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Abstract

To handle millions of user requests every second and process hundreds of terabytes of

data each day, many organizations have turned to large datacenter-scale computing

systems. The applications running in these datacenters consist of a multitude of

dependent logical components or stages which perform specific functionality. These

stages are connected to form a directed acyclic graph (DAG), with edges representing

input-output dependencies. Each stage can run over tens to thousands of machines,

and involves multiple cluster sub-systems such as storage, network and compute. The

scale and complexity of these applications can lead to significant delays in their end-

to-end latency. However, the organizations running these applications have strict

requirements on this latency as it directly affects their revenue and operational costs.

Addressing this problem, the goal of this dissertation is to develop scheduling and

resource allocation techniques to optimize for the end-to-end latency of datacenter

applications. The key idea behind these techniques is to utilize coordination between

different application components, allowing us to efficiently allocate cluster resources.

In particular, we develop planning algorithms that coordinate the storage and com-

pute sub-systems in datacenters to determine how many resources should be allocated

to each stage in an application along with where in the cluster should they be allo-

cated, to meet application requirements (e.g., completion time goals, minimize average

completion time etc.). To further speed up applications at runtime, we develop a few

latency reduction techniques: reissuing laggards elsewhere in the cluster, returning

partial results and speeding up laggards by giving them extra resources. We perform

a global optimization to coordinate across all the stages in an application DAG and

determine which of these techniques works best for each stage, while ensuring that

the cost incurred by these techniques is within a given end-to-end budget. We use ap-

plication characteristics to predict and determine how resources should be allocated

to different application components to meet the end-to-end latency requirements.

We evaluate our techniques on two different kinds of datacenter applications: (a)

ii



web services, and (b) data analytics. With large-scale simulations and an imple-

mentation in Apache Yarn (Hadoop 2.0), we use workloads derived from production

traces to show that our techniques can achieve more than 50% reduction in the 99th

percentile latency of web services and up to 56% reduction in the median latency of

data analytics jobs.
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Chapter 1

Introduction

With the exponential growth of tablet PCs and mobile devices over the past decade [1,

2], our lives have increasingly moved online. This has resulted in unprecedented

amount of user data and traffic. Internet companies like Google and Facebook process

millions of queries every minute and generate several petabytes of data every day [3,

4]. The advent of cheaper and novel technologies has also significantly increased

the amount of data being generated and processed in various fields of science. The

Large Hadron Collider produces nearly 41 TB of data daily [5]. The Large Synoptic

Survey Telescope is expected to generate over 55 PB of data every year [5]. With the

increasing popularity of genomic medicine, similar demands have developed in the

field of biology [6]. To handle such scale, these organizations have moved to using

clusters of thousands of computers or datacenters [7].

Typical datacenter applications include (a) web services such as web search, social

networks and e-commerce, and (b) data analytics such as jobs run on frameworks

like Hadoop [8], Hive [9], Spark [10] and Cosmos [11]. These applications consist

of several dependent logical components and can be represented as directed acyclic

graphs (DAGs). Nodes in the DAG, referred to as stages, correspond to specific

functionalities in the application. The edges in the DAG represent the input-output

dependencies between these stages. Each stage can use multiple sub-systems in a

datacenter; e.g., memory, network, storage and compute. Examples of stages include

components such as spell checker or ad generator in a web search engine [12], and

map or reduce stages in a Hadoop job. While some application DAGs (e.g., those in

Hadoop) have fixed input dataset and run only once, others (e.g., web services) can

operate on continuous input1 (e.g., user queries) and run indefinitely.

The performance of these applications is of paramount importance to the or-

ganizations running them. Studies from companies such as Google, Amazon and

Bing [13–15] report that a 100-500 ms increase in server-side latency can result in

1Input arrives over time.
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up to 1–2% loss in revenue, which translates to several tens of millions of dollars.

Thus, such companies have strong requirements on the end-to-end latency of these

datacenter applications, i.e., latency from when the application starts running on a

particular input (or request) to when it generates the corresponding output (or re-

sponse). Several business-critical applications such as generation of the web-index in

Bing or Google, also require strict service level objectives (SLOs) on the end-to-end

latency. Any missed deadline can have significant effects (e.g., delays in updating the

web index information or web page content), resulting in financial penalties [16, 17].

Further, these services represent sizable investments in terms of cluster hardware and

software. Thus, any improvements in performance would be a competitive advantage

to the organizations running them.

Existing systems fall short of achieving these goals as they optimize for the latency

within individual application stages, and lack coordination across different applica-

tion stages and sub-systems. For example, several flow-level techniques have been

proposed recently for datacenter applications (e.g., [18–21]). They aim to meet flow

deadlines or minimize the completion time of groups of flows (or coflows). Such tech-

niques can improve the network latency within or between individual stages in an

application (e.g., shuffle in a MapReduce job [22]) but they do not provide any bene-

fits for the rest of the application. Further, their benefits are limited as they assume

fixed flow end-points, and lack coordination between the flow and task schedulers.

Systems such as Jockey [16] which aim to meet application deadlines provision only

the compute resources to meet application SLOs and do not account for delays caused

by the network or storage sub-system.

Thus, our thesis is that coordination and joint scheduling across different stages

and sub-systems in datacenter applications is required to optimize for their goals on

end-to-end latency.

To this end, we develop Concorde (COordinator of applicatioN COmponents in

Datacenters), a scheduling and resource allocation framework which takes an end-to-

end view of application latency and performs joint optimization across the different

components of datacenter applications to meet their goals. Concorde consists of two

components: (a) an offline component, Corral, which determines how many and where

(in the cluster) should resources be allocated to an application, and (b) an online

component, Kwiken, which uses various latency reduction techniques to overcome

runtime issues (e.g., slow machines) and speed up applications at runtime.

Corral coordinates the storage and compute sub-systems in a datacenter to achieve
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joint data and compute placement for applications. Such coordination allows us to

achieve better data locality and isolation between applications, both spatially (by

scheduling them in different parts of the cluster) and temporally (by scheduling them

during different periods of time), improving their performance. Given a set of applica-

tions and their end-to-end latency goals (e.g., latency deadlines, minimizing average

latency), Corral determines allocation rules which are used by the cluster scheduler

to allocate resources to these applications and meet their goals.

Kwiken, the online component of Concorde, uses various latency reduction tech-

niques to deal with runtime issues such as slow machines, slow disks etc., which result

in laggards in different stages in an application. We explore three different latency

reduction techniques as part of Kwiken — (a) reissuing laggards elsewhere in the clus-

ter, (b) returning incomplete results, and (c) providing extra resources to laggards to

speed them up. Each of these techniques has an associated cost, e.g., extra resources

used, loss in completeness of the response. Kwiken provides an end-to-end view of

the costs and corresponding latency improvements of these techniques in different

stages in the application. It determines which technique best works for each stage,

and how much of the global cost budget must be allocated to that stage to minimize

the end-to-end latency of the application DAG (especially, the higher percentiles).

Each of the above components of Concorde relies on application latency-response

functions which characterize application latency based on the resources allocated.

We determine these functions using application characteristics, which are derived

from application history or profiling runs. While the techniques in Concorde apply

to a variety of DAG-structured datacenter applications, we focus on data analytics

applications and web services in this dissertation. These applications account for a

large fraction of datacenter applications, and are widely used by many organizations

and companies (e.g., [22–26]).

In the rest of this chapter, we first outline the problem this dissertation aims to

solve (Section 1.1) and its scope (Section 1.2). We then illustrate the challenges in

achieving our goals (Section 1.3) and finally, elaborate on our approach and contri-

butions (Section 1.4).

3



1.1 Problem statement

Many datacenter applications can be modeled as directed acyclic graphs (DAG) with

their logical components, called stages, represented as nodes in the graph. The edges

in the graph represent the dependencies between these stages. The source stage has no

input dependencies and processes the input data from external sources2 (e.g., a search

query from a user, input dataset of a Hadoop job stored in HDFS [27]). The sink

stage has no output dependencies and produces the final output (e.g., response to the

search query, output of a Hadoop job). For example, in a MapReduce application [22],

the map stage is the source and the reduce stage is the sink.

Each stage in the DAG can consist of several tasks, which process the input data in

parallel. The time from when the source starts processing the input data to when the

sink produces the final output is defined as the end-to-end latency of the application

DAG. As mentioned before, application users and datacenter operators are mainly

concerned with this end-to-end latency. Note that as cluster resources are shared

across multiple applications, a particular application might have to wait from its

submission time to when the source stage (i.e., a task in the source stage) starts

execution. This queuing delay is also considered part of the application’s end-to-end

latency. In this dissertation, whenever we refer to application latency, we mean this

end-to-end latency.

Given a set of such application DAGs, our primary goal is to schedule them on

a cluster to meet one of the following application requirements: (a) minimize the

average application latency or makespan of a batch of applications, (b) meet latency

deadline or (c) minimize a particular latency percentile. While the first two goals

are relevant for applications such as data analytics, the last one is relevant to web

service applications which process several requests over time3. A secondary goal is to

maximize cluster throughput.

1.2 Dissertation scope

In this dissertation, we focus on addressing the above problem for two major datacen-

ter applications: (i) data analytics applications which can be decomposed into a DAG

2The input data of any non-source stage in an application DAG is generated by other stage(s) in
the DAG itself.

3The latency percentile is calculated over requests received during a particular period of time;
e.g., the previous hour or day.
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of MapReduce jobs (e.g., those generated by frameworks such as Hadoop [8], Hive [9],

Pig [28] and Spark [10]), and (ii) interactive web services such as web search, social

networks and e-commerce applications. Our system can be extended to other data

analytics applications such as those run on frameworks like Scope [11] – this requires

developing techniques (or extending previous systems like Jockey [16]) to predict the

latency of such applications based on the compute and network resources allocated

to them.

Further, we limit ourselves to exploring two types of cross-layer coordination tech-

niques to address the above problem:

(a) Coordination between the storage and compute sub-systems in dat-

acenter. This allows us to reduce the dependence of applications on the core

network and thus, provides benefits to applications that can run into network

bottlenecks (e.g., shuffle in a MapReduce job). Here, we assume that the net-

work is a constrained resource. In particular, we focus on using this technique

for data analytics applications. To achieve such coordination, we plan ahead of

application execution and hence, we need to be able to predict how the latency of

an application varies depending on the resources allocated to it. We develop the

relevant prediction techniques for DAGs of MapReduce jobs. These techniques

rely on either (a) previous runs of the application or (b) the ability to profile the

application on a sample dataset. They assume that various job characteristics

such as average task processing rate, amount of data processed by different stages

in the application, task input to output ratio etc. can be estimated from these

previous or profiling runs. We show that these assumptions hold for a variety of

data analytics applications used in practice (Sections 2.2 and 3.3). This coordi-

nation is exploited in the offline component of Concorde, Corral, to determine

how should resources be allocated to applications.

(b) Coordination across multiple application stages. This technique, used in

Kwiken, allows us to capture the end-to-end view of an application and decide

how various latency reduction techniques affect the end-to-end application latency

when used within different application stages. In particular, we explore such coor-

dination for web services when using runtime latency reduction techniques. Here,

we rely on the assumption that the reduction in latency variance of application

stages, when using different latency reduction techniques (e.g., reissues), can be

predicted from application execution history (on queries in the past), and develop
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techniques to do so (Section 3.2).

We note that for applications such as web services where a user’s query is sent over

the wide-area network (WAN) or Internet, we do not include the time spent over the

WAN i.e., the WAN latency, in its end-to-end latency. While the WAN latency can

affect user experience [29, 30], in this dissertation, we deal with only the datacenter-

side latency of applications which accounts for a large fraction of the user-experienced

latency [31]. Optimizing WAN latency is orthogonal to our research goals, and we

refer the reader to existing work for the relevant techniques [29,30].

1.3 Challenges

While several scheduling techniques have been proposed to speed up individual stages

or sub-systems in various datacenter applications (e.g., [16, 18–21, 32–35]), there are

several challenges in directly optimizing for the end-to-end latency.

Complex structures of application DAGs. Datacenter applications typically

have complex input-output dependencies across the different stages. While we will

discuss the structure of these applications in more detail later (Chapter 2), our mea-

surements show that the median application in production at Microsoft Bing has 15

stages and 10% of the stages process the query in parallel on 1000s of servers. Fur-

ther, these applications can have stages with in or out degree as high as 40. Due

to this complexity, random delays at any of these servers or stages can manifest as

significant end-to-end delays. To see why, we note that the 99th percentile of an n-way

parallel stage depends on the 99.999th percentile of the individual server latencies for

n = 1000. Reducing the 99th percentile of such a stage could require us to reduce

the 99.999th percentile of each individual server, which is hard as it is influenced by

a large number of runtime factors (e.g., delays in process or thread scheduling in the

operating system).

Further, different stages within an application can have widely different latency

characteristics (Section 2.1.2). Thus, a particular technique to reduce latency (e.g.,

launching a duplicate request after a fixed timeout) may be effective on one particular

stage but not work for another.

Modeling end-to-end latency. The end-to-end latency of an application DAG is

determined by its critical path. Due to runtime issues such as laggards, failures

etc. the critical path of an application can change dynamically. Thus, determining
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the effect of any particular per-stage latency reduction technique on the end-to-end

latency of the DAG is hard. Further, the latency of each stage is affected by its

dependence of the different sub-systems (e.g., network, compute etc.) — for example,

while a Hadoop Sort job is I/O-bound4, a WordCount job is typically compute-

bound [36]. Any scheduling technique which optimizes for application latency must

consider these properties to meet its goals while efficiently using cluster resources.

Fast estimation of application latency. To meet latency goals of applications

(e.g., completion time deadline), we need to determine the amount of resources to be

allocated to them and predict their latency as a function of the resources allocated.

Application latency is not only dependent on the number of machines allocated to

it but also on the network bandwidth available, the location of the data, the rate at

which the data can be read, the amount of extra resources any stage in the application

can use etc. To explore a variety of resource allocation options, we need to be able to

quickly predict this latency. Even though extensive modeling approaches have been

developed to accurately predict the latency of certain datacenter applications [37–39],

they are prohibitively expensive to use for our purpose.

1.4 Dissertation outline and contributions

Figure 1.1 shows the architecture of our scheduling framework, Concorde, which con-

sists of three parts: (a) the latency estimator, which determines latency-response func-

tions of applications using their characteristics from previous executions or profiling

runs, (b) the offline component, Corral, which uses these latency-response functions,

application goals, and datacenter state to determine how should resources be allo-

cated to each application, and (c) the online component, Kwiken, which uses runtime

techniques such as request reissues to speed up execution of applications. In this sec-

tion, we briefly describe each of these three components (Section 1.4.1–Section 1.4.3)

and then, summarize our main contributions (Section 1.4.4).

1.4.1 Using application characteristics to estimate end-to-end latency

Estimating the latency of an application allows us to plan ahead on the resources that

need to be allocated to it while meeting its individual goals and efficiently utilizing

4Latency is predominantly determined by the available disk and network I/O bandwidth.

7



Latency 
Estimator 

Application characteristics  
(e.g., from history) 

Resource 
selector 

Data 
placement 

policy 

Compute 
placement 

policy 

Allocation rules 

Datacenter 
state 

Offline planner 

Cluster scheduler 

Latency-response  
functions 

Offline component  
(Corral) 

Submitted 
applications 

Cluster (storage + compute) 

Online component  
(Kwiken) 

Per-stage 
optimizer 

End-to-end 
optimizer 

Runtime parameters  
(e.g., timeouts) 

Figure 1.1: Architecture of Concorde.

cluster resources. As mentioned above, in this dissertation, we focus on scheduling

two major types of applications which make up a large fraction of workloads in a

typical datacenter: (a) data analytics jobs which can be decomposed into a DAG of

MapReduce jobs (e.g., those generated by frameworks such as Hadoop [8], Hive [9],

Spark [10], Pig [28]), and (b) web services such as web search which can be arbitrary

DAGs. In this section, we summarize how we use characteristics of these applications

to estimate their latency. The output of the latency estimator is a latency-response

function, L(~r), which gives us the latency of the application as a function of the

abstract resource vector ~r. These techniques have appeared in [12, 36, 40] and are

described in Chapter 3 in detail.

Data analytics applications. We estimate the latency of MapReduce jobs using

a simple bandwidth-model, i.e., the latency of any stage in the job is modeled as the

ratio of the amount of data processed by it to the average rate at which the data

is processed. This rate depends on the bottleneck resource for the stage (e.g., disk,

network or compute), and we use previous executions of the job to determine it. Such

estimation is feasible for a large fraction of production workloads (up to 40%) which

are recurring, and are run periodically as new data becomes available [16,41]. For jobs

which are ad-hoc or are running for the first time, we obtain these rates by profiling

them on a smaller subset of the input data.

Frameworks such as Hive and Pig typically generate a DAG of MapReduce jobs.

In this case, we estimate the latency of each job separately and model the end-to-end
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latency as the latency of the critical path of the DAG. In this model, we trade-off

accuracy for speed of estimation, and account for the compute, storage and network

bandwidth available for jobs. While we do not model runtime issues such as failures

and stragglers, we found that errors in our estimates are tolerable in practice. We

also add “slack” to the predictions to deal with any inaccuracies in our models.

Web services. Unlike data analytics applications, web services are continuously run-

ning applications, processing user queries over time. The resource requirements for

these applications (e.g., number of machines to host different stages) are typically de-

termined by the application provider (e.g., the company which runs the web service),

offline. Thus, determining the number of resources to allocate to these applications

is straightforward. However, the execution time of a query in these applications is

not only determined by the number of resources allocated to the application but also

runtime issues such as slow machines, network loses etc.

To overcome delays caused by such issues, we develop several latency reduction

techniques (Chapter 5) which use extra resources, e.g., reissues increase machine load,

partial answers result in loss in relevance of the answer. Our goal in modeling the

latency of these applications is to understand how it varies as a function of these extra

resources. We first determine stage-level latency-response functions using the charac-

teristics of each stage (from previous executions of the stage, and application logs) and

the latency reduction technique used. Next, we use the DAG structure to compose

the per-stage latency-response functions to determine the end-to-end application-level

latency-response function.

1.4.2 Resource planning

Corral, the offline component of Concorde aims to determine how many and which

resources (in the cluster) should be allocated to application DAGs, given their goals on

end-to-end latency. Corral uses coordination between the storage, and compute sub-

systems in a cluster while scheduling applications. Corral was published in [36, 40]

and is described in detail in Chapter 4. We briefly summarize its techniques and

benefits here.

As input to Corral, each application specifies its goals — completion time deadlines

or none, in the absence of any — along with constraints on its resource requirements

— number of machines to be allocated to an application stage, amount of network

bandwidth required across machines running a stage, none, etc. Depending on these

9



goals and constraints, Corral uses two components to schedule applications. For appli-

cations with latency goals and resource constraints, the resource selector (Figure 1.1)

determines the amount of resources required to satisfy them. Due to the resource

malleability property of datacenter applications (Section 2.3), different resource com-

binations can achieve the same application goal. The resource selector selects the

resource combination with the least cost to the cluster to improve cluster efficiency,

and specifies it using allocation rules to the cluster scheduler. In this dissertation,

we consider storage, compute and network as the resources which are explicitly re-

served for an application. We use virtual clusters [42] to provide guaranteed network

bandwidth.

Next, to schedule applications without any specific goals or constraints, Corral uses

an offline planner (Figure 1.1) to plan ahead and reduce aggregate metrics such as

makespan or average application completion time. To this end, it formulates a plan-

ning problem to determine which resources and where in the cluster these resources

must be allocated to applications. We model this problem as a variant of the mal-

leable job scheduling problem [43–45]. While this problem is NP-hard in general,

we develop efficient heuristics to solve it in practice. These heuristics achieve per-

formance appealingly close (within 3-15%) to the solution of a Linear Program (LP)

relaxation, which serves as a lower bound to any solution of the planning problem

which allocates resources at the granularity of racks.

In developing the heuristics to the planning problem, we focus on data analytics

applications without deadlines. We deal with both simple MapReduce jobs as well as

complex DAG-structured workloads such as Hive [9] or Scope [11] queries. The re-

source selector focuses on data analytics applications with deadlines, and web services

with resource requirements (specified by the application provider).

We have implemented Corral as an extension of Yarn [46] and deployed it on a 210

machine cluster. Using four different workloads, including traces from Yahoo [47] and

large-scale production clusters at Microsoft, and Hive queries derived from TPC-H

benchmarks [48], we show that Corral reduces the makespan of a batch of jobs by 10-

33% and the median job completion time by 30-56% compared to the Yarn capacity

scheduler [49]. When using virtual clusters to provide guaranteed resources to appli-

cations and meet their completion time goals, Corral’s ability to exploit application

resource malleability yields significant gains to the provider as well — the provider

can accept 3-14% more requests, with 7-87% improvements in cluster goodput. Fur-

ther, using large-scale simulations over a 2000 machine topology, we show that Corral
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achieves better performance than flow-level techniques like Varys [18] and that the

gains from such techniques are orthogonal to those of Corral.

1.4.3 Speeding up application stages at runtime

Chapter 5 describes how Concorde deals with runtime issues such as slow machines

or disks, network loses, etc., which can lead to a significant increase in end-to-end

application latencies. To overcome such issues, we use three techniques: (a) reissues

i.e., issue a duplicate of the original query to a replica of the stage processing the

query, (b) incomplete responses, where we respond to the original application request

before all the machines processing the request finish (while ensuring that the loss

in answer quality is within an acceptable bound), and (c) catch-up, where laggard

queries are given higher priority or extra resources (e.g., threads) at later stages in

the application. In this dissertation, we focus on using these techniques for web

services. Exploration of similar techniques for data analytics applications is part of

our future work.

Each of the above techniques have costs associated with them; for example, reissues

increase system load, incomplete responses can reduce answer quality etc. Further, as

different stages have different characteristics, the benefits from using these techniques

can vary significantly. To address these challenges and limit the cost incurred from

the above techniques within a given budget, we develop Kwiken (published in [12]),

a holistic framework that considers (i) the latency characteristics of each stage, (ii)

the cost of applying individual techniques and (iii) the structure of the application

DAG, to determine how to use different techniques in various application stages to

minimize the end-to-end application latency.

Kwiken formulates the overall latency reduction problem as a layered optimization

problem, relying on the fact that query latencies across stages are only minimally

correlated. The first layer determines latency-response functions which estimate how

the latency in individual stages changes as a function of budget allocated to that stage

(e.g., fraction of extra resources which can be used for reissues). These functions

abstract the actual intra-stage optimizations performed and provide a simple model

of how various latency reduction techniques effect the latency of the stage. The

second layer integrates these per-stage functions into a single global objective function

designed such that its minimization is well-correlated to minimizing higher percentiles

of the end-to-end latency. The objective function also has a simple separable structure
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that allows us to develop efficient gradient-like methods for its minimization.

We evaluated Kwiken with 45 production web service DAGs at Bing. By appropri-

ately apportioning reissue budget, Kwiken improves the 99th percentile of latency by

an average of 29% with just 5% extra resources. This is over half the gains possible

from reissuing every request (budget=100%). At stages that are many-way parallel,

we show that Kwiken can improve the 99th percentile latency by about 50% when

partial answers are allowed for just 0.1% of the queries. We, further, show that reis-

sues and partial answers provide complementary benefits; allowing partial answers for

0.1% queries lets a reissue budget of 1% provide more gains than could be achieved

by increasing the reissue budget to 10%.

1.4.4 Contributions

Our key contributions are as follows.

• Characteristics of web services. We describe low-latency application DAGs

at a large search engine, Microsoft Bing, analyze the structure of its web service

DAGs in detail, and report on the causes for high variability in the latency of

these DAGs (Section 2.1 and Section 5.1).

• Predictability of data analytics applications. We quantify the high pre-

dictability in the characteristics of data analytics by analyzing traces from Mi-

crosoft Cosmos (Section 2.2).

• Resource malleability of datacenter applications. We measure the mal-

leability of several representative datacenter applications, including data ana-

lytics, web services and HPC applications. We show that different combinations

of compute and network resources for these applications can achieve the same

performance (Section 2.3).

• Abstraction of latency-response functions. We characterize the latency of

datacenter applications as a function of the resources allocated to them. This

provides us the strong abstraction of latency-response functions which can be

used to make scheduling decisions for applications (Chapter 3).

• We design, implement and evaluate Corral, a data-driven planning framework,

which leverages the predictability of future workloads and coordination between
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the storage and compute sub-systems in datacenters, leading to significant ap-

plication performance improvements (Chapter 4)

• Resource imbalance metric. We devise a metric to quantify the cost of

accommodating multi-resource requests from a cluster provider’s perspective.

As different resource combinations can be used to meet a particular application

goal (due to resource malleability), this allows us to compare one resource tuple

against another (Section 4.2) and select the better one.

• Joint data and compute placement for scheduling datacenter appli-

cations. We formulate the complex data and compute placement problem for

datacenter applications as a malleable job scheduling problem and solve it using

efficient heuristics, which lead to significant benefits in practice (Section 4.3).

• Exploiting malleability across time. We extend Corral to exploit mal-

leability along the time domain by finishing jobs earlier than required, using

idle resources. We find this can reduce median job completion time by more

than 50% (Section 4.4).

• Benefits from joint scheduling with network flow-level techniques. We

show that the benefits of Corral are more than those from just using flow-level

techniques such as Varys [18] and that Corral can work together with such

techniques to provide further performance benefits (Section 4.5).

• End-to-end runtime framework to reduce latency. We present a holistic

runtime optimization framework that treats each stage as a latency-response

curve to apportion the overall cost budget across stages in an application DAG.

We evaluate the framework on real-world web services and demonstrate signifi-

cant reductions in their end-to-end latencies, especially in the higher percentiles

i.e., tail latencies (Chapter 5).

• Novel per-stage latency reduction techniques. We provide novel policies

for bounding quality loss incurred due to partial answers and for catching-up

on laggards for web services such as web search (Section 5.3).
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1.5 Roadmap

This dissertation is organized as follows: Chapter 2 presents the background and char-

acteristics of two major datacenter applications — data analytics and web services.

Chapter 3 discusses how we utilize the characteristics of applications to predict their

latency. Chapter 4 presents Corral, the offline component of Concorde, which uses

application requirements and goals to determine how should resources be allocated to

applications in the datacenter. Chapter 5 presents Kwiken, the online component of

Concorde, which uses various runtime techniques to speed up datacenter applications

ensuring that the cost of using these techniques is within a given cost budget. We

finally present our conclusions and directions for future work in Chapter 6.
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Chapter 2

Characterizing datacenter applications

Datacenter applications are often complex, running over 1000s of machines and consist

of tens to hundreds of logical components or stages. These stages typically form a

directed acyclic graph (DAG) with edges representing input-output dependencies. In

this chapter, we provide the background and describe several characteristics of these

applications, which motivate the design of the scheduling and resource allocation

techniques in Concorde. In particular, we analyze the characteristics of two widely

used datacenter applications, web services and data analytics, using traces from two

large-scale production systems — Microsoft Bing [50] and Microsoft Cosmos [11].

Our main observations are as follows.

• Web service DAGs are long and many way parallel; about 20% of DAGs we

examined have 10 or more stages in sequence with the 90th percentile in-degree

as high as 9.

• Web service DAGs have high tail latencies with the 99th percentile latency

of nearly 10% DAGs being 10 times their median latency, in the applications

examined. Further, latencies across different stages for a single request and

those within a stage across multiple requests are mostly uncorrelated.

• Business-critical data analytics applications are often recurring with highly pre-

dictable characteristics (e.g., input data size) and more than 90% of these ap-

plications require less than one rack worth of compute resources.

• Several datacenter applications exhibit resource malleability i.e., multiple re-

source combinations achieve the same end-to-end application latency.

In the rest of this chapter, we first elaborate on the characteristics of web ser-

vices (Section 2.1), characterize the predictability of data analytics applications (Sec-

tion 2.2) and finally, show the resource malleability of various datacenter applications

(Section 2.3).
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Figure 2.1: Timeline diagram of the processing involved for web search stage at
Microsoft Bing.

2.1 Web services

Web services include a variety of interactive applications such as social networks,

search engines, and e-commerce web sites. Each of these services are architected as

a collection of stages with input-output dependencies; for example, responding to a

user search query on Microsoft Bing involves accessing a spell checker stage and then in

parallel, a web search stage that looks up documents in an index, and similar video-

and image-search stages. We use the term workflow to refer to services designed in

this manner. Architecting datacenter services in this way allows easy reuse of common

functionality encapsulated in stages, similar to the layering argument in the network

stack.

Web services can be hierarchical; i.e., complex stages may internally be architected

as DAGs themselves. For example, the web search stage at Microsoft Bing consists of

multiple tiers which correspond to indexes of different sizes and freshness. Each tier

has a document-lookup stage consisting of thousands of servers that each return the

best document for the phrase among their sliver of the index. These documents are

aggregated at rack and at tier level, and the most relevant results are passed along.

This stage is followed by a snippet generation stage that extracts a two sentence

snippet for each of the documents that make it to the final answer. Figure 2.1

shows a timelapse of the processing involved in this web service DAG; every search at

Microsoft Bing passes through this DAG. While this is one of the most complex DAGs

at Microsoft Bing, it is still represented as a single stage at the highest level DAG.

The sheer number of components involved in these applications ensures that each

request has a non-trivial likelihood of encountering a runtime anomaly, leading to

higher latencies. The causes we observed for high and variable latency include slow

servers, network anomalies, complex queries, congestion due to improper load balance

or unpredictable events, and software artifacts such as buffering (discussed further in

Section 5.1).
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Figure 2.2: A few characteristics of the analyzed web service DAGs.

To characterize these web service DAGs, we use traces from Microsoft Bing which

consist of descriptions of the various DAGs used to answer user requests along with the

latency associated with the query across the different stages in the DAG. In this sec-

tion, we report on the topology (Section 2.1.1) and latency properties (Section 2.1.2)

of these DAGs. We use request latencies from 64 distinct DAGs over a period of 30

days during Dec 2012. We only consider DAGs and stages that were accessed at least

100 times each day — the 25th and 75th percentile number of requests per stage per

day are 635 and 71428 respectively. In all, we report results from thousands of stages

and tens of thousands of servers.

2.1.1 Topology characteristics

Most web service DAGs have several tens of stages, with a median value of 14 and

90th percentile of 81 as shown by the “all stages” line in Figure 2.2. To understand

how many of these stages determine the latency of the query, we look at the critical

path of the DAG, which is the sequence of dependent stages in the DAG that finished

last for that query. As queries can have different critical paths, we consider the most

frequently occurring critical paths that account for 90% of the queries. Along each

critical path, we consider the smallest subset of stages that together account for over

90% of the query’s latency and call these the effective stages. Stages that have a very

small latency and rarely occur on the critical path of a request have negligible impact

on the request latency. Ignoring these stages, Figure 2.2 plots the number of effective

stages across the web service DAGs we considered. We see that the number of effective

stages in a DAG is sizable but much smaller than the total number of stages in it;

17



1

2

4

8

16

1 8 64

lo
ng

es
t p

at
h

number of stages
(a) Length of the longest path

1

4

16

64

256

1 8 64

m
ax

 in
-d

eg
re

e

number of stages
(b) Maximum in-degree
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each web service DAG at Microsoft Bing. Each circle corresponds to one DAG in the
dataset.

median is 4 and 90th percentile is 18. The figure also plots the average number of

effective stages on these critical paths (labelled “Avg. Critical Path”); median is 2.2.

Finally, we plot a distribution of the in-degree of these effective stages on the critical

paths; median is 2 and 90th percentile is 9. Hence, we see that production DAGs even

when counting only the effective stages are long and many way parallel.

Figure 2.3a shows a scatter plot of the length of the longest path in the web service

DAG and the number of stages in the DAG. We see that about 20% of the DAGs

have stage sequences of length 10 or more. Further, the max in-degree across stages

is proportional to the number of stages in the application DAG (Figure 2.3b). That

is, most DAGs are parallel.

We point out that stages with high in-degree, that aggregate responses from many

other stages, are a significant source of variability. Whenever one of the input stages

is slow, the output would be slow. We see two types of such fan-in in our data:

(a) at the stage-level, which is accounted for in the above results, and (b) internal

to a stage, where an aggregator collects responses from many servers. For example,

the web search stage above aggregates responses from 100s-1000s of servers, where

each server retrieves the documents matching the user request from their shard of the

index.
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Figure 2.4: Estimating the variability in latency: (a) CDF of 99th percentile to median
latency and (b) mean vs. standard deviation of latency, for stages and web service
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2.1.2 Latency characteristics

Web service DAGs have high tail latencies. To understand variation of latency

in different web service DAGs and in individual stages, Figure 2.4a plots a CDF of the

ratio of the latency of the 99th percentile request to that of the median request across

the stages and DAGs in our dataset. We see that stages have high latency variability;

roughly 10% have 99th percentile 10X larger than their median. When the stages are

composed into DAGs, the variability increases at the lower percentiles because more

DAGs have high variability stages. However, the variability at the higher percentiles

decreases.

Figure 2.4b compares, on a log scale, the mean latency (x-axis) and standard de-

viation (y-axis) of each stage and application from 64 different application DAGs at

Microsoft Bing. We see that the larger the mean latency in a stage, the larger is the

variability (standard deviation). Further, stages with similar mean latency still have

substantial differences in variability. We also find a lot of variability in the per-stage

latencies, with means varying from 1 millisecond to 100 milliseconds.

Latencies of individual stages are uncorrelated. We ran a benchmark against

the most frequent web service at Microsoft Bing, where we executed two concurrent

requests with same parameters and specified they should not use any cached results.

These requests execute the same set of stages with identical input parameters and

thus, allow us to study correlation of latencies in individual stages. We used 100

different input parameters and executed a total of 10,000 request pairs. For each of
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Figure 2.5: For a subset of stages in production, this plot shows normalized latency
variance of the stage as a function of fraction of requests that are reissued.

the 380 stages in this web service DAG, we compute the Pearson correlation coeffi-

cient (PCC). About 90% of the stages have PCC below 0.1 and only 1% of stages have

PCC above 0.5. Hence, we can treat the latency of two copies of the same request as

independent random variables.

Latencies across stages are mostly uncorrelated. To understand correlation of

latencies across stages, we compute the PCC of latencies of all stage pairs in one of

the major DAGs with tens of thousands of stage pairs. We find that about 90% of

stage pairs have PCC below 0.1. However 9% of the stage pairs have PCC above 0.5.

We hypothesize that this is because some of the stages run back-to-back on the same

server when processing a request; if the server is slow for some reason, all the stages

will be slow. In spite of this mild correlation, we can treat the inherent processing

latency across stages to be independent.

Stages benefit differently from reissues. Figure 2.5 illustrates how reissuing

requests impacts the latency for a subset of the stages from production. It shows the

normalized variance in latency (y-axis) for these stages when a particular fraction

of the slowest queries are reissued (x-axis). Clearly, more reissues lead to lower

variance. However, notice that stages respond to reissues differently. In some stages,

10% reissues significantly reduce variance, whereas in other stages even 50% reissues

do not achieve similar gains. This is because the reduction in variance at a stage

depends on its latency distribution: stages with low mean and high variance benefit

a lot from reissues but the benefits decrease as the mean increases or the variance

decreases.
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Figure 2.6: CDF of the number of compute slots requested by jobs across three
production clusters. The vertical line represents 240 slots, the size of one rack.

2.2 Data analytics applications

Data analytics applications use frameworks like Hadoop [8], Spark [10], Hive [9], or

Scope [11] to run MapReduce [22] jobs, or more complex, DAG-structured jobs. Each

job consists of stages, linked by data dependencies. Each stage consists of tasks that

process the input data of the stage in parallel. MapReduce jobs are the simplest of

such jobs with a single map stage and a single reduce stage, with an all-to-all data

shuffle between their tasks. When a task has all its inputs ready, it can start running

and is allocated a free slot on a machine in the cluster by the cluster task scheduler,

whenever possible. Each slot is assigned a pre-defined amount of memory and CPU

for the task to execute. The input data for these jobs is stored in a distributed file

system like HDFS [27]. The job input dataset consists of multiple chunks, each of

which is typically replicated three times across different nodes in the cluster.

In this section, using traces from Microsoft Cosmos, we first present the resource

requirements of data analytics applications, and then quantify their predictability.

A bulk of jobs can run within a few racks without losing parallelism. To

understand the resource requirements of production jobs, we analyzed jobs from three

large production clusters used in Microsoft, each of them with more than 10,000

machines. The users communicate their job requirements by specifying number of

slots required, where one slot is typically equivalent to two CPU cores. We plot the

CDF of the requested number of slots in Figure 2.6. While some jobs require up

to 10,000 slots, we find that across these three clusters, 75%, 87%, and 95% of jobs

require less than one rack worth of compute resources. Similar observations have been

reported before [51,52].

Job characteristics can often be accurately predicted. Cluster workloads are
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Figure 2.7: Normalized amount of input data read by six different jobs during a ten-
day period. The x-axis shows time; each tick is a day. The y-axis shows input size in
log10 scale; each tick is a 10x increase.

known to contain a significant number (up to 40%) of recurring jobs [16,41]. A recur-

ring job is one in which the same script runs whenever new data becomes available.

Consequently, for every instance of that job, it has a fixed structure and similar char-

acteristics (e.g., amount of data moved in a shuffle, or CPU and memory demands).

We confirm and quantify this intuition by examining twenty business-critical jobs

from Microsoft Cosmos. For each job, we compute the input data size of the recurring

instances of these jobs, during the month of December 2013. Figure 2.7 shows the

normalized job sizes as a time series for six of those jobs over a 10-day period. Overall,

these jobs have input sizes ranging from several gigabytes to hundreds of terabytes. To

predict the input size of a job which is submitted at a particular time (e.g., 2PM), we

average the input size of the same job type at the same time during several previous

days. In particular, if the current day of the week is a weekday (weekend), we average

only over weekday (weekend) instances. Using this, we can estimate the job input

data size with a small error of 6.5% on average. We observe similar predictability of

the intermediate (or shuffle) data and output data. In turn, this lets us predict the

amount of data transferred during job execution and utilization of network links.

2.3 Resource malleability

In this section, we show that several representative datacenter applications exhibit the

property of resource malleability, and that several resource combinations can achieve

the same end-to-end latency for these applications.
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Hadoop Job Input Data Set

Sort 200GB using Hadoop’s RandomWriter
WordCount 68GB of Wikipedia articles
Gridmix 200GB using Hadoop’s RandomTextWriter
TF-IDF 68GB of Wikipedia articles

LinkGraph 10GB of Wikipedia articles

Table 2.1: MapReduce jobs and the size of their input data.

 0

 2000

 4000

 6000

 8000

 50  100  150  200  250  300

C
o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Network Bandwidth (Mbps)

N=10
N=20

(a) Sort

 0

 100

 200

 300

 400

 500

 600

 50  100  150  200  250  300
C

o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Network Bandwidth (Mbps)

N=10
N=20

(b) LinkGraph

Figure 2.8: Completion time for jobs with varying network bandwidth. Error bars
represent Min–Max values.

Malleability of MapReduce jobs. We experimented with a small yet representa-

tive set of MapReduce jobs listed in Table 2.1. These jobs capture the use of data

analytics in different domains and the varying complexity of such workloads (through

multi-stage jobs). Sort and WordCount are popular for MapReduce performance

benchmarking, not to mention their use in business data processing and text analysis

respectively [53]. Gridmix is a synthetic benchmark modeling production workloads,

Term Frequency-Inverse Document Frequency or TF-IDF is used in information re-

trieval, and LinkGraph is used to create large hyperlink graphs. Of these, Gridmix,

LinkGraph, and TF-IDF are multi-stage jobs.

We used Hadoop MapReduce on Emulab to execute the jobs while varying the

number of nodes (N) devoted to them. We also used rate-limiting on the nodes

to control the network bandwidth (B) between them. For each <N,B> tuple, we

executed a job fives times to measure the completion time for the job and its individual

stages. While the experiment setup is further detailed in Section 4.4 , here we just

focus on the performance trends.

Figure 2.8a shows the completion time for Sort on a cluster with 10 and 20 nodes,

and varying network bandwidth. As the bandwidth between the nodes increases, the
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time to shuffle the intermediate data between map and reduce tasks shrinks, and

thus, the completion time reduces. However, the total completion time stagnates

beyond 250 Mbps. This is because the local disk on each node provides an aggregate

bandwidth of 250 Mbps. Hence, increasing the network bandwidth beyond this value

does not help as the job completion time is dictated by the disk performance. This

is an artifact of the disks on the testbed nodes. If the disks were to offer higher

bandwidth, increasing the network bandwidth beyond 250 Mbps would still shrink

the completion time.

The same trend holds for the other jobs we tested. For instance, Figure 2.8b shows

that the completion time for LinkGraph reduces as the number of nodes and the

network bandwidth between the nodes is increased. However, note that the precise

impact of either resource is job-specific. For instance, we found that the relative drop

in completion time with increasing network bandwidth is greater for Sort than for

WordCount. This is because Sort can be I/O intensive with a lot of data shuffled

which means that its performance is heavily influenced by the network bandwidth

between the nodes.

Apart from varying network bandwidth, we also executed the jobs with varying

number of nodes. The results are detailed in Section 3.3 (Figures 3.2a and 3.2b)

and show that the completion time for a job is inversely proportional to the number

of nodes devoted to it. This is a direct consequence of the data-parallel nature of

MapReduce.

Malleability of other datacenter applications. Our findings for MapReduce

above also extend to other datacenter applications. We briefly discuss two examples

below.

Three-tier, web application. We used a simple, unoptimized ASP.net web appli-

cation with a SQL backend as a representative of web applications. We varied the

number of nodes (N) running the middle application tier and the bandwidth (B)

between the application tier (middle nodes) and the database-storage tier (backend

nodes). We used the Apache benchmarking tool (ab) to generate web requests and

determine the peak throughput for any given resource combination. Figure 2.9a

shows that the application throughput improves as expected when either resource is

increased.

MPI application. We used an MPI application generating the Crout-LU decompo-

sition of an input matrix as an example of HPC and scientific workloads. Figure 2.9b

shows the completion time for a 8000x8000 matrix with varying N and B. Given the
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Figure 2.9: Performance of datacenter applications varies with both N and B.

Hadoop Job – <Nodes, Bandwidth (Mbps)>
Completion Time (sec) alternatives

LinkGraph – <34, 75>, <20, 100>
300 (±5%) <10, 150>, <8, 250>

LinkGraph – <30, 60>, <10, 75>
400 (± 5%) <8, 150>, <6, 200>

WordCount – <30, 45>, <20, 50>
900 (± 3%) <10, 100>, <8, 300>

WordCount – <32, 50>, <20, 75>
630 (± 3%) <14, 100>, <12, 300>

Table 2.2: Examples of WordCount and LinkGraph jobs achieving similar completion
times with different resource combinations.

CPU-intensive nature of the application, increasing the number of nodes improves

performance significantly. As a contrast, the impact of the network is limited. For

instance, improving the bandwidth from 10 to 100 Mbps improves completion time

only by 15-25%.

Overall, the experiments above lead to two key findings.

1. The performance of typical datacenter applications depends on resources beyond

just the number of compute instances.

2. They confirm the resource malleability of such applications; an application can

achieve the same performance with different resource combinations, thus allow-

ing one resource to be traded-off for the other. For instance, the throughput for

the web application above with two nodes and 250 Mbps of network bandwidth

is very similar to that with four nodes and 125 Mbps of network. Table 2.2 fur-

ther emphasizes this for data analytic applications by showing examples where
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a number of different compute node and bandwidth combinations achieve al-

most the same completion time for the LinkGraph and WordCount jobs. This

flexibility is important as it allows for improved cluster efficiency.
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Chapter 3

Estimating end-to-end latency using application
characteristics

Datacenter applications can have widely different characteristics (e.g., I/O bound,

compute-bound) and goals. Many of these applications can simultaneously run on

the same physical cluster. To efficiently utilize the underlying resources, we need to

allocate them based on the characteristics of the individual applications. For example,

an MapReduce job with large amount of shuffle data can have significantly lower

latency if its reducers and maps are allocated in the same rack as opposed to across

multiple racks as cross-rack links are typically oversubscribed [18,35,54]. This in turn

frees up the cross-rack bandwidth which can be used by other applications. However,

if the same job has (say) 1000 tasks instead of 100, running it across multiple racks

might be better as the benefits of increased parallelism for the tasks can outweigh the

benefits of higher network bandwidth for the shuffle stage.

To deal with such complexities and to meet application goals, this chapter develops

techniques to predict the performance of datacenter applications based on the amount

of resources (e.g., number of machines or compute slots) allocated to them and where

in the cluster these resources are allocated. In particular, we focus on data analytics

applications and web services.

Our techniques use the characteristics of applications (e.g., data processing rate of a

map task, ratio of input to output data of reduce stage) determined from application

history, i.e., previous execution(s), to predict their performance. Such characteristics

are readily available for data analytics jobs as a large fraction of them are recur-

ring (Section 2.2). For those applications without such history, we use profiling-based

approaches to determine these characteristics. Using such characteristics, we deter-

mine latency-response functions L(~r) for datacenter applications, which quantify the

latency of the application as a function of the resource vector ~r. In the context of

data analytics applications, we develop MRCute which models ~r as either (i) a scalar

which specifies the number of racks allocated to the application, or (ii) a two dimen-

sional vector which specifies the number of machines allocated to the application and
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the amount of network bandwidth between each of these machines. The granularity

of the model used depends on application requirements (e.g., enforcing completion

time deadlines or not). For web services, ~r indicates the amount of resources or cost

budget available per stage for runtime latency reduction techniques such as reissues

or partial responses.

The above response functions provide us a strong abstraction — they hide the com-

plex dependencies within an application, how different techniques are used within an

application to utilize the resources provided, and interaction between the components

within an application. They allow us to determine how the latency of the application

changes based on the resources allocated, without having to deal with application-

specific nuances. Given a set of datacenter applications where each application can

have its own goals (e.g., end-to-end latency deadline to be met), the latency-response

functions allow us to determine how should resources be allocated to each application,

to meet their specified goal(s).

Performance prediction has been extensively studied in a variety of domains such

as operating systems [55], user software [56], and databases [57]. In the context of

MapReduce applications, efforts like Mumak [37] and MRPerf [38] have built detailed

MapReduce simulators that can be used for prediction. However, these result in non-

trivial prediction times. To allow for an exploration of different resource combinations,

we require fast prediction. Thus, we explicitly chose to simplify our prediction model,

favoring fast prediction over accuracy. This choice is also motivated by the observation

that even the most accurate model will not be able to account for runtime issues such

as outliers etc. Instead, to compensate for any model inaccuracies, we introduce

“slack” into our prediction. This helps us deal with common sources of prediction

errors such as hardware heterogeneity and workload imbalance.

The rest of the chapter is organized as follows. First, we present our prediction

techniques for data analytics applications (Section 3.1). We then explore techniques

for latency prediction of web services (Section 3.2), evaluate the performance of our

prediction techniques (Section 3.3), describe related work (Section 3.4) and finally,

conclude (Section 3.5).

28



3.1 Data analytics applications

Applications running on data analytics frameworks such as Hadoop [8], Spark [10],

Hive [9], Pig [28], Tez [58] etc. can be modeled as a DAG of MapReduce jobs. As

described in Section 2.2, MapReduce jobs have a very simple structure and lend

themselves easily for performance predictability. In this section, we first describe our

assumptions on modeling the execution and latency properties of MapReduce jobs

(Section 3.1.1). We then present our predictor MRCute, which is used to determine

the latency-response functions for MapReduce jobs (Section 3.1.2) and describe how

to generalize it to incorporate DAGs of MapReduce jobs (Section 3.1.3).

3.1.1 Assumptions

To quickly predict the latency of MapReduce jobs, we make several assumptions in

modeling them. First, the latency of each stage (map, shuffle and reduce) is assumed

to be proportional to the amount of data processed by it and similar across all tasks

within a particular stage. While this is valid for a wide variety of jobs [36], it may

not hold for cases where the computation latency depends on the value of the data

read or in the presence of significant data skew across tasks [59–62]. Techniques that

have been proposed elsewhere [59] can be adopted to handle such issues. Second, the

resource demands of the map and reduce stages are assumed to be similar to previous

runs of the job (on different datasets). We observed this assumption to hold for a

variety of workloads we examined (Section 2.2 and Section 4.5), and has also been

shown to hold elsewhere [16, 41]. Finally, we assume that the data (both input and

intermediate) and tasks of the various stages in a job are spread uniformly across all

the machines allocated to the job.

While deviations from the above assumptions can lead to errors in predicting the

latency of a job, our results (Section 4.4 and Section 4.5) show that Concorde is

robust to such errors.

3.1.2 MapReduce jobs

Inspired by profiling-based approaches for fast database query optimization [57], we

capitalize on the well-defined nature of the MapReduce framework to predict the

performance of MapReduce jobs. To this end, we designed a prediction tool called
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MRCute or MapReduce Completion Time Estimator. MRCute takes a gray-box ap-

proach to performance prediction by complementing an analytical model with job

profiling. We first develop a high-level model of the operation of MapReduce jobs

and construct an analytical expression for a job’s latency (white-box analysis). The

resulting expression consists of job-specific and infrastructure-specific parameters such

as map processing rate, disk I/O bandwidth, network bandwidth etc. We determine

these parameters from previous runs of the jobs (e.g., in case of recurring jobs) or by

profiling the job on a sample dataset (black-box analysis).

Given a MapReduce job P , size of its input data |Di|, a sample of the input data

Di
s, and a resource vector ~r, MRCute estimates the application latency:

MRCute(P , |Di|, Di
s, ~r)→ Testimate.

For jobs with deadline requirements, we reserve virtual clusters and their resource

vector is specified as ~r = <N,B>, where N is the number of machines allocated to

the job and B is the amount of network bandwidth between these machines using the

virtual cluster abstraction [42]. For the remaining jobs (without deadlines), we model

at the granularity of racks and ~r =< r >, where r the number of racks allocated to

the job. Varying the value of ~r (i.e., its components), we get the latency-response

function of the job L(~r).

Analytical model. As shown in Figure 3.1a, the execution of MapReduce jobs

comprises of three stages. All tasks in a stage may not run simultaneously. Instead,

the tasks execute in waves. For instance, Figure 3.1a consists of N map waves. We

assume that these three stages execute sequentially. This implies that the completion

time for a job is the sum of the time to complete individual stages, i.e., Testimate =

Tmap + Tshuffle + Treduce. We note that, in practice, it is possible for the shuffle and

reduce stage to run in parallel with the map stage. Our techniques can be extended

to handle this also.

To determine the completion time of individual stages, one needs to estimate the

rate at which a given stage processes data. We use the term stage bandwidth to

describe this rate. Since each stage uses multiple resources (CPU, disk, network),

the slowest or the bottleneck resource governs the stage bandwidth. Hence, we apply

bottleneck analysis to the MapReduce framework to determine the bandwidth for

individual stages [63]. Overall, the completion time for each stage depends on the

number of waves in the stage, the amount of data consumed or generated by each
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Figure 3.1: Timeline of a MapReduce job and description of resources involved at
each stage.

task in the stage and the stage bandwidth. We first discuss how to model each of

these components for jobs with network reservations (using virtual clusters [42]) and

then, for jobs without such reservations.

Jobs with network bandwidth reservations. The completion time of the different

stages in a MapReduce job is modeled using the following components.

1. Stage bandwidth. During the map stage (Figure 3.1b), each map task reads its

input off the local disk, applies the map function and writes the intermediate

data to local disk. Thus, a map task involves two resources, the disk and CPU,

and the map stage bandwidth is governed by the slowest of the two. Hence,

Bmap = Min{BD, B
P
map}, where BD is the disk I/O bandwidth and BPmap is the

rate at which data can be processed by the map function of the job P (assuming

no other bottlenecks). For non data-local maps, the network bandwidth is also

considered when estimating Bmap. Following the same logic, the reduce stage

also involves the CPU and disk, and Breduce = Min{BD, B
P
reduce}.

During the shuffle stage (Figure 3.1c), reduce tasks complete two operations.

Each reduce task first reads its partition of the intermediate data across the net-

work, and then merges and writes it to disk. Hence, bandwidth = Min{BD, B}
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as the slower of the two resources governs the time for this operation, where B

is the network bandwidth (as defined above). Next, the data is read off the disk

and merge-sorted before being consumed by the reduce stage. This operation is

bottlenecked at the disk, i.e., bandwidth = BD. Given that the two operations

occur in series, the shuffle stage bandwidth is

Bshuffle =

{
1

Min{BD, B}
+

1

BD

}−1

.

2. Data consumed. For a MapReduce job with M map tasks, R reduce tasks

and input of size |Di|, each map task consumes |Di|
M

bytes, while each reduce

task consumes |Di|
Smap×R bytes and generates |Di|

Smap×Sreduce×R
bytes. Here, Smap

and Sreduce represent the data selectivity (i.e., the ratio of input data size to

output data size) of map and reduce tasks respectively. These are assumed to

be uniform across all tasks.

3. Waves. For a job using N machines with Mc map slots per machine, the max-

imum number of simultaneous mappers is N × Mc. Consequently, the map

tasks execute in wmap = d M
N×Mc

e waves. Similarly, the reduce tasks execute in

wreduce = d R
N×Rc

e waves, where Rc is the number of reduce slots per machine.

Given these values, the completion time for a task is determined by the ratio of the

size of the task input to the task bandwidth. Further, as tasks belonging to a stage

execute in waves, the completion time for a stage depends on the number of waves

and the completion time for the tasks within each wave. For simplicity, we ignore the

overlap of task executions across multiple waves. Thus, the completion time for the

map stage is given by

Tmap = wmap × Inputmap

Bmap
= d M

N×Mc
e ×

{
|Di|/M
Bmap

}
.

Using similar logic for the shuffle and reduce stage completion time, the estimated

job latency is

Testimate = Tmap + Tshuffle + Treduce

= wmap ×
{
|Di|/M
Bmap

}
+ wreduce ×

{ |Di|/{Smap×R}
Bshuffle

}
+wreduce ×

{ |Di|/{Smap×Sreduce×R}
Breduce

}
.
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Jobs without network bandwidth reservations. Here, we model MapReduce

jobs at the granularity of racks, which differs from the above in two aspects.

1. Waves. Given r racks and m machines per rack, the map stage runs in wmap =

d M
r×m×Mc

e waves and the reduce stage runs in wreduce = d R
r×m×Rc

e waves.

2. Shuffle stage. The latency of the shuffle stage is determined by the maximum

of two components:

(a) Time to transfer data across the core: This is calculated as Tcore =
Dcore

i

BM/O

where BM is the bandwidth per machine (i.e., NIC bandwidth), and O (> 1)

is the oversubscription factor. Dcore
i is the amount of data transferred across

the core by a machine, which can be expressed as Dcore
i = DS

i × 1
r×m ×

r−1
r

, for

r > 1, where DS
i = Di

Smap
, the total shuffle data of the job. If r = 1, i.e., the job

is allocated only one rack, Dcore
i = 0.

(b) Time to transfer data within a rack: Apart from the data transferred across

the core, each machine transfers the data Dlocal
i within its rack which is given

by Di

Smap
× 1

r×m ×
1
r
. While 1

m

th
of this data remains on the same machine, the

remaining data is transferred to other machines using a bandwidth of BM −
BM/O. Thus, the time for transferring data within the rack is given by Tlocal =

Dlocal
i × m−1

m
× 1

B−B/O .

The latency of the shuffle stage is given by Tshuffle = wreduce×max{Tcore, Tlocal}.
The latency per map and reduce task remain the same as in the case with

network reservations.

Estimating job-specific parameters. The analytical model discussed above in-

volves two types of parameters: (i) those that are specific to MapReduce configu-

ration and are known, such as the number of map slots per machine (Mc), and (ii)

those that depend on the infrastructure and the actual job. To estimate the latter,

MRCute uses logs from previous runs, HP , of job P (possibly on different data sets)

and determines the execution time for each task and each stage, the amount of data

consumed and generated by each task, etc. All this information is used to determine

the data selectivity and bandwidth for each stage. In the absence of such history, we

profile job P by executing it on a single machine using a sample of the input data

Di
s and use the logs from the profiling run to determine the necessary parameters.

Concretely,

Estimator(P , Di
s, HP)→ {Smap, Sreduce, Bmap, Breduce, BD}.
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For instance, the ratio of the data consumed by individual map tasks to the map

task completion time yields the bandwidth for the job’s map stage (Bmap). The

reduce stage bandwidth is determined similarly. As the profiling involves only a single

machine with no network transfers, the observed bandwidth for the shuffle stage is

not useful for the model. Instead, we measure the disk I/O bandwidth (BD) under

MapReduce-like access patterns, and use it to determine the shuffle stage bandwidth.

The job profiler assumes that the stage bandwidth observed during profiling is rep-

resentative of actual job operation. Satisfying this assumption poses two challenges:

1. Infrastructure heterogeneity. Ideally, the machine used for profiling should offer

the same performance as any other machine in the datacenter. While physical

machines in a datacenter often have the same hardware configuration, their

performance can vary, especially disk performance [64]. Indeed, we observed

variable disk performance which significantly degrades prediction performance.

To counter this, MRCute maintains statistics regarding the disk bandwidth of

individual machines (see Section 3.3).

2. Representative sample data. The sample data used for profiling should be rep-

resentative and of sufficient size. If too small, intermediate data will not be

spilled to disk by the map and reduce tasks, and the observed bandwidth can

be different from that seen by the actual job. We use MapReduce configura-

tion parameters regarding the memory dedicated to each task to determine the

minimum size of the sample data (see Section 3.3).

3.1.3 DAGs of MapReduce jobs

Any stage in a data-parallel DAG generated by frameworks such as Hive [9], and

Tez [58] can be modeled as a MapReduce job. We use this insight to develop the

response functions for DAGs. Using the MapReduce model above, we first determine

the latency-response function Ls(~r) for every stage s in the DAG. The latency of the

DAG is determined by it’s critical path CP (i.e., the path from any source to any

sink in the DAG that takes the longest time to execute) and can be calculated as

LDAG(~r) =
∑

s∈CP Ls(~r).
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3.2 Web services

Unlike data analytics applications which are run only once, web services run continu-

ously processing multiple user queries or requests over time. Further, as the processing

time of any request depends on the content of the request along with runtime fac-

tors such as slow machines, slow disks, and network packet loses, each request can

experience a different end-to-end latency. Thus, the latency of a web service is typi-

cally specified as a statistical distribution. As a particular latency percentile can vary

significantly over time (e.g., 99th latency percentile on a weekend vs. 99th percentile

on a weekday), the latency-response curves we develop for web services capture the

variance of their latency distributions. These aggregate statistics are more robust to

variations in time. Using variance also allows us to decompose the end-to-end latency

of the web service DAG into that of its stages (Section 5.2).

The static resource requirements for web services (e.g., number of machines to host

a particular stage) typically depend on their properties (e.g., number of shards of

a dataset) and are specified by the application owner. Thus, we aim to model the

latency variance of these applications based on the extra resources which can be used

by different stages at runtime. For example, using a group of spare machines to handle

duplicate requests at a particular stage can reduce the latency variance of the stage

and consequently the end-to-end latency variance of the web service. We model these

extra resources as a resource budget ~r available for the web service and determine the

variance in end-to-end latency as a function of this budget, Var(L(~r)). Determining

the static requirements of web services is outside the scope of this dissertation.

In particular, based on the techniques we use for reducing runtime latencies (Chap-

ter 5), we consider two types of resources (a) extra compute resources available for

requests reissues, and (b) incomplete application responses. In the rest of this section,

we present how we model the latency variance as a function these resources.

3.2.1 Model

Suppose a web service DAG, w, is specified by (V,E) where V = {1, 2, . . . , n} is

the set of stages in the DAG and E denotes the input-output dependencies between

these stages. Given a total resource R available for w, suppose ~r = {r1, r2, . . . , rn}
denotes the partition of this resource across the different stages in w (rs is the resource

available for stage s). We note that R is an abstract resource and can be used to
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specify either extra compute resources or incomplete application responses.

Our goal is to estimate the variance in latency of w, Var(Lw(~r)), as a function of

~r. As described in Section 5.2, we use
∑

s Vs(rs) as a proxy for Var(Lw(~r)), where

the variance-response function Vs(rs) denotes the variance of stage s with rs resource

allocated to it. In the next two sections, we describe how to estimate these variances

for 2 different kinds of resources.

3.2.2 Request reissues

Request reissue is a standard technique to reduce the latency tail in distributed sys-

tems at the cost of increasing resource utilization. A typical use of reissues is to start

a second copy of the request at a pre-determined time Ts, if there is no response before

Ts, and use the first response that returns [65]. Reissuing a request in a particular

stage of a web service (i.e., reissuing the work at one or more servers corresponding

to a stage) elsewhere in the cluster is feasible as stages are often replicated.

To determine the variance-response functions for request reissues, we first use

application-level logs to determine the time spent by a request in different stages

in a web service DAG. Aggregating these latencies across several requests (e.g., over

the last 24 hours) allows us to determine the latency distribution fs of each stage

s. Given the target fraction of requests rs to reissue in stage s, the corresponding

timeout Ts is equivalent to the (1 − rs)th quantile of fs. For example, to reissue 5%

of requests, we set Ts to the 95th percentile of fs. We can thus obtain the variance-

response function Vs(rs) for different values of rs, by computing the corresponding

Ts, and then performing an offline simulation using the latencies from past queries

at this stage. We use standard interpolation techniques to compute the convex-hull,

V̄s(rs), to preclude discretization effects.

3.2.3 Incomplete responses

In many situations, partial answers are useful both to the user and to subsequent

stages in the web service DAG. An example is a stage which picks the best results

from many responders. Similar to the web search stage shown in Figure 2.1, the

image, video and ad search stages at Microsoft Bing consist of many servers that in

parallel compute the best matching images, videos, and ads for a search query. In
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each, an aggregator picks the best few responses overall. Not waiting until the last

server responds will speed up the stage while returning an incomplete response.

How to measure the usefulness of an incomplete answer? Some stages have explicit

indicators; e.g., each returned document in the web search DAG has a relevance score.

For such stages, we say that the answer has utility 1 if it contains the highest ranked

document and 0 otherwise (alternatively, we can give weights to each of the top ten

results). For other stages, we let utility be the fraction of components that have

responded1. We define the utility loss of a set of queries as the average loss in utility

across all the queries. So, if 1 out of 1000 queries loses the top ranked document, the

utility loss incurred is 0.1%.

Various timeout mechanisms can be used to determine when the aggregator should

stop waiting for the remaining responders and return its answer. While we discuss

various timeout schemes in detail later (Section 5.3.2), for any given utility loss budget

rs for a particular stage s, we use offline simulations and application logs of previous

queries (which indicate the relevance scores of the responses from different servers) to

choose the timeout parameters such that we achieve the minimum latency variance

for the stage while ensuring that the utility loss is at most rs. Repeating this process

for different values of rs and determining the corresponding variance of the stage s, we

get the variance-response curve Vs(rs) for the stage when using incomplete responses.

3.3 Evaluation

In this section, we evaluate the performance of our latency estimation techniques for

data analytics applications showing that we can predict application completion times

with an average prediction error as low as 12%, with low overhead.

3.3.1 Methodology

We use MRCute to predict the job completion of the five MapReduce jobs described

in Table 2.1. For each job, MRCute predicts the completion time for varying number

of nodes (N) and the network bandwidth between them (B). The prediction involves

profiling the job with sample data on a single node, and using the resulting job

1If responders are equally likely to yield the most relevant result, both these measures yield the
same expected loss.
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Figure 3.2: Predicted completion time for Sort (an I/O intensive job) and WordCount

(a CPU intensive job) matches the observed time.

parameters to drive the analytical model.

To determine actual job completion times, we executed each job on a 35-node Em-

ulab cluster with Cloudera’s distribution of Hadoop MapReduce (version 0.20.2) [66].

Each node has a quad-core Intel Xeon 2.4 GHz processor, 12 GB RAM and a 1 Gbps

network interface. The unoptimized jobs were run with default Hadoop configuration

parameters. The number of mappers and reducers per node is 8 and 2 respectively,

HDFS block size is 128 MB, and the total number of reducers is twice the number of

nodes used. While parameter tuning can improve job performance significantly [67],

our focus here is not improving individual jobs, but rather predicting the performance

for a given configuration. Hence, the results presented here apply as long as the same

parameters are used for job profiling and for the actual execution.

3.3.2 Prediction accuracy

We first focus on the results for Sort and WordCount, two jobs at extreme ends of

the spectrum. Sort is an I/O intensive job while WordCount is processor intensive.

Figures 3.2a and 3.2b plot the observed and predicted completion time for five runs of

these jobs when varying N and B. The figures show that the predicted and observed

completion times are close throughout, with 8.9% prediction error on average for Sort

and 20.5% at the 95th percentile.

To understand the root cause of the prediction errors, we look at the per-stage

completion time. Figure 3.3 presents this breakdown for Sort with varying number
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Figure 3.3: Per-stage breakdown of the observed (Obs) and predicted (Pred) comple-
tion time for Sort with bandwidth = 300 Mbps. Hom represents the predicted time
assuming homogeneous disk performance.

of nodes. The bars labeled Obs and Pred represent the observed and predicted

completion time respectively. The figure shows that the predicted time for the map

stage is very accurate; most of the prediction error results from the shuffle and reduce

stages.

The reason for this difference in the prediction accuracy is that the map stage

typically consists of multiple waves. Consequently, any outlier map tasks that are

straggling in the earlier waves get masked by the latter waves and they do not influence

the observed stage completion time significantly. In contrast, the shuffle and reduce

stages execute in a single wave as the number of reduce tasks is the same as the

number of reduce slots on the nodes. As a result, any outlier reduce tasks inflate the

stage completion time and in turn, the job completion time. Overall, such outliers

introduce errors in the predicted completion time.

Beyond Sort and WordCount, the predicted estimates for the other jobs show similar

trends. For brevity, we summarize the prediction errors in Table 3.1. Overall, we find

a maximum average error of 11.5% and a 95th percentile of 20.5%.

3.3.3 Accounting for outliers

The basic MRCute model predicts job completion time assuming “ideal” operation.

However, data analytics in production settings is far from ideal; nodes and tasks fail,

and many tasks are outliers. While guaranteed network bandwidth avoids outliers

due to network contention, here we describe how MRCute deals with outliers due to

bad machines and quantify the impact of workload imbalance.
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Figure 3.4: Impact of skew.

Bad machines. To account for disk performance variability, MRCute maintains

statistics regarding the disk bandwidth of individual machines. To highlight the ben-

efits of such benchmarking, the bars in Figure 3.3 labeled Hom (Homogeneous) show

the predicted times when MRCute does not account for disk performance hetero-

geneity, and instead, uses a constant value for the disk bandwidth in the analytical

model. As the performance of the disks on individual nodes varies, such an approach

underestimates the reduce stage time, which leads to a high prediction error.

Workload imbalance. The amount of data processed by tasks belonging to the

same stage can vary significantly which, in turn, leads to outliers. To quantify the

impact of such outliers on MRCute, we artificially introduced skew for the Sort

job by choosing input keys from a skewed distribution. Here skew is the coefficient

of variation ( stdev
mean

) for input across tasks belonging to the same stage. Figure 3.4

shows that the prediction error increases almost linearly with increasing skew. This

is expected given that MRCute profiles the job only on sample data and does not

explicitly account for input data skew. Mantri [32] reported a median data skew of

0.34 which leads to 26% prediction error for MRCute. To account for such outliers

resulting from workload imbalance and other factors, we use slack when determining

resources for a job. This allows us to satisfy application goals in the presence of

outliers.
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Hadoop Job Stages Sample Profiling Time Prediction error (all runs)
Data Size Average 95%ile

Sort 1 1GB 100.8s 8.9% 20.5%
WordCount 1 450MB 67.5s 8.4% 19.7%
Gridmix 3 16GB 546s 11.5% 17.8%
TF-IDF 3 3GB 335s 5.6% 9.7%

LinkGraph 4 3GB 554.8s 8.2% 12.3%

Table 3.1: Prediction overhead and error of MRCute for Hadoop jobs.

3.3.4 Prediction overhead

In the absence of job history, MRCute profiles a job on sample input data to determine

the job parameters. This imposes two kinds of overhead.

(1). Sample data. We use information about the MapReduce configuration param-

eters, such as when data is spilled to the disk, to calculate the size of the sample

data needed for the job. This is shown in Table 3.1. Other than Gridmix, the jobs

require <3 GB of sample data, a non-negligible yet small value compared to typical

datasets used in data intensive workloads [22]. Gridmix is a multi-stage job with high

selectivity. Hence, we need more sample data to ensure enough data for the last stage

when profiling, as data gets aggregated across stages. This overhead could be reduced

by profiling individual stages separately but requires detailed knowledge about the

input required by each stage.

(2). Profiling time. Figure 3.1 also shows the time to profile individual jobs. For

Sort and WordCount, the profiling takes around 100 seconds. For the multi-stage

jobs, profiling time is higher as more data needs to be processed. However, a job

needs to be profiled only once to predict the completion time for all resource tuples,

and we can also use information from past runs.

3.4 Related work

There has been a lot of progress towards performance prediction of data analytics

applications. For example, Mumak [37] and MRPerf [38] are discrete-event simulators

for MapReduce, Ganapathi et al. [39] use statistical analysis to discover feature vectors

and predict job performance, ParaTimer [68] is a job progress estimator that relies

on debug runs of the job. Our system, Concorde, needs fast prediction and hence,

cannot use detailed simulators like MRPerf that take minutes per simulation [38];
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exploring 100 resource tuples would take 100s of minutes. Instead, we adopt a hybrid

approach that trades off accuracy for prediction speed. Tian et. al. [69] use a similar

tact involving profiling on sample data and then linear regression for prediction.

Elasticiser [67] and Conductor [70] translate application goals into resource require-

ments, while Aria [71] and Jockey [16] focus on private settings. All these proposals

involve a performance prediction component; Conductor uses a model while Jockey

uses a simulator. Like Concorde, Aria and Elasticiser combine profiling with mod-

eling. Aria uses historical information for profiling and has a model that estimates

performance bounds. Elasticiser profiles using instrumentation and relies on a sta-

tistical model. Unlike MRCute, most of these existing predictors do not model the

dependence of job completion time on the network bandwidth available. This is cru-

cial for Concorde which aims to coordinate the storage and compute sub-systems to

schedule datacenter applications in a network-aware manner. Finally, there has been

work towards performance prediction for other datacenter applications (e.g., web [72]

and ERP applications [73]), which do not directly apply to the problem Concorde

aims to address.

3.5 Conclusion

The ability to predict application performance as a function of the resources allocated

allows us to determine how cluster resources should be partitioned across multiple ap-

plications or across multiple stages within an application to meet end-to-end latency

goals. In this chapter, we explored how to determine such latency functions for two

types of datacenter applications — data analytics and web services. In particular,

we proposed MRCute which uses the characteristics of data analytics applications to

determine their latency as a function of the number of machines (or racks) allocated

and the network bandwidth available across those machines. Further, we show how

to quantify the latency of web services as a function of the additional compute re-

sources usable at runtime and loss in relevance tolerable by the application. Using

experiments on a 35 node Hadoop cluster and a variety of workloads, we show that

MRCute can allow us to predict application latency with less than 12% average error.

42



Chapter 4

Resource planning for datacenter applications

Datacenter applications utilize several datacenter sub-systems such as network, com-

pute, storage, and memory for their execution. Different stages that make up these

DAG-structured applications can be bottlenecked on different sub-systems; for ex-

ample, the map stage in a MapReduce job can be compute-bound while the reduce

stage can be disk-bound. Thus, the end-to-end latency of the application can be

determined by multiple sub-systems along with how efficiently they function together

for executing the application.

Consider a MapReduce job whose input data is stored in a distributed file system

such as HDFS [27]. The input data chunks are generally spread across multiple ma-

chines in the cluster, randomly and agnostic to the characteristics of the application(s)

which reads the data. Using techniques such as delay scheduling [74] or Quincy [75]

can result in a large fraction of map tasks running on the machines holding their input

data, thus, avoiding the need to utilize the network for the map stage. However, the

reducers will have to read their input data (the map output data) from across several

machines in the cluster, invariably having to use cross-rack links in the cluster. This

can result in increased job latency as, while there is full bisection bandwidth within

a rack, modern data intensive computing clusters typically have oversubscription val-

ues ranging from 3:1 to 10:1 from the racks to the core [18, 35, 54]. Further, a large

fraction of the cross-rack bandwidth (up to 50%) can be used for background data

transfers [35], effectively reducing the bandwidth available even more.

The above example shows that the lack of coordination between the storage, net-

work and compute in datacenter applications results in sub-optimal performance,

especially as applications like data analytics can read, process and transfer large

amounts of data over the network (up to several petabytes each day [4]). Existing

cluster schedulers try to overcome these problems by optimizing the placement of

compute or by scheduling network flows, while assuming that the input data loca-

tions are fixed. However, different stages in the applications can still run into network
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bottlenecks as illustrated above. Recent techniques like ShuffleWatcher [76] attempt

to localize the shuffle of a MapReduce job to one or a few racks, but end up using

the cross-rack bandwidth to read input data. The benefits from using flow-level tech-

niques such as Varys [18] or Baraat [19] are also limited, as they only schedule network

transfers after both the source and destination are fixed. Sinbad [35] schedules flows

around network contention but its benefits are limited to file system writes.

However, a large number of business-critical applications are recurring, with pre-

defined submission times and predictable resource requirements, allowing us to care-

fully place input data to improve network locality. For example, it has been reported

that production workloads contain up to 40% recurring jobs, which are run periodi-

cally as new data becomes available [16,41]. Using these characteristics, we can plan

ahead and determine where the input data of an application can be placed (e.g., in a

particular rack). By coordinating placement of data and tasks, most small applica-

tions can run completely within one rack with all stages achieving rack-level network

locality and no oversubscription. Because the small applications do not use cross-

rack links, those running across multiple racks also see benefits due to more available

bandwidth.

Using this intuition, we design Corral, which exploits the characteristics of data-

center workloads to jointly optimize the placement of data and compute, and improve

application latency. Each application is submitted to Corral with a set of goals (e.g.,

completion time deadline) and resource constraints (e.g., number of machines to run

an application stage). Depending on the presence (or absence) of these goals and

constraints, Corral uses two different components. First, for applications with goals,

Corral uses prediction tools like MRCute (Chapter 3) to determine the resources

required to meet the goals. As a large fraction of datacenter applications exhibit

resource malleability (Section 2.3), multiple resource tuples often satisfy these goals.

Corral uses a resource selector to pick the tuple which improves the cluster’s through-

put. For applications with constraints, the resource selector picks the tuple which

satisfies these constraints. Though our core ideas apply to general multi-resource

settings, we focus on two specific resources in this dissertation, namely, compute in-

stances (N) and the network bandwidth (B) between them. Corral reserves network

bandwidth1 using the virtual cluster abstraction [42] to ensure that the goals are met.

The cluster scheduler in Concorde uses Oktopus [42] to determine how to provision

1To ensure that such reservations are work-conserving, we can use techniques proposed else-
where [77].

44



the physical resources (for job execution) for the selected resource tuple.

Second, for applications without specific goals, Corral aims to minimize the average

completion time or makespan. Corral uses an offline planner to schedule such applica-

tions. It uses the applications characteristics — amount of data processed, CPU and

memory demands, input to output selectivity etc. — to determine which set of racks

should be used to run each application and when it should start. To this end, the

planner formulates a planning problem, which we model as a malleable job scheduling

problem [43–45]. We develop simple heuristics to efficiently solve this problem. We

show that these heuristics achieve performance appealingly close (within 3-15%) to

the solution of a Linear Program (LP) relaxation, which serves as a lower-bound to

a particular formulation of the planning problem (Section 4.3.5). The application

execution is decoupled from the planner and the planner’s output is used as hints for

placing data and tasks during data upload and job execution. The offline planner op-

timizes for both recurring jobs and jobs whose characteristics are known in advance.

The techniques in Corral apply to both simple MapReduce jobs as well as complex

DAG-structured workloads such as Hive [9] or Scope [11] queries.

We note that during job execution, we do not exclusively allocate whole racks to

a single job. Instead, given the set of racks assigned to a job by the offline planner,

one replica of job input data is placed within those racks and all tasks of the job are

restricted to run within those racks. This forces all job data transfers to stay within

those racks. The remaining slots within these racks are used by ad hoc jobs and

also by other planned jobs assigned to the same racks. When a significant fraction

of machines in these racks fail (beyond a configured threshold), Corral ignores these

constraints and uses any available resources in the cluster to schedule the planned

jobs.

The offline planner in Corral improves job performance, when the network is a

constrained resource, for the following reasons. First, it runs the small jobs in a single

rack, i.e., at least one replica of the job input data and all its compute tasks are placed

inside just one rack. These jobs can take advantage of full bisection bandwidth within

a rack, thus speeding up their network-heavy stages. Second, while large jobs continue

running across multiple racks, they finish faster as they can use the bandwidth freed

up by the small jobs. Similarly, even ad hoc jobs benefit as they can also use the

additional bandwidth. Finally, by running jobs in their own subset of racks rather

than across the whole cluster, we improve isolation across jobs.

We have implemented the techniques in Corral in Hadoop and evaluate them on
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testbeds using production workloads and a representative set of MapReduce jobs. We

show that when using network reservations, Corral enables the datacenter provider

to accept 3-14% more jobs which represents a 7-87% improvement in datacenter

goodput. When scheduling workloads without network reservations, Corral achieves

a 10-33% reduction in makespan for a batch workload and a 30-56% reduction in

median completion time compared to Hadoop’s capacity scheduler [49].

4.1 Overview

Corral exploits coordination between the storage, and compute sub-systems in dat-

acenters to meet applications requirements and improve their end-to-end latencies.

Each application i submitted to Corral is specified by a 3-tuple Si = (Ai,Gi, Ci),
where

(a) Ai specifies application information such as the program to run, input data to

run on, logs of previous application executions etc.

(b) Gi specifies the application goals to be met. These goals are used to determine

the resources that need to be provisioned for the application. In this dissertation,

we consider completion time deadlines as the only goals that can be specified

for data analytics applications. For web services, request throughput is a more

relevant goal. While we do not focus on developing techniques to determine the

resource requirements of web services, existing techniques (e.g., [78–80]) can be

used to do so.

(c) Ci is a set of tuples, where each tuple specifies the constraints on the resource

requirements of each application stage. We consider two resources that can be

specified — the number of compute nodes and the network bandwidth between

these nodes. Thus, for an application with s stages, {1, 2, . . . , s}, Ci is specified

as {(1, N1, B1), (2, N2, B2), . . . , (s,Ns, Bs), B
o
1, B

o
2, . . . , B

o
s} where Nk and Bk are

the compute and bandwidth requirements for stage k and Bo
k is the bandwidth

with which stage k communicates with other stages. This is similar to the virtual

oversubscribed cluster abstraction proposed earlier [42].

Either Gi or Ci can be an empty set (∅), which suggests the absence of the corre-

sponding goals or constraints respectively. While each of these sets can be specified
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in a variety of combinations (e.g., Ci contains requirements only for a subset of the

stages), we deal with only specific requirements in this chapter — Gi is specified only

for data analytics applications to include deadlines while Ci is typically specified only

for web service applications and contains the resource requirements for all stages in

the application DAG. While these requirements seem restrictive, they cover most

scenarios in practice where (i) users of data analytics applications care about only

higher level goals such as completion time and not about low-level details such as the

number of machines allocated to them [36], and (ii) the resource requirements for web

services are determined offline by application owners.

Given the above application requirements, Corral uses three components to sched-

ule them: (a) resource selector, (b) an offline planner, and (c) the cluster scheduler

(see Figure 1.1). We next describe each of these components briefly and leave the

details for later sections.

Resource selector. For data analytics applications with Gi 6= ∅, Corral uses MRCute

(Section 3.1) to determine multiple resource tuples <N,B> (N is the number of

machines and B is the bandwidth between these machines), which satisfy the specified

completion time. The resource selector ranks these tuples in terms of the cost to

accommodate the tuple on the cluster and selects the tuple with the least cost, thus

improving cluster efficiency. For applications with Ci 6= ∅, only one resource tuple is

feasible and this is selected by the resource selector. If the bandwidth requirements

are not specified in these constraints, then it is set equal to the NIC bandwidth.

The resource tuples selected are specified using the virtual cluster or the virtual

oversubscribed cluster abstraction to the cluster scheduler. We provide the details of

the resource selector in Section 4.2.

Offline planner. The offline planner is used to schedule applications with Ci = ∅
and Gi = ∅. The planner uses the characteristics of applications (e.g., arrival time,

input data size etc.) that will be submitted to the cluster in the future to estimate

their latencies using MRCute (Section 3.1). It solves an offline planning problem with

the goal of minimizing a specified metric (e.g., makespan or average job completion

time). The planner creates an offline schedule which consists of a tuple {Rj, pj} for

each job j, where Rj is the set of racks on which job j has to run and pj is its priority.

It provides this schedule as guidelines to the cluster scheduler.

The offline planner will periodically receive updated estimates of future work-

load, rerun the planning problem, and update the guidelines to the cluster scheduler.

Note that, as the cluster conditions might change after the plan was generated (e.g.,
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racks/machines failing), if the assigned locations are not available for any job, the

scheduler will ignore the guidelines for that job and use randomly selected machines

in the cluster to hold its data (while ensuring fault tolerance using a policy similar

to HDFS) and run its tasks.

The above scheduling approach in Corral applies not only to recurring jobs but also

other jobs which are known a priori and whose characteristics can be predicted. For

jobs which are not known in advance, the input data is uniformly spread out across

the cluster using regular HDFS policies and their tasks are scheduled using existing

techniques [74] to any empty slots in the cluster.

Cluster scheduler. For applications with network reservations (e.g., those with

completion time requirements), resource requirements are determined by the resource

selector as described above. These requirements are specified to the cluster scheduler

using existing cluster abstractions (virtual cluster or virtual oversubscribed cluster).

The cluster scheduler uses Oktopus [42] to allocate these cluster abstractions.

For applications without network reservations and scheduled using the offline plan-

ner, the cluster scheduler uses the offline schedule as guidelines to place their data

and tasks during runtime. As the input data of a particular application j is uploaded

into the cluster and stored in a distributed filesystem (such as HDFS), the cluster

scheduler places one replica of each data chunk in a randomly chosen rack from Rj,

and the other replicas on two other racks, which are randomly chosen from the en-

tire set of racks (excluding the one chosen so far). We note that these choices are

consistent with the per-chunk fault tolerance policy, typically used in HDFS. When

application j is submitted to the cluster, the cluster scheduler constraints its tasks

to be scheduled within racks in Rj. Whenever a slot becomes empty in any rack, the

scheduler examines all jobs which have been assigned this rack and assigns the slot

to the job with the highest priority2.

With such placement of data and tasks in the same set of racks, Corral ensures

that not only the initial stage (e.g., map, extract) but also subsequent stages of the

jobs (e.g., reduce, join) achieve rack-level data locality. The priority assigned to a job

ensures that the order in which jobs are scheduled by the cluster scheduler conforms

to that assigned by the offline planner.

2To ensure machine-level locality, we use delay scheduling [74].
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4.2 Resource selection

The resource malleability property of datacenter applications (Section 2.3) offers flex-

ibility to the cluster provider. As multiple resource tuples achieve similar completion

times for an application, the provider can select which resource tuple to allocate. Cor-

ral takes advantage of this flexibility by selecting the resource tuple most amenable

to the provider’s ability to accommodate subsequent applications, thus maximizing

the provider revenue. This comprises the two following sub-problems.

The feasibility problem involves determining the set of candidate resource tuples

that can actually be allocated in the datacenter, given its current utilization. For our

two dimensional resource tuples, this requires ensuring that there are both enough

unoccupied VM slots on physical machines and enough bandwidth on the network

links connecting these machines. Oktopus [42] presents a greedy allocation algorithm

for such tuples which ensures that if a feasible allocation exists, it is found. We use

this algorithm to determine feasible resource tuples.

The resource selection problem requires selecting the feasible resource tuple that

maximizes the cluster’s ability to accept future requests. However, in our setting, the

resources required for a given tuple depend not just on the tuple itself, but also on the

specific allocation. As an example, consider a tuple <4, 200> requiring 4 VMs each

with 200 Mbps of network bandwidth to other VMs. If all these VMs are allocated

on a single physical machine, no bandwidth is required on the network link for the

machine. On the other hand, if two of the VMs are allocated on one machine and

two on another machine, the bandwidth required on the network links between them

is 400 Mbps (2*200 Mbps).

To address this, we use the allocation algorithm in Oktopus [42] to convert each

feasible resource tuple to a utilization vector capturing the utilization of physical

resources in the datacenter after the tuple has been allocated. Specifically,

Allocation(< N,B >)→ U =< u1, . . . , ud >,

where U is a vector with the utilization of all datacenter resources, i.e., all physical

machines and links. The vector dimension d is the total number of machines and

links in the datacenter. For a machine k, uk is the fraction of the VM slots on the

machine that are occupied while for a link k, uk is the fraction of the link’s capacity

that has been reserved for the allocated VMs.

Overall, given the set of utilization vectors corresponding to the feasible tuples,
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the objective of the resource selector is to select the resource tuple that will mini-

mize the number of rejected requests in the future and hence, improve the cluster’s

throughput. Similar problems have been studied in various contexts, such as online

ad allocation [81] and online routing and admission control in virtual circuit net-

works [82]. Depending on the context, one can show that different cost functions

(that measure the cost for accepting a request) yield optimal scheduling for different

request allocation models [83]. We experimented with a number of such cost func-

tions and found that a cost function that captures the resource imbalance caused by

the allocation of a resource tuple performs very well in terms of minimizing rejected

requests. In our setting, minimizing resource imbalance translates to choosing the

utilization vector that balances the capacity left across all resources after the request

has been allocated. Precisely, our selection heuristic aims to minimize the following:

minimize
d∑
j=1

(1− uj)2.

Hence, the resource imbalance is defined as the square of the fractional under-utilization

for each resource. The lower this value, the better the residual capacity across re-

sources is balanced. In literature, this is referred to as the Norm-based Greedy heuris-

tic [84]. An extra complication in our setting is the hierarchical nature of typical

datacenters. This leads to a hierarchical set of resources corresponding to datacenter

hosts, racks and pods. Next, we describe how this heuristic can be extended to such

a setting.

4.2.1 Resource imbalance heuristic

The resource imbalance heuristic applies trivially to a single machine scenario. Con-

sider a single machine with a network link. Say the machine has Nmax VM slots of

which N left are unallocated. Further, the outbound link of the machine has a capacity

Bmax of which Bleft is unallocated. The utilization vector for this machine is

< u1, u2 >=< 1− N left

Nmax
, 1− Bleft

Bmax
> .
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Thus, the resource imbalance for the machine is

2∑
j=1

(1− uj)2 =

{
N left

Nmax

}2

+

{
Bleft

Bmax

}2

.

As physical machines in a datacenter are arranged in racks which, in turn, are

arranged in pods, there is a hierarchy of resources in the datacenter. To capture the

resource imbalance at each level of the datacenter, we extend the set of datacenter

resources to include racks and pods. Hence, the datacenter utilization is given by the

vector < u1, . . . , um >, where m is the sum of physical machines, racks, pods and

links in the datacenter. For a rack k, uk is the fraction of VM slots in the rack that

are occupied and the same for pods. Hence, for a resource tuple being considered,

the overall resource imbalance is the sum of the imbalance at individual resources,

represented by set C, whose utilization changes because of the tuple being accepted,

i.e.,
∑

j∈C(1− uj)2.

A lower resource imbalance indicates a better positioned cluster. Hence, Corral

chooses the utilization vector and the corresponding resource tuple that minimizes

this imbalance. As the allocation algorithm is fast (median allocation time is less

than 1 ms), we simply try to allocate all feasible tuples to determine the resulting

utilization vector and the imbalance it causes.

4.2.2 Resource selection example

We now use a simple example to illustrate how Corral’s imbalance-based resource

selection works. Consider a rack of four physical machines, each with 2 VM slots and a

Gigabit link. Also, imagine a application request with two feasible tuples <N,B> (B

in Mbps): <3, 500> and <6, 200>. Figure 4.1 shows allocations for these two resource

tuples. Network links in the figure are annotated with the (unreserved) residual

bandwidth on the link after the allocation. The figure also shows the imbalance

values for the resulting datacenter states. The former tuple has a lower imbalance

and is chosen by Corral.

To understand this choice, we focus on the resources left in the datacenter after

the allocations. After the allocation of the <3, 500> tuple, the cluster is left with

five empty VM slots, each with an average network bandwidth of 500 Mbps (state-1).

As a contrast, the allocation of <6, 200> results in two empty VM slots, again with
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500

1000

1000 Mbps

State 1

Allocation involves two physical machines
Resource Imbalance = Imbalance on machine1 + 
link1 + machine2 + link2
= (0)2 slots + (500/1000)2 Mbps + (½)2 slots + 
(500/1000)2 Mbps

Total resource imbalance = ¼ + ½ = ¾ 

VMs 
allocated 

to app

Empty VM 
slots

Top of Rack
(ToR) Switch

Top of Rack
(ToR) Switch

(a). Request <3 VMs, 500 Mbps> (b). Request <6 VMs, 200 Mbps>

State 2
Allocation involves three machines
Imbalance on machine1 + link1 + 
machine2 + link2 + machine3 + link3
 =  3 * {(0)2 slots + (600/1000)2 Mbps}

Total resource imbalance 
        = 3 * (600/1000)2 = 1.08

Figure 4.1: Selecting amongst two feasible resource tuples. Each physical machine
has 2 VM slots and an outbound link of capacity 1000 Mbps. Each link is annotated
with its residual bandwidth.

an average network bandwidth of 500 Mbps (state-2). We note that any subsequent

application request that can be accommodated by the cluster in state-2 can also be

accommodated in state-1. However, the reverse is not true. For instance, a future

application request requiring the tuple <3, 400> can be allocated in state-1 but not

state-2. Hence, the first tuple is more desirable for the cluster and is the one chosen

by the resource imbalance metric.

4.3 Offline planning

In this section, we first describe the design considerations for the offline planner

component in Corral (Section 4.3.1), and our approach to formalizing and solving

the planning problem (Section 4.3.2). We then present a formal description of the

planning problem (Section 4.3.3), our heuristics to solve the problem (Section 4.3.4),

and formulate an LP relaxation to evaluate their performance (Section 4.3.5).
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4.3.1 Design considerations

Objective. The goal of the offline planner is to provide guidelines (or hints) to the

cluster scheduler for placing data and compute tasks. The objective is to optimize

the network locality of a job, and thus, improve the overall performance.

Scenarios. Based on the different cases that arise in practice, we consider two scenar-

ios. In the batch scenario, we run a batch of jobs that are all submitted to the cluster

at the same time (e.g., a collection of log analysis jobs). Our goal is to minimize their

makespan, i.e., the time to finish the execution of all the jobs in the batch. In the

online scenario, jobs arrive over a longer period of time with known arrival times. In

this scenario, our goal is to minimize the average job completion time.

Challenges. Designing the planner raises three important questions: First, at what

granularity should the hints be provided? For example, one option is to provide

a target machine for each task of the job. Second, how to formalize the planning

problem to make it tractable at the scale of current data analytics systems? Finally,

as the planner needs to choose between different data and task placement options,

how do we estimate the job latency of a particular configuration?

For the purposes of formalizing a tractable offline planning problem, we make sev-

eral simplifying assumptions which we discuss next. We note that these assumptions

apply only to the offline planner, and not to the actual job execution on the cluster.

4.3.2 Solution approach

Planning at granularity of jobs and racks. The solution to the planning problem

can be specified at different granularities. At one extreme, it can prescribe which

vertex of a job should run on which machine in the cluster. However, generating such

a solution is non-trivial. First, while the job input sizes can be predicted with small

error, the input sizes of individual vertices depend on how the data is partitioned

across vertices in a stage and thus, much less predictable. Second, the number of

vertices can be several orders of magnitude higher than the number of jobs, making

the problem practically intractable.

Instead of planning at the level of vertices, one can plan at a stage-level, i.e., specify

which rack(s) each stage in a job should use. Complex, DAG-structured jobs could

potentially benefit from stage-level planning; e.g., two parallel shuffles in a DAG could

run in two separate racks, both benefiting from locality. However, after examining a
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large number of production jobs in our clusters, we found very few DAG jobs where

such stage-level planning provides locality benefits.

Therefore, to improve scalability and robustness of the offline plan, we pose the

planning problem at the granularity of racks and jobs. Further, most production

clusters have full bisection bandwidth within a rack and oversubscribed links from

the racks to the core [18, 35, 54]. Planning at the granularity of racks also allows us

to assume that all tasks in a rack can communicate at NIC speeds, which in turn

simplifies the modeling of job latency.

Planning as malleable job scheduling. We formulate the planning problem as

a malleable job scheduling problem [43–45]. A malleable job is a job whose latency

depends on the amount of resources allocated to it. While each job typically has a

fixed requirement for the total number of compute slots, the planner’s decision on

how many racks the job will execute can affect its latency.

To illustrate the dependency of job latency on the number of racks assigned to it,

consider a map-reduce shuffle operation with a total of S bytes spread over r racks.

Each rack has internal bandwidth of B, and racks are connected with oversubscription

ratio of V ; assume that network is the bottleneck resource affecting latency. Then

when r = 1, almost all of S bytes have to be transferred across machines in the rack,

with total latency of S/B. For r > 1, assuming symmetry for simplicity, each rack

sends (r− 1)/r fraction of its data to other racks, so the whole shuffle has to transfer

S(r−1)/r bytes using aggregate bandwidth of rB/V , resulting in approximate latency

of (r−1)SV
r2B

which approaches V
r
S
B

for large r; note that the latency reduces with r for

this simple example. More comprehensive latency models are described in Section 3.1.

By using malleable job scheduling, we can tap into previous work in this area to

design efficient algorithms for determining which, how many, and at what priority

order would racks be assigned to jobs.

Characterizing job latency using simple response functions. Using the above

intuition, we model job latency via latency-response functions Lj(r), where j is the

job index and r is the number of racks allocated to j. In particular, we model

job latency as depending on the number of racks allocated, and also on fixed job

characteristics (such as the amount of data transferred between vertices, amount of

CPU resources required, and the maximum parallelism of the job). Using these job

characteristics, which can be estimated from earlier runs of the job, we derive simple

analytical models to compute job latency (Section 3.1).

The actual job latencies obviously depend on additional runtime factors such as
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failures, outliers, and other jobs which run simultaneously on the same rack(s). How-

ever, as our latency approximation is used only for offline planning (and these factors

affect all jobs), we can trade off accurate (absolute) latency values for simpler and

practical planning algorithms. As it will become evident from our evaluation, using

approximate latency models suffices for significant latency improvements.

4.3.3 Problem formulation

Given the design choices above, Corral’s offline planning problem is formulated as

follows. A set of jobs J (of size J) has to be scheduled on a cluster of R racks. Each

job j is characterized by a latency-response function Lj : [1, R] → <+, which gives

the (expected) job completion time as a function of the number of racks assigned to

the job. Our model assumes that once a subset of racks is allocated to a job, it is

used by the job until completion. That is, we do not allow preemption or a change

in the allocation throughout the execution of the job. This assumption simplifies

our problem formulation significantly. To ensure work conservation during job exe-

cution, Corral’s cluster scheduler does not enforce these constraints. Our evaluation

results (Section 4.5) show that even with this deviation from the assumptions, Corral

significantly outperforms existing schedulers.

In the batch scenario, the goal is to minimize the makespan, i.e., the time it takes

to complete all jobs. In the online scenario, each job has its own arrival time. The

goal now is to minimize the average completion time, i.e., the average time from the

arrival of a job until its completion. Both problems are NP-hard [44, 45]. Hence, we

design efficient heuristics that run in low polynomial time.

4.3.4 Planning heuristics

Solving the planning problem consists of determining (a) the amount of resources

(number of racks) to be allocated to a job, and (b) where in the cluster these re-

sources have to be allocated. To address each of these sub-problems and use ideas

from existing techniques (e.g., LIST scheduling [85]), we decouple the planning prob-

lem into two phases — the provisioning phase and the prioritization phase. In the

provisioning phase, for each job j, we determine rj, the number of racks allocated to

the job. In the prioritization phase, given rj for all jobs, we determine Rj, the specific

subset of racks for j, and Tj, the time when j would start execution. We use Tj to
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Input: Set of jobs J of size J ; ∀j ∈ J , rj, the number of racks to be assigned to
job j for Lj(rj) time units
and Aj, the arrival time of job j (0 in batch case).
Output: ∀j ∈ J , Rj, the set of racks allocated to
job j and Tj, the start time of job j.
Initialization: Sort and re-index jobs according to the scenario (batch or
online).
j := 0
Fi := 0 for all racks i = 1 . . . R
while j < J do
Rj :=set of rj racks with smallest Fi
Tj := max{maxi∈Rj

Fi, Aj}
for i ∈ Rj, Fi := Tj + Lj(rj)
j := j + 1

end while

Figure 4.2: Prioritization phase.

determine the priority ordering of jobs.

Provisioning phase. Initially, we set rj = 1 for each job. This represents a schedule

where each job runs on a single rack. In each iteration of this phase, we find the job

j which is allocated less than R racks and has the longest execution time (according

to the current rj allocations), and increase its allocation by one rack. When a job is

already allocated R racks it cannot receive additional racks. We proceed iteratively

until all jobs reach rj = R.

Intuitively, by spreading the longest job across more racks, we shorten the job that

is “sticking out” the most. Note that if the latency of the longest job increases when

its allocation is increased by one rack, it will continue to be the longest and thus,

its allocation will be increased again in the next iteration. For the latency response

curves we observed it practice, we found that the latency of the longest job eventually

decreases.

As each job in J can be allocated any number of racks between 1 and R, a total

of RJ different allocations exist for the provisioning phase. The above heuristic is

designed to explore a plausible polynomial-size subset of candidate allocations (J ·R),

which can be evaluated within practical time constraints. For each such allocation, we

run the prioritization phase described below and pick the allocation (and respective

schedule) which yields the lowest value for the relevant objective (makespan for batch

scenario, average completion time for online scenario).

We note that this heuristic is similar to the one used in [43] for scheduling malleable
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jobs with the objective of makespan minimization. [43] terminates the heuristic when∑
j|rj>1 rj = R, and obtains an approximation ratio of roughly 2 on the makespan,

by using LIST scheduling [85] on top of the provisioning heuristic. However, as each

iteration is fast, we allow ourselves to run the heuristic for more iterations compared

to [43], until reaching rj = R for every job j. This allows us to explore more options,

and to obtain adequate results (including for the objective of average completion

time, for which [43] does not provide guarantees).

Prioritization phase. If all jobs are constrained to run on a single rack, the longest

processing time first (LPT) algorithm [85] is a well-known scheduling algorithm one

could use to minimize makespan. However, jobs can run on multiple racks in Corral.

We extend LPT to account for this case (pseudo-code in Figure 4.2).

In the batch scenario, we first sort jobs in decreasing order of number of racks

allocated to them (rj), i.e., widest-job first. Then, to break ties, we sort them in

decreasing order of their processing times (similar to LPT). The widest-job first order

helps us avoid “holes” in the schedule; for example, a job allocated R racks will not

have to wait for a job allocated just one rack to complete, which would result in

wasted resources. We then iterate over the jobs in this sorted order, assigning the

required number of racks. We keep track of Fi, the time when rack i finishes running

previously scheduled jobs. For each job j, we allocate the required set of racks by

selecting the first rj racks that are available (based on Fi). We then update Fi for

the selected racks based on the start time of the job and its duration.

For the online scenario, we sort jobs in ascending order of their arrival time; in case

of ties, we apply the sorting criteria of the batch case in the same order described

above, and then use the algorithm described in Figure 4.2.

Complexity. The complexity of the prioritization phase is O(JR), because for each

job we make a pass over all R racks to determine the first rj racks that become

available. The provisioning phase has JR iterations, hence the overall complexity of

our heuristic isO(J2R2). The complexity of calculating the latency-response functions

is linear in R and thus does not increase the overall complexity3.

In terms of actual running time, our heuristic is highly scalable as shown in Fig-

ure 4.3. Running our heuristic on a single desktop machine with 6 cores and 24GB

RAM, we found that it requires around 55 seconds to generate the schedule for 500

3With DAGs, we find critical path via an efficient shortest path algorithm; using BFS, this adds
an O(V + E) to the complexity, where V is the number of stages and E is the number of edges in
the DAG. However, because the DAGs are typically small compared to number of racks and jobs,
this does not change the complexity of our heuristic.
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Figure 4.3: Running time of the offline planner heuristic in Corral for a 4000 machine
cluster with varying number of jobs.

jobs on a 4000 node cluster with 100 racks (40 machines per rack). As the planner

runs offline, this results in minimal overhead to the cluster scheduler.

Accounting for data (im)balance. Using the latency-response functions as de-

scribed above, Corral would directly optimize for latency-related metrics, but would

ignore how the input data is spread across different racks. Consequently, it is possible

that a large fraction of the input data would be placed in a single rack, leading to

high data imbalance and excess delays (e.g., in reading the input data). To address

this issue and achieve better data distribution, we add a penalty term to the latency-

response function, given by α ·DI
j/r, where DI

j/r is the amount of input data of job

j in a single rack and α is a tradeoff coefficient. Accordingly, the modified latency-

response function is given by L′j(r) = Lj(r) + α · DI
j/r, where Lj(r) is the original

response function determined using MRCute (Section 3.1).

In our experiments (Section 4.5), we set α to be the inverse of the bandwidth

between an individual rack and the core network. The intuition here is to have the

penalty term serve as a proxy for the time taken to upload the input data of a job

to a rack. Increasing α favors schedules with better data balance. We note that in

practice, we supplement this approach by greedily placing the last two data replicas on

the least loaded rack. The combination of these approaches leads to a fairly balanced

input data distribution (Section 4.5).

4.3.5 LP relaxation

To estimate the quality of our heuristics for the planning problem, we formulate a

related integer linear program (ILP). The ILP would provide a lower bound on the
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makespan and the average completion time for any algorithm. However, as the ILP

is computationally expensive to solve in practice, we relax it to a linear program

(LP), whose solution is still a lower bound to our problem. Thus, if the solution

from our heuristics is close to that of the LP, it is guaranteed to be close to optimal.

We emphasize that the LP relaxation is not used by Corral, but only serves as a

benchmark for the solutions we developed in Section 4.3.4.

We first describe the Integer Linear Program (ILP). Let T be the makespan of the

(unknown to us) optimal solution to the planning problem. For every job j and every

number of racks r ∈ {1, . . . , R}, we introduce a variable xjr ∈ {0, 1}. In the ILP,

xjr equals 1 if job j is assigned r racks, and 0 otherwise. Relaxing the integrality

constraint, we obtain the following LP.

Minimize{xjr} T (LP −Batch) (4.1)

Subject to
∑
r

xjr = 1, ∀j (4.2)

T ≥
∑
r

xjrLj(r), ∀j (4.3)

TR ≥
∑
j,r

xjrLj(r) · r, (4.4)

xjr ∈ [0, 1], ∀j,∀r (4.5)

The constraint (4.2) ensures that all jobs are completed. In the integral solution

corresponding to a feasible schedule, for each j exactly one xjr equals 1, so the

constraint (4.2) is satisfied. The constraints (4.3) and (4.4) give a lower bound on

the makespan. Constraint (4.3) asserts that the makespan is at least as large as

the completion time of every job j (as in the integral solution corresponding to a

feasible schedule, the right hand side of (4.3) exactly equals the running time of job

j). Constraint (4.4) is a capacity constraint. It indicates that the capacity used by

the LP schedule (the right hand side of inequality) is at most the available capacity

(the left hand side).

We emphasize that LP-Batch is a relaxation of our original planning problem (Sec-

tion 4.3.3) as it does not give an actual schedule (e.g., does not specify the time when

a job should start) but only provides the number of racks a job has to be allocated.

Still, any feasible schedule (particularly, an optimal schedule) should satisfy the con-

straints of the LP and thus, the cost (i.e, makespan) returned by the LP is a lower

bound on the cost of any schedule.
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In the online scenario, we are interested in minimizing the average completion time.

Accordingly, we formulate the following LP.

Minimizej
1

J

∑
j

Tj (LP −Online) (4.6)

Subject to
∑
r

xjr = 1, ∀j (4.7)

Tj ≥
∑
r

(xjrLj(r) + djr), ∀j (4.8)∑
j

Tj ·R ≥
∑
j,r

(xjrLj(r) + djr) · r, (4.9)

xjr ∈ [0, 1],∀j,∀r (4.10)

where Tj is the completion time of job j (time elapsed since its arrival till its

completion), djr > 0 is the delay in scheduling job j on r racks, relative to its arrival

and xjr is as above. Constraint (4.7) ensures that all jobs are completed with an

unique rack allocation. Constraint (4.8) ensures that the completion time of a job

is at least as large as its execution time and finally, Constraint (4.9) is the capacity

constraint as before.

Near-optimality of Corral’s heuristics. We implemented the above LP relax-

ations along with the heuristics. Our experiments (setup described in Section 4.5)

show that Corral’s heuristic for the batch (online) scenario finds a schedule with

resulting makespan (mean completion time) within 3% (15%) of the LP solution.

These bounds represent the maximal gap between the performance of our heuristics

and the optimal solution to the planning problem, as defined under the assumptions

of Section 4.3.2. We note that these bounds might not hold for other formalizations

of the problem (e.g., allowing allocation at machine granularity). Nevertheless, as

discussed previously, these assumptions result in a practical scheduling framework

with performance guarantees.

4.4 Evaluation of resource selector

In this section, we evaluate the potential gains resulting from smart resource selec-

tion in Corral for applications with completion time requirements. Our evaluation
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combines simulations and a testbed deployment. Specifically:

• We use large scale simulations to evaluate the benefits of Corral. Capitalizing on

resource malleability significantly improves datacenter goodput (Section 4.4.2).

• We deploy and benchmark our prototype on a 26-node Hadoop cluster. We fur-

ther use this deployment to cross-validate our simulation results (Section 4.4.3).

• We further show that exploiting malleability in the time domain allows Corral

to finish jobs earlier than required by dedicating idle resources to them, with at

least 50% improvement in the median job completion time (Section 4.4.4).

4.4.1 Simulation setup

We developed a simulator to evaluate the resource selector in Corral at scale. The sim-

ulator coarsely models a multi-tenant datacenter. It uses a three-level tree topology

with no path diversity. Racks of 40 machines with one 1 Gbps link each and a Top-

of-Rack switch are connected to an aggregation switch. The aggregation switches, in

turn, are connected to the datacenter core switch. The results in this section involve

a datacenter with 16,000 physical machines and 4 VMs per machine, resulting in a

total of 64,000 VMs. The network has an oversubscription of 10:1 and we vary this

later. Each VM has a local disk. While high-end SSDs can offer bandwidth in excess

of 200 MB/s for even random access patterns [86], we conservatively use a disk I/O

bandwidth of 125 MB/s = 1 Gbps such that it can saturate the network interface.

MapReduce jobs. We use a simple model for MapReduce jobs. The program P
associated with a job is characterized by four parameters– the rate at which data

can be processed by the map and reduce function when there are no I/O bottlenecks

(BPmap, B
P
reduce) and the selectivity of these functions (Smap, Sreduce). Given the input

size, the selectivity parameters are used to determine the size of the intermediate and

output data generated by the job. Note that an I/O intensive job like Sort can process

data fast and has high values for BPmap and BPreduce. To capture the entire spectrum of

MapReduce jobs, we choose these parameters from an exponential distribution with

a mean of 500 Mbps. We also experiment with other mean values.

Application Requests. Each application request consists of a MapReduce job, input

size and a completion time goal. This information is fed to the analytical model to

determine the candidate resource tuples for the job. From these candidate tuples,
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one tuple <N,B> is chosen based on the selection strategies described below. The

corresponding resources, N VMs with B Mbps of network bandwidth, are allocated

using the allocation algorithm in [42]. If the request cannot be allocated because of

insufficient resources, it is rejected.

We simulate all three stages of MapReduce jobs. We do not model the disk and

CPU operations. Instead, the duration of the map and the reduce stage is simply

calculated a priori by invoking the MRCute analytical model. As part of the shuffle

stage, we simulate all-to-all traffic matrix with N2 network flows between the N VMs

allocated to the application. Given the bandwidth between VMs, we use max-min

fairness to calculate the rate achieved by each flow. The shuffle stage completes when

all flows complete.

Resource selection strategies. We evaluate three strategies to select a resource

tuple.

(1). Baseline. This strategy does not take advantage of a job’s resource malleability.

Instead, one of the candidate tuples is designated as the baseline tuple <Nbase, Bbase>.

The job is executed using this baseline resource tuple.

(2). Corral-R (random selection). A tuple is randomly selected from the list of

candidates, and if it can be allocated in the datacenter, it is chosen. Otherwise

the process is repeated. This strategy takes advantage of resource malleability to

accommodate requests that otherwise would have been rejected. However, it does

not account for the impact that a tuple bears on the provider.

(3). Corral-I (imbalance-based selection). For each tuple, we determine how it

would be allocated, and calculate the resulting utilization vector and resource imbal-

ance. The tuple with the lowest resource imbalance is chosen.

Workload. To model the operation of datacenters, we simulate application requests

arriving over time. By varying the application arrival rate, we vary the target VM

occupancy for the datacenter. Assuming Poisson application arrivals with a mean

arrival rate of λ, the target occupancy on a datacenter with M total VMs is λNT
M

,

where T is the mean completion time for the requests and N is the mean number of

requested VMs in the Baseline scenario.

4.4.2 Selection benefits

We simulate the arrival and execution of 15,000 application requests. The desired

completion time for each request is chosen such that the number of compute nodes
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Figure 4.4: Percentage of rejected requests, varying mean bandwidth and target
occupancy.

(Nbase) and network bandwidth (Bbase) required in the Baseline scenario is exponen-

tially distributed. The mean value for Nbase is 50, which is consistent with the mean

number of VMs that application request in datacenters [87].

Workloads and metrics. Two primary variables are used in the following exper-

iments to capture different workloads. First, we vary the mean bandwidth required

by applications (Bbase). This reflects applications having varying completion time re-

quirements. Second, we vary the target occupancy to control the application request

arrival rate.

From a cluster provider’s perspective, we look at two metrics to quantify the po-

tential benefits of resource selection. First is the fraction of requests that are rejected.

However, this, by itself, does not represent the full picture as individual requests are

of different sizes, i.e., each request processes a different amount of data. To capture

this, we also look at the sum of input data consumed across all requests. This rep-

resents the total useful work in the datacenter, and we define it as the datacenter

goodput.

Impact of varying mean bandwidth and target occupancy. Figure 4.4a plots

the percentage of rejected requests with varying target occupancy. For all selection

strategies, the rejection ratio increases with increasing target occupancy. This is

because requests start arriving faster and hence, a greater fraction have to be rejected.

The figure shows that, depending on the occupancy, Corral-I results in 3-14% fewer

requests being rejected. Corral-R rejects around 2-5% more requests than Corral-I.

However, as we explain below, the actual benefit of the imbalance-based selection is
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Figure 4.5: Datacenter goodput with varying mean bandwidth and varying target
occupancy.

larger.

To put this in perspective, operators like Amazon EC2 target an average occupancy

of 70-80% [88]. Figure 4.4b plots the rejected requests for a target occupancy of

75%. The figure shows that the difference between the fraction of requests rejected

by both Corral strategies as compared to Baseline increases with increasing mean

bandwidth. Increasing the bandwidth required by the job implies tighter completion

time requirements which, in turn, means there are greater gains to be had from

selecting the appropriate resource combination. At mean bandwidth of 900 Mbps,

Corral-I rejects 19.9% fewer requests than Baseline.

Figure 4.5 shows the datacenter goodput for the Corral selection strategies relative

to Baseline. Depending on the occupancy and bandwidth, Corral-I improves the

goodput by 7-87% over Baseline, while Corral-R provides improvements of 0-66%. As

an example, at typical occupancy of 75% and a mean bandwidth of 500 Mbps, Corral-

I and Corral-R offer 56% and 39% benefits relative to Baseline respectively. Note that

the gains with Corral-R show how resource malleability can be used to accommodate

application requests that would otherwise have been rejected. The further gains with

Corral-I represent the benefits to be had by smartly selecting the resources to use.

In Figure 4.5a, the relative improvement in goodput with Corral strategies first

increases with target occupancy and then declines. This is because, at both low and

high occupancy, there is not as much room for improvement. At low occupancy,

requests arrive far apart in time and most can also be accepted by Baseline. At

high occupancy, the arrival rate is high and the datacenter is heavily utilized. In
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Figure 4.6: Varying network oversubscription (occupancy is 75%).

Figure 4.5b, the gains increase with increasing bandwidth. As explained above, this

results from shrinking completion time requirements which allow Corral strategies

to accept more requests as compared to Baseline. Further, Corral is able to accept

bigger requests resulting in even higher relative gains.

Impact of simulation parameters. We also determined the impact of other simu-

lation parameters on Corral performance and the results stay qualitatively the same.

Here, we show the results of varying oversubscription, and discuss the impact of

varying the mean disk bandwidth and other parameters.

Figure 4.6 shows the relative goodput with varying network oversubscription. Even

in a network with no oversubscription, e.g., [89], Corral-I is able to accept 10% more

requests (not shown) and improves the goodput by 27% relative to Baseline. Further,

the relative improvement with Corral increases with increasing oversubscription be-

fore flattening out. This is because the physical network becomes more constrained

and Corral can benefit by reducing the network requirements of applications while

increasing their VMs.

We also ran experiments using different values of the disk bandwidth. As expected,

low values of the disk bandwidth reduce the benefits of Corral-I. When the disk

bandwidth is extremely low (250 Mbps), increasing the network bandwidth beyond

this value does not improve performance. Thus, there are very few candidate resource

tuples and the gains with Corral are small (2% over Baseline). However, as the

disk bandwidth improves, there are more candidate tuples to choose from and the

performance improves.

Finally, we varied the mean task bandwidth (map and reduce) and also the data-

center size (up to a maximum of 32,000 servers and 128,000 VMs) and the results are
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Figure 4.7: Comparing against today’s setup (Mean BW is 500 Mbps).

similar to the trends observed in Figure 4.4 and 4.5.

Comparison with today’s setup. Today, cluster providers do not offer any band-

width guarantees to applications. VMs are allocated using a greedy locality-aware

strategy and bandwidth is fair-shared across applications using TCP. In Figure 4.7a,

we compare the performance of Corral-I against a setup representative of today’s

scenario, which we denote as Fair-sharing. For low values of occupancy, Fair-sharing

achieves a slight better performance than Corral-I. The reason is that Corral-I re-

serves the network bandwidth throughout the entire duration of the application re-

quest. This also includes the map and reduce stage, which are typically characterized

by little or no network activity. In contrast, in Fair-sharing, the network bandwidth

is not exclusively assigned to applications and, hence, due to greater multiplexing, it

achieves a higher network utilization. Yet, for high values of occupancy, which are

typical of today’s datacenters [88], rejected requests significantly increase. This is due

to the high congestion incurred in the core of the network, caused by the sub-optimal

placement of VMs and corresponding flows.

The main drawback of Fair-sharing, however, is highlighted in Figure 4.7b, which

shows that the completion time is extended for at least 50% of the jobs and for 12%

of the jobs the actual completion time is at least twice the desired completion time.

Mitigating outliers with slack. The results above assume perfect prediction. As

our prediction does not account for all possible outliers, the predicted completion

time for a job can be off which, in turn, would cause the job to be late. To counter

this, Corral relies on slack. To evaluate how much slack is needed in practice, we use

the outlier distribution from Microsoft Bing’s production clusters (reported in [32]) to
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introduce outlier tasks in our experiments. Such tasks extend jobs past the predicted

completion time. Given this, we measured the impact of varying slack on rejected

requests (relevant for the provider) and late jobs (relevant for the applications).

As slack increases, it is harder to accommodate requests as they need to be finished

sooner and thus, require more resources. For slack less than 50%, we found that

Corral-I rejects fewer requests than an “Oracle” that can do perfect prediction but

does not capitalize on resource selection. In effect, smart resource selection allows us

to offset prediction inaccuracies. The same trends hold for goodput too.

We further found that that with no slack, approximately 90% of jobs are late,

a consequence of 90% of jobs having at least one outlier. As slack increases, the

late requests decrease almost linearly, and with a slack of 50%, no requests are late.

Overall, the slack parameter gives the cluster provider a knob to satisfy application

goals even in the presence of outliers at the expense of greater rejections. For instance,

the provider may use historical job information to determine the amount of slack to

provision so as to bound the probability of breached SLAs.

4.4.3 Deployment

We complement our simulation analysis with experiments on a small-scale Hadoop

cluster using a prototype implementation of the resource selector of Corral. We

deployed the resource selector on 26 Emulab servers, using the same hardware setup

described in Section 3.3 and the Cloudera distribution of Hadoop. We used the Linux

Traffic Control API on individual servers to enforce the rate limits.

We configured one of the testbed servers as the cluster head node and the rest of the

servers as compute nodes. The head node is responsible for generating application

requests and allocating them on the compute nodes. The workload consisted of

100 Sort job requests with an exponentially generated input data size (the mean

value was 5.7 GB). As in the previous experiments, we used a target occupancy of

75%, mean Bbase of 500 Mbps and mean Nbase equal to 9.

The goal of these experiments is threefold. First, we quantify the benefits of re-

source selection in Corral. Second, we cross-validate the accuracy of our simulator.

Finally, we verify the scalability of our implementation to allocate requests in a much

bigger network.

Benefits. Figure 4.8 shows that Corral-I is able to accept 11.43% more Sort jobs

than Baseline (i.e., 8 extra jobs) and increases goodput by 15.47%. This is despite
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Figure 4.8: On testbed, Corral-I can accept more Hadoop jobs and increase goodput
relative to Baseline.

limited opportunities– the deployment is small and the disk bandwidth available is

low. Also, with Corral-I, less than 2% of the accepted requests completed later than

expected. Note, however, that in these experiments we did not add any slack, which

would have enabled all requests to complete on time.

Cross-validation. To validate the accuracy of our simulator, we replicated the same

workload in the simulator, i.e. the same stream of jobs arrive in the simulator as

on the testbed. Across all cases, the maximum difference in the number of accepted

requests and goodput is approximately 5.12%, and 8.43% respectively. This cross-

validation gives us confidence in our simulation results.

Scalability analysis. To evaluate the performance of our prototype at scale, we

measured the time to allocate application requests on a datacenter with 128,000 VMs.

This includes both the time to generate the set of candidate resource tuples using the

analytical model (Section 3.1) and to select the resources (Section 4.2). This does

not include the job profiling time. Over 10,000 requests, the median allocation time

is 950.17 ms with a 99th percentile of 983.29 ms. Note that this only needs to be run

when an application is admitted, and, hence, the overhead introduced is negligible.

4.4.4 Beyond two resources: time malleability

Our evaluation so far considered application malleability along two dimensions, i.e.,

N and B. However, Corral allows the cluster provider to exploit malleability across

other resources and across time. Here, we briefly explore this opportunity. The

provider can devote additional (idle) resources to applications, so that they complete

before the desired time. In this way, the resources used by the job can be reclaimed

earlier, and a larger number of requests can potentially be accommodated in the
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Figure 4.9: Datacenter goodput when exploiting time malleability.

future. Applications would benefit too since they would experience shorter than

desired completion times.

We denote this further selection strategy as Corral-T . The key difference between

Corral-T and Corral-I is that the latter only considers tuples < N,B > that yield a

completion time T = Tdesired while Corral-T also consider tuples where T < Tdesired.

Among these, Corral-T selects the tuple that minimizes the product of the tuple

resource imbalance and T . Figure 4.9 shows that, at high values of the target occu-

pancy, exploiting time flexibility significantly improves the ability of the provider to

accommodate more requests and, hence, the goodput increases. Corral-T is also ben-

eficial for applications as the median completion time is reduced by more than 50%,

and for 20% of the jobs the completion time is reduced by 80%. In Figure 4.9, we also

consider a naive approach, Strawman , that always selects the tuple that yields the

lowest completion time (irrespective of the resource imbalance). Such a strategy per-

forms poorly as it tends to over-provision the resources for the early requests, which

reduces the ability to accommodate future ones.

4.5 Evaluation of offline planner

In this section, we present the results of evaluating the planning component of Corral

on a 210 machine cluster. For this purpose, we use a variety of workloads drawn from

production traces. Our main results are as follows.

• Compared to Yarn’s capacity scheduler, Corral achieves 10-33% reduction in

makespan and 26-36% reduction in average job completion time for workloads
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consisting of MapReduce jobs (Section 4.5.3). For Hive queries derived from the

TPC-H benchmark [48], Corral improves completion times by 21% on average

(Section 4.5.4).

• When a workload consists of both recurring and ad hoc jobs, using Corral to

schedule the recurring jobs improves the completion times of the recurring and

ad hoc jobs by 33% and 20% (respectively), on average (Section 4.5.5). Further,

the benefits with Corral hold as we vary the fraction of ad hoc jobs in the mixed

workload.

• Corral’s improvements increase significantly as the cluster load and network

utilization increase. Further, its improvements are robust to errors in predicted

job characteristics (Section 4.5.6).

• Using large-scale simulations, we show that the benefits from flow-level sched-

ulers such as Varys [18] improve significantly when used in combination with

Corral and that Corral’s benefits are orthogonal to those of using Varys alone.

4.5.1 Implementation

We implemented Corral on top of the Apache Yarn framework (Hadoop 2.4) [46] and

HDFS. Corral’s offline planner determines the set of racks where (a) the input data

of a job has to be stored and (b) its tasks have to be executed. To ensure that these

rack preferences are respected (as described in Section 4.1), we made the following

changes to the different components in Yarn. The changes involve about 300 lines of

Java code.

Data placement policy. We modified HDFS’s create() API to include a set of

〈rack, number of replicas〉 tuples, which allows Corral to specify the racks where dif-

ferent replicas of a file’s data chunk are to be placed. These specifications are passed

on to the block placement policy in HDFS, which was modified to ensure that at

least one replica of the data chunk is placed on a machine which belongs to the rack

specified.

Task placement policy. Every job in Yarn uses an Application Manager (AM) to

request slots from a centralized Resource Manager (RM). The AM can also specify

preferences for locations (e.g., specific machine or rack) where it would like slots to

be allocated in the cluster. By default, the MapReduce AM in Yarn specifies location
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preferences for map tasks only and not for the reducers. For Corral, we modified the

Yarn MapReduce AM to specify locality preferences for all tasks of a job.

As the subset of racks where a job needs to be scheduled is determined by Corral’s

offline planner, we pass this to the AM using a new configuration parameter. This

is further passed to the RM as a location preference. The RM makes every effort to

respect this locality preference while allocating slots to the job. However, in the event

that a majority of the machines in the racks preferred by a job are unreachable, the

RM will ignore the locality guidelines and allocate slots on the available nodes in the

cluster.

4.5.2 Methodology

Cluster setup. We deployed our implementation of Corral in Yarn/HDFS on a 210

machine cluster, organized into 7 racks with 30 machines per rack. Each machine has

32 cores, 10 Gbps NICs, and runs CentOS 6.4. The racks are connected in a folded

CLOS topology at 5:1 oversubscription, i.e., each rack has a 60 Gbps connection to

the core. To match network conditions in production clusters, we emulate background

traffic, accounting for up to 50% of the core bandwidth usage [4, 35].

Workloads. We first evaluate Corral using the scenario where all jobs in the workload

are assumed to be recurring (or have predictable characteristics). We then consider

workloads with both recurring and ad hoc jobs. We use jobs from the following

workloads for our evaluation.

(a) W1: Starting from the Quantcast workloads [90], we constructed this workload to

incorporate a wider range of job types, by varying the job size, and task selectivities

(i.e., input to output size ratio). The job size is chosen from small (≤ 50 tasks),

medium (≤ 500 tasks) and large (≥ 1000 tasks). The selectivities are chosen between

4:1 and 1:4.

(b) W2: This workload is derived from the SWIM Yahoo workloads [47] and consists

of 400 jobs.

(c) W3: We have chosen 200 jobs, randomly, from a 24 hour trace collected from

production data analytics clusters at Microsoft Cosmos and constructed this workload.

Some characteristics of this workload are given in Table 4.1.

(d) TPC-H: We run queries from the TPC-H benchmark using Hive [9] to evaluate

the performance of Corral for general DAG-structured workloads.

Baselines. We compare Corral against three baselines.
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50%-tile 95%-tile
Number of tasks 180 2,060

Input Data Size (GB) 7.1 162.3
Intermediate data size (GB) 6 71.5

Table 4.1: Characteristics of workload W3.

(a) the capacity scheduler in Yarn [49] (referred to as Yarn-CS from now on). The

capacity scheduler uses techniques like delay scheduling [74] to achieve locality for

map tasks but does not plan for data placement. Comparison with Yarn-CS allows

us to show the benefits of achieving better locality for all stages of a job using Corral.

(b) ShuffleWatcher [76], which schedules each job in a subset of racks to reduce the

amount of cross-rack data transferred by them. ShuffleWatcher does not place the

input data of the job in these racks and as a result, most maps end up reading their

input across the core network. It also fails to account for contention between jobs

and schedules them independently from each other. Comparison with ShuffleWatcher

allows us to show the benefits of careful planning, and joint data and compute place-

ment in Corral.

(c) LocalShuffle, which uses the task placement of Corral but the data placement

policy of HDFS. The comparison of Corral with LocalShuffle allows us to quantify

the benefits of proper placement of input data. We note that, unlike ShuffleWatcher,

LocalShuffle schedules jobs using the same offline planning phase as Corral.

For all the above baselines, the input data is placed using HDFS’s default (random)

placement. When using Corral, we run its offline planner taking data balance into

account (Section 4.3.4). Using the generated schedule, the input data of the jobs

is placed on the assigned racks while it is uploaded and jobs are run using Corral’s

cluster scheduler (Section 4.1).

Metrics. The primary metrics of interest are (a) makespan, in the batch scenario,

and (b) average job completion time, in the online scenario.

4.5.3 MapReduce workloads

In this section, we show the benefits of using Corral to schedule MapReduce jobs in

the batch and online scenarios, when all jobs have predictable characteristics.

Batch scenario. Figure 4.10 shows the improvement in makespan relative to Yarn-

CS, for different workloads, when run as a batch – Corral achieves 10% to 33%
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Figure 4.10: Reduction in makespan for different workloads, compared to Yarn-CS in
the batch scenario.

reduction. The reduction in makespan for W2 is lower than that for the other work-

loads because W2 is highly skewed. Nearly, 90% of the jobs are tiny with less than

200MB (75MB) of input (shuffle) data and two (out of the 400) jobs are relatively

large, reading nearly 5.5TB each. These large jobs determine the makespan of W2

and do not suffer significant contention from the tiny jobs. Out of the 7 racks avail-

able, Corral allocates 3 racks each to the two large jobs and packs most of the tiny

jobs on the remaining rack. Compared to Yarn-CS, the benefits of Corral stem from

running each of the large jobs in isolation, on separate subsets of racks.

Corral’s improvements are a consequence of its better locality and reduced con-

tention on the core network. Figure 4.11a shows that Corral reduces the amount of

cross-rack data transferred by 20-90% compared to Yarn-CS. This, in turn, improves

task completion times. To quantify this, we use two additional metrics, namely, (a)

compute hours, which measures the total time spent by all the tasks in the work-

load; compared to Yarn-CS, using Corral reduces the compute hours by up to 20%

(Figure 4.11b), and (b) average reduce time, which measures the average execution

time of all the reduce tasks in a job. Figure 4.11c plots the cumulative fraction (over

jobs) of this metric for Corral and Yarn-CS, showing that Corral is approximately

40% better at the median, with higher benefits at the tail.

Comparison with other baselines: Corral outperforms LocalShuffle showing that

proper input data placement is key for good performance (Figure 4.10). Even with

better shuffle locality, LocalShuffle performs worse than Yarn-CS for W2 and W3 due

to its lack of input data locality.

ShuffleWatcher optimizes for each job individually and ends up scheduling several

large jobs on the same subset of racks. This leads to increased completion times for
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Figure 4.11: Comparing (a) reduction in cross-rack data transferred and (b) compute
hours relative to Yarn-CS, and (c) cumulative fraction of average reduce time, for
workload W1 in the batch scenario.

all these jobs. In the worst case, it can schedule all jobs on a single rack as it doesn’t

directly optimize for makespan or job completion time but tries to minimize the cross-

rack data transferred. Thus, ShuffleWatcher results in significantly worse makespan

compared to Yarn-CS for all workloads (Figure 4.10). Note that using ShuffleWatcher

results in lower cross rack data for W2 compared to Corral (Figure 4.11a). This is

because the huge jobs in W2 have nearly 1.8 times more shuffle data than input.

Corral spreads them on 3 racks each (for better makespan) while ShuffleWatcher

places them in a single rack.

ShuffleWatcher loads racks unevenly with some racks running significantly lower

number of jobs than others. The tasks of these jobs finish much faster than when

run with Corral and hence, ShuffleWatcher achieves better compute hours than Corral

(Figure 4.11b). However, as shown in Figure 4.10, it is significantly worse than Corral

for makespan.

Data balance: Corral optimizes for reducing the imbalance in the data allocated to

different racks (Section 4.3.4). To evaluate this, we measure the coefficient of variation
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(c) W3

Figure 4.12: Cumulative fraction of job completion times for different workloads,
when jobs arrive online.

(CoV) of the size of input data stored on each rack. Our results show that Corral

has a low CoV of at most 0.004 and performs better than HDFS, which spreads data

randomly, resulting in a CoV of at most 0.014.

Online scenario. In this scenario, jobs arrive over a period of time instead of as

a batch. We pick the arrival times uniformly at random in [0, 60min]. Figure 4.12

shows the cumulative fraction of job completion time for workloads W1, W2 and W3.

Corral outperforms Yarn-CS, with 30%-56% improvement at the median and nearly

26-36% improvement for the average job time (not shown). Further, Corral equally

benefits jobs of all sizes. Figure 4.13 shows the reduction in average job completion

time for workload W1, binned by the job size. Corral achieves 30-36% reduction in

average job time across the various bins.

Comparison with other baselines: Similar to the batch case, LocalShuffle performs

worse than Corral due to the lack of proper input data placement (Figure 4.12).

While ShuffleWatcher is close to Corral at the lower percentiles, it is significantly

worse at the higher percentiles. ShuffleWatcher schedules jobs independently. It ends

4Note that the CoV of a random distribution can be higher than that of uniform distribution,
which is 0.
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Figure 4.13: Reduction in average job completion time relative to Yarn-CS (binned
by job size), for workload W1 in the online scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1500 3000 4500 6000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

Figure 4.14: Benefits of running TPC-H queries with Corral.

up placing a large fraction of jobs on a few racks and a smaller fraction of jobs on the

remaining racks. Jobs on the lightly loaded racks run faster due to lesser contention

and those on the heavily loaded racks slow down. Figure 4.13 further confirms this,

as ShuffleWatcher reduces the completion times of the small/medium jobs relative to

Yarn-CS but performs worse for large jobs.

4.5.4 DAG workloads

To evaluate the benefits of the offline planner in Corral for data-parallel DAGs, we ran

15 queries from the TPC-H benchmark [48], using Hive 0.14.0 [9]. Each query reads

from a 200GB database organized in ORC format [91]. The queries are submitted

over a period of 25 minutes, with arrival times chosen uniformly at random. To

emulate conditions in a real cluster, along with the queries, we also submit a batch

of MapReduce jobs chosen from the workload W1, which are run using Yarn-CS.

Figure 4.14 plots the cumulative fraction of the execution times for the queries in
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Figure 4.15: Using Corral with a mix of jobs.

two cases: (i) the queries are run using Corral (dashed black line) and (ii) the queries

are scheduled using Yarn-CS (solid orange line). Corral reduces the median execution

time by nearly 18.5% with the average time being reduced by 21%. We found that

these queries spend up to only 20% of their time in the shuffle stage, which shows

Corral can provide benefits even for workloads that are mostly CPU or disk bound.

4.5.5 Scheduling ad hoc jobs

A significant portion of jobs in a production cluster can be ad hoc, e.g., those run

for research or testing purposes. Such jobs arrive at arbitrary times and cannot be

planned for in advance. Corral uses the same scheduling policies as Yarn’s capacity

scheduler (Yarn-CS) for such jobs. To explore the benefits of Corral in this scenario,

we run a mix of 50 ad hoc and 100 recurring MapReduce jobs, drawn from W1. The

ad hoc jobs are run as a batch with Yarn-CS, while the recurring jobs arrive uniformly

over [0, 60min].

Our observations are two-fold. First, even in the presence of ad hoc jobs, using

Corral to schedule the recurring jobs is beneficial. Figure 4.15a shows the cumulative

fraction of the completion times for recurring jobs in the workload. Corral reduces the

average (median) completion times by 33% (27%). Second, using Corral to schedule

the recurring jobs leads to faster execution of ad hoc jobs, especially at the tail with

a 37% reduction at the 90th percentile compared to using Yarn-CS (Figure 4.15b).

The makespan of the ad hoc jobs reduces by around 28% (not shown). As jobs run

with Corral’s policy use significantly lower core bandwidth and complete earlier, more

network and compute resources are available for the ad hoc jobs, allowing them to
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Figure 4.16: Improvements in makespan of ad hoc jobs with Corral (compared to
Yarn-CS), as their fraction in the workload is varied.

also finish faster.

Discussion. The improvements in the completion time of ad hoc jobs, with Corral,

depend on what fraction of the workload they make up. At one extreme, when all the

jobs running on a cluster are ad hoc, Corral defaults to using existing techniques and

thus, will not provide any benefits. At the other extreme, when ad hoc jobs make

up only a tiny portion of the workload, the benefits from Corral would be limited as

these ad hoc jobs can run off the cluster resources that remain after scheduling the

recurring jobs. The benefits of Corral are significant when both ad hoc jobs and the

recurring jobs make up comparable portions of the workload.

The above intuition is confirmed by the results shown in Figure 4.16. In this

experiment, ad hoc jobs are run as a batch while the recurring jobs arrive uniformly

over a period of one hour. All jobs are drawn from workload W1. The number of

recurring jobs are fixed at 100 while we vary the number of ad hoc jobs between 50

and 350, i.e., they make up between 33% to 77% of the workload. We note that

Corral achieves more than 10% benefits in makespan as long as the fraction of ad hoc

jobs remains less than 75%. At 60%, which is generally the fraction of ad hoc jobs in

production clusters [16,41], Corral achieves nearly 20% reduction in makespan of the

ad hoc jobs.

While it is possible to (a) use techniques such as profiling (e.g., [92]) to estimate

the latency of ad hoc jobs, or (b) use simple scheduling decisions such as running

the next ad hoc job on the least loaded rack, we leave exploration of such adaptive

techniques to future work.
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4.5.6 Sensitivity analysis

The benefits of Corral depend on (a) cluster load, (b) network utilization and (c)

the accuracy with which job characteristics can be predicted. Here, we evaluate the

robustness of Corral to variation in these factors.

Varying cluster load. The joint data and compute placement in Corral provides

benefits to jobs by improving their data locality and reducing their dependence on

network bandwidth. Thus, at low cluster load, when the network may not be fully

utilized, the benefits of Corral would be minimal. To investigate how these benefits

change with load on the cluster, we vary the number of jobs submitted over a fixed

period of time. In particular, in our experiments, we vary the number of jobs sub-

mitted over a period of one hour from 50 to 300. The jobs arrive uniformly over that

period of time and are drawn from the workload W1. Figure 4.17a shows the result

of this variation as a ratio of different latency percentiles when the jobs are run using

Yarn-CS compared to when they are run using Corral. With 50 jobs, the maximum

cluster load (the ratio of number of slots occupied to total number of slots in the

cluster) is near 30% (average is around 8%) and Corral does not provide any appre-

ciable benefits over Yarn-CS. As expected, the benefits increase as load is increased

and with 200 jobs, when the maximum cluster load is nearly 70%, Corral achieves

nearly 2X (1.5X) improvement over Yarn-CS at the 50th percentile (90th percentile).

Varying background network traffic. Our results indicate that the gains with

Corral increase significantly as the network utilization increases. For workload W1,

Figure 4.17b shows that as the per-rack core network usage of the background traffic

increases from 30 Gbps (50%) to 40 Gbps (67%), Corral achieves more than 2X

higher benefits compared to Yarn-CS both in makespan (batch scenario) and average

job time (online scenario).

Error in predicted job sizes. Compared to the 6.7% observed in practice (Sec-

tion 2.2), we varied the amount of data processed by jobs up to 50% and found that

the benefits of Corral relative to Yarn-CS remain between 25-35% (Figure 4.18a).

This shows that Corral’s schedule is robust to errors in job sizes seen in practice.

Error in job start times. In practice, the start of a job can vary due to various

reasons such as (a) input data upload does not finish in time, or (b) the jobs on

which it depends on, are delayed. To evaluate the effect of such error in job start

times, we choose a fraction f of jobs in a workload and add a random delay between

[−t, t], for a fixed t, in their start times. Figure 4.18b shows the results of running the

79



 0

 1

 2

 3

 4

 5

 50  100  150  200  250  300

Fa
ct

o
r 

o
f 

re
d

u
ct

io
n
 

 i
n
 l
a
te

n
cy

 p
e
rc

e
n
ti

le

Number of jobs

50%ile
90%ile

(a) Variation in number of jobs

 0

 20

 40

 60

 80

 100

30Gbps 35Gbps 40Gbps

%
 r

e
d

u
ct

io
n

Makespan (batch)
Avg. job time (online)

(b) Variation in background traffic

Figure 4.17: Benefits of using Corral relative to Yarn-CS at different loads.
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Figure 4.18: Variation in benefits of Corral (relative to Yarn-CS) with error in job
characteristics for workload W1.

online scenario for workload W1 with such perturbation in arrival times. We set t at

4 minutes, which is nearly 6.67 times the expected job inter-arrival time and 20% of

the average job completion time (and thus, represents a large error). Varying f from

0% to 50%, we found that the benefits of Corral reduce from 40% to at most 25%.

4.5.7 Using Corral with flow-level schedulers

Corral schedules the tasks in a job with better locality but doesn’t explicitly schedule

the network flow for them. In all experiments above, we use TCP as the transport

protocol for Corral. However, several flow-level techniques have been proposed in

literature (e.g., [18,19,21]), which have been shown to outperform TCP in datacenter

environments. Here, we evaluate how Corral performs when used together with such

flow-level schedulers.

For this purpose, we built a flow-based event simulator which models the execution
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Figure 4.19: Simulation results: Cumulative fraction of job completion times with
different flow-level and job schedulers.

of data-parallel jobs. We use pluggable policies for the job and network schedulers.

We have implemented Yarn-CS and Corral to represent job schedulers. For network

schedulers, we implemented a max-min fair bandwidth allocation mechanism to em-

ulate TCP, and Varys [18], which uses application communication patterns to better

schedule flows.

We simulate a topology of 2000 machines, organized into 50 racks with 40 machines

each, connected using the folded CLOS topology with 5:1 oversubscription. Each

machine can run up to 20 tasks and has a 1 Gbps NIC. We run 200 jobs from W1,

arriving uniformly over 15min.

Figure 4.19 shows the cumulative fraction of the job completion times, when run

using all the 4 possible combinations of job and network schedulers. Our main ob-

servations are as follows. First, using Varys with Yarn-CS improves the median

job completion time by 46% compared to Yarn-CS+TCP. This is consistent with

the improvements claimed previously [18]. Second, Corral+TCP outperforms Yarn-

CS+Varys across all jobs, with nearly 45% gains at the median. This shows that

the benefits of using schedulers like Varys are limited if the end-points of a flow are

not placed properly. On the other hand, Corral schedules jobs in their own set of

racks, reducing their core bandwidth usage and improving completion times. Finally,

Corral+Varys results in much better job completion times compared to Corral+TCP

or Yarn-CS+Varys. Thus, Corral’s benefits are orthogonal to those attained with

better flow-level scheduling and combining them performs better than using either

one of them alone.
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4.6 Discussion

Benefits. We note that the joint data and compute placement in Corral directly

provides benefits to those applications that are constrained by network bandwidth.

This has been shown to be the case for various data analytics applications [18,35,54],

especially in the presence of oversubscribed network topologies and large background

network transfers. As the amount of data being processed by these applications grows,

this trend will continue to hold. Even if computation is performed on compressed data

(e.g., [93]), intermediate data may not be compressed, leading to large volumes of data

being shuffled by applications.

The exact benefits of Corral on the end-to-end latency of jobs depends on what frac-

tion (on the critical path) of the total latency is spent in data being transferred over

the network. The larger this fraction, the more are the benefits from scheduling jobs

using Corral. However, the benefits of Corral are not limited to jobs with network-

heavy stages — when less network-intensive jobs are run together with network-heavy

jobs (as in Section 4.5.4) on a cluster with insufficient resources5, Corral can benefit

the former as it finishes the latter jobs faster and frees up the compute resources

being used by them.

Dealing with failures. While Corral places one copy of job input data in the racks

assigned to it, it spreads the other two copies across the rest of the cluster (similar to

HDFS). This ensures that even if the assigned racks fail, the dataset can be recovered.

Further, in the event that a majority of the machines (above a threshold) in a rack

fail or a whole rack fails, Corral reverts back to using the existing placement policies

(e.g., [74]) to run the jobs assigned to that rack, ensuring that they are not slowed

down due to insufficient resources.

Data-job dependencies. Corral assumes that each job reads its own dataset. This

simplifies the offline planning problem and allows each job to be scheduled indepen-

dently. However, in general, the relation between datasets and jobs can be a complex

bipartite graph. This can be incorporated into Corral by using the schedule of the

offline planner and formulating a simple LP with variables representing what fraction

of each dataset is allocated to each rack and the cost function capturing the amount

of cross-rack data transferred, for any partition of datasets across the racks.

In-memory systems. Systems such as Spark [10] try to use memory to store input

and intermediate data of jobs. While this decreases the dependence on disk I/O, dif-

5All jobs cannot run in parallel on the cluster.
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ferent stages in these jobs (e.g., the shuffle) can still be bottlenecked or dependent on

the network. The benefits of Corral extend to such scenarios as it reduces dependence

on the core network and contention across jobs, by scheduling each of them on only

a few racks.

4.7 Related work

The techniques in Corral are related to the following areas of research in the context

of datacenter applications.

Scheduling techniques for data analytics systems. Improving data-locality in

big data clusters has been the focus of several recent works. Techniques like delay

scheduling [74] and Quincy [75] try to improve the locality of individual tasks (e.g.,

maps) by scheduling them close to their input. ShuffleWatcher [76] tries to improve

the locality of the shuffle stage by scheduling both maps and reducers on the same set

of racks. Others such as Tetris [94] schedule recurring jobs to ensure better packing

of tasks at machines. Contrary to such approaches, Corral couples the placement of

data and compute, achieving improved locality for all stages of a job.

Several techniques have been recently proposed with the goal of meeting application

goals [16, 67, 70, 71]. The key difference of Corral from such approaches is our focus

on multiple resources. Specifically, to meet deadlines of applications, we dedicate a

network slice to them. The fact that the network is a shared yet distributed resource

makes this hard. First, guaranteed network resources avoid inter-job contention and

make model-based prediction tractable. Second, a per-application network slice, com-

bined with the notion of slack, avoids the need for dynamic adaptation [16, 70]. Fi-

nally, by exploiting the trade-off between resources (number of machines, network)

and between time, the cluster provider achieves greater flexibility and revenue.

Systems like Natjam [95] propose various eviction policies to support (deadlines-

based) priorities in consolidated clusters. However, they do not explicitly determine

the resources required by applications to meet their deadlines. As opposed to such

approaches, Corral uses admission control, prediction slack and guaranteed resources

to ensure applications meet deadlines.

Data placement techniques. CoHadoop [96] aims to colocate different datasets

processed by a job on the same set of nodes, but does not guarantee locality for

subsequent stages (e.g., shuffle). PACMan [33] caches repeatedly accessed data in
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memory but does not provide locality for intermediate data transfers. Techniques like

Scarlett [34] and GreenHDFS [97] use application access patterns to determine data

replication factors or replica placement. However, none of these techniques coordinate

data and compute placement for datacenter applications, which is the main focus in

Corral. Further, the benefits from such data placement techniques are orthogonal to

those of Corral and they can be used along with Corral for better performance.

Cross-layer scheduling techniques. The idea of placing data and compute to-

gether has been previously explored in systems like Purlieus [98] and CAM [99]. As

opposed to such existing techniques, Corral exploits the recurring nature of datacenter

applications and carefully assigns resources to them, to execute them efficiently. Fur-

ther, Corral deals with complex DAG-structured jobs which have not been considered

previously. Techniques such as [100] explore how network-level routing can be coor-

dinated with application task-level dependencies and dynamically assigns network

routes to different application flows. As opposed to such approaches, Corral assumes

fixed network routes and achieves gains from from proper input data placement for

applications.

Flow-level scheduling techniques. Several network-level techniques such as D3 [20],

PDQ [21], Varys [18] and Baraat [19], have been proposed to finish network flows or

groups of network flows faster. Choreo [101] assigns application tasks to existing VMs

in a public cloud setting, to meet their bandwidth requirements. The benefits from

such techniques are inherently limited as the end-points of the network transfers are

fixed. Corral exploits the flexibility in placing input data and the subsequent stages

of the jobs, and provides benefits orthogonal to such network-level schedulers (Sec-

tion 4.5.7). Sinbad [35] takes advantage of flexibility in the placement of output data

in big data clusters, but does not consider other stages in a job.

Malleable job scheduling. The problem of task scheduling across identical servers

has been studied for over four decades (e.g., [102]). The basic formulation appears

in [85], where tasks have precedence constraints and each task can run on a single

server. A different variant of the problem considers malleable tasks, where each task

can run on multiple servers [43, 103]. Our offline planning algorithm is inspired by

these papers, but none of them addresses the issues of (a) malleability in the context

of shared networks, and (b) balancing input data required for executing the jobs.
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4.8 Conclusion

Corral, the resource planning component in Concorde, uses coordination between

the storage and compute sub-systems of datacenter applications to achieve applica-

tion goals. Corral uses the characteristics of future workloads and jointly optimizes

the location of the job data (during upload) and tasks (during execution). For ap-

plications with deadline requirements, Corral exploits their resource malleability to

select the resource tuple that will achieve the application goal while improving clus-

ter efficiency. For applications without deadlines, Corral solves an offline planning

problem and improves job performance by isolating applications from each other, re-

ducing network contention in the cluster and running applications across fewer racks,

thereby improving their data locality. We have implemented Corral in Yarn and with

production workloads on a 210 machine cluster, we show that Corral can result in

10-33% reduction in makespan and 30-56% reduction in median job completion time,

compared to Yarn’s capacity scheduler.
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Chapter 5

Speeding up datacenter applications at runtime

Datacenter applications execute over 10s to 1000s of machines and consist of a multi-

tude of logical components, with complex input-output dependencies forming a gen-

eral directed acyclic graph. At such scale and complexity, random runtime events

which cause significant delays in any component of the application can lead to in-

creased end-to-end application latency. In fact, our analysis of production traces from

several user-facing services at Microsoft Bing reveals that the end-to-end response la-

tency is quite variable. Despite significant developer effort, we found over 30% of

the examined services have 95th (and 99th) percentile of latency 3X (and 5X) their

median latency. The causes for high and variable latency can include slow servers,

network anomalies, complex queries, congestion due to improper load balance or un-

predictable events, and software artifacts such as buffering. The sheer number of

components involved ensures that each request has a non-trivial likelihood of encoun-

tering an anomaly.

Several techniques have been proposed to deal with such runtime issues, albeit at

a stage-level [32, 65, 75, 104]. For example, running a duplicate or reissuing a part of

an application or a whole request is a commonly used technique to reduce latency. In

the context of data analytics applications, this involves running duplicate copies of

tasks, which are determined to be laggards, in a particular stage of the DAG based on

progress indicators or timeouts [22, 32]. For web services, a duplicate of the original

request in a particular stage is reissued at a copy of the stage [65].

However, to reduce the end-to-end latency of datacenter applications, such tech-

niques need to be applied in an end-to-end manner. This can be challenging for

several reasons. First, different stages benefit differently from different techniques.

For example, request reissues work best for stages with low mean and high variance of

latency. Second, end-to-end effects of local actions depend on topology of the DAG;

reducing latency of stages usually off the critical path may not improve end-to-end la-

tency. Finally, many such latency reduction techniques have an associated overhead,
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e.g., increased resource usage when reissuing a request.

Addressing this problem, we developed Kwiken [12], a framework which allows

us to take an end-to-end view of request latency and optimizes for it. It decom-

poses the problem of minimizing latency, at runtime, over an application DAG into a

manageable optimization over its individual components or stages. Kwiken uses the

characteristics of each component in the DAG to determine which latency reduction

technique best works for that component. It ensures that the cost incurred when

using these techniques, in an end-to-end manner, is within a given bound.

Apart from showing how to use reissues in an end-to-end manner, we present two

new latency reduction techniques: (a) a new timeout policy to trade off partial answers

for latency, and (b) catching-up for laggard queries. The basic ideas behind these

strategies are simple. First, many DAGs can still provide a useful end-to-end answer

even when individual stages return partial answers. So, at stages that are many-way

parallel, Kwiken provides an early termination method that improves query latency

given a constraint on the amount of acceptable loss on answer quality. Second, Kwiken

preferentially treats laggard queries at later stages in the DAG, either by giving them

a higher service rate (more threads), being more aggressive about reissuing them

or by giving them access to a higher priority queue in network switches. Kwiken

incorporates these techniques into the optimization framework to minimize the end-

to-end latency while keeping the total additional cost within a given budget.

While this dissertation focuses on applying Kwiken in the context of web services,

it can be used more generally and can incorporate a large class of latency reduction

techniques (e.g., the network latency reduction techniques described in [105]). It also

applies to many applications where work is distributed among disjoint components

and dependencies can be structured as a DAG. This includes page loading in web

browsers [106] and mobile phone applications [107], and data analytics applications

(discussed in Section 6.1).

We evaluate Kwiken using production web service DAGs at Microsoft Bing and show

that Kwiken improves 99th percentile of latency by an average of 29% with just 5%

extra resources and by about 50% when partial answers are allowed for just 0.1% of the

queries. Further, we show that reissues and partial answers provide complementary

benefits; allowing partial answers for 0.1% queries lets a reissue budget of 1% provide

more gains than could be achieved by increasing the reissue budget to 10%.

The rest of this chapter is organized as follows. We first explore the causes of

increased latencies at Microsoft Bing (Section 5.1). We next provide a high-level
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Figure 5.1: Stages that receive blame for the slowest 5% queries in the web search
DAG.

Figure 5.2: Heatmap showing how the latency varies across machines and time (for
queries to the web service in Figure 2.1).

overview of Kwiken (Section 5.2), and then describe the techniques in Kwiken in

detail (Section 5.3). We show the benefits of using Kwiken on production workloads

(Section 5.4), discuss the limitations of the techniques in Kwiken (Section 5.5) and

finally, describe the related work (Section 5.6) and conclude (Section 5.7).

5.1 Causes for high latencies in web service applications

To understand the causes of high latencies in web services, this section studies how

latencies in the web search DAG at Microsoft Bing are affected by different stages that

make up the service. This web search DAG is shown in Figure 2.1.

To this end, we collect a trace of request executions over several days and investigate

in detail the 5% slowest queries in the trace. For these queries, we assign blame to a

stage when its contribution to that query’s latency is more than µ + 2σ, where µ, σ

are the mean and stdev of its contribution over all queries. If a stage takes too long

for a query, it is timed-out. In such cases, the blame is still assigned to the stage,
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citing timeout as the reason. Figure 5.1 depicts, for each stage of the web service

DAG, its average contribution to latency along with the fraction of delayed responses

for which it has timed-out or is blamed (includes timeouts). Since more than one

stage can be blamed for a delayed response, the blame fractions add up to more than

one.

We see that the document lookup and the network transfer stages receive the most

blame (50.7% and 33.5% each). In particular, these stages take so long for some

queries that the scheduler times them out in 18.7% and 20.3% of cases respectively.

Network transfer receives blame for many more outliers than would be expected given

its typical contribution to latency (just 12.1%). We also see that though the start-up/

wrap-up stage contributes sizable average latency, it is highly predictable and rarely

leads to outliers. Further, the servers are provisioned such that the time spent waiting

in queues for processing at both the doc lookup and the snippet generation stages is

quite small.

Why would stages take longer than typical? To examine the document lookup

stage further, we correlate the query latency with wall-clock time and the identity of

the machine in the document lookup tier that was the last to respond. Figure 5.2

plots the average query latency per machine per second of wall time. The darkness

of a point reflects the average latency on log scale. We see evidence of flaky ma-

chines in the document lookup tier (dark vertical lines); queries correlated with these

machines consistently result in higher latencies. We conjecture that this is due to

hardware trouble at the server. We also see evidence for time-dependent events, i.e.,

periods when groups of machines slow down. Some are rolling upgrades through the

cluster (horizontal sloping dark line), others (not shown) are congestion epochs at

shared components such as switches. We also found cases when only machines con-

taining a specific part of the index slowed down, likely due to trouble in parsing some

documents in that part of the index.

To examine the network transfer stage further, we correlate the latency of the

network transfer stage with packet-level events and the lag introduced in the network

stack at either end. We collected several hours of packet traces in production beds for

the network transfer stage in the web search DAG (Figure 2.1). To compare, we also

collect packet traces from production map-reduce clusters that use the same server

and switch hardware but carry traffic that is dominated by large flows. The results of

this analysis is shown in Table 5.1. We see that the request-response traffic has 10X

higher loss rate than in the map-reduce cluster. Further, the losses are bursty with
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Parameter
Value Percentiles

50th 90th 99th

at server, network
load due to request-
response traffic

895pps,
.62Mbps

2242pps,
1.84Mbps

2730pps,
2.3Mbps

Lag to retransmit 67.2ms 113.3ms 168.7ms

Packet loss prob. of
req-response traffic

.00443

To compare: packet
loss prob. of map-
reduce

.0004336

Fraction of losses re-
covered by RTO

.987

Table 5.1: Network Characteristics

a coefficient of variation (σ
µ
) of 2.4536. The increased loss rate is likely due to the

scatter-gather pattern, i.e., responses collide on the link from switch to aggregator.

Most of the losses (over 98%) are recovered only by a retransmission timeout because

there are not enough acks for TCP’s fast retransmission due to the small size of the

responses. Surprisingly, the RTO for these TCP connections was quite large, in spite

of RTO min being set to 20ms; we are still investigating the cause. We conclude that

TCP’s inability to recover from burst losses for small messages is the reason behind

the network contributing so many outliers.

5.2 Key ideas in Kwiken

The goal of Kwiken is to improve the latency of datacenter application DAGs, es-

pecially on the higher percentiles. We pick the variance of latency as the metric to

minimize because doing so will speed-up all of the tail requests; in that sense, it is

more robust than minimizing a particular quantile1.

Our framework optimizes the end-to-end latency at both the stage and DAG levels.

At the stage/local level, it selects a policy that minimizes the variance of the stage

latency. At the DAG/global level, it combines these local policies to minimize the end-

to-end latency. We employ three core per-stage techniques for latency reduction —

1Delaying responses such that all queries finish with the slowest has a variance of 0, but is not
useful. An implicit requirement in addition to minimizing variance, which Kwiken satisfies, is for
the mean to not increase.
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reissue laggards at replicas, skip laggards to return timely albeit (possibly) incomplete

answers and catch-up, which involves speeding up requests based on their overall

progress in the application DAG.

Using latency reduction techniques incurs cost — for example, extra resources are

used to serve reissued requests. So, we have to reason about apportioning a shared

global cost budget across stages to minimize the end-to-end latency. For example,

reissues have higher impact in stages with high variance. Similarly, speeding up stages

that lie on the critical path of the application DAG is more helpful than those that

lie off the critical path. Also, as shown in Figure 2.5, variance of some stages reduces

quickly even with a few reissues, while other stages require more reissues to achieve

the same benefits. Finally, the cost of reissuing the same amount of requests could

be orders of magnitude higher in stages that are many-way parallel, a factor that has

to be incorporated into the overall optimization.

To reason about how local changes impact overall latency, our basic idea is to de-

compose the variance of the application DAG’s latency into the variance of individual

stages’ latency. If the random variable Ls denotes the latency at stage s, then the

latency of DAG w is given by

Lw(L1, . . . , LN) = max
p

∑
s∈p

Ls, (5.1)

where p stands for a path, namely an acyclic sequence of stages through the application

DAG (from input to output). Ideally, we would use the variance of Lw as our objective

function, and minimize it through allocating budget across stages. Unfortunately,

however, the variance of Lw does not have a closed form as a function of the individual

stages’ statistics (e.g., their first or second moments). Instead, we resort to minimizing

an upper bound of that variance. Recall from Section 2.1.2 that the different Ls can be

roughly treated as independent random variables. Using this approximation together

with (5.1) leads to the following decomposition:

Var(Lw) ≤
∑
s∈w

Var(Ls), (5.2)

where Var(·) denotes the variance of a random variable.

Proof. For each random variable Ls we introduce a new independent random vari-

able L′s which has the same distribution as Ls. Let L = (L1, . . . , LN) and L(s) =

(L1, . . . , Ls−1, L
′
s, Ls+1, . . . , LN). Then, using the Efron-Stein inequality [108], we have
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Var(Lw(L)) ≤ 1
2

∑
sE
[
(Lw(L)− Lw(L(s)))2

]
≤ 1

2

∑
sE
[
(Ls − L′s)2

]
=
∑

s Var(Ls).

The above bound is always tight for sequential DAGs, as stage variances add up.

It can also be shown that (5.2) is the best general bound for parallel DAGs.

Using Chebyshev’s inequality, (5.2) immediately implies that Pr(|Lw − ELw| >
δ) ≤ (

∑
s Var(Ls))2

δ2
. The bound indicates that minimizing the sum of variances is

closely related to minimizing the probability of large latency deviations, or latency

percentiles. Better concentration bounds (e.g., Bernstein [108]) can also be obtained.

We emphasize that we do not claim tightness of the bounds, but rather use them as

a theoretical insight for motivating sum of variances minimization. As we elaborate

below, the above decomposition to sum of variances leads to a tractable optimization

problem, unlike other approaches for solving it.

Alongside the latency goal, we need to take into account the overall cost from

applying local changes. Here, we describe the framework using reissues. Formally, let

rs be the fraction of requests that are reissued at stage s and let cs be the (average)

normalized resource cost per request at stage s, i.e.,
∑

s cs = 1. Then, the overall

normalized cost from reissues is C(r) =
∑

s csrs, and the problem of apportioning

resources becomes:

minimize
∑
s

Var
(
Ls(rs)

)
subject to

∑
s

csrs ≤ B, (5.3)

where B represents the overall budget constraint for the application DAG2 and Ls(rs)

is the latency of stage s under a policy that reissues all laggards after a timeout

which is chosen such that only an rs fraction of requests are reissued. Since {cs} are

normalized, B can be viewed as the fraction of additional resources used for latency

reduction. The formulation in (5.3) can be generalized to accommodate multiple

speedup techniques (see Section 5.3.4). This optimization problem is the basis for

our algorithm.

We alternatively used a weighted version of the cost function,
∑

swsVar
(
Ls(rs)

)
,

where the weights ws can be chosen to incorporate global considerations. For example,

we can set ws based on (i) total number of paths crossing stage s, or (ii) mean latency

of s. However, our evaluation showed no significant advantages compared to the

2Considerations on how to choose the budget for each DAG, which we assume as given by an
exogenous policy, are outside the scope of this dissertation.

92



0.6

0.64

0.68

0.72

0.76

0.65 1

no
rm

al
iz

ed
 la

te
nc

y

normalized sum of variances

random, 99th SumVar, 99th

Figure 5.3: This plot shows the results of a random search in the reissue budget space
(circles) and using SumVar on the same DAG (line with crosses). It illustrates that as
sum of variances (x-axis, normalized) decreases, so does the 99th percentile of latency
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unweighted version.

We solve (5.3) by first constructing per-stage models (or variance-response func-

tions), denoted Vs(rs) that estimate Var(Ls(rs)) for each stage s. Due to the com-

plexity of these curves (see Figure 2.5), we represent them as empirical functions, and

optimize (5.3) using an iterative approach based on gradient descent; see details in

Section 5.3. Due to the non-convexity of (5.3), our algorithm has no performance

guarantees. However, in practice, our algorithm already achieves adequate precision

when the number of iterations is O(N), where N is the number of stages in the DAG.

So far, we have considered “local” improvements, where latency reduction policy

inside each stage is independent of the rest of the DAG. Our catch-up policies use the

execution state of the entire request to make speed-up decisions. These are described

in more detail in Section 5.3.3.

Finally, as described earlier, burst losses in the network are responsible for a signif-

icant fraction of high latencies. We recommend lowering RTO min to 10ms and using

a burst-avoidance technique such as ICTCP [109] at the application level. While not

a perfect solution, it addresses the current problem and is applicable today.

5.3 Design of Kwiken

In this section, we provide the details of applying our framework to three different

techniques — reissues, incompleteness, and catch-up.
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5.3.1 Adaptive reissues

Per-stage reissue policies. A typical use of reissues is to start a second copy of the

original request in stage s at a pre-determined time Ts if there is no response before

Ts, and use the faster of the two responses [65]. Given the reissue budget rs for each

stage s in an application DAG, we use the techniques described in Section 3.2.2 to

determine its variance-response function Vs(rs).

Note that we can compute Vs(rs) for different reissue policies and pick the best one

for each rs (e.g., launching two reissues instead of just one after a timeout or reissuing

certain fraction of requests right away, i.e., timeout of zero). Using Vs(rs), we note that

our framework helps abstract away the specifics of the per-stage latency improvements

from the end-to-end optimization. Further, Vs(rs) needs to be computed only once

per stage unless there are significant changes to the application; for example, a major

code change or change in the DAG structure.

Apportioning budget across stages. Equipped with per-stage reissue policies

captured in Vs(rs), we apportion budget across stages by solving (5.3) with Vs(rs)

replacing Var
(
Ls(rs)

)
for every s.

Kwiken uses a greedy algorithm, SumVar, to solve (5.3) which is inspired by gradient

descent. SumVar starts from an empty allocation (rs = 0 for every stage)3. In each

iteration, SumVar increases rs′ of one stage s′ by a small amount where s′ is chosen so

that the decrease in (5.3) is maximal. More formally, SumVar assigns resources of cost

δ > 0 per iteration (δ can be viewed as the step-size of the algorithm). For each stage

s, δ additional resources implies an increase in rs by δ/cs (since csrs = resource cost)

which reduces variance by the amount (Vs(rs)−Vs(rs+δ/cs)). Hence, SumVar assigns

δ resources to stage s′ ∈ argmaxs(Vs(rs)− Vs(rs + δ/cs)); ties are broken arbitrarily.

We demonstrate our algorithm on a production DAG with 28 stages and significant

sequential and parallel components. First, we generate 1000 random reissue allocation

and for each, plot the achieved sum of variances and 99th percentile of end-to-end

latency (circles in Figure 5.3). Notice that as sum of variances decreases, so does the

latency percentile. This illustrates that the intuition behind our approach is correct;

even in complex DAGs, sum of variances is a good metric to minimize in order to

improve tail latencies. Second, we plot the progress of our algorithm on the same

DAG (line with crosses in Figure 5.3, from right to left). It shows that the gradient

descent approach can achieve lower latency than a random search.

3In our experiments, we tried other initial allocations, but they did not improve performance.
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Figure 5.4: Trading off incompleteness for latency.

Our experiments show that it suffices to divide the budget into γN chunks of equal

size, where γ ∈ [2, 4] and N is the number of stages. Consequently, the number

of iterations is linear in the number of stages. Each iteration requires O(logN)

for recomputing a single gradient component and inserting it into a heap structure.

Consequently, the overall complexity of our algorithm is O(N logN). Importantly, it

is independent of the topology of the DAG.

5.3.2 Trading off completeness for latency

Our goal is to minimize response latency given a constraint on utility loss. To be

able to use (in)completeness as a tool in our optimization framework, we treat utility

loss as a “resource” with budget constraint (average quality loss) and decide how

to apportion that resource across stages and across queries within a stage so as to

minimize overall latency variance. We emphasize that this formulation is consistent

with the requirements at Microsoft Bing; both reduction in latency and higher quality

answers improve user satisfaction and can be used interchangeably in optimization.

Discussions with practitioners at Microsoft Bing reveal that enormous developer time

goes into increasing answer relevance by a few percentage points. While imprecise

answers are acceptable elsewhere (e.g., in approximate data analytics), web service

DAGs can only afford a small amount of utility loss to improve latency. Hence Kwiken

works within a strict utility loss rate of .001 (or 0.1%), i.e., at most 1 out of 1000

requests can have incomplete answers.

Using incompleteness within a stage. The basic setup here is of a single stage,
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//’ism
(n)

utility
loss
(r)

Latency Reduction
latency distribution (% over baseline)

95th 99th

Normal
10000

.001 25.33% 29.22%
mean=1, sd=10 .01 44.29% 47.67%

LogNormal
10000

.001 90.34% 93.83%
meanlog=1, sdlog=2 .01 98.22% 98.96%

LogNormal
1000

.001 59.93% 64.71%
meanlog=1, sdlog=2 .01 93.30% 96.12%

Web 1000s
.001 4.1% 4.0%
.01 43.1% 77.7%

Image 100s
.001 0% 0%
.01 42.6% 81.2%

Video 100s
.001 0% 0%
.01 31.2% 51.3%

Table 5.2: Given utility loss rate (r), the improvement in latency from stopping when
the first dn(1− r)e responders finish.

with a constraint on the maximal (expected) quality loss rate, denoted r. Consider

a simple strategy: let each query run until dn(1 − r)e of its n responders return

their answer. Then if the best document’s location is uniform across responders, the

expected utility loss is r. To appreciate why it reduces latency, consider a stage with

n responders whose latencies are X1 . . . Xn. This strategy lowers query latency to the

dn(1− r)e’th largest value in X1, . . . Xn as opposed to the maximum Xi.

Table 5.2 shows the latency reductions for a few synthetic distributions and for

the web, image, and video search stages where we replay the execution traces from

tens of thousands of production queries at Microsoft Bing. First, we note that even

small amounts of incompleteness yield disproportionately large benefits. For a normal

distribution with mean 1 and stdev 10, we see that the 95th percentile latency reduces

by about 25% if only 0.1% of the responses are allowed to be incomplete. This is

because the slowest responder(s) can be much slower than the others. Second, all

other things equal, latency gains are higher when the underlying latency distribution

has more variance, or the degree of parallelism within the stage is large (as shown

in Table 5.2). LogNormal, a particularly skewed distribution, has 3.5X larger gains

than Normal but only 2.2X larger when the number of parallel responders drops

to 103. However, we find that the gains are considerably smaller for our empirical

distributions. Partly, this is because these distributions have bounded tails, as the

user or the system times-out queries after some time.
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To understand why the simple strategy above does not help in practice, Fig-

ure 5.4 (a) plots the progress of example queries from the web-search stage. Each

line corresponds to a query and shows the fraction of responders vs. elapsed time

since the query began. We see significant variety in progress — some queries have

consistently quick or slow responders (vertical lines on the left and right), others have

a long tail (slopy top, some unfinished at the right edge of graph) and still others

have a few quick responders but many slow ones (steps). To decide which queries

to terminate early (subject to overall quality constraint), one has to therefore take

into account both the progress (in terms of responders that finished) and the elapsed

time of the individual query. For example, there are no substantial latency gains from

early termination of queries with consistently quick responders, as even waiting for

the last responder may not impact tail latency. On the other hand, a slow query may

be worth terminating even before the bulk of responders complete.

Building up on the above intuition, Kwiken employs dynamic control based on the

progress of the query. Specifically, Kwiken terminates a query when either of these

two conditions hold: i) the query has been running for Td time after p fraction of its

components have responded, ii) the query runs for longer than some cut-off time Tc.

The former check allows Kwiken to terminate a query based on its progress, but not

terminate too early. The latter check ensures that the slowest queries will terminate

at a fixed time regardless of however many responders are pending at that time.

Figure 5.4 (b) visually depicts when queries will terminate for the various strategies.

Kwiken chooses these three parameters empirically based on earlier execution traces.

For a given utility loss budget r, Kwiken parameter sweeps across the (Tc, Td, p) vec-

tors that meet the quality constraint with equality, and computes the variance of stage

latency. Then, Kwiken picks the triplet with the smallest variance. Repeating this

procedure for different values of r yields the variance-response curve V (r). Note that

the approach for obtaining V (r) is data driven. In particular, the choice of parameters

will vary if the service software is rewritten or the cluster hardware changes. From

analyzing data over an extended period of time, we see that parameter choices are

stable over periods of hours to days (we show results with disjoint test and training

sets in Section 5.4.3).

Composing incompleteness across stages. Any stage that aggregates responses

from parallel components benefits from trading off completeness for latency. When a

DAG has multiple such stages, we want to apportion utility loss budget across them

so as to minimize the end-to-end latency. The approach is similar in large part to the
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case of reissues — the variance-response curves computed for each stage help split

the overall optimization to the stage-level.

Unlike reissue cost, which adds up in terms of compute and other resources, utility

loss is harder to compose, especially in general DAGs where partial results are still

useful. Modeling such scenarios fully is beyond the scope of this dissertation. Nev-

ertheless, we show two common scenarios below, where the budget constraint can be

written as a weighted sum over the loss rates at individual stages. First, consider

a sequential DAG with N stages where an answer is useful only if every stage exe-

cutes completely. If ri is the loss budget of stage i, the overall utility loss is given by

r1 +(1−r1)r2 + · · ·+
(∏N−1

s=1 (1−rs)
)
rN . which is upper bounded by

∑
i ri. Hence, the

budget constraint is
∑

i ri ≤ B, i.e., the “cost” of loss cs is one at all stages. Second,

consider stages that are independent i.e., the usefulness of a stage’s answer does not

depend on any other stage (e.g., images and videos returned for a query). Here, the

overall utility loss can be written as
∑
rsus∑
us

where us is the relative contribution from

each stage’s answer. Then, the budget constraint is given by
∑

s csrs ≤ B, where

cs = us∑
s′ us′

.

5.3.3 Catch-up

The framework described so far reduces end-to-end latency by making local decisions

in each stage. Instead, the main idea behind catch-up is to speed-up a request based

on its progress in the DAG as a whole. For example, when some of the initial stages

are slow, we can reissue a request more aggressively in the subsequent stages. We

consider the following techniques for catch-up: (1) allocate more threads to process

the request; given multi-threaded implementation of many stages at Microsoft Bing, we

find that allocating more threads to a request reduces its latency. (2) Use high-priority

network packets on network switches for lagging requests to protect them from burst

losses. And (3), reissue requests more aggressively based on the total time spent in

the DAG — we call this global reissues to distinguish it from local reissues (discussed

in Section 5.3.1), where the reissue is based on time spent within a stage.

Each of these techniques uses extra resources and could affect other requests if

not constrained. To ensure catch-up does not overload the system, Kwiken works

within a catch-up budget per application DAG. Given per-stage budget, Kwiken

estimates a threshold execution latency, Tz, and speeds the parts of a query that

remain after Tz using the techniques above. As the decisions of a catch-up policy
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depend on request execution in previous stages, allocating catchup budget across

stages cannot be formulated as a separable optimization problem, unlike the case of

local techniques (Section 5.3.1). We therefore use simple rules of thumb here. For

example, for global reissues, we allocate catch-up budget proportionally to the budget

allocation for local reissues. Intuitively, a stage that benefits from local reissues, can

also speed-up lagging requests. We evaluate the catch-up policies in Section 5.4.4.

5.3.4 Putting it all together

To conclude, we briefly highlight how to combine different techniques into a unified

optimization framework. Using superscripts for the technique type, let k = 1, . . . , K

be the collection of techniques. Then, our optimization framework (5.3) extends as

follows to multiple dimensions:

minimize
∑
s

Var
(
Ls(r

1
s , . . . , r

K
s )
)

subject to
∑
s

cksr
k
s ≤ Bk, k = 1, . . . , K. (5.4)

As before, Var
(
Ls(r

1
s , . . . , r

K
s )
)

are the per-stage variance-response curves. These

models abstract away the internal optimization given (r1
s , . . . , r

K
s ). Greedy gradient-

like algorithms (such as SumVar) can be extended to solve (5.4), however, the exten-

sion is not straightforward. The main complexity in (5.4) is hidden in the computa-

tion of the variance-response curves — as opposed to a scan over one dimension in

(5.3), variance-response curves in (5.4) requires a scan over the k-dimensional space,

(r1
s , . . . , r

K
s ). In practice, we note that the optimization often decouples into simpler

problems. For example, assume K = 2 with reissues and partial responses as the

two techniques for reducing latency. Partial responses are mostly useful in many-way

parallel services which have a high cost for reissues. Hence, we can use the utility

loss budget only for the services with high fan-out and the reissue budget for the rest

of the services. Finding a general low complexity algorithm to solve (5.4) is left to

future work.

99



5.4 Evaluation

In this section, we evaluate the individual techniques in Kwiken by comparing them

to other benchmarks (Section 5.4.2 - Section 5.4.4), followed by using all Kwiken

techniques together (Section 5.4.5). Using execution traces and DAGs from Microsoft

Bing, we show that:

• With a reissue budget of just 5%, Kwiken reduces the 99th percentile of latency

by an average of 29% across DAGs. This is over half the gains possible from

reissuing every request (i.e., budget=100%). Kwiken’s apportioning of budget

across stages is key to achieving these gains.

• In stages that aggregate responses from many responders, Kwiken improves the

99th percentile of latency by more than 50% with a utility loss of at most 0.1%.

• Using simple catch-up techniques, Kwiken improves the 99th percentile latency

by up to 44% by using just 6.3% more threads and prioritizing 1.5% network

traffic.

• By combining reissues with utility trade-off we see that Kwiken can do much

better than when using either technique by itself; for example, a reissue budget

of 1% combined with a utility loss of 0.1% achieves lower latency than just using

reissues of up to 10% and just trading off utility loss of up to 1%.

• Kwiken’s data-driven parameter choices are stable.

5.4.1 Methodology

Traces from production. To evaluate Kwiken, we extract the following data from

production traces for the 45 most frequently accessed DAGs at Microsoft Bing: the

details of the DAG, request latencies at each stage as well as the end-to-end latency,

the cost of reissues at each stage and the usefulness of responses (e.g., ranks of doc-

uments) when available. To properly measure latencies on the tail, we collected data

for at least 10, 000 requests for each DAG and stage. The datasets span several days

during Oct-Dec 2012. We ignore requests served from cache at any stage in their

DAG; such requests account for a sizable fraction of all requests but do not represent

the tail.

We conducted operator interviews to estimate the cost of reissue at each stage. Our

estimates are based on the resources expended per request. For stages that process the

request in a single thread, we use the mean latency in that stage as an approximation
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to the amount of computation and other resources used by the request. For more

complex stages, we use the sum of all the time spent across parallel servers to execute

this stage. Kwiken only relies on the relative costs across stages when apportioning

budget.

Simulator. We built a trace-driven simulator, that mimics the application DAG con-

troller used in production at Microsoft Bing, to test the various techniques in Kwiken.

The latency of a request at each stage and that of its reissue (when needed) are sam-

pled independently from the distribution of all request latencies at that stage. We

verified that this is reasonable: controlled experiments on a subset of DAGs where

we issued the same request twice back-to-back showed very small correlation; also,

the time spent by a request in different stages in its DAG had small correlation (see

Section 2.1).

Estimating policy parameters. The parameters of the Kwiken policies (such as

per-stage reissue timeouts) are trained based on traces from prior executions. While

we estimate the parameters on a training data set, we report performance of all polices

on a test data set collected at a different period of time. In all cases, both training and

test data sets contain traces from several thousands to tens of thousands of queries.

5.4.2 Reissues

We first evaluate the effect of using per-stage reissues within Kwiken’s framework.

Figure 5.5a plots Kwiken’s improvements on the end-to-end latency due to reissues,

using the SumVar algorithm described in Section 5.3.1. The x-axis depicts the frac-

tion of additional resources provided to reissues and the y-axis shows the fractional

reduction at the 99th percentile. The solid line shows the mean improvement over

the 45 most frequent DAGs at Microsoft Bing; the dashed lines represent the spread

containing the top 25% and bottom 75% of DAGs and the dotted lines show the

improvements for the top 10% and bottom 90% of DAGs (sorted with respect to

percentage improvement). The circles on the right edge depict latency improvements

with a budget of 100%.

We see that Kwiken improves 99th percentile of latency by about 29%, on average,

given a reissue budget of 5%. This is almost half the gain that would be achieved if

all requests at all stages were reissued, i.e., a budget of 100%. This indicates that

Kwiken ekes out most of the possible gains, i.e., identifies laggards and tries to replace

them with faster reissues, with just a small amount of budget. Most DAGs see gains
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Figure 5.5: Reduction in latency using per-stage reissues in Kwiken.

but some see a lot more than the others; the top 10% of DAGs improve by 55% while

the top 75% of DAGs see at least 10% improvement each. The variation is because

different DAGs have different amounts of inherent variance.

Figure 5.5b plots the average gains at several other latency percentiles. As before,

we see that small budgets lead to sizable gains and the marginal increase from addi-

tional budget is small. This is because some stages with high variance and low cost

can be reissued at substantial fraction (e.g., 50%), yet consume only a fraction of

total budget. It is interesting though that just a small amount of budget (say 3%)

leads to some gains at the median. Observe that higher percentiles exhibit larger

improvements, which is consistent with theory (Section 5.3). We note that Kwiken

scales efficiently to large DAGs. Computing per-stage models takes about 2 seconds

per stage and is parallelizable. Running SumVar takes less than one second for most

of the DAGs.

Comparing SumVar to other benchmarks. First, we compare against the current

reissue strategy used in Microsoft Bing. The actual reissue timeout values used in

Microsoft Bing are very conservative. The additional cost is only 0.2% and reduces

99th percentile of latency only by 3%. The timeouts are so conservative because

without an end-to-end framework such as Kwiken, it is hard to reason about how

much of the overall capacity should be used for reissues at each stage.
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Second, we compared with several straw man policies. One policy would assign each

stage the same reissue fraction ri = r. However such policy has clear shortcomings;

for example, if a single stage has high cost ci it will absorb most of the budget. If that

stage has low variance, then the resulting end to end improvement will be negligible.

Other policies like allocating equal budget to each stage exhibit similar drawbacks.

Finally, lacking an optimal algorithm (recall that even (5.3) has a non-convex ob-

jective), we compare with two brute-force approaches. For a subset of nine smaller

DAGs and budgets from 1% to 10%, we pick the best timeouts out of 10, 000 random

budget allocations. Compared to training Kwiken on the same data, this algorithm

was about 4 orders of magnitude slower. Hence, we did not attempt it on larger DAGs.

Here, Kwiken’s results were better on average by 2%; in 95% of the cases (i.e., {DAG,

budget} pairs), Kwiken’s latency reduction was at least 94% of that achieved by

this method. The second approach uses gradient-descent to directly minimize the

99th percentile of the end-to-end latency using a simulator (i.e., avoiding the sum of

variances approximation). This method was equally slow and performed no better.

Hence, we conclude that Kwiken’s method to apportion budget across stages is not

only useful but also perhaps nearly as effective as an ideal (impractical) method.

We also evaluated two weighted forms of Kwiken that more directly consider the

structure of the DAG (Section 5.2): weighting each stage by its average latency and

by its likelihood to occur on a critical path. While both performed well, they were

not much better than the unweighted form for the examined DAGs.

5.4.3 Trading off completeness for latency

Next, we evaluate the improvements in latency when using Kwiken to return partial

answers. Figure 5.6a plots the improvement due to trading off completeness for

latency for different values of utility loss. Recall that our target is to be complete

enough that the best result is returned for over 99.9% of the queries, i.e., a utility loss

of 0.1%. With that budget, we see that Kwiken improves the 99th (95th) percentile by

around 50% (25%). The plotted values are averages over the web, image and video

stages. Recall that these stages issue many requests in parallel and aggregate the

responses (see Figure 2.1).

Figure 5.6b compares the performance of Kwiken with a few benchmarks for util-

ity loss budget of 0.1%: wait-for-fraction terminates a query when b fraction of its

responders return, fixed-timeout terminates queries at Tcutoff, and time-then-fraction
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0.1%

Figure 5.6: Latency reductions achieved by Kwiken and variants when trading off
completeness for latency.

terminates queries when both these conditions hold: a constant T ′ time has elapsed

and at least α fraction of responders finish.

We see that Kwiken performs significantly better. Wait-for-fraction spends signif-

icant part of budget on queries which get the required fraction relatively fast, hence

slower queries that lie on the tail do not improve enough. Fixed-timeout is better

since it allows slower queries to terminate when many more of their responders are

pending but it does not help at all with the quick queries– no change below the 90th

percentile. Even among the slower queries, it does not distinguish between queries

that have many more pending responders and hence a larger probability of losing

utility versus those that have only a few pending responders. Time-then-fraction is

better for exactly this reason; it never terminates queries unless a minimal fraction of

responders are done. However, Kwiken does even better; by waiting for extra time af-

ter a fraction of responders are done it provides gains for both the quicker queries and

variable amounts of waiting for the slower queries. Also, it beats time-then-fraction

on the slowest queries by stopping at a fixed time.
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Figure 5.7: Latency improvements from using different catch-up techniques.

5.4.4 Catch-up

Here, we estimate the gains from the three types of catch-up mechanisms discussed

earlier. Figure 5.7a shows the gains of using multi-threaded execution and network

prioritization on the web search DAG (Figure 2.1), relative to the baseline where

no latency reduction techniques are used. We note that the speedup due to multi-

threading is not linear with the number of threads due to synchronization costs and

using 3 threads yields roughly a 2X speed up. We see that speeding up both stages

offers much more gains than speeding up just one of the stages; the 99th percentile

latency improves by up to 44% with only small increases in additional load – about

6.3% more threads needed and about 1.5% of the network load moves into higher

priority queues.

Next, we evaluate the usefulness of using global reissues on DAGs. Using a total

reissue budget of 3%, Figure 5.7b plots the marginal improvements (relative to using

the entire budget for local reissues) from assigning 1
30

th (x-axis) vs. assigning 1
6
th

of the budget to global reissues (y-axis), for the 45 DAGs we analyze. The average

reduction in 99th percentile latency is about 3% in both cases, though, assigning 1
6

of

budget leads to higher improvements in some cases. Overall, 37 out of the 45 DAGs
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see gains in latency. We end by noting that this experiment only shows one way to

assign global reissues; better allocation techniques may yield larger gains.

5.4.5 Putting it all together

To illustrate the advantage of using multiple latency reduction techniques in the

Kwiken framework together, we analyze in detail its application to a major DAG in

Microsoft Bing that has 150 stages. A simplified version of the DAG with only the ten

highest-variance stages is shown in Figure 5.8a. In three of the stages, we use utility

loss to improve latency and use reissues on all stages.

We compare Kwiken with other alternatives in Figure 5.8b; on left, we fix utility

loss budget at 0.1% and vary reissues, on right, we vary utility loss and fix reissues at

3%. We see complementary advantage from using reissues and utility loss together.

In the left graph, using Kwiken with reissues only at 10% performs worse than using

both reissues at 1% and 0.1% utility loss. Also, using both together is about 20%

better than using just utility loss. Graph on the right shows that, with reissue budget

at 3%, increasing utility loss has very little improvements beyond .1%. We observe

that the larger the reissue budget, the larger the amount of utility loss that can be

gainfully used (not shown). Further, how we use the budget also matters; consider K

for reissues; wait-for-fraction on the left. For the same amount of utility loss, Kwiken

achieves much greater latency reduction.

So what does Kwiken do to get these gains? Figure 5.8c shows for each of the ten

stages, the latency variance (as a fraction of all variance in the DAG) and the amount

of allocated budget (in log scale). We see that the budget needs to be apportioned to

many different stages and not simply based on their variance, but also based on the

variance-response curves and the per-stage cost of request reissue. Without Kwiken,

it would be hard to reach the correct assignment.

5.4.6 Robustness of parameter choices

Recall that Kwiken chooses its parameters based on traces from prior execution. A

concern here is that due to temporal variations in our system, the chosen parameters

might not yield the gains that are expected from our optimization or may violate

resource budgets.
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Figure 5.8: A detailed example to illustrate how Kwiken works.
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Figure 5.9: For 45 DAGs, this figure compares the 99th percentile latency improvement
and budget values of the training and test datasets.

To understand the stability of the parameter choices over time, we compare the

improvements for 99th percentile latency and the budget values obtained for the

“training” dataset, to those obtained for the “test” datasets. The test datasets were

collected from the same production cluster on three different days within the same

week. Figure 5.9 shows that the latency improvements on the test datasets are within

a few percentage points off that on the training datasets. The utility loss on the test

dataset is slightly larger but predictably so, which allows us to explicitly account for

it by training with a tighter budget. In all, we conclude that Kwiken’s parameter

choices are stable. Also, reallocating budget is fast and can be done periodically

whenever the parameters change.

5.5 Discussion

Kwiken uses three different techniques to speed up web services at runtime – reis-

sues, incomplete responses and catch-up. Each of these techniques rely on certain

assumptions about how web services are architected:

(a) The technique of reissues assumes that multiple replicas of a particular stage exist

and uses them to start duplicate copies of the original request. We note that most

modern web services consist of such replicas in order to support traffic bursts and

to tolerate failures.

(b) Incomplete responses are useful only for stages where not all responses are neces-

sary to create a “useful” response to the user. This assumption generally holds for
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many-way parallel stages such as search, where multiple responses are aggregated

and only a certain fraction of them are actually sent back to the user. Kwiken

applies this technique only to such stages and the quality loss can be bounded by

specifying the necessary quality loss budget.

(c) The technique of catch-up assumes that it is possible to speed up requests by

providing additional resources to them or changing their priority. This can

be achieved in stages with multi-threaded implementations or which maintain

(application-level or network-level) queues. We found that these assumptions

were true for a variety of stages that make up the web services at Microsoft Bing.

We note that the end-to-end optimization framework in Kwiken is not limited to

the above techniques. It can be extended to a variety of per-stage latency reduction

techniques (e.g., [105]) applied to DAG-structured applications, to limit the cost

incurred by them to within a cost budget while optimizing for the end-to-end tail

latencies.

5.6 Related work

Improving latency of datacenter applications has attracted much recent interest from

both academia and industry. Most work in this area [20, 21, 110–112] focuses on

developing transport protocols to ensure network flows meet specified deadlines. Ap-

proaches like Chronos [113] modify end-hosts to reduce operating system overheads.

Kwiken is complementary to these mechanisms, which reduce the latency of individual

stages, because it focuses on the end-to-end latency of distributed applications.

Some recent work [16, 32, 114] reduces the job latency in (MapReduce-like) batch

processing frameworks [22] by adaptively reissuing tasks or changing resource allo-

cations. Other prior work [102] explores how to (statically) schedule jobs, that are

modeled as a DAG of tasks to minimize completion time. Neither of these apply di-

rectly to the context of Kwiken which targets large DAGs that can finish within a few

hundreds of milliseconds (in the case of web services) and may involve thousands of

servers. Static scheduling is relatively easy here and there is too little time to monitor

detailed aspects at runtime (e.g., task progress) which was possible in the batch case.

Some recent work concludes that latency variability in cloud environments arises from

contention with co-located services [115] and provides workload placement strategies
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to avoid interference [116]. However, unlike Kwiken, such techniques do not apply to

private datacenters.

Some of the techniques used by Kwiken have been explored earlier. Reissuing

requests has been used in many distributed systems [65, 117] and networking [105,

118, 119] scenarios. Kwiken’s contribution lies in strategically apportioning reissues

across the stages of a DAG to reduce end-to-end latency whereas earlier approaches

consider each stage independently. Partial execution has been used in AI [120] and

programming languages [121, 122]. The proposed policies, however, do not translate

to the distributed services domain. Closer to us is Zeta [123], which devises an

application-specific scheduler that runs beside the query to estimate expected utility

and to choose when to terminate. In contrast, Kwiken relies only on opaque indicators

of utility and hence the timeout policies are more generally applicable.

5.7 Conclusion

We propose and evaluate Kwiken, a framework for optimizing the end-to-end runtime

latency in datacenter application DAGs. Kwiken takes a holistic approach by consid-

ering end-to-end costs and benefits of applying various latency reduction techniques

and decomposes the complex optimization problem into a much simpler optimization

over individual stages. We also propose novel policies that trade off utility loss and

latency reduction. Overall, using detailed simulations based on traces from Microsoft

Bing, we show that Kwiken improves the 99th latency percentile by over 75% when

just 0.1% of the responses are allowed to have partial results and 3% extra resources

are used for reissues.
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Chapter 6

Conclusions and future work

In this dissertation, we proposed Concorde, a scheduling framework which uses co-

ordination between different stages and sub-systems in datacenter applications to

improve their end-to-end latencies. To this end, Concorde uses the abstraction of

latency-response functions to model how application latency varies based on the re-

sources allocated to it. These response functions are determined using application

characteristics, which are derived from application execution history or runtime pro-

filing. Using these response functions and application requirements (e.g., completion

time goals, resource constraints etc.), Corral, the planning component in Concorde,

determines how many resources should be allocated to each application and where in

the cluster these resources should be allocated. Corral uses coordination between the

storage and compute sub-systems to improve application end-to-end latency.

The cluster scheduler in Concorde uses the output of Corral to determine how

should resources be allocated to the applications. Next, the online component in

Concorde, Kwiken, uses various latency reduction techniques to speed up the appli-

cations at runtime. In particular, we explore the use of (a) request reissues, where

a duplicate of the original request is started at a replica of the stage processing it,

(b) partial responses, where many-way parallel stages are terminated before all the

responses are collected, and (c) catch-up, where laggard requests is given extra re-

sources (e.g., more threads) in later stages of the application. Each of these techniques

has a cost associated with them. Kwiken uses an end-to-end optimization framework

which coordinates across all stages in the application to limit this cost within a given

budget, while optimizing for the end-to-end tail latencies.

With large-scale simulations and deployments on a cluster consisting of 210 ma-

chines, we use production traces from Microsoft Bing and Microsoft Cosmos to show that

Concorde can result in significant performance improvements compared to the state-

of-the-art. This validates our thesis that coordination and joint scheduling across

different stages and sub-systems in datacenter applications is required to optimize for
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their goals on end-to-end latency.

In the rest of this chapter, we describe various extensions to our work and the

future directions this dissertation opens up.

6.1 Future work

Coordinating compute with network flow-level scheduling. While the tech-

niques in Concorde use coordination between the storage and compute sub-systems

of datacenter applications, they are agnostic to the way network flows are scheduled

for such applications. Preliminary experiments (Section 4.5.7) show that using tech-

niques in Concorde along with flow-level scheduling techniques results in significantly

better performance than either of them used separately. We can potentially perform

even better when the decisions in Concorde take the underlying flow-level schedule

into account. For example, Varys [18] uses a shortest-bottleneck-first heuristic to

schedule network flows. Scheduling jobs within a rack in the same order can result in

better end-to-end job latencies as opposed to scheduling in other orders. The research

challenge here is to ensure that extensions to Concorde are not specific to a particular

flow-level scheduler but can work well with any scheduler.

Coordination across storage hierarchies. Concorde models datacenter storage

as consisting of one or a few disks per machine in the cluster. However, in practice

the storage system is hierarchical with several tiers [124] — a remote or long term

storage infrastructure (e.g., [125]), multiple disks and SSDs per machine, and the

memory. Coordinating the placement of data across this storage hierarchy can lead to

significant benefits for datacenter applications. For example, systems like Spark [10],

and RAMCloud [126] use memory for data storage resulting in significant application

speed-up. However, the amount of memory available across machines in a datacenter

is much smaller than the SSD or disk storage space. Hence, it is important to use this

resource efficiently and determine which applications can actually benefit with data

pre-loaded into the memory. For example, MapReduce jobs which are I/O bound can

benefit from this optimization but not those which are CPU bound.

Thus, to achieve optimal performance from datacenter storage, it would be in-

teresting to understand how to coordinate between the different storage hierarchies,

determine which tier a particular data set or file should be stored on, and develop pre-

fetching techniques to move data between tiers based on application characteristics
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and requirements.

Pricing based on application requirements. Today, tenants in public clouds

pay based on the amount of time they use compute resources. For instance, with

today’s setup, the cost for a tenant renting N VMs for T hours is kv · NT , where

kv is the hourly VM price. Such resource-based pricing can be extended to multiple

resources. However, this results in a mismatch of tenant and provider interests. The

cheapest resource tuple to achieve the tenant’s goal may not concur with the provider’s

preferred resource combination. Further, resource based pricing entails tenants have

to pay based on a job’s actual completion time. Hence, from a pricing perspective,

there is a disincentive for the provider to reduce the completion time.

Concorde uses application goals (e.g., completion time or deadline requirements) to

determine the resources to be allocated to the application. This opens up interesting

opportunities to investigate new pricing models. By decoupling the tenants from the

underlying resources, Concorde offers the opportunity of moving away from resource

based pricing. Instead, tenants could be charged based only on the characteristics

of their job, the input data size and the desired completion time. Such job-based

pricing can benefit both entities. Tenants specify what they desire and are charged

accordingly; providers decide how to efficiently accommodate the tenant request based

on job characteristics and current datacenter utilization. Further, as the final price

does not depend on the completion time, providers now have an incentive to complete

tenant jobs on time, possibly even earlier than the desired time (Section 4.4.4). Such

a pricing model can enable a symbiotic tenant provider relationship where tenants

benefit due to fixed costs upfront and better-than-desired performance while providers

use the increased flexibility to improve goodput and, consequently, total revenue.

Accounting for WAN delays in executing user requests. Concorde uses coordi-

nation across multiple application components to improve the datacenter-side latency

of applications like web services. However, the latency experienced by the end users

of such applications also includes the time spent by the query over the Internet or

the wide-area network (WAN) before reaching the datacenter. It is also important to

consider this time while processing queries as it can account for a substantial part of

the user-experienced latency [31].

Concorde can be extended to account for the WAN latencies by using techniques

such as Timecard [31]. Timecard keeps track of the time elapsed since the user sends

a request to when it reaches the datacenter and an estimate of the time the response

would take to get back to the user. These latencies can be used as part of tech-
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niques like catch-up (Section 5.3.3) to determine when to provide extra resources for

a query. For example, queries whose WAN latency is greater than a certain threshold

(e.g., 400ms) can be assigned multiple threads to reduce their datacenter-side latency.

Thus, utilizing knowledge of external WAN latency to perform scheduling decisions

within the datacenter is an interesting avenue for future research. This can lead to

significantly lower user-experienced latencies.

Runtime techniques to speed up data analytics applications. In this disser-

tation, the focus of the latency reduction techniques developed in Kwiken has been

web services. However, those techniques can also be applied to data analytics ap-

plications. Prior work has investigated the use of reissues (called task cloning) [104]

for improving the latency of MapReduce workloads. The use of such techniques for

general DAG-style data analytics workloads remains unexplored. In particular, the

following research problem is interesting — given at most x% tasks in a data analytics

DAG can be reissued (or cloned), how do we apportion x across the various stages or

jobs in the DAG? The challenge here lies in determining which stages would benefit

more from reissues and how to change the budget apportioning based on runtime is-

sues such as data skew [61]. Further, when running multiple such DAGs in a cluster,

it would be important to decide how would the overall reissue budget be partitioned

across DAGs and if a slot is available in the cluster, would it be used to run the

reissue of an already running task or a new task.
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