the

form of the control response function. This can be seen by looking at the above results from the reverse
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direction. That is, instead of the terms in the control response function requiring specific levels of covariate

balance to ensure that B(T,C ′) = 0, the levels of covariate balance indicate which terms can potentially

be in the control response function without increasing B(T,C ′). Thus, a claim that balance is sufficient is

equivalent to the claim that there are no terms in the control response function that require higher levels

of covariate balance. If this claim is in doubt, then regression analysis can be used to estimate and adjust

for the potential bias caused by additional terms that may be present (Ho et al., 2007; Abadie and Imbens,

2011).

BOSS provides a high level of specificity in determining the desired balance characteristics of the control

group. This allows for the incorporation of prior knowledge into BOSS in a variety of ways. For example,

certain covariates and distributions could be prioritized over others by including only them in D, or by

adding appropriate weights to Iecdf:D. In the absence of specific knowledge about the roles of each of

the covariates, a good starting point is to use an imbalance measure that incorporates all of the covariate

balance measures that would have been checked after running a matching method (e.g., marginal and pairwise

joint distributions with balance assessed by a difference of means or a Kolmogorov-Smirnov test). If these

covariate balance measures are used as the arbiter of success in matching, then they should also be sufficient

for BOSS. Depending on the amount of residual imbalance in the control group identified by BOSS, it may

be advantageous to modify the imbalance measure used by BOSS in order to remove to remove residual

imbalance from a subset of the terms or ensure balance on additional ones.

3.5 Testing Assumptions

When dealing with observational data, it is desirable to justify an estimate of τ1
T by demonstrating the

validity of the assumptions that are required for the estimate to be unbiased. This includes Assumption 2.3

at a minimum, and may include additional functional form assumptions depending on the level of covariate

balance that is available in the identified control group. While these assumptions cannot be established

in general, some progress can be made towards corroborating them by designing appropriate statistical

tests to assess whether the available data conforms to either conditions that are directly established by the

assumptions or to conditions that would be reasonably expected to hold if the assumptions were valid. While

a positive outcome from these tests cannot guarantee that the assumptions are valid, a negative outcome

can serve as a red flag to indicate potential problems.
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3.5.1 Tests for Strong Ignorability

Recall from (2.8) that Assumption 2.3 ensures that

Pr
(
Y 0
t ≤ y | Xt = x

)
= Pr

(
Y 0
c ≤ y | Xc = x

)
(3.13)

for all y ∈ R and x ∈ X . One way to test Assumption 2.3 is to use a Kolmogorov-Smirnov two-sample test

with the null hypothesis that the two samples of control responses

{
Y 0
t : t ∈ T, Xt = x

}
and

{
Y 0
c : c ∈ C, Xc = x

}
are drawn from the same distribution at some x ∈ {Xu : u ∈ T ∪ C}. The difficulty is that Y 0

t is unobserved

for all t ∈ T , and as such, there is nothing to which the observed control responses
{
Y 0
c : c ∈ C, Xc = x

}
can be compared.

Previous work focused on various ways to resolve the above difficulty. Rosenbaum (1984) proposes a

method to test Assumption 2.3 under additional assumptions regarding the causal mechanisms that govern

the treatment and control responses. As an example, if the treatment is known to have no effect (i.e., y1
u = y0

u

for all u ∈ U), then under Assumption 2.3, the treatment responses
{
Y 1
t : t ∈ U1, Xt = x

}
and the control

responses
{
Y 0
c : c ∈ U0, Xc = x

}
should be drawn from the same distribution. As both sets of responses

are observed, they lead to an appropriate statistical test.

Rosenbaum (1987a) proposes another method of testing Assumption 2.3. Suppose the control population

U0 is split into two subpopulations U0
1 and U0

2 with different distributions of an unobserved covariate (and

thus possibly different distributions of X and Y 0, as well). Then Assumption 2.3 implies that

Pr
(
Y 0
c ≤ y | c ∈ U0

1 , Xc = x
)

= Pr
(
Y 0
c ≤ y | c ∈ U0

2 , Xc = x
)

(3.14)

for all x ∈ X and all y ∈ R. That is, units in subpopulation U0
1 with covariate values x are equally likely to

have a control response of at most y compared to units in U0
2 with the same covariate values. Unlike (3.13),

the values in (3.14) are all observed, and so they can be used in an appropriate statistical test. For example,

if C1 and C2 are simple random samples from U0
1 and U0

2 , respectively, then (3.14) can be checked at the

points of contact between the samples.

The above two approaches work by ensuring that a comparison distribution exists. In the first case, this

distribution comes from the treatment group T , while in the second case it comes from a second control
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group C2. An alternative approach is to make an additional assumption regarding the distribution of the

control responses at each x ∈ X , and then compare it to the empirical distribution at each observed x.

For example, under the restated version of strong ignorability in Assumption 3.1, if it is additionally

assumed that the error terms E0 are normally distributed at each x ∈ X , then the control responses{
Y 0
c : c ∈ C, Xc = x

}
should be normally distributed at any x ∈ X with at least two units. If instead

it is assumed that the error terms are homoscedastic but not necessarily normal, then the variance of the

control responses in each of the subpopulations {c ∈ C : Xc = x} should be the same. In either case, an

appropriate statistical test can be used to determine if the sampled units corroborate the additional as-

sumption. While these tests focus on additional assumptions about the error terms instead of Assumption

2.3, in many cases it may be reasonable to assume that the error terms are well-behaved. If they are not,

Assumption 2.3 is not directly invalidated but it may be called into question.

3.5.2 Tests for Functional Form Assumptions

Assumptions 3.2 and 3.6 are direct extensions of Assumption 2.3(a) (equivalently, Assumption 3.1), and

as such, the tests in the preceding section can be used as an initial validation of them. If those tests fail,

then any functional form assumption based on only the observed covariates will also be called into question.

However, should Assumption 2.3 be corroborated by the initial tests, then it would be desirable to test the

additional assumptions as well.

If the specific assumption includes covariate terms and their degree (e.g., Assumption 3.2 where all

terms appear to the first degree), then one method of testing is to use linear regression to estimate the

coefficients of the terms and then conduct a goodness-of-fit test on the resulting model. Such an approach

may have difficulty without an additional assumption of homoscedasticity for the error terms. Additionally,

this approach cannot be applied if general terms are assumed to be present in the response function (e.g.,

h0
i (xi)).

A general approach for testing the functional form assumptions is to indirectly analyze the control

response error terms E0. Assumption 3.2 is used to illustrate this process. Suppose for the sampled control

units C ⊂ U0 that there are two disjoint subsets C ′ ⊂ C and C ′′ ⊂ C that satisfy X̄C′ = X̄C′′ . Under
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Assumption 3.2, the difference in average control responses between these groups is

Ȳ 0
C′ − Ȳ 0

C′′ =
1

|C ′|
∑
c∈C′

Y 0
c −

1

|C ′′|
∑
c∈C′′

Y 0
c

=
1

|C ′|
∑
c∈C′

(
βTXc + α+ E0

c

)
− 1

|C ′′|
∑
c∈C′′

(
βTXc + α+ E0

c

)
= βT

(
X̄C′ − X̄C′′

)
+

1

|C ′|
∑
c∈C′
E0
c −

1

|C ′′|
∑
c∈C′′

E0
c

=
1

|C ′|
∑
c∈C′
E0
c −

1

|C ′′|
∑
c∈C′′

E0
c .

This difference is zero in expectation by Assumption 2.4. It can also be computed in practice because Ȳ 0
C′

and Ȳ 0
C′′ are both observed. If the difference is significant, it would raise concerns about Assumption 3.2.

An additional assumption about the control response errors expands this.

Assumption 3.19. The variance of the random variable E0 is finite.

Lemma 3.20. Let c1, c2, . . . , cn be a random sample of control units drawn independently and identically

from U0, with corresponding control response error terms E0
c1 , E

0
c2 , . . . , E

0
cn . If Assumptions 3.1 and 3.19 are

valid, so that E
[
E0
ci

]
= 0 and Var

[
E0
ci

]
≡ σ2 <∞ for all i ∈ {1, 2, . . . , n}, then the Central Limit Theorem

shows that
√
n

(
1

n

n∑
i=1

E0
ci

)
d→ N(0, σ2).

Under Assumption 2.5, the control units in C are drawn from U0 independently and identically. Lemma

3.20 then shows that the average control response error across all sampled units,
∑
c∈C E0

c /|C|, is approx-

imately normally distributed. Under the weaker conditions of Assumption 2.4, the control units in C are

drawn independently but not necessarily identically. Because Assumption 3.1 only ensures that the errors

are uncorrelated with the covariates, the error terms in C may not be identically distributed in this case. In

particular, the conditional variance E0 given X is not guaranteed to be uniform across X . However, if the

error terms satisfy some additional conditions (e.g., Lyapunov’s condition or Lindeberg’s condition), then

the central limit theorem can be applied to show that
∑
c∈C E0

c /|C| is approximately normally distributed

under Assumption 2.4, as well.

Lemma 3.20 motivates the following procedure. Select an x ∈ X at random. From C, identify distinct

(and preferably disjoint) subsets C ′1, C
′
2, . . . , C

′
k that satisfy X̄C′i

= x for all i ∈ {1, 2, . . . , k}. Examine the

distributions of the average control responses Ȳ 0
C′i

for each of the groups. If the resulting distribution of

average control responses is not normal, then the validity of Assumption 3.2 should be questioned. A similar
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procedure can be applied for Assumption 3.6.

The above procedure is meant to motivate the use of multiple control groups in testing the assumptions

and to serve as a starting point for further research. Potential problems that may need to be resolved include

too much overlap among the control groups, a failure to find multiple groups with mean x, or a failure to find

groups that are sufficiently large for the averages of their errors to be approximately normal. Computational

results in Chapter 5 demonstrate how the above procedure may be used in practice.
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Chapter 4

Complexity and Approximation
Results

The BOSS framework leads to the following discrete optimization problem: “Given sets of units T and C with

associated covariate vectors {Xt = xt}t∈T and {Xc = xc}c∈C and imbalance measure I : NX ×NX → [0,∞),

find a (non-empty) control group C ′ ⊆ C that minimizes I(T,C ′).” This chapter discusses the computational

complexity of the above optimization problem by focusing on several cases that arise from specific imbalance

measures. Approximation results are also discussed.

4.1 Complexity Results

The BOSS framework allows for the size of the control group to be specified as input. For any imbalance

measure, a solution to the size-unconstrained optimization problem can be identified by solving the size-

constrained problem for each possible size and then selecting the control group with minimal imbalance. As

such, the results here consider the complexity of the size-constrained problem. The variant of BOSS in which

the control units can be selected with replacement is not considered. The corresponding decision problem

is: “Given sets of units T and C with associated covariate vectors, an imbalance measure I, a target control

group size s, and a value γ ≥ 0, is there a C ′ ⊆ C that satisfies |C ′| = s and I(T,C ′) ≤ γ?”

Lemma 4.1. The decision problem for BOSS with a target size and an imbalance measure I that can be

evaluated in time polynomial in |T |, |C|, and |P| is in NP.

Proof. For a candidate control group C ′, the conditions in the lemma ensure that the two requirements

|C ′| = s and I(T,C ′) ≤ γ can be checked in polynomial time, so the problem is in NP.

Lemma 4.1 applies to IDOM, ISDOM, IKS, IKS:max, IDiff, IDiff2 , and Iχ2 . While the coarsened distribution

imbalance measures can be defined with an arbitrary number of bins, there can be at most |T ∪C| occupied

bins for each covariate that need to be checked. For the imbalance measures Iecdf:D and IDiff:D, the covariate

Some of the material in this chapter has been adapted from Sauppe et al. (2014), INFORMS Journal on Computing 26(3),
with the permission of the copyright holder.
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clusters in D impact whether or not they can be evaluated in time polynomial in |T |, |C|, and |P|. For

example, if D contains a covariate cluster D with |D| = bp/2c, then

|XD(T ∪ C)| =
∏
i∈D
|Xi(T ∪ C)| ∈ O

(
|T ∪ C|bp/2c

)
,

which is not polynomial in p. For IDiff:D, this problem can be mitigated by only inspecting the occupied

bins for cluster D, but Iecdf:D potentially has to compute the empirical cumulative distribution functions

for T and C ′ at all of these values (this can be improved to only consider the values in XD(T ∪C ′), though

the number of values is still exponential in p). A related problem is the number of clusters in D, which can

be up to 2p − 1. However, if D is restricted to contain only clusters with at most some constant number of

covariates, then these functions can be evaluated in time polynomial in |T |, |C|, and p and so Lemma 4.1

applies.

4.1.1 Mean Imbalance Measures

This section considers BOSS with the imbalance measure IDOM.

Theorem 4.2. The decision problem for BOSS with IDOM and a target size is NP-Hard.

Proof. The result can be shown using a reduction from the Subset Sum problem, which is NP-Hard (Garey

and Johnson, 1979). The Subset Sum problem is: Given a set A of integers, does there exist an nonempty

subset A′ ⊆ A such that
∑
a∈A′ a = d?

For an arbitrary instance of Subset Sum, the reduction proceeds as follows. The constructed BOSS

instance has one covariate, P ≡ {1}. The treatment group T contains one unit t with xt,1 = d. The control

pool C contains a unit ca for each a ∈ A with xca,1 = a · |A|, along with |A| − 1 “placeholder” units with

value 0 for covariate 1. The target control group size is s = |A|, and the desired imbalance level is γ = 0.

This completes the reduction, which can be performed in time polynomial in the size of the Subset Sum

instance. It remains to be shown that the answer to the Subset Sum instance is yes if and only if the answer

to the constructed BOSS instance is yes.

(⇒) Let C ′ be a control group for BOSS that satisfies |C ′| = |A| and IDOM(T,C ′) ≤ γ = 0. This implies

that

1

|C ′|
∑
c∈C′

xc,1 =
1

|T |
∑
t∈T

xt,1 = d

Let C ′A = {c ∈ C ′ : c = ca for some a ∈ A}. Since |C ′| = |A|, |C ′A| ≥ 1 since there are only |A| − 1 total
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placeholder units. Then

d =
1

|C ′|
∑
c∈C′

xc,1 =
1

|A|

 ∑
ca∈C′A

xca,1 +
∑

c∈C′\C′A

xc,1

 =
1

|A|

 ∑
ca∈C′A

a|A|+
∑

c∈C′\C′A

0

 =
∑
ca∈C′A

a,

so A′ ≡ {a ∈ A : ca ∈ C ′A} is a nonempty subset of A that sums to d, as desired.

(⇐) Let A′ ⊆ A be a nonempty set of integers such that
∑
a∈A′ a = d. Let C ′A = {ca : a ∈ A′} be

the corresponding set of control units, and let C ′ be the set C ′A padded with any additional units c ∈ C

satisfying xc,1 = 0 so that |C ′| = |A|. Such a padding is possible because there are |A| − 1 placeholder units

available and |A′| ≥ 1. Then it is straightforward to verify that
∑
c∈C′ xc,1/|C ′| = d, which ensures that

I(T,C ′) = 0 ≤ γ, as desired.

Corollary 4.3. The decision problem for BOSS with IDOM and a target size remains NP-Hard if restricted

to a single covariate.

The special case of Subset Sum in which the target sum is 0 can be reduced to BOSS with IDOM and

no target control group size. For this reduction, there is no need to introduce placeholder control units with

xc,1 = 0.

4.1.2 Coarsened Distribution Imbalance Measures

This section considers BOSS with the imbalance measures IDiff and IDiff:D. The bin boundaries for the

covariates and the covariate clusters D are specified with the problem.

Theorem 4.4. The decision problem for BOSS with IDiff:D and a target size is NP-Hard.

Proof. The result can be shown using a reduction from the 3-Dimensional Matching (3DM) problem, which

is NP-Hard (Garey and Johnson, 1979). The 3DM problem is: Given disjoint sets Q, R, and W with

|Q| = |R| = |W | = d and V ⊆ Q×R×W , does there exist a V ′ ⊆ V such that |V ′| = d and no two elements

of V ′ agree in any coordinate?

For an arbitrary instance of 3DM with Q ≡ {q1, q2, . . . , qd}, R ≡ {r1, r2, . . . , rd}, W ≡ {w1, w2, . . . , wd},

and V ⊆ Q×R ×W , the reduction proceeds as follows. It is assumed that |V | ≥ d, otherwise the problem

is infeasible. The constructed BOSS instance has three covariates, P ≡ {1, 2, 3}. The treatment group T

contains d units, indexed from 1 through d, with xti1 = xti2 = xti3 = i for i ∈ {1, 2, . . . , d}. For each

v ≡ (qi, rj , wk) ∈ V , the control pool C contains a unit cv with xcv1 = i, xcv2 = j, and xcv3 = k. Each
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covariate i ∈ P has ni = d histogram bins, with the bin boundaries given by

bi0 = 1, bi,ni = d, bij = j + 0.5 ∀ j ∈ {1, 2, . . . , ni − 1}.

Under these definitions, the units in each histogram bin are given by

Bij ≡ {tj} ∪ {c ∈ C : xci = j} .

To complete the reduction, let D ≡ {{1}, {2}, {3}}, set the target control group size as s = d, and set γ = 0.

All steps for the reduction can be finished in time polynomial in the size of the 3DM instance. It remains

to be shown that the answer to the 3DM instance is yes if and only if the answer to the constructed BOSS

instance is yes.

(⇐) Let C ′ be a control group for BOSS that satisfies |C ′| = d and IDiff:D(T,C ′) ≤ γ = 0. This

implies that ηij(T ) = ηij(C
′) for all i ∈ P and j ∈ Ni. By construction, ηij(T ) = 1/|T |, which means that

|C ′ ∩ Bij | = 1 for all i ∈ P and j ∈ Ni. Now let V ′ ≡ {v ∈ V : cv ∈ C ′}. By construction, the number

of tuples in V ′ having element qj ∈ Q is equal to the number of control units in C ′ with xc1 = j, for all

j ∈ {1, 2, . . . , d}. From the bin definitions, this second quantity is |C ′ ∩ Bij |, which equals one. Hence V ′

contains exactly one tuple with element qj for each j ∈ {1, 2, . . . , d}. An identical argument applies for the

elements in R and W , so V ′ is a valid solution to the 3DM instance.

(⇒) Let V ′ ⊆ V be a solution to the 3DM instance. This means that there is exactly one tuple v ∈ V ′

containing qj ∈ Q, for each j ∈ {1, 2, . . . , d}. Similar conditions hold for the elements in R and W . This

ensures that |V ′| = d. Now let C ′ ≡ {cv : v ∈ V ′}, so that |C ′| = |V ′| = d. By construction, C ′ contains

exactly one control unit c with xci = j for each i ∈ P and j ∈ {1, 2, . . . , d}. Then by the bin definitions,

|C ′ ∩Bij | = 1 for all i ∈ P and j ∈ Ni, and by the construction of T ,

ηij(T ) =
|T ∩Bij |
|T |

=
1

d
=
|C ′ ∩Bij |
|C ′|

= ηij(C
′)

for all i ∈ P and j ∈ Ni, which means that IDiff:D(T,C ′) = 0 ≤ γ.

The reduction used in the proof of Theorem 4.4 leads to the following result.

Corollary 4.5. The decision problem for BOSS with IDiff:D and a target size remains NP-Hard for in-

stances with three covariates.

The reduction in the proof of Theorem 4.4 fails in the case when there is no constraint on the size of the
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control group. To see why, observe that the structure of the treatment group requires |T ∩Bij |/|T | = 1/|T |

for all i ∈ P and j ∈ Ni. A control group C ′ with IDiff:D(T,C ′) = 0 must then satisfy |T ||C ′ ∩Bij |/|C ′| = 1,

which can occur if |C ′∩Bij | = k and |C ′| = k|T | for k ∈ Z+. For k ≥ 2, the BOSS solution cannot necessarily

be used to construct a valid solution for 3DM. As an example, the 3DM instance Q ≡ {q1, q2}, R ≡ {r1, r2},

W ≡ {w1, w2} and

V ≡ {(q1, r1, w1), (q2, r1, w2), (q1, r2, w2), (q2, r2, w1)}

has no valid solution, but the corresponding instance of BOSS satisfies IDiff:D(T,C ′) = 0 by letting C ′ = C,

i.e., without a restriction on |C ′|.

Lemma 4.1 and Theorem 4.4 together imply that the decision problem for BOSS with IDiff:D and a target

size is NP-Complete. More specifically, the decision problem for BOSS with IDiff:D and a target size is

strongly NP-Complete because Theorem 4.4 applies even if the numeric inputs for BOSS (i.e., the covariate

vectors) are restricted to be polynomial in the size of |T |, |C|, and |P|. Hence, the optimization problem for

BOSS with IDiff:D and a target size has no pseudo-polynomial time algorithm and no fully polynomial-time

approximation scheme (FPTAS) unless P = NP. Analogous results apply to BOSS with IDiff.

There are two natural restrictions with IDiff:D: limit the number of covariates (and consequently the

number of covariate clusters), or limit the number of bins for each covariate (i.e., bound |Ni| for all i ∈ P).

In the case of limiting the number of covariates, Corollary 4.5 establishes that there are only a few remaining

cases in which this might lead to problems that can be solved in polynomial time.

Before considering the restricted cases, some properties of IDiff:D can be established. For a fixed treatment

group T and set of histogram bins, define

∆−Dj(C
′) ≡ max (0, |T ∩BDj |/|T | − |C ′ ∩BDj |/|C ′|) (4.1a)

∆+
Dj(C

′) ≡ max (0, |C ′ ∩BDj |/|C ′| − |T ∩BDj |/|T |) (4.1b)

as the bin shortage and bin excess, respectively, of control group C ′ (with respect to T ) for any D ⊆ P and

j ∈ ND. By definition, the bin shortage and excess satisfy

∆−Dj(C
′) + ∆+

Dj(C
′) = max

(
|T ∩BDj |
|T |

− |C
′ ∩BDj |
|C ′|

,
|C ′ ∩BDj |
|C ′|

− |T ∩BDj |
|T |

)
=

∣∣∣∣ |T ∩BDj ||T |
− |C

′ ∩BDj |
|C ′|

∣∣∣∣
= |ηDj(T )− ηDj(C ′)|
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for all D ⊆ P and j ∈ ND. This allows IDiff:D to be expressed as

IDiff:D(T,C ′) ≡
∑
D∈D

∑
j∈ND

|ηDj(T )− ηDj(C ′)|

=
∑
D∈D

∑
j∈ND

(
∆−Dj(C

′) + ∆+
Dj(C

′)
)

=
∑
D∈D

∑
j∈ND

∆−Dj(C
′) +

∑
D∈D

∑
j∈ND

∆+
Dj(C

′).

(4.2)

For any control group C ′ and covariate cluster D, the bin shortages and excesses are related by separating

the bins in ND into two categories (defined with respect to a fixed treatment group T ):

N−D (C ′) ≡ {j ∈ ND : |T ∩BDj | /|T | ≥ |C ′ ∩BDj | /|C ′|}

N+
D (C ′) ≡ {j ∈ ND : |T ∩BDj | /|T | < |C ′ ∩BDj | /|C ′|} .

These sets of bins are related through

∑
j∈N−D (C′)

(ηDj(T )− ηDj(C ′)) =
∑

j∈N−D (C′)

ηDj(T )−
∑

j∈N−D (C′)

ηDj(C
′)

=

1−
∑

j∈N+
D(C′)

ηDj(T )

−
1−

∑
j∈N+

D(C′)

ηDj(C
′)


=

∑
j∈N+

D(C′)

(ηDj(C
′)− ηDj(T )) ,

(4.3)

which follows because
∑
j∈ND

ηDj(S) = 1 for any S ⊆ T ∪ C and D ⊆ P. By definition, the bin shortages

satisfy ∑
j∈ND

∆−Dj(C
′) =

∑
j∈N−D (C′)

∆−Dj(C
′) +

∑
j∈N+

D(C′)

∆−Dj(C
′)

=
∑

j∈N−D (C′)

(
|T ∩BDj |
|T |

− |C
′ ∩BDj |
|C ′|

)
+

∑
j∈N+

D(C′)

0

=
∑

j∈N−D (C′)

(ηDj(T )− ηDj(C ′)) .

(4.4)

A similar argument applies to the bin excesses, yielding

∑
j∈ND

∆+
Dj(C

′) =
∑

j∈N+
D(C′)

(ηDj(C
′)− ηDj(T )) . (4.5)
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Combining (4.3), (4.4), and (4.5) yields

∑
j∈ND

∆−Dj(C
′) =

∑
j∈ND

∆+
Dj(C

′). (4.6)

Then (4.2) and (4.6) show that

IDiff:D(T,C ′) = 2
∑
D∈D

∑
j∈ND

∆−Dj(C
′) = 2

∑
D∈D

∑
j∈ND

∆+
Dj(C

′). (4.7)

Thus, minimizing IDiff:D is equivalent to minimizing twice the total bin shortage or twice the total bin excess.

Theorem 4.6. The optimization problem for BOSS with IDiff:D and a target size is in P when |P| ≤ 2.

Proof. The result can be shown by using a reduction to the minimum cost network flow (MCNF) problem.

Consider an arbitrary instance of BOSS with IDiff:D, target size s, two covariates P ≡ {1, 2}, treatment

group T , control pool C, a set of histogram bins for each covariate (with empty bins removed), and the

full set of covariate clusters D ≡ {{1}, {2}, {1, 2}}. For the remainder of the proof, let D ≡ {1, 2}. Let

rij ≡ s · |T ∩Bij |/|T | for each i ∈ P and j ∈ Ni, and let rDj ≡ s · |T ∩BDj |/|T | for each j ∈ ND.

The reduction to MCNF proceeds as follows. Create a source vertex v+ with supply s and a sink vertex

v− with supply −s. For each j ∈ N1, create a transshipment node v1j , an arc a−1j ≡ (v+, v1j) with cost 0

and capacity br1jc, an arc a+
1j ≡ (v+, v1j) with cost 1 and capacity ∞, and an arc a=

1j ≡ (v+, v1j) with cost

dr1je − r1j and capacity dr1je − br1jc. Similarly, for each j ∈ N2, create a transshipment node v2j , an arc

a−2j ≡ (v2j , v
−) with cost 0 and capacity br2jc, an arc a+

2j ≡ (v2j , v
−) with cost 1 and capacity ∞, and an

arc a=
2j ≡ (v2j , v

−) with cost dr2je − r2j and capacity dr2je − br2jc. Finally, for each j ≡ (j1, j2) ∈ ND,

create a transshipment node vDj , an arc aDj ≡ (v1,j1 , vDj) with cost 0 and capacity |C ∩ BDj |, an arc

a−Dj ≡ (vDj , v2,j2) with cost 0 and capacity brDjc, an arc a+
Dj ≡ (vDj , v2,j2) with cost 1 and capacity ∞,

and an arc a=
Dj ≡ (vDj , v2,j2) with cost drDje − rDj and capacity drDje − brDjc. Let V and A be the sets

of all nodes and arcs, respectively, in the network. This completes the reduction, which can be done in time

polynomial in the number of (occupied) bins, which is at most |T ∪C|. The costs in the MCNF instance are

scaled by s/2 with respect to IDiff:D. Figure 4.1 shows the network flow instance that arises from the above

transformation.

By construction, the minimum cost network flow instance has integer capacities on all arcs and integer

supply and demand values at the source and sink vertices. As such, it has an integral optimal solution

that can be found in polynomial time (Ahuja et al., 1993). It remains to be shown that the BOSS instance
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has a solution C ′ satisfying |C ′| = s and IDiff:D(T,C ′) ≤ γ if and only if the corresponding minimum cost

network flow instance has an integral solution with cost at most sγ/2. Some additional notation is used in

this regard. Let f : A → [0,∞), cap : A → Z, and cost : A → R be the flow, capacity, and cost (per unit

flow) functions, respectively, for the arcs in the network, and let sup : V → R be the supply function for the

nodes in the network. A flow is feasible if it satisfies the capacity constraints f(a) ≤ cap(a) for all a ∈ A

and conservation of flow ∑
a≡(v′,v)∈A

f(a) + sup(v) =
∑

a≡(v,v′)∈A
f(a)

for all v ∈ V .

(⇒) Let C ′ be a control group satisfying |C ′| = s and I(T,C ′) ≤ γ for some γ ≥ 0. A minimum cost flow

solution f with integer flow can be constructed as follows. For each j ∈ ND, let f(aDj) ≡ |C ′ ∩BDj |, which

does not violate arc capacities because |C ′ ∩BDj | ≤ |C ∩BDj | = cap(aDj). Flow conservation requires that

f(a−Dj) + f(a=
Dj) + f(a+

Dj) = f(aDj) = |C ′ ∩BDj |,

which can be satisfied by setting

f(a−Dj) = min (brDjc, |C ′ ∩BDj |) ,

f(a=
Dj) =


0 if |C ′ ∩BDj | ≤ brDjc ≤ rDj

1 if |C ′ ∩BDj | > rDj ,

f(a+
Dj) = max (0, |C ′ ∩BDj | − drDje) .

(4.8)

By construction, these flows do not violate the arc capacities. Additionally, these flows ensure that the flow

costs from the arcs a=
Dj and a+

Dj satisfy

f(a=
Dj) · cost(a=

Dj) + f(a+
Dj) · cost(a+

Dj) =


0 if |C ′ ∩BDj | ≤ rDj

drDje − rDj if rDj < |C ′ ∩BDj | = drDje

|C ′ ∩BDj | − rDj if |C ′ ∩BDj | > rDj .

With (4.1), the above costs simplify to

f(a=
Dj) · cost(a=

Dj) + f(a+
Dj) · cost(a+

Dj) = |C ′| ·∆+
Dj(C

′). (4.9)
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Flow conservation also requires that

f(a−1,j1) + f(a=
1,j1) + f(a+

1,j1
) =

∑
j≡(j1,j2)∈ND

f(aDj) =
∑

j≡(j1,j2)∈ND

|C ′ ∩BDj | = |C ′ ∩B1,j1 | ∀ j1 ∈ N1,

f(a−2,j2) + f(a=
2,j2) + f(a+

2,j2
) =

∑
j≡(j1,j2)∈ND

f(aDj) =
∑

j≡(j1,j2)∈ND

|C ′ ∩BDj | = |C ′ ∩B2,j2 | ∀ j2 ∈ N2,

which can be satisfied by using flow assignments comparable to those in (4.8). The resulting flow costs are

also comparable to those in (4.9). These assignments satisfy flow conservation requirements at the source

and sink nodes. For the source node, the outgoing flow is

∑
j∈N1

(
f(a−1j) + f(a=

1j) + f(a+
1j)
)

=
∑
j∈N1

|C ′ ∩B1j | = |C ′| = sup(v+),

while the sink node has a total incoming flow of

∑
j∈N2

(
f(a−2j) + f(a=

2j) + f(a+
2j)
)

=
∑
j∈N2

|C ′ ∩B2j | = |C ′| = − sup(v−).

This establishes that f is feasible and also integral. The total cost is computed with (4.7) and (4.9) as

∑
a∈A

f(a) · cost(a) =
∑
j∈N1

|C ′| ·∆+
1j(C

′) +
∑
j∈N2

|C ′| ·∆+
2j(C

′) +
∑
j∈ND

|C ′| ·∆+
Dj(C

′)

= |C ′|

∑
j∈N1

∆+
1j(C

′) +
∑
j∈N2

∆+
2j(C

′) +
∑
j∈ND

∆+
Dj(C

′)


= s · IDiff:D(T,C ′)/2

≤ sγ/2,

which completes this direction.

(⇐) Let f be a feasible integral flow solution to the minimum cost network flow instance with cost sγ/2

for some γ ≥ 0. This ensures that f(aDj) is integral and satisfies f(aDj) ≤ |C ∩ BDj | for all j ∈ ND.

Construct the control group C ′ by selecting an arbitrary set of f(aDj) units from C ∩BDj , for each j ∈ D.

Because f is feasible, flow conservation requires that the source node v+ sends out s units of flow. As the arcs

aDj for j ∈ ND form a cut in the network, there must be s units of flow crossing these arcs. By construction,

|C ′| = s. Flow conservation requirements can be combined with the results from (4.8) and (4.9) to show
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that

f(a=
Dj) · cost(a=

Dj) + f(a+
Dj) · cost(a+

Dj) ≥ |C
′| ·∆+

Dj(C
′)

for all j ∈ ND, with similar results holding for covariates 1 and 2. Hence,

|C ′|
∑
j∈N1

∆+
1j + |C ′|

∑
j∈N2

∆+
2j + |C ′|

∑
j∈ND

∆+
Dj ≤

∑
a∈A

f(a) · cost(a) = sγ/2,

and consequently IDiff:D(T,C ′) ≤ γ, as desired.

This completes the proof for the case when D = {{1}, {2}, {1, 2}}. The other cases for two covariates

with D ⊂ {{1}, {2}, {1, 2}} are handled by setting the arc costs to zero for any arc associated with an

excluded covariate cluster. The case with one covariate is handled through an appropriate modification to

the network.

v+ v1,j

v1,1

v1,n1

0, br1jc

1,∞

dr1je − r1j , 1

vD,(j,k)

vD,(j,1)

vD,(j,n2)

0, |C ∩ B1,j ∩ B2,k|

0, |C ∩ B1,j ∩ B2,1|

0, |C ∩ B1,j ∩ B2,n2
|

v2,k

v2,1

v2,n2

0, brD,(j,k)c

1,∞

drD,(j,k)e − rD,(j,k), 1

v−

0, br2kc

1,∞

dr2ke − r2k, 1

Figure 4.1: The minimum cost network flow transformation for solving BOSS with IDiff:D for P ≡ {1, 2}.
Only a subset of the vertices and edges in the network are shown. Labels on edges indicate cost and capacity,
respectively. The source vertex v+ has s units of flow to send to the destination vertex v−.

Lemma 4.7. The optimization problem for BOSS with IDiff:D and a target size is in P when |D| = 2 or

when |D| = 3 with D ≡ {D1, D2, D3} and D1 ∪D2 = D3.

Proof. The reduction in the proof of Theorem 4.6 can be adapted to the case with two covariate clusters D ≡

{D1, D2} by replacing the nodes corresponding to the bins from covariates 1 and 2 with nodes corresponding

to the bins for the covariate clusters, and then adding arcs from each node corresponding to bin j1 ∈ ND1

to each node corresponding to bin j2 ∈ ND2 with cost 0 and capacity |C ∩BD1j1 ∩BD2j2 |. Empty bins are
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omitted.

The case with three covariate clusters follows from the above by first observing that |C∩BD1j1∩BD2j2 | = 0

if |D1 ∩ D2| > 0 and the components in j1 and j2 do not agree for the shared covariates. If j1 and j2 are

compatible, meaning that they either have the same bin for each common covariate or that they have no

covariates in common, then |C ∩BD1j1 ∩BD2j2 | = |C ∩BD3j3 |, where the components of j3 are determined

by the values in j1 and j2. In this case, the network can be modified to penalize bin excess for covariate

cluster D3.

Lemma 4.8. The decision problem for BOSS with IDiff:D and a target size remains NP-Hard for instances

with |Ni| ≤ 2 for all i ∈ P.

Proof. The result can be shown by using a reduction from the Exact Cover by 3-Sets (X3C) problem, which

is NP-Hard (Garey and Johnson, 1979). The X3C problem is: Given a set V with |V | = 3q and a collection

W of 3-element subsets of V , does there exist a W ′ ⊆W such that every element of V occurs in exactly one

member of W ′?

For an arbitrary instance of X3C with set V ≡ {1, 2, . . . , 3q} and a collection W of 3-element subsets of

V , the reduction proceeds as follows. It is assumed that |W | ≥ q, otherwise the problem is infeasible. The

constructed BOSS instance has 3q covariates, P ≡ {1, 2, . . . , 3q}. The treatment group T contains q units,

indexed from 1 through q, with xt1i = 1 for all i ∈ P and xtji = 2 for all i ∈ P and j ∈ {2, 3, . . . , q}. For

each three-set w ≡ (i, j, k) ∈ W , the control pool C contains a unit cw with xcwi = xcwj = xcwk = 1 and

xcwl = 2 for all l ∈ P \ {i, j, k}. Each covariate i ∈ P has ni = 2 histogram bins, with the bin boundaries

defined as bi0 = 1, bi1 = 1.5, and bi2 = 2. Under these definitions, the units in each bin are

Bi1 ≡ {t1} ∪ {cw ∈ C : i ∈ w},

Bi2 ≡ {t2, t3, . . . tq} ∪ {cw ∈ C : i /∈ w},

for all i ∈ P. To complete the reduction, let D ≡ {{i} : i ∈ P}, set the target control group size as s = q, and

set γ = 0. All steps for the reduction can be finished in time polynomial in the size of the X3C instance. It

remains to be shown that the answer to the X3C instance is yes if and only if the answer to the constructed

BOSS instance is yes.

(⇐) Let C ′ be a control group for BOSS that satisfies |C ′| = q and IDiff:D(T,C ′) ≤ γ = 0. This implies

that ηij(T ) = ηij(C
′) for all i ∈ P and j ∈ Ni. By the definition of T , this means that |C ′ ∩ Bi1| = 1 for

all i ∈ P. Now let W ′ ≡ {w ∈ W : cw ∈ C ′}. By construction, the number of 3-sets in W ′ having element
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i ∈ V is equal to the number of control units in C ′ with xci = 1. From above, this second quantity equals

one for all i ∈ V . This ensures that each element in V occurs in exactly one member of W ′, so W ′ is a valid

solution to the X3C instance.

(⇒) Let W ′ ⊆ W be a solution to the X3C instance. This means that each element in V occurs in

exactly one member of W ′. Because W ′ contains 3-element subsets and |V | = 3q, it must be the case that

|W ′| = q. Now let C ′ ≡ {cw ∈ C : w ∈ W ′}, which satisfies |C ′| = q. For each i ∈ P, |C ′ ∩ Bi1| is equal

to the number of units in C ′ with xci = 1. By construction, this second quantity is equal to the number of

3-sets in W ′ containing element i. From above, this quantity equals 1 for all i ∈ V . So |C ′ ∩ Bi1| = 1 and

|C ′ ∩Bi2| = |C ′| − |C ′ ∩Bi1| = q− 1 for all i ∈ P. The treatment group also satisfies this property. Because

|T | = |C ′|, it follows that I(T,C ′) = 0 ≤ γ.

One final case that can be considered is if the number of covariates and the number of bins are both

restricted.

Lemma 4.9. The optimization problem for BOSS with IDiff and a target size is in P if |P| ≤ a1 and

|Ni| ≤ a2 for all i ∈ P for constants a1 and a2.

Proof. For each c ∈ C, the covariate vector xc can be replaced with a bin vector satisfying xci = j if c ∈ Bij

for all i ∈ P. The number of unique bin vectors is

∏
i∈P
|Ni| ≤

∏
i∈P

a2 ≤ aa12 ≡ a,

where a is a (potentially large) constant. The problem of selecting a control group C ′ ⊆ C with target size s

is then replaced by the problem of selecting a multiset of s bin vectors from among those that are available,

with the units in C determining how many times each bin vector can be selected. In the worst case, each

bin vector can appear at least s times in C. The multiset coefficient provides the number of ways in which s

elements can be selected with repetition from a set of a unique elements, which leads to an upper bound of

(
s+ a− 1

s

)
=

(s+ a− 1)!

s!(a− 1)!
∈ O

(
(s+ a− 1)

a−1
)

on the number of unique sets of bin vectors that can be used to form a valid solution for BOSS. Thus, a

brute force search and evaluation of these solutions can be done in time proportional to a (large) polynomial

in s+ a− 1.

The preceding result can be extended to IDiff:D by observing that the number of covariate clusters is
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bounded by 2a1 . Lemma 4.9 does not imply that BOSS with IDiff is fixed-parameter tractable because the

fixed parameters appear as an exponent for the free parameters (specifically, s). The algorithm provided in

the proof is not particularly useful, either, even for very small values of a1 and a2. For example, with |P| = 3

and |Ni| ≤ 2 for all i ∈ P, the bound on the number of unique multisets of bin vectors is O
(

(s+ 7)
7
)

.

Improving this bound is left as a direction for future research.

4.1.3 Other Distribution Imbalance Measures

Theorem 4.10. The decision problem for BOSS with a target size and IKS, IKS:max, Iecdf:D, IDiff2 , or Iχ2

is NP-Hard.

Proof. The result can be shown using a two-step reduction from the 3-Dimensional Matching (3DM) problem

to BOSS with IDiff:D to BOSS with one of IKS, IKS:max, Iecdf:D, IDiff2 , or Iχ2 . The first part of the reduction

from an arbitrary instance of 3DM to BOSS with IDiff:D and a target size is described in the proof of

Theorem 4.4. The constructed BOSS instance has three covariates, three covariate clusters (one for each of

the covariates), a target control group size equal to the size of the treatment group, and a desired imbalance

of γ = 0. By design, IDiff:D(T,C ′) = 0 if and only if ηij(T ) = ηij(C
′) for all i ∈ P and j ∈ Ni.

The reduction from BOSS with IDiff:D to BOSS with IDiff2 is straightforward: everything is preserved

except the imbalance measure. By design, IDiff2(T,C ′) = 0 if and only if ηij(T ) = ηij(C
′) for all i ∈ P and

j ∈ Ni. Hence, a control group C ′ satisfies IDiff2(T,C ′) = 0 if and only if it satisfies IDiff:D(T,C ′) = 0.

This demonstrates that BOSS with IDiff2 can be used to solve the 3DM instance, and so it is NP-Hard.

The reduction to BOSS with Iχ2 is similar. By design, Iχ2(T,C ′) = 0 if and only if |C ′ ∩ Bij | = |T ∩ Bij |.

Because the target control group size equals the size of the treatment group, a feasible control group C ′

satisfies Iχ2(T,C ′) = 0 if and only if it satisfies IDiff:D(T,C ′) = 0. Hence, BOSS with Iχ2 is also NP-Hard.

The reduction from BOSS with IDiff:D to BOSS with IKS is similar, except that the bin information

is ignored while the units’ covariate values are retained. For a 3DM instance with d elements per set, the

corresponding BOSS instance has units with covariate values in {1, 2, . . . , d} for each covariate. By the

definitions of the bins in the reduction, any S ⊆ T ∪ C satisfies

ηi1(S) = F̂i(S, 1)

ηij(S) = F̂i(S, j)− F̂i(S, j − 1) ∀ j ∈ {2, 3, . . . , d},
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for all i ∈ P, which also ensures that

F̂i(S, j) =
∑

j′∈Ni:j′≤j
ηij(S) ∀ i ∈ P, j ∈ Ni.

So for any covariate i ∈ P, F̂i(T, x) = F̂i(C
′, x) for all x ∈ Xi(T ∪ C ′) if and only if ηij(T ) = ηij(C

′) for all

j ∈ Ni. By design, IKS(T,C ′) = 0 if and only if

sup
x∈Xi(T∪C)

∣∣∣F̂i(T, x)− F̂i(C ′, x)
∣∣∣ = 0

for all i ∈ P, which occurs if and only if F̂i(T, x) = F̂i(C
′, x) for all i ∈ P and x ∈ Xi(T ∪ C). Hence,

a control group C ′ can satisfy IKS(T,C ′) = 0 if and only if it satisfies IDiff:D(T,C ′) = 0. Hence, BOSS

with IKS can be used to solve the 3DM instance and so it is NP-Hard. An analogous argument applies to

IKS:max. The result for Iecdf:D follows because IKS is a special case of it.

Corollary 4.11. The decision problems for BOSS with a target size and IKS, IKS:max, Iecdf:D, IDiff2 , or Iχ2

remain NP-Hard for instances with only three covariates or instances with at most two values per covariate.

4.2 Approximation Results

Given the intractability of BOSS with a variety of imbalance measures, a study of approximation methods is

reasonable. Specifically, one might look for an approximation algorithm that achieves a relative performance

guarantee of α with respect to the optimal value. As the optimization problems associated with BOSS

are naturally minimization problems, such an algorithm would be able to identify a control group C ′ that

satisfies I(T,C ′) ≤ αOPT, where OPT ≡ minC′′⊆C I(T,C ′′). However, such an algorithm is unlikely to

exist.

Lemma 4.12. Unless P = NP, there is no polynomial-time approximation algorithm with factor α for

BOSS with IDiff:D and a target size, for any α > 1.

Proof. Consider the 3DM reduction from the proof of Theorem 4.4. For an instance of 3DM, the corre-

sponding decision problem for BOSS with IDiff:D asks if there is a control group C ′ with |C ′| = s and

IDiff:D(T,C ′) ≤ γ = 0. If such a group exists, then OPT = 0 and an α-approximation algorithm for BOSS

with IDiff:D and a target size would return a solution C ′ satisfying IDiff:D(T,C ′) ≤ αOPT = 0. If no

such group exists, then OPT > 0, and an α-approximation algorithm would return a solution C ′ satisfying

66



0 < OPT ≤ IDiff:D(T,C ′) ≤ αOPT. In either case, the solution returned by the α-approximation algorithm

could be used to determine whether or not the 3DM instance has a solution in polynomial time. Because

3DM is NP-Hard, this would imply that P = NP.

Corollary 4.13. Unless P = NP, there is no polynomial-time approximation algorithm with factor α for

BOSS with a target size and IDOM, IKS, IKS:max, Iecdf:D, IDiff2 , or Iχ2 , for any α > 1.

Despite the negative result from Lemma 4.12, alternate imbalance measures may be more amenable to

approximation. The remainder of this section investigates this possibility for a balance measure that is

related to IDiff:D.

4.2.1 Maximizing Balance

The difficulty with approximating an imbalance measure is that the ideal case of no imbalance does not allow

any room for an approximation algorithm with a relative performance guarantee to return a sub-optimal

solution. To remedy this, one can use a balance measure that assesses similarity instead of dissimilarity,

which shifts the goal from minimization to maximization.

One such balance measure can be created from IDiff:D after a few observations. The first observation was

mentioned earlier in (4.6): for any control group C ′, the total bin excess is equal to the total bin shortage for

each D ∈ D. Therefore, either the bin excess penalty or the bin shortage penalty can be removed without

impacting the quality of the solutions.

The second observation builds on the first by shifting from a penalty for bin shortage to a reward for bin

coverage. The following discussion focuses on BOSS with a target control group size, s. For each D ∈ D

and j ∈ ND, define the demand (with respect to a fixed treatment group T ) as

rDj ≡ s · ηDj(T ) = s · |T ∩BDj |/|T |,

which represents the desired number of control units in C ′ that should belong to bin j of cluster D. For a

control group C ′ of any size, define the coverage (with respect to a fixed treatment group T ) as

wDj(C
′) ≡ min (|C ′ ∩BDj |, rDj)

for all D ∈ D and j ∈ ND.
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Any control group C ′ with |C ′| = s satisfies

|C ′| ·∆−Dj(C
′) = |C ′| ·max (0, |T ∩BDj |/|T | − |C ′ ∩BDj |/|C ′|)

= max (0, s · |T ∩BDj |/|T | − |C ′ ∩BDj |)

= max (0, rDj − |C ′ ∩BDj |)

= rDj −min (rDj , |C ′ ∩BDj |)

= rDj − wDj(C ′),

(4.10)

which can be seen by examining the relationship between rDj and |C ′ ∩BDj |. If rDj ≥ |C ′ ∩BDj |, then

max (0, rDj − |C ′ ∩BDj |) = rDj − |C ′ ∩BDj | = rDj −min (rDj , |C ′ ∩BDj |) .

In the case when rDj < |C ′ ∩BDj |, then

max (0, rDj − |C ′ ∩BDj |) = 0 = rDj − rDj = rDj −min (rDj , |C ′ ∩BDj |) .

Then (4.7) and (4.10) can be used to show that any C ′ with |C ′| = s satisfies

IDiff:D(T,C ′) = 2 ·
∑
D∈D

∑
j∈ND

∆−Dj(C
′)

=
2

|C ′|
∑
D∈D

∑
j∈ND

(rDj − wDj(C ′))

=
2

s

∑
D∈D

∑
j∈ND

s · |T ∩BDj |
|T |

− 2

s

∑
D∈D

∑
j∈ND

wDj(C
′)

= 2 · |D| −
(

2

s

) ∑
D∈D

∑
j∈ND

wDj(C
′).

(4.11)

Because the coverage values are always nonnegative and |D| is constant, minimizing IDiff:D(T,C ′) over all

control groups with size s is equivalent to maximizing the sum of the coverage values across all bins and

clusters. Thus, BOSS with IDiff:D can be reformulated as a maximization problem with the coverage balance

measure:

I+
Cvg:D(T,C ′) ≡

∑
D∈D

∑
j∈ND

wDj(C
′),

where I+ denotes a balance measure that should be maximized.
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4.2.2 Approximability

The reformulated problem for BOSS with I+
Cvg:D can be viewed as a generalized set cover problem since it

combines aspects of two well-known problems: Set Multicover, in which each element needs to be covered a

specified number of times, and Maximum Coverage, in which the number of sets that can be used in the cover

is constrained and the goal is to cover as many elements as possible. In this case, the elements correspond

to the bins for each covariate cluster, and rDj specifies the number of times the associated bin (element)

needs to be covered. The sets available for covering elements correspond to control units with their elements

determined by the bins to which the control unit belongs.

Both Set Multicover and Maximum Coverage have been well-studied from an approximation perspective

(Vazirani, 2001). A generalization of these two problems, which also captures BOSS with I+
Cvg:D, is the

Submodular Maximum Coverage problem. This problem is: Given a universe V of elements, a monotone

submodular function f : 2V → [0,∞), and an integer d, pick a set V ′ ⊆ V of size at most d that maximizes

f(V ′). A function f is monotone if f(Q) ≤ f(R) whenever Q ⊆ R. A function f is submodular if and only

if f(Q) +f(R) ≥ f(Q∪R) +f(Q∩R) for all Q,R ⊆ V ; equivalently, f(Q∪{v})−f(Q) ≥ f(R∪{v})−f(R)

for all Q ⊆ R ⊆ V and v ∈ V . Note that since the number of subsets of V is exponential, the function f is

specified as a value oracle; that is, f is specified as a polynomial-time subroutine that will return the function

value for any given V ′ ⊆ V . The Submodular Maximum Coverage problem can be approximated using the

standard greedy algorithm presented in Algorithm 1. Nemhauser et al. (1978) proved that Algorithm 1

achieves an approximation ratio of 1− 1
e for Submodular Maximum Coverage if f(∅) = 0.

Algorithm 1 Greedy Algorithm for Submodular Maximum Coverage

procedure GreedyCover(V , f , d)
V ′ ← ∅
while |V ′| < d do

v′ ← arg maxv∈V \V ′ {f(V ′ ∪ {v})− f(V ′)}
V ′ ← V ′ ∪ {v′}

end while
return v′

end procedure

Lemma 4.14. For a fixed treatment group T , control pool C, histogram bins, and covariate clusters, the

function I+
Cvg:D is both monotone and submodular.

Proof. To show that I+
Cvg:D is monotone, it suffices to observe that for any C ′′ ⊂ C ′ ⊆ C, I+

Cvg:D(T,C ′′) ≤

I+
Cvg:D(T,C ′) since |C ′′ ∩BDj | ≤ |C ′ ∩BDj | for all D ∈ D and j ∈ ND.

To show that I+
Cvg:D is submodular, let C ′′ ⊂ C ′ ⊂ C be arbitrary sets and let c ∈ C \ C ′. Since
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C ′′ ⊂ C ′, it follows that |C ′′ ∩ BDj | ≤ |C ′ ∩ BDj | for all D ∈ D and j ∈ ND. Now consider the marginal

improvement that c can provide when added to C ′ compared to when c is added to C ′′. The unit c can improve

I+
Cvg:D(T,C ′) by fulfilling some unsatisfied demand for some bin j ∈ ND of a cluster D ∈ D. This requires

that |C ′∩BDj | < rDj . But then unit c also fulfills unsatisfied demand for C ′′, since |C ′′∩BDj | ≤ |C ′∩BDj |.

Hence

I+
Cvg:D(T,C ′′ ∪ {c})− I+

Cvg:D(T,C ′′) ≥ I+
Cvg:D(T,C ′ ∪ {c})− I+

Cvg:D(T,C ′).

As this holds for all C ′′ ⊂ C ′ ⊂ C and c ∈ C \ C ′, it follows that I+
Cvg:D is submodular.

As a result of Lemma 4.14, BOSS with I+
Cvg:D and a target control group size can be viewed as an

instance of Submodular Maximum Coverage. This leads to the following theorem.

Theorem 4.15. Algorithm 1 yields a
(
1− 1

e

)
-approximation for BOSS with I+

Cvg:D and a target size.

Proof. Follows from Lemma 4.14 and the approximation ratio for Submodular Maximum Coverage (Nemhauser

et al., 1978).

The approximation ratio holds for I+
Cvg:D but not for IDiff:D. However, (4.11) establishes that I+

Cvg:D

and IDiff:D are related by

IDiff:D(T,C ′) = 2 · |D| −
(

2

s

)
· I+

Cvg:D(T,C ′).

This means that the relative quality of C ′ with respect to all other possible solutions remains the same under

either IDiff:D or I+
Cvg:D (i.e., if C ′ is the ith best solution for one objective, it is also the ith best solution

for the other objective, ignoring ties).

4.2.3 Inapproximability

Theorem 4.15 demonstrates that BOSS with I+
Cvg:D and a target size can be approximated to within a factor

of
(
1− 1

e

)
by using the greedy algorithm for Submodular Maximum Coverage, but it does not say whether

or not it is possible to improve upon this. The following result clarifies this point.

Theorem 4.16. Unless P = NP, BOSS with I+
Cvg:D and a target size is inapproximable to within

(
1− 1

e + ε
)

for any fixed ε > 0.

Proof. The result can be shown by using an approximation-preserving reduction from the Maximum Coverage

problem, which is inapproximable to within
(
1− 1

e + ε
)

for any fixed ε > 0, unless P = NP (Feige, 1998,
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Thm. 5.3). The Maximum Coverage problem is: Given a universe of elements V , a collection W of subsets

of V , and an integer d, find a collection W ′ ⊆ W of subsets with |W ′| ≤ d that maximizes |∪W∈W′W |.

For an arbitrary instance of Maximum Coverage with elements V ≡ {1, 2, . . . ,m}, collection of subsets

W, and an integer d, the reduction proceeds as follows. Construct a BOSS instance with P ≡ {1, 2, . . . ,m}.

Construct the treatment group T with d units, indexed from 1 through d, with xt1i = 1 for all i ∈ P and

xtji = 2 for all i ∈ P and j ∈ {2, 3, . . . , d}. For each W ∈ W, the control pool C contains a control unit cV

with xcV i = 1 if i ∈ V and xcV i = 3 otherwise for each i ∈ P. Each covariate i ∈ P has ni = 3 histogram

bins, with the bin boundaries given by bi0 = 1, bi1 = 1.5, bi2 = 2.5, bi3 = 3.0. Under these definitions, the

units in each histogram bin are

Bi1 ≡ {t1} ∪ {cW ∈ C : i ∈W},

Bi2 ≡ {t2, t3, . . . , td},

Bi3 ≡ {cW ∈ C : i /∈W}.

To complete the reduction, let D ≡ {{i} : i ∈ P} and set the target control group size at s = d. By

construction, the demand is rD1 = 1, rD2 = d− 1, and rD3 = 0 for all D ∈ D.

All steps for the reduction can be finished in time polynomial in the size of the Maximum Coverage

instance. To see that the reduction is approximation preserving, it suffices to observe that the BOSS

instance has a solution C ′ satisfying |C ′| = s and I+
Cvg:D(T,C ′) = γ if and only if the Maximum Coverage

instance has a solution covering γ elements.

(⇒) Let C ′ ⊆ C be a solution that satisfies |C ′| = s and I+
Cvg:D(T,C ′) = γ. Because rD3 = 0 and

|C ′ ∩ BD2| = 0 for all D ∈ D, the only coverage that C ′ provides is in bin 1 of each cluster. Additionally,

because rD1 = 1 for all D ∈ D, C ′ must satisfy |C ′∩BD1| ≥ 1 for γ clusters in order to satisfy I+
Cvg:D(T,C ′) =

γ. For a cluster D ≡ {i}, in order for |C ′∩BD1| ≥ 1, there must exist a unit cW ∈ C ′ that satisfies xcW i = 1,

which ensures that i ∈W by construction. Then W ′ ≡ {W ∈ W : cW ∈ C ′} is a collection that satisfies

∣∣∣∣∣ ⋃
W∈W′

W

∣∣∣∣∣ = |{i ∈ V : D ≡ {i}, |C ′ ∩BD1| ≥ 1}| = γ.

(⇐) Let W ′ ⊆ W be a solution to the Maximum Coverage instance that covers γ elements. Without loss

of generality, it is assumed that |W ′| = d, otherwise additional sets can be added to W ′ without decreasing

the number of covered elements. Let C ′ ≡ {cW ∈ C : W ∈ W ′} be the control units corresponding to the

sets in W ′. For each i ∈ ∪W∈W′W , there exists a W ∈ W ′ with i ∈W . By construction, the corresponding
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control unit cW satisfies xcW i = 1 and consequently cV ∈ BD1 for D ≡ {i}. This ensures that |C ′∩BD1| ≥ 1.

As this holds for γ unique elements covered byW ′, it must be the case that wDj(C
′) ≥ 1 for γ clusters. This

means that I+
Cvg:D(T,C ′) = γ, as desired.

The above approximation-preserving reduction implies that a
(
1− 1

e + ε
)
-approximation algorithm for

BOSS with I+
Cvg:D and a target size could be used to provide a

(
1− 1

e + ε
)
-approximation algorithm for

Maximum Coverage for any ε > 0. Because Maximum Coverage cannot be approximated to this factor

unless P = NP, no such approximation algorithm can exist for BOSS with I+
Cvg:D unless P = NP.

An immediate consequence of Theorem 4.16 is that BOSS with I+
Cvg:D and a target size has no polynomial-

time approximation scheme (PTAS) unless P = NP.

4.3 Comments

The hardness results in Section 4.1 rely on reductions from NP-Hard decision problems to BOSS instances

that require zero imbalance. It would be useful to identify approximation-preserving reductions from NP-

Hard optimization problems to BOSS instances with a minimization imbalance measure. However, as the

results in Section 4.2 indicate, the structure of these imbalance measures is not immediately amenable to such

reductions. One difficulty is that a reduction from an NP-Hard optimization problem to BOSS must encode

both the constraints of the problem (with the exception of control group size) and the objective function

information into the imbalance measure. Any imbalance measure that penalizes all imbalance equally would

have difficulty avoiding control groups that violate some constraints but improve the objective function. This

issue could be overcome by using an imbalance measure with separate penalties for each of the covariates.

Another possibility for making progress in identifying approximation-preserving reductions is to view

BOSS as a vector problem. For example, BOSS with IDOM and a target size can be restated in the following

form: Given a set of vectors V in Rp and a target point v∗ ∈ Rp, find a subset V ′ ⊆ V of size s that

minimizes
∥∥v∗ −∑v∈V ′ v

∥∥
1
. Here the target point represents the mean covariate values for the treatment

group after appropriate scaling. BOSS with IDiff can be reformulated in a similar manner using binary

vectors of dimension
∑
i∈P |Ni|, as can IDiff:D. If control units can be selected with repetition, then the

resulting problems bear some similarity to lattice problems.

An additional possibility is to identify reductions from either NP-Hard decision problems or NP-Hard

optimization problems to BOSS without a size constraint. As noted earlier, Subset Sum with a target sum of

d = 0 can be reduced to BOSS with IDOM and no size constraint, but no other reductions have been found.
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Chapter 5

Computational Results

This chapter presents computational results for BOSS with various imbalance measures using both simulated

and actual datasets. BOSS was solved with heuristics and exact algorithms. Comparisons with several

matching approaches are also included.

5.1 Algorithms

Given the computational complexity of BOSS for various imbalance measures, heuristics and exact algorithms

(e.g., branch-and-bound) are two ways in which BOSS can be solved in practice. Several approaches were

investigated in order to solve the problem with a target control group size. Developing general techniques

for BOSS without a target control group size is a direction for future research.

5.1.1 Simulated Annealing

Simulated annealing is a heuristic that transitions between solutions, or states, in a search space to seek

a local minimum or maximum (Kirkpatrick et al., 1983). Beginning with a feasible solution, simulated

annealing makes a series of random transitions from the current solution to a neighboring solution. An

uphill transition is a move from a solution with a smaller objective function value to a neighboring solution

with a larger objective value, while a downhill transition is a move that decreases the objective function value.

For a minimization problem, uphill transitions are accepted randomly subject to a probability threshold.

During the course of the search, the threshold for accepting an uphill transition increases, making them less

likely to occur. This causes the search process to converge to a local optimum (where local is defined with

respect to the neighbor function). Randomized restarts can be used to diversify the search by jumping to a

new solution outside of the current neighborhood.

A simulated annealing heuristic for BOSS was implemented using the 1-exchange neighborhood defined

Some of the material in this chapter has been adapted from Sauppe et al. (2014), INFORMS Journal on Computing 26(3),
and Nikolaev et al. (2013), Operations Research 61(2), with the permission of the copyright holders.
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on a set of control units. Starting from an initial random control group C ′ with |C ′| = s, simulated annealing

attempts to swap a random unit c1 ∈ C ′ with a random unit c2 ∈ C\C ′. The objective values of the solutions

are their respective imbalances. Random restarts are employed if no progress has been made after a number

of iterations or if a confirmed global optimum has been identified (i.e., if I(T,C ′) = 0). The algorithm

terminates after performing a pre-defined number of iterations. Details are provided in Algorithms 2 and 3.

5.1.2 Mathematical Programming Models

The BOSS framework with inputs T , C, a generic imbalance measure I and a target control group size s

can be modeled as the following nonlinear integer program:

min I({xt : t ∈ T} , {xc : c ∈ C, vc = 1}) s.t.
∑
c∈C

vc = s, vc ∈ {0, 1} ∀ c ∈ C. (5.1)

In (5.1), each unit c ∈ C has an associated binary decision variable vc that indicates whether or not unit c

is included in C ′. For this formulation, the imbalance measure is considered to be a black box procedure,

and as such, it is difficult to optimize in general. However, specific imbalance measures are more readily

captured in mathematical programming formulations. For example, BOSS with IDOM and a target size can

be expressed as the following mixed integer (linear) program (MIP):

min
∑
i∈P

wi (5.2a)

s.t.
∑
c∈C

vc = s (5.2b)

1

s

∑
c∈C

vcxci −
1

|T |
∑
t∈T

xti ≤ wi ∀ i ∈ P (5.2c)

1

|T |
∑
t∈T

xti −
1

s

∑
c∈C

vcxci ≤ wi ∀ i ∈ P (5.2d)

vc ∈ {0, 1} ∀ c ∈ C. (5.2e)

The binary decision variables vc in (5.2e) indicate whether or not each c ∈ C is included in C ′. For each

covariate i ∈ P, the continuous variable wi is constrained by (5.2c) and (5.2d) to be at least the difference

in covariate means between the selected control group and the treatment group. The objective (5.2a) is to

minimize the sum of the w variables. Appropriate scaling of the objective yields a model for BOSS with

ISDOM. The constraint (5.2b) ensures that exactly s control units are included in the control group. Solvers

74



Algorithm 2 Simulated annealing heuristic for BOSS.

procedure simulatedAnnealing(T , C, I, s)
C ′ ← a random subset of C with size s
C∗ ← C ′

Initialize the search parameters: . Set by user; these values were determined through tests
initialTemperatureFactor ← 0.01
coolingRate ← 0.975
totalCoolingPeriods ← 800
coolingPeriodLength ← 5000
restartAfterXFailures ← 5000
restartAfterXOptSols ← 1

Initialize the search counters and variables:
iteration ← 0
coolingPeriodsCompleted ← 0
consecutiveFailedMoved ← 0
zeroObjSols ← 0
temperature ← I(T,C ′)· initialTemperatureFactor

do
if (iteration mod coolingPeriod) = 0 then

temperature ← temperature · coolingRate
coolingPeriodsCompleted ← coolingPeriodsCompleted +1

end if
C ′ ← performRandomMove(T , C, I, C ′, temperature)
if move was accepted then

consecutiveFailedMoves ← 0
if I(T,C ′) < I(T,C∗) then C∗ ← C ′ end if
if I(T,C ′) = 0 then zeroObjSols ← zeroObjSols +1 end if

else
consecutiveFailedMoves ← consecutiveFailedMoves +1

end if
if (consecutiveFailedMoves ≥ restartAfterXFailures)

or (zeroObjSols > restartAfterXOptSols) then
C ′ ← a random subset of C with size s
if I(T,C ′) < I(T,C∗) then C∗ ← C ′ end if
consecutiveFailedMoves ← 0
zeroObjSols ← 0

end if
iteration ← iteration +1

while coolingPeriodsCompleted < totalCoolingPeriods
return C∗

end procedure
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Algorithm 3 Transition step for simulated annealing.

procedure performRandomMove(T , C, I, C ′, temperature)
c← a random unit in C \ C ′
c′ ← a random unit in C ′

C ′′ ← {c} ∪ C ′ \ {c′}
δ ← I(T,C ′)− I(T,C ′′)
if δ > 0 then . Downhill Move

acceptanceProb ← 1.0
else if temperature > 0.000001 then

acceptanceProb ← exp (δ/temperature)
else

acceptanceProb ← 0.0
end if
if (random[0, 1] ≤ acceptanceProb) then return C ′′ . Move to the new solution
else return C ′ end if . Else stay at the original solution

end procedure

from integer and linear programming can be applied to these models to solve BOSS with IDOM or ISDOM.

The problem of minimizing IKS for BOSS with a target size can also be formulated as a mixed integer

program. Recall that Xi(T ∪ C) is the set of unique values that units in T ∪ C attain for covariate i ∈ P.

Then a MIP model for optimizing IKS is

min
∑
i∈P

wi (5.3a)

s.t.
∑
c∈C

vc = s (5.3b)

1

s

∑
c∈C:xci≤x

vc − F̂i(T, x) ≤ wi ∀ i ∈ P, x ∈ Xi(T ∪ C) (5.3c)

F̂i(T, x)− 1

s

∑
c∈C:xci≤x

vc ≤ wi ∀ i ∈ P, x ∈ Xi(T ∪ C) (5.3d)

vc ∈ {0, 1} ∀ c ∈ C. (5.3e)

The binary decision variables in (5.3e) are identical to those in (5.2e). For each covariate i ∈ P, the

continuous variable wi is constrained by (5.3c) and (5.3d) to be at least the value of
∣∣∣F̂i(T, x)− F̂i(C ′, x)

∣∣∣
for all possible values x ∈ Xi(T ∪ C). By minimizing (5.3a), an optimal solution will set each wi to be

exactly the maximum value of
∣∣∣F̂i(T, x)− F̂i(C ′, x)

∣∣∣ over all x ∈ Xi(T ∪ C). Finally, (5.3b) ensures that

the control group is of the desired size. Model (5.3) can be extended to BOSS with IKS:max through minor

modifications.
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The number of constraints in (5.3c) and (5.3d) is

2
∑
i∈P
|Xi(T ∪ C)| ∈ O(|P| · |T ∪ C|)

because there may be many unique values for each covariate (which is likely to be the case for continuous

covariates). This can be quite large and result in significant memory requirements for MIP solvers. One

way this can be addressed is to revise the constraints (5.3c) and (5.3d) to only assess imbalance on a smaller

subset of the covariate values. For example, coarsening the values reduces the number of unique values per

covariate and leads to a smaller MIP model. Such an approach was used by Zubizarreta (2012).

An alternate approach to handling the large number of constraints in Model (5.3) is to recognize that

many of the constraints in (5.3c) and (5.3d) will not be active at any given solution, and thus, they may

not ever be needed in the model. So instead of explicitly including all constraints in the model prior to

optimization, the constraints can be included on an as-needed basis during the optimization process. This

is similar to row generation techniques for linear and integer programming. As an example, Model (5.3) can

be initialized with only a subset of the constraints in (5.3c) and (5.3d). Then during optimization, once an

integer solution is found, the excluded constraints from (5.3c) and (5.3d) can be examined for violations.

Violated constraint are added to the model, which is then re-optimized. This process is repeated until an

integer solution with no violated constraints is identified. The mixed integer programming solver CPLEX

provides this capability through the Lazy Constraint Callback feature.

In addition to the large number of constraints in Model (5.3), there is also a large number of nonzeros in

the associated constraint matrix. This can dramatically increase memory requirements for MIP solvers. A

reformulated model with an increased number of rows and columns but fewer nonzero elements can be used

to decrease memory requirements. Let

min Xi(T ∪ C) ≡ xi1 < xi2 < . . . < xiki ≡ max Xi(T ∪ C)

be the ki unique values in Xi(T ∪ C) for covariate i ∈ P. A sparse model can be created by adding the

continuous variables qij for each i ∈ P and j ∈ {1, 2, . . . , ki} and replacing the constraints (5.3c) and (5.3d)
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with

∑
c∈C:xci=xi1

vc = qi1 ∀ i ∈ P

∑
c∈C:xci=xij

vc + qi,j−1 = qij ∀ i ∈ P, j ∈ {2, 3, . . . , ki}

qij
s
− F̂i(T, xij) ≤ wi ∀ i ∈ P, j ∈ {1, 2, . . . , ki}

F̂i(T, xij)−
qij
s
≤ wi ∀ i ∈ P, j ∈ {1, 2, . . . , ki}.

BOSS with IDiff and a target size can be formulated as

min
∑
i∈P

∑
j∈Ni

wij (5.4a)

s.t.
∑
c∈C

vc = s (5.4b)

1

s

∑
c∈C∩Bij

vc − ηij(T ) ≤ wij ∀ i ∈ P, j ∈ Ni (5.4c)

ηij(T )− 1

s

∑
c∈C∩Bij

vc ≤ wij ∀ i ∈ P, j ∈ Ni (5.4d)

vc ∈ {0, 1} ∀ c ∈ C. (5.4e)

In Model (5.4), there is a continuous variable wij that is constrained by (5.4c) and (5.4d) to be at least the

imbalance between the treatment group and the selected control group for bin j ∈ Ni of covariate i ∈ P.

Minimizing (5.4a) ensures that an optimal solution will set each wij to be exactly |ηij(T )− ηij(C ′)|. Model

(5.4) requires O(n · |P|) constraints, where n ≡ maxi∈P ni. Depending on the granularity of the bins, this

can be significantly smaller than the O(|P| · |T ∪ C|) constraints required by Model (5.3).

Models (5.3) and (5.4) can be extended to handle Iecdf:D and IDiff:D, respectively, for any set of covariate

clusters D. For IDiff:D, constraints (5.4c) and (5.4d) are modified to include the covariate clusters and their

associated bins. For Iecdf:D, constraints (5.3c) are modified to

1

s

∑
c∈C:

PDxc≤PDx

vc − F̂D(T,x) ≤ wD ∀ D ∈ D, x ∈ XD(T ∪ C), (5.5)
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with similar modifications for (5.3d). For a covariate cluster D, the number of constraints in (5.5) is

|XD(T ∪ C)| =
∏
i∈D
|Xi(T ∪ C)| ∈ O

(
|T ∪ C||D|

)
,

which can become quite large depending on the number of covariates in the cluster. In contrast, the total

number of constraints in the MIP model for IDiff:D is O(|D| · |T ∪ C|) because only the occupied bins need

to be checked for each cluster.

BOSS with IDiff2 can be formulated as a mixed integer quadratic program (MIQP) due to the quadratic

penalty terms in the objective. This also allows the sign of the imbalance variables wij to be ignored.

min
∑
i∈P

∑
j∈Ni

w2
ij (5.6a)

s.t.
∑
c∈C

vc = s (5.6b)

1

s

∑
c∈C∩Bij

vc − ηij(T ) = wij ∀ i ∈ P, j ∈ Ni (5.6c)

vc ∈ {0, 1} ∀ c ∈ C. (5.6d)

A model for BOSS with Iχ2 can be constructed through minor modifications.

5.1.3 Implementation

The above algorithms and models were implemented in C++ and interfaced with both R and CPLEX. The

computational tests reported here were obtained across several Linux desktops with marginal differences in

hardware characteristics. All machines had an Intel Core i7 2.67 GHz or 2.8 GHz quad core processor with

hyper-threading, and all had either 6 or 12 GB of RAM. Time limits reported for CPLEX are specified in

user time, while computing times reported by CPLEX are specified in CPU time. Due to CPLEX’s ability

to parallelize computations, many reported running times exceed the stated time limit.

In all experiments, the target control group size was set to the size of the treatment group. A pre-

processing step was used to bin the data into uniform-width bins for any appropriate imbalance measure.

Specifically, for covariate i ∈ P with ni total bins, the bin boundaries were set to

bij ≡ minXi(T ∪ C) + j · (maxXi(T ∪ C)−minXi(T ∪ C)) /ni (5.7)
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for each j ∈ {0, 1, . . . , ni}. The values for ni were varied in the experiments and are reported in the results.

Unless otherwise specified, the covariate clusters were D ≡ {{i} : i ∈ P}.

For Models (5.3), (5.4), and (5.6), the implementations used a modified version of the imbalance con-

straints presented in Section 5.1.2. Specifically, for Model (5.4), the constraints (5.4c) and (5.4d) were written

in the form

∑
c∈C∩Bij

vc − s · ηij(T ) ≤ wij ∀ i ∈ P, j ∈ Ni (5.8a)

s · ηij(T )−
∑

c∈C∩Bij

vc ≤ wij ∀ i ∈ P, j ∈ Ni. (5.8b)

This causes the objective function for the resulting model to be scaled by s with respect to the original

objective (5.4a). When s is a multiple of |T |, the constraints in (5.8) have integer coefficients and the

resulting objective function is integer-valued. This formulation was found to perform better in practice,

as well. Similar modifications were applied to Models (5.3) and (5.6). In all cases, the original imbalance

measures can be recovered after optimization by appropriate scaling (s−1 in the case of IKS and IDiff, and

s−2 in the case of IDiff2).

5.2 Simulated Data

A variety of simulated datasets were created in order to test BOSS. By varying the properties of these

datasets, the performance of BOSS with various imbalance measures was assessed in well-characterized

settings. In particular, knowledge of the control response function allows the results from Chapter 3 to be

demonstrated empirically.

5.2.1 Experiments with Heuristics

Preliminary computational tests were conducted to illustrate the potential for the BOSS framework. In these

tests, the simulated annealing algorithm shown in Algorithm 2 was used as a first attempt at optimization.

Data Generation

Two samples (T,C) of 500 treatment units and 10,000 control units were created. The first set of samples

included three covariates for each unit, while the second included ten covariates. Each sample was created

by first randomly generating a pool of 5,000 potential treatment units and a pool of 10,000 control units,
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with the covariate values for each unit drawn from a normal distribution. Each treatment group of 500 units

was drawn randomly but non-uniformly from the pool of potential treatment units. Units with covariate

values in the tails of the covariate distribution were drawn with higher probability than those with values in

the center of the distributions, ensuring that the resulting sets of treatment and control units had different

covariate distributions.

Figure 5.1 shows the empirical cumulative distributions of covariate values in the treatment group and

control pool in the sample with 3 covariates. The covariate distributions of the treatment group differ from

those of the control pool, particularly for the first two covariates.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

C
u
m
u
la
ti
v
e
D
en

si
ty

Values for Covariate 1

Distribution of Covariate 1

Treatment Group
Control Pool

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

C
u
m
u
la
ti
v
e
D
en

si
ty

Values for Covariate 2

Distribution of Covariate 2

Treatment Group
Control Pool

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

C
u
m
u
la
ti
v
e
D
en

si
ty

Values for Covariate 3

Distribution of Covariate 3

Treatment Group
Control Pool

Figure 5.1: Initial covariate distributions of the treatment group and control pool for the 3-covariate sample.

After generating the set of treatment units in each sample, treatment and control responses were assigned

to the units. The treatment effect was set to be zero, so that y1
u = y0

u for each unit u ∈ T ∪ C. The control

response errors ε0
u for each u ∈ T ∪ C were drawn from a normal distribution with mean zero and standard

deviation 2. For the 3-covariate sample, two response functions were considered. The first response function

was linear:

y1
u ≡ y0

u ≡ 10 + 7xu1 + 6xu2 + 5xu3 + ε0
u. (5.9)
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The resulting dataset consisting of units with covariate values and observed responses was labeled data3c10k.

The second response function was nonlinear:

y1
u ≡ y0

u ≡ 10 + exp(xu1) + x2
u2 + 0.1x3

u3 + ε0
u. (5.10)

The resulting dataset for (5.10) was labeled data3c10kn. For the 10-covariate sample, the dataset data10c10k

was created from the following linear response function:

y1
u ≡ y0

u ≡ 10 + 7xu1 + 6xu2 + 5xu3 − 3xu4 + 3xu5 + 2xu6 + xu7 − xu8 + 0.5xu9 + 0.1xu10 + ε0
u (5.11)

Theorem 3.3 implies that balance on the covariate means is sufficient to remove all bias in the estimate of

the treatment effect for (5.9) and (5.11), while Theorem 3.7 implies that balance on the marginal distributions

of the covariates is required for (5.10).

Results for BOSS with Coarsened Distribution Imbalance

Several experiments were conducted on the datasets data3c10k and data10c10k using BOSS with Iχ2 . Several

different sets of bins were considered, with ni = 4, 8, 16, and 32 for each i ∈ P. This sequence was chosen

because it forms a bin scheme where each successive set of bins simply subdivides the previous set of bins in

half, creating a telescopic increase in the number of bins. As demonstrated by Theorem 3.15, this cuts the

bound on the total bias in half when Assumptions 3.6 and 3.14 are valid.

For each dataset and bin scheme, 25 runs of the simulated annealing algorithm were performed, with a

different random seed used for each run, to generate a set of control groups for analysis. Throughout a run,

every 50th identified control group or control group with Iχ2(T,C ′) = 0 was processed and stored, along with

Kolmogorov-Smirnov (KS) two-sample goodness-of-fit test statistics for the treatment and control covariate

distributions. For datasets with multiple covariates, the KS test statistic values were averaged over all the

covariates. Upon completion of the experiments, any duplicated control groups were removed.

Because the simulated annealing algorithm uses 1-exchanges, each successive reported control group has

a high degree of overlap with its predecessor (at most 50 out of a total of 500 units could have been changed).

To reduce overlap among the solutions with Iχ2(T,C ′) = 0, random restarts were performed after each such

control group was identified.

Table 5.1 summarizes the features of optimal solutions obtained from the data3c10k dataset. The Bins

column specifies the number of bins used (per covariate), and the Observations column reports the number
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of identified control groups satisfying Iχ2(T,C ′) = 0. The remaining columns list the mean and standard

deviation of the treatment effect estimates and the KS two-sample test statistics (averaged over the covari-

ates). No results are presented for data10c10k because no solutions with Iχ2(T,C ′) = 0 were found if more

than four bins per covariate were used.

Table 5.1: Optimal solutions for data3c10k with respect to Iχ2 .

τ̃1
T KS

Bins Observations µ σ µ σ

4 25, 214 2.2904 0.2684 0.1155 0.0090
8 17, 404 1.1434 0.1605 0.0825 0.0072

16 7, 689 0.2380 0.1098 0.0369 0.0038
32 833 0.0122 0.0900 0.0274 0.0027
64 0 N/A N/A N/A N/A

Table 5.1 shows that as the number of bins for each covariate increases, the estimate of the treatment

effect tends toward the true value of zero. The KS test statistic values also indicate an increasingly higher

level of balance in the covariate distributions of the treatment and control groups.

Table 5.2 shows the difference in covariate means for the treatment group and control pool, as well as the

difference in covariate means for the treatment group and an optimized control group obtained by solving

BOSS with Iχ2 and ni = 32 for all i ∈ P. The initial mean imbalance in the treatment group and control

pool is largely removed through optimization.

Table 5.2: Difference of covariate means before and after optimization with Iχ2 and ni = 32 for all i ∈ P.

Difference of Means

Set Covariate Before Optimization After Optimization

data3c10k
1 0.869 0.009
2 0.862 0.001
3 0.160 0.007

data10c10k

1 0.539 0.007
2 0.553 0.014
3 0.420 0.001
4 −0.355 0.002
5 0.446 0.028
6 0.346 0.007
7 0.407 0.010
8 −0.180 0.005
9 0.208 0.002

10 0.152 0.009
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Figure 5.2: Scatter plot of the estimated treatment effect against imbalance (measured by Iχ2 with 32 bins)
for control groups from data3c10k.

The solutions with residual imbalance for both data3c10k and data10c10k were also analyzed. For each

dataset, the identified control groups were sorted by their imbalance measures with respect to Iχ2 . The range

of imbalances was then subdivided into windows of fixed width. For each window, all control groups with an

imbalance within the window were grouped together and their estimated treatment effects and other relevant

statistic values were averaged. Tables A.1 and A.2 display these average values obtained with ni = 32 for

all i ∈ P. Figures 5.2 and 5.3 provide scatter plots of the estimated treatment effect against imbalance

for all control groups identified during a single run of the simulated annealing algorithm on data3c10k and

data10c10k, respectively. In general, as Iχ2(T,C ′) approaches zero, the estimated treatment effect tends

toward zero, the true value for τ1
T . Despite the inability to obtain solutions without residual imbalance for

data10c10k, accurate estimates are still obtained when Iχ2 is close to zero.

Results for BOSS with Mean Imbalance

Given the difficulty of obtaining control groups satisfying Iχ2(T,C ′) = 0 for the data10c10k dataset, the

simulated annealing algorithm was used with IDOM in order to analyze how relaxing the balance requirements

affects the solution quality. Table A.3 shows aggregate estimates of the treatment effect and other solution

information from the identified control groups, split into several different imbalance measure ranges. As
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Figure 5.3: Scatter plot of the estimated treatment effect against imbalance (measured by Iχ2 with 32 bins)
for control groups from data10c10k.

IDOM approaches zero, the estimated treatment effect tends toward the true treatment effect of zero, which

is as expected from Theorem 3.3 and the linear nature of the response function (5.11).

The results from Tables A.2 and A.3 indicate that IDOM is more effective than Iχ2 in providing an

accurate estimate of τ1
T for this particular dataset. However, the KS scores are worse with IDOM, indicating

that the covariate distributions are not as balanced compared to the control groups identified by Iχ2 . If

the control response function is nonlinear, the distributional imbalance may result in residual bias in the

estimate of the treatment effect.

To demonstrate this point, five runs of the simulated annealing algorithm were performed with the

data3c10kn dataset, using both Iχ2 with ni = 32 for all i ∈ P and IDOM. The best solutions obtained from

these runs are reported in the first two rows of Table 5.3. In this case, the best solutions obtained with

Iχ2 lead to better estimates of τ1
T than those obtained with IDOM. In this case, the nature of the response

function (5.10) ensures that Assumption 3.2 is invalid while 3.6 is valid. As such, Theorem 3.7 applies but

Theorem 3.3 does not.

The imbalance measure IDOM can be extended by incorporating higher moments, either raw or centered,
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Table 5.3: Best solutions for data3c10kn for various imbalance measures.

Permitted τ̃1
T KS

Objective Imbalance Observations µ σ µ σ

Iχ2 (ni = 32) 1.0×10−7 156 −0.0170 0.0875 0.0804 0.0078
IDOM 1.0×10−3 7, 086 −1.3889 0.3395 0.2770 0.0226
IDOMV 1.0×10−3 357 0.0392 0.0959 0.1669 0.0179
IDOM2V 1.0×10−3 403 0.0986 0.1057 0.1435 0.0121

of the distributions. For these experiments, two extensions were considered. Let

µi(S) ≡ 1

|S|
∑
u∈S

xui

and

s2
i (S) ≡ 1

|S| − 1

∑
u∈S

(xui − µi(S))
2

be the sample mean and sample variance for covariate i ∈ P across the units in S ⊆ T ∪C. Two additional

imbalance measures are

IDOMV(T,C ′) ≡ IDOM(T,C ′) +
∑
i∈P

∣∣s2
i (T )− s2

i (C
′)
∣∣

and

IDOM2V(T,C ′) ≡
∑
i∈P

(µi(T )− µi(C ′))
2

+
∑
i∈P

∣∣s2
i (T )− s2

i (C
′)
∣∣ .

These two imbalance measures can be used to find control groups with the first and second moments of the

covariate distribution as close as possible to those of the treatment group. These two measures differ in

the weight that they place on the means. For data3c10kn, the results from optimizing these two imbalance

measures with the simulated annealing algorithm are shown in the third and fourth rows of Table 5.3.

The mean estimates from solutions identified by IDOMV and IDOM2V improve over the mean estimate from

IDOM, but they are worse than the mean estimate from Iχ2 . In addition, both IDOMV and IDOM2V are less

successful than Iχ2 at balancing the covariate distributions.

Comparison with Matching Methods

To demonstrate the performance of BOSS with respect to existing matching methods, the Matching package

(Sekhon, 2011) was used. The package allows for matching based on propensity score, matching directly on
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Table 5.4: Comparison of single best solutions for BOSS and matching for data3c10kn.

Objective KS

Objective Value τ̃1
T µ max

Iχ2 (ni = 32) 0.0 −0.1142 0.025 0.026
IDOM 1.50×10−5 −0.9877 0.093 0.118
IDOMV 3.77×10−4 0.0271 0.062 0.088
IDOM2V 2.69×10−4 0.1154 0.045 0.060
Prop. Score N/A −1.3434 0.125 0.158
Cov. Matching N/A 0.0943 0.025 0.034

the values of the covariates, or some combination of the two. For the purposes of testing, a standard logistic

regression model was used to estimate the propensity score as a linear function of the covariates.

Table 5.4 compares the best solutions (as defined by the imbalance measure, with ties broken arbitrarily)

obtained by BOSS with Iχ2 using ni = 32 for all i ∈ P, IDOM, IDOMV, and IDOM2V to the solutions returned

by both propensity score matching and matching on the covariates for the data3c10kn dataset. The Objective

column lists the method used to obtain the solution, the Objective Value column lists the residual imbalance

of the best solution for BOSS (no objective score is available for matching), the τ̃1
T column lists the estimate

of the treatment effect computed from the best solution, and the KS columns list the average and maximum

values of the KS test statistic for the marginal covariate distributions in the treatment group and the best

control group.

For these results, the propensity score model fares the worst in producing accurate estimates of the

treatment effect, while covariate matching and BOSS with Iχ2 , IDOMV, and IDOM2V produce reasonable

results. The poor performance of the propensity score approach might be due to the use of a linear model

to estimate it, while the actual response function is nonlinear. A better model for estimating the propensity

score would potentially improve these results. Additionally, the propensity score approach produces the

worst balance as measured by the KS statistic, followed by BOSS with IDOM. BOSS with Iχ2 and covariate

matching perform the best in this regard.

One difficulty for matching on the covariates is that close matches become less likely as the number of

covariates increases. To demonstrate this problem, the matching procedures were run on the data10c10k

dataset. Table 5.5 shows the best solutions obtained by the various BOSS and matching approaches. Since

data10c10k uses a linear response function (5.11), both propensity score matching and BOSS with IDOM

perform better than they did previously. This improvement occurs because balancing covariate means for

a linear response function produces good estimates, as Theorem 3.3 indicates. Estimating the propensity
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Table 5.5: Comparison of single best solutions for BOSS and matching for data10c10k.

Objective KS

Objective Value τ̃1
T µ max

Iχ2 (ni = 32) 2.9502 0.2168 0.026 0.036
IDOM 0.0029 0.1294 0.039 0.056
IDOMV 0.0157 0.1857 0.037 0.048
IDOM2V 0.0158 0.1947 0.045 0.052
Prop. Score N/A −0.1148 0.066 0.114
Cov. Matching N/A 2.818 0.067 0.088

score with a linear model tends to balance the means indirectly, while optimizing IDOM balances the means

directly. On the other hand, the effectiveness of covariate matching is reduced due to the difficulty of finding

close matches on ten different covariates. Finally, BOSS with Iχ2 is seen to produce the best covariate

balance as measured by the KS test statistic, while the matching approaches produce the worst covariate

balance.

5.2.2 Experiments with Exact Algorithms

A second set of computational tests used the mixed integer programming (MIP) models in Section 5.1.2 to

explore how the number of covariates affects the ability to balance their marginal distributions. These tests

compared BOSS with IDiff to several matching methods. By using exact algorithms instead of heuristics,

it is possible to verify if solutions with residual imbalance are optimal. This is a key benefit of the BOSS

framework as compared to matching methods, which generally do not have any way to assess if the balance

for an identified matched-pair sample can be improved.

Data Generation and Setup

Three datasets with 25 covariates each were created for these tests. Covariate values for control units

were normally distributed with mean 0 and standard deviation 3 for all covariates. For the treatment

units, each covariate i ∈ P had mean µi ∼ U(−2, 2), and was normally distributed about its mean with a

standard deviation of 2. This construction ensured that sufficient overlap existed on the covariate values

between the treatment group and control pool. If there is insufficient overlap in an observational study,

then other methods of adjustment such as regression may be used, though such methods tend to be model-

dependent. Each dataset contained 100 treatment units, and 1000, 5000, and 10,000 control units; the

datasets were designated as data25c1k, data25c5k, and data25c10k, respectively. No response functions were
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used to initialize the treatment and control responses of the units in these datasets. This allows for different

response functions to be applied after optimization in order to assess how the estimate of the treatment

effect from an optimal solution changes under different types of functions.

Model (5.4) with the modifications in (5.8) was used to formulate BOSS with IDiff. For all tests, the

bins were constructed using the the boundaries in (5.7) with ni = 20 for all i ∈ P. For matching, both the

Mahalanobis distance and the propensity score distance were used as distance metrics. The Mahalanobis

distance was computed using the StatMatch package in R (D’Orazio, 2012), and the propensity scores were

estimated as a linear function of the covariates using a standard logistic regression model. For each distance

metric, the optimal matched pairs were identified by formulating and solving a matching model in CPLEX.

The MIP models were solved using CPLEX with a time limit of 60 seconds. All matching problems solved

within a few seconds, so the time limits had no impact on solution quality. For BOSS with IDiff, CPLEX

typically found good solutions within the first 60 seconds and made only minor improvements after that.

The greedy approximation algorithm for BOSS with I+
Cvg:D presented in Section 4.2 was implemented (with

a few heuristic improvements) and used to generate initial solutions which were passed to CPLEX prior to

optimization. In almost all cases, CPLEX was able to quickly improve upon these solutions.

Comparisons on Covariate Balance

BOSS with IDiff and matching methods with the Mahalanobis metric and propensity scores were run on each

of the datasets while varying the number of covariates from one to 25. A comparison of the covariate balance

levels (assessed through Kolmogorov-Smirnov two-sample test statistics on the marginal distributions) for

solutions identified by BOSS and matching on the datasets data25c1k, data25c5k, and data25c10k is presented

in Tables A.4, A.5, and A.6, respectively. Figures 5.4 and 5.5 provide graphical displays of these results,

with all possible numbers of covariates (from one up to 25). In each of the figures, the top two charts are

for data25c1k, the middle two are for data25c5k, and the bottom two are for data25c10k. In Figure 5.4, the

charts on the left side show the average values of the Kolmogorov-Smirnov test statistic across the covariates

for the best matching and BOSS solutions. The charts on the right show the maximum values. In Figure

5.5, the charts on the left side show the average p-values from the KS tests while the charts on the right side

show the minimum p-values. The MM lines correspond to matching with the Mahalanobis metric and the

PS lines correspond to matching with propensity scores.

The trends in Figures 5.4 and 5.5 show that both Mahalanobis matching and BOSS yielded solutions

with good covariate balance for a small number of covariates, but as more covariates were included, BOSS
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Figure 5.4: Trends for balance quality of matching and BOSS solutions. Trend lines indicate the average
and maximum values of the Kolmogorov-Smirnov test statistic.
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Figure 5.5: Trends for balance quality of matching and BOSS solutions. Trend lines indicate the average
and minimum p-values from the Kolmogorov-Smirnov test across all covariates.
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showed a consistent improvement over the other approaches with respect to the KS test. Propensity score

matching had worse performance as measured by the KS test for more than one covariate, but the balance

degraded at a slower rate as more covariates were included. In all cases, BOSS outperformed both matching

methods if there were five or more covariates. Additionally, for sets data25c5k and data25c10k, minimum

p-values were above 0.05 for all but two BOSS solutions across all numbers of covariates. In contrast, the

minimum p-values dropped below 0.05 after 18 and 16 covariates for Mahalanobis matching and after 8 and

7 covariates for propensity score matching on the respective datasets. In general, all methods performed

better with the larger control pools, as more potential controls increased the amount of overlap between the

covariate distributions.

For the maximum KS values and minimum p-values in Figures 5.4 and 5.5, the trend lines are more

erratic. One reason for this is that BOSS with IDiff attempts to minimize the average covariate imbalance,

which may increase imbalance on some covariates in order to decrease imbalance on others. However, BOSS

can also minimize the maximum imbalance across all covariates, which should smooth out these trend lines.

BOSS with IKS should provide KS results that are at least as good as those for BOSS with IDiff because it

is directly optimizing the measure of interest. However, in practice Model (5.3) solves significantly slower than

Model (5.4), even with the improvements to reduce memory usage (for the larger datasets, such improvements

were required in order to fit the model in memory). Because of this issue, BOSS with IDiff was used for

these tests.

Comparisons with Response Functions

As a further comparison between matching and BOSS with IDiff, three separate scenarios were considered

for the form of the control response function. In all three scenarios, the treatment and control responses for

each unit were identical so that there was no treatment effect. The responses in Scenario A were computed as

a linear function of the covariates, the responses in Scenario B were computed as a separable but nonlinear

function of the covariates, and the responses in Scenario C were computed as a nonlinear function of the

covariates with several covariate interaction terms. The full response functions for all 25 covariates are

presented in (5.12), (5.13), and (5.14), respectively, with E0
u drawn from a normal distribution with mean

zero and standard deviation 1 for all units. When fewer than 25 covariates were used during optimization, the

remaining terms in the response function were dropped (e.g., for data25c1k with 10 covariates, all response

function terms for xui for i > 10 were omitted from the computation of the responses).
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y1
u ≡ y0

u ≡ 1.4xu1 + 1.3xu2 + 0.9xu3 − 0.9xu4 + 1.4xu5 − 1.2xu6 + 0.4xu7

− 1.3xu8 + 0.6xu9 + 1.2xu10 + 0.5xu11 + 0.4xu12 + 1.2xu13 − 0.9xu14

+ 1.5xu15 + 0.8xu16 − 0.9xu17 + 1.5xu18 − 1.2xu19 + 0.7xu20 − 0.5xu21

− 1.3xu22 + 1.1xu23 − 1.2xu24 + 0.5xu25 + ε0
u

(5.12)

y1
u ≡ y0

u ≡ 0.8xu1(1.0− xu1) + 0.5xu2(0.7 + xu2) + 0.9xu3 − 0.9xu4

+ 0.7x2
u5(0.5 + xu5)− 0.6x2

u6 + 0.4xu7 − 0.8xu8

+ 0.6xu9(0.9− xu9) + 0.2x2
u10(0.3− xu10) + 0.5x2

u11 − 1.4xu12

− 0.8xu13 − 0.9x2
u14 + 0.5x2

u15(0.1 + xu15) + 0.8xu16

− 0.9xu17(0.2− xu17) + 1.5xu18 − 1.2xu19(1.0 + xu19) + 0.7x2
u20(0.8− xu20)

− 0.5xu21 − 1.3xu22(1.0 + xu22) + 1.1xu23 − 1.2xu24(1.0 + xu24)

+ 0.4x2
u25(0.6− xu25) + ε0

u

(5.13)

y1
u ≡ y0

u ≡ 0.8xu1(1.0− xu1) + 0.5xu2(0.7 + xu1) + 0.27xu3xu2 − 0.9x2
u4

+ 0.7xu5(0.5 + xu5)xu2 − 0.6xu6xu1 + 0.4xu7 − 0.8xu8

+ 0.6xu9(0.9− xu9) + 0.2x2
u10(0.3− xu7) + 0.5x2

u11 − 1.4xu12

− 0.8xu13 − 0.9x2
u14 + 0.5x2

u15(0.1 + xu15) + 0.8xu16

− 0.9xu17(0.2− xu13) + 1.5xu18 − 1.2xu19(1.0 + xu11) + 0.7x2
u20(0.8− xu20)

− 0.5xu21 − 1.3xu22(1.0 + xu22) + 1.1xu23 − 1.2xu24(1.0 + xu23)

+ 0.4x2
u25(0.6− xu25) + ε0

u

(5.14)

For each of the three datasets and each possible number of covariates, the three different response

functions were applied to the corresponding matching and BOSS solutions and an estimate of the treatment

effect was computed as the difference in average responses for the treatment and control groups. Tables A.7,

A.8, and A.9 present these results for datasets data25c1k, data25c5k, and data25c10k. Figure 5.6 provides

a graphical representation of these results. The top three charts are for data25c1k, the middle three are

for data25c5k, and the bottom three are for data25c10k. The charts in the first column are for Scenario A,

the charts in the second column are for Scenario B, and the charts in the third column for Scenario C. The

charts show the estimated treatment effects obtained from the matching and BOSS solutions as the number

of covariates increases. The solid horizontal line represents the actual treatment effect of zero, and the gray
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trend line labeled Init represents the initial (biased) estimate derived from the treatment group and control

pool.

With the linear response function model of Scenario A, propensity score matching performed the best,

while BOSS and Mahalanobis matching performed comparably for data25c1k and data25c5k and BOSS

beat Mahalanobis matching on data25c10k. This is because propensity score matching typically achieves

a high level of mean balance on the covariates, and this is sufficient if the response function is linear. As

earlier results demonstrated, BOSS with IDOM would most likely perform at least as well as propensity score

matching.

For Scenario B, the performance of propensity score matching quickly degraded due to the nonlinearity

of the response function. In some cases, the estimates were close to the true value, but in other cases, there

was a large gap. No clear pattern was evident. In contrast, BOSS and Mahalanobis matching both exhibited

more predictable performance where the estimate quality degraded as more covariates were added. The

two methods were comparable for data25c1k and data25c5k, and BOSS slightly outperformed Mahalanobis

matching on data25c10k.

In Scenario C, all methods had difficulty, though BOSS and Mahalanobis matching provided reasonable

estimates if there were fewer than fifteen covariates. Even though BOSS did not directly optimize balance on

any of the joint distributions, it produced reliable estimates if good balance was obtained on the marginals

despite the presence of interaction terms in the response function. As marginal balance deteriorated, the

estimates did as well. Under all scenarios, the performance of all methods generally improved as control

pool size increased and weakened as more covariates were included.

The objective values for the BOSS solutions shown in Tables A.4, A.5, and A.6 exhibit a clear relationship

with the quality of the estimates reported in Tables A.7, A.8, and A.9. Specifically, as the residual imbalance

measured by IDiff increases, the quality of the estimated treatment effect decreases. This indicates the

importance of identifying BOSS solutions with imbalance that is as small as possible.

5.2.3 Experiments with Alternate Optima

A third set of computational tests explored the differences in estimates from alternate optima. A new dataset

with 10 covariates, 100 treatment units, and 10,000 control units was constructed using a process similar to

that of Section 5.2.2. The tests used IDiff with 20 bins and solved the associated MIP model using CPLEX

while limiting the number of covariates included in the model to 1, 3, 5, and 10. Upon verification of an

optimal solution, CPLEX was used to generate a set S of up to 5000 alternate optima, with a total time
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Figure 5.6: Trends for estimated treatment effects for matching and BOSS solutions.
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Table 5.6: Initial estimates of the treatment effect for the different scenarios.

|P| A B C D

1 1.603 4.389 4.389 −59.370
3 3.557 3.180 5.793 −67.104
5 5.777 8.702 13.302 −65.071

10 11.038 11.093 17.073 128.878

limit of 1800 seconds.

For 1, 3, and 5 total covariates, CPLEX found solutions with IDiff(T,C ′) = 0, thus allowing it to verify

optimality. The total numbers of solutions identified by CPLEX were 5148 for 1 covariate, 5016 for 3

covariates, and 5012 for 5 covariates. For the 10 covariate case, the best solution identified by CPLEX had

an (unscaled) residual imbalance of 8, and only one alternate solution with the same level of imbalance was

identified. The lower bound reported by CPLEX was 0, and it failed to verify optimality within the time

limit.

Results for Response Functions

Four different scenarios were considered for the control response function: Scenario A used the linear function

in (5.12), Scenario B used the separable nonlinear function in (5.13), Scenario C used the nonlinear function

in (5.14), and Scenario D used the highly nonlinear function in (5.15). The error terms for the units were

distributed normally with mean zero and standard deviation 1. The treatment and control responses were

identical so that there was no treatment effect.

y1
u ≡ y0

u ≡ 0.3 · exp
(

(xu1)
2
/10.0

)
+ 0.5 · exp(xu1xu2/7.0) + 0.9 |xu1xu2xu3| − 0.9 (xu4)

2

+ 0.7 |xu5| · (0.5 + xu5) · log(|xu2 + 0.1|)− 0.6xu6xu1 + 0.4xu7 − 0.8 · exp(|xu8|)

+ 0.6xu9(0.9− xu9) + 0.2 (xu10)
2

(0.3− xu7) + ε0
u

(5.15)

Table 5.6 shows the initial biased estimates of the treatment effect produced by comparing the average

treatment response for the treatment units with the average control response across the entire sample C

under each of the four scenarios. The |P| column lists the number of covariates used to compute the

response function (e.g., for 1, the response function was computed from only the terms associated with the

first covariate).

Theorems 3.7 and 3.15 indicate that control groups with no residual imbalance as measured by IDiff
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Table 5.7: Average estimates of the treatment effect for alternate optima under different response function
scenarios.

A B C D

|P| |S| IDiff (20) µ σ µ σ µ σ µ σ

1 5148 0 −0.040 0.029 0.284 0.054 0.284 0.054 −0.093 0.050
3 5016 0 0.092 0.096 0.346 0.123 0.434 0.192 0.839 0.447
5 5012 0 0.126 0.111 0.573 0.467 1.442 0.715 0.475 0.592

10 2 8 0.283 0.071 1.394 0.221 2.815 0.472 −9.936 2.144

should produce estimates of the treatment effect with negligible bias under Scenarios A and B, but not

necessarily under Scenarios C and D (the one exception is the single-covariate case, which does not have

any interaction terms). Additionally, any difference in estimates between two optimal control groups should

be solely due to the error terms under Scenarios A and B, whereas in Scenarios C and D differences may be

a result of imbalance on joint distributions that were not taken into account.

From Lemma 3.20, if the optimal control groups were each random samples from U0, then the distribution

of average errors across the groups should be approximately normal. Because the standard deviation of the

error terms is 1, the average error for a group of 100 units should be distributed normally with mean 0 and

standard deviation
√

1/100 = 0.1. Thus, under Scenarios A and B, the standard deviation in the estimates

across all optimal control groups should be approximately 0.1. However, due to issues of overlap among

optimal control groups and insufficient diversity among the set of optimal solutions, this may be unrealistic.

To test these theories, an estimate of the average treatment effect was computed for each identified control

group under each of the four scenarios. Table 5.7 shows the mean (µ) and standard deviation (σ) of these

treatment effect estimates computed across all solutions under each of the four scenarios and covariate sizes.

The |P| column lists the number of covariates, and the |S| column lists the number of alternate optima that

were identified.

The results in Table 5.7 largely confirm the expected behavior. In Scenarios A and B, the average

estimate of the treatment effect is close to the true value of zero with the exception of the 10-covariate case

for Scenario B. Additionally, the standard deviation of the treatment effect estimates is generally close to

the expected value of 0.1. These observations also apply to Scenarios C and D with only one covariate.

However, when multiple covariates are included, the averages of the estimates are farther from zero and the

standard deviations are larger than would be expected if the differences between the estimates were due

solely to the error terms. Across all scenarios, the estimates are a considerable improvement compared to

the initial estimates in Table 5.6.
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Figure 5.7: Distributions of estimated treatment effects for optimal solutions. The binned values for the
treatment effect estimates are reported on the horizontal axis and the frequencies are reported on the vertical
axis.

Figure 5.7 shows histograms for the distributions of the treatment effect estimates for each of the scenarios

and number of covariates. The columns contain plots for Scenarios A, B, C, and D, respectively, while the

rows contain the plots for the different covariate sizes (1, 3, and 5; 10 is excluded because only two solutions

were found). In each case, the bin width in the plots was set using the Freedman-Diaconis rule.

Results for Unobserved Covariates

Control groups were identified previously by minimizing imbalance over a subset of the covariates, and

response functions were then computed on the subset of covariates that were included in the optimization

model. However, the response functions can be computed on all of the covariates, regardless of whether or

not those covariates were included in the imbalance measure. This process mimics the situation in which
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Table 5.8: Average estimates of the treatment effect for alternate optima in the presence of unobserved
covariates.

A B C D

|P| |S| IDiff (20) µ σ µ σ µ σ µ σ

1 5148 0 9.288 0.266 4.459 2.144 13.650 1.307 49.469 3.605
3 5016 0 8.004 0.655 6.625 6.926 2.202 2.318 97.571 518.255
5 5012 0 5.174 0.571 3.744 2.083 6.080 1.235 46.279 71.423

10 2 8 0.283 0.071 1.394 0.221 2.815 0.472 −9.936 2.144

unobserved covariates are present within the data.

Table 5.8 shows the mean (µ) and standard deviation (σ) for the estimates computed from the optimal

control groups using all covariates under each of the four scenarios. The results for the 10-covariate case

are the same as those in Table 5.7 because there are no unobserved covariates. For the cases with 1, 3, and

5 covariates, which have 9, 7, and 5 unobserved covariates, respectively, there is quite a bit more bias in

the estimates. As more covariates are included and fewer are unobserved, these estimates get marginally

better, but they are still far from the true value of zero. However, balancing on any number of covariates

is still an improvement over the initial estimates from T and C given in the row for 10 covariates in Table

5.6. Additionally, the standard deviation of the estimates is considerably larger compared to the earlier tests

without unobserved covariates.

Figure 5.8 shows histograms for the distributions of the treatment effect estimates for each of the scenarios

in the presence of unobserved covariates. The columns again contain plots for Scenarios A, B, C, and D,

respectively, while the rows contain the plots for the different covariate sizes (1, 3, and 5).

5.3 Real Dataset

Additional computational tests were conducted with BOSS on a well-studied dataset from the literature.

The results presented here extend preliminary results presented by Cho et al. (2013) and focus on solving

the optimization problems for BOSS exactly using CPLEX and the models from Section 5.1.2.

5.3.1 The LaLonde Dataset

Randomized experimental studies possess desirable statistical properties such as unbiasedness that generally

lead to confidence in the causal estimates. Observational studies lack these properties, so instead researchers

draw conclusions from the data through post-processing. One method of testing the effectiveness of these
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Figure 5.8: Distributions of estimated treatment effects for optimal solutions in the presence of unobserved
covariates. The binned values for the treatment effect estimates are reported on the horizontal axis and the
frequencies are reported on the vertical axis. The plot for Scenario D with 3 covariates omits seven outliers
with treatment effect estimates in excess of 13850.
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post-processing techniques is by applying them to a study in which the outcome is already known, either by

design or through an equivalent experimental study, and determining whether or not the correct conclusions

can be reached. This process was used by LaLonde (1986), and it has resulted in numerous subsequent

papers in the causal inference literature.

LaLonde (1986) attempted to use observational data techniques to recreate the results of a randomized

experimental study, the National Supported Work Demonstration (NSW). The NSW was a temporary em-

ployment program that sought to provide job skills and experience to unemployed workers in order to help

them find long-term work opportunities. Qualified candidates were randomly chosen for training positions,

with those unselected forming the control group. The outcome of interest was the income level for treated

and control individuals several years after the training program. The experimental study found a net positive

effect for training: the treated individuals had an average income larger than the control individuals.

After the experimental study, LaLonde (1986) proposed the use of the NSW study in an observational

study setting. LaLonde took the treatment group from the NSW study and two large pools of control

individuals from two datasets (the Panel Study of Income Dynamics (PSID), and the Current Population

Survey (CPS)), and used econometric methods to derive an estimate of the treatment effect. Under a variety

of models and methods, LaLonde was unable to reliably recover the experimental estimate of the treatment

effect, and he ultimately concluded that the existing procedures for post-processing observational data were

inadequate.

Later work by Dehejia and Wahba (1999, 2002), Dehejia (2005), and Smith and Todd (2001, 2005a,b)

expanded on the original work of LaLonde (1986), with conflicting conclusions. More recent work by Diamond

and Sekhon (2013) emphasized the importance of covariate balance in order to achieve reliable treatment

effect estimates, both by showing that existing methods that got the wrong estimates failed to good balance

and by showing that new methods that obtain good balance obtain the right estimates. The importance of

balance in the LaLonde dataset makes it a good test for BOSS.

The covariates in the LaLonde dataset are: age, education (in years), income in 1974 (RE74), income in

1975 (RE75), and indicator variables for Black, Hispanic, married, and high school degree. The outcome of

interest is income in 1978 (RE78). The original datasets used by LaLonde only included income in 1975, not

in 1974. Dehejia and Wahba (1999) argued that it was important to account for two years of pre-treatment

income, and so they restricted the original datasets to those individuals for whom income in 1974 was known.

The original experimental dataset is designated nswexp, and the experimental dataset restricted to individuals

for whom income in 1974 is known is designated as nswre74exp. There are two potential control pools, CPS
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Table 5.9: Initial values for the LaLonde datasets.

Objective nswexp nswcps nswpsid nswre74exp nswre74cps nswre74psid

IDOM 3.9901×101 1.0597×104 1.6011×104 2.7785×102 2.4051×104 3.4877×104

IKS 0.2926 3.1428 3.3026 0.5727 3.7261 3.9824
IKS:max 0.0835 0.7278 0.6979 0.1265 0.7697 0.7736
IDiff (20) 0.7962 6.3305 6.6091 1.4331 7.4799 7.9761
IDiff2 (20) 0.0291 2.4222 2.6993 0.0783 2.9656 3.4294

τ̃1
T ($) 886.30 −8870.30 −15577.57 1794.34 −8497.51 −15204.78
|T | 297 297 297 185 185 185
|C| 425 15992 2490 260 15992 2490

and PSID, which leads to a total of four observational datasets: the experimental treatment individuals with

the CPS and PSID groups, designated as nswcps and nswpsid, and those same sets restricted to individuals

for whom income in 1974 is known, designated as nswre74cps and nswre74psid.

Table 5.9 shows the values for the various imbalance measures, the treatment effect estimates, and the

number of treatment and control units for the experimental datasets (nswexp and nswre74exp) and the

constructed observational datasets (nswcps, nswpsid, nswre74cps, and nswre74psid). The Objective column

gives the imbalance measure with a parenthesized number indicating the number of bins, if appropriate (e.g.,

“IDiff (20)” uses 20 uniform-width bins for each covariate, with empty bins dropped during optimization).

The remaining columns give the values for the datasets, computed using the treatment group and the entire

control pool.

The values in Table 5.9 indicate that the observational datasets have a much greater level of covariate

imbalance than the experimental datasets. Additionally, the estimates of the treatment effect given in the

row labeled τ̃1
T ($) show that the observational datasets produce significantly biased estimates as compared

to the experimental benchmarks, which are unbiased due to randomization. A difference is expected given

the nature of observational data, and the result illustrates the need to control for biases if attempting to

obtain treatment effect estimates. The goal of BOSS is to remove potential bias due to covariate imbalance

between the treatment group and control pool.

5.3.2 Preliminary Results

The mathematical programming models for BOSS were solved on the LaLonde datasets using CPLEX with a

time limit of 600 seconds. Results are shown in Table 5.10. The Set column gives the name of the dataset, the

Objective column gives the imbalance measure, the τ̃1
T ($) column gives the estimate of the treatment effect
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Table 5.10: Best solutions for the LaLonde datasets with various imbalance measures.

Objective Lower CPU Improvement

Set Objective τ̃1
T ($) Value Bound Gap (%) Time (s) Observ. Exper.

nswcps

IDOM −598.50 0.0009 0.0000 100.00 1988.97 1.15×107 4.32×104

ISDOM −806.25 0.0000 0.0000 100.00 2073.97 N/A N/A
IKS −556.95 0.0236 0.0198 15.87 361.13 1.33×102 1.24×101

IKS:max −562.35 0.0067 0.0064 4.52 502.76 1.08×102 1.24×101

IDiff (20) −732.43 0.0404 0.0404 0.00 0.83 1.57×102 1.97×101

IDiff2 (20) −575.93 0.0001 0.0001 31.92 2055.80 1.78×104 2.14×102

nswpsid

IDOM −3250.06 3.8791 3.8787 0.01 95.51 4.13×103 1.03×101

ISDOM −5475.02 1.1690 1.1690 0.00 0.20 N/A N/A
IKS −4616.25 0.9529 0.9529 0.00 0.52 3.47 0.31
IKS:max −3842.72 0.1886 0.1886 0.00 0.62 3.70 0.44
IDiff (20) −5011.55 1.7778 1.7778 0.00 0.28 3.72 0.45
IDiff2 (20) −3932.18 0.1800 0.1800 0.01 0.59 1.50×101 0.16

nswre74cps

IDOM 1538.85 0.0088 0.0000 100.00 2062.98 2.74×106 3.16×104

ISDOM 1128.73 0.0000 0.0000 100.00 2128.25 N/A N/A
IKS 1710.31 0.0811 0.0811 0.00 287.32 4.60×101 7.06
IKS:max 1979.44 0.0216 0.0213 1.32 405.93 3.56×101 5.85
IDiff (20) 1767.22 0.1189 0.1189 0.00 1.16 6.29×101 1.21×101

IDiff2 (20) 1522.39 0.0010 0.0008 21.37 2049.34 2.99×103 7.88×101

nswre74psid

IDOM 1043.61 5.4521 5.4453 0.12 1472.79 6.40×103 5.10×101

ISDOM −2706.21 0.8509 0.8509 0.00 0.54 N/A N/A
IKS −2360.15 1.2432 1.2432 0.00 0.85 3.20 0.46
IKS:max −1549.89 0.2054 0.2054 0.00 1.05 3.77 0.62
IDiff (20) −1486.13 1.6973 1.6973 0.00 0.29 4.70 0.84
IDiff2 (20) −1228.73 0.1302 0.1302 0.01 1.10 2.63×101 0.60

obtained from the best solution, the Objective Value column gives the objective function value of the best

solution found by CPLEX, the Lower Bound column gives the best lower bound computed by CPLEX upon

termination (verification of optimality or time limit), the Gap (%) column gives the relative gap between

the best solution and the lower bound computed by CPLEX, and the CPU Time (s) column gives the CPU

time, in seconds, that CPLEX spent solving the problem. If the objective value equals the lower bound

(or equivalently, where the gap is zero), then CPLEX was able to verify the optimal solution within the

time limit. Finally, the Improvement columns provide the ratio of improvement in objective function value

achieved by CPLEX compared to the initial observational dataset using all members of the control pool

(the Observ. column) and the experimental dataset (the Exper. column). A ratio larger than one indicates

that the solution identified by CPLEX has better balance (as measured by the objective function) than the

corresponding dataset, while a ratio less than one indicates that CPLEX found a solution featuring worse

balance.
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There are several observations that can be made. For the nswpsid and nswre74psid datasets, CPLEX is

able to terminate with an optimal or near-optimal solution in all cases, often in a relatively small amount of

time. This is likely due to the small size of the control pool, which produces MIP models with a relatively

small number of decision variables. For the nswcps and nswre74cps datasets which have a much larger

control pool, CPLEX requires more time to solve the models and is only able to verify optimality in a few

cases. However, with the exception of IDOM and ISDOM, the gaps are relatively small. (For ISDOM, the

difference between the objective value and lower bound is not shown in Table 5.10 due to round-off.)

The second observation is that in all cases the BOSS solutions have better covariate balance than the

initial control pool, as evidenced by the fact that all values in the Improvement: Observ. column are greater

than one (and in some cases this improvement is several orders of magnitude). This is not surprising, since

the goal of BOSS is to improve covariate balance. More interesting is the fact that in some cases these

solutions also have better covariate balance than the experimental datasets. This is particularly evident

for the nswcps and nswre74cps datasets, where the improvement is almost always an order of magnitude

or more above the experimental baseline. So despite the fact that the solutions obtained for the nswpsid

and nswre74psid datasets are provably optimal in most cases, the solutions obtained for the nswcps and

nswre74cps datasets feature better covariate balance.

The third observation concerns the treatment effect estimates, which is ultimately the quantity of interest.

For both the nswcps and nswpsid datasets, the treatment effect estimates are all negative. This does not agree

with the experimental estimate from nswexp which is positive ($886). This bias could be due to residual

imbalance on the observed covariates or their joint distributions, imbalance on one or more unobserved

covariates, or some combination of these factors.

For the nswcps dataset, there is little remaining imbalance on the existing covariates, which supports the

existence of an important unobserved covariate that is not balanced. For the nswpsid dataset, a significant

amount of imbalance remains on the observed covariates, but this is not due to insufficient optimization

because the identified solutions are all optimal or nearly optimal with respect to the corresponding objec-

tives. Given that the treatment effect estimates for the nswpsid dataset are further from the experimental

benchmark than the estimates for the nswcps dataset, it seems likely that bias in the estimates for nswpsid

is caused by both residual imbalance on the observed covariates and imbalance on unobserved covariates.

Dehejia and Wahba (1999) reached a similar conclusion regarding the presence of an important unobserved

covariate in these two datasets, which is why they created the nswre74cps and nswre74psid datasets.

The treatment effect estimates obtained from BOSS solutions for the nswre74cps and nswre74psid
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datasets are a substantial improvement upon the nswcps and nswpsid datasets, particularly for the nswre74cps

dataset. All treatment effect estimates for nswre74cps are positive and larger than $1100, which is more in

line with the experimental estimate of $1794. Additionally, the distribution-based imbalance measures (IKS,

IKS:max, IDiff, and IDiff2) are within about $270 of the experimental estimate.

The estimates for nswre74psid, while closer to the experimental benchmark than those obtained for

nswpsid, are still significantly negative for all but one imbalance measure. However, the solutions obtained

for the distribution-based imbalance measures feature lower covariate balance than the experimental dataset,

and relatively large residual imbalances compared to the corresponding nswre74cps solutions. Thus, it is

likely that the bias in these treatment effect estimates is due to residual imbalance on the observed covariates.

One interesting observation from the nswre74psid results is that the difference of means imbalance mea-

sure IDOM produces a better estimate of the treatment effect than the other objectives. One can look at

the imbalance levels for each individual covariate in the resulting control group solutions to understand why

this is the case. Table A.11 provides a summary of the balance levels (difference of means, Kolmogorov-

Smirnov test statistic and corresponding p-value) for each covariate in the solutions for both nswre74cps and

nswre74psid for each objective (details for the nswcps and nswpsid solutions are included in Table A.10).

The most noticeable difference between the nswre74psid solutions is that the solution produced by IDOM has

a small difference in means for both the RE74 and RE75 covariates, while the remaining objectives produce

solutions with large difference of means scores for these two covariates. Additionally, with the exception of

IDOM, all of the solutions for nswre74cps have much lower difference of means scores than the corresponding

solutions for nswre74psid. Thus, it seems likely that the poor estimates from nswre74psid for all objectives

except IDOM stem from the fact that the identified solutions feature poor balance on the RE74 and RE75

covariates.

A possible reason why these objectives produce poor balance on the RE74 and RE75 covariates is that the

smaller size of the control pool for nswre74psid makes it more difficult to achieve balance on the distributions

of the covariates, as evidenced by the poor imbalance scores. However, it is possible to balance the means

of the covariates without balancing the distributions, which is what IDOM does. In the case of ISDOM,

the scaling factor reduces the penalty due to imbalance on RE74 and RE75, leading to solutions that favor

balancing the means of the other covariates first. In the case of the distribution-based objectives, they

attempt to balance the covariate distributions but are unable to do so effectively, leading to poor balance on

the covariate means.
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5.3.3 Alternate Optima

A natural question to ask is how sensitive are the treatment effect estimates produced by BOSS to changes

in the control group. One way to assess sensitivity is to use BOSS to produce multiple optimally balanced

control groups and look at the distribution of treatment effect estimates from each control group. A similar

procedure to that in Section 5.2.3 was employed to gather multiple solutions for the datasets and imbalance

measures that had solutions with better balance than the experimental control group (i.e., the imbalance

measures for which Improvement: Exper. is greater than 1).

In an attempt to obtain a diverse set of control groups featuring minimal mutual overlap, an iterative

procedure was used to seek alternate optima with minimal overlap with those that had been previously

identified. Let S be a pool of alternate optima (i.e., a set of subsets of C). For each unit c ∈ C, define

κ(S, c) ≡ |{C ′ ∈ S : c ∈ C ′}|

as the number of times unit c has appeared in a previous solution. Then the objective

min
∑
c∈C

2κ(S, c)vc (5.16)

can be used in the MIP models to identify a control group that is distinct from those that were previously

identified.

The above concepts were used to identify a diverse set of alternate optima for each imbalance measure

through the following procedure:

1. Solve the associated model for I; let C∗ be the best solution identified within the time limit.

2. Initialize the solution pool S ≡ {C∗}.

3. Add the constraint I(T,C ′) ≤ I(T,C∗) and the objective (5.16) to the model.

4. Repeatedly solve the revised model, updating the solution pool after each iteration.

The time limit used in Step 1 was 300 seconds. A total time limit of 1800 seconds was used for Step 4. Each

iteration of this step had a time limit of 150 seconds. If a new solution was identified by CPLEX, then it

was added to the pool and the next iteration was started. If there was no progress, CPLEX was allowed to

continue searching as long as the total time limit was not exceeded. Step 4 was repeated up to a total of 500

times within the time limit.
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Table 5.11: Estimates from alternate solutions for the LaLonde datasets.

Permitted τ̃1
T ($)

Set Objective |S| Imbalance µ σ min max Common

nswcps

IDOM 5 0.0009 −771.16 142.96 −906.33 −598.50 0.1046
IKS 18 0.0236 −475.20 145.97 −803.64 −241.92 0.5455
IKS:max 20 0.0067 −654.69 130.01 −949.30 −477.52 0.5993
IDiff (20) 251 0.0404 −570.52 138.01 −932.46 −166.47 0.6027
IDiff2 (20) 1 0.0001 −499.98 0.00 −499.98 −499.98 1.0000

nswpsid IDOM 10 3.8791 −3320.05 51.08 −3417.33 −3250.06 0.9596

nswre74cps

IDOM 1 0.0088 1538.85 0.00 1538.85 1538.85 1.0000
IKS 12 0.0811 1825.98 155.12 1534.53 1996.89 0.7081
IKS:max 12 0.0216 1842.19 183.16 1508.24 2280.16 0.7081
IDiff (20) 191 0.1189 1702.86 179.02 1157.52 2111.34 0.7081
IDiff2 (20) 1 0.0010 1601.74 0.00 1601.74 1601.74 1.0000

nswre74psid IDOM 12 5.4833 955.19 216.96 682.97 1229.21 0.8757

With the above procedure, the solutions included in S are not necessarily optimal because the time limit

in Step 1 may stop CPLEX prematurely. However, tests indicated that CPLEX was unable to make much

progress after this time limit, and so it was determined to be sufficient for the purposes of identifying a

near-optimal solution.

Table 5.11 shows the alternate optima results. The Set column lists the dataset; the Objective column

reports the imbalance measure; the |S| column reports the number of identified alternate solutions; the

Permitted Imbalance column reports the residual imbalance that was allowed for the solutions in S; the µ,

σ, min, and max columns report the mean, standard deviation, minimum, and maximum of the estimates

for τ1
T computed from the control groups in S; and the Common column reports the proportion of units in

each control group that were common across all control groups, computed as
∣∣⋂

C′∈S C
′∣∣ /s.

Cases in which alternate solutions were identified did not exhibit a large amount of variability in the

estimates. All estimates from nswre74cps remain above $1100, while all estimates from nswcps remain

below -$150. Similarly, the estimates from nswre74psid with IDOM remain slightly positive while those from

nswpsid with IDOM remain significantly negative (though the control groups identified in the latter case are

all comprised of a very large common set of control units making up almost 96% of each group). No alternate

optima were identified for IDiff2 , which is likely due to the fact that the modifications in Step 3 transform

Model (5.6) from a mixed integer quadratic program to a mixed integer quadratically constrained program

(MIQCP); for the other imbalance measures, the modified models remain mixed integer programs.

Figure 5.9 shows the distributions of treatment effect estimates from nswcps (first row) and nswre74cps
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Figure 5.9: Distributions of treatment effect estimates from nswcps and nswre74cps using IDiff with 20 bins.

(second row) using IDiff (other imbalance measures are not included due to the small number of solutions

found for them). The plots in the first column are histograms for the distributions with bin widths set using

the Freedman-Diaconis rule, and the plots in the second column are the cumulative distribution functions

for the estimates. Shapiro-Wilk normality tests for these distributions yield p-values of 0.576 for nswcps and

0.543 for nswre74cps.

In the absence of any knowledge about the experimental estimate of the treatment effect, it would be

difficult to discredit the estimates from nswcps using the results from Table 5.11 and Figure 5.9. Knowledge

about the importance of an extra year of pre-treatment income (the RE74 covariate) allowed researchers to

construct the nswre74cps dataset, which emphasizes the necessity of including all covariates in the dataset.

Concern about missing covariates necessitates a fairly comprehensive search through the space of potential

control group solutions, which might assist analysis. This task is complicated by the size of the solution

space. While exhaustive enumeration can identify all control group solutions, in practice it is likely to be

108



too time-consuming. An alternate approach is to search through these control groups in a more targeted

manner; such an approach is explored in the next section.

5.3.4 Extreme Estimates

Instead of searching for a diverse subset of optimal control groups, an alternate approach is to identify

the range of treatment effect estimates across the optimal control groups. Specifically, one can look at the

smallest and largest possible estimates across all optimally balanced control groups. The MIP models can

be modified in a similar manner as before, except with the new objective

min (max)
∑
c∈C

y0
cvc. (5.17)

The range of estimates can be computed by first performing Step 1 from the procedure in Section 5.3.3 to

identify a near-optimal control group C∗, and then either minimizing or maximizing objective (5.17) subject

to the constraint that I(T,C ′) ≤ I(T,C∗).

If the range of estimates is small, then confidence is gained in both the estimates and the assumptions

that were made. A small range also suggests that the error terms are reasonably well-behaved (e.g., small

variance). On the other hand, if the range of estimates is large, then one or more of the following is likely:

(1) any residual imbalance is still significant and can be exploited to amplify differences in the estimate of

the treatment effect across control groups; (2) the assumptions for the imbalance measure are violated,

either due to omitted terms in the control response function (e.g., squared terms, covariate interactions) or

unobserved covariates, resulting in bias in the estimates; or (3) the error terms have a large variance.

Provided that the optimization process is able to remove most of the imbalance, it should be possible to rule

out (1). Definitively attributing a large range to either (2) or (3) is difficult but can be explored by adding

additional balance requirements to see if they reduce the range.

One potential issue with the above procedure is that it looks at the control responses of the units in

order to identify a control group. Within the matching literature, this is generally regarded as undesirable

because it can lead to the selection of a control group on the basis of the estimate that it yields (e.g., if a

researcher believes that an effect should be present, he or she may be inclined to select a control group that

confirms this). However, provided both extremes are identified and reported, this should not be an issue.

Another potential issue is that the procedure essentially searches for outliers within the data. One would

normally expect to find a few outliers in any dataset, so one could argue that one or two outliers within the set
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Table 5.12: Range of estimates for the LaLonde datasets.

Permitted τ̃1
T ($)

Set Objective Imbalance LP Min MIP Min MIP Max LP Max Common

nswcps1

IDOM 0.0009 −7455.08 −608.58 4793.96 4803.31 0.4646
IKS 0.0236 −2224.15 −2180.28 1084.40 1086.72 0.7609
IKS:max 0.0067 −2038.99 −2038.99 552.77 555.15 0.7946
IDiff (20) 0.0404 −2074.27 −2071.69 907.71 909.30 0.7576
IDiff2 (20) 0.0001 −2354.60 −499.98 −499.98 998.85 1.0000

nswpsid1 IDOM 3.8791 −3592.96 −3422.30 −3202.79 −2988.19 0.9764

nswre74cps1

IDOM 0.0088 −6522.48 1305.72 1598.40 6091.83 0.9730
IKS 0.0811 1129.38 1190.38 2257.64 2282.39 0.8486
IKS:max 0.0216 248.25 253.05 3277.09 3283.30 0.7514
IDiff (20) 0.1189 457.94 487.79 2823.35 2826.94 0.7730
IDiff2 (20) 0.0010 −329.76 1601.74 1601.74 3080.77 1.0000

nswre74psid1 IDOM 5.4521 445.19 684.16 1053.99 1640.57 0.9892

of estimates from optimally balanced control groups is not necessarily an indication that the assumptions are

invalid, as in (2). However, because τ̃1
T is computed as an average of control responses, in order to attribute

a large estimate range primarily to (3), the outlier estimates must be computed from a large number of

error terms that are moderate outliers, a handful of error terms that are extreme outliers, or possibly some

combination of both. Either case is likely to be cause for concern, so it is useful to be able to identify such

occurrences.

The above procedure was performed for the datasets and imbalance measures in Table 5.11. A time limit

of 300 seconds was used to find the initial optimal or near-optimal solution C∗, and then the revised models

with objective (5.17) and constraint I(T,C ′) ≤ I(T,C∗) were solved with a time limit of 300 seconds each.

The results from these tests are shown in Table 5.12. The Set column lists the dataset; the Objective

column lists the imbalance measure used for optimization; the Permitted Imbalance column lists the allowed

imbalance imposed as a constraint in the MIP model; the τ̃1
T ($) columns give various values of the estimated

treatment effect across all control group solutions at or below the imbalance threshold, with LP Min and LP

Max reporting the minimum and maximum values of the linear programming relaxation of the model and

MIP Min and MIP Max reporting the minimum and maximum estimates from integer solutions identified by

CPLEX (these solutions are not necessarily optimal due to time limits); and the Common column gives the

proportion of overlap between the extreme solutions identified by CPLEX, computed as |C ′max ∩ C ′min| /s.

In general, the estimate ranges reported in Table 5.12 contain the estimates from alternate optima in

Table 5.11. The exception is IDOM, where several of the minimum and maximum values reported in Table
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5.12 are inferior to those reported in Table 5.11. This indicates that the model for maximizing or minimizing

the treatment effect estimate was unable to identify an “extreme” control group that was identified during

the search for alternate optima.

The results in the Common column in Table 5.12 highlight one difficulty with this approach. If the

permitted imbalance is small, there are only a few available control groups that meet the balance requirement,

and thus the overlap between these solutions is generally large. A natural consequence of large overlap is a

small range, so it becomes difficult to determine if a small range is due to too much overlap or due to the

balance requirements effectively removing bias from the covariates. Ideally, one would be able to identify

extreme solutions with no imbalance and little to no overlap. In this case, a large estimate range would be

an indication of either (2) or (3), while a small range would be an indication that the balance requirements

are sufficient to remove bias in the estimate.

Unfortunately, the ideal case of small overlap and small range does not occur within any of the LaLonde

data. However, a few observations can still be made. First, for nswre74cps the ranges for the treatment

effect estimates are always positive, though the ranges are relatively large (IKS:max has the largest range

of approximately $3000). While the large ranges may indicate that the corresponding functional form

assumptions are invalid, including additional balance requirements (e.g., joint imbalance is minimal) while

maintaining the specified levels of marginal imbalance can only reduce the estimate ranges (while potentially

increasing overlap). This strengthens the case for a beneficial effect from the treatment (the job training

program), even if the magnitude of that effect is still not immediately clear from the data.

On the other hand, for nswcps, the ranges for IDOM, IKS, IKS:max, and IDiff all span zero. For IDOM

in particular, the range is over $5000 and the overlap between the extreme solutions is less than 50%. The

wide ranges may be caused by incorrect assumptions about the control response function for each of the

imbalance measures. One way in which the preceding issue can be explored is to use an imbalance measure

that includes joint distributions such as IDiff:D with D =
(P

2

)
. For the nswcps dataset, however, all potential

control groups have a large residual imbalance with respect to IDiff:D, which makes it difficult to test the

corresponding assumptions on the form of the control response function and to determine whether the

treatment is beneficial, detrimental, or has no effect. Further explorations might consider the possibility of

unobserved covariates as Dehejia and Wahba (1999) did, or expand the dataset in order to find control groups

featuring little residual imbalance for IDiff:D and other imbalance measures that use the joint distributions

of the covariates.
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5.3.5 Control Pool Size

One of the difficulties with using the nswre74psid dataset compared to nswre74cps is the difference in control

pool size: nswre74psid contains 2490 control units while nswre74cps contains 15992. The larger pool of units

assists in minimizing residual imbalance and consequently ensures a more accurate estimate of the treatment

effect, as evidenced by the results in Table 5.10. To explore the question of how large the control pool needs

to be in order to achieve good balance, a set of experiments were performed to randomly drop units from

the control pool. After units were dropped, BOSS identified optimal solutions from the reduced control pool

and constructed estimates from them. The number of dropped units and the random seed were varied over

a set of experiments.

Matching methods were also tested. The specific methods that were tested were propensity score matching

with a logistic regression model to estimate the propensity score, covariate matching with unit distance

defined using the Euclidean distance metric, and covariate matching using the Mahalanobis distance metric.

The optmatch package was used to construct the solutions for matching (Hansen, 2007).

The results are shown in Figure 5.10. The plots show the estimated treatment effect computed from

solutions identified by BOSS (left column) and matching (right column) as the size of the control pool grows

from 250 units to 15000. For BOSS, the plots from top to bottom are for IDOM, IKS, and IDiff with ni = 20

for all covariates, while for matching, the plots from top to bottom are Mahalanobis matching, Euclidean

distance matching, and propensity score matching (using a Euclidean metric to define distance between

propensity scores).

From Figure 5.10, the methods can be ranked by how large the control pool needs to be before the

estimates are above zero on average. BOSS with IDOM and Euclidean distance matching accomplish this after

approximately 750 units; BOSS with IDiff and IKS accomplish this between 1500 and 2000 units; propensity

score matching accomplishes this between 2000 and 4000 units; and Mahalanobis matching accomplishes this

after 8000 units. Another ranking can be computed by looking at the number of units needed to produce

an estimate above the experimental estimate of $1794. Euclidean distance matching accomplishes this after

1500 units; IKS accomplishes this between 4000 and 5000 units; propensity score matching accomplishes this

after 6000 units; IDOM and IDiff accomplish this between 7000 and 8000 units; and Mahalanobis matching

never accomplishes this.

Euclidean distance matching appears to be the clear winner based on the preceding discussion. However,

while it may be the first method to report an estimate above $1794, the majority of its estimates remain

below this level, particularly as the size of the control pool grows. Similarly, Mahalanobis matching appears
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Figure 5.10: Estimates of the treatment effect for BOSS and matching on a subset of the control pool for
nswre74cps.
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to be the clear loser, with its estimates getting worse at one point as the control pool increases in size.

Propensity score matching takes some time to ramp up but performs consistently as the size of the control

pool increases. In comparison, BOSS with IKS and IDiff ramp up more quickly and also produce estimates

close to the experimental benchmark in the long run. BOSS with IDOM does better if the size of the

control pool is small, but fails to keep pace with the distribution-based imbalance measures as the control

pool increases in size. This is unsurprising given the nature of balancing means compared to marginal

distributions.

5.4 Discussion

The tests in this chapter illustrate how the BOSS framework can be used to identify control groups for

constructing treatment effect estimates. For the computational tests with simulated data, the accurate

estimates of τ1
T produced by BOSS show that it is a viable approach for estimating treatment effects in

observational data. In addition, the comparisons with matching methods illustrate the primary motivation

for BOSS: obtaining covariate balance. In particular, the tests demonstrate that by minimizing an imbalance

measure directly, it is possible to identify solutions with better covariate balance than those found by standard

matching methods. The tests also demonstrate how a failure to remove all necessary imbalance can leave

residual bias in the estimate of the treatment effect.

The tests with the LaLonde data illustrate that BOSS can handle real data in addition to simulated data.

However, like traditional methods for dealing with observational data, BOSS assumes that all covariates that

influence the outcome are known and included. If this is not the case, imbalances in unobserved covariates

may introduce bias. Additionally, a small control pool can potentially limit the effectiveness of BOSS in

removing imbalance, particularly for distribution-based imbalance measures.

Several computational tests illustrate how alternate optima help analyze the assumptions that are made.

In particular, a non-normal distribution of the estimates or a wide range in the maximum and minimum

estimate might call into question the functional form assumption. However, alternate optima are not al-

ways sufficiently diverse, and overlap between the different control groups remains a significant concern if

attempting to draw conclusions from the estimates of the treatment effect.

Most of the tests focused on achieving balance on the marginal distributions of the covariates and not

the joint distributions. However, if a method fails to produce reliable balance on the marginal distributions,

then it generally will not produce balance on higher-order distributions either. By focusing on the marginal

distributions first, one can determine whether sufficient marginal balance is possible before proceeding to
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search for solutions with balance on higher-order distributions. For example, with the LaLonde datasets,

almost all imbalance could be removed on the marginal distributions but not on the joint distributions.

Because the current theory from Chapter 3 only applies if there is no residual imbalance, focusing on the

marginals allowed the theory to be tested with the LaLonde data. Extending the current theory to quantify

the impact of residual imbalance on the estimate of the treatment effect is a direction for future research.
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Chapter 6

Conclusion

This dissertation presented a comprehensive overview of the Balance Optimization Subset Selection (BOSS)

framework which is used to derive causal estimates from observational (non-random) data. For an obser-

vational dataset consisting of a treatment group and a large pool of control units, BOSS has as its goal

the identification of a subset of control units that minimizes a measure of imbalance with respect to the

treatment group. The BOSS framework encourages: (1) the specification of assumptions regarding the inter-

action between the covariates and the control responses; (2) the determination of sources of imbalance that

need to be removed in order to provide an unbiased estimate of the treatment effect; (3) the minimization

of this imbalance using an appropriate optimization model; and (4) the construction of an estimate of the

treatment effect if residual imbalance is minimal or nonexistent. In addition, BOSS can identify alternate

optima to help assess the sensitivity of the estimates to changes in the control group. Alternate optima can

also be used to alert the researcher to potential problems with the assumptions.

Three major aspects of the BOSS framework were discussed in this dissertation. The first aspect focused

on the role of covariate balance in causal inference for observational data. Specifically, it explored the re-

lationship between the covariates, the control response function, and bias in the estimate of the treatment

effect. Under appropriate assumptions on the function that relates the covariates to the control responses, it

was demonstrated that certain levels of covariate balance are necessary and sufficient in order to construct an

unbiased estimate of the treatment effect. As the assumptions become weaker and the control response func-

tion becomes more general, the covariate balance requirements become more strict. The weakest assumption

is strong ignorability, which requires exact balance on the full joint distribution of the covariates between the

treatment and control groups. Collectively, the assumptions unify existing matching and regression methods

for causal inference within the balance hierarchy. BOSS is designed to accommodate these assumptions by

searching for a control group that satisfies the appropriate balance requirements.

The second aspect of the BOSS framework was the computational complexity of the associated decision

and optimization problems. In particular, BOSS with several imbalance measures is NP-Hard except in a
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few restricted cases with a limited number of covariates. Approximating several of the optimization problems

for BOSS with minimization imbalance measures to within any factor of the optimal solution was shown to

be impossible unless P = NP because such an approximation algorithm would lead to a polynomial-time

algorithm for deciding an NP-Complete problem. However, a constant-factor approximation algorithm

was constructed for a maximization problem resulting from a reformulation of one imbalance measure.

Finally, the third aspect of BOSS considered its application in practice. A simulated annealing heuristic

and several mathematical programming models were presented for solving the optimization problems as-

sociated with BOSS. Despite the complexity of these problems, computational results demonstrated that

the heuristic and the mixed integer programming solver CPLEX were able to find near-optimal solutions

for moderately sized instances in reasonable time. Additionally, the solutions identified by BOSS featured

improved covariate balance compared to traditional matching methods and they also produced accurate es-

timates of the treatment effect on simulated data. Further computational tests demonstrated the suitability

of BOSS with several potential imbalance measures on the well-studied dataset of LaLonde (1986) and also

considered how alternate optima can be used to assess the assumptions made by BOSS.

There are many avenues for future research. Of primary importance is an investigation into the impact of

residual imbalance on the bias in the treatment effect estimate, because it is unlikely that all imbalance can

be removed from most real-world datasets. Identifying how this bias can be characterized and bounded is

essential to constructing accurate estimates of the treatment effect if residual imbalance cannot be removed.

For example, if marginal distribution balance cannot be fully achieved but marginal moment balance can,

then a process for distinguishing the better form of balance is needed.

Residual imbalance also complicates the combination of all covariate imbalance measures into a single

objective function. If the values of two covariates are on different scales, then IDOM will prioritize removing

imbalance on the covariate with larger values. This presents no problem if imbalance on both covariates can

be removed but not when some residual imbalance is present. Scaling measures like ISDOM can accommodate

this to some extent, but further development in this area is warranted. More generally, if a combination of

moment-based imbalance measures and distribution-based imbalance measures are used, then it is necessary

to ensure that they are appropriately scaled for combination into a single objective.

In the presence of residual imbalance, BOSS can be formulated as a multi-objective optimization problem,

where each component of the objective is an imbalance measure for a single covariate or a subset of the

covariates. In this manner, the trade-offs associated with minimizing one source of imbalance at the expense

of others can be explored and potentially quantified. A sensitivity analysis using this formulation could
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provide information on the impacts of each of the covariates on the control responses.

The current sensitivity analysis discussed for BOSS can also be expanded in many ways. One possibility

is to incorporate a measure of solution overlap into the search for extreme estimates. Finding two distinct

solutions with a difference in estimates that is slightly less than the maximum range would be more useful

than two extreme solutions with a large amount of overlap. Another possibility is the development of a

better procedure for identifying a diverse set of alternate optima. A related direction is to investigate

the error terms in order to characterize their impact on the estimates of the treatment effect arising from

optimally balanced solutions. Determining what range and variation can be expected in practice given the

possibility of overlap and developing statistical tests to check these expectations are both important goals for

expanding the utility of the sensitivity analysis. Another possibility is the exploration of parallels between

bootstrapping techniques and estimates from alternate optima for BOSS.

While the majority of the imbalance measures considered here can be modeled as mixed integer (linear

or quadratic) programs and solved with CPLEX, work needs to be done on developing specialized exact

algorithms both for identifying good solutions quickly and for verifying optimality. Such algorithms will

most likely be necessary for handling larger datasets. Future work should also focus on the development of

tighter mathematical programming formulations and problem-specific cuts. Additionally, methods should

be developed for solving the optimization problems without the constraint on the size of the control group.

Another possibility is to search for approximation-preserving reductions from NP-Hard optimization

problems to BOSS with various imbalance measures. More generally, this could include the identification of

problems whose structure is similar to that of BOSS in order to potentially use existing techniques for those

problems. Additional research into approximation algorithms for reformulations of the current imbalance

measures will help identify initial solutions for use in exact algorithms.

From the application perspective, BOSS should be extended to handle the case of a non-binary treatment.

This could be used to assess the effectiveness of treatment at different dosage levels. Another possibility is

the adaptation of BOSS to construct estimates of unit-level, or personalized, treatment effects. This would

be particularly suitable for applying BOSS to comparative effectiveness research (Concato et al., 2010).

Updating the BOSS framework to handle the possibility of missing covariate data is also important for

dealing with many real-world datasets.

Finally, identifying additional datasets on which BOSS can be tested remains an important direction for

future work and validation. In conjunction with this, the development of a thorough list of guidelines and

suggested best practices for using BOSS would be beneficial to researchers and practitioners in their work.
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Appendix

Table A.1: Solutions for data3c10k ranked by Iχ2 with 32 bins per covariate.

Imbalance τ̃1
T KS

Range Observations µ σ µ σ

≤ 1.0 ×10−7 833 0.0122 0.0900 0.0274 0.0027
1.0 ×10−7 - 1.0 4, 377 0.0679 0.0950 0.0282 0.0028
1.0 - 2.0 4, 675 0.1478 0.1111 0.0294 0.0029
2.0 - 3.0 3, 747 0.2291 0.1173 0.0312 0.0032
3.0 - 4.0 3, 098 0.2948 0.1183 0.0328 0.0034
4.0 - 5.0 2, 751 0.3596 0.1233 0.0344 0.0035
5.0 - 6.0 2, 308 0.4085 0.1304 0.0356 0.0035
6.0 - 7.0 2, 022 0.4666 0.1303 0.0370 0.0036
7.0 - 8.0 1, 873 0.5173 0.1306 0.0381 0.0037
8.0 - 9.0 1, 670 0.5584 0.1315 0.0394 0.0037
9.0 - 10.0 1, 544 0.5881 0.1355 0.0402 0.0038
10.0 - 20.0 10, 937 0.7889 0.1790 0.0449 0.0047
20.0 - 30.0 8, 313 1.1213 0.1828 0.0528 0.0044
30.0 - 40.0 7, 009 1.4045 0.1974 0.0597 0.0046
40.0 - 50.0 6, 148 1.6617 0.1956 0.0659 0.0045
50.0 - 60.0 5, 416 1.8779 0.2050 0.0713 0.0047
60.0 - 70.0 4, 910 2.0778 0.2125 0.0762 0.0048
70.0 - 80.0 4, 437 2.2490 0.2160 0.0808 0.0049
80.0 - 90.0 3, 920 2.4258 0.2159 0.0854 0.0049
90.0 - 100.0 3, 745 2.5803 0.2250 0.0892 0.0052
100.0 - 200.0 28, 789 3.2693 0.4242 0.1068 0.0104
200.0 - 300.0 21, 784 4.3260 0.3753 0.1332 0.0089
300.0 - 400.0 18, 056 5.1472 0.3547 0.1531 0.0083
400.0 - 500.0 16, 629 5.8218 0.3482 0.1692 0.0082
500.0 - 600.0 15, 382 6.4058 0.3489 0.1824 0.0082
600.0 - 700.0 14, 876 6.9137 0.3475 0.1939 0.0082
700.0 - 800.0 13, 974 7.3915 0.3588 0.2044 0.0084
800.0 - 900.0 13, 697 7.8138 0.3648 0.2136 0.0084
900.0 - 1000.0 13, 336 8.2038 0.3614 0.2220 0.0085
1000.0 - 2000.0 66, 747 9.2378 0.6579 0.2430 0.0137
2000.0 - 3000.0 2, 638 11.5269 0.5772 0.2857 0.0121
3000.0 - 4000.0 34 12.7366 0.3777 0.3076 0.0099
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Table A.2: Solutions for data10c10k ranked by Iχ2 with 32 bins per covariate.

Imbalance τ̃1
T KS

Range Observations µ σ µ σ

≤ 2.0 0 N/A N/A N/A N/A
2.0 - 3.0 1 0.2168 0.0000 0.0260 0.0000
3.0 - 4.0 25 0.2409 0.1056 0.0251 0.0014
4.0 - 5.0 116 0.2809 0.1113 0.0251 0.0016
5.0 - 6.0 229 0.3567 0.1065 0.0255 0.0014
6.0 - 7.0 332 0.4024 0.1198 0.0259 0.0013
7.0 - 8.0 327 0.4467 0.1189 0.0262 0.0016
8.0 - 9.0 377 0.4914 0.1200 0.0267 0.0016
9.0 - 10.0 350 0.5159 0.1225 0.0271 0.0015
10.0 - 20.0 3, 305 0.7416 0.1719 0.0295 0.0021
20.0 - 30.0 3, 105 1.0607 0.1679 0.0328 0.0021
30.0 - 40.0 2, 737 1.3523 0.1748 0.0359 0.0021
40.0 - 50.0 2, 677 1.6002 0.1855 0.0384 0.0022
50.0 - 60.0 2, 608 1.8155 0.1970 0.0409 0.0022
60.0 - 70.0 2, 649 2.0576 0.1899 0.0434 0.0023
70.0 - 80.0 2, 499 2.2616 0.1956 0.0456 0.0024
80.0 - 90.0 2, 527 2.4404 0.2036 0.0477 0.0024
90.0 - 100.0 2, 221 2.6453 0.2113 0.0499 0.0024
100.0 - 200.0 22, 575 3.5447 0.5077 0.0600 0.0058
200.0 - 300.0 20, 452 4.9360 0.4429 0.0760 0.0051
300.0 - 400.0 19, 317 6.0623 0.4187 0.0889 0.0048
400.0 - 500.0 19, 179 7.0259 0.3946 0.1000 0.0046
500.0 - 600.0 19, 216 7.8660 0.3913 0.1096 0.0046
600.0 - 700.0 19, 778 8.6073 0.3793 0.1178 0.0045
700.0 - 800.0 20, 144 9.2818 0.3880 0.1254 0.0047
800.0 - 900.0 21, 140 9.8486 0.3882 0.1317 0.0048
900.0 - 1000.0 21, 901 10.3721 0.3997 0.1373 0.0048
1000.0 - 2000.0 31, 255 11.1042 0.5728 0.1448 0.0064
2000.0 - 3000.0 11 13.5719 0.6053 0.1663 0.0081
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Table A.3: Solutions for data10c10k ranked by IDOM.

Imbalance τ̃1
T KS

Range Observations µ σ µ σ

≤ 0.001 0 N/A N/A N/A N/A
0.001 - 0.01 12, 004 0.0596 0.0857 0.4101 0.0258
0.01 - 0.02 66, 859 0.0789 0.0913 0.4167 0.0276
0.02 - 0.03 94, 364 0.1115 0.0916 0.4201 0.0272
0.03 - 0.04 94, 269 0.1548 0.0920 0.4200 0.0264
0.04 - 0.05 83, 005 0.2015 0.0938 0.4199 0.0265
0.05 - 0.10 286, 406 0.3434 0.1323 0.4236 0.0266
0.10 - 0.20 374, 035 0.7421 0.2066 0.4419 0.0276
0.20 - 0.30 290, 608 1.2774 0.2244 0.4721 0.0291
0.30 - 0.40 255, 131 1.7747 0.2439 0.5027 0.0289
0.40 - 0.50 238, 708 2.2529 0.2560 0.5347 0.0306
0.50 - 0.60 244, 812 2.7030 0.2688 0.5667 0.0301
0.60 - 0.70 241, 576 3.1296 0.2770 0.5999 0.0315
0.70 - 0.80 226, 956 3.5528 0.2829 0.6350 0.0313
0.80 - 0.90 229, 046 3.9600 0.2831 0.6688 0.0312
0.90 - 1.00 235, 354 4.3380 0.2934 0.7032 0.0313
1.00 - 1.10 4, 678 4.7390 0.2917 0.7380 0.0318
1.10 - 1.20 4, 804 5.1176 0.2926 0.7725 0.0330
1.20 - 1.30 4, 834 5.4931 0.2999 0.8078 0.0326
1.30 - 1.40 5, 008 5.8682 0.2997 0.8410 0.0334
1.40 - 1.50 5, 338 6.2376 0.3079 0.8757 0.0330
1.50 - 1.60 5, 558 6.5948 0.3171 0.9116 0.0325
1.60 - 1.70 5, 508 6.9412 0.3106 0.9457 0.0324
1.70 - 1.80 5, 708 7.2902 0.3236 0.9810 0.0324
1.80 - 1.90 5, 986 7.6334 0.3333 1.0144 0.0331
1.90 - 2.00 6, 440 7.9841 0.3249 1.0483 0.0332
2.00 - 2.10 6, 826 8.3060 0.3324 1.0822 0.0338
2.10 - 2.20 7, 278 8.6380 0.3338 1.1183 0.0340
2.20 - 2.30 7, 628 8.9539 0.3276 1.1515 0.0348
2.30 - 2.40 8, 028 9.2669 0.3400 1.1856 0.0349
2.40 - 2.50 8, 625 9.5876 0.3449 1.2214 0.0353
2.50 - 2.60 9, 537 9.8854 0.3455 1.2562 0.0348
2.60 - 2.70 10, 327 10.1846 0.3498 1.2913 0.0346
2.70 - 2.80 11, 252 10.4831 0.3508 1.3263 0.0351
2.80 - 2.90 11, 548 10.7891 0.3525 1.3605 0.0350
2.90 - 3.00 10, 196 11.0766 0.3548 1.3950 0.0351
3.00 - 3.50 17, 388 11.6992 0.5155 1.4686 0.0563
3.50 - 4.00 1, 650 13.0601 0.4422 1.6321 0.0480
4.00 - 4.50 1 14.0314 0.0000 1.7500 0.0000a
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Table A.4: Balance quality for matching and BOSS solutions for data25c1k.

Mahalanobis Metric Propensity Score BOSS with IDiff (ni = 20)

KS p-value KS p-value KS p-value Objective CPU

|P| Avg Max Avg Min Avg Max Avg Min Avg Max Avg Min Best LB Time (s)

1 0.020 0.020 1.000 1.000 0.020 0.020 1.000 1.000 0.080 0.080 0.906 0.906 0 0 0.04
2 0.045 0.050 1.000 1.000 0.130 0.140 0.374 0.281 0.060 0.060 0.994 0.994 0 0 0.03
3 0.073 0.080 0.935 0.906 0.150 0.170 0.244 0.111 0.063 0.080 0.967 0.906 0 0 0.06
4 0.075 0.100 0.907 0.699 0.182 0.230 0.148 0.010 0.062 0.080 0.968 0.906 0 0 0.12
5 0.088 0.090 0.831 0.813 0.168 0.210 0.173 0.024 0.070 0.090 0.936 0.813 2 2.00 0.35
6 0.097 0.120 0.729 0.468 0.158 0.200 0.246 0.037 0.065 0.100 0.942 0.699 16 14.79 416.17
7 0.133 0.180 0.391 0.078 0.156 0.220 0.257 0.016 0.073 0.100 0.910 0.699 36 36.00 32.29
8 0.131 0.170 0.406 0.111 0.168 0.260 0.217 0.002 0.091 0.140 0.773 0.281 74 74.00 15.59
9 0.127 0.190 0.484 0.054 0.168 0.220 0.182 0.016 0.096 0.140 0.731 0.281 102 99.86 393.28

10 0.143 0.180 0.300 0.078 0.166 0.260 0.230 0.002 0.111 0.170 0.592 0.111 134 134.00 353.87
11 0.147 0.230 0.310 0.010 0.161 0.230 0.215 0.010 0.118 0.170 0.510 0.111 168 166.22 422.02
12 0.155 0.230 0.264 0.010 0.163 0.240 0.213 0.006 0.115 0.170 0.549 0.111 212 210.28 417.50
13 0.153 0.260 0.300 0.002 0.151 0.210 0.245 0.024 0.121 0.190 0.510 0.054 248 248.00 286.72
14 0.164 0.270 0.263 0.001 0.159 0.220 0.228 0.016 0.129 0.190 0.429 0.054 294 289.08 418.92
15 0.165 0.300 0.231 0.000 0.170 0.230 0.150 0.010 0.137 0.200 0.385 0.037 324 320.70 376.54
16 0.164 0.290 0.245 0.000 0.158 0.200 0.216 0.037 0.149 0.230 0.281 0.010 370 364.98 371.70
17 0.164 0.270 0.221 0.001 0.158 0.210 0.236 0.024 0.142 0.210 0.327 0.024 396 389.83 380.27
18 0.174 0.270 0.155 0.001 0.159 0.220 0.241 0.016 0.151 0.250 0.291 0.004 430 423.30 379.77
19 0.173 0.260 0.153 0.002 0.161 0.230 0.201 0.010 0.143 0.250 0.357 0.004 470 460.16 437.41
20 0.172 0.240 0.156 0.006 0.160 0.220 0.223 0.016 0.137 0.210 0.382 0.024 492 474.62 438.29
21 0.166 0.230 0.228 0.010 0.152 0.210 0.274 0.024 0.147 0.220 0.320 0.016 516 508.72 401.62
22 0.167 0.230 0.216 0.010 0.151 0.220 0.282 0.016 0.143 0.210 0.368 0.024 548 533.04 417.12
23 0.173 0.270 0.203 0.001 0.154 0.210 0.263 0.024 0.145 0.260 0.374 0.002 590 568.27 420.70
24 0.175 0.260 0.185 0.002 0.162 0.250 0.247 0.004 0.148 0.270 0.348 0.001 632 612.84 421.06
25 0.186 0.270 0.147 0.001 0.156 0.200 0.267 0.037 0.151 0.230 0.310 0.010 674 654.36 390.72
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Table A.5: Balance quality for matching and BOSS solutions for data25c5k.

Mahalanobis Metric Propensity Score BOSS with IDiff (ni = 20)

KS p-value KS p-value KS p-value Objective CPU

|P| Avg Max Avg Min Avg Max Avg Min Avg Max Avg Min Best LB Time (s)

1 0.010 0.010 1.000 1.000 0.010 0.010 1.000 1.000 0.070 0.070 0.967 0.967 0 0 0.10
2 0.035 0.040 1.000 1.000 0.115 0.130 0.533 0.367 0.050 0.050 1.000 1.000 0 0 0.12
3 0.043 0.050 1.000 1.000 0.167 0.180 0.133 0.078 0.060 0.070 0.987 0.967 0 0 0.16
4 0.052 0.060 0.998 0.994 0.172 0.240 0.202 0.006 0.060 0.060 0.994 0.994 0 0 0.53
5 0.084 0.120 0.836 0.468 0.136 0.170 0.348 0.111 0.060 0.070 0.985 0.967 0 0 0.73
6 0.092 0.110 0.768 0.581 0.145 0.180 0.279 0.078 0.062 0.090 0.966 0.813 0 0 1.91
7 0.083 0.130 0.838 0.367 0.157 0.180 0.180 0.078 0.071 0.090 0.931 0.813 0 0 95.26
8 0.094 0.130 0.754 0.367 0.185 0.210 0.096 0.024 0.065 0.100 0.952 0.699 4 0 424.26
9 0.091 0.150 0.782 0.211 0.172 0.230 0.166 0.010 0.078 0.120 0.875 0.468 8 0 411.39

10 0.114 0.150 0.530 0.211 0.163 0.210 0.179 0.024 0.072 0.110 0.909 0.581 16 0 404.13
11 0.129 0.170 0.412 0.111 0.155 0.210 0.244 0.024 0.067 0.100 0.952 0.699 24 9.48 412.71
12 0.122 0.170 0.487 0.111 0.185 0.240 0.143 0.006 0.068 0.100 0.939 0.699 46 26.17 391.33
13 0.119 0.180 0.499 0.078 0.185 0.240 0.113 0.006 0.078 0.130 0.880 0.367 68 49.86 412.87
14 0.127 0.160 0.428 0.155 0.169 0.210 0.150 0.024 0.083 0.170 0.848 0.111 92 79.04 411.03
15 0.129 0.180 0.436 0.078 0.161 0.240 0.213 0.006 0.085 0.150 0.813 0.211 126 108.58 408.30
16 0.141 0.190 0.307 0.054 0.166 0.300 0.244 0.000 0.094 0.200 0.765 0.037 156 139.61 402.25
17 0.144 0.190 0.293 0.054 0.174 0.230 0.157 0.010 0.089 0.150 0.790 0.211 190 167.25 398.37
18 0.143 0.250 0.344 0.004 0.162 0.210 0.198 0.024 0.094 0.160 0.755 0.155 228 203.53 407.44
19 0.141 0.200 0.355 0.037 0.158 0.210 0.218 0.024 0.096 0.160 0.713 0.155 254 232.84 401.71
20 0.141 0.220 0.369 0.016 0.158 0.240 0.228 0.006 0.101 0.170 0.682 0.111 270 247.69 383.66
21 0.144 0.240 0.361 0.006 0.162 0.270 0.242 0.001 0.098 0.150 0.704 0.211 290 265.58 376.95
22 0.149 0.220 0.306 0.016 0.155 0.210 0.255 0.024 0.105 0.160 0.642 0.155 314 281.18 410.41
23 0.148 0.220 0.305 0.016 0.162 0.230 0.210 0.010 0.104 0.170 0.639 0.111 362 325.44 404.68
24 0.143 0.200 0.336 0.037 0.162 0.240 0.237 0.006 0.105 0.180 0.636 0.078 382 350.86 400.27
25 0.160 0.230 0.258 0.010 0.156 0.240 0.250 0.006 0.113 0.170 0.559 0.111 420 385.84 404.11
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Table A.6: Balance quality for matching and BOSS solutions for data25c10k.

Mahalanobis Metric Propensity Score BOSS with IDiff (ni = 20)

KS p-value KS p-value KS p-value Objective CPU

|P| Avg Max Avg Min Avg Max Avg Min Avg Max Avg Min Best LB Time (s)

1 0.010 0.010 1.000 1.000 0.020 0.020 1.000 1.000 0.060 0.060 0.994 0.994 0 0 0.20
2 0.030 0.030 1.000 1.000 0.115 0.130 0.533 0.367 0.080 0.090 0.890 0.813 0 0 0.21
3 0.047 0.050 1.000 1.000 0.127 0.160 0.439 0.155 0.073 0.090 0.906 0.813 0 0 0.28
4 0.065 0.070 0.980 0.967 0.145 0.200 0.313 0.037 0.083 0.100 0.853 0.699 0 0 0.83
5 0.062 0.070 0.984 0.967 0.158 0.180 0.190 0.078 0.058 0.070 0.991 0.967 0 0 1.23
6 0.070 0.080 0.956 0.906 0.140 0.170 0.327 0.111 0.077 0.090 0.906 0.813 0 0 2.37
7 0.084 0.110 0.809 0.581 0.154 0.220 0.269 0.016 0.069 0.090 0.941 0.813 0 0 286.21
8 0.079 0.100 0.881 0.699 0.156 0.230 0.235 0.010 0.066 0.090 0.947 0.813 2 0 384.32
9 0.096 0.140 0.732 0.281 0.156 0.200 0.218 0.037 0.071 0.090 0.923 0.813 6 0 390.37

10 0.112 0.160 0.588 0.155 0.154 0.200 0.271 0.037 0.067 0.090 0.947 0.813 10 0 420.46
11 0.121 0.160 0.500 0.155 0.175 0.230 0.138 0.010 0.075 0.120 0.899 0.468 14 0 427.72
12 0.124 0.170 0.465 0.111 0.166 0.240 0.180 0.006 0.068 0.110 0.936 0.581 20 0 383.45
13 0.099 0.140 0.687 0.281 0.172 0.230 0.142 0.010 0.075 0.120 0.873 0.468 24 0 372.30
14 0.110 0.170 0.599 0.111 0.176 0.240 0.178 0.006 0.075 0.100 0.912 0.699 40 9.86 392.78
15 0.127 0.180 0.452 0.078 0.162 0.200 0.190 0.037 0.068 0.100 0.942 0.699 60 30.11 390.87
16 0.132 0.220 0.459 0.016 0.176 0.250 0.149 0.004 0.073 0.100 0.911 0.699 88 52.11 380.05
17 0.132 0.230 0.432 0.010 0.180 0.240 0.119 0.006 0.079 0.130 0.871 0.367 108 71.86 367.48
18 0.138 0.210 0.403 0.024 0.159 0.250 0.246 0.004 0.083 0.140 0.829 0.281 128 99.39 370.97
19 0.144 0.220 0.355 0.016 0.173 0.270 0.152 0.001 0.092 0.170 0.756 0.111 158 112.63 356.19
20 0.140 0.230 0.413 0.010 0.166 0.230 0.193 0.010 0.087 0.150 0.790 0.211 170 120.00 364.33
21 0.147 0.220 0.344 0.016 0.165 0.220 0.195 0.016 0.088 0.170 0.790 0.111 188 145.67 360.22
22 0.142 0.270 0.394 0.001 0.172 0.250 0.165 0.004 0.087 0.170 0.797 0.111 208 165.52 351.22
23 0.140 0.260 0.384 0.002 0.164 0.220 0.186 0.016 0.095 0.200 0.732 0.037 236 190.02 370.30
24 0.138 0.220 0.419 0.016 0.160 0.250 0.217 0.004 0.092 0.180 0.762 0.078 264 214.79 351.65
25 0.140 0.230 0.393 0.010 0.155 0.230 0.252 0.010 0.098 0.190 0.708 0.054 298 247.57 356.18
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Table A.7: Estimated treatment effects for matching and BOSS solutions for data25c1k.

Initial Estimate Mahalanobis Metric Propensity Score BOSS with IDiff

|P| A B C A B C A B C A B C

1 1.550 3.886 3.886 0.132 0.125 0.125 0.128 0.122 0.122 0.153 0.093 0.093
2 3.290 2.981 4.986 0.052 0.184 0.081 0.262 1.542 3.028 0.296 0.263 0.041
3 2.624 2.314 4.586 0.233 0.106 0.061 −0.265 1.942 4.033 0.298 0.297 −0.042
4 3.917 3.607 8.545 0.128 0.203 0.296 0.588 2.547 7.613 0.162 0.149 0.020
5 4.646 5.184 11.951 0.411 −1.127 0.279 0.258 −11.386 4.481 0.136 0.861 0.564
6 3.964 8.183 10.988 0.673 0.404 1.584 −0.289 0.537 4.651 0.443 −0.891 −1.277
7 4.347 8.566 11.371 0.377 −1.321 2.200 −0.483 −10.233 1.933 0.678 1.571 1.035
8 7.061 10.237 13.041 1.952 5.297 1.781 −0.225 2.709 3.370 1.162 −6.137 2.130
9 7.257 13.202 16.007 2.544 3.569 2.009 0.720 −1.260 2.018 2.052 9.580 4.592

10 8.913 9.296 14.487 3.106 4.231 3.360 0.434 8.222 14.447 2.387 −0.252 4.708
11 9.546 7.352 12.543 3.200 4.949 3.033 0.808 7.130 8.483 3.218 2.726 0.382
12 9.332 8.104 13.295 3.410 7.309 2.785 −0.248 7.678 6.565 2.470 4.032 4.560
13 7.319 9.446 14.637 2.806 2.119 −0.946 0.168 −8.406 5.766 1.995 5.642 1.501
14 8.010 14.444 19.635 3.327 4.789 0.582 0.226 0.301 4.750 3.273 3.021 10.802
15 10.111 24.437 29.628 5.002 9.853 3.803 2.254 −0.786 7.436 3.256 11.242 18.529
16 11.262 25.589 30.780 5.930 11.577 6.879 1.243 −2.185 −1.078 5.406 21.183 20.352
17 11.919 21.150 31.073 5.392 10.727 7.917 1.647 −12.493 −0.098 5.131 8.399 17.243
18 14.506 23.736 33.660 7.787 12.810 15.029 2.369 −13.394 −0.250 6.983 11.221 16.241
19 14.977 28.966 34.186 6.499 13.716 11.992 1.556 −2.068 −1.739 7.456 6.139 20.481
20 14.915 29.494 34.714 8.204 13.348 9.287 2.748 −6.721 −2.108 5.260 11.465 14.557
21 14.549 29.127 34.348 7.339 11.544 12.420 0.625 −16.817 −7.906 5.000 17.261 14.475
22 14.168 35.606 40.827 6.648 12.125 15.270 1.385 7.781 7.953 6.071 8.995 22.773
23 14.908 36.347 41.567 7.213 7.501 15.246 3.090 −0.961 12.830 7.257 10.659 26.676
24 16.041 42.129 42.906 8.539 14.518 14.396 1.186 −20.264 −5.870 8.992 24.211 31.871
25 15.109 54.267 55.044 9.568 30.617 23.537 2.912 −0.420 −8.759 8.493 22.584 39.753
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Table A.8: Estimated treatment effects for matching and BOSS solutions for data25c5k.

Initial Estimate Mahalanobis Metric Propensity Score BOSS with IDiff

|P| A B C A B C A B C A B C

1 1.406 3.968 3.968 0.124 0.119 0.119 −0.101 −0.106 −0.106 −0.040 −0.086 −0.086
2 3.023 2.747 5.306 0.104 0.070 0.069 0.078 1.291 3.608 −0.087 −0.293 0.277
3 2.389 2.113 4.901 −0.101 −0.049 −0.022 0.487 1.754 4.102 0.143 −0.014 −0.407
4 3.702 3.427 8.586 0.003 −0.578 −0.347 −0.177 3.626 8.501 0.301 0.140 0.240
5 4.542 6.341 12.068 0.559 2.721 0.405 0.502 −6.259 1.615 0.031 −0.080 −1.672
6 3.758 9.438 11.207 0.284 1.025 0.056 −0.545 −8.142 0.090 −0.021 −0.621 −0.835
7 4.191 9.870 11.639 0.258 1.236 0.605 0.377 2.112 3.637 0.054 −0.356 −3.309
8 6.936 11.559 13.328 1.014 3.491 1.784 0.120 −12.073 9.700 0.169 −0.337 0.470
9 7.155 14.682 16.451 0.496 −3.430 0.296 −1.154 −0.708 8.571 0.240 −0.185 1.358

10 8.733 11.426 14.410 1.343 −1.266 −0.529 0.388 7.473 8.254 0.123 1.471 −0.714
11 9.381 9.667 12.651 2.115 1.295 −0.055 −0.890 −1.282 2.527 0.874 −0.206 1.120
12 9.217 10.242 13.225 2.479 3.703 3.881 −0.103 4.814 6.206 0.027 −1.600 −0.995
13 7.280 11.533 14.517 1.814 4.388 0.373 0.977 −3.939 10.037 0.608 2.054 0.487
14 7.916 16.272 19.255 2.255 3.775 −1.029 −0.325 16.819 12.079 1.024 1.160 2.373
15 9.941 25.424 28.408 3.206 −0.227 −2.062 −1.420 −9.275 −7.876 1.530 7.320 6.999
16 11.107 26.590 29.574 3.775 2.108 4.401 −0.087 9.011 9.433 1.564 3.777 8.416
17 11.575 22.510 30.154 3.197 1.119 2.977 −0.979 −20.321 −13.234 2.824 1.896 5.565
18 14.067 25.003 32.647 4.631 4.293 3.453 −0.224 −4.423 −5.838 3.324 2.798 5.351
19 14.415 31.028 33.386 3.597 5.983 3.439 −0.943 −8.425 −3.355 3.489 −0.590 4.088
20 14.291 32.483 34.841 4.825 10.194 7.709 1.477 −26.917 −32.711 4.356 5.274 8.246
21 13.938 32.130 34.488 4.038 11.131 7.485 −2.331 2.018 5.543 3.657 9.047 11.662
22 13.733 38.615 40.973 5.339 7.628 7.355 1.250 2.289 3.157 3.727 5.985 11.303
23 14.521 39.403 41.761 6.121 11.337 11.137 −0.171 7.008 8.110 3.474 5.902 10.135
24 15.835 44.228 43.572 6.131 10.742 8.668 1.226 11.904 5.617 6.034 18.713 11.363
25 14.887 55.301 54.645 7.091 19.956 17.639 0.628 −19.830 −9.886 6.015 20.063 21.462
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Table A.9: Estimated treatment effects for matching and BOSS solutions for data25c10k.

Initial Estimate Mahalanobis Metric Propensity Score BOSS with IDiff

|P| A B C A B C A B C A B C

1 1.248 3.939 3.939 −0.133 −0.133 −0.133 −0.117 −0.117 −0.117 −0.173 0.218 0.218
2 2.855 2.757 5.245 −0.224 −0.184 −0.214 −0.250 1.062 2.449 −0.088 −0.036 0.558
3 2.314 2.215 4.866 −0.192 −0.229 −0.267 −0.723 1.854 3.262 −0.140 0.052 0.753
4 3.615 3.517 8.551 0.047 0.015 −0.428 −0.471 0.805 8.087 −0.302 0.052 0.679
5 4.384 5.939 11.881 −0.096 0.774 0.626 −1.172 −14.864 −1.223 −0.300 −0.755 0.045
6 3.740 8.954 11.018 0.264 0.006 0.302 0.061 −9.008 −0.150 −0.292 −0.487 −0.448
7 4.178 9.392 11.457 0.218 −0.182 0.874 0.772 −15.024 5.093 0.077 −1.922 0.082
8 6.859 11.042 13.106 0.507 −1.423 0.132 −0.290 −0.540 −1.378 −0.121 −0.243 −0.785
9 7.106 14.239 16.303 1.149 0.576 −0.263 −0.160 1.316 3.857 0.140 0.059 −0.793

10 8.702 10.841 14.546 0.804 −3.278 0.390 0.519 12.247 5.437 −0.029 −0.952 −2.646
11 9.363 9.110 12.816 1.498 3.348 0.474 −0.206 8.145 6.042 0.128 0.025 −0.067
12 9.192 9.710 13.415 2.673 3.096 1.588 −0.561 −4.444 3.669 0.151 2.081 −0.181
13 7.226 11.020 14.726 1.805 1.778 1.813 −1.800 0.151 5.576 0.370 −0.175 −0.442
14 7.882 16.127 19.832 2.623 1.746 2.075 0.332 2.433 5.214 0.275 0.954 1.814
15 9.884 26.035 29.741 3.498 6.418 6.261 −0.843 2.177 19.126 0.577 1.474 3.074
16 10.987 27.138 30.844 3.378 −0.515 4.467 −2.001 −12.751 −14.263 1.439 −0.831 2.689
17 11.548 22.972 31.442 3.290 1.539 4.380 0.163 −5.000 2.838 1.647 0.631 3.722
18 14.064 25.488 33.958 4.486 3.646 6.230 0.103 1.474 −0.771 2.073 3.798 4.549
19 14.484 31.467 34.835 5.590 8.374 9.288 3.197 4.514 −6.714 3.498 6.703 8.527
20 14.454 28.902 32.270 4.779 9.157 10.164 1.293 −9.882 −11.849 2.992 0.908 7.782
21 14.053 28.501 31.868 5.532 16.397 16.240 1.798 4.924 2.617 2.369 0.628 5.118
22 13.872 35.035 38.403 5.853 14.142 13.681 −0.081 3.158 −1.903 1.921 4.978 10.023
23 14.679 35.842 39.210 5.341 5.400 4.498 0.504 −2.039 10.905 2.917 5.815 7.692
24 15.889 41.082 40.797 6.985 9.838 9.055 −1.618 3.602 −4.376 3.259 10.886 12.378
25 14.939 52.023 51.739 7.085 14.913 16.074 0.444 −6.257 −14.753 3.765 5.896 6.618
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Table A.10: Covariate balance values for nswcps and nswpsid solutions.

nswcps nswpsid

Objective Covariate DOM KS p-value DOM KS p-value

IDOM

age 0.0000 0.2492 0.0000 1.5960 0.1818 0.0001
education 0.0000 0.0606 0.6465 1.0202 0.2694 0.0000
Black 0.0000 0.0000 1.0000 0.4108 0.4108 0.0000
Hispanic 0.0000 0.0000 1.0000 0.0505 0.0505 0.8432
married 0.0000 0.0000 1.0000 0.5253 0.5253 0.0000
nodegree 0.0000 0.0000 1.0000 0.2694 0.2694 0.0000
RE75 0.0009 0.0976 0.1178 0.0071 0.1683 0.0004

ISDOM

age 0.0000 0.2424 0.0000 2.9966 0.1818 0.0001
education 0.0000 0.0774 0.3353 0.0000 0.0572 0.7154
Black 0.0000 0.0000 1.0000 0.0404 0.0404 0.9686
Hispanic 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
married 0.0000 0.0000 1.0000 0.3266 0.3266 0.0000
nodegree 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
RE75 0.0009 0.1919 0.0000 5.3520×103 0.4848 0.0000

IKS

age 0.0236 0.0101 1.0000 5.7710 0.1953 0.0000
education 0.0101 0.0034 1.0000 0.0640 0.0606 0.6465
Black 0.0000 0.0000 1.0000 0.0471 0.0471 0.8962
Hispanic 0.0000 0.0000 1.0000 0.0303 0.0303 0.9992
married 0.0000 0.0000 1.0000 0.2828 0.2828 0.0000
nodegree 0.0000 0.0000 1.0000 0.0101 0.0101 1.0000
RE75 6.8930×101 0.0101 1.0000 4.2697×103 0.3266 0.0000

IKS:max

age 0.0168 0.0067 1.0000 6.0539 0.1886 0.0001
education 0.0101 0.0067 1.0000 0.4983 0.1886 0.0001
Black 0.0067 0.0067 1.0000 0.1886 0.1886 0.0001
Hispanic 0.0067 0.0067 1.0000 0.0640 0.0640 0.5777
married 0.0067 0.0067 1.0000 0.1886 0.1886 0.0001
nodegree 0.0067 0.0067 1.0000 0.1886 0.1886 0.0001
RE75 6.5656×101 0.0067 1.0000 2.5374×103 0.1886 0.0001

IDiff (20)

age 0.0404 0.0539 0.7819 5.2155 0.2020 0.0000
education 0.0000 0.0000 1.0000 0.1380 0.0404 0.9686
Black 0.0000 0.0000 1.0000 0.0875 0.0875 0.2051
Hispanic 0.0000 0.0000 1.0000 0.0067 0.0067 1.0000
married 0.0000 0.0000 1.0000 0.3300 0.3300 0.0000
nodegree 0.0000 0.0000 1.0000 0.0034 0.0034 1.0000
RE75 2.7071×101 0.0370 0.9870 4.3406×103 0.4074 0.0000

IDiff2 (20)

age 0.0168 0.0471 0.8962 7.7104 0.2896 0.0000
education 0.0000 0.0000 1.0000 0.1481 0.1347 0.0091
Black 0.0034 0.0034 1.0000 0.0875 0.0875 0.2051
Hispanic 0.0000 0.0000 1.0000 0.0572 0.0572 0.7154
married 0.0000 0.0000 1.0000 0.1549 0.1549 0.0016
nodegree 0.0000 0.0000 1.0000 0.0774 0.0774 0.3353
RE75 6.3631×101 0.0337 0.9960 3.8527×103 0.3805 0.0000
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Table A.11: Covariate balance values for nswre74cps and nswre74psid solutions.

nswre74cps nswre74psid

Objective Covariate DOM KS p-value DOM KS p-value

IDOM

age 0.0000 0.2432 0.0000 3.4541 0.1838 0.0039
education 0.0000 0.0811 0.5773 0.8054 0.2162 0.0004
Black 0.0000 0.0000 1.0000 0.4703 0.4703 0.0000
Hispanic 0.0000 0.0000 1.0000 0.0162 0.0162 1.0000
married 0.0000 0.0000 1.0000 0.4811 0.4811 0.0000
nodegree 0.0000 0.0000 1.0000 0.2162 0.2162 0.0004
RE74 0.0050 0.1027 0.2834 0.0051 0.2162 0.0004
RE75 0.0037 0.0973 0.3453 0.0037 0.0919 0.4155

ISDOM

age 0.0000 0.2595 0.0000 0.0000 0.1297 0.0889
education 0.0000 0.0703 0.7510 0.0000 0.0649 0.8312
Black 0.0000 0.0000 1.0000 0.0270 0.0270 1.0000
Hispanic 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
married 0.0000 0.0000 1.0000 0.1622 0.1622 0.0154
nodegree 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
RE74 0.0051 0.0811 0.5773 4.9880×103 0.6108 0.0000
RE75 0.0037 0.1027 0.2834 4.8732×103 0.5730 0.0000

IKS

age 0.8432 0.0595 0.8992 5.0432 0.1784 0.0056
education 0.0000 0.0000 1.0000 0.0270 0.0216 1.0000
Black 0.0000 0.0000 1.0000 0.0811 0.0811 0.5773
Hispanic 0.0000 0.0000 1.0000 0.0054 0.0054 1.0000
married 0.0000 0.0000 1.0000 0.1351 0.1351 0.0682
nodegree 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
RE74 1.0720×102 0.0108 1.0000 5.2585×103 0.4432 0.0000
RE75 3.5793×101 0.0108 1.0000 4.6300×103 0.3784 0.0000

IKS:max

age 0.2000 0.0216 1.0000 6.3351 0.2054 0.0008
education 0.0595 0.0216 1.0000 0.6919 0.1784 0.0056
Black 0.0162 0.0162 1.0000 0.2054 0.2054 0.0008
Hispanic 0.0162 0.0162 1.0000 0.0108 0.0108 1.0000
married 0.0162 0.0162 1.0000 0.2054 0.2054 0.0008
nodegree 0.0216 0.0216 1.0000 0.1784 0.1784 0.0056
RE74 6.4619×101 0.0216 1.0000 2.8268×103 0.2054 0.0008
RE75 1.7347×102 0.0216 1.0000 3.1029×103 0.2054 0.0008

IDiff (20)

age 0.2541 0.0811 0.5773 4.2811 0.1568 0.0212
education 0.0000 0.0000 1.0000 0.1676 0.0541 0.9498
Black 0.0000 0.0000 1.0000 0.0919 0.0919 0.4155
Hispanic 0.0000 0.0000 1.0000 0.0108 0.0108 1.0000
married 0.0000 0.0000 1.0000 0.2541 0.2541 0.0000
nodegree 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
RE74 4.2474×101 0.2378 0.0001 3.4996×103 0.4811 0.0000
RE75 5.1548×101 0.0973 0.3453 3.0987×103 0.4162 0.0000

IDiff2 (20)

age 0.2703 0.0541 0.9498 5.4108 0.2270 0.0001
education 0.0000 0.0108 1.0000 0.1946 0.1135 0.1843
Black 0.0054 0.0054 1.0000 0.0811 0.0811 0.5773
Hispanic 0.0000 0.0000 1.0000 0.0324 0.0324 1.0000
married 0.0054 0.0054 1.0000 0.1243 0.1243 0.1146
nodegree 0.0000 0.0000 1.0000 0.0378 0.0378 0.9994
RE74 1.8373×102 0.2432 0.0000 3.4044×103 0.4541 0.0000
RE75 2.8913×102 0.1027 0.2834 3.4247×103 0.4000 0.0000

133


