
TRANSPORT AND DISORDER-INDUCED LOCALIZATION OF
ULTRACOLD FERMI GASES

BY

WILLIAM RUSSELL MCGEHEE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Associate Professor Nadya Mason, Chair
Professor Brian DeMarco, Director of Research
Assistant Professor Bryce Gadway
Assistant Professor Bryan Clark



Abstract

We experimentally study localization and dynamics of ultracold fermions in speckle and optical lattice

potentials to explore Anderson localization, many-body localization, and relaxation dynamics in strongly

correlated systems. Anderson localization is probed by releasing non-interacting, spin-polarized gases into

three dimensional, anisotropic disordered potentials produced from optical speckle. A fraction of the atoms

are localized by the disorder, and a mobility edge is found separating localized from extended states. The

length scale of the speckle is varied, and the localized state is found to scale linearly with the geometric mean

of the speckle autocorrelation length. We realize the Fermi Hubbard model by loading atoms in a cubic optical

lattice. Non-equilibrium momentum distributions are created via Raman transitions, and the excitation

relaxation rate is measured in the lattice. Transport experiments were performed in a disordered optical

lattice to explore the disordered Hubbard model. These experiments reveal localization in the presence of

strong interactions and an interaction driven metal–to–insulator transition. The localized state is found to

be insensitive to a doubling in the temperature of the gas and is consistent with predictions of many-body

localization.
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Chapter 1

Introduction

This thesis explores transport and disorder-induced localization with ultracold Fermi gases. We focus on

studies of transport in speckle potentials and disordered optical lattices to probe Anderson and many-body

localization. The apparatus for performing these experiments prepares an ultracold quantum gas of 40K

atoms and applies a variety of well controlled optical and magnetic potentials. These potentials build the

physical landscape of the experiment and allow for the construction of analogs to other physical systems.

Generically, we use a well controlled quantum system to simulate the behavior of another, less-understood

quantum system we wish to explore—this is called quantum simulation. Quantum simulation encompasses

a large number of experimental approaches, but the overarching goal of these methods is to explore a model

or Hamiltonian in a regime where direct calculation is not possible either due to the scale or complexity of

the system. We begin by constructing a quantum system whose underlying Hamiltonian is engineered to

match or approximate the system we wish to explore, and instead of propagating the initial state forward in

time using models and classical computers, we perform the experiment through the analog quantum system.

In this way, one quantum system simulates the behavior of another. With ultracold gases, the simulation is

“run” using atomic matter waves propagating in time through optical and magnetic potentials, and a broad

spectrum of technology has been developed to provide both low entropy initialization of the simulation and

precise control and calibration of the simulated Hamiltonian.

Analog quantum simulators, much like early classical computers, are purpose–built to simulate a given

problem or class of problems. The apparatus discussed in this thesis was constructed to study the role

of disorder and interaction in regimes relevant to materials. The available parameter space we explore is

illustrated in Figure 1.1, which shows an equivalent of the Bronstein cube illustrating the boundaries of

physical knowledge in the early 1920s with respect to the physical constants h, G, and 1/c. This cube is

variously attributed to Bronstein as well as Gamow, Ivanenko, and Landau; and on this cube, problems with

projection along multiple axes become increasingly difficult. Many are still active topics of research. Here,

we are interested in the interplay of quantum states with disorder and interactions. In these systems the

underlying Hamiltonian is known, but the combination of quantum degeneracy, interactions, and disorder
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Figure 1.1: Phase space for quantum simulation of condensed matter systems. In the original Bronstein
cube, axes represented the boundaries of physical knowledge set by the values of h, G, and 1/c. Here, an
equivalent cube is constructed for the quantum many-body problem with axes set by relevance of quantum
mechanics, disorder, and interactions. Problems with projections along multiple axes become increasingly
complex and difficult to solve numerically. In this work, we use degenerate Fermi gases to simulate behavior
in the regimes of Anderson localization, strongly-correlated metals, and many-body localization.

leads to behavior that is difficult to describe with current theoretical and numerical tools. This idea is

encapsulated in Phillip Anderson’s famous quote describing emergent phenomena: “More is different” [7].

Experiments presented in this thesis are performed iteratively—for each initialization of our quantum

simulation, parameters of the Hamiltonian are chosen and the state is evolved for a particular length of

time. At the end of the experiment, an image is taken of the gas, which destroys the carefully prepared

quantum state. This process is then repeated many times by first cooling a gas to the desired initial state,

preparing the desired Hamiltonian, and time evolving a chosen amount. In this way, the desired phase space

is explored with discrete sampling. Examples of this process are shown in Figure 1.2 where localization is

explored in various disordered potentials.

This thesis presents several new measurements of transport in disordered systems relevant to longstanding

problems of localization in 3D and in the presence of strong interactions. Predictions for 3D localization in

correlated disorder are primarily performed in the weak scattering limit. The weak scattering approximation

is likely to fail at the onset of Anderson, and the validity of the limit is largely unknown. Measurements of

Anderson localization in a 3D speckle potential with variable correlation properties are presented in this thesis

as a test of predictions from the weak scattering limit. Measurements are performed over a range in speckle

correlation lengths to extract the scaling of thermally averaged localization lengths and the location of the
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Figure 1.2: Examples of quantum simulation using ultracold quantum gases. (a) Non-interacting Fermi
gases are released into a disordered potential with varying mean disorder height ∆ and temperature T . The
dynamics of the gas are measured as these parameters are varied to explore the desired parameter space.
Data are replotted from Figure 4.3 (b) and modified from Ref. [130]. An impulse is applied to a strongly
interacting gas in a 3D, disordered optical lattice. The response is observed as the disorder strength is varied.
Images show the quasimomentum gas and the difference from the unperturbed state; data are replotted from
Figure 6.4.

mobility edge. Comparisons to several state-of-the-art predictions are included with special emphasis given

in estimating the validity of the Born approximation. Additional probes of the behavior of the localized state

are performed by observing dynamics after quenching the density profile and applying a uniform force to the

localized atoms. Using an interacting gas in a disordered optical lattice, we study transport and localization

in the presence of strong interactions. This work connects to recent theoretical predictions of the possibility

for many-body localization in isolated, interacting quantum systems. Many-body localization predicts that

a system of localized particles with weak interactions and no connection to an external bath can remain

insulating at finite temperature. This is surprising and raises important questions about thermalization in

isolated quantum systems. We realize an analogous system of localized atoms in a disordered optical lattice

and probe the stability of the localized state across a doubling of the temperature in the lattice.
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1.1 Outline of Manuscript

• Chapter 2: This chapter details the experimental apparatus and production of ultracold, degenerate

Fermi gases with 40K atoms. The relevant properties of 40K and its response to applied magnetic

and optical potentials are presented. Significant focus is given to the technical details of the magnetic

and optical potentials including the subtleties of the early stages of magnetic trap loading, residual

curvature from the anti-gravity field, and active position servoing of the optical trap. Other aspects of

the experiment, such as Raman optics and fringe removal in absorption imaging, are introduced.

• Chapter 3: The properties of optical speckle, including its intensity autocorrelation and power spec-

trum, are discussed in detail. Speckle is used in this work to create three-dimensional disordered

potentials for studying Anderson localization in 3D and disorder-induced localization in optical lat-

tices. To perform these measurements, the statistical properties of the disorder must be well known

and accurately calibrated. The optics used to create the speckle potential are discussed and ex situ

scans of 3D speckle potentials are performed with a duplicate of the experimental optics. The intensity

autocorrelation of the measured speckle distributions are compared with analytic predictions and are

used to build a model of speckle in the experiment.

• Chapter 4: We observe disorder-induced localization in 3D speckle potentials consistent with the

scenario of Anderson localization. A spin-polarized, non-interacting Fermi gas is loaded into a speckle

potential and is observed to break into two components: one which expands ballistically and the

other which adopts a localized, anisotropic density profile whose shape is fixed in time. This thesis

focuses on the scaling of the localized state as a function of the disorder correlation length. Scaling

with temperature and the mean disorder potential are also discussed. Further studies probing the

nature of this state involve quenching the localized density profile and measuring the stability against

an external force. Detailed comparison to theoretical predictions of Anderson localization in speckle

potentials within the Born approximation are made, and the validity of this approximation for our

data is discussed.

• Chapter 5: Chapter 5 details the properties of degenerate Fermi gases in optical lattices. The Hubbard

model and band structure in the lattice are introduced, and details of the alignment and calibration of

the lattice potential are presented. A large problem in lattice gas experiments is accurate thermometry

in the lattice, and we discuss in detail how we infer thermodynamic properties assuming isentropic

transfer from the harmonic trap in which the gas is prepared to the lattice. A number of thermodynamic

limits are discussed, and number occupation and quasimomentum distribution are shown for relevant
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entropies and particle numbers. The relevance of single-particle localized states in the lattice is also

discussed.

• Chapter 6: We report transport experiments in strongly correlated lattice systems. We load a

spin-mixed gas into a disordered optical lattice; thereby, realizing the disordered Hubbard model. We

probe the conductivity of the many-body state in the lattice by applying an external force. We observe

the atom to become localized by the disorder in the presence of strong interactions and identify an

interaction-induced metal-to-insulator transition. To make connection with recent work on many-body

localization, we measure the response of a marginally localized gas as the temperature of the gas is

increased and measure no response over a doubling in the temperature. Recent numerical work is dis-

cussed which replicates the high temperature transport data in the experiment with no free parameters

and finds the data consistent with Anderson localization of Hubbard-band quasiparticles. We conclude

by introducing an experimental technique for probing quasimomentum relaxation dynamics in optical

lattice systems.
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Chapter 2

Experimental Apparatus

2.1 Producing Degenerate Fermi Gases

We produce quantum degenerate Fermi gases of 40K through standard cooling techniques. Atoms are first

collected in magneto-optical trap (MOT) and then evaporatively cooled to degeneracy in magnetic and

optical potentials. The apparatus presented here is based on experiments at JILA [44], borrows heavily from

the rubidium experiment at Illinois [211, 156, 135], and builds on decades of laser cooling technology. The

majority of the experiment was built by Stan Kondov, myself, and Josh Zirbel; and many details of the

apparatus can be found Stan Kondov’s thesis [100]. This chapter will briefly summarize the operation and

design of the experiment with greater emphasis given to recent additions. The properties of optical speckle

used in this work to create disordered potentials are described in Chapter 3.

The experiment occurs within a vacuum chamber divided into two cells: the collection cell where atoms

are initially collected in a MOT [214] and the science cell where the gas is cooled to degeneracy and experi-

ments are performed. The two cells are connected by a differential pumping tube, as shown in Fig. 2.1, that

affords a pressure ratio of ≈ 103 between the chambers. Experiments begin with a 3D magneto-optic trap

(MOT) that collects roughly a billion atoms to ≈ 100µK [43]. A quadrupole coil is used to generate the

10 Gauss/cm gradient necessary for the MOT, and two cooling lasers at 766.7 nm address the trapping and

repumping transitions. The MOT is a dark-spot design [92] where a hole is placed in the repumping beam

to reduce radiation pressure in the center of the MOT. This allows for a greater total number of atoms to

be captured at the expense of slower MOT loading rates and added complexity. Both glass vacuum cells are

uncoated.

Atoms are loaded into the MOT from a dilute vapor of potassium in the collection cell. Four isotopically

enriched potassium alkali metal dispensers (Alvatec GmbH) are attached to the collection cell in a glass arm;

dispensers for rubidium are attached to the cell in a separate arm but are not used. The potassium dispensers

are resistively heated using approximately 6 A to control their vapor pressure. The glass arm for holding the

dispensers and the collection cell are heated using tape heaters to minimize plating of the potassium vapor
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Figure 2.1: Early image of the vacuum chamber in which experiments are performed. Atoms are collected
in the collection cell from a dilute potassium vapor. The MOT quadrupole coils are mounted to a linear
stage and transfer the atoms through the differential pumping tube to the science cell. Evaporative cooling
is performed in magnetic and optical traps (not shown) in the science cell.

on the inside of the chamber. The low vapor pressure and the dark-spot MOT configuration makes for a

typical loading time of thirty seconds. This could be greatly increased with a Zeeman slower or a 2D MOT

source. Recent work has explored routes to lower temperatures in potassium MOTs using a gray molasses

[109, 51, 178] and narrow linewidth MOTs using the 405 nm transition [137, 48]. These improvements would

not be beneficial in MOT loading in the current apparatus due to heating in the transfer and quadrupole

trap loading sequence.

The background pressure in the collection cell sets the trapping lifetime in a magnetic potential to roughly

one second, and the atoms are transferred to the science cell with lower pressure for further cooling. The

gas is loaded into a quadrupole magnetic trap before being transferred to the science cell. Loading of the

quadrupole trap is preceded by stages of compressed MOT, optical molasses, and optical pumping to the

magnetically trapped states in the F = 9/2 manifold. The MOT quadrupole coils are ramped over 25 ms

to a gradient of 240 Gauss/cm to tightly compress the atoms for efficient transfer through the differential

pumping tube to the science cell. After optical pumping and application of the deep quadrupole field, the

MOT quadrupole coils mechanically transfer the atoms 0.7 meters across the table to the science cell. The

quadrupole coils are mounted on a linear stage that allows for fine control over the velocity profile of the

motion to limit vibration to the table. A combination of two ion pumps maintains the differential pressure
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between the two cells, and a titanium sublimation pump is also attached to the chamber for initial pumping

to ultra-high vacuum. After arrival in the science cell, the atoms are transferred from the MOT quadrupole

coils to a stationary QUIC trap where the 1/e lifetime is several hundred seconds.

Forced evaporative cooling in magnetic and optical traps is performed in the science cell to cool the

gas to degeneracy [93, 37]. Initial cooling is performed in a modified QUIC trap described in Sec. 2.3.2.

High energy atoms are driven to magnetically untrapped states via a microwave transition while the gas

equilibrates to progressively lower temperatures. The final stages of cooling are performed in an optical

dipole trap described in Sec. 2.4.1. Temperatures in this trap fall well below the p-wave barrier for single-

spin evaporative cooling [42]. The spin mixture in this trap is adjusted by varying the final stages of magnetic

evaporation and through spin-changing microwave and Raman transitions. Typical evaporation trajectories

in the magnetic and optical trap take 40 seconds each and result in a total cycle time of approximately

two minutes to reach degeneracy. The fastest BEC experiments report sub-second experimental cycle times.

Fermi gas experiments in general take longer to cool to degeneracy due to the Pauli blocking that slows the

collisional timescale for degenerate gases, and the fastest Fermi gas experiments can cycle every 20 seconds

[196]. A common approach is to use a Feshbach resonance in the optical trap to maximize the collisional cross

section and hence the speed of evaporation. Alternatives for faster cooling in magnetic traps include Doppler

cooling and degenerate Raman sideband cooling [207]. These methods are relatively easy to implement and

could substantially reduce the time used in the initial stages of cooling.

2.2 Properties of 40K

All experiments in this thesis were performed with the fermionic isotope of potassium, 40K. The natural

abundance of this isotope is low (around 0.01 percent), and the sources used were enriched via neutron

capture. Potassium was the first fermionic species cooled to quantum degeneracy [43]; and it remains a

large player in quantum degenerate Fermi gas experiments due to its good collisional properties, a broad

Feshbach resonance near 200 Gauss, and its simple atomic structure. A number of other fermionic isotopes

have been successfully laser cooled and brought to quantum degeneracy including 6Li and heavier, non-alkali

species including 87Sr [45], 53Cr [22], 167Er [5], 173Yt [55], and both 161Dy and 163Dy [121]. Initially, it

was thought that magneto-optical trapping of atoms such as erbium and dysprosium would be prohibitively

complicated due to the large number of long-lived, metastable states that were thought to require repumping

for successful formation of a MOT, but the large magnetic dipole moment of these atoms allows for recycling

of the dark states due to the weak confinement from the MOT’s magnetic quadrupole field [129, 217].
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Cooling of all species has progressed to T/TF ≈ 0.1, which is the standard benchmark for modern quantum

gas experiments. Work cooling to lower entropies is an area of active research and values as low T/TF ≈ 0.05

have been claimed [72, 73].
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Figure 2.2: Relevant transition in 40K. Primary cooling transitions are from the 4S1/2 to 4P3/2 for the MOT
trap and repump beams. For all experiments in this thesis, atoms reside in the F=9/2 ground state hyperfine
levels with mF value of 9/2 and 7/2. Imaging is preformed on the cycling transition to the F = 11/2 state
in 4P3/2. Figure adapted from Ref. [135].

The relevant atomic energy levels for potassium are shown in Fig. 2.2. Cooling and imaging are performed

on the D2 transition from 4S1/2 to 4P3/2 using light produced by two external cavity diode lasers (EagleYard

Photonics EYP-RWE-0790-04000-0750-SOT01-0000 and New Focus Vortex II) to address the two hyperfine

states in the 4S1/2 electronic level. Tapered amplifiers (EagleYard Photonics EYP-TPA-0765-01500-3006-

CMT03-0000) amplify the diode laser output to produce approximately 200 mW of usable light for both the
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trap (F = 9/2→ F ′) and repump (F = 7/2→ F ′) transitions. Each laser is independently offset-locked to

an atomic transition by performing spectroscopy on a separate potassium vapor cell. The offset in the lock

is provided by an AOM and limits the tuning range of each laser to 60 MHz. Optical pumping and imaging

light is produced via frequency shifting the tapered amplifier output with an AOM.

The magnetic moment of the potassium atom is used for trapping and for manipulation of the atomic

internal states. 40K has a nuclear spin of 4 with hyperfine levels in the electronic ground state of F=7/2

and 9/2; the hyperfine structure is inverted with the 9/2 manifold having lower energy. The nuclear spin

provides a large number of Zeeman levels as shown in Fig. 2.3. At low fields, the Zeeman effect is linear and

the energy of each Zeeman level scales as

EF=9/2,mF (B) =
2

9
mFµB

∣∣∣ ~B∣∣∣ (2.1)

EF=7/2,mF (B) = 1285.8 MHz− 2

9
mFµB

∣∣∣ ~B∣∣∣ , (2.2)

where µB = 1.4 MHz/Gauss and the zero in energy is defined for the F=9/2 manifold at zero field. At high

fields, the coupling between the orbital and nuclear spins is no longer dominant and the magnetic moment

is controlled solely by the spin of the electron. At intermediate magnetic fields, the Breit-Rabi equations

can be used to calculate the energy of the magnetic levels as shown in Appendix A.4. The energy shift and

magnetic moment of all states in the F = 9/2 and 7/2 manifold are plotted in Fig. 2.3.
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Figure 2.3: Magnetic field dependence of the 4S1/2 hyperfine states in 40K. (a) Briet-Rabi diagram for the F
= 9/2 and 7/2 hyperfine manifolds in the 4S1/2 state of Potassium-40. (b) Field dependence of the magnetic
moment. The stretched states have µ ≈ 1.4MHz/G, and the moment of the |9/2, 7/2〉 state switches sign
at 357 Gauss.
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2.3 Magnetic Potentials

Magnetic potentials are used to form the magneto-optical trap, to create conservative, harmonic potentials

for evaporative cooling, and to provide a levitating force for experiments on Anderson localization. The po-

tentials exploit the magnetic moment of the potassium atoms to create smoothly varying, well characterized

potentials that can be accurately reproduced in the experiment. Detailed properties of these magnetic fields

are discussed for each of these applications.

2.3.1 Quadrupole Ioffe-Zirbel Trap

The initial stages of evaporative cooling are performed in a modified QUIC trap [50]. Atoms are transferred

from the MOT to the science cell by moving the cart coils on a linear stage as shown in Fig. 2.1. The current

in the cart coils is increased to produce a quadrupole gradient of 175 G/cm along the strong direction to

maximize transfer through the differential pumping tube. Evaporation in the science cell is not performed in

a quadrupole trap due to Majorana spin changing transitions near the field zero that dramatically reduce the

efficiency of evaporation in a quadrupole potential. Mixed-species potassium experiments have successfully

employed plugged quadrupole potentials in which a repulsive optical potential is overlapped with the field

zero to reduce spin-changing transitions. In this method, a bosonic species is used to sympathetically cool

the potassium, and this has been accomplished for both rubidium-potassium [17] and sodium-potassium

mixtures [171, 190]. Unfortunately, this method has not been successfully employed with potassium alone,

and a magnetic trap without a field zero must be constructed.

Atoms are transferred from the cart quadrupole to the QUIC trap by overlapping their field minima

and snapping one field off while turning the other on. The geometry of the coils is shown in Fig. 2.5 and

described in detail in Ref. [100]. The QUIC trap is calculated to produce a field minimum of 0.4 Gauss /

Amp at the loading current of 710 Amps. At this current the bias field is ≈ 285 Gauss and loading multiple

spin states from the 9/2 hyperfine manifold is complicated by the non-linear Zeeman effect; the moment

of the |9/2, 7/2〉 state vanishes at 357 Gauss. The temperature of the gas at this stage of the experiment

is ≈ 600 µK. In producing a trap deep enough to efficiently capture the majority of the |9/2, 9/2〉 atoms,

efficient trapping potential of the |9/2, 7/2〉 atoms is not possible. At the typical load current of 710 A, the

trap for the mF = 7/2 atoms is one seventh as deep as for the mF = 9/2 atoms due to the modified magnetic

moment and gravity as illustrated in Fig. 2.5. Slices through the 3D trapping potentials for the mF = 9/2,

7/2 and 5/2 states are shown for representative currents in the QUIC trap to visualize this problem and

absolute trap depths are shown for these states.

The temperature in the quadrupole trap after transfer to the science cell is measured by comparing the
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Figure 2.4: Magnetic field produced from the QUIZ trap. (a) Schematic drawing of the QUIZ trap (copper)
and partial support structure around the vacuum chamber (blue). The three inner coils produce a QUIC
trap and the larger coils generate the field to adjust the bias field. (b) Image of the QUIZ trap, the inner
QUIC trap is largely obscured by the support structure. (c) Magnetic field generated by QUIZ trap in same
orientation as (a) with 710 A in the QUIC coils and 166 A in the cart coils. Grey lines indicate the orientation
of the coils. (d) Expanded view of the magnetic field near the trap minimum with vectors indicating the
direction and magnitude of the field. The black square indicates the size of the vacuum chamber, and the
cross shows the nominal position of the atoms.

in-trap size to thermodynamic predictions based on the known magnetic potential. The cart coil has a

magnetic gradient of ∂B/∂ρ = 0.53 G/cm along the weak direction, and the expected density profile can be

calculated as

n(~r) = exp

(
−
µgFmF

∂B
∂ρ

√
ρ2 + 4y2

kBT

)
. (2.3)

Here ρ is in the x-z plane. The relationship between the gas RMS size in different directions can be

calculated by integrating over the Boltzmann distribution of energies in the trap. The temperature inferred

in the science cell after loading the quadrupole trap and transfer through the differential pumping tube

is 600µK. The in-trap size in this measurement is extrapolated from images taken in time-of-flight. The
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absolute depth of the QUIC trap when loaded at 710 A is 1.85mK for mF = 9/2, more than three times the

temperature of the gas. For the mF = 7/2 atoms, the depth is less than half the temperature and loading

is very inefficient. No trap is formed at 710A for all other spin states. Loading the QUIC trap at 500 A

increases the loading efficiency of the mF = 7/2 atoms, but in practice, the greater total number of atoms

is captured by loading at the maximum current of 710 A.

The high bias field of the QUIC trap does not produce adequate trapping frequencies for efficient evap-

orative cooling. To increase the trapping frequency, a uniform field is superposed with the QUIC potential

to bring the field minimum close to zero and substantially increase the trap frequency along the x- and

y-directions as shown in Fig. 2.6. The cart quadrupole coils are displaced by 5.3 cm from the center of

the QUIC trap. This location overlaps the local maximum of the quadrupole field with the QUIC trap

center and creates a a uniform field that is anti-parallel with the field produced by the QUIC trap as shown

in Fig 2.4. The combination of the QUIC trap and the uniform field from the cart has been named the

quadrupole-Ioffe-Zirbel (QUIZ) trap. The bias field is typically set at 2 Gauss to increase the geometric

mean of the trapping frequencies from 40 to 230 Hz. A vertical slice of the field generated by the QUIZ trap

is shown in Fig. 2.4. The magnetic field is calculated by assuming that each turn in the coils is an ideal ring

of current, and the field from each loop can be expressed using elliptic integrals as described in Ref. [14].

The field from all the loops is summed numerically to generate the field from the assembly using the code

in Appendix A. The fields can also be expressed as a series expansion as in Ref. [100], but the full solution

allows for a more complete understanding of the shape and depth of the trapping volume.

2.3.2 Microwave Evaporation

Evaporation in the QUIC trap starts with a mixture of several hundred million atoms in the |9/2, 9/2〉 and

|9/2, 7/2〉 states. Evaporation is performed by driving the highest energy atoms to magnetically untrapped

states in the F = 7/2 manifold using microwave transitions. For the magnetically trapped states, the resonant

frequency of this transition decreases with magnetic field. We evaporate the atoms by applying a series of

microwave sweeps starting at 1080 MHz and ending at roughly 1270 MHz. The rate of the microwave sweep

increases in time following an exponential ramp toward the trap zero found at 1280 MHz. As the sweep

progresses to higher frequencies, progressively lower energy atoms are driven from the trap while the gas

reëquilibrates to lower temperatures. Evaporation stops when a gas of 1-3 million atoms are cooled to 2µK,

with ≈ 70% of the atoms in |9/2, 9/2〉. Efficeint loading of the optical dipole trap for the stretched state can

be performed with near unity transfer efficiency. Under ideal evaporation conditions, evaporation would stop

when even population of |9/2, 9/2〉 and |9/2, 7/2〉 were achieved in the magnetic trap. In this experiment,
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Figure 2.5: Spin-dependent potential of the QUIC trap including gravity. (a) Magnitude of QUIC trap
potential for three high-field seeking Zeeman states in the F = 9/2 manifold of potassium plotted for
relevant QUIC trap currents. The non-linear Zeeman effect limits the maximum trap depth trap for states
other than mF = 9/2. The color scale covers 5mK with the value in the central minimum taken as the zero
in energy where possible. Slices are shown in the same plane as Fig. 2.4. The dashed line represents the
“valley of death,” the lowest energy path out of the trap. (b) The depth of the trapping volume is plotted
versus current in the QUIC trap. This depth is set by the height of the saddle point along the dashed line.
Efficient loading of mF = 7/2 states at T = 0.6mK is not possible as the maximum trap depth for this state
is limited to less than 0.5mK.
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Figure 2.6: Trap frequencies for |9/2, 9/2〉 in the QUIZ trap as a function of the bias field for 710A in QUIC
coils. The bias field is controlled by the current in the cart coils displace by 5.3 cm from the center of the
QUIC trap. The QUIC trap is radially symmetric in the x-y plane, and 166A in the CART produces a bias
field of 2 Gauss.

the two spin states load into the dipole trap unequally due to sag, and the sequence is set to maximize the

transfer of |9/2, 9/2〉 into the optical trap. The spin mixture in the dipole trap is adjusted as needed with

microwave or spin-changing Raman transitions at an early stage of optical trap evaporation.

L1

L2

(a) (b)

1/4”

Figure 2.7: Schematic of the 1.3 GHz microwave coil used in magnetic evaporation. (a) The coil is stub
tuned to better impedance match the coaxial wire by adjusting L1 and L2 to create a microwave cavity. (b)
Microwave evaporation coil created from a copper vacuum gasket. The gasket is slotted and semi-rigid coax
is soldered directly to the coil.

The oscillating field required to drive the hyperfine state changing transition is generated by a single-turn

coil made from a 20 mm diameter copper vacuum gasket. A notch was cut in the gasket and semi-rigid coax

soldered directly to the ring as shown in Figure 2.7. The resonance of the coil was adjusted by stub tuning
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the coil with a single stub [170]. Tuning was optimized by measuring the reflected power from the coil with

a directional coupler, and the stub length was adjusted to minimize this quantity. Designs based on high

frequency laminate circuit boards were also used, but losses in the insulation caused them to perform worse

than the bulk copper design. Design of the best stub tuning circuit is complicated by the small real part of

the resistance of the coil, and following the ideal trajectory on the Smith chart to make the device appear

as fifty ohms requires extremely fine tuning of the distance from the coil to the stub. Since the coil operates

over a large frequency range, fine tuning is not required and stub tuning is coarsely optimized in the center

of the frequency range.

2.3.3 Anti-Gravity Coil

A magnetic gradient is used to levitate the atoms against the force of gravity in the experiments on Anderson

localization presented in Chapter 4. In these experiments, atoms in the |9/2, 9/2〉 state are released from

the dipole trap and allowed to freely expand in a three-dimensional speckle potential for periods up to 1

second. A single coil is used to generate the magnetic field gradient required to levitate the atoms. The coil

is roughly circular with a diameter of 4.5 inches, is composed of 50 turns, and is mounted 1.2 inches below

the atoms with a field pointing in the y-direction. The center of the anti-gravity coil is not placed directly

underneath the atoms as the imaging quantization coil (field in z-direction) is active while anti-gravity coil

is used. The sum of the two fields is carefully adjusted to place the most-uniform region of gradient at the

position of the atoms. This is accomplished by levitating the atoms while minimizing the gradients in the

x- and z-directions. The resultant force on the atoms is ~F = µ∇B+m~g, and the required current necessary

to levitate the atoms with moment µ is given in the following expression where R is the radius of the coil,

N is the number of turns, Z is the distance above atoms to the center of the coil, and µ0 is the permeability

of free space.

NI =
mg

µµ0

2
(
R2 + Z2

)5/2
3R2Z

(2.4)

Ideally, the gradient field used for levitation would be perfectly homogeneous with no spatial variation

in applied force and no residual trapping. In reality, these effects will be present due to the finite size of the

coil used and the imperfections in the alignment to the atomic position. The typical method for generating

a uniform magnetic field gradient is with a large, anti-Helmholtz pair of coils. Due to spatial constraints in

this work, a single coil is used with geometry close the Helmholtz configuration where the coil radius equals

the spacing to the atoms. A generic map of the residual curvature from a single-coil anti-gravity source is

shown in Fig. 2.8(a) for a range of coil radii and axial displacements. The combined gravity plus anti-gravity
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potential used in the experiment is shown along the vertical direction in Fig. 2.8(b). This combination of

fields creates unwanted potential with a height of several hundred kB × nK along the vertical direction.

Crucially, the residual acceleration is limited to a few parts per thousand of gravity and the trapping period

of the potential is approximately 800ms. The effect of this potential will manifest on timescale similar to

a quarter of the trap period or 200ms. Much of the data taken exploring Anderson localization is at time

scales up to this value, though some data is taken out to 1s. The role of this potential in our measurements

is discussed in Chapter 4. For the longest speckle correlation length data explored where the gas samples

a greater range of the gradient non-uniformity, there is likely an effect for the anti-gravity coil residual

trapping. Use of an anti-Helmholtz pair would have limited the residual acceleration to a few parts per

thousand of gravity over 1.5mm and reduced the height of the residual potential by a factor of five over

1.5mm.
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Figure 2.8: Details of anti-gravity field for levitating atoms. (a) Vertical oscillation frequency in Hz produced
via a circular coil with gradient necessary to magnetically levitate against gravity. The black line indicates
the zero curvature condition when the radius is half the axial displacement, as in a Helmholtz coil. The cross
indicates the coil geometry used in the experiment. (b) The combined magnetic plus gravitational potential
is plotted for the experimental setup. This arrangement provides a small degree of confinement along the
vertical direction. (c) The residual acceleration from this potential (black line) is limited to a few parts per
thousand of g over the vertical distance probed. Zero acceleration is marked in red. The role of this residual
trapping potential on measurements of Anderson localization is discussed in Chapter 4.

2.4 Optical Potentials

We create a variety of well controlled optical potentials using focused, monochromatic laser beams. The

potentials exploit the AC Stark effect to create attractive and repulsive potentials that we use to engineer

Hamiltonians for ultracold gas experiments. In this work we use focused laser beams to create harmonic

optical dipole traps, an interference pattern between three-pairs of laser beams to create a cubic optical

lattice, and optical speckle to create a disordered potential with controllable properties. A wide variety
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of potentials can be created using digital projection, optical holography, and time-averaged potentials as

discussed in Refs. [157, 9, 62, 171], for example.

The majority of the beams employed are focused onto the position of the atoms with a Gaussian profile

in space with an intensity envelope,

I(r, z) =
2P

πw(z)2
exp

(
−2

r2

w(z)2

)
where w(z) = w0

√
1 + (z/zR)2, (2.5)

for a beam propagating along the z-direction with radial coordinate r, power P , waist w, Rayleigh range

zR, and intensity I. The intensity is Gaussian distributed transverse to the propagation direction with a

1/e2 radius or waist, w, that grows hyperbolically away from the focus. The focal waist and the Rayleigh

range, the distance over which the intensity drops by a factor of two from the focal intensity maximum, are

intimately related and are controlled by the numerical aperture of the imaging system and the wavelength

of light employed. Simple scalings of these quantities for a thin lens illuminated with a collimated Gaussian

beam are given by zR = πw2
0/λ and the w0 = fλ/πwL where wL is the beam waist at the lens of focal length

f . Beam sizes in this thesis are written as their waist, the 1/e2 radii of the intensity—this is equivalent to

twice the RMS radius, typically labeled as σ.

The strength of the optical potential depends on the intensity of the light, the detuning from atomic

resonances, the internal state of the atom, and the polarization of the light. Ref. [69] gives a detailed

treatment of this problem for the alkali atoms, with expressions for the dipole potential Udip and scattering

rate Γsc accounting for both the co-rotating and counter-rotating terms:

Udip(~r) = −3πc2

2ω2
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r) (2.6)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r). (2.7)

Here Γ is the linewidth of the transition, ω0 is the angular frequency of the transition, and ω in the angular

frequency of the applied light. Contributions from the counter-rotating term become increasingly relevant

at large detunings and should not be ignored. For example when considering the D1 or D2 transitions in

potassium, the counter-rotating term is 15 to 20 percent of the co-rotating term for light at 532 and 1064

nm, respectively. The ratio of the scattering rate to the potential depth depends only on the detuning of
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the light and is found by dividing the above two expressions as

Γsc
Udip

=
1

~

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
. (2.8)

Equations 2.6 and 2.7 are valid for detunings much greater than the fine structure splitting. When the

detuning becomes comparable to the fine structure splitting, the polarization of the light and the internal

state of the atom becomes increasingly important. The spin-dependence of the dipole force (though not

used in this work) is used to make state-dependent potentials [80, 115, 119, 133, 189, 220]. The equation

describing the potential and the incoherent scattering rate for detunings comparable to the fine structure

splitting:

Udip(~r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F
+

1 − PgFmF

∆1,F

)
I(~r) (2.9)

Γsc =
πc2Γ2

2~ω3
0

(
2

∆2
2,F

+
1

∆2
1,F

)
I(~r). (2.10)

Here P is the polarization of the light where P is 0, ±1 for linearly and circularly σ± polarized light. The

detunings from the D1 and D2 line are ∆1,F and ∆2,F and gFmF is the product of the Landé g-factor and

the spin of the Zeeman state. Table 2.1 lists the scattering rates per unit dipole potential energy from the

major optical potentials used in the experiment to provide a sense of scale for heating from the various

applied fields.

Use λ Γsc/Udip (s−1)J−1

Dipole Trap 1064 nm 3.2e-6 s−1/(kB × nK)
Optical Lattice 782.2 nm 0.044 s−1/ER
Disorder 532 nm 1.2e-5 s−1/(kB × nK)

Table 2.1: Scattering rates in the experiments accounting for the D1, D2, and the 4S to 5P transitions.
Rates are expressed in Hz per unit of potential depth per atom.

2.4.1 Optical Dipole Trap

The final stages of evaporative cooling are performed in an optical dipole trap. This trap is created by

overlapping two foci of a linearly polarized, 1064 nm laser beam as shown in Fig. 2.9. The beam is created

from a single spatial mode, multi-frequency Nd:YAG fiber laser (IPG Photonics 20W). The beam is recycled

to make both foci with a continuous beam path, and care is taken to minimize interference between the

two foci. The coherence length of the laser is only a few centimeters and the beam path between foci is
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roughly a meter, but minimizing polarization overlap between the beams is crucial for minimizing heating.

Due to spatial constraints, the crossing angle is sixty degrees in the horizontal plane. The principle axes of

the trap fall along the x-, y-, and z-directions in the experiment with the trap taking a prolate spheroidal

shape elongated in the x-direction. The beam waists are chosen to have an 1/e2 radius of 90 microns. A

typical evaporation benchmark after spin mixing is N ≈ 400, 000 and T ≈ 1µK at ω̄ = 2π97Hz. The lowest

entropy gases are produced near a trap frequency ω̄ = 2π81Hz, with N ≈ 45, 000 and T/TF ≈ 0.17.

LASER AOM PD

QPD

PBS

x

z

HWP

lens
pickoff

science cell

Figure 2.9: Schematic of dipole trap optics for intensity control and position stabilization. A wedged
pickoff is used to sample the beam after the first pass through the science chamber. One beam is sent to a
quadrant photodiode for position servoing, and the other beam is sent to a photodiode for intensity servoing.
Polarization optics ensure that the two foci have minimal interference.

The IPG fiber laser can produce a maximum of 20 Watts of optical power, but when run at maximum

power these lasers have short service lives. These lasers slowly degrade in peak power until no output is

produced; three have failed in the experiment in six years of operation. Current best practice is to operate

the laser at roughly half of its maximum power to extend the lifetime of the system.

2.4.2 Beam Pointing Stability and AOM Thermalization

Intensity control of the dipole trap laser is achieved by actively servoing the modulation power of an acousto-

optic modulator. The first order diffracted beam is used to create a crossed dipole trap while the un-diffracted

beam is not used. Several watts of RF power are used to generate the radiofrequency standing wave in the

tellurium dioxide AOM crystal, and heating from this RF drive creates a thermal gradient inside the crystal.

This thermal gradient results in a spatially varying refractive index in the AOM that causes both the

diffracted and un-diffracted beams to deflect as shown in Fig. 2.10. As the thermal gradient varies in time

as the dipole beam is turned on and off, no stable equilibrium is met in the crystal and the beam deflects in

a hysteretic fashion. The magnitude of the deflection depends on the size of the thermal gradient and the
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properties of the modulating material. For passively cooled TeO2 and glass based modulators, deflections at

the 100 microradian level are typical [162]. Germanium modulators have observed deflections at the multi-

milliradian level [96] and are typically cooled to limit this effect. The timescale for the thermal pointing

drift is set by the timescale for creating the thermal gradient in the crystal and is typically on the order

of 1 s. An example of the deflection seen in our apparatus is shown in Fig. 2.10. The origin of this effect

was explored in Ref. [96], where the authors showed that reversing the direction of thermal gradient in the

modulating crystal reverses the direction of the deflection.
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Figure 2.10: Deflection of the dipole trap beam due to thermally induced refraction in the intensity servo
AOM. Deflection of the beam positions is shown in time both along and perpendicular to the direction
of diffraction with 1W of RF power at the AOM. The time constant for equilibration of the temperature
gradient is roughly 2.5s, and deflection of the beam is primarily along the direction of diffraction. The
pointing of the beam is measured by shining the beam on a CCD camera position 1m from the diffracting
AOM.

Several methods exist for countering thermal beam steering in AOMs. Ref. [96] retroreflected the

diffracted beam through the AOM to reverse the thermal steering and succeeded in reducing deflection by

a factor of ten with a loss of a quarter of the optical power. Fiber coupling the diffracted beam provides

the most straightforward solution, but requires sacrificing at least 20% of the power due to fiber coupling

inefficiency. Non-linear effects in the fiber can cause problems for high beam powers, and large core-diameter

fibers such as photonic bandgap fibers can be used to reduce these problems. Active stabilization of the

thermal gradient in the crystal can also be attempted by applying an external heat load to the crystal with

an ohmic heater or by driving the crystal with an additional RF source whose diffracted orders can be

separated from the primary diffracted beam.
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We chose to actively stabilize the beam pointing by varying the RF drive frequency of the AOM. Deflection

perpendicular to the direction of diffraction is minimal, and fine control in the direction of diffraction can

be achieved by adjusting the RF drive frequency. The position of the dipole beam is monitored by a

quadrant photodiode (Pacific Silicon QP50-6SD2), and a simple analog circuit controls the voltage to a

VCO generating the RF drive such that the error signal from the quadrant photodiode is fixed. The optical

setup is sketched in Fig. 2.9. The response of the feedback circuit is limited to keep the bandwidth below

the trap frequency over the power range used to avoid parametric excitation of the dipole trap modes and

associated heating. The error signal for the position servo circuit is ≈ 18mV/µm/W . Typical minimum

optical power at the end of evaporation is 300mW , affording a 6mV/µm error signal. This is well above the

level of offsets introduced in the analog servo or via ground loops and position stability greater than 1µm

is easily achieved. A comparison of the pointing stability with and without the pointing servo is shown in

Fig. 2.11; the dipole beam focal waist is 90µm. Implementing this servo has greatly improved the short

time-scale number and temperature stability of the experiment.
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Figure 2.11: Pointing stability of the dipole trap with fixed and actively controlled RF drive frequencies. (a)
The focal position of the first pass of the dipole trap is measured at the positions of the atoms at the end of a
90 second experimental sequence. With a fixed RF drive frequency, thermal effects cause the position of the
focus to drift over time (black squares). Large jumps can be observed in the position when the experiment
is not run continuously. The position of the dipole focus can be actively stabilized by controlling the AOM
drive frequency (red circle) to achieve micron level stability of the focus. (b) The figure of merit for the
feedback is the size of the error signal for a given displacement. For this implementation, the error signal is
18mV per µm motion per Watt of optical power. At the lowest powers used in the experiment, the error
signal is 6mV/µm of motion.
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2.4.3 Optical Lattice

We generate a three-dimensional, cubic optical lattice with three pairs of linearly polarized, counter-propagating

laser beams at 782.2 nm as described in Ref. [100]. The lattice beams are arranged to be approximately

orthogonal, and interference between the beams is reduced by minimizing their polarization overlap. Fre-

quency shifts of (+80, +83, and -80 MHz [100]) are introduced between the beams to time-average any

residual interference. The lattice light is generated from a Tekhnoscan TIS-SF-07 Ti:Sapphire laser pumped

with 12W of 532 nm light generated by a Coherent Verdi V18 with a maximum power at 782 nm of 1.2

Watts. Each lattice beam is fiber coupled through a single-mode, polarization maintaining fiber to shorten

the beam path and increase the pointing stability.

Calibration of the lattice potential is performed by modulating the lattice depth to drive atoms between

bands. This spectroscopic techniques measures the location of several band gaps in 1D, and these transitions

are related to the lattice depth as described in Sections 5.2 and 5.2.1. Each beam is intensity stabilized and

focused to a 130 micron 1/e2 radius at the atoms. Alignment and calibration of the lattice potential is stable

over a month at the five percent level. Further details of the physics and properties of the gas in the lattice

are described in Chapter 5.

2.5 Raman Transitions

Raman transitions are state changing, two photon processes in which quantum amplitude is coherently

transferred through an intermediate level. These transitions are distinct from single photon processes as the

transition energy and recoil momentum can be controlled independently, and transitions between states with

the same parity become possible. Additionally, the two laser fields can drive transitions at either their sum

or difference frequencies, providing access to momentum selective, radiofrequency transitions as well as high

energy optical transitions such as those used to create Rydberg states. The independent control over energy

and recoil momentum has made Raman transitions a powerful tool for manipulating quantum gases where,

for example, they have been used to probe excitations in strongly interacting Bose [49] and Fermi gases [59],

generate synthetic gauge fields [120], and as the first demonstrated method of cooling quasimomentum in

an optical lattice [26].

In this work we drive stimulated, Λ-type transitions as sketched in Fig. 2.12 to change both the internal

state and momentum state of a gas of atoms. Population is driven from |a〉 to |b〉 by absorption from beam

1 and emission in beam 2; here we consider the Stokes process where ω1 > ω2. This provides an energy

change of ~ δω and momentum change of δk satisfying the following relationship:
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Figure 2.12: Illustration of momentum and energy transfer in a two-photon process. (a) Driving fields are
applied at frequencies ω1 and ω2 to drive a transition from state |a〉 to |b〉 through the intermediate level,
|i〉. Each of the laser fields is detuned from the intermediate level by ∆. (b) A net momentum is imparted

after the transition given by the difference of the Raman beam wavevectors, δ~k = ~k1 − ~k2. The full angle
between the two beam is labeled as θ.

δω = ω1 − ω2 (2.11)

δk = k1 − k2. (2.12)

Here 1 and 2 index the Raman fields, and |a〉 and |b〉 indicate momentum states in two different bands. Each

beam is detuned from the intermediate atomic level, |i〉 by a detuning ∆, and the electric field is

E(t) = E1cos (k1 · r − ω1t) ê1 + E2cos (k1 · r − ω2t) ê2. (2.13)

The momentum difference imparted in Λ-type transitions in which |~k1| ≈ |~k2| = kR is controlled by the

angle between the two Raman beams such that |δ~k| = 2kR sin(θ/2) where the θ is the angle between the

beams. Raman transitions with co-propagating beams impart zero momentum while counter-propagating

beams impart the maximum change of 2kR. The Hamiltonian is set by the electric dipole interaction with
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the laser fields:

H = −E1

2

(
eiω1t + e−iω1t

)
ê1 · d−

E2

2

(
eiω2t + e−iω2t

)
ê2 · d. (2.14)

Here we have made the dipole approximation and ignore spatial dependence of the electric field. Starting with

all amplitude in |a〉, the Schroedinger equation is used to determine the evolution of the quantum populations.

Only the terms
〈
i
∣∣∣e1 · d̂∣∣∣ a〉 and

〈
b
∣∣∣e2 · d̂∣∣∣ i〉 having non-zero weight are considered. Here d = er, the

single photon matrix elements are Ω1 = E1e 〈i |ê1 · r| a〉 eiφ1/2 and Ω2 = E2e 〈i |ê2 · r| b〉 eiφ2/2, e is the

electric charge of the electron, and ê1 and ê2 are unit vectors for the electric field of Raman beams 1 and

2. These are used to write a set of coupled differential equations for the amplitudes ca and cb of states |a〉

and |b〉 as in Ref. [215]:

i~
d

dt
ca =

|Ω1|2

∆
ca + ΩRcb (2.15)

i~
d

dt
cb = Ω∗Rca +

|Ω2|2

∆
cb. (2.16)

The detuning between the initial and the intermediate state is defined as ∆ = ω1 − ωai, and ca and cb are

the probability amplitudes in |a〉 and |b〉. This is initially a three level problem involving amplitude in |a〉,

|b〉, and |i〉, and the rotating wave approximation is made in a frame rotating with ∆ with rapidly oscillating

terms ignored. In the limit of large ∆, the amplitude in the excited state can be adiabatically eliminated.

This reduces the three level problem to an equivalent two-level system [195, 36, 75]. This approximation

breaks down when the single photon Rabi rates or ωab is of the same order as ∆, and the system ceases

behaving as an equivalent two-level system [159]. The diagonal elements in this problem (the AC Stark shift

of each state) can be eliminated by redefining the shifts into the energies of states a and b. The coupling

element between |a〉 and |b〉 found through adiabatic elimination of the excited state |i〉 provides the Rabi

rate, ΩR.

ΩR = −Ω∗2Ω1

∆
(2.17)

The dipole matrix elements connecting the atomic levels |J〉 and |J ′〉 (J is the total angular momentum of

the electron) can be calculated in connection with the measured atomic linewidth [193].

|〈J ||er|| J ′〉|2 =
2J ′ + 1

2J + 1

3πε0hc
3Γ

ω3
0

(2.18)
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Here Γ is the linewidth of the transition, ω0 = ωJ − ωJ′ , ε0 is the permittivity of free space, and the double

bars indicate that spin is ignored.

2.5.1 Two-Frequency Raman Transitions

Raman transitions are used in this thesis to rapidly generate relative motion between two spin components in

a lattice gas as described in Sec. 6.3. A sketch of the Raman optics used to accomplish this is shown in Fig.

2.13 in which a single frequency laser beam is divided into two beams with independent frequency offsets

provided by acousto-optic modulators. Phase modulation can also be applied equally to both beams with an

electro-optic modulator—the consequences of this are described in the following section. The Raman light is

generated from a single 770nm laser (New Focus VII TLB-6900) detuned ≈ 40 GHz from the D1 transition

at 389,326.2 GHz. Modulation is provided by an EOM (Newport 4421-01 @ 650 MHz) operated at 632.25

MHz and AOMs (Gooch and Housego R23080-1-LTD) operating at a nominal frequency of 80 MHz. The

combination of AOMs and EOMs allows for fast switching between transitions with δω from DC to 10 MHz

and in a 10 MHz window around twice the EO modulation frequency with no physical changes to the optics.

The EOM is resonant and runs at a fixed frequency while the AOMs are driven by direct-digital synthesizers

that allow for fine frequency control and easy generation of phase coherent frequency sweeps. The power in

each beam is intensity stabilized by actively servoing the RF power in the AOM diffracted orders.

LASER EOM AOM1

AOM2

Raman1

Raman2

Figure 2.13: Raman optics for generating Zeeman state and hyperfine state changing transitions in potassium.
The two Raman beams are generated from a single laser detuned 40 GHz from the 40K D1 line. The frequency
difference between two laser beams is generated by a pair of AOMs and an EOM. If only the AOMs are
driven, δω covers a range from zero to several MHz. The EOM provides a fixed offset to drive transitions at
the GHz level with no changes to the optics. The frequency composition of the phase modulated beams is
illustrated in Fig. 2.16.

The two Raman beams are focused onto the atoms with an angle separating the beams of 30 degrees;

this provides a δk = 2|k|sin(30◦/2), which corresponds to qB/2 in the 782.2 nm lattice or an energy

scale of 100 nK in the trap. The beams are focused onto the position of the atoms over 760 mm, and the

orientation provides a δk in the y-direction. The sign of the impulse is set by the relative detuning of the

two beams. The beam are each focused to a 1/e2 radii of 170 microns at the atoms which provides adequate
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intensity uniformity over the in-trap distribution with nominal radii of 10 to 15 microns. The intensity of

the beams are actively controlled by sampling a fraction of the Raman light in each beam after the fiber with

a photodiode and actively servoing this value against a computer controlled setpoint. Intensity control for

pulses shorter than the inverse of the intensity servo bandwidth is achieved by adjusting the beam powers

within the servo bandwidth while one of the AOMs is detuned sufficiently far from resonance (so that the

Raman process is far off resonant). The detuned AOM is then jumped to resonance for the pulse duration.

This enables the production of 20 µs long pulses with highly reproducible transition probabilities as shown

in Fig. 2.14.
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Figure 2.14: Measurement of Raman lineshape using a spectrally broad pulse. (a) Raman lineshape for a 20
µs pulse driving atoms from an initially spin polarized, mF = 9/2 gas to mF = 7/2 in the F = 9/2 manifold.
Fit to data is a sinc squared function with τ = 22 µs and ν0 = 1009 kHz. (b) Spin separated images showing
transition occupation as the Raman detuning is varied. Transitions between Zeeman levels at low magnetic
fields are degenerate and population in mF = 5/2 is non-negligible.

Sample images using 20 µs Raman pulses to create a spin-mixture from a polarized |9/2, 9/2〉 gas are

shown in Fig. 2.14—the bandwidth of the transition is much larger than the thermal width of 20 kHz, and

the transition is not momentum selective. Copies of the original gas are created in lower Zeeman states with

a displacement in momentum equal to δk. Changing the frequency difference of the Raman pulse allows

us to map the lineshape of the transition by measuring the fraction of atoms transferred versus δω. The

square pulse windowing in time produces a sinc squared lineshape which matches well with the experimental

data. Longer adiabatic-rapid passage sweeps can be used to generate momentum selective transitions, as

shown in Fig 2.15. The sweeps in this figure cover 5 kHz and remove a section of atoms near zero velocity

along the y-direction. This requires absolute magnetic field stability at the 4 milliGauss level to repeatedly

transfer from a given momentum range in the gas. Additionally, the degeneracy between transition energies

between neighboring Zeeman levels at low magnetic fields allows for multiple transitions and population of
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spin states other than mF = 7/2. At the fields explored here, the non-linear Zeeman effect is weak enough

that Raman transitions between adjacent Zeeman levels are all degenerate. This can easily be avoided by

working at higher magnetic fields to reduce the ten level problem to just two. For the work presented in Sec.

6.3, the transferred fraction to |9/2, 7/2〉 is fixed at ≈ 35% and minimal population is transferred to lower

spin states.

mF =    9/2

mF =    7/2

mF =    5/2

Figure 2.15: Stability of momentum selective Raman transitions in the experiment. Spin separated images
(similar to Fig. 2.14) show a momentum selective transition moving atoms near zero vertical velocity from
the mF = 9/2 gas to mF = 7/2 and mF = 5/2. Performance of this process is strongly dependent on
magnetic field stability—the 5 kHz wide sweep corresponds to 4 mGauss of field. Raman transition was
performed by a 0.5 ms sweep at 10 kHz/ms and δω = 993 kHz at a magnetic field of 3.2 Gauss. The nominal
position of each spin component is indicated by the gray circles.

2.5.2 Raman Transitions with Phase Modulated Beams

The single-laser, dual-AOM setup used to drive Raman transitions shown in Fig. 2.13 is easily modified to

drive GHz level transitions between hyperfine levels in potassium with the addition of a phase modulating

EOM. The EOM creates a comb of frequency harmonics in both Raman beams with peaks separated by

the EOM modulation frequency. Pairs of comb peaks from the two beams can coherently drive Raman

transitions spanning larger frequency differences than are possible with a dual-AOM setup. Additionally,

the same optics used to drive kHz- to MHz-level transitions can also drive GHz level transitions (if the EOM

is driven) with no physical changes to the optical hardware.
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Figure 2.16: Frequency spectrum and multi-path interference in Raman transitions driven by phase modu-
lated beams. Frequency spectra are drawn for two phase modulated Raman beams (m = π/2), including
offsets provided by AOMs. The comb of frequency harmonics is shown with the phase of each harmonic
labeled relative to the carrier; the height of each harmonic peak is proportion to the electric field amplitude.
Modulation parameters are chosen to drive lambda-type Raman transitions where light is absorbed from
harmonic n of Raman1 and emitted into harmonic n + 2 of Raman2. The amplitude of these transitions is
indicated by gray-scale arrows, where the relative phase of the two-photon process is marked in the center of
each arrow. All paths with δn = 2 are adjusted to satisfy the resonance condition, and interference between
these transitions leads to an effective two-photon Rabi rate that depends on the modulation amplitude.

Phase modulation of the light modifies the time variation of the electric field such that E(t) = Eê cos(ωt)

becomes Eê cos(ωt + mcos(ωmt)), where ωm is the modulation frequency and m is the modulation angle.

Modulation modifies the frequency spectrum of the beam by introducing sidebands offset from the carrier

by integer multiples of the modulation frequency. A sample spectrum for the two Raman beams after phase

modulation is shown in Fig. 2.16 including offsets introduced from the AOMs. The origin of the frequency

harmonics can be seen from the identity eimcos(φ) =
∑∞
n=−∞ inJn(m)einφ where modulation is expanded

in terms of Bessel functions of the first kind. The electric field from the two phase modulated beams can be

written as follows.1

1Note that Jn(m) = (−1)nJn(−m) and e−imcos(φ) =
∑∞
n=−∞ i−nJn(m)e−inφ.
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E1(t) = E1ê1 cos (ω1t+m cos (ωmt)) (2.19)

=
E1ê1

2

(
ei(ω1t+m cos(ωmt)) + e−i(ω1t+m cos(ωmt))

)
(2.20)

=
E1ê1

2

∞∑
n1=−∞

Jn1
(m)

(
in1ei(ω1+n1ωm)t + i−n1e−i(ω1+n1ωm)t

)
(2.21)

E2(t) = E2ê2cos (ω2t+m cos (ωmt)) (2.22)

=
E2ê2

2

∞∑
n2=−∞

Jn2
(m)

(
in2ei(ω2+n2ωm)t + i−n2e−i(ω2+n2ωm)t

)
(2.23)

The two frequency combs produced by phase modulation are offset by the difference in the AOM mod-

ulation frequency, δωAOM = ωAOM2
− ωAOM1

. We drive transitions with pairs of these combs teeth, such

light is absorbed from the n-th harmonic of Raman1 and emitted into the n+2-th harmonic of Raman2; and

the transition is on resonance for ωb − ωa = 2ωEOM + δωAOM. The AOMs are necessary in this scheme to

break the the degeneracy between absorbing from Raman1 and emitting into Raman2 and absorbing from

Raman2 and emitting into Raman1. The energy difference between these two paths is seen by summing the

frequency differences as

δωn1−n2=+2 = 2 ωEOM + (ωAOM1
− ωAOM2

) = 2 ωEOM − δωAOM (2.24)

δωn1−n2=−2 = 2 ωEOM − (ωAOM1
− ωAOM2

) = 2 ωEOM + δωAOM, (2.25)

and

δωn1−n2=−2 − δωn1−n2=+2 = 2δωAOM. (2.26)

In practice, the frequency difference between the δn = +2 and −2 is limited to 20 MHz by the bandwidth

of the AOMs. Large frequency difference could also be obtained by changing the AOM modulation order

selected in one of the beam paths, but eliminates the benefit of rapidly switching between single MHz- and

GHz-level transitions.

Interference between all transitions with δn = +2 in this scheme contributes to the total Rabi rate, and

the balance of the interference depends strongly on the modulation index. The Rabi rate for each transition
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Figure 2.17: Rabi rate as a function of modulation angle in Raman transitions with phase modulated beams.
The comb of peaks in Fig. 2.16 creates a series of transitions from harmonic peaks that differ by an index
of +2. The interference between these peaks leads to an effective Rabi rate that depends on the modulation
angle. The maximum Rabi rate occurs for a modulation angle of ≈ 90◦.

is defined as in Eq. 2.17, and the total rate can be found by summing over all complex rates with δn = +2.

ΩR =
E2E1

4∆

∞∑
n1=−∞

∞∑
n2=−∞

in1(−i)n2Jn1(m) Jn2(m) 〈b |ê2 · ~r| i〉 〈i |ê1 · ~r| a〉 δn1+2,n2 (2.27)

Here, δ is the Kronecker delta symbol imposing the condition that n2 = n1 + 2 to satisfy the resonance

condition. The sum over all possible pairs of transitions can be taken using the identities Jν(m1 ±m2) =∑∞
n=−∞ Jν∓n(m1)Jn(m2) and J−n(x) = (−1)nJn(x). From these, the total rate is found as

ΩR ∝
E2E1

4∆
J2(2m). (2.28)

The final Rabi rate is a function of the modulation angle due to a complicated interference of all the possible

δn = 2 transitions as shown in Fig. 2.17. For maximum Rabi rate, m should be set to approximately 90◦.

Similar Raman transition schemes using phase modulated beam are described in Refs. [90, 116].

2.6 RF Electronics

A variety of radio-frequency and microwave signals are required to drive optical modulators and to create

time varying optical and magnetic fields. RF signals at frequencies below 250 MHz are created using direct

digital synthesizers (DDSs) due to the convenience of accurately generating both single frequencies and

phase coherent frequency sweeps. Signals above this cutoff are produced via voltage controlled oscillators

(VCOband where absolute frequency control is necessary, the VCO signals are divided and phase locked to a

DDS. All timings and clock signals used in the experiment are referenced to a master clock signal produced

by a 10 MHz distribution amplifier (Stanford Research Systems FS730). This distribution amplifier is
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Use Device
Clock Distribution Analog Devices AD9516 - 14 channel programmable distribution amplifier
RF Source Analog Devices AD9959 - 500 MHz DDS, 4 channels
RF Source Analog Devices AD9854 - 300 MHz DDS with phase coherent frequency sweeps
Phase Locked Loop Analog Devices ADF4007 - 7.5 GHz bandwidth
Variable attenuator Analog Devices ADL5330 - 60dB range VGA, 10 - 3000 MHz
RF Switch Minicircuits ZX80-DR230-S+ - TTL controlled RF switch
RF Amplifier Minicircuits ZHL-1-2W - 2 Watt amplifier 0 to 500 MHz
Microwave Amplifier Minicircuits ZHL-10W-2G+ - 10 Watt amplifier, 800 - 2000 MHz

Table 2.2: Radio-frequency and microwave electronics used in this experiment.

stabilized to a rubidium stabilized crystal oscillator for improved short-term stability and to a 1 pulse-per-

seconds source generated from GPS for long-term stability. A list of standard RF electronics is provided in

Table 2.2.

The optical power in the dipole trap, disorder, lattice, and Raman beams are actively servoed in the

standard manner with AOMs. Each beam is passed through an AOM aligned to optimize diffraction into

a particular diffraction order, and the beam’s optical power is monitored using a wedged pickoff and a

photodiode. The RF drive power of the AOM is servoed such that the optical power matches a computer

controlled setpoint as shown in Fig. 2.18. The servos are simple integrator circuits built around low-offset

audio op-amps. Importantly for optimal servo behavior, the maximum RF power at the AOM should be

adjusted such that the diffraction efficiency as a function of drive power is monotonic over the entire gain

range of the variable gain attenuator (VGA) used to modulate the drive power. Overdriving the AOM can

cause the diffraction efficiency to fall with increasing drive power and cause the servo gain to change sign.

A host of thermal effects can lead to significant beam pointing drift as described in Section 2.4.2.

RF Source VGA Ampli�er

+33 dB-40 to +20 dB

Attenuator

~0 dBm

Feedback

AOM

- X dB

Figure 2.18: Radio frequency signal chain for active intensity stabilization of laser beam power. The final
attenuator is adjusted to ensure diffraction efficiency is a monotonic function of RF drive power.

2.7 Imaging

At the end of each experimental sequence, an image is taken of the gas to measure its density or momentum

distribution. These images are taken in time of flight expansion using absorption imaging with a resonant
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laser beam. The partial absorption of the probe beam is used to generate a column-integrated map of the

atomic density. In this procedure, the atoms are released from the trapping potential and allowed to freely

expand for a given expansion time. Resonant light is applied and the shadow cast by the atoms is imaged

onto a CCD camera (Princeton Instruments Pixis 1024BR). Two subsequent images are taken to acquire

the light intensity without atomic absorption and the background with no applied light. These are called

the atom image A, the light image L, and the background image D, respectively.

OD = log

(
A−D
L−D

)
where


A = atom image, resonant light

L = light image, no atoms

D = dark image, background

(2.29)

Resonant light is absorbed proportionally to the column integrated density in the gas quantified as the

optical depth (OD). The areal density of atoms is found by dividing the OD by the atomic scattering cross

section. For the imaging using resonant light, the scattering cross section is given as σsc = 3λ2/2π which for

the 40K D2 line at 766.7 nm is 1/(0.53µm)2. The image is binned into pixels at the camera, and the number

in each pixel is Npx =M2 OD/σatom. The magnification M is the area of a pixel in the object plane. The

primary imaging system in the experiment has a magnification of 3.2 microns per pixel and the optics can

resolve features as small as 2 microns. The imaging exposure is taken over 25 microseconds to limit motion

blur and heating during the probe time, and the light intensity is adjusted to minimize saturation effects.

Absorption is a non-linear process with a scattering rate set by the ratio of the intensity I to the saturation

intensity Isat.

Γsc =
Γ

2

I/Isat

1 + I/Isat
(2.30)

Here Γ is the natural linewidth of the transition, and Isat = πhcΓ/3λ2 on resonance for circularly polarized

light. Heating during the exposure can also cause non-linear absorption due to the atoms Doppler shifting

out of resonance, as described in Ref. [112]. The saturation intensity measured with our system corresponds

to 14,000 counts per pixel in the camera as shown in the saturation plot in Fig. 2.19. Imaging can be

performed at intensities well below this quantity so that minimal non-linear effects are seen in absorption,

or the probe power can be increased well above Isat. A compromise between increasing signal-to-noise and

non-linear absorption exists with increasing probe intensity, and images are taken at high or low intensity

depending on the requirements of the experiment.
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Figure 2.19: Saturation effects in the primary imaging system. Images are taken of similarly prepared gases
with varying probe intensities. The effective cross section is related to the average number of counts per
pixel on the camera. The saturation intensity of 2.2 mW/cm2 corresponds to 14000 counts per pixel. The
red line is a fit to the data using the formula in Eq. 2.30, and the number plotted is the apparent value
determined from the OD images.

2.7.1 Gram-Schmidt Fringe Removal

Etaloning between parallel optical surfaces creates deep fringes in the imaging probe beam. Small vibrations

in the apparatus cause the fringe pattern to shift and change shape between exposures, and this misalignment

creates high spatial-frequency fringes in the optical depth images as shown in Fig. 2.20. The changes in

the probe beam between images can be reduced by shortening the time between images. Experiments in

Hamburg have found temporal correlation between images can change on ms timescales and that this effect

can be exaggerated by adding acoustic noise to their environment [105]. These fringes are a false signal and

can modify the results of fitting to small features or affect the accuracy in determining the position of the

gas. We use a simple post-correction procedure to reduce the effects of non-ideal light images by building a

reconstructed light image from a pre-calculated basis of possible light images and the fringe pattern in the

atom image. This method is based on work in Ref. [23].

To accomplish the reconstruction of the best light image, we start with a basis set of images taken from

the experiment, typically 50 to 500 images. We create a maskM that is zero in the signal region of the image

and one elsewhere, as in Fig. 2.20e. The set of possible light images, Li, where i indexes the images with

34



 

 

5

6

7

8

9

10

11

12

 

 

0

50

100

150

200

250

300

350

 

 

0

0.5

1

1.5

2

2.5
x 104

a b c d

e f g

co
un

ts

lo
g 1

0(
ar

b)
m

O
D

Figure 2.20: Improvement in optical depth image from defringing algorithm. (a-b). Atom and Light images
used to produce the optical depth image in (c). A basis of possible light images was created using a large
set of light images and the mask in (e). The circle indicates the region where the signal appears. (d) The
corrected image after defringing procedure shows a marked reduction of fringes. (f-g) The power spectra for
images in (c) and (d). Here defringing has removed artificial high frequency weight from the signal.

the signal region masked is then made into an orthonormal basis, Bk, using Gram-Schmidt diagonalization.

Bk = Lk −
∑
j<k

Bj
L̃k · B̃j∣∣∣B̃j∣∣∣2 , where Ãi ≡MAi and B̃i ≡MBi. (2.31)

The evaluation time of this procedure scales as the square of the number of images, and can be resource

intensive for large images and large basis sets. Once the basis has been created, the reconstructed light

image, Ri is calculated by summing over the basis images with a weighting given by the inner product

between the masked regions of the atom image and each basis image.

Ri =
∑
j

Bj
Ãi · B̃j∣∣∣B̃j∣∣∣2 (2.32)

The optical depth images is then calculated using the computed best light image.

ODi = log

(
Ai
Ri

)
(2.33)

The result of this procedure shows a dramatic reduction in the high-frequency fringes in the images as is
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evident in the power spectrum in Fig. 2.20(g). The statistical properties of the noise can also be analyzed

before and after the defringing procedure (as in Ref. [105]) to show a recovery of the Poisson distributed

shot noise in the image as the size of the basis set grows.
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Chapter 3

Controlled Disorder from Optical
Speckle

Optical speckle is used to create a well characterized, spatially disordered potential for exploring Anderson

localization and transport in disordered lattices. This section details how variable-scale speckle is produced

in the experiment and summarizes the statistical properties of speckle including its intensity distribution,

autocorrelation, and power spectrum. Ex situ measurements of a three-dimensional speckle field are discussed

and compared with analytic predictions. Details of the experimental implementation, methods for alignment

to the ultracold gas, and systematics in calibrating the absolute potential height are discussed.

Speckle is a popular method for generating controlled disorder in ultracold gas experiments and has been

used to observe Anderson localization in 1D [18], the superfluid to Bose-glass transition in the disordered

Bose-Hubbard model [158], coherent backscattering in 2D [84], and quantum transport through disordered

channels [104]. The work in this thesis focuses on 3D Anderson localization using a single-beam speckle

pattern to create a disordered potential in free space and the transport measurements in 3D disordered

lattices created by superposing speckle on a 3D optical lattice. Other sources of controlled disorder and

quasi-random disorder have been implemented in ultracold gas experiments including incommensurate lat-

tices [177] used to realize the Aubré-Andre model in 1D [177], periodically-pulsed potentials realizing the

kicked rotor [143, 25, 58], multi-species or spin-dependent experiments [56], and arbitrary optical potentials

using holography or masks [157]. Each of these methods has advantages and disadvantages given technical

constraints of producing and calibrating the disordered potential.

3.1 Statistical Properties of Speckle

Speckle is produced by the interference of monochromatic waves with random phases and is ever-present

when a coherent source such as laser beams, radio waves, or sound waves scatters from a rough surface. The

interference pattern produced from this scattering has characteristic light and dark patches called speckles

with well defined statistical properties and spatial correlations controlled by the random nature of the

scattering process. The properties of speckle including its correlation properties are covered in great detail
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in Ref. [64], and this chapter summarizes the aspects most necessary for understanding the experimental

work presented in Chapters 4 and 6.
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Figure 3.1: Speckle intensity probability distribution and percolation in 2D. (a) The exponential probability
distribution for intensity is shown for the 3D speckle scan discussed in Sec. 3.5. Agreement between
measurement and the predicted scaling is seen over six decades! (b) Example 2D slice through the 3D speckle
scan shows a typical speckle intensity maps. The field of view is 8 by 50 microns. (c-e) Disordered potentials
created from blue-detuned (repulsive) speckle have percolation transitions in 2D as the low intensity regions
are disjoint for energies less than half of the mean intensity. Above this intensity, a percolation transition
occurs when these regions begin to connect. At higher energies, the disjoint regions connect and classically
allowed paths connect all of space. This percolation transition is illustrated graphically by adjusting the
upper limit of the grayscale color map to 0.2, 0.4, and 0.6 of the mean intensity in (c), (d), and (e).

We create a speckle pattern by imprinting spatially varying, random phases over a laser beam with a

diffuser. The diffuser employed is a rigid polycarbonate sheet stamped with a random pattern, but the

details of the diffuser are unimportant for the nature of the speckle produced. The electric field after the

diffuser is found by summing over the large number of random phases produced in the diffuser plane—this

random phasor sum gives electric field amplitudes:

A =
1√
N

N∑
i=1

aie
iφi . (3.1)

For a sufficiently large number of random phases produced by the diffuser, the central limit states that

the sum will converge to a Gaussian distribution. The intensity is the square modulus of the electric field;

and given this condition, the intensity will be exponentially distributed in space, where the width of the
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exponential is set by the mean intensity 〈I〉:

P (I) =
exp (−I/ 〈I〉)

〈I〉
. (3.2)

Images of an example speckle intensity map in 2D are shown in Fig. 3.1. The distribution of intensities

is plotted from a 3D scan of speckle taken with a microscope and a CCD camera. From this data, the

intensity distribution is shown to scale exponentially over six orders of magnitude. Deviations from the ideal

exponential distribution are seen at low intensity due to spatial averaging in the speckle imaging system

and dark counts in the camera. The formation of a speckle pattern can be easily explored in 2D with a

simple 1 line computer program (speckle in 3D with the typical imaging geometry is more complicated and

requires use of Fresnel transform as described in Sec. 3.2). Using the MATLAB code below, one introduces

random phases over a 64 x 64 wide aperture. Speckle is created in an imaging geometry by taking the

Fourier transform of the aperture plane to find the amplitude in the image plane, and the intensity is found

by taking squaring the modulus of the amplitude. When the random phases are sampled evenly over 2π or a

large multiple of 2π, a speckle pattern is created; and for less random sampling, the imaging system simply

focuses the light to a small spot.

>> imagesc(abs(fftshift(fft2(exp(-2*pi*1i*rand(2^6)),2^11,2^11))).^2)

We use a speckle potential to create a three-dimensional disordered potential for exploration of Anderson

localization with ultracold atoms. To perform these experiments, a potential is required that generates

localization without classical trapping. Conveniently, the percolation transition for speckle in 3D is found

numerically at 4(1) × 10−4 of the mean intensity [163, 185] and can be ignored for the potential heights

employed in this work. The percolation energy scale in speckle originates from optical vortices, lines of

darkness in the optical field about which the phase of the light winds by an integer multiple of 2π. Speckle

fields are permeated by optical vortices that meander through the speckle field taking random walks in

space [149]. For a repulsive speckle potential, these vortices are the classical absolute minimum energy paths

through space and connect large areas of the potential. Surprisingly, it is possible for vortices to form loops

and knots by winding upon themselves [16, 111]. These closed vortex loops are the source of the percolation

energy scale in 3D. In 2D, the average height of saddle points controls the percolation transition at the much

higher value of 〈I〉 ≈ 0.52, as indicated graphically in Fig. 3.1 [188, 208].
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3.2 Speckle Intensity Autocorrelation and Power Spectrum

The characteristic size of the speckle features is determined by the optical intensity autocorrelation function.

This section details the calculation of the autocorrelation function for uniformly and Gaussian illuminated

lens with random phases introduced across the aperture. Equivalence is shown between the autocorrelation

function and the imaging spot produced via a lens with a similarly illuminated aperture. We will also

calculate the power spectrum of the intensity, which is relevant for understanding dynamics of a wave

scattering in a speckle potential. These calculations are based on a derivation found in Ref. [64], where

more details on the statistical properties of speckle can be found. Previous theoretical and experimental

work exploring speckle correlation properties in the deep Fresnel zone can be found in Refs. [61, 126]

The autocorrelation function of the intensity I(~r) is defined as a convolution integral of the speckle

intensity field with itself:

CI( ~∆r) ≡
∫

I(~r) I(~r + ~∆r) d~r. (3.3)

The intensity autocorrelation, C, can be related to the complex correlation coefficient of the field, µ. Here

the complex field is A(~r) and I = |A|2. In general, the correlation of two intensities can be related to the

correlation of the field amplitudes A1 and A2 as

C12 = 〈I〉2
(
1 + µ2

12

)
where µ12 ≡

〈A1A
∗
2〉√

〈|A1|2〉 〈|A2|2〉
. (3.4)

The angled brackets 〈...〉 indicate spatial averaging over ~r. For calculating the autocorrelation of the speckle

field, A1 = A(~r) and A2 = A(~r + ~∆r). We first calculate the complex field produced from a lens with

illumination I(α, β) where α and β parameterize the surface of the lens. The field from the lens is a sum of

spherically expanding rays emanating from the imaging aperture and can be expressed as shown in Ref [20].

A(x, y, z) = −ie
i2πz/λ

λz
ei

π
λz (x2+y2)

∫∫ ∞
−∞

a(α, β) ei
π
λz (α2+β2) e−i

2π
λz (αx+βy) dα dβ (3.5)

Here f is the focal length of the lens, λ is the wavelength of the light, and a(α, β) is the electric field across

the aperture. A coordinate system is adopted with z along the axis of the lens and x and y in the same plane

of the lens. To find the intensity correlation function we will start by evaluating the complex correlation
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coefficient. The integral for numerator of the complex correlation coefficient takes the form

〈
A(~r) A∗(~r + ~∆r)

〉
=〈∫∫∫∫

A(α1, β1, x, y) A∗(α2, β2, x+ ∆x, y + ∆y) δ(α1 − α2) δ(β1 − β2) dα1 dβ1 dα2 dβ2

〉
.

(3.6)

The integral here is over all points on the scattering surface for the two amplitudes considered. The random

phase introduced on the (αi, βi) scattering surface is delta function correlated. This correlation is expressed

in Eq. 3.6 with the Dirac delta functions δ (α1 − α2) and δ (β1 − β2), and integration over the delta functions

reduces the dimensionality of the amplitude autocorrelation integral. With Eq. 3.5, the numerator of the

complex correlation coefficient can be found in terms of the properties of the imaging system:

〈
A(~r) A∗(~r + ~∆r)

〉
=

∫∫
A(α, β, x, y) A∗(α, β, x+ ∆x, y + ∆y) dα dβ (3.7)

=
1

λ2z2

∫∫
I(α, β) e−i

2π
λz (α∆x+β∆y) dα dβ. (3.8)

This allows us to write down the intensity autocorrelation function using Eq. 3.4. Here the axial distance is

taken as the focal length of the lens f , and

CI( ~∆r)

〈I〉2
= 1 +

(∫∫
I(α, β) e−i

2π
λf (α∆x+β∆y) dα dβ∫∫

I(α, β) dα dβ

)2

. (3.9)

Note that the intensity correlation function of speckle near the focus of an imaging system is 1 plus the

Fourier transform of the intensity across the imaging aperture squared, namely the correlation function is

exactly the spot size of the equivalent imaging system without random phases imprinted across the beam.

This is physically intuitive—the random phasor sum is limited by the same principle that governs Gaussian

beams as their high spatial-frequency bounds are set by the fundamental properties of diffraction.

The intensity correlation function can be easily calculated for a uniformly illuminated aperture in 3D

following the example of Refs. [64] and [20]. Here we consider a circular aperture of radius a and a lens of

focal length f ; the integral in Eq. 3.9 can be rewritten in terms of dimensionless variables

u ≡ 2π

λ

(
a

f

)2

∆z and v ≡ 2π

λ

(
a

f

)
∆r, (3.10)
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where ∆r =
√

∆x2 + ∆y2 and the integral expressed as

CI(~r)

〈I〉2
= 1 +

(
ei(

f
a )

2
u

∫ 1

0

J0(vρ)e−
1
2 iuρ

2

ρdρ

)2

. (3.11)

Here J0(x) is a Bessel function of the first kind of order 0 and argument x. This integral takes simple analytic

forms along the axial and transverse directions of the speckle shown here for a potential of mean height ∆:

CI(∆z,∆r = 0)/∆2 = 1 + sinc2

(
∆z

4

)
(3.12)

CI(∆z = 0,∆r)/∆2 = 1 +

(
J1(v)

v

)2

. (3.13)

Along the axial direction, the correlation function is the same as Fraunhofer diffraction from a rectangular

aperture, and in the plane of the lens, the correlation function is the same as the Fourier transform of the

circular aperture, or an Airy disc. The shape of the correlation function is shown in Fig. 3.2 with slices

along the u and v axes.
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Figure 3.2: Autocorrelation of speckle intensity for a uniformly illuminated aperture. (a) Correlation function
expressed in Eq. 3.11 is shown with respect to the dimensionless variables u and v. Slices of the correlation
function are plotted along the radial (b) and axial (c) directions in the speckle.

For a Gaussian illuminated aperture, the correlation function can be expressed again by integrating Eq.

3.4 with the appropriate illumination function, and the correlation function takes the form associated with

a focused Gaussian beam following the work of Ref. [164]:

C(∆x,∆y,∆z)/∆2 = 1 +
1

1 + 4∆z2/σ2
||
exp

[
− (∆x2 + ∆y2)/(σ2

⊥)

1 + 4∆z2/σ2
||

]
. (3.14)

In connection with Gaussian optics, σ|| = 4λLf
2/πw2 and σ⊥ = λLf/πw. The power spectrum is calculated
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as the Fourier transform of the correlation function:

C̃(∆kx,∆ky,∆kz)/∆
2 = δ3(∆kx,∆ky,∆kz) +

π3/2σ2
⊥σ||√

(σ⊥∆kx)2 + (σ⊥∆ky)2
×

exp

[
−1

4

(
(σ⊥∆kx)2 + (σ⊥∆ky)2 +

(σ|| ∆kz)
2

(σ⊥∆kx)2 + (σ⊥∆ky)2

)]
.

(3.15)

The shape of the intensity autocorrelation and power spectrum are shown in Fig. 3.3. As each of these

quantities is calculated within the paraxial approximation, there is no weight in the power spectrum along

the axis of speckle. The shape of the power spectrum governs scattering from the speckle potential, and the

consequences of this shape are discussed in detail at the end of Sec. 4.8. One might expect the paraxial

approximation to do a poor job in representing an imaging system with an f/# close to 1, but the comparison

of measured to calculated intensity correlation functions with zero free parameters in Figure 3.10 shows good

agreement.

-20 -10 0 10 20

-25

-20

-15

-10

-5

0

5

10

15

20

25 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

C(Δr)/Δ2

 Δkx (1/σ )

 Δ
k y

 (1
/σ

 )

Δx (σ )

 Δ
y 

(σ
 )

C(Δk)/Δ2~

Figure 3.3: Calculated speckle autocorrelation and power spectrum for a Gaussian illuminated aperture.
Intensity autocorrelation function C( ~∆r)/∆2 and power spectrum C̃( ~∆k)/∆2 are shown for speckle with an
anisotropy factor of σ||/σ⊥ = 5.8.

3.3 Experimental Realization

We create speckle in an imaging geometry as shown in Fig. 3.4. A collimated, 532 nm laser beam with

a waist (1/e2 radius) of 6.7 mm is focused through a high numerical aperture lens (Lightpath Photonics

GPX15-15, f = 15 mm, clear aperture of 13 mm, and back focal length of 12.24 mm) and a diffuser (Luminit

L.5P1-10, 0.5◦ FWHM divergence angle) which imprints random phases across the beam. The 532nm beam
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is produced by a Coherent Verdi V18 with 6 W dedicated for the speckle. Intensity control is provided by

modulating the beam with an AOM (IntraAction Corp); the first order diffraction peak is coupled through

a single-mode, polarization-maintaining fiber to minimize beam pointing drift. Total efficiency through the

fiber and AOM is greater than fifty percent. Scattering in the fiber limits the maximum output power of

the two meter fiber to approximately 2 W .

f = 250 mmf = 11 mm

f = 15mm

lattice
   disorder
w = 6.7 mm

A B

z

y
Photodiode

Figure 3.4: Sketch of apparatus for generating controlled disorder. A Gaussian, 532 nm laser beam is
launched from a single mode fiber and collimated by two lenses. The effective numerical aperture of the
focusing lens can be adjusted to control the correlation length of the speckle by varying the collimated beams
waist at (A) or by apodizing the beam at the focusing lens (B). The high numerical-aperture focusing lens
and the diffuser (jagged surface) sit immediately above the vacuum chamber (blue rectangle) and focus the
light onto the position of the atoms. The 532nm beam is sampled with a wedged pickoff after the fiber cage,
and this light is used to actively stabilize the beam power.

The light is launched from the fiber and collimated by two lenses in a manner that affords direct control

over the collimated beam diameter. The first lens after the fiber is an 11mm, f/2 aspheric lens (Thorlabs

C220TMD-A) and the second is a 250 mm, 2 inch diameter plano-convex spherical lens. Adjusting the

position of the short focal length aspheric lens (point A in Fig. 3.4) sets the beam size at the large diameter

lens while the large diameter lens collimates the beam. The shift in the asphere position does not significantly

affect the output beam collimation.

Spatial alignment of the disorder focus is controlled via two systems. The focusing lens is mounted in a

threaded tube with 100 threads per inch, affording half turn adjustments of 125 microns along the axis of the

focus. The threaded tube mates with a flexure mount attached to the support structure of the QUIC trap;

details are provided in Ref. [100]. The flexure mount (Fig. 3.5) offers coarse adjustment of the speckle focal

position transverse to the direction of propagation. The arms of the flexure mount are limited by spatial

constraints of the mounting hardware and were found to be hysteretic with poor isolation between the two
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directions of motion. To overcome this limitation, alignment in the focal plane is performed by tilting the

mirror closest to the focusing lens. This allowed for fine-scale, repeatable adjustment of the focal position.

(a) (b)

Figure 3.5: Speckle focusing lens hardware. (a) Flexure mount with threaded lens tube holds the speckle
focusing lens and diffuser. (b) Tophat-shaped apertures fit inside the lens tube restricting the clear aperture
of the lens to afford control of the speckle correlation length.

The size of the speckle correlation function is controlled by varying the effective numerical aperture of

the speckle focusing lens. The intensity autocorrelation in this geometry is the same as the spot produced

by the imaging system without the diffuser as discussed in Sec. 3.2. Control over the lens illumination is

achieved by varying the waist of the collimated, Gaussian beam incident on the focusing lens or by apodizing

the beam at the lens (point B in Fig. 3.4). In practice, it is more reproducible to apodize the beam at the

lens, and a series of apertures were machined to fit into the focusing lens tube as shown in Fig. 3.5. These

apertures rest above the front surface of the focusing lens and are geometrically constrained to be concentric

with the lens.

3.4 Speckle Alignment and Calibration

Alignment of the speckle is performed by pulsing the speckle potential and measuring diffraction of the

Fermi gas from the potential. Starting with a cold (typically 200 nK gas), pulsing the speckle potential

broadens the momentum distribution of the gas inversely proportional to the speckle correlation length.

For the anisotropic potential employed in the experiment, the transverse correlation length is at least a

factor of five shorter than the axial correlation length, and diffraction along the speckle axis is minimal.

Diffraction in the transverse direction from the speckle field gives a direct alignment signal as the amount of

diffraction increases with decreasing correlation length and increasing disorder height. Starting with a fixed
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temperature gas, the speckle focus1 is moved in three dimensions to maximize the diffraction signal using

the last mirror to control the focal position in the x- and z-directions and the threaded lens tube to control

the y-direction.
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Figure 3.6: Ex situ calibration of diffuser angle and speckle intensity envelope waist. (a) A collimated laser
beam is sent through the diffuser and its RMS width is measured at several distances to determine the
diffuser angle. The inset shows the speckle imaged on a sheet of graph paper. (b) Image of speckle focus in
the geometry shown in Fig. 3.4 where the intensity envelope has an 1/e2 radius of ≈ 125µm.

The mean height of the speckle potential, ∆, is inferred based on measured values of the 532nm beam

power and waist, calculations of the beam truncation at the focusing lens, and measurement of the speckle

envelope waist at the atoms. The beam waist at the focusing lens was measured by imaging the beam on a

sheet of graph paper and the waist is found to be 6.7 mm with high accuracy. The total power in the beam

before the lens was measured by focusing the beam onto a calibrated optical power meter, and the power at

the atoms is estimated to be 8% lower due to reflections from the glass cell. The fraction of light transmitted

through the lens aperture is calculated from the aperture diameter and disorder beam waist using Eq. 3.16.

This formula assumes the beam is centered on the lens, and misalignment here contributes to the systematic

uncertainty in the mean disorder potential.

Ptransmited =

∫ rmax

0

2πr
2Ptotal

πw2
e−

2r2

w2 dr (3.16)

The transverse waist of the disorder envelope at the position of the atoms is measured by pulsing the

disordered potential and observing the impulse given to a hot gas. The impulse is proportional to the

derivative of the speckle envelope, and the waist is found to be between 170 and 180 microns based on

1Speckle is always in focus. For simplicity, this document labels the region where the speckle has the finest correlation length
as the speckle focus.
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repeated measurements using this procedure as described in Ref. [100]. The size of the speckle envelope at

the focus is determined by the diffuser angle and the focal length of the lens (the spot size of the imaging

system is two orders of magnitude smaller than the beam waist). The diffuser angle is measured to be

0.66◦ FWHM (nominally 0.5◦) as shown in Fig. 3.6. The disorder lens back focal length and the diffuser’s

divergence angle predict a 1/e2 radius of the speckle envelope of w ≈ 125 microns, significantly smaller than

the measured value and corresponds to a factor of 2 underestimation of the predicted mean speckle intensity.

Measurements of the focal waist using an identical ex situ optical setup find beam waists in agreement with

those predicted from the diffuser angle. The discrepancy between the predicted waist and those measured

with the above technique has not been resolved, and direct measures of the mean speckle potential should

be developed to directly address this discrepancy. For calculating the speckle height in published data, the

waist measured by deflection of the atoms of 170 microns was used to calculate ∆. Experimental calibration

of the speckle amplitude is not achieved, and the systematic uncertainty in the disorder height is quoted at

40%.

3.5 Three-Dimensional Scans of Speckle Potentials

Three-dimensional scans of speckle potentials were performed using an ex-situ replica of the speckle optics

in the experiment to compare measured intensity autocorrelation functions and power spectra to predicted

values and to calibrate the speckle correlation length for the variable scale localization measurement in

Chapter 4. Scans were performed by mounting a 60x microscope objective on a manual translation stage.

Positioning of the microscope along the speckle focus was controlled with a differential micrometer with half

micrometer steps, and the microscope provided a magnification of 66 nanometers per pixels as calibrated

by imaging a 1951 Air Force resolution target. The camera used was a PointGrey Chameleon monochrome

(Sony ICX445 CCD) with a pixel pitch of 3.75 microns and total area of 1280 by 960 pixels. The 3D scans

were built from a series of roughly 70 images stacked on regular intervals of 0.5 to 5 microns. The imaging

microscope was moved between images using the manual translation stage, and vibrations in this process

caused the microscope position to jitter slightly between frames and resulted in sub pixel misalignment

between images. This jitter was removed by calculating the correlation function between adjacent frames to

determine the offset between images, and then correcting the offset using the Fourier shift theorem to perform

arbitrary shifts of the imaged speckle field. Typical jitter between frames was less than half a pixel, and up

to 10 pixels net displacement was seen across an entire scan—likely the result of the speckle propagating

slightly off-axis from the microscope. Three dimensional scans were performed for aperture diameters from
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3.5 to 15 mm for an input beam waist of 6.7 mm, identical to the experimental configuration. Slices through

the reconstructed speckle field for different effective numerical aperture imaging systems are shown in Fig.

3.7.

(a) (b) (c) (d)

(e) (f ) (g) (h)

x

y

x

z

5μm

Figure 3.7: Three-dimensional scans of speckle potentials with variable correlation lengths. Slices of
these scans are shown here for four different correlation lengths in the x-z (transverse-transverse) and x-y
(transverse-axial) planes. The field of view in each image is 35 x 35 microns, and the false color scale extends
from zero to five times the mean intensity. Images (a-d) are slices in the speckle focal plane, while (e-h)
are reconstructed by stacking many 2D images of the speckle together. The speckle correlation length was
varied by stopping-down the pupil of the focusing lens with circular apertures with diameters of 15 (a,e),
11.7 (b,f), 7.9 (c,g), and 4.7 mm (d,h).

Evaluation of the autocorrelation of the speckle scans was performed using the convolution theorem. It

is possible to perform the convolution directly, but it is numerically faster to use fast Fourier transforms.

The power spectrum of the potential is found by taking the square modulus of the Fourier transform of

the potential such that C̃I(∆k) = |F [I(∆r)]|2, and the autocorrelation is the inverse Fourier transform

of the power spectrum as CI(∆r) = F−1[C̃I(∆k)]. Results for CI(∆r) and C̃I(∆k) over the range of

speckle scanned is shown in Fig. 3.9. These data show the expected behavior of the correlation function

growing with the effective f/# of the imaging system. Both the autocorrelation and the power spectrum

are azimuthally averaged.

The measured correlation functions are compared with analytic predictions for a uniformly illuminated

circular aperture from Eq. 3.11 in Fig. 3.10. The beam illuminating the focusing lens has a waist of 6.7

mm, and truncation of the intensity by the variable apertures means that the lens pupil is neither uniformly
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Aperture (mm) wx (µm) wz (µm) wy (µm) (wxwywz)
1/3

15.0 0.63± 0.012 0.62± 0.01 3.14± 0.04 1.07± 0.01
11.7 0.69± 0.02 0.72± 0.02 3.84± 0.08 1.24± 0.03
9.8 0.84± 0.02 0.81± 0.02 5.32± 0.09 1.54± 0.04
8.0 0.91± 0.01 0.91± 0.01 8.47± 0.07 1.91± 0.02
6.4 1.11± 0.03 1.14± 0.03 14.06± 0.15 2.61± 0.12
5.7 1.27± 0.06 1.27± 0.03 17.18± 0.19 3.03± 0.22
4.7 1.53± 0.05 1.47± 0.05 24.81± 0.1 3.82± 0.36
4.5 1.49± 0.06 1.50± 0.05 24.9± 0.31 3.82± 0.42
3.4 1.83± 0.05 1.79± 0.01 35.87± 0.53 4.90± 0.45

Table 3.1: Summary of measured speckle intensity autocorrelation widths. Intensity autocorrelation data
were fit to a Gaussian function to extract the waist (twice the RMS radius) of CI(δr) along the x-, y-, and
x-directions. The aperture diameters measured correspond to a range of f/# from ≈ 1.1 to 4.8. These data
are plotted in Fig. 3.8.

or Gaussian illuminated. Despite this, good quantitative agreement is found between the measured and

predicted correlation functions. Exact reproduction of the side lobes is complicated by the technical problems

including the depth of focus of the microscope objective, imperfect alignment of the microscope along the

speckle axis, and motion in the imaging optics during the speckle scan. A summary of the autocorrelation

data and power spectra are shown in Fig. 3.9 for the aperture diameters explored, covering a range of f/#

from ≈ 1.1 to 4.8. To simplify analysis of the correlation function, we fit each measured autocorrelation

function to a Gaussian surface function to extract the 1/e2 radii for each distribution. A summary of this

data are list in Table 3.1 and plotted in Fig. 3.8. Interpolation between the data presented in these graphs

is used to generate the geometric mean correlation length used in the observation of Anderson localization

in variable scale speckle described in Chapter 4.
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Figure 3.8: Measured autocorrelation waists for ex-situ 3D scans of variable-scale speckle. Data are plotted
from Gaussian fitting to 3D reconstructed speckle intensity maps with the values listed in Table 3.1. Lines
are interpolations used to determine the correlation values for aperture diameters not directly measured,
and error bars represent the uncertainty in the Gaussian fit.
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Figure 3.9: Autocorrelation functions and power spectrum for ex situ scans of variable-scale speckle. Intensity
autocorrelations CI(r) and power spectra ˜C(k) are calculated from scans containing ≈ 107 voxels. Speckle
with variable correlation lengths are created by reducing the effective numerical aperture of a speckle imaging
lens with circular apertures. Data sets are shown for aperture diameters of 15.0, 11.7, 9.8, 8.0, 6.4, 5.7, and
4.7 mm for the setup described in Fig 3.4.
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Figure 3.10: Detailed comparison of measured speckle autocorrelation distributions to theoretical predic-
tion for uniformly illuminated circular apertures. Autocorrelation data are azimuthally averaged. Axial-
transverse slices of the three-dimensional distribution are shown for for 15 (a-c) and 7.9 mm (d-f) aperture
diameters. Theory images and curves are generated with zero free parameters using Equations 3.11, 3.12,
and 3.13. These equations assume uniform illumination of the speckle focusing lens.
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Chapter 4

Anderson Localization in
Variable-Scale Speckle

4.1 Introduction

This chapter covers measurements on three-dimensional localization of an ultracold, non-interacting Fermi

gas in a disordered potential created from optical speckle. Bimodal behavior is observed in the atomic density

profile after expansion into the disorder. High energy atoms are observed to expand quasi-ballistically,

while low energy atoms adopt a localized, anisotropic density profile whose shape is fixed in time. A

disorder dependent mobility edge separating the two components is found relative to the atom’s single-

particle energy scale. Additionally, the shape and spatial extent of the localized gas is studied as a function

of the temperature of the gas, the mean disorder height, and the disorder correlation length. The observed

bimodal behavior and measured density profile are averaged over a thermal distribution of single-particle

energies that complicates the interpretation of the data on both a quantitative and qualitative level, and two

additional measurements were performed to probe the nature of the single-particle states in speckle disorder.

First, the spatial extent of the single-particle localized states is probed by quenching the localized profile

and observing the resulting dynamics. Second, an external force is applied to the localized gas to probe the

stability of marginally localized states. These measurements are published in Refs. [102, 131, 132] and are

discussed in part in Stan Kondov’s dissertation [100]. The data on the response to an external force are

unpublished.

Comparisons with other published theoretical and experimental work in the field are made where possible

with emphasis given to theoretical work by Marie Piraud, R. Kuhn, and Cord Müller, as well as experimental

work led by the Fred Jendrzejewski. A central point of this discussion is the lack of agreement between our

observation and theoretical predictions for the length scale of localization in these systems. Our observations

indicate significant occupation of localized states with length scales hundreds of times longer than the disorder

correlation length. Predictions from weak scattering and the Born approximation suggest localization lengths

scale more comparable to the disorder correlation length. The validity of the weak scattering approximation

in these calculations is discussed and related to the measurements presented in this chapter. Generically,
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one expects the weak scattering approximation to fail exactly in the regime of Anderson localization where

the Ioffe-Regel criterion is satisfied, and theoretical tools that go beyond the Born approximation may be

required to understand the phenomena of localization in correlated disorder.

4.2 Background

Anderson localization is an interference phenomenon in which waves fail to propagate in a disordered medium.

Localization arises from multi-path interference and can be viewed as an extreme example of coherent

backscattering or weak localization. In weak localization, one considers numerous trajectories available in

a disordered medium. Paths that form loops have time-reversed duals as shown in Fig 4.1. If these dual

paths are phase coherent, the paths will positively interfere with an amplitude twice the incoherent sum of

the two paths. This modifies the diffusion constant, D, in the medium such that D → D − δD. The size of

δD is controlled by the Boltzmann mean free path and the wavelength of the particle. Anderson localization

occurs when the perturbation to the diffusion constant becomes as large as the constant itself and motion

arrests.

Figure 4.1: Illustration showing self-interference in a disordered scattering medium. A wave starting at the
green point can travel the clockwise (red) and anti-clockwise (green) paths in the disorder. If these paths
interfere coherently, the return probability (I = |A+ +A−|2 = 4|A|2) is twice larger than an incoherent sum
over the two paths (I = |A+|2 + |A−|2 = 2|A|2) where A is the amplitude for a given path. This increase in
return probability has an associated reduction in transport called weak localization.

The dimensionality of the scattering medium is critically important to the behavior of localization.

Again borrowing from the picture of weak localization and arguments from Bergmann [15] and Langer
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and Neal [110], interference is necessarily stronger in lower dimensions. Considering the formation of self-

interfering loops from the perspective of random walks, one must ask what the return probability is for

a random walk. This probability diverges for 1D and 2D systems, while remaining finite for dimensions

greater than 2; this implies that self-interference is infinitely strong in low dimensions and that localization

will take on dimension-dependent behavior. Indeed, it is found that for uncorrelated disorder in 2 and

lower dimensions, all waves become Anderson localized for arbitrarily small disorder, and localization is

not guaranteed for d > 2. In systems such as the 3D speckle considered here, a mobility edge (or edges)

in energy exists separating localized from extended states. This concept was formalized using the concept

of the dimensionless Thouless conductance in the scaling theory of localization introduced by the “gang of

four” in Ref. [2].

The field of Anderson localization is active, with hundreds of research articles published on the topic

every year. Work on strong or Anderson localization began with a paper on the “Absence of diffusion

in certain random lattices” by Phillip Anderson in 1958 [6] and has grown significantly through numerous

theoretical advances and observations, as shown in Fig. 4.2. The majority of these works focus on theoretical

or numerical treatments of the phenomenon and its role in observations in materials. Direct observations of

the effect in the solid state are complicated by electron-electron and electron-phonon interactions, and it is

only in the last twenty years that work with photons [30, 213, 183, 200, 148, 58, 108, 25], microwaves [52],

acoustics waves [76], and more recently ultracold gases [177, 18] has allowed for detailed tests of localization

and coherent backscattering in interaction-free environments. Reviews of Anderson localization can be found

in [103, 2, 144, 203, 201, 113, 146, 107, 1] and in many other places. This chapter discusses localization in

3D with ultracold Fermi gases. Concurrent work with Bose gases can be found in Refs. [83, 82, 84, 184].

Anderson localization has recently been exploited to increase the resolution in endoscopic fiber imaging;

disordered fiber bundles have been used to transmit an image localized in 2D in the random fiber to increase

the resolution and minimize the pixelation present in these applications [89].

4.3 Observation of 3D Anderson Localization

We localize matter waves in a three-dimensional disordered potential produced from optical speckle in which

both the properties of the speckle and the matter waves are controlled to explore dynamics and localization

in three-dimensional disorder. This section details the experimental preparation to observe localization and

the essential behaviors of the observations. This information is partially repeated from Ref. [100] with the

inclusion of new measurements and comments where our understanding has improved or changed.
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Figure 4.2: Timeline showing citations of Anderson’s 1958 paper proposing disorder-induced localization.
Citations of Ref. [6] are binned by year using data from the APS Journal Archive and important developments
in the field are labeled. Use of only the APS archive underestimates the total number of citations by
approximately a factor of two according to Google scholar.

Optical speckle provides a well characterized source of correlated disorder that is both easy to create and

control. Chapter 3 provides a detailed introduction to the properties of speckle and the specific implemen-

tation employed for this work. To summarize that chapter, we create a three-dimensional speckle field from

532 nm light generating a repulsive potential characterized by its mean height, ∆, and the geometric mean

of the RMS widths of the speckle intensity autocorrelation function, ζ̄ = (ζxζyζz)
1/3. Varying the effective

numerical aperture of the speckle imaging optics allows for control of ζ̄ from 1.2 to 5.8 µm. The speckle

potential exists in a finite volume of space, and the intensity is modulated by a gaussian envelope with a

waist (1/e2 radius) of 170 µm in the focal plane and a Rayleigh range of 400 µm along the axis of the focus.

The power in the speckle beam is actively stabilized to minimize the statistical uncertainty in ∆ between

measurements. Within experimentally available parameters, values of ∆ between 0 and 1000 kB × nK are

achieved. A number of systematic errors, including the size of the speckle envelope and total power at the

atoms, contributes to a 40% systematic uncertainty in ∆.

A spin-polarized gas of ultracold 40K atoms is our source of non-interacting matter waves. The atoms

are prepared at temperatures from 170 to 1500 nK using standard cooling techniques described in Chapter

2.1 and are composed of the |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 spin states in 40K. The mF =

7/2 atoms are removed after cooling to create a non-interacting, spin-polarized gas. S-wave collisions are
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Figure 4.3: Experimental procedure for observing dynamics and localization in the speckle potential. (a)
Atoms are loaded into a speckle potential while in a crossed-beam optical trap. The trap is suddenly removed
and the atoms are allowed to expand into the speckle for a hold time from 0 to 1000 milliseconds. (b). A
two-component profile is observed composed of localized and mobile atoms. The mobile component (red
shaded area) expands quasi-ballistically, and the localized component (blue shaded area) assumes a fixed
profile in time. (c) Time-of-flight images at 20 ms showing the emergence of an anisotropic localized profile
as disorder is introduced for four different temperature gases.

forbidden in the polarized gas due to quantum statistics, and energetics suppresses p-wave and higher angular

momentum collision channels. The p-wave cross section scales as T 2 below the p-wave barrier at 130 µK,

and at 200 nK the single-state p-wave scattering cross section is 10,000 time smaller at 200 nK than the

s-wave cross section between two different spin states [42]. Single-state spin polarization is achieved at an

efficiency greater than 65:1. Effects of quantum degeneracy and Pauli blocking are minimal, as the ratio of

the temperature to the Fermi temperature is at least 0.5 for all data and the gas can be well approximated by
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Boltzmann statistics. Since the gases are thermal, they contain a continuous distribution of single-particle

energies and deBroglie wavelengths λdB = h/
√

2πmkBT . For the temperatures explored here of 170 to 1250

nK, the mean λdB varies from 620 to 250 nm.

The experimental sequence for observing localization is shown in Fig. 4.3. The non-interacting, spin-

polarized gas is held in a harmonically confining dipole trap, and the speckle potential is introduced using

a linear ramp of the 532 nm laser power over 200 ms to the fixed value corresponding to the required ∆.

After a 2 ms delay, the dipole trap is suddenly removed and a magnetic gradient field is applied to balance

the atoms against gravity using the coil detailed in Section 2.3.3. The atoms are allowed to expand into the

speckle potential for a hold time, τ , up to 1s. At the end of this period, a column-integrated, absorption

image is taken of the density profile in the speckle. Sample density profiles are shown in Fig. 4.3 for different

gas temperatures and disorder strengths for τ = 20ms. A bimodal behavior is observed composed of mobile

and localized atoms. The mobile component of the gas expands in an isotropic, quasi-ballistic fashion from

the in-trap position with a thermal velocity that exceeds that of the parent gas. The localized component

expands briefly and then assumes a fixed, anisotropic profile in time. We interpret the division between

the two components as a mobility edge and the localized component as a truncated thermal average of

single-particle Anderson localized states in the speckle potential.

The localized gas takes on a shape set by the in-trap spatial distribution and the dynamics within the

disorder. Profiles of the gas in Fig. 4.4(a) at τ of 0, 40, and 140ms show the in-trap density profile and

the shape of the localized profiles without the mobile component—here the mobile component has been

subtracted or has sufficiently low optical depth to be ignored. The localized profile in the x-direction is

minimally broadened from the in-trap Gaussian distribution. Nominal values for the in-trap RMS widths

of the gas are σx ≈ 30µm and σy ≈ 15µm, and the observed profile widths are within a few microns of the

non-disordered values in the x-direction. As such, the localization lengths in this direction are interpreted

to be much smaller than the trapped size of the gas. Along the y-direction, the axis of the speckle focus,

the localized gas extends over several hundred microns. The gas expands initially and then assumes a

profile with a fixed shape. The amplitude of the profile decays in time as atoms slowly leave the localized

component, and the density profiles are seen to differ only by a scaling factor during this process as shown

by the profiles at 40 and 140ms in Fig 4.4. The profiles appear exponential in shape along the y-direction.

Single-particle Anderson localized states are generically expected to have exponentially decaying envelopes,

but interpretation of the observed profiles is complicated by the truncated thermal distribution of single-

particle states of which they are composed. Several predictions for this shape from weak scattering theory

are discussed at the end of this chapter. Each density profile is fit to a heuristic surface fit to extract the
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Figure 4.4: Details of the localized gas density profile and fraction of atoms localized. (a) The upper graphs
show slices through the gas along the x- and y-directions for hold times in the disorder of 0, 40, and 140ms.
The black line at 0 ms hold time indicates the in-trap size of the gas and its optical depth has been scaled
by a factor of 15 so that it can be shown on the same scale. Slices show that the density profile adopts an
exponential profile along the y-direction, while little motion is observed in the x-direction. The localization
length and rms size are plotted versus hold time in the speckle potential. The localization length along y and
the rms size along x quickly adopts stationary values. Solid lines are classical expansion dynamics predicted
by solving Newton’s equations in speckle and differ greatly from the observed data. (b) For localization
data taken at various temperatures and disorder strengths, the fraction of atoms in the localized state is
measured using a two-component fitting procedure for 240 nK (blue circles), 480 nK (green squares), 1130
nK (orange triangles), and 1470 nK (red diamonds) measured after 20ms hold time. These four data sets
are converted to a mobility edge through the known energy distribution. Error bars indicate the range of
values found. The dashed line is a power law fit with exponent of 0.59 ±0.02.

RMS size of the gas along the y-direction to provide a metric representative of the size of gas. The fitting

procedure is described in detail in the following section.

Interpretation of the localization length data is complicated by the range of single-particle energies and

localization lengths in the gas. The fraction of atoms f that are localized by the disorder depends on the

average disorder potential and the temperature of the gas. Data shown in Fig. 4.4(b) for ζ̄ = 1.2µm show

the fraction of atoms in the localized state at τ = 20 ms. The single-particle energy distribution for each

gas is known via imaging the momentum distribution of the gas after release from the trap. Using the free

particle density of states g(ε) and the Boltzmann distribution of energies, we find the mobility edge Ec as
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T = 480 nK

Figure 4.5: Scaling of localization length with temperature and disorder strength, and details of the decay
of the localized state. (a) Scaling of localization length with temperature at fixed disorder strength (open
circles) and with disorder at fixed temperature (green squares). (b) Decay of the localized state in hold time.
The total number of atoms in the localized state exponentially decreases with a finite offset.

the cutoff required to match the measured f :

f =

∫ Ec
0

g(ε) P (ε)dε∫∞
0
g(ε) P (ε)dε

=
2√

π(kBT )3

∫ Ec

0

√
ε e−ε/(kBT ) dε. (4.1)

This procedure is used to find the critical energy for each measured fraction of localized states in Fig. 4.4

for the four separate temperatures probed. The four sets of critical energies collapse onto a single curve

with a power law scaling of Ec ∝ ∆0.59±0.02. Predictions from self-consistent Born approximation and

weak-scattering theory calculations suggest a scaling of Ec ∝ ∆2 [216, 106, 164]. Differences may arise from

detailed properties of scattering in our speckle geometry or failures in the approximations employed in these

calculations, as discussed in Sec. 4.9. The expected trends that the localization length should decrease with

increasing disorder and decreasing temperature are both present as shown in Figure. 4.5. Direct comparison

with theory is possible due to the known thermal energy distribution in the gas, but thermal averaging

complicates direct interpretation of the single-particle behavior.

4.4 Fitting Procedure for Localized Gas

To extract length scales and populations of the mobile and localized gases, the optical depth images acquired

after expansion in the speckle potential are fit to a two-component density profile. The mobile component

contains high energy atoms that expands quasi-ballistically and are fit to a 2D gaussian. The localized
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component’s density profile is a convolution of the in-trap size of the gas with a thermal distribution of

localized states below a critical energy. Due to the anisotropy of the speckle potential, the gas is observed

to expand appreciably only along the axis of the speckle. The localized profile is fit to a function, ρL, that is

Gaussian in the x-direction and a stretched exponential in the y-direction. The optical depth of the image,

OD, is the sum of the localized and mobile component distributions, ρL and ρM:

OD = ρM + ρL where


ρM = ODM exp

(
− x2

2σ2
x
− y2

2σ2
y

)
ρL = ODL exp

(
− x2

2σ2
x
−
∣∣∣ yξy ∣∣∣β) . (4.2)

The stretched exponential allows the shape of the localized fitting function to evolve continuously from

the in-trap Gaussian profile (β = 2), to a simple exponential (β = 1), and to a localized profile with stretched

tails (β < 1). The RMS size of the gas is related to the stretched localization length, ξy and the stretched

exponent β as

σy = ξy

√
Γ(1 + 3/β)

3 Γ(1 + 1/β)
. (4.3)

Here Γ(h) is the Gamma function of argument h. The relation between ξy and the RMS size is a numerical

prefactor that depends on β. For β = 2 (gaussian) σy = ξy/
√

2, for β = 1 (simple exponential) σy =
√

2 ξy

, and for β = 0.5 (extremely stretched exponential) σy = 30
√

30 ξy ≈ 11ξy.

This two-component fitting function captures much of the observed shape of both the mobile and localized

components, but it must be emphasized that the fitting function for the localized component is entirely

heuristic. The goal of the fitting procedure is to extract a length scale from the density profile (namely the

RMS size of the gas), and the simplest functional form that described the shape of the data was chosen.

The RMS size of the gas can also be extracted from the image directly (σ =
√∑

x2f(x)/
∑
f(x)) with no

assumption on the shape of the gas. Pixel shot noise in regions of low signal and high x2 prevents a stable

value of the second moment from being found as the averaging window size is varied. This motivates the

use of a fitting function and requires a functional form to be chosen.

Without a detailed simulation of scattering and localization in a speckle potential, it is not possible to

predict the thermally averaged density profile of the gas. The stretched exponential fit captures much of the

shape of the gas, and it is possible to construct this profile from a weighted sum of simple exponentials (β

= 1). Column integration in the imaging procedure adds complexity in relating the density profile of the

gas to theory. For example, in the case of simple exponential (β = 1) density profiles (as might be expected

for localization), the observed line-of-sight integrated image becomes rounded at the origin and broadened
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Figure 4.6: Comparison of an exponential profile before and after column integration. Fine detail such as the
sharp peak in the exponential profile (black line) is obscured by column integration and the column-integrated
profile (red line) appears wider than the underlying distribution. These effects complicate interpretation of
the observed density profiles and comparison with theory.

by the column integration as shown in Fig. 4.6. The exponential density profile after column integration in

the z−direction is as

OD(x) ∝
∫ ∞
−∞

e−|r|dz = 2 |x|K1 (|x|) , (4.4)

where K1(x) is the modified Bessel of the first kind of argument x.

4.5 Localization in Variable-Scale Speckle

The central point of this chapter is to discuss localization in speckle disorder of variable scale. Localization

in three dimensions is controlled by the interplay of the particle’s wavelength and the Boltzmann mean-

free-path. In the speckle disorder explored here, the mean free path is a function of both the disorder

potential energy and correlation properties, as described in Sec. 4.8. We perform experiments with a fixed,

thermal distribution of single-particle wavelengths and fixed mean disorder height to measure the role of the

speckle correlation length in controlling the onset of localization and the localization length scale. The role

of correlation in disordered potentials is an area of active research, and measurement of this scaling is an

important test for theory. Measurements presented here are distinct from experiments on the localization

of light in three-dimensional semiconductor powders [213, 191, 127], as spatial correlations in the speckle

disorder are important and absorption in the scattering medium is absent.

Experiments using variable-scale speckle were performed with a fixed temperature gas and a fixed mean

disorder potential energy while the geometric mean correlation length was varied by a factor of 4. A spin-

62



polarized gas of 40K atoms in the |9/2, 9/2〉 state was prepared in an optical trap at a temperature of

174 ± 4 nK and trap frequencies of ωx = 2π25Hz and ωy = ωz = 2π95Hz. The mean speckle potential

energy ∆ was set to 220 kB × nK. The correlation length was varied by reducing the illumination of the

speckle imaging lens with circular apertures of diameters from 3.6 to 13 mm. At each value the total optical

power transmitted through the focusing lens was fixed and the input power adjusted based on the known

beam waist and aperture diameters. Correcting the beam power with aperture diameter introduces a 10%

statistical uncertainty in ∆ between disorder realizations. A 40% systematic uncertainty in ∆ also exists as

discussed in Sec. 3.4. The statistical uncertainty in ∆ is negligible for the interpretation of data here due

to the weak scaling with disorder amplitude as shown in Fig. 4.5.

The apertures allowed for variation of the f/# of the imaging system from 1.1 to 4. The speckle correlation

length as measured by the 1/e2 radii of the intensity autocorrelation function varied from ζx = 0.6 to 1.8

microns and ζz = 3.1 to 37 microns, while the geometric mean spanned from ζ̄ = 1.1 to 4.8 microns. The

envelope of the speckle potential has a roughly Gaussian profile in the focal plane with 170 micron waist

independent of the aperture diameter set by the diffuser angle and the focal length of the speckle imaging

lens. The Rayleigh range along the axis of the speckle focus varies from 400 to 1200 microns, linearly growing

in proportion to the f/# of the imaging system. Other details of the speckle potential are covered in Chapter

3, including ex-situ measurements of the variable scale speckle and a detailed description of the intensity

autocorrelation function.

Representative data exhibiting localization in variable-scale speckle are shown in Fig. 4.7. These data

are similar to the fixed correlation data presented in Sec. 4.3, in which the size of the localized gas is fixed at

the in-trap value in the x-direction and grows in the y-direction in time until a stable profile is reached. The

size of the localized component grows with the disorder correlation length, and the shape of the gas changes

from close to exponential behavior observed in the ζ̄ = 1.2µm data. The density profile of the gas develops

longer tails as the correlation length grows, and a stretched exponential fit was employed to describe the

shape of the data and extract the RMS size of the gas in the y-direction. Localization in this potential is

again interpreted from measurements of the axial RMS size of the gas in time. For each correlation length

probed, the gas expands initially with an RMS size that grows linearly in time until a plateau is reached and

the size is roughly constant over a period of several hundred milliseconds. The transient period of expansion

increases with disorder correlation length and corresponds to a thermal velocity of 480 nK, more than a

factor of two higher than the temperature of the gas.

Reduced data from the eight correlation lengths explored shows scaling of the axial RMS size, the fraction

of atoms localized, and the shape of the gas versus ζ̄ in Fig. 4.8. Stable values for each correlation length are
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Figure 4.7: Summary of localization and dynamics in variable-scale speckle. (a) Imaging geometry used to
control optical speckle correlation length with a variable aperture, high numerical aperture lens, and diffuser.
(b-d) Measured speckle intensity field in the axial-transverse (x-y) plane near the focus, reconstructed from
ex situ 3D scanning. (e) In-trap density profile of the gas before release into the speckle potential with
imaging laser detuned to limit probe beam saturation. (f-g) Images of the gas after expanding in the speckle
potential for τ = 160 ms, showing that the size of the localized state grows with speckle correlation length.
(i-k) Slices through the density profiles in (f-h) show how the shape of the localized gas evolves as the speckle
correlation length is changed. (l) The RMS size of the gas is extracted using the fitting procedure described
in Sec. 4.4 to show the dynamics as the localized state forms. At each correlation length, there is a period
of quasi-linear expansion followed by a plateau of the RMS size. The speckle correlation length for the data
are ζ̄ of 1.2, 2.4 and 3.8 µm for (b)(f)(i) black squares, (c)(g)(j) red circles, and (d)(h)(k) blue triangles,
respectively. The temperature of the gas is 175 nK and ∆ = 220 kB × nK.

found by averaging over measurement taken at τ from 160 to 220 ms where there is a plateau in σy for all

data. For these data, the correlation length grows roughly linearly with ζ̄, and a power law fit through the

data finds σy ∝ ζ̄1.22±0.06 as shown in Fig. 4.8. The fraction of atoms localized at each value of ζ̄ is roughly

constant at 30% at τ = 160 ms. This indicates that the single-particle mobility edge is roughly constant

across the range of correlation lengths probed, and the distribution of single-particle energies that form the

localized gas can be approximated as constant. This allows for comparisons to be made of the observed,

thermally averaged length scale. Weak scattering theory predicts that the single-particle localization lengths

should scale as ζE2/∆2 in the limit where the wavelength is much larger than the inverse speckle correlation

length and the particle energy much less than the mobility edge, Ec. The atomic wavevector is estimated

at λdB ≈ 700 nm, which is smaller than the range in ζ̄ employed in this measurement. The decay from the

localized states is similar over the range of correlation lengths probed. Fig. 4.9 shows the fraction localized
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as a function of time for three representative correlation lengths—each decays from a maximum localized

fraction near 70% to 30% over a period of 200 ms. Surprisingly, there is no discernible variation across the

data set, indicating that leakage likely occurs uniformly across the gas and not in the tails of the distribution

where the largest variation in the disorder potential envelope is seen.
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Figure 4.8: Summary of localized component size and population as the speckle correlation length ζ̄ is varied
from 1.2 to 5 µm. (a) The fractional population in the localized component measured at τ = 160 ms is
measured to be approximately 30%, independent of the correlation length for the parameters explored. (b)
The RMS size is measured to grow with ζ̄ as the stretched exponent, β, from the fitting procedure decreases.
Error bars indicate the standard error of the mean and each point is the average of 20 measurements.

4.6 Quench of the Localized Density Profile

The spatial extent of the localized profiles we observe are much larger than predicted by weak scattering

theory, as discussed in Sec. 4.8. The density distributions are averaged over several 105 atoms, and it is

natural to ask whether the size of the single-particle states is comparable to the thermally averaged profile or

not. Each single-particle wavefunction is expected to have an exponentially decaying envelope in space, and
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Figure 4.9: Fraction of atoms in the localized component for variable-correlation length data. Data are ζ̄ of
1.2 (black squares), 2.4 (red circles) and 3.8 (blue triangles) µm, the same colors as in Fig. 4.7. The gray
band contains the scatter from all 8 data sets.

two simple interpretations could explain the observed profiles. First, the single-particle states could possess

localization lengths comparable to the observed σy with largely overlapping spatial profiles centered on the

in-trap position of the gas. In this case, the observed profile would be a thermal average of the single-particle

localized states. Second, the single-particle localization lengths are comparable to ζ̄ with mean positions

sparsely distributed in space. In this scenario, σy is indicative of the dynamics as the localized state is

formed in the speckle.

To distinguish between these scenarios we perform a quench of the localized density profile that removes

a quarter of the atoms from the gas in a spatially-selective manner and observe the resulting dynamics. This

measurement is performed with a spin-polarized gas at 220 nK with disorder correlation ζ̄ = 1.2 µm with

amplitude ∆ = 660 kB × nK. The gas is allowed to evolve in the speckle for 60 ms such that the localized

profile has time to fully develop. A chirped microwave-frequency magnetic fields is applied over 2 ms to

drive a portion of the |9/2, 9/2〉 atoms for y > 0 to |7/2, 7/2〉 via adiabatic rapid passage. Spatial selectivity

is provided by the gradient magnetic field used to levitate the |9/2, 9/2〉 atoms. Atoms in |7/2, 7/2〉 are

accelerated at 16/9 g and leave the region of interest in the experiment within 7.5 ms. To quantify the

asymmetry of the gas, we fit the lower and upper half of the gas separately to a simple exponential profile

to obtain exponential decay lengths ξ>y and ξ<y for y > 0 and y < 0, respectively. Similarly, occupation in

the two halves of the gas is measured as N> and N<.

The results of the density quench are shown in Fig. 4.10. The length scale for the quenched half of the gas
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Figure 4.10: Quench of the localized density profile and dynamics showing reformation of the localized state.
(a) A microwave sweep is applied at τ = 60 ms that removes a portion of the upper half of the gas (y >
0). Each half of the gas is fit independently with a simple exponential, and the length scales are plotted as
function of time. Open circles, ζ<y , indicate data for y < 0 and closed circles, ζ>y , for y > 0. The gray band
shows symmetric localization length without the quench applied. The inset shows the optical depth along
the y-direction for the unperturbed (grey) and quenched (black line) gases at τ = 60 ms. (b) Occupation
ratio of the lower and upper half of the localized for the quenched (open squares) and unperturbed (filled
squares) gases.

ξ>y drops by a factor of two from its unperturbed value immediately after the quench. The gas then exhibits a

slow relaxation toward the unperturbed, fixed value of ξy as it slowly redistributes over 300 ms. The values of

ξ>y and ξ<y converge at long times indicating transport of atoms between the two halves. This transport is also

evident in the plot of the population ratio between the two halves, N</N> which starts near 2 following the

quench and approaches unity, again over a period of several hundred milliseconds. The long-time symmetric

length scale after the quench tends to a value slightly smaller than without the quench. From these data we

can rule out the scenario of small, spatially-sparse localized states. Under this scenario, the single-particle

states uninvolved in the quench would have been unaffected, and no reëquilibration would have been seen.
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Conclusively confirming (or disproving) the large localization length scenario is unfortunately not possible

with this data. Further energy-resolved studies that avoid the problem of thermal averaging are required

before firm conclusions should be drawn. Of note is the timescale of reëquilibration and the residual trapping

from the magnetic gradient coil (see Sec. 2.3.3); both are of order several hundred milliseconds. The degree

to which these are related is currently unknown. The energy scale of the residual trapping potential along

they y-direction over 1.5 mm is similar to the temperature of the gas, but this force does not explain the

majority of the short-time dynamics observed. The exact interplay of this residual magnetic potential and

localization should be explored using techniques similar to Ref. [40].

4.7 Applying a Force to the Localized Gas

As a subsequent test of the localized states in speckle, an external force was applied to a localized gas. The

goal of this measurement is to observe the fraction of atoms that remain localized and the dynamics after

the force is applied. This experiment was performed using the same techniques as the previous localization

measurements. A 250 nK, spin-polarized gas was released into the speckle potential with ζ̄ = 1.2µm and

∆ = 1000 kB×nK with a gradient magnetic field applied to balance the force of gravity. The external force

was applied by reducing the levitation magnetic field gradient to recover a set fraction of the gravitational

force. Absorption images of this procedure are shown for forces equivalent to 0, 0.08, and 0.16 of gravity

in Fig. 4.11. The mean disorder potential, correlation length, and the gas temperature were chosen near

experimental extremes to create a small initially localized gas with minimal spatial variation in the magnetic

gradient.

The dynamics after applying a force to the localized gas presents an interesting story. In the case where

no force is applied, the same behavior is seen as in previous measurements. Atoms slowly leak out of the

localized profile over a period over several hundred milliseconds while the shape of the gas is essentially fixed

in time. The timescale for atom loss here is longer than the value observed in Fig. 4.9 due to the larger

value of ∆ employed. For the case of a weak applied force, as in Fig. 4.11(b), the shape of the gas changes

dramatically in time as atoms away from the central peak are preferentially stripped from the localized

state. At long times, the gas shrinks dramatically along the y-direction and assumes a shape similar to the

in-trap density profile (as shown in Fig. 4.7). The effect is more pronounced for a larger applied force, and

the rate at which atoms are stripped from the localized gas increases with the remaining atoms assuming a

shape that mimics the in-trap profile. The stability of the remaining localized atoms in Fig. 4.7(c) where

F/mg = 0.16 is higher than observed in other localized gases, indicative of their smaller spatial extent.
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Figure 4.11: Applying a DC force to the localized gas. A 250 nK gas was released into speckle with ∆ = 1000
kB ×nK and ζ̄ = 1.2µm. Applying a force causes atoms that are more weakly localized to be stripped from
the localized state and leave the field of view. (a-c) Vertical slices through the gas are shown for τ = 0.1 to
0.6 s in the speckle with applied force F/mg = 0, 0.08, and 0.16. The slice is taken through each profile,
as indicated by the dotted line in (d). (d) Absorption images showing the dynamics in the presence of a
uniform force for F/mg = 0 (top row), 0.08 (middle row), and 0.16 (bottom row).

These measurements imply that atoms with longer correlations lengths are more weakly localized and

can be easily stripped from their localized states with an applied force. One expects states proximal to

the mobility edge with long localization lengths to be less strongly localized, as large phase gradients can

accumulate across their wavefunction. Analogously, lower energy atoms with shorter localization lengths are

more likely to remain localized in the presence of an applied force. Future studies of localization without

fine energy resolution could use this technique to strip away atoms with large spatial extent that may be

sub-diffusive or marginally localized. The applied force could then be removed, and the dynamics of the

remaining atoms studied. These data also provide insight into the role the non-uniform levitating force plays

in the measurement. The minimum applied force in this measurement is more than a factor of ten larger

than the non-uniformity in the force from the magnetic levitation coil, but these data imply that a small

fraction of the localized atoms will be stripped out of the localized component by the residual force. For the

sub percent variation in the levitation field, this effect is likely to only be relevant at the longest time scales

measured.

4.8 Comparison with Theoretical Predictions of 3D AL

4.8.1 Müller & Shapiro Result

Müller and Shapiro present a simple argument that suggests stretched exponential density profiles used to

described the observed localized profiles can arise from diffusive dynamics in speckle with generic, power law

scaling of the diffusion constant with energy. This sections summarizes their Comment [147] and our Reply
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[132]. First, Gaussian density profiles under diffusive expansion evolve without changing shape; their RMS

size grows as the square root of time, σ(t)2 = σ(0)2 +2Dt. Integrating over a Boltzmann energy distribution,

the size in time can be expressed as

n(~r, t) = C

∫
dE

ν(E)

(4πDEt)d/2
exp

(
− r2

4DEt
− βE

)
, (4.5)

assuming zero initial size. Here ν(E) is the density of states, C is a normalization constant, and DE is an

energy dependent diffusion constant. Under the assumption of a power law scaling of the diffusion constant,

DE ∝ ~Ea/m, and the density profile will be sharply peaked in the center due to slowly diffusing atoms.

Long tails will form, composed of the higher energy particles with their associate higher diffusion constants.

Of note from this comment is the limiting functional form for the density in the tails of the distribution

which takes the following form:

n(~r, t) ∼ exp
(
− |r/s(t)|2/(a+1)

)
. (4.6)

Here s(t) provides a length scaling as a function of energy, temperature, and time. This form of n(~r, t) is

a stretched exponential with the stretched exponent β = 2/(a + 1). Müller and Shapiro propose a weak-

scattering scaling of D(E) ∝ E5/2 similar to the findings in Ref. [164] which results in β = 4/7, not dissimilar

from the value of β found in Fig. 4.8.

The key point made in the Reply to Müller and Shaprio’s comment is that the stretched exponential

fitting function is a convenient tool used to extract the RMS size from noisy data, and this model is not

necessarily representative of the underlying shape of the tails in the column integrated density profile. Use

of the stretched exponential function was motivated by the ease in representing the profile as it expanded

from the in-trap Gaussian distribution and to describe the non-exponential profiles seen at longer correlation

lengths as described in Sec. 4.4. To emphasize this point, a characteristic density profile from the tails of

the distribution ( data from Fig. 4.7(i)) was fit to both a simple exponential and a power law at distances

greater than 300 microns from the gas center. These fits as shown in Fig. 4.12 demonstrate no quantitative

difference in the goodness of two fits. Fits to a stretched exponential profile fail due to the low signal-to-noise

ratio of the data.

Additional factors contribute to the complexity of the density profiles and their interpretation including

anisotropy in the speckle correlation function, atom loss, line-of-sight integration, spatial variation in the

speckle intensity, non-linear absorption in imaging, and residual confinement from the anti-gravity coil.

Theoretical focus on this experiment would be better placed in exact simulations of the experimental details,
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at minimum including a more complete picture of scattering in speckle. Comparison to the full expansion

and stabilization of the density profile would also be productive in drawing conclusions from the data. Given

the continuous distribution of energies present, one can expect that all phenomena from localization, sub-

difussive transport, diffusive transport, super-diffusive transport, and ballistic transport to be present. All

of these will complicate the interpretation of the tails of the distribution. Any future experiment to study

the energy dependent behavior of localization would be well advised to use a narrower energy distribution

than was possible in the above described experiments.

y

Figure 4.12: Tails of localized density profile compared to exponential and power law fits. The reduced χ2

for the exponential fit (red data) for y > 0 and y < 0 are 1.09 and 1.14, and the reduced χ2 for the power
law fit (blue data) for y > 0 and y < 0 are 1.14 and 1.02. Data are repeated from Fig. 4.7(i) at greater
than 300 microns from the center position, and error bars indicate the statistical uncertainty at each point.

A secondary point raised in this Comment relates to the large RMS sizes observed in the measurement.

RMS sizes of the localized gas on the order of 1 mm are reported, and it is claimed that these length scales

are only attainable for atoms in an energy interval proximal to the mobility edge where the localization

length should diverge. Previous experiments in 1D [18] observed localization lengths also on the mm scale

for similarly sized disorder, indicating that the Anderson localization can occur over several thousand speckle

correlation lengths, similar to the observation presented here. Measurements presented here occur at higher

temperature, disorder amplitude, and dimensionality. Interference, the origin of Anderson localization, is

inherently weaker in 3D, and it is natural to expect longer localization lengths.

4.8.2 Kuhn and Müller Result

Work by Kuhn and Müller in Ref. [106] explores coherent matter wave transport in speckle potentials. In this

work, a diagrammatic Green’s function approach is used to calculate scattering and Boltzmann transport

mean free paths in two- and three-dimensional speckle. Weak scattering from the potential is assumed. The

speckle employed in this work is three-dimensional and isotropic with a potential autocorrelation function
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〈V (r + δr)V (r)〉r = sin(kLδr)/(kLδr), where kL is the wavevector of the speckle light. This speckle is

different than the anisotropic speckle we employed and can be generated from interference over a uniformly

illuminated 4π solid angle. Here, the zero of potential energy has been chosen such that its mean value is

zero, and the potential autocorrelation at large radii tends to zero instead of 〈VR〉2.

We extract scaling laws from Kuhn and Müller’s theoretical treatment of localization to determine the

localization length as a function of particle energy (E), correlation length (ζ = 1/kL), the disorder correlation

energy (Eζ = ~2/mζ2), disorder amplitude (∆), Boltzmann mean free path (`B), and the elastic scattering

mean free path (`s). Equations 41, 64, and 76 from Ref [106] shown below express the localization length in

terms of these quantities:

1

k`s
= π

∆2

E2
ζ

[
1

(kζ)3
Θ(kζ − 1) +

1

(kζ)2
Θ(1− kζ)

]
(4.7)

`B =
3

2
`s
[
(kζ)2Θ(kζ − 1) + Θ(1− kζ)

]
(4.8)

Lloc =
3
2`B

3
π − k2`2b

. (4.9)

Combining the above equations provides the scaling of the localization length Lloc in terms of ∆, ζ, and E;

where Θ is the Heaviside step function:

Lloc =


[

3
4
~3
√

2mE
∆2m2ζ2

/(
1−

(
3
π

~4E2

m2∆4ζ4

))]
, kζ < 1

[
3E

2ζ
∆2

/(
1−

(
24
π
E5ζ2m
~2∆4

))]
, kζ > 1.

(4.10)

For much of the variable correlation length data explored, kζ > 1 and the length scale of localization

is predicted to scale linearly with ζ for E5/(Eζ∆
4) << 1. We relate this theoretical result for isotropic

disorder to our measurement in anisotropic disorder by comparing the scaling against the geometric mean

of the correlation lengths employed, ζ̄. The variable scale data indicates a roughly linear scaling with ζ̄ as

shown in Fig. 4.7 with σy ∝ ζ̄1.22±0.06. The validity of the Born approximation used to generate this scaling

in Eq. 4.10 is discussed in detail in Sec. 4.9. How reasonable the comparison of the scaling against ζ̄ in

an anisotropic medium to predictions from an isotropic theory is unknown, but numerical work beyond the

Born approximation suggests that the exact shape of the correlation function is less relevant than its spatial

extent [41]. Use of the geometric mean instead of, for example, the simple mean is standard in reducing an

anisotropic quantity to an isotropic one.

Kuhn also proposed a simple geometric measure that relates the Boltzmann and scattering mean free
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paths in an isotropic scattering medium. The ratio of these two quantities measures how quickly a system

will lose memory of its initial state. For systems with no memory, the ratio is unity, as each scattering

event erases knowledge of the previous state. For systems with only small angle scattering, the ratio can be

large, and many scattering events are required to randomize the initial motion. The power spectrum of the

scattering medium can be sampled over an elastic scattering sphere to determine the on-shell scattering rate

as described in detail in Sec. 4.8.3, but this measure contains no information about the degree of randomness

introduced by the scattering process. Anderson localization is governed by the Boltzmann mean free path

rather than the elastic scattering mean free path, so understanding the relationship between these two

quantities is critically important for understanding localization in speckle. Kuhn suggests that the average

over the cosine of the scattering angles, weighted by the value of the speckle power spectrum at each angle,

quantifies the degree of randomness introduced in scattering as

`B
`s

=
1

1−
〈

cos(θk−k′)C̃(k− k′)
〉
k′

. (4.11)

Here k is the initial vector, k′ is the set of final states, θ is the angle between k and k′, and
〈
F (x) C̃(x)

〉
k′

indicates averaging F (x) over the elastic scattering surface, k′, as in Sec. 4.8.3. Considering limiting cases,

if only forward scattering is present, 〈cos(θ)〉k′ = 1 and `B is infinite, and if every possible k′ is equally

probable, 〈cos(θ)〉k′ = 0 and `s = `B .
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Figure 4.13: Energy and angle dependent relationship between `B to `s in 3D speckle. (a) Low energy limit
of `B/`s calculated from Eq. 4.11 at E/Eσ = 10−4 as a function of the k-vector polar angle, φ (φ = 0 is
along the axial direction of the speckle). Vectors in the transverse plane of the speckle scatter into a larger
volume than those propagating on axis. (b) This ratio is calculated as a function of particle energy for four
representative values of φ. At high energies, forward scattering dominates and all curves asymptote to the
same line. Typical energies in the experiment are of order Eσ.
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The angular dependence of the `B/`s ratio is plotted in Fig. 4.13 for the single beam speckle power

spectrum, as written in Eq. 3.15. Several interesting properties of scattering from speckle are apparent

in this graph. First at low energies, there is a large anisotropy between scattering along the axial and

transverse directions in speckle. This anisotropy will cause a rapid pumping of motion into the axial di-

rection, as forward scattering is greatly preferred along this axis, and scattering from the transverse plane

scatters into all directions. This may have strong implications for localization in 3D speckle and explain

the extreme anisotropy in localization length scales between the axial and transverse directions observed in

our measurements. This can be understood graphically by considering the spherical sections of the speckle

power spectrum shown in Fig. 4.16. From these images it is clear that more randomness is introduced in

low energy scattering in the x-z plane than along the y-direction, where only a small fraction of the elastic

scattering surface focused around forward scattering contains any weight. At high energies, `B/`s ≈ E/Eσ

and forward scattering dominates all other processes. This can be easily understood as the spherical scat-

tering surface at high energies can be approximated as integral over the power spectrum in a plane passing

through the origin and perpendicular to the initial k-vector. The k-vector sets the scale of cos(θ) relative

to the fixed speckle power spectrum, and the integrand will decrease inversely proportional to |k|2 or E.

Large `B/`s at high energies will cause localization lengths and the role of finite size effects in experiments

to increase. Importantly, the ratio `B/`s given by evaluating 〈cos(θ)〉 over the scattering sphere is strictly

valid for isotropic scattering media, and Eq. 4.13 is used in the case of anisotropic speckle as a qualitative

measure of the randomness introduced via elastic scattering rather than as a strict equality.

4.8.3 Piraud & Sanchez-Palencia: On-Shell Scattering

Work led by Marie Piraud explores diffusion and localization in a speckle potentials in one, two, and three

spatial dimensions using a mixture of numerical and analytical techniques. Her work is found in a number

of papers including Refs. [166, 165, 167, 168] and summarized in Ref. [164]. In this section I will discuss her

calculation of the single-scattering timescale and relationship of this timescale to the elastic scattering mean

free paths in speckle disorder. This calculation is based on Fermi’s golden rule and uses the speckle power

spectrum C̃(k) (the Fourier transform of the intensity autocorrelation function) as the elastic scattering

vertex connecting an initial state k to the set of final states k′ with the same energy as k. This elastic

scattering process is illustrated in Fig. 4.14 in 2D, where the set of possible final states k′ exist on a

spherical surface of radius kE = |k| =
√

2mE/~2 and are driven by spectral weight in the potential sampled

from δk = k − k′ (a sphere tangent to the origin with center at −k). The total scattering rate is found by

integrating over this surface (indicated by the angle brackets):
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Figure 4.14: Illustration of elastic scattering surface from speckle in three-dimensions. The speckle power
spectrum takes a figure-8 shape in the axial-transverse plane of the speckle focus. Here the speckle is
propagating along the y-direction and the power spectrum is azimuthally symmetric about this axis. Elastic
scattering of state k (black arrows) to k′ from the potential requires weight in the power spectrum at
δk = k − k′. A sphere of possible k′ (black circles) states exists with radius |k|. The single scattering rate
can be estimated by integrating over the sphere of possible δk (green circles) shown here for initial states
along the x- and y-directions in (a) and (b), respectively. See Fig. 4.15 for surface projections of the power
spectrum for representative k-vectors.

τs(E,k) =
~

2π
〈
C̃(k− k′)

〉 . (4.12)

Here the integration volume extends over the k′ elastic scattering sphere—this introduces an energy con-

serving delta function and the integral can be rewritten as

〈
C̃(k− k′)

〉
=

∫
d3k′

(2π)3
C̃(k− k′)δ [E − ε(k)] (4.13)

=
mkE
~2

∫
dΩ

(2π)3
C̃(k− k′). (4.14)
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The power spectrum for the single beam speckle is discussed in detail in Sec. 3.2 and is

C̃(kx, ky, kz) =
π3/2V 2

Rσ
2
⊥σ||√

(σ⊥kx)2 + (σ⊥ky)2
×

exp

[
−1

4

(
(σ⊥kx)2 + (σ⊥ky)2 +

(σ|| kz)
2

(σ⊥kx)2 + (σ⊥ky)2

)]
.

(4.15)

For the finest correlation length speckle in this thesis, σ||/σ⊥ = 5.8 and this value of the speckle anisotropy

is used for the remainder of this discussion. The power spectrum can be redefined to remove the potential

height such that C̃(k) ≡ V 2
R c̃(k) and the elastic scattering time calculated as

τs(E,k) =
~Eσ⊥
V 2
R

(2π)2/kEσ⊥∫
dΩk̂′ c̃(δk)/σ3

⊥
. (4.16)

The integral in Eq. 4.16 depends on both the k-vector’s magnitude and direction, as shown in Fig. 4.15.

These surface maps of the power spectrum are sampled over the k-vectors’ associated elastic scattering

surfaces, and the graphs directly show the possible transitions and their relative probabilities. As discussed

in Sec. 4.8.2, forward scattering is strongly preferred for motion along the y-direction and for high values of

kE.

The elastic scattering time calculated from Eq. 4.16 using the power spectrum in Eq. 4.15 is plotted

in Fig. 4.16. Surprisingly, the low energy (kσ⊥ << 1) behavior shows minimal angular anisotropy in the

scattering rate (τx/τy ' 1.002), and the timescale plateaus in this regions. At E/Eσ⊥ ∼ 1 the scattering

timescales begins increasing and anisotropy emerges between the axial and transverse directions in the

speckle. In the high energy limit, the timescale grows linearly with kE and the anisotropy saturates at

τE,⊥/τE,|| =
√
π

2

σ||
σ⊥

. This limit arises from integrating the power spectrum in the transverse-transverse and

axial-transverse planes, and the elastic scattering mean free time scales as E1/2 for E/Eσ greater than 10.

Combining the calculation of the elastic scattering mean free time with the calculated ratio `B/`s from

Sec. 4.8.2, we make an estimation of the Boltzmann scattering mean free path as `B = vτs(`B/`s). Using the

typical value of ∆ = 200 kB ×nK and Eσ = 170 kB ×nK, the trends in Figures 4.16 and 4.13 are combined

to find characteristic value `B . Sampling the value along the axis of the speckle, values of `B of 0.2, 0.8, 6.5,

and 250 microns are found for E/Eσ = 0.1, 1, 10, and 100, respectively. This analysis demonstrates that the

typical Boltzmann mean paths (E ≈ Eσ) are on the same order as the correlation length and of the typical

λdB . The scaling of `B grows quickly with energy with a high energy scaling of `B ∝ E2; this scaling could

have significant implications for localization as `B approaches the size our system. For almost all atoms in

the thermal distributions used, E � 10Eσ and typical `B are 1 or 2 orders of magnitude smaller than the
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Figure 4.15: Illustration of power spectrum of speckle sampled over elastic scattering surfaces for several
initial k-vectors. Vectors are in units of (kx/σ⊥, ky/σ⊥) with size and direction indicated by black arrows
and the coordinates written in parentheses.

system’s size. For the longer ζ̄ speckle explored, a significant fraction of the atoms sample the high-energy

limit of `B and finite system sizes may play a significant role.

4.8.4 Piraud & Sanchez-Palencia: Quantum Diffusion

Piraud calculates diffusion constants for atoms in speckle potentials in Ref. [166], and direct comparisons can

be made between thermally averaged density profiles generated from these predicted diffusion constants and

measured optical depth images from the experiment. Piraud’s calculation considers incoherent transport

in the speckle for the single-beam speckle for σ||/σ⊥ = 5.8, corresponding to ζ̄ = 1.2 µm: the shortest

correlation length explored here. Boltzmann diffusion constants are found by solving the Bethe-Salpeter
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Figure 4.16: Fermi’s Golden Rule calculation of the mean time between scattering events in speckle disorder.
(a) The dimensionless, elastic scattering timescale (τs∆

2/~Eσ) is plotted versus the energy of the particle
along the transverse- (black line) and axial-directions (red line) in speckle. (b-c) Show the orientation
dependence of the elastic scattering timescale at E/Eσ of 0.01 and 100, as indicated by the arrows in (a).
The anisotropy at low energies is exceedingly small and grows to a fixed value at high energies. The polar
angle is measured from the axis of the speckle such that φ = 0 is on axis. This image is based on a figure
from Ref. [164]. Typical energies in the experiment are of order Eσ.

equation using the speckle power spectrum to describe the four-point scattering vertex connecting states k

and k′. The diffusive motion found is observed to divide along the natural axes of the speckle (the x- ,y- ,

and z-directions) with anisotropy between motion in the axial and transverse directions set by the ratio of

the on-shell scattering weight.

Boltzmann diffusion constants are extracted graphically from Fig. 2 of Ref. [166]. Approximate numerical

values for the diffusion constants are listed below.

m Dxz(E)

h

(
VR

Eσ⊥

)2

= 0.236

(
E

Eσ⊥

)
+ 0.46

(
E

Eσ⊥

)5/2

(4.17)

m Dy(E)

h

(
VR

Eσ⊥

)2

= 2.36

(
E

Eσ⊥

)
+ 4.6

(
E

Eσ⊥

)5/2

(4.18)

For ζ̄ = 1.2µm, Eσ⊥ = 170 kB × nK. Predicted density profiles are calculated numerically with the known

particle number and density of states. The time evolution is calculated using Gaussian solutions to the

diffusion equation (∂ρ∂t = D∇2ρ) whose RMS size grows as σi(t) =
√
σ2
i (0) + 2Dit. Integration over the
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thermal distribution of energies allows for direct calculation of the optical depth image:

OD ∝
∫∫

P (E)ρ(r, E)dEdz =

∫
dE

[
2

(kBT )3/2

√
E

π
e−βE

][
N

2πσx(t)σy(t)
e
− x2

2σ2x(t)
− y2

2σ2y(t)

]
. (4.19)

Comparison between the predicted profiles based on diffusion and the experimental observation are shown

in Fig. 4.19. The largest similarity between experiment and theory is the evolution of the central density in

time which falls at roughly the same rate in both tests. The shape of the gas in the x-direction is also similar,

but this is largely due to the smaller diffusion constant in this direction and the gas remains roughly fixed

at the in-trap distribution. Diffusive dynamics fails to capture the shape of the observed density profiles in

the y-direction; the data are roughly exponential and the theory is not. The diffusive profiles fail to show

a division of the gas into two components with clearly separated (localized and mobile) behavior as is seen

at lower disorder strengths, the diffusive profiles expands more slowly than the data over the time range

probed, and the simulation predicts that the RMS size will grow without bound in time in disagreement

with the data. The lengths scales obtained from the diffusion simulation are not dissimilar to the measured

values, and this may warrant further studies in the future. Drawing distinction between slowly diffusing

and localized atoms is difficult with the large energy spread of states involved in this measurement. Future

work to distinguish between these two alternatives would benefit from narrower energy distributions to aid

in direct comparison of single-particle behavior.

4.9 Comment on the Validity of the Born Approximation

The vast majority of theoretical work exploring scattering and localization in speckle potentials focuses

on the weak scattering limit and the self-consistent theory of localization [205, 206], including the works

discussed here by Kuhn and Piraud. Perturbations to the diffusion constant from scattering in speckle are

found by considering a limited number of terms in the Born series, and the convergence of this series and the

accuracy of the approximation hinges on high order terms rapidly trending to zero. This section examines

the validity of these approaches by comparing the approximation’s figures of merit to experimentally relevant

parameters. A brief discussion of recent numerical work that explores transport in speckle beyond the weak

scattering limit is also included.

Both Kuhn and Piraud present figures of merit that determine the regime of validity of their calculations.

Kuhn presents a simple energetic argument in Ref. [106] comparing the energy of the particle to a critical

energy set by the ratio of the mean disorder height squared and the speckle energy scale for isotropic
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Figure 4.17: Comparison of measured optical depth profiles to profiles generated from predicted diffusion
constants and known energy distribution of a 220 nK thermal gas with 1.6 ×105 atoms in speckle disorder
with ∆ = 220 kB × nK and ζ̄ = 1.2µm for τ from 20 to 220 ms. (a-c) Slices in the x- and y-direction and
calculated optical depth images show the predicted distribution from Piraud’s predicted diffusion constants.
(d-f) Measured dynamics are shown over the same spatial scale. Note the difference in the optical depth
scale between the measured and predicted profiles. The predicted diffusive profiles are reminiscent of the
measured profiles but fail to capture the long tails in the y-direction, the bimodal behavior observed at short
τ , and the plateau in RMS size at large τ .

disorder, E∆ = ∆2/Eζ . Here Eζ = ~/(mσ2), and σ is the isotropic characteristic length of the disorder

correlation function studied. The weak scattering approximation is claimed to be valid when E � E∆,

and the breakdown of the approximation is connected directly to the mobility edge such that Ec = E∆ in

three-dimensions. For the shortest correlation length probed, Eζ is 170 kB × nK, ∆ varies from 0 to 1000

kB ×nK, and the gas temperature varies from 170 to 1500 nK. For the high temperature data, this criteria

is satisfied for 95% of the gas at ∆ = 200 kB × nK and 5% for ∆ = 200 kB × nK. For the low temperature

range, 90% of the gas satisfy E > E∆ at ∆ = 200 kB × nK, but 0% satisfy the condition for ∆ = 200

kB × nK. Very little of the data has E � E∆, and the predicted scaling of Ec ∝ ∆2 is not seen. The

measured scaling is Ec ∝ ∆0.6, as shown in Fig. 4.4. This prediction also suggests that the mobility edge

should shift as Eζ is varied. For the variable correlation length data, the geometric mean of the correlation

length is varied by a factor of 4 corresponding to a change of Eζ by a factor of 16. No shift in the mobility

edge with changing correlation length is observed for this data, in stark contrast to the predicted behavior.
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Figure 4.18: Regime of validity of the Born approximation for representative disorder and single-particle
energy scales. The ratio `s/σ⊥ is plotted for scattering along the axial direction of the speckle for ∆ from
200 to 1000 nK; `s is calculated as the product of τs and the thermal velocity, where τs is calculated as
in Fig. 4.16. The weak scattering approximation is valid in the shaded area for `s/σ⊥ � 1, as claimed
by Ref [164]. The black solid and dashed curves show probability distributions for representative thermal
distributions explored in the measurements presented here, on a linear scale. For the data presented here,
there is little overlap with the regime of validity of weak scattering except for the highest temperature and
lowest disorder strengths explored.

In Piraud’s work, the Born approximation is declared valid when the elastic scattering mean-free-path

is much longer than the speckle correlation length, `s � σ⊥ [164]. The elastic scattering mean-free-path is

calculated as the product of the elastic scattering mean-free-time, τs and the thermal velocity of the atoms.

The Fermi’s golden calculation detailed in Sec. 4.8.3 can be used to calculate τs by integrating the spectral

weight on the elastic scattering surface set by k−k′ and the thermal velocity is known. The ratio of `s/σ⊥ is

plotted in Fig. 4.18 for relevant disorder heights; also included are sample single-particle energy distribution

spanning the temperature range explored in our measurements. For ∆ > 200 kB×nK, the elastic scattering

mean free path is less than the speckle correlation length for all but the highest energy particle used, and

the usefulness of Born approximation is called into question.

Recent work by Delande and Orso [40] employs a transfer-matrix approach to go beyond the approxi-

mations used in self-consistent calculations. This work is based on the development of the scaling theory of

localization by Kramer and MacKinnnon [125] and extends these methods to speckle potentials. Delande and
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Orso consider both red- and blue-detuned potentials and find that the mobility edge scaling is overestimated

in both cases by the self-consistent theory, and that the mobility edge scales differently for attractive or

repulsive speckle. Both of these findings differ from the prediction of the self-consistent theory and indicate

that more detailed calculations are required to understand localization in these systems. The calculations

employed for the transfer-matrix approach requires fine discretization of the speckle potential and massive

computation resources. These results are computed in a quasi-1D geometry on an m-by-m bar extended

along one direction. The mobility edge found for the blue detuned speckle always lies below the mean value

of the disorder potential in direct disagreement with Piraud’s work. The scaling of this quantity is not

discussed in detail. Additionally, the location of the mobility edge is not found to be strongly dependent on

the exact shape of the intensity autocorrelation function and is set primarily by the characteristic width of

the correlation function.

4.10 Thoughts on Other Experimental Observations of 3D

Anderson Localization

Work led by Fred Jendrzejewski has explored localization in three dimensions with ultracold bosons in Refs.

[83, 82]. For these measurements, fine-grained disorder is created by interfering two speckle patterns propa-

gating at right angles with identical polarization vectors. This creates a disorder potential with correlation

lengths that are more isotropic than is produced in a single-beam speckle pattern. Their experiment begins

with an interacting BEC of 87Rb. To make the gas non-interacting, the condensate is released from the

trapping potential and allowed to expand until the density has fallen sufficiently that interactions can safely

be ignored. At this point the disorder potential is applied instantaneously and the resulting dynamics are

observed. A two-component behavior is also observed in which a fraction of the gas diffuses from the central

positions while the remainder is localized by the disorder. Distinguishing between the two components de-

pends strongly on theoretical modeling of the dynamics in the disorder and a heuristic analysis of the energy

shift provided by sudden application of the speckle disorder. Jendrzejewsi also published very clean evidence

of coherent backscattering in a quasi-2D speckle in Ref. [84]. In this experiment, a gas was created with a

very narrow velocity distribution using delta-kick cooling after creating a BEC. The gas was then allowed to

evolve in a speckle potential and a backscattering peak observed. The dynamics of this backscattered peak

are used to extract scattering and decoherence times in the speckle potential. Agreement is found between

the experiment and the theoretical and numerical predictions in Ref. [27], but no discussion is provided as

to the relevance of these methods for comparison with work on 3D localization in speckle potentials.
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Recent unpublished work by the LENS group has studied localization with a non-interacting BEC of 39K

with the assistance of a Feshbach resonance [184]. These experiments also employ a crossed beam speckle

potential; but instead of snapping the potential on, they ramp the disorder on while tuning the scattering

length to zero. This avoids the poorly understood, heuristic energy shift introduced in Ref. [83]. They

identify diffusive, sub-diffusive, and localized behaviors based on the growth of the gas’s RMS size in time,

and they identify a sharp mobility edge separating localized from sub-diffusive behavior. The location of

their mobility edge is 20% higher than predicted by self-consistent approaches, but the discrepancy may

be explained by differences in the speckle correlation function employed. This work is strongly focused on

connecting localization theory and experiment, and it will be exciting to see how it develops.

4.11 Conclusions

In observing the dynamics of a non-interacting Fermi gas in 3D speckle disorder, we find behavior qualita-

tively similar to scenario of Anderson localization. Anderson localization predicts that localized and extended

states will exist in a three-dimensional disordered potential, with these two phases separated by a mobility

edge (or edges) in energy. We observe the gas divide into two components after release into the disorder.

One component expands ballistically and rapidly leaves the field of view. The other expands anisotropically

before assuming a fixed profile in the disorder. These two components correspond to extended and localized

states in the speckle. The mobility edge separating the two components is related to a single-particle energy

scale, which is found to depend strongly on the disorder amplitude and weakly on the disorder correlation

length for the parameters explored.

The length scale of the localized gas is measured as the disorder amplitude, the temperature of the

initial gas, and the speckle correlation length are varied. The qualitative scaling of the localized gas size

follows intuition as the size decreases with increasing scattering rates from the disorder, i.e. increased

disorder amplitude and decreasing temperature and disorder correlation length. Comparison of the single-

particle localization length scaling with disorder amplitude and gas temperature is complicated by the shift

in mobility edge for the variable-temperature and variable-∆ data. Data taken over a factor of four in

disorder correlation length shows minimal shift in the mobility edge and allows for comparison to weak

scattering theory. Qualitative agreement of the localization length scaling is achieved with predictions from

weak scattering, but quantitative agreement between our observation and predicted localization length are

separated by a large margin. This disagreement is not resolved, and the validity of the weak scattering

approximation in this regime is suspect for much of the data explored. Complexity introduced by thermal
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averaging of the density profiles and the finite size of the speckle correlation could also play a role in the

disagreement.

Further experiments were performed to test the stability of the localized gas by quenching the density

profile and applying an external force. In the quench measurement, atoms were selectively removed from the

localized gas and allowed to reëquilibrate. Over a period of several hundred milliseconds, they were observed

to reform the initial density profile, indicating that the localized profiles are not composed of micron-scale,

sparsely distributed single-particle localized states and that the single-particle localization lengths are related

to the measured thermally averaged quantity. Additionally, an external force was applied to the localized

gas by reducing the force required to levitate the atoms against gravity. States localized over long length

scales were quickly stripped out of the localized component, and the remaining gas assumed a shape similar

to the in-trap profile indicating the most strongly localized states have localization lengths much shorter

than the thermally averaged profiles. This reinforces the view that a majority of the atoms are proximal to

the mobility edge where they are expected to have long localization lengths. Large quantitative gaps remain

between theory and experiment, but there is hope that recent experimental and more realistic numerical

simulations will bridge the divide.
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Chapter 5

Fermions in Optical Lattices

This chapter provides a summary of the essential physics needed to understand the transport experiments

performed in Chapter 6 on ultracold atoms in three-dimensional optical lattices. A brief explanation is

provided of the Hubbard model and band structure in 1D. The rest of the chapter focuses on inferring ther-

modynamics quantities in the lattice from known constraints on entropy and atom number. The subtleties

of performing experiments in trapped versus isotropic systems will also be discussed.

5.1 Realizing the Hubbard Model

The Hubbard model is a minimal model for electronic solids that considers a system of two fermionic states

on a lattice with nearest-neighbor hopping and on-site interaction energy [71, 77, 88]. The role this model

plays in highly-correlated electronic phenomena such as high-temperature superconductivity [204, 194, 124]

and T -linear resistivity [35, 47] is a topic of active and spirited research. This model has been explored

through theoretical and numerical techniques for more than fifty years, but direct comparisons to theory

in the solid state are complicated by incomplete knowledge of the underlying Hamiltonian and coupling to

an external heat bath provided by electron-phonon scattering. Recent advances in the production of low

entropy quantum gases and the introduction of optical lattices with the ability to directly measure and

modify the underlying Hamiltonian have allowed for quantum simulation of this model and its equivalent

for bosons [68, 9, 86, 19, 180, 198]. This has generated a great experimental effort with quantum lattice

gases in dozens of labs around the world. These experiments provide direct tests of the Hubbard model and

strongly-interacting quantum matter in general.

The Fermi-Hubbard model is written in second quantization notation in Eq. 5.1, where ĉi,σ ( ĉ†i,σ) are

the annihilation (creation) operators on site i with spin σ, n̂i,↑ is the number operator on site i with spin

↑, t is the tunneling energy, U is the interaction energy, and < ij > indicates that the sum is taken only

over nearest neighbors on the lattice. Here t is used for the tunneling energy to avoid confusion with the
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superexchange energy scale J = t2/U . This Hamiltonian is illustrated graphically in Figure 5.1:

ĤFH = −t
∑
〈ij〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ U

∑
i

n̂i,↑n̂i,↓. (5.1)

t U

Figure 5.1: Illustration representing the tunneling and interaction energies in the Hubbard model. Here the
red and blue circles represent atoms with up- and down-spins. The horizontal lines represent different bands
within the lattice. For the temperatures explored in this work, we explore only the ground band.

All experiments with quantum gases are performed in the presence of a trap. In this experiment, and

most others, the trap is harmonic confinement provided by a combination of Gaussian optical potentials

used to cool and trap the atoms and to produce the lattice potential. A few specialized experiments have

engineered trap potentials such as box or flat-bottomed potentials for achieving more isotropic system [62]

or to remove entropy from a certain region of the system [73]. The effect of the harmonic confinement

is to create a site dependent energy offset in the Hamiltonian as written in Eq. 5.2. This energy offset

creates spatial variation in both number and entropy density—the consequences of this will be explored in

the thermodynamic calculations presented in this chapter.

ĤFH+Trap = ĤFH +
∑
i,σ

εi,σn̂i,σ where εi,σ =
1

2
mω2r2 (5.2)

A great deal has already been achieved in exploration of the Hubbard models with ultracold gases.

Bosonic systems have observed the superfluid-Mott insulating phase transition [68], strong synthetic magnetic

fields have been created [4, 3, 141, 199], and quantum gas microscopes have directly imaged individual site

occupations [9, 186, 209]. Fermi gases in optical lattice have also observed the Mott insulator transition [86]

and numerous studies of transport dynamics have been performed in these systems [180, 67, 28, 95, 154, 54].

The future of fermions in optical lattices will certainly involve searches for very low entropy phases such

as the anti-ferromagnetic state [73], while other work will focus on understanding processes of relaxation,

thermalization, and the role of disorder in the presence of strong-interactions, in line with the original

proposal for the creation of these systems as quantum simulators [81].
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5.2 Band Structure

Particles in a lattice have broken continuous spatial symmetry, and the parabolic dispersion of free space is

replaced by a band structure. Positions in the lattice are periodic after displacement by an integer number

of lattice sites, and momenta are restricted to take on values with absolute value less than qB = h/λ, where

λ is the wavelength of light used to generate the lattice and is twice the lattice spacing. More precisely,

any momentum value not in the range from −qB to qB can be mapped back into this zone. This restricted

momentum value is called crystal momentum or quasimomentum. Examples of the energy bands that form

are shown in Fig. 5.2. The maximum quasimomentum introduces an energy scale for the lattice called the

recoil momentum, ER. This corresponds to the energy an atom would gain by absorbing a lattice photon,

and is approximately h8kHz, or 390 kB × nK, for 40K in a λ = 782.2nm lattice:

ER =
q2
B

2m
=

h2

8md2
. (5.3)

For the optical lattice potentials explored here, the potential is sinusoidal in space as

Vlattice = −s
(
cos2(kLx) + cos2(kLy) + cos2(kLz)

)
, (5.4)

with k = 2π/λ, s is in the lattice depth, and the potential is attractive. The problem is separable in the

spatial dimensions, and we find the wavefunctions and energies in this potential by solving Schroedinger’s

equation in one dimension. From Bloch’s theorem (see Ref. [8], for example), solutions should take the form

ψ(r) = eiq·run,q(r), (5.5)

where un,q(r) has the lattice periodicity, n is the band index, and q is the quasimomentum. We expand both

the wavefunction and the lattice potential in a series expansion in terms of K = 2nk, where n is an integer:

un,q(r) =
∑
K

cK(q)eiK·r and V (r) = −s
4

(
ei2k·r + e−i2k·r + 2

)
. (5.6)

The only terms that survive leave a system of equations:

(
~2(q +K)2

2m
− E(q)

)
cK(q) +

s

4

(
cK−2k(q) + cK+2k(q)

)
= 0. (5.7)

This system of equations can be solved numerically for each value of q after truncating the series to a finite

number of terms, typically ten. Sample one dimensional band structures are shown in Fig. 5.2. Notice that,
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as the lattice depth is increased, the band become flatter and the band gaps increase. This process can be

generalized to three dimensions with a higher dimensional system of equations to solve. The lattices used

in this thesis (aside from disorder effects) are separable and the band structure can be found by summing

three one-dimensional band structures. Numbering of the band indices is done by enumerating all possible

three dimensional states and ordering them in energy.
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Figure 5.2: Lowest three energy bands calculated in one dimension for lattice depths of s = 4, 7 and 10 ER.
The lowest energy point is set to zero.

The Bloch wavefunctions, the eignenstates of the system, can be reconstructed with the coefficients

cK(q) and are delocalized in space. In the tight binding limit, it is convenient to consider states localized to

individual lattice sites; and the states, called Wannier functions, are formed from a superposition of Bloch

states. A Wannier wavefunction wn (with band index n) at position xi is formed:

wn(x− xi) =
∑
q

eiq(x−xi)un,q(x). (5.8)

We can use these Wannier functions to calculate the values of the tunneling and interaction energies in the

lattice. As shown in Eq. 5.9 and 5.10, t is given by the energy to tunnel from site i to site j, and the

interaction energy U is given by the inter-atomic scattering length weighted by the density squared on a

lattice site.

tji =

∫
dx w∗j (x− xi)

[
− ~2

2m

∂2

∂x2
+ V (x)

]
wi(x− xj) (5.9)

Ui =
4π~2as
m

∫
dx |w(x− xi)|4 (5.10)
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s (ER) t (ER) U (ER) U/t
4.0 0.0862 0.1995 2.314
4.5 0.0754 0.2261 2.998
5.0 0.0661 0.2528 3.827
5.5 0.0579 0.2793 4.821
6.0 0.0509 0.3056 6.006
6.5 0.0448 0.3317 7.408
7.0 0.0395 0.3574 9.057

Table 5.1: Isotropic Hubbard parameters for 40K atoms in a 782.2nm optical lattice.

These expressions have analytic forms in the tight-binding limit. A comparison between the band struc-

ture calculation with the deep-lattice limit is shown in Fig. 5.3. For the parameters explored in Chapters 5

and 6, these approximations,

t =
4ER√
π
s3/4e2

√
s and U =

4π~2as
md3

s3/4
(π

2

)3/2

, (5.11)

are not valid.
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Figure 5.3: Comparison of the tunneling and interaction energies in the Hubbard model from the numerical
band structure calculation to analytic results in the deep-lattice limit. The tunneling energy t, interaction
energy U , and the ratio of U/12t are shown in (a-c).

The ground band can be approximated by the tight binding dispersion:

ε(q) = 2t

[
1− cos

(
π

q

qB

)]
(5.12)

All experiments performed in this thesis have lattice depths between 4 and 7 ER. To keeps all particles

confined to the ground band, several criteria must be met: the energy gap to the second band must be

higher than the temperature, and the maximum energy between two colliding particles in the ground band

must be less than the lowest energy in the in the first excited band. This energy condition can be written
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in terms of the quasimomentum state and band occupancy number in a matrix of six numbers. The energy

of that state will be labeled as

ε

qx qy qz

nx ny nz

 (5.13)

The condition on collisional energies for the system to remain single band is

2 ε

qB qB qB

0 0 0

 = 24t < ε

qB 0 0

1 0 0

 . (5.14)

This condition is satisfied for lattice depths greater than 3.74 ER. Another consideration is that the next-

nearest neighbor tunneling parameter should not be too great. For a lattice depth of 4ER, this quantity

is 7% of the nearest-neighbor tunneling energy [135], and the system realizes a single-band, tight-binding

model.

5.2.1 Lattice Alignment and Calibration

The 3D retroreflected optical lattice is aligned to the position of the atoms in the optical dipole trap. Sag

in the dipole trap causes the position of the atoms to change as the trap frequency is reduced, with a

displacement of the trap center of g/ω2. Here g is the gravitational acceleration and ω is the trap frequency

along the direction of gravity. Before aligning the lattice to the position of the atoms, the geometric mean

of the trap frequencies is chosen that provides the desired occupation in the center of the lattice gas for a

given number and entropy per particle. The trap is then re-compressed to this value after the final stage

of evaporation in the optical trap such that the trap center before loading into the lattice is fixed. For

lattice experiments in this thesis, the final geometric mean trap frequency in the optical trap is chosen to

be ≈ 2π 85Hz. Sag can also be removed with a magnetic field gradient that counteracts gravity for a given

spin-state, but this method is not ideal for spin-mixed lattice experiments.

The lattice is composed of three pairs of retroreflected beams, and each pair is aligned to the fixed atom

position in two stages. Initially, the retroreflected beam paths are blocked and the forward direction of

each lattice beam is pulsed on for 2 milliseconds at near maximum power. This provides a large trapping

potential that will impart a position-dependent impulse onto the atom gas. The center-of-mass velocity

acquired by the gas is indicative of the slope of the trapping potential–forming the derivative of a Gaussian

as the beam is swept over the atoms as shown in Fig. 5.4(a). The shape of this excursion can be fit to the

expected function to extract the optimally aligned position. In practice, it is has proven better to minimize
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Figure 5.4: Example data showing alignment of a retroreflected optical lattice beam. (a) The forward
direction of each lattice beam is aligned by pulsing the beam on for a short period of time (typically 2
ms) with the retroreflected path blocked. The gradient of the dipole potential creates a force on the atoms
and the deflection of the gas is used as an alignment signal. Each beam is adjusted by two differential
micrometers on the closest mirror to the atoms. (b) Alignment of the retroreflected beam is achieved by
diffracting the atoms from the lattice potential. Each retroreflected pair is pulsed on for 200 µs, and a
momentum of ±2~kL is given to the diffracted orders. (c) The fraction of atoms in the diffraction peaks is
measured as the retroreflected beam position is varied. The measured curve will be symmetric with respect
to the aligned position, though it may not necessarily appear as a single peak.

the excursion from zero motion during this process as the response to the impulse is not guaranteed to be

symmetric about the zero motion.

After the forward pass beams have been aligned using the impulse method, the retroreflected beams are

aligned by diffracting the atoms from the lattice potential. Each pair of lattice beam is pulsed on for 200

µs, and atoms are diffracted by the lattice potential into momentum states at integer multiples of 2~kL as

shown in Fig. 5.4(b). The fraction of atoms diffracted is a function of the lattice depth, and the graph of

diffracted fraction vs beam position will form a symmetric pattern centered on the aligned position as shown

in Fig. 5.4(c). This pattern is not guaranteed to be singly-peaked, as shown in Ref. [100]. Pulse edges are

made as sharp as possible by turning on and off the beam by rapidly switching the RF power to the AOM

outside the servo bandwidth of the intensity servo using a DDS.

Calibration of the lattice depth in many BEC experiments is performed using Kapitza-Dirac diffraction

from the optical standing wave. In these experiments, all atoms can be condensed into the q = 0 state and

the fraction of atoms diffracted directly related to the lattice depth [152, 57]. In Fermi gases, the spread of

quasimomentum makes interpretation of the fraction of atoms diffracted more complicated, and calibration

is performed by lattice modulation spectroscopy. In this scheme, the lattice intensity is modulated at the

few percent level to drive transitions between bands [197, 97, 99]. This process adds heat to the gas and

is manifested as a loss feature in the gas. Energy added to the gas by driving atoms to higher bands, and

the decay process allows the gas to heat and atoms to escape from the trap. The modulation period can
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Figure 5.5: Calibration of latice depth using one dimensional band structure. (a). The band structure
(black) is shown for s = 10 ER. Modulating the lattice potential depth drives atoms between bands. Only
certain transitions are possible set by symmetry and the lattice band structure. For atoms in the ground
band, the lowest energy allowed, inter-band transition (red arrow) is |n = 0, q = −qB〉 → |n = 2, q = 0〉. A
range of transitions exists to the second excited band (shaded area), and the highest energy transition (blue
arrow) is |n = 0, q = 0〉 → |n = 2, q = qB〉. (b.) The lowest and highest frequency transitions between n=0
and n=2 are shown for a range of lattice depths. The lower frequency transition is not used for calibration as
there is not always appreciable population at the band edge. The grey line represents the possible transitions
in a 10 ER lattice shown in (a).

be increased until the desired signal-to-noise ratio of the loss feature is achieved. Due to the parity of the

on-site wavefunctions, the easiest transitions to parametrically drive are from the ground to the second

excited band as illustrated in Fig. 5.6. The absolute low- and high-frequencies bounds are set by transitions

from |n = 0, q = −qB〉 → |n = 2, q = 0〉 and |n = 0, q = 0〉 → |n = 2, q = qB〉, respectively—here n indexes

the lattice band. A typical spectroscopy feature from lattice modulation spectroscopy is shown in Fig. 5.6,

showing loss as this band of transitions is traversed. Importantly, the high-frequency edge of this feature is

sharp and can be used to define the energy of the |n = 0, q = 0〉 → |n = 2, q = qB〉 transition. This energy

is directly related back to the lattice depth as shown in Fig. 5.5(b). The low-frequency transition is not

sharply defined due to low population at the band edge and lack of thermalization into these states. The

sharp, high-frequency edge in the modulation spectrum can also be used to fine tune the lattice retroreflected

beam alignment as shown in Fig. 5.6(b). The modulation frequency can be set slightly below this edge and

the loss signal will disappear as the beam is moved away from alignment such that the lattice depth falls

and the modulation frequency is in the gap between bands. This creates an arbitrarily narrow alignment

feature that is directly related to the lattice depth.

92



39.5 40.0 40.5 41.0 41.5 42.0 42.5
0

100

200

300

400

500

90 100 110 120 130 140 150 160
0

20000

40000

60000

80000
(a) (b)

Modulation Frequency (kHz) Micrometer Position (div)

O
pt

ic
al

 D
ep

th
 (m

O
D

)

N
um

be
r

Figure 5.6: Calibration of lattice depth using lattice modulation spectroscopy. Atoms are heated by driving
interband transitions as shown in Fig. 5.5 and leave the trapping volume. (a) The lattice intensity is
modulated at the few percent level and a loss feature (black squares) is seen over a range of frequencies.
The sharp edge of the loss feature at ≈ 146kHz (black arrow) corresponds to the largest frequency that
can drive transitions from the ground to the second excited band (blue arrow in Fig 5.5) and represents a
lattice depth of s ≈ 27ER. (b) This sharp loss feature can also be used to quickly optimize the retro beam
alignment. With the modulation frequency set slightly below the sharp loss feature (red arrow), the retro
beam can be translated and the band gap probed, as a direct measure of the lattice depth. Alignment is
achieved in the center of the high-loss (maximum lattice depth) region. The blue lines are guides to the eye
showing expected behavior.

5.2.2 Imaging Projection of the First Brillouin Zone

Images of lattice gases shown in this thesis are taken after bandmapping and time-of-flight expansion. The

bandmapping process is a technique for mapping quasimomentum states in the lattice onto momentum states

in the trapping potential by adiabatically reducing the lattice potential such that quasimomentum states in

the n-th band are mapped onto free particle states in the n-th Brillouin zone [91, 66]. This process has been

successfully employed to visualize the Brillouin zones in both Bose and Fermi gas optical lattice experiments

[65, 98]. In this process, the lattice is turned off using a linear intensity ramp with a timescale slow compared

to inverse of the band-gap and fast relative to the trapping period and the bandwidth. Typical ramps times

are 200 µs; limitation in the intensity servo bandwidth limit the linearity of the ramp and the profile typically

takes a quasi-exponential profile in time. The process of bandmapping is not perfect and the adiabaticity

criterion for accurate mapping of the states fails near the band edges. This failure is discussed in detail

in Ref. [134] through numerical simulation of the dynamics during bandmapping. The conclusion of this

work is that bandmapping works well for low quasimomentum states but generally fails for states near the

band edge. This has important implications for using the bandmapped quasimomentum distributions for

93



thermometry, and significant error using this method is found for thermal gases kT/t > 7.
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Figure 5.7: Schematic showing orientation of lattice beams relative to the imaging axis and vacuum chamber.
(a) Rendering of science cell and surrounding magnetic trap shows the relative orientation of the lattice beams
(red, labeled L1-L3), optical trap beams (gray), and the disorder (green). The atom gas is located at the
intersection of these beams. The imaging beam (red arrow) travels through the atoms and the Ioffe coil
(rightmost coil) to an imaging system that transfers the light to a CCD camera. (b) Atoms occupy the 1st
Brillouin zone, which is a cube in momentum space. This cube is rotated relative to our imaging axis, and
the projection in our imaging plane is a hexagon. The colors in this figure label the symmetric planes (q = 0
and q = qB) in the first BZ, and the boundary of the volume is marked with black lines. Specific points have
been labeled for clarity.

The imaged quasimomentum distributions after bandmapping lie within a cubic volume representing the

first Brillouin zone. For all gas temperatures explored in this work, the atoms occupy only the lowest band

and thus populate only the first Brillouin zone. Interpretation of our images is complicated by the relative

orientation of the lattice axes to the imaging axis as illustrated in Fig. 5.7(a). The lattice beams do not

fall along any of the primary axes of the experiment and are arranged such that one of (111) directions

in the lattice falls roughly along the y-axis of the experiment. Imaging is performed along the z-axis, and

column integrated images of the cubic first Brillouin zone appear as a hexagon in projection. Figure 5.7(b)

graphically illustrates the orientation of different symmetric planes in the first Brillouin zone as they appear

in the imaging projection. Subsequent bandmapped images indicate the boundaries of this volume with a

hexagon.
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5.3 Thermodynamics in Optical Lattices

Direct probes of temperature in 3D optical lattices are a topic of active research. A detailed review of

the problems associated with thermometry and cooling in strongly-correlated lattice systems can be found

in Refs. [136, 135]. The present state of the art is to infer thermodynamic quantities in the lattice from

measured values in a harmonic trap where direct probes of temperature and entropy exist. The lattice loading

process is typically assumed to be isentropic, but heating from off resonant scattering and non-adiabaticity in

the ramp cause this assumption to be violated at some level. The entropy introduced in the loading process

can be estimated by measuring entropy in a harmonic trap before and after quasi-adiabatically turning on

and off the lattice potential, and the entropy in the lattice can be assumed to lie between these two values,

with the average of the “round-trip” entropy providing the best estimation of the entropy in the lattice.

Currently, the best direct measures of temperature in an optical lattices use the spatial distribution of atoms

as a measure of entropy including work studying number fluctuation in 2D gas microscope [10] and spin

gradients in the presence of a magnetic field gradient [210].

In this section, we explore four separate approximations used to estimate the temperature in an optical

lattice, given known constraints on entropy, number, lattice, and trapping parameters. These approaches

start in the non-interacting (U = 0) and atomic (t = 0) limits. These limits fail to capture behavior for

the range of Hubbard parameters, particle number, and entropy explored in this work, and two approaches

beyond these extreme limits are discussed, including the Hartree-Fock method that introduces interactions

into the non-interacting limit and the high-temperature series expansion, which introduces tunneling into

the atomic limit. The regimes of potential validity of each method is indicated in Fig. 5.8 as a function of

lattice depth. Importantly, the applicability of a given method will depend on more than just the ratio of

U/t, as will be discussed in the following sections.

The same techniques are applied for inferring temperature and chemical potential in the lattice in each

of the four approaches discussed. This process is outlined here, and the fine details of the implementations

and validity will be discussed on an individual basis. First, a grand potential is defined such that

Ω = U − TS − µN where − βΩ = log(Z), (5.15)

where U is the internal energy, T is the temperature, S is the entropy, µ is the chemical potential, N is the

total number, β = 1/kBT , and Z is the grand partition function. The details of the underlying Hamiltonian,

H, are contained within the grand partition function as Z = Tr[e−βH]. Relations for N and S are found by

95



s4 121086 14

U/t3 4824126 96

Non-Interacting
Fermi-Dirac

Hartree-Fock

High-Temp
Series Expansion

Atomic Limit

Figure 5.8: Regimes of potential validity for various statistical mechanics techniques in a lattice. Shaded
areas indicate the range of utility of each approach for inferring temperature within the isentropic assumption.
These regimes are not rigidly defined, as a function of lattice depth as the validity of each approach will
depend on more than just the ratio of the Hubbard interaction to tunneling energy. For example, the high-
temperature series is not convergent at low temperatures, and the non-interacting limit will fail progressively
with increasing density.

taking partial derivatives of the grand potential with respect to µ and T , respectively:

N = −∂Ω

∂µ
, and S = −∂Ω

∂T
. (5.16)

Values for temperature and chemical potential are found that satisfy the known constraints on number and

entropy, N0 and S0. The unknown values of T and µ are found by constructing a 2D optimization problem

in which the error functional represents the deviation from the known constraints:

∣∣N0 −N(µ, T )
∣∣ +

∣∣S0 − S(µ, T )
∣∣ = 0. (5.17)

The search for optimal T and µ is performed numerically until the required accuracy is achieved, and

reconstructed density and quasimomentum profiles are generated from these inferred quantities.

5.3.1 Analytic Results for a Harmonic Trap

We will use the well known properties of a degenerate Fermi gas in a harmonic trap to infer thermodynamic

quantities in the lattice. The relevant thermodynamics for the harmonically trapped system are briefly

reviewed below, and more details can be found in Ref. [44]. The Hamiltonian for the harmonically trapped

system is

H =
∑

i=x,y,z

(
p2
i

2m
+
mω2

i x
2
i

2

)
, (5.18)
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and relative populations of the states are given by the Fermi-Dirac distribution

f(~x, ~p) =
1

z−1eβH(~x,~p) + 1
, where z = eβµ. (5.19)

Information is extracted from the gas by taking images after quickly removing the trapping potential

and allowing the gas to expand in time-of-flight. After an expansion time, t, an absorption image is taken

of the gas. In the infinite expansion time limit, the imaged distribution will be a direct mapping of the

momentum distribution in the trap. At expansion times comparable to the trap period, the distribution

will be indicative of both the the spatial and momentum distributions of the trapped gas. Importantly,

the shape of the gas does not change during time-of-flight, as the Hamiltonian is quadratic in both x and

p. The functional form of the probability distribution acquired by integrating out either the spatial or the

momentum components will necessarily be identical. This means that in expansion the shape of the gas

(aside from any imaging non-idealities) does not change, and the expansion time can be chosen to maximize

signal-to-noise and minimize saturation effects. In the infinite expansion time limit, the imaged column

integrated momentum profile will take the form

n( ~px, ~py) =
1

h3

∫
d3~x d ~pz f(~x, ~p). (5.20)

This integral gives a surface function as

OD = A

Li2

[
−z e

(
− (x−xc)2

2σ2x
− (y−yc)2

2σ2y

)]
Li2[−z]

, (5.21)

where z is the fugacity, µ is the chemical potential, and Lin[z] is the Poly-Logarithmic function of order n. The

necessary thermodynamic variables are extracted by fitting to this function through standard least-squares

optimization. Relations for number, entropy per particle, and temperature follow; σ is the root-mean-square

size, λ is the wavelength of the imaging transition, and M is the magnification1 of the imaging system:

1The magnification here is the area of an imaging pixel in the object plane of the imaging system, which for our primary
imaging system is (3.2µm)2/px.
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N = AσxσyM
2 2π

3λ2

2πLi3[−z]

Li2[−z]
(5.22)

S

kBN
= 4

Li4(−z)

Li3(−z)
− Log(z) (5.23)

kBT =
mω2σ2

i

(1 + (ωt)2)
. (5.24)

The level of degeneracy characterized by the ratio T/TF can be determined in two ways. Consistency

between these two method should be verified to check for imaging non-idealities. First, T/TF is a monotonic

function of the fugacity measured directly from the shape of the momentum profile. This technique works

best for T/TF values between 0.1 and 0.5 (when the momentum profile differs significantly from the Gaussian,

non-degenerate limit, and the fugacity function has not drastically diverged as shown in Fig. 5.9). This

degeneracy factor can also be found directly by calculating the temperature from the size of the gas in

expansion and the Fermi temperature from knowledge of the number and trap frequencies. Care should

been taken to avoid imaging saturation and Doppler shift problems [112], as this will reduce the observed

number of atoms and shift the calculated value of EF .

T

TF
=

(
1

6 Li3(−z)

) 1
3

(5.25)

T

TF
=

mω2σ2
i

1 + (ωt)2

1

~ω̄ (6N)
1/3

(5.26)

EF = kBTF = ~ω̄(6N)1/3 where ω̄ = (ωx ωy ωz)
1/3 (5.27)

Below T/TF ≈ 0.1, the shape of the gas does not change significantly, and limitations due to the signal-

to-noise ratio in typical imaging systems inhibit accurate determination of T/TF in this regime. Creating

gases with T/TF � 0.1 to explore the anti-ferromagnetically ordered state in the Hubbard model is a central

goal in the quantum simulation community, and the lowest reported degeneracies have T/TF ≈ 0.05 [72, 73],

with Ref. [74] reporting the first hint of anti-ferromagnetic correlations at a temperature 1.4 time times the

Neel transition temperature.
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Figure 5.9: Relationship between T/TF , S/N , and fugacity in a harmonically trapped system. The fugacity
diverges rapidly below T/TF ≈ 0.1, and accurate determination of temperature from the shape of the optical
depth images is difficult in this region.

5.3.2 Fermi-Dirac Statistics in a 3D Lattice

We start by considering a single-component, non-interacting lattice gas in the grand canonical ensemble.

The Hamiltonian for the system is

HFD =
∑

i=x,y,z

[
2t

(
1− cos

(
π
qi
qB

))
+
mω2

i x
2
i

2

]
. (5.28)

Here we have taken the result from tight binding for the lattice dispersion, where t is the nearest-neighbor

tunneling energy, and the harmonic trap frequency is ω. We only concern ourselves with states in the

ground band, where qi is in the range of −qB to qB , and the bandwidth is 12t. The grand potential for a

single-component Fermi gas takes the form

−βΩ =
∑
{~x,~q}

log
(

1 + eβ(µ−ε(~x,~q))
)
, (5.29)

as each state is either singly occupied or empty. The sum over all points in energy phase space is written

as {~x, ~q}, and ε(~x, ~q) =
∑
i=x,y,z

[
2t
(

1− cos
(
π qi
qB

))
+

mω2
i x

2
i

2

]
. Equations for number and total entropy

follow from Eq. 5.16. Naturally, the occupation formula is the Fermi-Dirac distribution:
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N = −∂Ω

∂µ
=

∑
{~x,~q}

1

eβ(ε(~x,~q)−µ) + 1
=

∑
{~x,~q}

fFD(ε(~x, ~q), T, µ) (5.30)

S/kB = −∂Ω

∂T
=

∑
{~x,~q}

[
log
(

1 + eβ(µ−ε(~x,~q))
)
− µ− ε(~x, ~q)

T

1

1 + eβ(ε(~x,~q)−µ)

]
(5.31)

=
∑
{~x,~q}

SFD(ε(~x, ~q), T, µ). (5.32)

The sums are converted to integrals with volume elements such that dxdq = h in the semi-classical

approximation:

N =
1

h3

∫
d3~q

∫
d3~x fFD(ε(~x, ~q), T, µ) (5.33)

S/kB =
1

h3

∫
d3~q

∫
d3~x SFD(ε(~x, ~q), T, µ). (5.34)

These 6 dimensional integrals are reduced to 2 dimensional integrals by assuming radial symmetry in

the x coordinate, and by making a variable substitution in q. In the spatial coordinates,
∫
d3~x becomes∫

4πr2dr as is normally done; this is an approximation, and more careful treatment of this energy should be

employed when necessary. We define εq =
∑
i=1,2,3[1− cos(πqi/qb)] and P (εq) as the probability of a given

value of the quasimomentum sum, with P (α) ≡
∫
d3~q δ(α − εq), where δ is a Dirac delta function (this is

analogous to a density of states in q). Using these definitions, we rewrite the thermodynamic integrals as

N =
1

h3

∫
P (εq) dεq

∫
4πr2dr fFD

(
1

2
mω2r2 + 2t εq, T, µ

)
(5.35)

S =
1

h3

∫
P (εq) dεq

∫
4πr2dr SFD

(
1

2
mω2r2 + 2t εq, T, µ

)
. (5.36)

This rewriting of the thermodynamic integrals allows for fast numerical evaluation of Eq. 5.17 to solve for T

and µ. Example code used to solve this problem is shown in Appendix C.1 for the non-interacting method

and the Hartree-Fock method described in the next section.

Using this method, the temperature and chemical potential in the lattice are calculated while matching

the number and total entropy in the gas. Sample profiles in space and quasimomentum are shown in Fig.

5.10 in an s = 4ER lattice with 20,000 atoms for S/N ranging from 1 to 4 kB , corresponding to a range

of T/TF from 0.1 to 0.5. These profiles show the expected behavior that as the temperature rises, the
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Figure 5.10: Non-interacting Fermi-Dirac calculation of the spatial, quasimomentum, and bandmapped
optical depth for an s = 4ER lattice gas. (a) The occupation per spin state is plotted for an entropy of
1-4 kB per particle. (b) The quasimomentum distribution is plotted along the standard trajectory in a 3D
Brillouin zone. (c) Slices through column integrated bandmapped quasimomentum profile for the imaging
projection described in Sec. 5.2.2 are generated at 10ms TOF. Vertical slices through the profile are shown
as indicated by the inset; here qmax ≈

√
3qB . An infinite temperature gas is shown for completeness (black

trace). (d-h) Full column integrated images are shown relative to the outline of the first Brillouin zone in
projection for S/N = 1, 2, 3, and 4 kB and for infinite temperature. The total number for these data is
20,000 atoms, harmonic confinement is 2π100 Hz, and EF ≈ 5.7t.

peak density decreases and the quasimomentum distribution broadens. Additionally, there is appreciable

population along the band edge, but very little at the extreme points of the Brillouin zone. These data

correspond to experimentally accessible values of entropy and number. The quasimomentum distributions

acquired with the experiment have a non-trivial projection in imaging as described in Section 5.2.2, and

sample profiles are shown to make the connection between the underlying and observed distributions.

In these thermodynamic calculations and the lattice transport experiment presented in Chapter 6, the

single particle bandwidth, 12t, is the dominant energy scale. For understanding the occupation and quasi-

momentum distributions in the lattice, all parameters should be viewed in relationship to the bandwidth. As

we explore lattice depths from s = 4 to 7 ER, the absolute value of 12t changes by more than a factor of two,

and this changes the balance between the tunneling and confinement energies in the lattice, the location of

the Fermi energy for a given number, and the distribution of quasimomentum. Importantly, it is not possible

to create identical profiles in position and quasimomentum as the lattice depth is varied as the balance of
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Figure 5.11: Comparison of Fermi energy in lattice versus particle number. (a) Comparison of Fermi energy
in a 3D lattice with harmonic confinement to the Fermi energy scaling calculated in the effective mass limit.
Each axis is normalized by the tunneling energy. (b) Number scaling with varying lattice depths for the
Fermi energy fixed to 4t, 6t, and 8t.

the bandwidth, confinement energy, and Fermi energy change. To explore this idea, we calculate the Fermi

energy as a function of the lattice depth. In a harmonic potential, the Fermi energy EF = ~ω̄(6N)1/3

depends only on the trap frequency and number per spin state as in Eq. 5.27. We can extend this formula

to the lattice dispersion in the effective mass limit by finding the curvature of the dispersion at q = 0. In

this limit, the effective mass m∗ = q2
B/(2π

2t) and effective trapping frequency ω̄∗ = ω̄
√

m
m∗ . Using these

approximations, the Fermi temperature in the effective mass limit is dependent on the trap frequency, the

mass, the tunneling energy, and the particle number as

EF = ~ω̄∗(6N)1/3 = ~ω̄
π

qB

√
2mt(6N)1/3. (5.37)

The value of the Fermi energy outside this limit can be calculated in the usual fashion by integrating the

number of states below a given energy as

NE<EF =
1

h3

∫
d3~q

∫
d3~x Θ(EF − ε(~x, ~q)) (5.38)

Here Θ is the Heaviside step function and ε(~x, ~q) is the particle energy as a function of ~x and ~q. The deviation

of the Fermi energy from the effective mass scaling is shown in Fig. 5.11, and the number to match EF to

set fractions of the bandwidth is shown for the range of lattice depths explored is also shown. The variation

in number required to fix EF at a set fraction of the bandwidth can be quite large—for example, data taken
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from s = 4 to 7ER at EF = 6t, N must vary from 24,500 to 7,600.
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Figure 5.12: Non-interacting statistical mechanics comparison of spatial and quasimomentum distributions
for s = 4 to 7ER lattice gases at fixed N and fixed EF /t. Thermodynamic profile are calculated assuming
S/N = 1.5 and 2π 100 Hz harmonic confinement. (a-b) Profiles at fixed number N show variation in
central filling and band population as lattice depth is varied. The quasimomentum distributions in (b) are
normalized by the s = 4ER value at q = 0, and the profiles are plotted along a lattice direction. (c-d)
Profiles adjusted such that EF = 6t show identical central filling, and the quasimomentum profile for these
data are identical within the non-interacting assumption.

Data taken at constant EF /t allows for gases with fixed central occupation and quasimomentum distri-

bution to be created across a range of lattice depths. Figure 5.12 shows a comparison between the spatial

and quasimomentum profiles of lattices gases with fixed atom number and fixed EF /t for s = 4 to 7ER

and S/N = 1.5. The gases at fixed atom number show a large variation in central occupation and in the
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uniformity of filling across the Brillouin zone. The thermodynamic profiles calculated for fixed EF /t show

identical quasimomentum distribution and central occupations; the only variation present within the non-

interacting calculation is the RMS size of the gas in space, which must vary due to the change in number.

Example thermodynamic quantities and comparison with values calculated after adding interactions with

the self-consistent Hartree-Fock method are listed for relevant lattice depths and S/N for EF = 6t in Table

5.2.

5.3.3 Hartree-Fock

Interactions can be added into the non-interacting Fermi-Dirac calculation by including a density dependent

energy offset. This approach is called the self consistent Hartree-Fock method, and requires iteratively solving

for the density profile to determine the thermodynamic variable T and µ given the isentropic assumption

and constraints on N and S. This approach has been successfully employed with Bose lattice gases [174,

118, 117, 122] where the validity of this method is based on agreement seen for experiments with large atom

number in harmonic traps. The method is known to fail near the superfluid-Mott insulator phase transition

[202], but this is irrelevant for the work done here.

We consider a two-component Fermi gas with an interaction energy U between the two components. The

calculation is performed by considering only a single spin state, with interaction energy U/2 for each spin;

and the Hamiltonian (for a single spin) is modified to be

HHF = HFD +
U

2
n(~x, T, µ) (5.39)

n(~x, T, µ) =
d3

h3

∫
d3~q fFD(εk, T, µ). (5.40)

This modifies the optimization problem stated in Eq. 5.17, as the density-dependent interaction energy

is a function of both T and µ, and the equations for N and S stated in Eq. 5.33 and 5.34 are rewritten as

N =
1

h3

∫
d3~q

∫
d3~x fFD

(
εk +

U

2
n(~x, T, µ), T, µ

)
(5.41)

S =
1

h3

∫
d3~q

∫
d3~x SFD

(
εk +

U

2
n(~x, T, µ), T, µ

)
. (5.42)

This represents a set of equations that can be solved iteratively to converge on the correct values of T and

µ, and the computer code used to accomplish this is listed in Appendix C.1. In this computation, we define
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a density profile that is iterated such that in iteration i the density profile is found by optimizing Equations

5.41 and 5.42 using the density from iteration i−1. This procedure is repeated until a stable profile is found.

In practice, the computation starts with U = 0 and progressively increases the strength of the interactions

until the desired value is reached, and iteration is stopped when the change in the measured value of T and

µ reaches the desired precision.
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Figure 5.13: Comparison of spatial and quasimomentum distribution calculated in the non-interacting (black
lines) and Hartree-Fock (red lines) limits. Comparison between numerically computed density profiles in
lattice using a self-consistent, non-interacting calculation (black line) and an analogous Hartree-Fock calcu-
lation including the effects of interactions (red line). Parameters for this calculation are EF = 6t and S/N
= 1.7 kB per particle, and an external confinement of 2π 100Hz. For the s = 4ER data, t = 0.0862 ER and
U = 0.200 ER, and for s = 7ER data, t = 0.0395 ER and U = 0.357 ER.

A comparison between Hartree-Fock and non-interacting Fermi-Dirac predictions are shown in Fig. 5.13

for lattice gases with s = 4 and 7ER, EF fixed at 6t, and S/N = 1.7kB . These traces show the expected effects

from introducing interaction—the spatial profile broadens and the quasimomentum distribution narrows.

This effect is more pronounced in the s = 7ER example, since U/t is roughly four times the value at
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Input Parameters Non-Interacting Fermi Dirac Hartree-Fock

s (ER) S/N Ntot T/t µ/t ns(0)
nq(qB)
nq(0) T/t µ/t ns(0)

nq(qB)
nq(0)

4 1 49.0k 0.53 5.81 0.47 0.19 0.52 6.03 0.43 0.18
5 1 32.8k 0.53 5.81 0.47 0.19 0.51 6.15 0.41 0.17
6 1 22.2k 0.53 5.81 0.47 0.19 0.49 6.33 0.38 0.16
7 1 15.2k 0.53 5.81 0.47 0.19 0.48 7.56 0.35 0.14

4 2 49.0k 1.17 5.14 0.40 0.21 1.11 5.35 0.37 0.20
5 2 32.8k 1.17 5.14 0.40 0.21 1.08 5.48 0.35 0.19
6 2 22.2k 1.17 5.14 0.40 0.21 1.04 5.65 0.34 0.18
7 2 15.2k 1.17 5.14 0.40 0.21 1.00 5.88 0.31 0.17

4 3 49.0k 2.08 3.50 0.28 0.27 2.01 3.69 0.27 0.26
5 3 32.8k 2.08 3.50 0.28 0.27 1.96 3.83 0.26 0.25
6 3 22.2k 2.08 3.50 0.28 0.27 1.90 4.01 0.25 0.25
7 3 15.2k 2.08 3.50 0.28 0.27 1.84 4.24 0.24 0.24

Table 5.2: Comparison of non-interacting and Hartree-Fock statistical mechanics in a lattice with EF = 6t.
Within the isentropic assumption, thermodynamic quantities are calculated using harmonic confinement
of 2π100Hz. Key points to note are that the non-interacting parameters are the same for a given S/N
across the range of lattice depths. The difference between the non-interacting and Hartree-Fock calculation
is minimal in the expected region of high entropy and low lattice depth. All values are calculated to an
accuracy of ±1 in their least significant digit. Number in this table is the total of a 50/50 mixed gas of two
spins.

4ER. At this lattice depth, the non-interacting limit overestimates the central occupation by more than 50

percent. This is to be expected—the lattice greatly increases the role of interaction and they should not be

ignored! Table 5.2 presents the results from non-interacting and Hartree-Fock calculations of thermodynamic

quantities across a range of lattice depths and entropies typical of experimental values for EF fixed at 6t.

These values reinforce the behavior seen in Fig. 5.13 in that the non-interacting calculation increasingly

fails at higher lattice and lower entropies per particle—the cases in which the density and U/t are least

negligible. Comparisons to measured bandmapped quasimomentum images are provided in Chapter 6, and

results shown in Figure 6.6 indicate that these distributions can largely be explained within the Hartree-Fock

method described here.

5.3.4 Caveats to the Non-Interacting and Hartree-Fock Methods

There are several important caveats to the non-interacting and Hartree-Fock methods presented here. First,

the semi-classical approximation underestimates the number of states available in the lattice plus trap system

as described in Sec. 5.4.2. The underestimation of the available states effects both the location of the Fermi

energy and the inferred value of the chemical potential. The error introduced in these approximations is

quantifiable by performing analogous thermodynamic calculations using the exact eigenstates, and errors at

the 20% to 30% level are expected in µ and EF for the range of parameters explored. Second, since the
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states used in the Hartree-Fock method are not the exact eigenstates, interactions are introduced in the

approximation differently than they exist in reality. This introduces an unquantified error that is difficult

to evaluate in the absence of quantum Monte Carlo calculations. Finally, neither of these approximations

captures correlations between spin states that emerge at low entropies. For example, anti-ferromagnetic

correlation does not appear in either of these methods.

5.3.5 Atomic Limit

In the deep lattice limit, tunneling can be ignored and interactions are the dominant energy scale. The zero

tunneling limit is named the atomic limit, and thermodynamic properties are straightforward to compute

within the local density approximation. We consider a two component (↑↓), interacting Fermi gas with

interaction energy U , and N particles on a lattice with temperature T . The partition function on an

individual lattice site is given by summing over grand canonical weights for the four possible spin occupation

configurations (00), (10), (01), and (11):

Z0 = 1 + 2z + wz2 where z = eβµ and w = e−βU (5.43)

The partition function is spinless and occupation on a site can be 0, 1, or 2. The grand potential is determined

by summing over all lattice sites in the system, i,

−βΩ =
∑
i

log (Z0) . (5.44)

Equations for total number and entropy on a lattice site are given by taking the derivatives of Eq. 5.44

with respect to chemical potential and temperature:

N = −∂Ω

∂µ
=
∑
i

2z + 2z2w

Z0
(5.45)

S = −∂Ω

∂T
= kB

∑
i

[
log(Z0)− 2µz + (2µ− U)z2w

TZ0

]
. (5.46)

These equations fully characterize the atomic limit in an isotropic system for dimensionless variables µ/U

and kBT/U . The behavior of the on-site occupation, and entropy per particle are shown for four values

of T/U in Fig 5.14. At low temperature in these plots, Mott plateaus become sharply defined where the

occupation plot shows integer filling and the entropy plot shows plateaus at kB log(2) and 0. At higher

temperature, the effects of interactions become less apparent, and the Mott plateaus begin to lose contrast.
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The entropy per particle is greatest in regions where particle number fluctuations are highest—at low fillings

and between Mott plateaus.
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Figure 5.14: Site dependent occupation and entropy per particle in the atomic limit.Temperature dependence
of occupation number per site (a) and the entropy per particle (b) in the atomic limit. Plateaus in number
and entropy are clearly visible at integer fillings, showing both Mott and band insulating regimes. Notice
that entropy per particle at unity filling approaches kB log(2) due to the two possible spin configurations.
The atomic limit is spinless, so the site occupation can be 0, 1, or 2.

The harmonic trapping potential is considered by taking the local density approximation in which the

chemical potential acquires a spatially dependent shift given by the confinement energy:

µi = µ− 1

2
mω2r2

i . (5.47)

Within this approximation, T and µ can be calculated for a lattice gas with known entropy and atom

number. This is performed in the same fashion as the non-interacting Fermi-Dirac and Hartree-Fock methods

described earlier in this Section; here Equations 5.45 and 5.46 are summed to satisfy the known constraints

on particle number and entropy. Sample density profiles within the local density and isentropic loading

approximations are shown in Fig 5.15 for S/N = 1 and 2. The lowest reported S/N in an atomic Fermi gas

with S/N ≈ 0.4kB [73], and S/N ≈ 1kB represents the practical limit of most experimental efforts. Mott

plateaus in density are clearly visible for profiles at S/N = 1kB , but not in the higher temperature plot. The

plots emphasize the strong dependence on the lattice profile of the total number of particles. Additionally,

the Mott lobes shown here are far less clear than those observed in BEC lattice experiments in which S/N

can be much less that 1kB , as shown in Ref. [10], for example.
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Atomic limit calculations are not used to infer quantities in this thesis, but the graphs in Figure 5.14 are

a valuable tool for understanding some of the differences between trapped and uniform systems. From the

perspective of the local density approximation, the chemical potential axes in this figure can be viewed as

a rescaled radial position (with r = 0 at µmax) that progresses to lower values of µ as the radius increases.

This creates non-uniform distribution for both occupation and entropy. While it is obvious in the trapped

system that the density should be spatially varying, the entropy term is less obvious. The general behavior is

to have much of the total entropy of the gas stored at its periphery where number fluctuations are greatest.
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Figure 5.15: Radial density profiles in the atomic limit with the local density approximation shown for S/N
= 1.0 kB (a) S/N = 2.0 kB (b). Traces correspond to total particle numbers from 2000 to 100,000 for a 3D
lattice. The ratio of confinement to interaction energy, mω2d2/2U , is 0.0022. The color scale is shared.

5.3.6 High-Temperature Series Expansion

The atomic limit can be extended by including non-zero tunneling terms as a series expansion in t/T . This

is called the high-temperature series expansion, and this method is employed in a similar fashion to the

atomic limit procedure presented earlier to infer thermodynamic quantities in lattice with known entropy

and atom number. Here the grand potential takes the form

−βΩ/N = log (Z0) +

∞∑
r=2

(βt)rZ−r0 Ar
(
z, eβU

)
, (5.48)

where the functions Ar depend on the coordination number of the lattice and the possible interaction graphs.

The methods for calculating Ar are described in Ref. [150]. To second order, the grand potential becomes

−βΩ = log (Z0) + 3

(
βt

Z0

)2(
2z(1 + wz2) +

4z2

βU
(1− w)

)
. (5.49)
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From this approximate grand potential, expressions for the local N and S are found using expressions

analogous to Equations 5.45 and 5.46.

The high-temperature expansion has a limited regime of convergence, and as its name implies, the expan-

sion fails at temperatures when βt > 1. The exact regions of convergence depend on both the temperature

and chemical potential, and a detailed study of the convergence of the series expansion to tenth order in

comparison with dynamical mean-field theory can be found in Refs. [38, 87, 85]. One benefit of the series

expansion is that it works well at half filling, where dynamical mean-field theory fails. This expansion fails

to converge across the entire range of data presented in Chapter 6 and is not used.

5.4 Eigenstates in a Lattice with Harmonic Confinement

The quantum states in a lattice with harmonic confinement are fundamentally different from the Bloch waves

in an isotropic lattice. Bloch wavefunctions extend over all of space with the form ψ(r) = eikru(r), where

u(r) has the same periodicity as the lattice [8]. Adding a harmonic trapping potential removes the spatial

symmetry of the system and introduces a new energy scale set by the confinement. The wavefunctions in this

new potential have features of both the Bloch waves from the lattice and of the quantum harmonic oscillator.

The low energy states in this potential have wavefunctions that are simply the harmonic oscillation states

modulated by the lattice potential, as shown in Fig. 5.16a. The 1D Schroedinger equation is solved for the

lattice with harmonic confinement using the code modified from Appendix I.4.1 of Ref. [135].

5.4.1 Relevance of Localized States

The competition between tunneling and harmonic confinement causes the high energy states to take a form

that is spatially localized at the edges of the gas with minimal weight in the center of the trap, as shown in

Fig. 5.16(b). This happens when the harmonic confinement energy of the state exceeds the single-particle

bandwidth of 4t. The center region of the trap for these high energy states is energetically forbidden and the

wave function is exponentially suppressed in the center of the trap, leaving little probability for transport

between the edges of the gas. The energy levels of trapped systems can be classified into low and high energy

states based on the ratio of the confinement and tunneling energy scales. This ratio,

q =
4t

1
2mω

2d2
, (5.50)

sets the location of the first quantum state localized to the edges of the trap. Reference [173] give this critical

110



−20 −10 0 10 20

0

0.05

0.1

0.15

0.2

0.25

0.3

Distance (x/d)

E
n

e
rg

y
 (

k
H

z
)

−60 −40 −20 0 20 40 60
4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

Distance (x/d)

E
n

e
rg

y
 (

k
H

z
)

(a) (b)

Figure 5.16: Quantum states in a 1D lattice with harmonic confinement. (a) Probability amplitude of four
lowest energy states in 4 ER, 1D lattice plus harmonic confinement of 2π100 Hz. Wave functions were
calculated numerically using the method of finite differences on the Schroedinger equation. Each state is
vertically offset by its energy. (b) Probability amplitude of localized states in same potential. n = 62, 64,
66 (black) and n = 63, 65, 67 (red). The high energy localized states are not symmetric about the center of
the system and do not support transport across the entire system.

quantum number separating low from high energy states as

nc ' 2||
√
q/2||. (5.51)

The double bars indicate rounding to the closest integer. Fig. 5.17 shows the probability density for the

lowest hundred energy states for lattice depths of 4 and 7ER. The state corresponding to critical quantum

number calculated from Equation 5.51 is shown in red.

The effects of the localized state were first observed by looking at dipolar oscillations of a Fermi gas in

a 1D optical lattice [142]. These states were later directly observed by radio-frequency spectroscopy [151]

proving that a spatially dependent energy gap exists in these systems. It is also important to note that

while these states are localized to the edge of the gas, the states do not have zero conductivity and can

support motion around the edge of the gas, as was observed in Refs. [161, 175]. This effect is striking in

one dimension where the number of non-localized states is very low, but it has also been observed in higher

dimensions [198].

For the transport experiments considered in Chapter 6, it is important to ask whether these states play a

significant role. Data in these experiments is taken in a 2π100Hz trap for s = 4 to 7ER. The critical quantum

111



−60 −40 −20 0 20 40 60

0

1

2

3

4

5

6

7

8

9

Distance (x/d)

En
er

gy
 (k

H
z)

0 20 40 60 80 100

0

1

2

3

4

5

6

7

8

9

Quantum Number

E
n
e
rg

y
 (

k
H

z
)

−60 −40 −20 0 20 40 60

0

1

2

3

4

5

6

7

8

9

Distance (x/d)

En
er

gy
 (k

H
z)

0 20 40 60 80 100

0

1

2

3

4

5

6

7

8

9

Quantum Number

E
n
e
rg

y
 (

k
H

z
)

(a) (b)

(d)(c)

s = 4 s = 7

n ~ 44 

n ~ 30 

Figure 5.17: Energy spectrum in 1D lattice with harmonic confinement. (a,b) The first 101 eigenstates
for potassium atom in a 1D lattice with depths of 4 and 7ER and harmonic confinement of 2π100 Hz are
calculated numerically. The probability density of each state is plotted with an offset given by the energy
of each state. States below a critical energy are extended across the system, while the remainder have their
probability amplitude confined to the edges of the system. The classically allowed phase space corresponding
to energies within the bandwidth of 4t above the trap energy is shaded in red. The first localized state for
n = nc is labeled in red. (c,d) The dispersion relation of these states is shown. Low energy scaling is
consistent with the spacing of harmonic oscillator levels. The first localized state is again indicated in red,
with this number decreasing at higher lattice depths.

number for these data vary from nc = 44 and 30, respectively, indicating a span from 85,000 and 27,000

states per spin that allow for full transport in 3D at s = 4 and 7ER. The number of non-localized states
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becomes rapidly lower at higher lattice depths as the bandwidth shrinks relative to the confinement energy.

The fraction of localized states occupied can be evaluated within the Hartree-Fock calculation (presented in

Section 5.3.3) by counting the number of states whose energy exceeds the bandwidth. This fraction can be

defined as floc = N(E > 12t)/Ntot, and the number of localized states can be evaluated through an integral

similar Equation. 5.41 as

N(E > 12t) =
1

h3

∫
d3~q

∫
d3~x Θ

(
εk +

U

2
n(~x)− 12t

)
fFD

(
εk +

U

2
n(~x), T, µ

)
. (5.52)

Here, the Heaviside step function Θ limits the integral to only states with energies that exceed the bandwidth.

Appreciable population of these states is predicted for s ≥ 6ER for the transport data presented in Section

6.2. The limitations of these states against transport in 3D are an open question, as these states are restricted

to move around the periphery of the gas.

5.4.2 Exact Number Distribution vs. the Semi-Classical Approximation in 3D

The semi-classical approximation used to perform the thermodynamic integrals for self-consistently deter-

mining temperature and chemical potential in the lattice plus trap system divides phase space into volumes

of d3x d3q = h3. In this approximation, one quantum state fits into each voxel, and the energy of that states

is calculated from the sum of its kinetic and potential energy in the non-interacting limit described in Sec.

5.3.2. The error introduced by this approximation can be estimated by comparing the energy spectrum from

the semi-classical approximation to that found from the exact solution of the Schroediger equation. The

exact energy spectrum of the 3D system is calculated by solving the 1D Schroedinger equation, enumerating

all possible 1D occupation numbers in 3D, and ordering the states by total energy. Figure 5.18 plots the

number of available states less than the Fermi energy from the semi-classical approximation and the exact

solution of the lattice with harmonic confinement. This figure shows that the semi-classical approximation

underestimates the number of available states at all energies with the largest fractional error at low EF . The

fractional error decreases with increasing Fermi energy, and for EF = 6t, the error is at the 30% level. The

self-consistent approach for finding T and µ in the lattice plus trap detailed in Sec. 5.3 can be performed

using the exact eigenstates. For typical experimental parameters, the temperature calculated using the exact

and semi-classical states can be used interchangeably within the experimental uncertainty in N and S/N .

Significant differences arise in the determination of µ between the two methods. This is expected given the

large fractional errors in total number shown in Fig. 5.18(b).
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Figure 5.18: Comparison of exact eigenstates and semi-classical distribution of states in a 3D lattice with
harmonic confinement. Calculations of these distributions are performed with s = 4ER and ω = 2π110 Hz,
radially symmetric confinement. Exact eigenstates are calculated using the 1D method assuming separability
in 3D. (a) The number of states (for a single-spin component) is plotted versus the Fermi energy from both
the semi-classical and the exact methods. The semi-classical approximation underestimates the number of
available states at all energies. (b) The fractional error of the semi-classical approximation is plotted versus
Fermi energy. Here, the number of states are NS from the semi-classical method and NE from the exact
Eigenstates in 3D; the fraction error from the semi-classical approximation is (NE −NS)/NE . For EF = 6t
the error is ≈ 30%. As expected, the error introduced by the semi-classical approximation decreases at
higher EF .
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Chapter 6

Transport Experiments in Lattices

6.1 Motivation and Introduction

This chapter describes experimental studies of the transport behavior of strongly correlated gases in optical

lattices. This work is motivated by the many open questions surrounding the field of strongly correlated ma-

terials that exhibit, for example, the phenomena of high-temperature superconductivity [114], heavy fermion

superconductivity [194, 160], T -linear resistivity at low temperatures [24], and giant magneto-resistance [53].

The goal of quantum simulation with optical lattices is to realize one of the simplest strongly-interacting

Hamiltonians, namely the Hubbard model, in a well controlled and characterized manner and to ask what

physics can be produced from this minimal model. From this starting point, complexity can be introduced

in a controlled manner and direct comparisons can be made between experiment and theory. Experiments

performed with cold atoms should not be thought of as direct tests of materials; rather, they are the present

state-of-the-art sandbox for testing models of strongly correlated materials.

In materials where strongly correlated phenomena are present, competition between electron-electron

and electron-phonon interactions, kinetic energy, and disorder may lead to a number of distinct low entropy

phases. The phase diagram for the cuprate high-temperature superconductors shown in Fig. 6.1 beautifully

illustrates this point. At low temperature and half filling, the cuprates (and the Hubbard model) form an

anti-ferromagnetic Mott insulator as the spin-spin and on-site interactions dominate the tunneling energy

and effect of thermal fluctuations—these interactions are sufficiently strong that the anti-ferromagnetic phase

survives to three hundred Kelvin. Doping away from half-filling disrupts the anti-ferromagnetic state and

creates several metallic states at high temperature. At low temperatures, two superconducting “domes”

arise for a range of doping in hole- and electron-doped materials, and the largest motivating factor for

studying these materials is their high critical temperatures. At optimum doping, several cuprate and iron-

based superconductors have critical temperatures above 100 Kelvin. This high critical-temperature for

superconductivity and the lack of an underlying microscopic physical model has motivated a huge amount

of interest in this class of materials.
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(a) (b)

Figure 6.1: Phase diagram for the hole- and electron-doped cuprate superconductors. (a) Several low
temperature phases appear as the cuprate doping is changed including the superconducting (SC), anti-
ferromagnet (AF), and metallic states. (b) An expanded view of the hole doped side of the phase diagram
shows the division of the metallic regime into the well understood Fermi liquid and areas of active research,
including the strange metal and pseudogap phases. These figures are reproduced from Refs. [34] and [204].

At temperatures higher than those supporting antiferromagnetism and superconductivity, there are sev-

eral metallic phases, including the pseudogap and strange metal regimes. Importantly, these phases are

less well understood than the superconducting state [114, 79], and it is hoped that an improved micro-

scopic model of these regimes will inform our understanding of superconductivity in these materials. The

pseudogap phase is characterized by a partially gapped Fermi surface and conductivity that varies along

different crystal directions. It is possible that pre-formed Cooper pairs in this state lead to this behavior

[39], and related work with ultracold gases studying the BEC-BCS crossover [172, 222, 29, 21, 155, 221] may

be relevant. Recent experiments have shown that relaxation rates of quasiparticles in the pseudogap regime

follow a Fermi-Liquid T 2 relaxation rate [140], but aspects of these experiments are not consistent with

predictions from Fermi-Liquid and raise additional questions. The strange metal occurs at temperatures

above T ∗ (higher than the pseudogap state) and is so named because it has T -linear scaling of its resistivity

[35, 24] and other properties divergent from Fermi liquid theory.

Doping is adjusted in the cuprates to modify the charge carrier density to access the superconducting

regime. This process inherently introduces disorder as atomic substitutions have been made in the lat-

tice. This disorder may play a significant role in these materials [139, 31, 32, 33], and while theoretical

predictions expect disorder to destroy the d-wave paring in the cuprates, measurements indicate that the

low-energy excitations are protected from the effects of disorder [60]. Strontium ruthenate, another novel

superconductor, has triplet π-wave pairing symmetry with a quantum critical point that can be tuned via

an external magnetic field. This critical point is highly sensitive to disorder, and superconductivity is only
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seen in extremely clean samples [123, 124]. The anomalous behavior in the cuprates and the sensitivity of

the ruthenates to disorder motivates further study in the controlled environment afforded by ultracold gases

in optical lattices.

Work in this chapter explores the analog of the strange metal regime in the Hubbard model. Two series of

experiments are described that probe the role of disorder, interactions, and relaxation dynamics, motivated

by the open questions described above. The first set of measurements examines the response of a gas in a

disordered lattice to an external impulse. In this measurement we find disorder-induced localization and an

interaction driven metal-insulator transition. We also explore the temperature dependence of localization,

motivated by predictions that many-body localized states have a critical temperature below which there is

zero conductivity. This work is published in Reference [101]. Theoretical analysis of these results by Vito

Scarola [179] has shown this observation is consistent with Anderson localization of Hubbard quasiparticles

and is discussed in depth. The second group of measurements explores the relaxation of non-equilibrium

quasimomentum distributions over a range of interaction strengths and degeneracy. This work relates to

fundamental questions about the origins of resistance in strongly correlated materials. All experiments we

discuss here involve gases with entropy per particle much higher than the majority of condensed matter

experiments—temperatures at their lowest will be a tenth of the Fermi temperature. Recently, experiments

in a compensated optical lattices are approaching the Neel temperature where antiferromagnetic correlations

are observed at T/TF ≈ 0.05 [73].

6.2 Localization in a Disordered Lattice

6.2.1 Properties of the Disordered Lattice

We create an optical lattice with controlled disorder by superposing optical speckle on a three-dimensional

optical lattice. The speckle is generated from a high numerical aperture imaging system using 532 nm light

and a holographic diffuser to imprint random phases across the beam creating a random, repulsive potential.

The statistical properties of the speckle intensity are known from ex-situ measurements and knowledge of

the speckle imaging system, as described in detail in Chapter 3. The full numerical aperture of the speckle

imaging system is used to create fine correlation length speckle. The intensity autocorrelation function is

cylindrically symmetric about the axis of propagation, with autocorrelation lengths of 310 nm radially and

1600 nm axially. To minimize the correlation length along any lattice direction, the speckle propagates

vertically in the experiment, roughly along the (111) direction in the lattice similar to experiments with

bosons in disordered optical lattices [211, 156, 135]. This orientation allows for uncorrelated Hubbard

117



parameters along each of the lattice directions [212].

tij Ui

(a)

(c)

(b)

εi

Figure 6.2: Illustration representing the tunneling and interaction energies in the disordered Hubbard model.
(a) Disorder is added to the optical lattice by superposing a three-dimensional optical speckle field (green)
on the simple cubic lattice. A two-dimensional slice of the resultant potential is shown in false color on the
right, where the red and blue spheres indicate the location of atoms with spin up and down. (b) A 1D slice
of the lattice indicates that the tunneling, interaction, and occupation energies become site dependent in
the disordered lattice. (c) The Hubbard parameters probability distributions in the disordered lattice are
shown for a s = 14ER lattice with ∆ = 1ER; here ρ is the probability density. Each parameter is broadened
by the disorder, with the largest effect on the occupation and tunneling energies, which are diagonal and
off-diagonal disorder. Hubbard parameter probability distributions are reproduced from Ref. [212].

Adding disorder to the lattice causes the Hubbard parameters to become site-dependent and broadens

the distributions of tunneling, interaction, and on-site energies from their isotropic values, as shown in Fig.

6.2. The disordered Hubbard model is written in Eq. 6.1, where tij is the tunneling energy between sites i

and j, ĉ†jσ (ĉjσ) are fermion creation (annihilation) operators for spin σ on site i, Ui is the interaction energy

on site i, n̂i = ĉ†iσ ĉiσ is the number operator for site i with spin σ =↑ or ↓, εi is the occupation energy on

site i, and 1/2mω2r2
i is the harmonic confinement provided by the trap:

HDFHM = −
∑

<ij>,σ

tij

(
ĉ†jσ ĉiσ + h.c.

)
+
∑
i

Uin̂i↑n̂i↓ +
∑
i,σ

(
εi +

1

2
mω2r2

i

)
n̂i,σ. (6.1)

The distributions of these disordered parameters are calculated numerically using the known lattice and

disorder distributions, as described in Ref. [212]. The largest effect of the disorder is to broaden the

occupation and tunneling energy distributions—creating both diagonal and off-diagonal disorder—while
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the interaction energy is minimally affected by the disorder. The distribution of t and U broaden about

their isotropic values, while the distribution of on-site energies is shifted to higher energies with a standard

deviation approximately set by ∆, as shown in Figure 6.2(c). None of the Hubbard parameters in this model

are spin dependent.

The trapping potential in these experiments creates spatial variation in occupation and entropy, as

discussed in detail in Chapter 5. The phases produced in the lattice depend strongly on the interplay of the

harmonic confinement, bandwidth, and the chemical potential—a beautiful example of this is the wedding-

cake structure observed in BEC optical lattice experiments in which Mott insulator regions of progressively

smaller occupation are surrounded by a shell of superfluid [63]. The confinement, bandwidth, and number

can be encapsulated in a single quantity called the characteristic density ρ̃ = N
2N0

, where N0 = 4π
3

(
12t

mω2d2

)3/2
.

Here d is the lattice spacing. Defining a global phase for the system allows a zero temperature phase diagram

to be drawn for the trapped Hubbard model as a function of only ρ̃ and the ratio U/t, as shown in Fig. 6.3.

For low U/t, the system divides into a metallic state labeled “L” in analogy to Fermi liquids and a band

insulator “B” for higher number. All experiments presented in this chapter take place in the “L” regime

with ρ̃ < 5 and U/t < 12. For U > 12t regions of Mott and band insulator form in the gas, and depending

on the number of atoms in the experiment, the central region can have occupation of 1 or 2 atoms per site as

shown in the atomic limit profiles shown in Figure 5.15. Work using dynamical mean field theory to explore

the Hubbard model at half filling has shown that aspects of this diagram may be incorrect, and the zero

temperature Mott insulator regime may be larger than previously expected [128]. Additionally, the definition

of ρ̃ is not standardized, and several similar expressions can be found in the literature [175, 176, 87, 181].

The speckle potential has finite extent in space, and the intensity envelope is uniform to within a few

percent over the lattice gas. As described in Chapter 3, the speckle intensity envelope has a Gaussian waist

(1/e2 radius) of 170 microns in the x-z plane of the experiment and a Rayleigh range of 400 microns along the

y-direction. This waist of the speckle is directly measured in the experiment by pulsing the speckle potential

and observing the impulse given to a hot gas. The measured deflection in position can be translated into a

local mean gradient in the intensity [100]. Typical lattice gases explored in this work have radial occupations

that extend across 20 to 30 lattice sites—this is less than a tenth of the measured waist, and the speckle

envelope is effectively infinite for our system size. The mean speckle intensity ∆ is inferred at the position of

the atoms from knowledge of the beam power, beam waist, and clipping in the speckle imaging system. This

value depends strongly on the waist on the speckle envelope, and the measured value for the waist used to

calculate ∆ disagrees with ex situ predictions as described in Chapter 3. From this we estimate a systematic

uncertainty in the absolute speckle intensity of 40% and statistical uncertainty of 10%. In the future, direct
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Figure 6.3: Zero temperature phase diagram for the Hubbard model in a harmonically trapped system.
Phases are Fermi Liquid (L), band insulator (B), central Mott-insulator (Mc), and shell of Mott-insulator
(Ms). Image reproduced from Ref. [136]. Results from dynamical mean field theory exploring the Hubbard
model at half filling have indicated that the Mott insulator regime may extend to lower values that shown
here [128].

measures to calibrate the the speckle intensity should be explored. One possible method for calibrating the

absolute value of ∆ would be to perform spectroscopy on a tightly confined 1D gas. The addition of speckle

would create a known distribution of harmonic oscillator spacings whose mean value could be related directly

to ∆.

6.2.2 Observing Localization

We probe the role of disorder in a strongly correlated lattice gas by measuring the response of the quasi-

momentum distribution to an external force. If the gas is in a metallic or conducting state, a current will

arise due to the external force, and the quasimomentum distribution will shift to acquire a non-zero average

velocity. The extent of this response is related to the conductivity of the system. As disorder is applied

to the system, states can become localized due to Anderson and other related types of localization, such

as many-body localization [11, 12]. Here, we consider a single-band Hubbard system in which states begin

localizing at the top and bottom of the band [103]. As the level of disorder increases, the two mobility edges

will converge and the conductivity of the system will decrease. Conductivity in the system falls to zero when

the two mobility edges cross such that all states in the band are localized. We observe analogous behavior
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in a disordered optical lattice in which transport initiated by external force progressively decreases with

increasing disorder. The conductivity at high disorders falls below our experimental resolution, and we asso-

ciate this behavior with the localization of all states in the ground band. Our measurement of the transport

has finite resolution, as in any measurement of conductivity, and we identify the minimal disorder necessary

to localize the band when the measured velocity falls below our experimental resolution. To understand the

phase diagram of localization in the disordered Hubbard model, we vary the mean disorder potential and

the ratio of the Hubbard energies, U/t, to observe the interplay between disorder and interactions.

To achieve a strongly-interacting metallic state in the lattice, we first cool an equal mixture of atoms

in two Zeeman states, |9/2, 9/2〉 and |9/2, 7/2〉, in an optical dipole trap, as described in Chapter 2.1.

Thermodynamic properties of the gas are modified by adjusting the final stages of cooling to obtain the

desired temperature, degeneracy, and number of atoms. Before loading into the lattice, the dipole trap is

recompressed to give a mean trap frequency of ω̄ ≈ 2π80Hz; this is done to minimize the spatial redistribution

that is required in loading the optical lattice and to control the characteristic density of the gas. After

recompression, the lattice and speckle potentials are superposed on top of the dipole trap potential over

a period of 150 ms via symmetric, exponential ramps of the potentials. We lack an accurate method to

directly measure the thermodynamic properties in the lattice (as introduced in Section 5.3 and detailed in

Reference [136]), and we infer thermodynamic quantities in the lattice assuming isentropic loading. The self-

consistent Hartree-Fock method described in Section 5.3.3 is used to calculate the temperature and chemical

potential of the lattice gas within this assumption, and this is used to determine the occupation in real and

quasimomentum space. We explore lattice depths from 4 to 7 ER such that U < 12t, and the ratio U/t

varies from 2.3 to 9 (below the point at which a Mott insulator would form). The characteristic density of

the gas is less than 5, the central filling varies from 0.35 to 0.55 atoms per spin state, and the mean disorder

potential energy ∆ varies from zero to 2ER. A list of the relevant properties are listed in Table 6.1.

A force is applied to the atoms after loading into the disordered lattice via a magnetic field gradient.

The gradient is applied vertically in the laboratory frame—this lies roughly along the (111) direction in

the lattice and corresponds to the y-direction in imaging. The impulse is applied for 2ms with a gradient

of approximately 1.5G/cm based on the velocity observed in the clean lattice and the effective mass; this

corresponds to a force roughly one quarter of gravity for the |9/2, 9/2〉 state. The magnetic moments of the

two spin states differ slightly and the |9/2, 7/2〉 state feels a force that is 7/9th as large as the stretched

state. Relative displacement between the spin states during the impulse is estimated at less than 1µm;

this is negligible compared to a typical root-mean-square radius of 5µm in the lattice and the gases remain

in contact during the impulse. The field gradient is chosen to maximize motion in a 4ER lattice with no
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disorder. A similar transport measurement with ultracold bosons was used to measure the superfluid–to–

Bose-glass transition in a disordered Bose-Hubbard system [158, 138]; the location of the transition was

consistent with quantum Monte Carlo predictions [70].

To observe the response of the lattice gas to the applied force, we measure the quasimomentum distri-

bution ñ(q) of the gas through bandmapping and absorption imaging in time-of-flight. Images showing this

response and the redistribution of quasimomentum at s = 4ER and ∆ = 0-2ER are shown in Figure 6.4(b-c).

Due to the imaging projection, the first Brillouin zone appears as a hexagon as described in Section 5.2.2.

During bandmapping, both the lattice and the disorder are turned off using a linear ramp over 200µs; this is

adiabatic with respect to the band gap but faster than all other timescales in the system. Bandmapping is

not a perfect process and fails at high quasimomenta [134]. This effect may diminish the observed signal for

large amplitude impulses. The impulse used in this work is adjusted to maximize the observed displacement

in quasimomentum. After bandmapping, the dipole trap is instantaneously removed, and the gas is allowed

to expand for 10ms. The observed quasimomentum distributions shift in response to the applied impulse

as shown in Fig. 6.4. The center-of-mass of the quasimomentum distribution is extracted numerically from

the image, and a velocity is calculated by subtracting the position of the gas after the impulse from the

stationary gas and dividing by the 10ms expansion time. For this data, qB = 12.75mm/s, and the maximum

center-of-quasimomentum is ≈ 0.25qB . There is uncertainty in determining the position of the stationary

gas due to changes in stray fields and drift in the position of the optical trap. This uncertainty is found to

be 0.05mm/s by repeatedly measuring the position of the gas with no applied force and corresponds to a

positional uncertainty in the trapped gas of 500nm.

Data showing the response to the applied force across the range of lattice depth and disorder amplitude

explored is summarized in Figure 6.4(d). For each data set, the center-of-mass velocity acquired during the

impulse decreases with increasing ∆, atoms redistribute from low quasimomentum values to higher ones, and

the amount of redistribution decreases with disorder strength. At lattice depths from 4 to 7ER, a regime in

which vCOM falls below our experimental resolution is observed within the range of disorders probed. We

fit the response to the applied force to an exponentially decaying function of the form

vcom(∆) = Ae−∆/(∆clog(A/vres)). (6.2)

This equation provides a heuristic fit that matches well with the observed data. From a single-particle

perspective, a smooth decrease in the observed motion is expected with increasing disorder as disorder-

induced localization progressively shifts the location of the mobility edges to include more of the band.

Once the mobility edge has encompassed all available states, the system will become completely localized
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Figure 6.4: Response of a disordered lattice gas to an impulse. (a) Bandmapped image of a spin-mixed gas

at s = 4ER, ∆ = 0. The first Brillouin zone is indicated by a black hexagon. (b) An external force (~F , black
arrow) is applied to the gas, and the response in quasimomentum is shown for ∆ = 0, 0.1, 0.2, 0.5, 0.75,
1.0, 1.5, and 2.0ER. (c) The redistribution of quasimomentum after the impulse is shown by subtracting the
stationary gas from the images in (b). (d) The center-of-mass velocity after the impulse is plotted for lattice
depths of 4ER (blue squares), 5ER (red circles), 6ER (green triangles), and 7ER (orange diamonds) as the
disorder strength is varied. The response curves are fit to an exponential decay and a critical velocity ∆c is
found when this value falls below the experimental resolution (gray band). (e) The critical disorder strength
required to arrest motion increases with interaction strength. The dashed line indicates the location of a
percolation transition [70]; the red line is a linear fit to the critical disorder data.

with an associated critical disorder labeled ∆c. We extract the location of ∆c as the point where Eq. 6.2

crosses the experimental resolution of vres = 0.05mm/s. Several alternative methods for reducing the data

were explored, and similar values for the critical disorder were found.

A phase diagram showing the location of the critical disorder separating localized vs. metallic regimes is

plotted in Figure 6.4(e). The interactions are varied in the experiment by adjusting the lattice depth; and,

in doing this, the bandwidth of the system also changes. To make fair comparison of quantities between
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s N
(
103
)

ω̄ (Hz) T/TF (trap) ρ̃ nr(0)
nq(qB)
nq(0) T/t µ/t EF /t floc

4 37.0± 2.5 2π101 0.14 ± 0.03 0.7 0.37 0.15 0.7 5.5 5.6 0.0001
5 41.2± 3.0 2π106 0.18 ± 0.03 1.4 0.45 0.24 1.0 6.5 6.7 0.01
6 47.1± 6.5 2π110 0.16 ± 0.02 2.7 0.58 0.33 1.1 8.4 8.1 0.04
7 48.7± 1.9 2π114 0.17 ± 0.02 4.5 0.64 0.40 1.5 10.2 9.6 0.21

Table 6.1: Thermodynamic properties of the lattice gases shown in Figure 6.4. Value to the right of the
double bars are inferred assuming isentropic transfer from the harmonic trap into the lattice with the
Hartree-Fock method described in Section 5.3.3. The fraction of localized states is calculated using the
inferred thermodynamic quantities and Eq. 5.52. Number in this table is the total of a 50/50 mixed gas of
two spins.

different lattice depths, the critical disorder and interaction energy are each normalized by the single-particle

energy scale of the system, the bandwidth. For a non-interacting gas, ∆c/12t should be a fixed quantity.

The normalized data in this figure show the location of the phase boundary depends on the interaction

strength and indicates that we have observed an interaction-driven metal-insulator transition. The positive

slope of the phase boundary states that more disorder is required to localize a more strongly interacting

gas. This reinforces the intuitive picture that interactions tend to disrupt interference based localization,

and that more disorder should be required to localize a more strongly interacting system. The slope of the

phase boundary, as determined by a linear fit to the data, is greater than zero at the 3σ level at minimum.

This uncertainty is estimated by generating a large number of measurement realities from the published data

points assuming random sampling from each point’s error bar. Each measurement reality is then fit with a

linear regression, and the fraction of realities with slope greater than 0 is determined. For the data shown,

the method indicates the probability that the slope is less than zero is one in four hundred.

Thermodynamic quantities are inferred for the data shown in Fig. 6.5 assuming isentropic transfer from

the dipole trap into the lattice using the Hartree-Fock method described in Section 5.3.3. The values found

in this procedure are listed in Table 6.1. These data are taken at roughly equal number, entropy per particle,

and trap frequency; and as the lattice depth is increased from 4 to 7ER, the Fermi energy shifts almost by

a factor of two. This causes the quasimomentum distribution to broaden as the ratio of EF /t shifts with

lattice depth; this process is described in greater detail in Figure 5.12. Images showing the quasimomentum

distribution before and after the impulse are found in Figure 6.5, where broadening of the quasimomentum

distribution with increasing lattice depth is evident. This is consistent with nq(qB)/nq(0)) trending closer

to unity with increasing lattice depth, as listed in Table 6.1. Due to this broadening of the momentum

distribution with lattice depth, the maximum response in center-of-quasimomentum from the impulse also

decreases. This is visible both in the traces in Figure 6.5(b) and in the reduced data in Figure 6.4(d).

Comparison of the bandmapped quasimomentum distribution at ∆ = 0 to Hartree-Fock based predictions
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Figure 6.5: Variation in quasimomentum distribution with lattice depth in the disordered lattice transport
data. Vertical traces plotted through the center of bandmapped quasimomentum distributions for ∆ = 0
with no impulse (a), ∆ = 0 with the impulse (b), and ∆ = 1.5ER with the impulse (c). The quasimomentum
axis is defined as in Figure 5.10. Broadening of the quasimomentum distribution and reduced response with
lattice depth are clearly visible in (a) and (b); broadening due to the disorder potential is minimal as shown
in Fig. 6.11. (d) Full bandmapped images are shown for the quasimomentum distributions for (a), (b), and
(c). The first Brillouin zone is indicated by a black hexagon. (e-f) The redistribution of quasimomentum
induced by the impulse is shown by subtracting the quasimomentum distribution before the impulse for
∆ = 0 (e) and ∆ = 1.5ER (f).

are shown in Figure 6.6. The procedure used to generate these profiles is detailed in Section 5.3. Profiles

using the measured harmonic trap entropy and number listed in Table 6.1 fail to reproduce the measured

optical depth profiles. Column integrated distributions are produced as described in Section 5.7. Surprisingly,

agreement is found to curves with T/TF = 0.35 with no free parameters. These curves suggest that we may

have systematically underestimated number or entropy per particle in the lattice. There are a number of

problems with direction comparison to measured quasimomentum distributions as detailed in References [134,

136] as well as problems that arise due to finite time-of-flight, finite size of the lattice gas, and interactions

during free expansion. Strong conclusions about entropy per particle should not be drawn from these profiles
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Figure 6.6: Comparison of measured quasimomentum distributions to predictions from Hartree-Fock calcu-
lations for spin-mixed gases in a non-disordered lattice. Optical depth images are calculated using the values
for entropy and number from Table 6.1. The projection is taken along the imaging direction as shown in
Section 5.7. (a) Hartree Fock calculation with S/N given by Table 6.1. (b) Hartree-Fock with T/TF = 0.35.
(c) Comparison of measured quasimomentum distributions to prediction for T/TF = 0.35.

6.2.3 Many-Body Localization and Temperature Scaling

In order to better understand the localized state measured in Section 6.2, we measure the stability of the

localized gas in the disordered lattice over a range in temperature. This is motivated by recent theoretical

work by Basko and Altshuler which shows that localization in a strongly interacting system can survive at

non-zero temperature in a process called many-body localization [11, 12, 13]. This unexpected result has

sparked a number of theoretical and experimental efforts to explore this phenomenon. These results are

surprising because the traditional view of low-temperature conductivity in disordered, interacting systems
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is that conductivity will always be non-zero at finite temperature. In systems of localized states connected

to an external bath (such as phonons), conductivity at finite temperature is known to scale proportional to

(T/T0)
α
e−(T0/T )1/(d+1)

. Here T0 is a characteristic temperature, α is a constant, and d is the dimensionality.

This phenomenon is called variable range hopping [144, 145, 187, 218], and the range of hopping is determined

by a competition between the spatial overlap and activation energy for hopping between localized states in

the material. In this scenario there is always finite conductivity at any non-zero temperature. Basko and

Altshuler find that interactions do not always lead to a hopping-type behavior between localized states, and

that the conductivity in an isolated quantum system with interactions can be zero at finite temperature.
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Figure 6.7: We explore the stability of a localized gas over a range of temperatures. (a) Center-of-mass
velocity after an impulse in the disordered lattice (reproduced from Fig. 6.4). The motion falls below our
resolution at ∆ ≈ 0.85ER. (b) We measure the center-of-mass velocity acquired after applying an impulse
to the gas for ∆ = 1 ER (filled circles) and ∆ = 0.4 ER (open circles). The red line is a linear fit
to the data and the shaded area indicates the 95% confidence bound of the fit. The grey band indicates
our uncertainty in measuring zero velocity. The temperature in the lattice is inferred from a Hartree-Fock
calculation.

The work initiated by Basko and Altshuler on many-body localization offers a new paradigm in which

an interacting system can remain localized at non-zero temperature. This theory considers a system of

initially Anderson localized states in which interactions are introduced directly between the localized states

(without mediation by phonons or connection to a heat bath) and asks if these interactions lead to a similar

hopping-type conductivity as is generated in typical materials. Surprisingly, they find both insulating and

conducting phases emerge separated by a mobility edge in temperature. The insulating phase is novel, as

it has strictly zero conductance at non-zero temperature for short-range interactions. Subsequent work in

random spin models demonstrated that a similar transition can survive even to infinite temperature [153].
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Work on many-body localization relates to fundamental questions of ergodicity and thermalization in closed

quantum systems [219, 169]. In the canonical ensemble, systems are connected with a thermal bath, and

the bath sets the temperature of the system and ensures ergodicity. In closed quantum systems, such as

experiments with ultracold gases, systems appear remarkably close to thermal states without the aid of

an external bath. It is not obvious why a system under unitary time evolution should have this behavior;

but it is believed that local subsystems can equilibrate, with their surroundings acting as a heat bath and

that a thermal state will be approached after sufficient time—this is known as the eigenstate thermalization

hypothesis [46, 192, 94]. Non-ergodicity has been explored in 1D nearly integrable cold atoms systems where

atoms are taken far from equilibrium and observed not to relax in the quantum Newton’s cradle [95].

Run N
(
103
)

T/TF (trap) ρ̃ nr(0)
nq(qB)
nq(0) T/t µ/t EF /t floc

1392 14.7± 0.6 0.28± 0.03 0.28 0.18 0.08 1.0 3.4 4.6 0.00
1399 30.0± 0.9 0.40± 0.01 0.58 0.20 0.21 1.9 2.7 5.7 0.03
1400 24.8± 1.8 0.21± 0.02 0.48 0.27 0.11 0.9 4.4 5.4 0.00
1403 23.4± 1.6 0.38± 0.01 0.45 0.19 0.16 1.6 2.9 5.3 0.03
1409 19.1± 0.8 0.24± 0.01 0.37 0.22 0.09 0.9 3.9 5.0 0.00
1411 32.5± 1.2 0.29± 0.01 0.62 0.27 0.17 1.3 4.2 5.8 0.01
1415 35.2± 1.3 0.24± 0.01 0.68 0.30 0.16 1.1 4.7 5.9 0.01
1420 18.7± 0.6 0.22± 0.01 0.36 0.22 0.08 0.8 4.0 4.9 0.00
1425 34.4± 1.2 0.37± 0.01 0.66 0.23 0.21 1.8 3.3 5.9 0.05
1430 37.6± 1.3 0.36± 0.01 0.72 0.24 0.22 1.8 3.5 6.0 0.05

Table 6.2: Thermodynamic properties of lattice gases used in variable temperature transport measurement.
Here s = 4ER and ω̄ = 2π100 Hz. Thermodynamic quantities were calculated using the method described
in Section 5.3.3. Number in this table is the total of a 50/50 mixed gas of two spins, and central occupation
values are listed per spin state.

We probe the stability of our localized state against variations in temperature in the lattice to look for

behavior predicted for many-body localization. To realize a system analogous to the many-body localization

scenario, we begin with ∆ marginally higher than ∆c such that all atoms are initially localized. We then

perform transport measurements by applying an external force on the atoms and modify the temperature in

the lattice while looking for small changes in conductivity. The temperature in the lattice is inferred within

the isentropic loading assumption using the Hartree-Fock method used to self-consistently match the entropy

and atom number in the harmonic trap. This process is described in Section 5.3.3. For this measurement,

an equal mixture of two spin states is loaded into an 4ER optical lattice with ∆ = 1ER, marginally higher

than ∆c ≈ 0.8ER. The force is applied with a magnetic field gradient for 2ms, and the response of the

quasimomentum distribution is measured via bandmapping and time-of-flight imaging. A summary of the

thermodynamic quantities for this data is listed in Table 6.2.

Data showing the response to an external force are plotted in Figure 6.7. No change in the conductivity
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Figure 6.8: Summary of quasimomentum distributions exploring temperature dependence of marginally
localized gas. (a) Quasimomentum distribution of lattice gases for s = 4ER and ∆ = 1ER before (top row)
and after (bottom row) applying an impulse. The first Brillouin zone is indicated by a black hexagon. (b)
The redistribution in quasimomentum is shown by subtracting the stationary gas from the perturbed gas.
(c) Representative vertical slices through the quasimomentum distributions in (a) indicate the response to
the gas to the impulse. Solids lines are before the impulse, dotted lines are after the impulse. Blue, yellow,
and red traces represent the low, intermediate, and high temperatures. Data are presented in the order in
which they are listed in Table 6.2.

of the marginally localized gas is observed over a doubling of the temperature in the lattice. The data cover

a range from 27 to 64 nK1 and are fit to a line to extract a 95% confidence interval for the behavior. The

confidence interval overlaps our zero velocity uncertainty band over the entire range of data. The error in

determining zero is estimated by repeatedly measuring the position of gas with no impulse applied, and vres

corresponds to a thermal energy of 12 kB×pK, an incredibly tiny value compared to the ground bandwidth

of ≈ 400kB×nK. This observation is consistent with the gas being many-body localized across the range in

temperature explored. Whether a temperature induced mobility edge should be observed in this system is

unknown. The many-body transition can be thought of in terms of energy density rather than temperature,

1The implementation of the Hartree-Fock calculation used to calculate the temperature for this data published in Ref. [101]
(and shown in Fig. 6.7) double counted the interaction energy U . Our best estimations of temperature in the lattice for this
data are listed in Table 6.2. No conclusions of the paper are modified by this change.
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and this view may strongly affect how localization is discussed in trapped systems where there are necessarily

local variation in energy density (see e.g. Figure 5.14). Additionally, within a single-band systems such as

our disordered optical lattice, there is a maximum energy density that can be reached. If the critical energy

density for transport lies above this maximum value, no transition will exist in the system. Measurements

of the many-body nature of the system, such as those that probe the entanglement of the interacting state

would allow stronger conclusion about the nature of the insulating state to be made. The properties of

the gases used in this study are summarized in Table 6.2, and inferred profiles of these gases in position

and quasimomentum are plotted in Fig. 6.9. Recent experiments from the Munich group have used the

relaxation of a spin imbalanced charge density wave in a quasi-random 1D lattice, and related predictions

of entanglement entropy in their system to claim observation of many-body localization in 1D [182]. Their

results show that interactions tend to destabilize the localized phase, and that localization persists over a

range of energy density, as is suggested by the work presented here.
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Figure 6.9: Spatial and quasimomentum distributions are calculated using the Hartree-Fock method for the
data in Table 6.2. The color indicates temperature in the lattice with blue to red mapping from cold to hot
and is shared between the figures. (a) Occupation per spin state as a function of radial distance. (b) Total
number of atoms at a given radius; the region containing localized states is shaded in gray and account
for at most 10 percent of the atoms. The radial density is calculated as 4πr2n(r). (c) Quasimomentum
distributions are plotted along a representative trajectory through the Brillouin zone.

Additionally, we probe the temperature scaling of a conducting gas with ∆ = 0.4 ER where vCOM is

roughly a quarter of the ∆ = 0 value, as shown in Figure 6.7. The conductivity of this state is measured

with the same magnetic field gradient impulse as the ∆ = 1ER data, and no temperature dependence in

the conductivity is observed over a range of temperature from 20 to 50 nK. From the perspective of single-

particle physics, this behavior is surprising. The initial state for ∆ = 0.4ER is conducting, implying non-

negligible occupation of non-localized states. The relative occupation of states will vary with temperature,

and hence the relative occupation of metallic and insulating states and the bulk conductivity will also change.
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Expected behavior with ∆ = 0 is that vCOM will decrease with increasing temperature due to broadening of

the quasimomentum distribution. The role of many-body interactions on the measurement at ∆ = 0.4ER is

unknown, and connection with the picture of many-body localization is complicated due to the occupation

on non-localized states.

6.2.4 Scarola and DeMarco Result

Recent work by Vito Scarola and Brian DeMarco [179] has numerically simulated transport of strongly-

interacting fermions in a disordered lattice in the presence of diagonal disorder. This work is exceptional

both in that it is not performed in a pertubative limit, but also in that it replicates a scaled version of the

experiments presented here and allows for direct comparison of results. The calculation uses experimental

values for entropy, particle number, trap frequencies, and lattice parameters to create a scaled system with

size up to 113. The state is initialized using the high-temperature series expansion to eighth order and the

local density approximation to self consistently generate thermodynamics quantities in the disordered lattice

given the known experimental parameters. This is similar to the process described in Section 5.3.6. The

series expansion has a limited range of convergence which constrains applicability to data with t � U and

t . kBT < 12t. For the experiment, this limits comparison to only the s = 6 and 7ER data. Equations of

motion are generated for the system which are numerically solved in time. The applied force is introduced

as a linear potential similar to the magnetic gradient in the experiment. This potential is applied for a set

amount of time and the center of mass velocity of the gas is measured.

The comparison of the theoretical predictions for the velocity acquired in the impulse to the experimen-

tally measured motion at s = 6 and 7ER is shown in Figure 6.10. No free parameters are used to generate the

theory curves, and excellent agreement is found over the range in which comparison is possible. This effort

finds that majority of motion in the system is carried by Hubbard-band quasiparticles, and that our observa-

tion is consistent with Anderson localization of these Hubbard-band quasiparticles. Aspects of the observed

reduction in conductivity with increasing disorder can be related to disorder-induced changes in density, but

these do not lead to an insulating state. Scattering from the disorder is found to completely arrest motion for

∆ > 0.5ER. This work emphasizes that a rigorous connection between the localized Hubbard-band quasi-

particles and many-body localization has not been made, and that future work examining entanglement is

required.

Additionally, Reference [179] raises an important point about adiabatic heating caused by the disordered

potential. In inferring the temperature in the disordered lattice within the isentropic assumption, the

temperature of the gas will rise as the applied disorder potential increases. This effect can also be seen
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Figure 6.10: Comparison of numerical predictions by Vito Scarola for motion in a disordered lattice to
data from Fig. 6.4. Theory curves (black points) are generated for a limited range of data for s = 6 and
7ER based on the convergence of the high-temperature series used to infer thermodynamic quantities in the
lattice. The theory curves are generated using the published entropy, number, trap, and lattice properties
of the experiment, and excellent agreement is found with the measured quantities (red points) with zero free
parameters. Predicted motion is also included for higher entropies (blue points) where the high-temperature
series expansion allows for comparison at lower ∆. Figures are modified from Reference [179].

by increasing the harmonic confinement or any other method that restricts the number of available states.

For the data at s = 6 and 7ER and ∆ <= 1.5ER, adiabatic heating from the disorder is found to increase

the temperature by at most a factor of two. This heating is a crucial element of the analysis by Scarola

and DeMarco as the disorder-induced shift in temperature enables the data at S/N = 1.5kB to be analyzed

within the high-temperature series expansion for ∆ > 0.2ER. For ∆ smaller than this value, the series is not

convergent and this motivates the analysis at S/N = 1.9kB , which compares favorably with our data at low

∆. In the presence of adiabatic heating due to the exclusion of lattice sites with high εi, the quasimomentum

distribution should also be expected to broaden, though this is not observed in the experiment. Data in

Figure 6.11 shows vertical slices through the quasimomentum distribution with and without disorder at

s = 4 and 7ER, though no appreciable broadening is visible. The effect of adiabatic heating on the observed

quasimomentum distribution is unknown.

6.3 Quasimomentum Relaxation in a 3D Lattice

We study the dynamics of non-equilibrium quasimomentum distributions in strongly correlated metals to

explore momentum relaxation rates, resistivity, and the validity of Fermi liquid theory in the Hubbard

model. Experiments are performed by generating relative displacement between the Fermi surfaces of a two

component gas in an optical lattice. The gases start spin-polarized in the 3D lattice, and a Raman transition
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Figure 6.11: Comparison of bandmapped quasimomentum distributions with and without disorder.Vertical
slices through ñ(q) comparing the quasimomentum distributions with and without disorder at lattice depths
of 4ER (a) and 7ER (b).

is used to transfer a set fraction of the gas to different spin state with a shift in quasimomentum of qB/2.

The displacement between the Fermi surfaces of the two spins relaxes in time, and the relative motion of

the two gases is measured as a function of time. This measurement is repeated at different ratios of U/12t

and temperatures in the lattice (by varying the lattice depth and the entropy and number at the end of

evaporative cooling). The motivation for these measurements and the experimental methods are presented

in the following section.

6.3.1 Motivation and Resistivity in Materials

As mentioned in the introduction to this chapter, there are a large number of open questions about the

strange metal regime of the high-temperature superconductors. The T -linear scaling of the resistivity is the

most prominent “strange” behavior in this regime, and it is so named because the scaling at low temperatures

is typically T 2. Other scalings are present at higher temperature due to the relative contributions of electron-

electron and electron-phonon scattering [8], but at the lowest temperatures, phonon modes are frozen out, and

the resistivity is controlled only by the electron-electron scattering rate. In this scenario, only the electrons

within an energy range of width T around the Fermi energy can scatter, as there is unity occupation of

all lower lying states, and the scattering rate scales as T 2. In the cuprates, T -linear resistivity has been

measured from temperatures as low as 1 Kelvin to as high as 1000 Kelvin. The low-temperature value is

measured in the normally superconducting regime by suppressing superconductivity with a 35 Tesla external

magnetic field [35].

Recent analysis of materials with T -linear resistivity (including high-temperature superconductors, heavy

fermion materials, quantum critical metals, and normal metals) has motivated a speculative phenomenolog-
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ical limit on relaxation [74] and the energy diffusion rates [24] in strongly-correlated materials independent

of the nature and number of the underlying relaxation mechanisms. This is related to the Mott-Ioffe Regel

criterion which states that coherent quasiparticle conductivity disappears when the mean-free-path reaches

the inter-atomic spacing [78]. In Reference [24], the authors consider a large number of materials that ex-

hibit T -linear resistivity, and a simple Drude model calculation shows that these materials have very similar

scattering rates per Kelvin. In the Drude model, the resistivity 1
ρ = ne2τ/m, where n is the carrier density,

e is the charge, τ is the mean time between scattering events, and m is the mass of the charge carrier.

This can be rearranged to express the mean time between scattering events as τ = m/(ρne2). The proposed

phenomenological bound set on the scattering time is τ = h/(kBT ). This timescale can be rewritten to incor-

porate the Fermi energy as τ = vF /(kF kBT ) where vF is the Fermi velocity and kF is the Fermi wavevector.

The Drude model prediction for the mean time for scattering can be related to the phenomenological bound

to find the following dimensionless variable:

ne2vF
kBkF

dρ

dT
≈ 1. (6.3)

Reference [24] shows that this condition is satisfied across a large range of materials with varying dimen-

sionality and scattering processes.

6.3.2 Quasimomentum Relaxation in Optical Lattices

We probe transport and relaxation dynamics in the metallic regime of the Hubbard model for U < 12t and

for characteristic densities less than required to generate a band insulator. Atoms are loaded into 3D optical

lattice with s = 4 to 7ER, and thermodynamic quantities in the lattice are inferred using methods described

in Section 5.3. A non-equilibrium quasimomentum distribution is created by first loading a spin-polarized

gas into the optical lattice and then applying a Raman transition to transfer a fraction of the gas to a

different spin state with non-zero momentum relative to the initial state. The relative motion between the

two states is allowed to evolve, and the relative velocity of the two components is measured in time.

A sketch of the experimental apparatus is shown in Figure 6.12. Two single frequency laser beams drive

Raman transitions as described in Section 2.5, where each beam is detuned by ∆ ≈ 20GHz from the 40K

D1 line. The beams labeled Raman1 and Raman2 have wavevectors k1 and k2 and frequencies ω1 and

ω2. Both beams are derived from the same laser; frequency shifts between the two beams are provided by

AOMs. These beams drive transitions with energy δω = ω1 − ω2 between the initial state in the lattice

|F = 9/2,mF = 9/2〉 and |9/2, 7/2〉, with imparted momentum set by δk = k1−k2 along the y-direction in

the experiment. The magnitude of the shift in momentum is set by the 30◦ angle between the beams and
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Figure 6.12: Raman transitions are used to generate relative motion between spin states in an optical
lattice. (a) Two single frequency Raman beams with frequencies ω1 and ω2 are focused on the position
of the lattice gas. The beams cross at an angle of 30◦ that sets the momentum imparted to the atoms of
δq = k1 − k2 with magnitude qB/2. (b) The experiment begins with a single spin component in the lattice
in the |9/2, 9/2〉 state. The Raman transition is tuned to the energy difference between the mF = 9/2 and
7/2 states (δω = ω1 − ω2), and a set fraction of the atoms are driven to the |9/2, 7/2〉 state with a shifted
average quasimomentum of qB/2.

corresponds to ≈ qB/2 in the λ = 782.2 nm lattice. The fraction of atoms transferred is set by the pulse time

and the Rabi rate, which scales with the electric field in each Raman beam. Transitions are performed at

low magnetic fields, typically 3.2 Gauss; and within the bandwidth of the Raman pulses, transitions between

all Zeeman levels in the F = 9/2 manifold are degenerate. Starting with a polarized gas in |9/2, 9/2〉,

typical transitions transfer ≈ 30% of the gas to |9/2, 7/2〉 as a trade-off between significant transfer into the

mF = 7/2 state without appreciable population in |9/2, 5/2〉. Variation in the transferred fraction is at the

single percent level due to active stabilization of the beam intensity.

Generating relative motion with Raman transitions has several benefits over generating an impulse with

magnetic field gradients, as was done in the disordered lattice transport measurements described at the

beginning of this chapter. The most significant benefit is that the transition can be carried out rapidly

while still providing a large shift in momentum space. Typical relaxation times measured in the non-

disordered lattice are on the millisecond timescale or shorter, as shown in Figure 6.13(b). The magnetic field

gradient pulses used to generate motion in Section 6.2.2 were 2 ms long to generate an impulse equivalent

to ≈ qB/4, and dynamics during this time would complicate the interpretation of a relaxation rate. Here,

the Raman light is pulsed on resonance for 20 µs, which is instantaneous compared to the trap frequency

and observed relaxation timescales. The short pulse time affords a transition bandwidth of ≈ 50kHz and

allows for quasimomentum insensitivity in the transfer. The bandwidth of the ground band in the lattice
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Figure 6.13: Spin relaxation measurement in the lattice. (a) A dipole oscillation is generated for a spin-
polarized gas in an s = 4ER lattice to measure the quasimomentum dephasing rate without interaction.
Initial motion is generated by applying a linear potential produced by magnetic field gradient for 2ms; the
damped oscillation has a decay time of τ = 8.0 ± 0.6ms. (b) Measurements of interaction-induced relation
are made by loading a spin polarized gas into the lattice, transitioning a portion of the gas to a second
spin state with mean quasimomentum displaced from zero (as in Figure 6.12), and observing the relative
velocity of the two components as a function of interaction time. Data show relative velocity between
two spin components with an initial relative momentum of δq = qB/2, and the damped oscillation has a
decay constant of 3.0 ± 0.2 ms. The inset shows bandmapped and spin-separated images of the two spin
components, mF = 9/2 and mF = 7/2; zero net quasimomentum for each state is marked by a dotted line.
The Raman induced displacement of the mF = 7/2 atoms from zero net quasimomentum at short time is
clearly visible, and both spin states settle to net zero momentum at long time.

is approximately 8kHz at s = 4ER and smaller at higher lattice depths, and the broad frequency spread

of the Raman transition makes the quasimomentum distribution of the transferred atoms an exact copy of

the original gas shifted by δk ≈ qB/2. This spin insensitivity is useful as the shifted distribution has the

same profile as the original quasimomentum distribution in the lattice. Additionally, since δk is fixed by the

geometry of the Raman beams, the imparted momentum does not depend on the lattice depth used to set the

ratio of U/t, though the net shift in quasimomentum will depend on the initial width of nq. Generating large

relative motion between the mF = 9/2 and 7/2 states with magnetic field gradients would be experimentally

challenging due to the small difference in magnetic moment between the two states, except at prohibitively

large magnetic fields.

Data comparing interaction-induced relaxation to quasimomentum dephasing in a s = 4ER lattice is

shown in Figure 6.13. In measuring relaxation due to interactions, it is important that we distinguish

our signal from other sources of dephasing in the experiment. The lattice dispersion produces anharmonic

motion with energy dependent periods as described in Section 6.3.3, and a gas with initially coherent motion
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and a finite spread in quasimomentum will dephase without the presence of interactions. We measure

this dephasing rate directly by loading a spin polarized gas in the lattice and applying an impulse using a

magnetic field gradient as shown in Figure 6.13(a). This process is similar to the disorder-induced localization

measurement discussed in Section 6.2.2 except with a non-interacting, single-component gas. Damped

sinusoidal oscillations are observed in the center-of-mass quasimometum with a decay time of τ = 8.0±0.6ms.

Data showing relaxation, after generating relative between two spin states using the Raman transition, is

shown in Figure 6.13(b). The measured quasimomentum relaxation rate is τ = 3.0±0.2ms with interactions,

and this timescale is significantly shorter than the relaxation rate due to anharmonicity. The clear separation

of timescales between the two processes allows for the accurate determination of the interaction-induced

relaxation timescale. The inset of Figure 6.13(b) shows spin separated images at various hold times after

the relative motion is initiated. The zero position in these figures is marked for each spin component and is

carefully measured to account for any residual dipole force from the Raman beams by imaging spin mixed

gas with the Raman pulse applied off resonance.

A related transport measurement was performed by the Esslinger group examining dipole oscillations

in a 3D lattice with interactions tuned via a Feshbach resonance [198]. In this work, dipole oscillations

were created by displacing the trap center and observing the gas position in time. Several dipole oscillation

periods are observed in the weakly interacting limit. Increasing the interaction energy causes rapid damping

of the oscillatory motion, and the gas slowly relaxes to the new spatial equilibrium position in the trap plus

lattice system. The relaxation rate is found to decrease with increasing interaction energy as the dynamics

at large U/t are dominated by molecule formation induced by the Feshbach resonance. The presence of

molecules limits the relevance to comparisons with predictions for relaxation rates in the Hubbard model.

6.3.3 Oscillations with Lattice Dispersion

In probing transport properties of lattice gases we create a variety of non-equilibrium quasimomentum

distributions. The time evolution of these distributions can be calculated semi-classically using the lattice

dispersion and the harmonic trap to generate a series of differential equations in q and x. These equations

can be integrated numerically and thermally averaged using statistical weighting to determine the behavior

of the ensemble:
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ẋ =
dε

dq
=

2πt

qB
sin

(
π
q

qB

)
(6.4)

q̇ = −∇U = −mω2x. (6.5)

Solutions to this series of equations provide harmonic motion in the low quasimomentum, effective-

mass limit. Behavior outside of this limit is periodic and anharmonic with amplitude-dependent periods of

oscillation as evident in Fig. 6.14. Ensemble averaging over a distribution of quasimomentum states will lead

to dephasing of the initial motion as states oscillate with different periods. The rate of this dephasing will

increase with the initial width of the quasimomentum distribution and the offset from zero quasimomentum.

A 1D example thermal distribution of quasimomenta displaced by qB/2 is shown in Figure 6.14(b). Note

that the thermally averaged profile does not show qB/2 motion at zero time due to states wrapping around

to negative values of q. This dephasing has been observed by displacing a spin-polarized Fermi gas in a

three-dimensional optical lattice, as shown in Fig 6.13a. Direct comparison to these data can be made by

solving Equations 6.5 and 6.4 in 3D with the measured quasimomentum distributions.

<q
> 

(q
B
)

(a) (b)

Figure 6.14: Classical trajectories in a lattice with harmonic confinement. (a) Equations 6.4 and 6.5 are
integrated numerically to show trajectories in the lattice with harmonic confinement for various values of q
from 0.1 to 0.9 qB in both quasimomentum and position space. Parameters used are s = 4ER, ω = 2π170Hz,
qB = h/782.2 nm, and the mass is that of 40K. Note that trajectories are periodic, but that the period is
strongly amplitude dependent. (b) Classical trajectories are calculated for a thermal ensemble of particles
with a mean quasimomentum of 0.5qB using the lattice parameters in (a). The lower image is the weighted
average of the thermal distribution in the upper frame and shows that initially coherent motion in the lattice
rapidly damps, similar to the measurement shown in Figure 6.13(a).
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6.4 Conclusions

Through transport measurements in a disordered optical lattice, we have observed a strongly-interacting

insulating state, measured an interaction induced insulator-to-metal transition, and probed this insulat-

ing state across a doubling in temperature in the lattice. Recent theoretical work duplicates the observed

transport for s = 6 and 7ER and shows that our observation is consistent with Anderson localization of

Hubbard-band quasiparticles. We probe the analog of the many-body localization scenario by performing

a transport experiment on a gas localized in the disordered lattice over a doubling in the gas temperature.

No increase in conductivity is measured over this range of temperature, and the observed localized state

is consistent with predictions from many-body localization. Future theoretical studies of the critical tem-

perature in trapped systems as well as experimental measures of entanglement in lattice gases are needed

before strong claims about the nature of the localized state are made. Additionally, we have developed a

method for exploring quasimomentum relaxation in strongly correlated metals using Raman induced relative

motion between two spin states in a lattice. This probe will be used to explore the analog of resistivity and

non-Fermi liquid behavior in lattice gases.
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Appendix A

Magnetic Field Simulation

A.1 Field from QUIZ Trap

1 %a l l d i s tance are in microns , cu r r en t s in amps , f i e l d s in gauss
2 r r = −40000:230:40000;
3 zz = −40000:230:40000;
4 [R,Z ] = meshgrid ( rr , zz ) ;
5 c a r t cu r r en t = 152 . 5 ;
6 ca r t po s = −53210;
7 qu i c cu r r en t = 710;
8 i o f f e c u r r e n t = −1∗qu i c cu r r en t ;
9 i o f f e p o s = −1440;

10
11 [ c a r t r ad i a l , c a r t a x i a l ] = c a r t f i e l d (R,Z , ca r t cu r r en t , c a r t po s ) ;
12 [ i o f f e r a d i a l , i o f f e a x i a l ] = i o f f e f i e l d (R,Z , i o f f e c u r r e n t , i o f f e p o s ) ;
13 [ s c i quad rad i a l , s c i quad ax i a l ] = s c i q u a d f i e l d (R,Z , qu i c cur r ent , 0 ) ;
14
15 ax i a l = s c i quad ax i a l + i o f f e a x i a l + c a r t a x i a l ;
16 r ad i a l = s c i quad r ad i a l + i o f f e r a d i a l + c a r t r a d i a l ;
17 f i e l d = sqr t ( ax i a l . ˆ2 + r ad i a l . ˆ 2 ) ;
18
19 c l o s e a l l
20 nf = f i g u r e ;
21 imagesc ( r r /1000 , zz /1000 , f i e l d )
22 colormap ( abs ( cb j e t ) )
23 x l abe l ( ’ Distance (mm) ’ , ’ FontSize ’ ,20)
24 y l abe l ( ’ Distance (mm) ’ , ’ FontSize ’ ,20)
25
26 ax i s image
27 co l o rba r
28 cax i s ( [ 0 , 3 5 0 0 ] )
29 s e t ( nf , ’ Color ’ , ’w ’ )

A.2 Field from a Current Loop

1 funct i on [ ax ia l , r a d i a l ]= cu r r en t l oop (R,Z , current , radius , z c ente r )
2 %a l l d i s tance are in microns , cu r r en t s in amps , f i e l d s in gauss
3 %wr i t ten by WRM on 10/30/2012
4
5 p r e f a c t o r = 20∗100∗ current ;
6 arg1 = 4∗ rad ius∗abs (R) . / ( ( abs (R)+rad ius ).ˆ2+(Z−zcente r ) . ˆ 2 ) ;
7 arg2 = 1./ sq r t ( ( abs (R)+rad ius ).ˆ2+(Z−zcente r ) . ˆ 2 ) ;
8 arg3 = ( rad iusˆ2−R.ˆ2−(Z−zcente r ) . ˆ 2 ) . / ( ( radius−abs (R)) .ˆ2+(Z−zcente r ) . ˆ 2 ) ;
9 arg4 = ( rad iusˆ2+R.ˆ2+(Z−zcente r ) . ˆ 2 ) . / ( ( radius−abs (R)) .ˆ2+(Z−zcente r ) . ˆ 2 ) ;

10 [K,E] = e l l i p k e ( arg1 ) ;
11
12 ax i a l = pr e f a c t o r ∗arg2 .∗ (K+E.∗ arg3 ) ;
13 r ad i a l = p r e f a c t o r ∗((Z−zcente r ) . /R) .∗ arg2 .∗(−1∗K+E.∗ arg4 ) ;
14 end

A.3 Field from Coils

1 funct i on [ rad ia l , a x i a l ]= s c i q u a d f i e l d (R,Z , current , p o s i t i on )
2 %a l l d i s tance should be in microns , cu r r en t s in amps , f i e l d in gauss
3 %wr i t ten by WRM on 10/30/2012
4 ax i a l = ze ro s ( s i z e (R) ) ;
5 r a d i a l = ze ro s ( s i z e (R) ) ;
6 r a d i u s s c i = 12850; %in microns
7 z c e n t e r s c i = 20850; %v e r t i c a l d isp lacement
8
9 s c i quad pos = [ 0 , 0 ; 0 , 1 ; 0 , 2 ; 0 , 3 ; 1 , 1 ; 1 , 2 ; 1 , 3 ; 2 , 2 ; 2 , 3 ; 3 , 3 ] ;

10 f o r i = 1 :10 ,
11 f o r p o l a r i t y = [1 ,−1] ,
12 zcente r = ( z c e n t e r s c i +4250∗ s c i quad pos ( i , 2 ) ) ;
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13 rad ius = r a d i u s s c i +4250∗ s c i quad pos ( i , 1 ) ;
14 [ temp axial , t emp rad ia l ] = cu r r en t l oop (R−pos i t i on , Z , p o l a r i t y ∗ current , radius , p o l a r i t y ∗ zcente r ) ;
15 ax i a l = ax i a l + temp axia l ;
16 r ad i a l = r ad i a l + temp rad ia l ;
17 end
18 end
19 end
20
21 funct i on [ rad ia l , a x i a l ]= i o f f e f i e l d (R,Z , current , p o s i t i on )
22 %a l l d i s tance should be in microns , cu r r en t s in amps , f i e l d in gauss
23 %wr i t ten by WRM on 10/30/2012
24 ax i a l = ze ro s ( s i z e (R) ) ;
25 r ad i a l = ze ro s ( s i z e (R) ) ;
26 r a d i u s i o f f e = 10000; %in microns
27 z c e n t e r i o f f e = 19000; %v e r t i c a l d isp lacement
28 i o f f e p o s = [ 0 , 0 ; 0 , 1 ; 1 , 1 ; 1 , 2 ; 1 , 3 ; 2 , 2 ; 2 , 3 ] ;
29
30 f o r i = 1 :7 ,
31 zcente r = −1∗( z c e n t e r i o f f e +4250∗ i o f f e p o s ( i , 2 ) ) ;
32 rad ius = r a d i u s i o f f e +4250∗ i o f f e p o s ( i , 1 ) ;
33 [ temp radia l , temp axia l ] = cur r en t l oop (Z,−1∗(R−po s i t i on ) ,−1∗ current , radius , z c ente r ) ;
34 ax i a l = ax i a l + −1∗temp axia l ;
35 r ad i a l = r ad i a l + temp rad ia l ;
36 end
37 end
38
39 funct i on [ r a d i a l c a r t , a x i a l c a r t ]= c a r t f i e l d (R,Z , current , p o s i t i on )
40 %a l l d i s tance should be in microns , cu r r en t s in amps , f i e l d in gauss
41 %wr i t ten by WRM on 10/30/2012
42 a x i a l c a r t = ze ro s ( s i z e (R) ) ;
43 r a d i a l c a r t = ze ro s ( s i z e (R) ) ;
44 r ad i u s c a r t = 28000; %in microns
45 z c en t e r c a r t = 47000;
46
47 f o r zcente r = z c en t e r c a r t +(0:3)∗4250 ,
48 f o r rad ius = r ad i u s c a r t +(0:11)∗4250 ,
49 f o r p o l a r i t y = [1 , −1 ] ;
50 [ temp axial , t emp rad ia l ] = cu r r en t l oop (R−pos i t i on , Z , p o l a r i t y ∗ current , radius , p o l a r i t y ∗ zcente r ) ;
51 a x i a l c a r t = a x i a l c a r t + temp axia l ;
52 r a d i a l c a r t = r a d i a l c a r t + temp rad ia l ;
53 end
54 end
55 end
56 end

A.4 Breit-Rabi Equation for 40K

1 funct i on [ energy GHz , energy mK ,moment]= br e i t r ab i 40K (F,mF,B)
2 %ca l c u l a t e the energy s p l i t t i n g o f the var ious zeeman l e v e l s in the
3 %hyper f ine ground s t a t e s o f 40K
4 %wri t ten by WRM on 10/31/2012. Happy Halloween mofo .
5 %re turns the po t en t i a l in m i l l iKe l v i n with no o f f s e t .
6 mK prefactor = 50 ;
7 atomicmass = 40 ; %atomic mass o f Potassium
8 SS = 1/2; %e l e c t r on sp in
9 LL = 0 ; %o r b i t a l angular momentum

10 JJ = 1/2; %coupled l and s
11 I I = 4 ; %nuc lear sp in
12 % FF = 2 ; %coupled i and j
13 gI = 2 . 002 ; %nuc lear g f a c t o r
14 A52S12 = −0.2857; %hyper f ine A constant
15 Ehfs = (A52S12/2)∗(2∗ I I + 1 ) ; %Energy o f the hype f ine s p l i t t i n g in GHz
16
17 u0 = 1 .4/1000 ; %Bohr magneton in GHz
18 u0un = 1/( atomicmass ∗1836) ; %r a t i o o f Bohr to nuce lar magnetic moment
19 un = u0un∗u0 ;
20 gJ = 1 + ( JJ∗( JJ+1)−LL∗(LL+1)+SS∗(SS+1))/(2∗JJ∗( JJ+1)); % approximation f o r gJ
21 XX = u0∗( gJ + gI∗u0un )/ Ehfs ; %parameter fed in to Breit−Rabi formula d iv ided by magnetic f i e l d
22
23 i f (mF > 4 . 2 ) ,
24 energy GHz = (B<=(−1/XX)).∗(−1∗Ehfs /(2∗( I I +1))−gI∗un∗mF∗B+((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ∗ . . .
25 sq r t (1+((4∗mF∗XX∗B)/(2∗ I I +1))+(XX∗B) . ˆ 2 ) )+ . . .
26 (B>(−1/XX)).∗(−1∗Ehfs /(2∗( I I +1))−gI∗un∗mF∗B−((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ∗ . . .
27 sq r t (1+((4∗mF∗XX∗B)/(2∗ I I +1))+(XX∗B) . ˆ 2 ) ) ;
28 e l s e
29 energy GHz = −1∗Ehfs /(2∗( I I +1))−gI∗un∗mF∗B+((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ∗ . . .
30 sq r t (1+((4∗mF∗XX∗B)/(2∗ I I +1))+(XX∗B) . ˆ 2 ) ;
31 end
32
33 %f i x odd problem with 9/2 , 9/2 s t a t e above −1/XX, stupid hack
34 i f (mF > 4 . 2 ) ,
35 energy mK = (B>(−1/XX) ) .∗ ( mK prefactor∗(−1∗gI∗un∗mF∗B−((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ∗ . . .
36 sq r t (1+((4∗mF∗XX∗B)/(2∗ I I +1))+(XX∗B).ˆ2)−((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ) )+ . . .
37 (B<=(−1/XX) ) .∗ ( mK prefactor∗(−1∗gI∗un∗mF∗B+((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ∗ . . .
38 sq r t (1+((4∗mF∗XX∗B)/(2∗ I I +1))+(XX∗B).ˆ2)−((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ) ) ;
39 e l s e
40 energy mK = mK prefactor∗(−1∗gI∗un∗mF∗B+((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ∗ . . .
41 sq r t (1+((4∗mF∗XX∗B)/(2∗ I I +1))+(XX∗B).ˆ2)−((−1)ˆ(9/2−F))∗ ( Ehfs / 2 ) ) ;
42 end
43 %returns f i e l d in m i l l iKe l v i n
44
45 i f (mF > 4 . 2 ) ,
46 moment = 1000∗( gI∗un∗mF+(−1)ˆ(9/2−F)∗( Ehfs /2)∗XX) ;
47 e l s e
48 moment = 1000∗( gI∗un∗mF+(−1)ˆ(9/2−F)∗( Ehfs / 4 ) ∗ . . .
49 (4∗mF∗XX/(2∗ I I +1)+2∗XXˆ2∗B) . / ( sq r t (1+(4∗mF∗XX∗B/(2∗ I I +1))+(XX∗B) . ˆ 2 ) ) ) ;
50 end
51
52 end

141



Appendix B

Scattering in Speckle Potentials

B.1 Ratio of Boltzmann and Scattering Mean Free Path in

Speckle.

1 ps = @(kx , ky , kz ) ( 1 . / sq r t ( kx .ˆ2+ky . ˆ 2 ) ) . ∗ . . .
2 exp (−0.25∗(kx .ˆ2+ky .ˆ2) −0 .25∗ (5 .8ˆ2)∗ ( ( kz . ˆ 2 ) . / ( kx.ˆ2+ky . ˆ 2 ) ) ) ;
3
4 ang l eL i s t = 0 : 1 80 ;
5 r r L i s t = 10ˆ−2;
6 l b l s c o r r e c t i o n = [ ] ;
7 f o r angle = ang leL i s t ,
8 nn = 5e6 ;
9 r r = 1 ; %s e t s the rad ius o f the sphere i s k−space

10 theta0 = pi∗angle /180 . 0 ; %s e t s the angle from the p o s i t i v e z ax i s
11
12 TH = 2∗ pi∗rand (1 , nn ) ;
13 PH = as in (−1+2∗rand (1 , nn ) ) ;
14 [X,Y,Z ] = sph2cart (TH,PH, 1 ) ;
15
16 %s c a l e the rotated coo rd ina te s such that
17 x = rr ∗X; y = rr ∗Y; z = rr ∗Z ;
18
19 %eva luate weight o f power spectrum on d i sp l a c ed su r f a c e
20 val = ps (x−r r ∗ s i n ( theta0 ) , y , z−r r ∗ cos ( theta0 ) ) ;
21 de l t a k = [ s i n ( theta0 ) ; 0 ; cos ( theta0 ) ]∗ ones (1 , nn)−[X;Y;Z ] ;
22 cos theta = 1 − sum( de l t a k . ˆ 2 , 1 ) / 2 ;
23 l b l s c o r r e c t i o n = cat (1 , l b l s c o r r e c t i o n ,1/(1−sum( val .∗ cos theta )/sum( val ) ) ) ;
24 end
25
26 % plot above
27
28 c l o s e a l l
29 p lo t ( ang leL i s t , l b l s c o r r e c t i o n , ’−k ’ , ’ LineWidth ’ ,2)
30 s e t ( gcf , ’ Color ’ , ’w ’ )
31 gr id on
32 x l abe l ( ’ Polar Angle ’ , ’ FontSize ’ ,16)
33 y l abe l ( ’L B/L s ’ , ’ FontSize ’ ,16)
34
35 % f ind the energy dependence o f the s c a t t e r i n g c o r r e c t i on
36
37 ps = @(kx , ky , kz ) ( 1 . / sq r t ( kx .ˆ2+ky . ˆ 2 ) ) . ∗ . . .
38 exp (−0.25∗(kx .ˆ2+ky .ˆ2) −0 .25∗ (5 .8ˆ2)∗ ( ( kz . ˆ 2 ) . / ( kx.ˆ2+ky . ˆ 2 ) ) ) ;
39
40 ang l eL i s t = [ 0 , 3 0 , 6 0 , 9 0 ] ;
41 r r L i s t = logspace (−2 ,2 ,40);
42 l b l s c o r r e c t i o n = [ ] ;
43 f o r angle = ang leL i s t ,
44 temp = [ ] ;
45 f o r r r = r rL i s t ,
46 nn = 1e7 ;
47 % rr = 1 ; %s e t s the rad ius o f the sphere i s k−space
48 theta0 = pi∗angle /180 . 0 ; %s e t s the angle from the p o s i t i v e z ax i s
49
50 TH = 2∗ pi∗rand (1 , nn ) ;
51 PH = as in (−1+2∗rand (1 , nn ) ) ;
52 [X,Y,Z ] = sph2cart (TH,PH, 1 ) ;
53
54 %s c a l e the rotated coo rd ina te s such that
55 x = rr ∗X; y = rr ∗Y; z = rr ∗Z ;
56
57 %eva luate weight o f power spectrum on d i sp l a c ed su r f a c e
58 val = ps (x−r r ∗ s i n ( theta0 ) , y , z−r r ∗ cos ( theta0 ) ) ;
59 de l t a k = [ s i n ( theta0 ) ; 0 ; cos ( theta0 ) ]∗ ones (1 , nn)−[X;Y;Z ] ;
60 cos theta = 1 − sum( de l t a k . ˆ 2 , 1 ) / 2 ;
61 temp = cat (1 , temp ,1/(1−sum( val .∗ cos theta )/sum( val ) ) ) ;
62 end
63 l b l s c o r r e c t i o n = cat (2 , l b l s c o r r e c t i o n , temp ) ;
64 end
65
66 % plot above
67 cL i s t = [ 0 . 6 4 0 0 . 1 5 ; 0 .88 0 .51 0 . 0 8 ; 0 0 .41 0 . 2 1 ; 0 .19 0 .21 0 . 5 8 ] ;
68 nf = f i g u r e ;
69 f o r i = 1 : numel ( ang l eL i s t ) ,
70 l o g l o g ( r r L i s t . ˆ2 , l b l s c o r r e c t i o n ( : , i ) , ’− ’ , ’ LineWidth ’ ,2 , ’ Color ’ , cL i s t ( i , : ) )
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71 hold on
72 end
73 s e t ( gcf , ’ Color ’ , ’w ’ )
74 gr id on
75 x l abe l ( ’E/E s ’ , ’ FontSize ’ ,16)
76 y l abe l ( ’L B/L s ’ , ’ FontSize ’ ,16)
77 legend ( ’ 0 ’ , ’ 30 ’ , ’ 60 ’ , ’ 90 ’ , ’ Location ’ , ’ NorthWest ’ )
78 ylim ( [ 0 . 5 , 1 0 ˆ 3 ] )

B.2 On-Shell Scattering Probability in Speckle

1 % in t e g r a t e over on−s h e l l s c a t t e r i n g weight
2 E Esigma = 100; %p a r t i c l e energy
3 k = sqr t ( E Esigma ) ; %magnitude o f k−vector
4 an i sot ropy = 5 . 8 ; %r a t i o o f s i gma pa r a l l e l to s igma perp
5 t h e t a s h i f t = 0∗ pi /180; %d i r e c t i o n o f
6
7 ps = @(kx , ky , kz ) pi ˆ ( 1 . 5 )∗ ( 1 . / sq r t ( kx .ˆ2+ky . ˆ 2 ) ) . ∗ . . .
8 exp (−0.25∗(kx .ˆ2+ky .ˆ2)−0.25∗( an i sot ropy ˆ2)∗ ( ( kz . ˆ 2 ) . / ( kx.ˆ2+ky . ˆ 2 ) ) ) ;
9 p s s h i f t = @( r , t , p , p0 ) s i n (p ) .∗ ps ( r .∗ ( cos ( t ) .∗ s i n (p)− s i n ( p0 ) ) , . . .

10 r .∗ s i n ( t ) .∗ s i n (p ) , r .∗ ( cos (p)−cos ( p0 ) ) ) ;
11 on sh e l l w e i gh t = @( theta , phi ) r r ∗ an i sot ropy /(4∗ pi ˆ 2 ) ∗ . . .
12 p s s h i f t (k , theta , phi , t h e t a s h i f t ) ;
13 tauDelta hbarEsigma = 1/( i n t e g r a l 2 ( on she l l we i gh t ,0 ,2∗ pi , 0 , p i ) ) ;
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Appendix C

Thermodynamics in Lattice + Trap
System

C.1 Hartree-Fock Thermodynamics in Optical Lattice

1 % generate d i s t r i b u t i o n o f cos (q ) f o r doing f a s t 2D eva luat ion
2 npoints = 5000000;
3 cosq = 3−sum( cos ( p i∗(1−2∗ rand ( npoints , 3 ) ) ) , 2 ) ;
4 nq = 100;
5 c o sq va l s = l i n spa c e (0 ,6 , nq ) ;
6 cosq prob = h i s t ( cosq ( ) , c o s q va l s ) ;
7 cosq prob = cosq prob / npoints ;
8
9 rmax = 60 ;

10 nr = 60+1;
11 x l i s t = l i n spa c e (0 , rmax , nr ) ;
12 [ qval , xval ] = meshgrid ( cosq va l s , x l i s t ) ;
13 [ qprob , xprob ] = meshgrid ( cosq prob ,4∗ pi ∗( rmax/nr )∗ l i n s pa c e (0 , rmax , nr ) . ˆ 2 ) ;
14
15 %convert a l l to columns
16 qval = qval ( : ) ;
17 xval = xval ( : ) ;
18 qprob = qprob ( : ) ;
19 xprob = xprob ( : ) ;
20
21 % sum( qprob .∗ xprob .∗ exp(−1∗( xval /10).ˆ2− qval ) )
22 %th i s should equal 562 .614 , i t does ! checked with mathematica .
23
24 % OK now ac tua l l y do the har t r e e fock c a l c u l a t i o n
25
26 % s = [4 4 .5 5 5 .5 6 6 .5 7 ] ;
27 % t = [ 0 . 0 8 6 2 , . . .
28 % 0 . 0 7 5 4 , . . .
29 % 0 . 0 6 6 1 , . . .
30 % 0 . 0 5 7 9 , . . .
31 % 0 . 0 5 0 9 , . . .
32 % 0 . 0 4 4 8 , . . .
33 % 0 . 0 3 9 5 ] ;
34 %
35 % U = [ 0 . 1 9 9 5 3 , . . .
36 % 0 . 2 2 6 1 2 , . . .
37 % 0 . 2 5 2 7 5 , . . .
38 % 0 . 2 7 9 2 8 , . . .
39 % 0 . 3 0 5 6 1 , . . .
40 % 0 . 3 3 1 6 8 , . . .
41 % 0 . 3 5 7 4 5 ] ;
42
43 %number constra int r ep r e s en t the number in a s i n g l e sp in s t a t e ( N tot /2)
44 t = 0 . 0862 ; Umax = 0 .19953 ; number constra int = 49∗1000/2; %in un i t s o f ER
45 % t = 0 .0661 ; Umax = 0 .25275 ; number constra int = 32.8∗1000/2 ; %in un i t s o f ER
46 % t = 0 .0509 ; Umax = 0 .30561 ; number constra int = 22.2∗1000/2 ; %in un i t s o f ER
47 % t = 0 .0395 ; Umax = 0 . 357 ; number constra int = 15.2∗1000/2 ; %in un i t s o f ER
48 % gamma = 0.25∗0 .00170∗ (100/107)ˆ2 ; % in un i t s o f ER per wavelenth ˆ2
49 % gamma = 0.25∗0 .00170∗ (100/107)ˆ2 ; % in un i t s o f ER per wavelenth ˆ2
50 gamma = 0.000425∗ (100/107)ˆ2 ; % in un i t s o f ER per l a t t i c e s i t e ˆ2
51 en t ropy cons t r a in t = 1 . 7 ;
52
53 %thermodynamics are done f o r a s i n g l e sp in s t a t e . Divide the i n t e r a c t i o n energy
54 %equa l ly between the two s t a t e s so that energy i s not double counted !
55 Umax = Umax/2 ;
56
57 g r i dpo in t s = 50 ;
58 [TT,mumu] = meshgrid ( l i n spa c e ( 0 , 0 . 3 , g r i dpo in t s ) , l i n s pa c e (0 . 01 , 1 , g r i dpo in t s ) ) ;
59 TT col = TT( : ) ;
60 mumu col = mumu( : ) ;
61 temp density = ze ro s ( s i z e ( xval ) ) ;
62 dens i ty = ze ro s ( s i z e ( x l i s t ) ) ;
63
64 gdens i ty = [ ] ;
65 qd i s t = [ ] ;
66 checkNumber = [ ] ;
67 thermodynamics = [ ] ;
68
69 adj max = 0 . 5 ;
70 adj = 0 . 5 ;
71 i f Umax==0,
72 U l i s t = ze ro s ( 1 , 6 ) ;
73 e l s e
74 U l i s t = [ ze ro s (1 , 6 ) , l i n spa c e (0 ,Umax, 1 5 ) ,Umax∗ones ( 1 , 6 ) ] ;
75 end
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76
77 f o r i i = 1 : numel ( U l i s t ) ,
78 U = Ul i s t ( i i )
79 entropy mc = zero s ( s i z e ( TT col ) ) ;
80 number mc = zero s ( s i z e ( TT col ) ) ;
81 f o r i = 1 : numel (TT) ,
82 T = TT col ( i ) ;
83 mu = mumu col ( i ) ;
84 number mc ( i ) = sum( qprob .∗ xprob . ∗ 1 . / ( . . .
85 exp ((2∗ t∗qval+gamma∗xval .ˆ2+U∗ temp density−mu) . /T)+1)) ;
86 entropy mc ( i ) = sum( qprob .∗ xprob .∗ ( log (1+exp ( (mu−2∗t∗qval−gamma∗xval .ˆ2−U∗ temp density ) . /T ) ) . . .
87 −((mu−2∗t∗qval−gamma∗xval .ˆ2−U∗ temp density ) . /T ) . ∗ . . .
88 ( 1 . / ( exp(−1∗(mu−2∗t∗qval−gamma∗xval .ˆ2−U∗ temp density ) . /T)+1) ) ) ) ;
89 end
90 entropy mc = reshape ( entropy mc , s i z e (TT) ) ;
91 number mc = reshape (number mc , s i z e (TT) ) ;
92
93 f r a c e r r o r = abs (number mc−number constra int )/ number constra int + . . .
94 abs ( ( ( entropy mc ./ number mc)− en t ropy cons t r a in t )/ en t ropy cons t r a in t ) ;
95 f r a c e r r o r = f r a c e r r o r ( : ) ;
96
97 %f ind best T and mu from e r r o r f un c t i ona l
98 [ x , indx ] = min( f r a c e r r o r ) ;
99 T = TT col ( indx ) ;

100 mu = mumu col ( indx ) ;
101
102 % dens i ty as a funct i on o f rad ius
103 dens i ty1 = ze ro s ( s i z e ( dens i ty ) ) ;
104 f o r i = 1 : numel ( x l i s t ) ,
105 x = x l i s t ( i ) ;
106 dens i ty1 ( i ) = sum( cosq prob . ∗ 1 . / ( . . .
107 exp ((2∗ t∗ c o sq va l s+gamma∗x.ˆ2+U∗dens i ty ( i )−mu) . /T)+1)) ;
108 end
109 dens i ty = dens i ty1 ;
110 gdens i ty = cat (1 , gdensity , dens i ty ) ;
111
112 %ca l c u l a t e quasimomentum d i s t r i b u t i n from (000) to (100)
113 qdist temp = [ ] ;
114 f o r i = l i n spa c e (0 , pi , 2 0 ) ,
115 temp = sum( x l i s t . ˆ 2 . ∗ 1 . / ( . . .
116 exp ((2∗ t∗(1− cos ( i ))+gamma∗ x l i s t .ˆ2+U∗density−mu) . /T)+1)) ;
117 qdist temp = cat (2 , qdist temp , temp ) ;
118 end
119 qd i s t = cat (1 , qdist , qdist temp ) ;
120
121 %generate dens i ty l i s t to be used in next i t e r a t i o n
122 [ foo , temp density ] = meshgrid ( ones (nq , 1 ) , dens i ty ) ;
123 temp density = temp density ( : ) ;
124
125 %generate new gr id point based on l a s t value found
126 g r i dpo in t s = 25 ;
127
128 [TT,mumu] = meshgrid ( l i n spa c e (T∗(1−adj ) ,T∗(1+adj ) , g r i dpo in t s ) , . . .
129 l i n spa c e (mu∗(1−adj ) ,mu∗(1+adj ) , g r i dpo in t s ) ) ;
130 TT col = TT( : ) ;
131 mumu col = mumu( : ) ;
132
133 i f ( i i <7) adj = adj ∗0 . 5 ; end
134 i f ( i i ==7) adj = adj max ; end
135 i f (U == Umax) adj = adj ∗0 . 5 ; end
136
137 checkNumber = cat (1 , checkNumber , sum( qprob .∗ xprob . ∗ 1 . / ( . . .
138 exp ((2∗ t∗qval+gamma∗xval .ˆ2+U∗ temp density−mu) . /T)+1) ) ) ;
139
140 thermodynamics = cat (1 , thermodynamics , [ t ,U,T,mu, dens i ty ( 1 ) , . . .
141 qdist temp ( end )/ qdist temp ( 1 ) ] ) ;
142 end
143 c l o s e a l l
144 p lo t ( gdens ity ’ )
145 %th i s p r i n t s the thermodynamic va r i ab l s as a funct i on o f i t e a r t i o n
146 %number . check t h i s f o r convergence and adjust acco rd ing ly !
147 thermodynamics
148
149 % plot quasimomentum dis t , compare NI and HF
150 c l o s e a l l
151 q x l i s t = l i n spa c e (0 , pi , 2 0 ) ;
152 norm = max ( [ qd i s t ( 6 , : ) qd i s t ( end , : ) ] ) ;
153 p lo t ( q x l i s t /pi , qd i s t ( 6 , : ) / norm , ’ k ’ , ’ LineWidth ’ ,2)
154 hold on
155 p lo t ( q x l i s t /pi , qd i s t ( end , : ) / norm , ’ r ’ , ’ LineWidth ’ ,2)
156 s e t ( gcf , ’ Color ’ , ’w ’ )
157 x l abe l ( ’Quasimomentum (q / q B ) ’ , ’ FontSize ’ ,12)
158 y l abe l ( ’ Occupation ( arb ) ’ , ’ FontSize ’ ,12)
159 h = legend ( ’Non−I n t e r a c t i n g ’ , ’ Hartree−Fock ’ ) ;
160 s e t (h , ’ FontSize ’ ,12)
161 gr id on
162 ylim ( [ 0 , 1 ] )
163 s e t ( gcf , ’ Pos i t i on ’ , [ 700 670 560 420 ] )
164
165 nf = f i g u r e ;
166 p lo t ( x l i s t , gdens i ty ( 6 , : ) , ’ k ’ , ’ LineWidth ’ ,2)
167 hold on
168 p lo t ( x l i s t , gdens i ty ( end , : ) , ’ r ’ , ’ LineWidth ’ ,2)
169 s e t ( gcf , ’ Color ’ , ’w ’ )
170 x l abe l ( ’ Radial Distance (d) ’ , ’ FontSize ’ ,12)
171 y l abe l ( ’Occ . per Spin State (#) ’ , ’ FontSize ’ ,12)
172 hh = legend ( ’Non−I n t e r a c t i n g ’ , ’ Hartree−Fock ’ ) ;
173 s e t (hh , ’ FontSize ’ ,12)
174 xlim ( [ 0 , 4 5 ] )
175 gr id on
176 s e t ( gcf , ’ Pos i t i on ’ , [ 100 670 560 420 ] )
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C.2 Calculating Bandmapped Optical Depth Images

1 %ca l c u l a t e OD image by summing n(q ) along a l i n e p a r a l l e l with imaging
2 %ax i s f o r each p i x e l in the imaging system . don ’ t expect f a s t eva luat i on .
3 t = 0 . 0862 ;
4 T = t /2 ;
5 mu = 5∗ t ;
6 gamma = 0.000425∗ (100/107)ˆ2 ;
7
8 ximg = l i n spa c e (−2 ,2 ,160);
9 %th i s g i v e s same magn i f i ca t i on as imaging at 10ms

10 [ xx , yy ] = meshgrid ( ximg , ximg ) ;
11 xxc = reshape (xx , numel ( xx ) , 1 ) ;
12 yyc = reshape (yy , numel ( yy ) , 1 ) ;
13 npoints = 500 . 0 ;
14 t t = l i n spa c e (−2.0 ,2 , npoints ) ;
15 OD = zero s ( s i z e ( xxc ) ) ;
16 f o r i = 1 : numel ( xxc ) ,
17 xprime = xxc ( i ) ;
18 yprime = yyc ( i ) ;
19 x0 = [ xprime/ sq r t (2.0)+ yprime/ sq r t ( 3 . 0 ) , . . .
20 −1∗xprime/ sq r t (2.0)+ yprime/ sq r t ( 3 . 0 ) , yprime/ sq r t ( 3 . 0 ) ] ;
21 imagingDir = (1/ sq r t ( 6 . 0 ) )∗ [ 1 , 1 , −2 ] ;
22 x = x0(1)+ imagingDir (1)∗ t t ;
23 y = x0(2)+ imagingDir (2)∗ t t ;
24 z = x0(3)+ imagingDir (3)∗ t t ;
25
26 tempProb = 0 ;
27 f o r j = 1 : numel (x ) ,
28 i f l o g i c a l ( ( abs (x ( j ))<1).∗( abs (y ( j ))<1).∗( abs ( z ( j ))<1)) ,
29 prob = sum( x l i s t . ˆ 2 . ∗ 1 . / ( . . .
30 exp ((2∗ t∗(3− cos ( p i∗x( j ))− cos ( p i∗y( j ))− cos ( p i∗z ( j ) ) ) . . .
31 +gamma∗ x l i s t .ˆ2+U∗density−mu) . /T)+1)) ;
32 tempProb = tempProb + prob ;
33 end
34 end
35 OD( i ) = tempProb/ npoints ;
36 end
37 number = 20000;
38 OD = number∗3∗766.7ˆ2/((3 .19)ˆ2∗2∗ pi ∗1000)∗ reshape (OD/sum(OD( : ) ) , s i z e ( xx ) ) ;
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