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Abstract

In this thesis we study certain functions on graphs. Chapters 2 and 3 deal with variations on vertex ranking,

a type of node-labeling scheme that models a parallel processing problem. A k-ranking of a graph G is a

labeling of its vertices from {1, . . . , k} such that any nontrivial path whose endpoints have the same label

contains a vertex with a larger label. In Chapter 2, we investigate the problem of list ranking, wherein

every vertex of G is assigned a set of possible labels, and a ranking must be constructed by labeling each

vertex from its list; the list ranking number of G is the minimum k such that if every vertex is assigned

a set of k possible labels, then G is guaranteed to have a ranking from these lists. We compute the list

ranking numbers of paths, cycles, and trees with many leaves. In Chapter 3, we investigate the problem

of on-line ranking, which asks for an algorithm to rank the vertices of G as they are revealed one at a

time in the subgraph of G induced by the vertices revealed so far. The on-line ranking number of G is the

minimum over all such labeling algorithms of the largest label that the algorithm can be forced to use. We

give algorithmic bounds on the on-line ranking number of trees in terms of maximum degree, diameter, and

number of internal vertices.

Chapter 4 is concerned with the connectedness and Hamiltonicity of the graph Gj
k(H), whose vertices are

the proper k-colorings of a given graph H, with edges joining colorings that differ only on a set of vertices

contained within a connected subgraph of H on at most j vertices. We introduce and study the parameters

gk(H) and hk(H), which denote the minimum j such that Gj
k(H) is connected or Hamiltonian, respectively.

Finally, in Chapter 5 we compute the game acquisition number of complete bipartite graphs. An acquisition

move in a weighted graph G consists a vertex v taking all the weight from a neighbor whose weight is at

most the weight of v. In the acquisition game on G, each vertex initially has weight 1, and players Min and

Max alternate acquisition moves until the set of vertices remaining with positive weight is an independent

set. Min seeks to minimize the size of the final independent set, while Max seeks to maximize it; the game

acquisition number is the size of the final set under optimal play.
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Chapter 1

Introduction

In this thesis we study certain functions on graphs. Chapters 2 and 3 deal with variations on vertex ranking,

a type of node-labeling scheme that models a parallel processing problem; in Chapter 2, we investigate list

rankings, and in Chapter 3, we investigate on-line rankings. Chapter 4 is concerned with the connectedness

and Hamiltonicity of graphs whose vertices are the proper k-colorings of a given graph, with edges joining

colorings that differ on sufficiently few vertices sufficiently close together. Finally, in Chapter 5 we compute

the game acquisition number of complete bipartite graphs.

Since Chapters 2 and 3 both deal with variations on vertex ranking, we devote Section 1.1 to a discussion

about the original ranking problem. Next, we survey the results of this thesis in Sections 1.2 through 1.5 of

this chapter. Finally, Section 1.6 contains definitions from graph theory to be used throughout this thesis;

readers unfamiliar with graph theory are encouraged to begin with this section.

1.1 Ranking

A ranking of a graph is a special type of proper vertex coloring using positive integers. We investigate

variations of ranking in both Chapters 2 and 3, so an extended discussion of ranking is warranted.

Definition 1.1.1. Let G be a finite graph, and let f : V (G)→ N. An f -ranking α of G labels each v ∈ V (G)

with an element of [f(v)] in such a way that if u 6= v but α(u) = α(v), then every u, v-path contains a vertex

w satisfying α(w) > α(u). If f(v) = k for all v ∈ V (G), then we say that an f -ranking is a k-ranking of G.

The ranking number of G, denoted here by ρ(G) (though in the literature often as χr(G)), is the minimum

k such that G has a k-ranking.

See Figure 1.1 for an example of a ranking. Note that α is a ranking of G if and only if every path

contains a unique vertex with largest label, or, equivalently, for j ≥ 1 each component of G−{v : α(v) > j}

contains a unique vertex with largest label.

Rankings of graphs were introduced in [22], and results through 2003 are surveyed in [25]. Their study

was motivated by applications to VLSI layout, cellular networks, Cholesky factorization, parallel processing,
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Figure 1.1: A 3-ranking of a graph G.

and computational geometry. Rankings are sometimes called ordered colorings, and the ranking number of

a graph is trivially equal to its “tree-depth,” a term introduced by Nes̆etr̆il and Ossona de Mendez in 2006

[38] in developing their theory of graph classes having bounded expansion, which has been the topic of much

further study [35, 36, 37, 39].

Rankings are special cases of several types of vertex colorings for which the aim, as with rankings, is to

use the fewest colors possible. Since each edge in a graph G is a path with no internal vertices, adjacent

vertices in G receive distinct colors in any vertex ranking of G, so every ranking of G is also a proper coloring

of G; hence ρ(G) ≥ χ(G). A parity coloring of G assigns to each vertex of G a color such that each path in

G contains some color an odd number of times; see [3], [7], and [19]. Thus each ranking of G is also a parity

coloring of G using positive integers because the largest color used in a path appears exactly once in that

path. Rankings are also special cases of conflict-free colorings with respect to paths, which themselves are

special cases of parity colorings wherein every path contains some color exactly once; see [9] and [17].

In general, rankings are used to design efficient divide-and-conquer strategies for minimizing the time

needed to perform interrelated tasks in parallel [23]. The most basic example concerns a complex product

being assembled in stages from its individual parts, where each stage of construction consists of individual

parts being attached to previously assembled components in such a way that no component ever has more

than one new part. Here, the complex product is represented by the graph G whose vertices are the individual

parts and whose edges are the connections between those parts; assuming all parts require the same amount

of time to be installed, the fewest number of stages needed to complete construction is ρ(G), achieved by

finding some ρ(G)-ranking α of G and installing each part v in stage α(v). Viewing Figure 1.2 from left

to right illustrates this assembly process. Similarly, rankings can be use to optimize the disassembly of

a product into parts, where each stage of deconstruction consists of individual parts being detached from

remaining components in such a way that no component loses multiple parts at the same time; G can be

disassembled in ρ(G) stages by removing each part v in stage ρ(G)−α(v)+1. Viewing Figure 1.2 from right

to left illustrates this disassembly process.

A ranking of a graph G can also be viewed as a (successful) search strategy [18], wherein stationary

searchers and an agile fugitive occupy vertices of G. The searchers place themselves one by one onto the
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Figure 1.2: Using a ranking to assemble or disassemble a tree.

vertices of G, where they remain permanently, until one searcher is placed on the vertex currently occupied

by the fugitive, with the placement of each new searcher operating by the following procedure. First, with

the previously placed searchers permanently occupying some set S ⊂ V (G), the location of the fugitive is

revealed as some vertex v ∈ V (G) − S. The new searcher then announces some vertex u ∈ V (G) − S he

will occupy (for the rest of the search), but before the new searcher can occupy u, the fugitive is allowed to

move any distance along any path in G−S (so the new searcher is placed only with the knowledge that the

fugitive must stay in the same component of G− S). Given a k-ranking of G, k searchers can always catch

the fugitive by placing a new searcher on the highest ranked vertex in the component of G − S containing

the fugitive; furthermore, k searchers suffice to guarantee capture of the fugitive only if G is k-rankable.

1.2 List Rankings and On-Line List Rankings

A ranking of a graph is a special type of proper vertex coloring using positive integers. A k-ranking of a

graph G is a labeling of its vertices from [k] such that any path on at least two vertices whose endpoints have

the same label contains a vertex with a larger label. Rankings are used to design efficient divide-and-conquer

strategies for minimizing the time needed to perform interrelated tasks in parallel [23].

Just like proper colorings in general, we desire rankings that use the fewest colors possible; the least k

for which G has a k-ranking is the ranking number of G, denoted here by ρ(G), and known in other contexts

as tree-depth. As with proper colorings, there exists a list variation of ranking.

A k-uniform list assignment for G is a function L(v) that assigns each vertex of G a finite set of k positive

integers. An L-ranking of G is a ranking α such that α(v) ∈ L(v) for each v ∈ V (G). A graph G is k-list

rankable if G has an L-ranking whenever L is a k-uniform list assignment for G. The list ranking number of

G, denoted ρ`(G), is the least k such that G is k-list rankable. List ranking adds scheduling constraints to

the parallelization problem modeled by normal rankings. The list ranking model was first posed by Jamison

in 2003 [25].

In Section 2.2 we introduce three on-line versions of list ranking as games between adversaries Taxer
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and Ranker; on-line list ranking relates to list ranking as on-line list coloring (also known as paintability)

relates to list coloring [41]. Actual descriptions of the on-line ranking games are postponed until Section 2.2,

though we do note here that, just as finding a k-ranking of G is equivalent to finding an L-ranking of G for a

special k-uniform list assignment L, any k-list assignment can be modeled by special strategies for Taxer in

the on-line list ranking games. Hence list ranking results can be strengthened by on-line list ranking results,

which we do several times in Chapter 2 but don’t mention here.

In Section 2.3 we investigate how ranking a graph relates to ranking its minors in the various versions of

the ranking problem.

In Sections 2.4 and 2.5 we compute the list ranking number for the path Pn and the cycle Cn. As stated

in [2] and [5], respectively, ρ(Pn) = dlog2(n+ 1)e and ρ(Cn) = 1 + dlog2 ne, so these values serve as lower

bounds for the list ranking numbers; we show that these lower bounds in fact hold with equality.

Theorem 1.2.1. ρ`(Pn) = ρ(Pn).

Theorem 1.2.2. ρ`(Cn) = ρ(Cn).

Turning our attention toward more complicated graphs, we prove the following lower bound for ρ`(G)

for use in Section 2.6.

Proposition 1.2.3. If q is the maximum number of leaves in any tree contained in a graph G, then ρ`(G) ≥

q.

We then find a class of trees for which the bound of Proposition 2.1.4 holds with equality, yielding our

third main result.

Theorem 1.2.4. For any positive integer p, there is a positive integer qp such that for any tree T with p

internal vertices and at least qp leaves, ρ`(T ) equals the number of leaves of T .

1.3 On-Line Ranking of Trees

Chapter 3 deals with another variation of ranking. Given a class G of graphs, the on-line ranking problem

asks for an algorithm to rank an unknown graph in G by labeling its vertices as they are revealed one at

a time, with each new vertex v appearing in the partially ranked graph induced by v plus the set of all

previously revealed (and labeled) vertices. The labels assigned to their previously revealed vertices cannot

be changed. In Chapter 3, we give a precise definition of the on-line ranking problem as a game between two

players Presenter and Ranker, with Presenter revealing the graph one vertex at a time and Ranker assigning
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the labels. The on-line ranking number of G, denoted here by ρ̊(G) (though in the literature often as χ∗r(G)),

is the minimum over all Ranker strategies of the maximum label that Presenter can force that strategy to

use. If G is the class of induced subgraphs of a graph G (i.e., Ranker and Presenter know G from the start,

and Presenter presents the vertices of G one at a time), then we define ρ̊(G) = ρ̊(G).

Several papers have been written about the on-line ranking number of graphs, including [4], [5], [6], [43],

and [42], and on-line vertex ranking has also been looked at from the perspective of seeking a fast algorithm

for determining the smallest label Ranker is allowed to use on a given turn; see [12], [20], [27], and [28]. The

results of Chapter 3 are of the former variety; we give algorithmic bounds on the on-line ranking number of

certain classes of trees.

The eccentricity of a vertex v in a connected graph G is the maximum of the distance from v to other

vertices in G, and the diameter of G is the maximum of the eccentricities of vertices in G. In Sections 3.2

and 3.3, we give algorithmic bounds on the on-line ranking number of Tk,d, defined for k ≥ 2 and d ≥ 0 to

be the largest tree having maximum degree k and diameter d, i.e., the tree whose internal vertices all have

degree k and whose leaves all have eccentricity d. Since the family of trees with maximum degree at most k

and diameter at most d is a subset of the set of induced subgraphs of Tk,d, our upper bound on ρ̊(Tk,d) also

serves as an upper bound for the on-line ranking number of this class of graphs.

Theorem 1.3.1. There exist positive constants c and c′ such that if d ≥ 0 and k ≥ 3, then

c(k − 1)bd/4c ≤ ρ̊(Tk,d) ≤ c′(k − 1)bd/3c.

In Section 3.4, we consider the on-line ranking number of trees with few internal vertices. The main

result of that section is the following algorithmic upper bound on ρ̊(T p,q), where T p,q is the family of trees

having at most p internal vertices and diameter at most q.

Theorem 1.3.2. ρ̊(T p,q) ≤ p+ q + 1.

In Section 3.5, we compute ρ̊(T 2,3) = 4, extending the work of Schiermeyer, Tuza, and Voigt [42], who

characterized the families of graphs having on-line ranking number 1, 2, or 3.

1.4 Graphs on Proper Colorings

Suppose we have a proper k-coloring p of a graph H, but we want to see what other proper k-colorings of

H look like. We could try to generate such colorings by first coloring H according to p and then applying

the following mixing process: pick any vertex v ∈ V (H), change the color on v while maintaining a proper
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coloring (if possible), and repeat. If we desire to see each proper k-coloring of H exactly once by recoloring

one vertex at a time, then we seek an instance of a Gray code on the set of k-colorings of H, defined to be

an ordering of these colorings such that consecutive colorings differ on exactly one vertex.

Let the k-coloring graph of H, denoted Gk(H), have the proper k-colorings of H as its vertices, with two

colorings adjacent whenever they differ on exactly one vertex. We can obtain all proper k-colorings of H

using the mixing process if and only if Gk(H) is connected, and we can find a cyclic Gray code on the set

of proper k-colorings of H if and only if Gk(H) is Hamiltonian. The mixing number of H, denoted k1(H),

is the least K such that Gk(H) is connected for all k ≥ K (see [8]). The Gray code number of H, denoted

k0(H), is the least K such that Gk(H) is Hamiltonian for all k ≥ K (see [13]).

When Gk(H) is not connected, but something similar to the mixing process is still desired, or when Gk(H)

is not Hamiltonian, but something similar to a cyclic Gray code of proper k-colorings of H is desired, it is

natural to ask by how much the adjacency conditions on Gk(H) need to be relaxed. We relax the requirement

that consecutive colorings differ only on a single vertex, but we still want the differences between consecutive

colorings to be localized. Let the j-localized k-coloring graph of H, denoted Gj
k(H), be the graph whose

vertices are the proper k-colorings of H, with edges joining two colorings if H has a connected subgraph on

at most j vertices containing all vertices where the colorings differ. Let the k-mixing number of H, denoted

gk(H), be the least j such that Gj
k(H) is connected, and let the Gray k-code number of H, denoted hk(H),

be the least j such that Gj
k(H) is Hamiltonian.

One would like to bound gk(H) and hk(H) in terms of χ(H) and k. Such a statement is impossible,

however: in Section 4.2 we generalize a construction from [8] to prove the following.

Theorem 1.4.1. For i and k fixed with 1 < i ≤ k, the functions gk and hk are unbounded on the set of

i-chromatic graphs.

In Section 4.3 we consider what can be determined about gk(H) and hk(H) based on knowledge of gk(H ′)

and hk(H ′) for certain induced subgraphs H ′ of H. As an application of such theorems, we extend results

from [8] and [13] by computing gk(H) and hk(H) for any tree or cycle H.

If χ(F ) > k ≥ 2 but we only have k colors available, subdividing each edge of F will alter F into a

bipartite graph H while still preserving some structure of F . In Section 4.4, we bound gk(H) and hk(H)

for k ≥ 3 and any graph H obtained from a multigraph M by subdividing each edge of M at least some

prescribed number of times. Results from [8] and [13] imply that if H can be constructed by subdividing each

edge of M at least once (though edges need not be subdivided the same number of times), then gk(H) = 1

for k ≥ 4 and hk(H) = 1 for k ≥ 5. We prove the following results.

Theorem 1.4.2. Suppose H is obtained from a multigraph M by subdividing each edge of M at least ` times
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(not necessarily the same amount for each edge). If ` = 2 and M is loopless, then g3(H) ≤ 2 and h4(H) = 1.

If ` = 3, then h3(H) ≤ 2.

In [13] it is shown that G1
k(Kn) is edgeless if k = n and Hamiltonian if k > n, so hn(Kn) ≥ gn(Kn) > 1

and gk(Kn) = hk(Kn) = 1 for k > n > 1. Computing gn(Kn) and hn(Kn) is a matter of viewing proper

n-colorings of Kn as permutations on [n] and applying the Steinhaus-Johnson-Trotter algorithm [26], which

lists the permutations on [n] in cyclic order so that consecutive permutations differ only by transpositions.

Hence gn(Kn) = hn(Kn) = 2 for n > 1. In Section 4.5 we use these results in generalizing from complete

graphs to complete multipartite graphs.

Theorem 1.4.3. Let H = Km1,...,mk
, where m1 ≤ · · · ≤ mk. Then gk(H) = hk(H) = m1 +mk, g`(H) = 1

for ` > k, hk+1(H) = 1 if each mi is odd, and hk+1(H) = 2 if some mi is even.

1.5 Game Acquisition

Graphs model transportation networks, with vertices representing destinations and edges representing the

links joining them. Naturally, graph parameters can be created to model the capabilities of these trans-

portation networks. For instance, suppose military forces are dispersed throughout a region, with roads

connecting some of the troop locations. If the troops need to be consolidated, it would be safer to limit

travel to adjacent towns, and it would make sense for outposts to accept troops from outposts with equal

or fewer numbers, rather than have larger units move to join smaller ones. This suggests acquisition moves

in a graph.

Given a graph for which each vertex v has a nonnegative integer weight w(v), an acquisition move consists

of a vertex x taking all the weight from a neighbor y satisfying w(y) ≤ w(x) before the move. The acquisition

number of a graph G, written a(G), is the minimum size of an independent set reachable by acquisition moves

from the configuration in which every vertex has weight 1. Acquisition number was introduced by Lampert

and Slater [30].

When weather or enemy troops interfere with desired acquisition troop movements, we model such

obstructions by introducing an adversary who alternates making acquisition moves with our optimizer. In

the acquisition game on a graph G, players Min and Max alternate acquisition moves. Min seeks to minimize

the size of the final independent set, while Max seeks to maximize it. The game acquisition number is the

size of the final set under optimal play, written ag(G) when Min starts the game and âg(G) when Max starts.

The game acquisition number was introduced by Slater and Wang [44], who computed its value for paths.

They proved ag(Pn) = 2n
5 +c, where c is a small constant depending only on the congruence class of n modulo
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5. McDonald, Milans, Stocker, West, and Wigglesworth [34] proved âg(Km,n) = n−m+ 1 for m ≤ n

In Chapter 5, we study the Min-start game on the complete bipartite graph Km,n, where m ≤ n. This

turns out to be much more difficult to analyize than the Max-start game, especially the lower bound. In Sec-

tion 5.2, we give a strategy for Min that proves the upper bound ag(Km,n) ≤ min{
⌊
n−m

3

⌋
+2, 2 log3/2m+18}.

In Sections 5.3 through 5.5, we give a strategy for Max to prove that ag(Km,n) ≥ min{
⌊
n−m

3

⌋
, 2 log3/2m−

2 log3/2 log3/2m− 26}. Thus we have the following.

Theorem 1.5.1. For m ≤ n, we have

|ag(Km,n)−min{n−m
3

, 2 log3/2m}| ≤ 26.

1.6 Definitions and Background

Set N = {1, 2, . . .}. For k ∈ N ∪ {0}, let [k] = {1, 2, . . . , k}. Note that [0] = ∅. Given two sets X and Y , let

X − Y = {x ∈ X : x /∈ Y }.

A permutation of a set S is a function f : S → S. Two permutations f and g of S differ by a transposition

if there exist distinct x, y ∈ S such that f(x) = g(y), f(y) = g(x), and f(z) = g(z) for all z ∈ S − {x, y}.

A hypergraph H consists of a set V (H) of vertices as well as a set E(G) of edges, where each edge is a

nonempty set of vertices. A hypergraph is k-uniform if each edge has size exactly k. A 2-uniform hypergraph

is a graph. In this thesis it may be assumed that all graphs have finite vertex sets and thus finite edge sets

as well. A graph is also a specific type of multigraph, which itself consists of a set of vertices as well as a

multiset of edges, where each edge is a set of either one or two vertices. An edge consisting of a single vertex

is a loop.

If G is a graph and e ∈ E(G) satisfies e = {u, v}, then we write e = uv and say that u and v are adjacent

and are endpoints of e, and that e joins u and v. For v ∈ V (G), the open neighborhood of v, denoted

NG(v), is the set of all vertices in G adjacent to v; the closed neighborhood of v, denoted NG[v], is defined

by NG[v] = NG(v) ∪ {v}. The degree of a vertex v in G is written dG(v) and equals |NG(v)|. When G is

unambiguous, the subscript may be dropped from each of these notations.

The minimum degree of a graph G, denoted δ(G), is min{dG(v) : v ∈ V (G)}. The maximum degree of

G, denoted ∆(G), is max{dG(v) : v ∈ V (G)}. For v ∈ V (G), v is isolated if d(v) = 0, v is a leaf if d(v) ≤ 1,

and v is an internal vertex if d(v) ≥ 2.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph of G induced

by the subset U ⊆ V (G), written G[U ], is the subgraph H such that V (H) = U and E(H) is the subset of
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E(G) consisting of those edges whose endpoints both lie in U . For U ⊆ V (G), let G − U = G[V (G) − U ];

for v ∈ V (G), write G− v to denote G− {v}.

A minor of a graph G is any graph H for which there exists a mapping that sends each vertex w ∈ V (H)

to a connected subgraph Gw of G induced by some set U(w) ⊆ V (G) having the following properties: for

distinct vertices w1 and w2 of H, U(w1) ∩ U(w2) = ∅, and if w1 and w2 are adjacent in H, then there exist

u1 ∈ U(w1) and u2 ∈ U(w2) that are adjacent in G. Equivalently, H is a minor of G if H can be obtained

by performing zero or more edge contractions on a subgraph F of G, where an edge uv is contracted from

F by replacing u and v with a new vertex w adjacent to all former neighbors of u and v in F .

A subdivision of an edge uv of a graph G is a replacement of uv with a path uwv for some new vertex w

whose only neighbors in G are u and v. Note that if G is obtained from H by subdividing edges of H, then

H is a minor of G.

Let G and H be graphs. The Cartesian product of G and H, denoted G�H, is the graph with vertex

set V (G)× V (H), with (u, v) and (u′, v′) adjacent if and only if either u = u′ and v is adjacent to v′ in H,

or u is adjacent to u′ in G and v = v′. If V (G) ∩ V (H) = ∅, then the disjoint union of G and H, denoted

G+H, is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

An isomorphism from a graph G to a graph H is a bijection f : V (G) → V (H) such that for any

u, v ∈ V (G), uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). If there exists an isomorphism from G to H, then

G and H are isomorphic. The isomorphism class of G is the set of graphs to which G is isomorphic.

A graph G is a path on n vertices if V (G) and E(G) can be written V (G) = {v1, . . . , vn} and E(G) =

{vivi+1 : i ∈ [n − 1]}, in which case v1 and vn are the endpoints of G; the isomophism class of paths

on n vertices is denoted by Pn. A graph G is a cycle on n vertices if V (G) and E(G) can be written

V (G) = {v1, . . . , vn} and E(G) = {vivi+1 : i ∈ [n]}, where we let v1 = vn+1; the isomophism class of cycles

on n vertices is denoted by Cn. A graph G is a complete graph on n vertices if V (G) and E(G) can be

written V (G) = {v1, . . . , vn} and E(G) = {vivj : i 6= j}; the isomophism class of complete graphs on n

vertices is denoted by Kn.

Let U ⊆ V (G). If G[U ] is a complete graph, then U is a clique in G. If G[U ] is edgeless, then U is an

independent set in G.

For u, v ∈ V (G), a u, v-path in G is a subgraph of G that is a path having endpoints u and v. A graph

G is connected if it has a u, v-path whenever u, v ∈ V (G); the maximal connected subgraphs of G are its

components. A spanning subgraph of G is a subgraph H of G such that V (H) = V (G). A Hamiltonian path

is a spanning path, and a Hamiltonian cycle is a spanning cycle. We say that G is Hamiltonian if it has a

Hamiltonian cycle.
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The distance between two vertices u and v in a graph G, denoted dG(u, v) (or just d(u, v) when G is

unambiguous), is the fewest number of edges in a u, v-path if u and v lie in the same component of G, and

∞ otherwise. The eccentricity of a vertex v in G is the maximum of the distances from v to other vertices

in G. The diameter of G is the maximum of the eccentricities of vertices in G.

A forest is a graph containing no cycles. A linear forest is a forest whose components are all paths. A

tree is a connected forest. A star is a tree with at most one internal vertex, and a double star is a tree with

at most two internal vertices.

For a positive integer k and graph G, a proper k-coloring of G is a function φ : V (G) → [k] such that

φ(u) 6= φ(v) if uv ∈ E(G). We say that G is k-colorable if G admits a proper k-coloring. The chromatic

number of G, denoted χ(G), is the least k such that G is k-colorable. We say that G is k-chromatic if

χ(G) = k.

A proper coloring φ of G separates V (G) into disjoint partite sets by putting vertices u and v into the

same partite set if and only if φ(u) = φ(v); note that partite sets are independent. We also say that G is

k-partite when G is k-colorable. A bipartite graph is a 2-partite graph. A complete k-partite graph with part

sizes m1, . . . ,mk, with isomorphism class denoted Km1,...,mk
, is a graph having a proper k-coloring φ such

that |{v ∈ V (G) : φ(v) = i}| = mi for i ∈ [k], and uv ∈ E(G) if φ(u) 6= φ(v). If G is a complete k-partite

graph for some k, then G is a complete multipartite graph.
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Chapter 2

List Rankings and On-Line List
Rankings

2.1 Introduction

In this chapter, we consider the list version of vertex ranking. For a graph G and function f : V (G)→ N, an

f -ranking α of G labels each v ∈ V (G) with an element of [f(v)] in such a way that if u 6= v but α(u) = α(v),

then every u, v-path contains a vertex w such that α(w) > α(u). The ranking number of G, denoted by

ρ(G), is the minimum k such that G has an f -ranking when f(v) = k for all v ∈ V (G). See Section 1.1 for

more details on the ranking problem.

The ranking problem has spawned multiple variations, including edge ranking [15, 24], on-line ranking

[5, 21, 33], and list ranking, introduced in 2003 by Jamison [25] and studied here. The list ranking problem

is to ranking as the list coloring problem is to ordinary coloring.

Definition 2.1.1. A function L that assigns each vertex of G a finite set of positive integers is an f -list

assignment for G if |L(v)| = f(v) for each v ∈ V (G). If |L(v)| = k for all v, then L is k-uniform. An

L-ranking of G is a ranking α such that α(v) ∈ L(v) for each v. Say that G is f -list-rankable if G has an

L-ranking whenever L is an f -list assignment for G, and say that G is k-list-rankable if G is f -list-rankable

when f(v) = k for all v ∈ V (G). Let the list ranking number of G, denoted ρ`(G), be the least k such that

G is k-list-rankable.

Note that G is f -rankable if G is f -list-rankable, since an f -ranking is just an L-ranking when L is the

f -list assignment defined by L(v) = [f(v)] for each v ∈ V (G). Furthermore, ρ`(G) ≥ χ`(G), where we recall

that χ`(G) denotes the list chromatic number of G, the smallest k such that G can always be properly colored

from a list assignment L giving each vertex a set of k potential colors. In terms of the application of ranking

for assembling a product from parts in stages, described in Section 1.1, obtaining an L-ranking corresponds

to finding a feasible schedule for assembling the product when predetermined scheduling constraints limit

each individual part v to being attached during a stage listed in L(v). In terms of the searching problem

described in Section 1.1, obtaining an L-ranking corresponds to constructing a strategy for the searchers

guaranteed to lead to the capture of the fugitive when predetermined scheduling constraints allow a vertex
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v to accept a new searcher at time t only if t = m− j + 1 for some j ∈ L(v), where m is the maximum label

appearing in any list assigned by L.

The complexity of determining whether a given list assignment admits a ranking of a graph was considered

in 2008 by Dereniowski [14], who produced a polynomial time reduction from the set cover decision problem

(given a set S, j of its subsets, and a positive integer t, is S the union of t of these subsets?) to the list

ranking decision problem for certain graphs. This reduction showed the list ranking decision problem to be

NP-complete for several classes of trees and their line graphs, including full binary trees. It was also shown

that, given a list assignment L for a path Pn such that L contains ` total entries, the problem of finding an

L-ranking minimizing the maximum label used, or determining that no L-ranking exists, is solvable in time

O(n3 + `).

In Section 2.2 we introduce three on-line versions of list ranking, which relate to list ranking similarly

to the way on-line list coloring (also known as paintability) relates to list coloring [41]. We shall define

these on-line versions of list ranking as games between adversaries Taxer and Ranker to be played on a

predetermined graph G. At the beginning of the game each vertex is assigned a size for its list of potential

labels, but no actual labels. Taxer in effect fills out these lists by using the possible labels one by one,

stipulating at each step which vertices have that label in their lists (the order in which Taxer uses the labels

depends on the version of the game, and once a label is used it cannot be revisited). Ranker must decide

immediately which of those vertices just selected by Taxer are to receive the given label, extending a partial

ranking of G. Taxer can use knowledge of the partial ranking already created by Ranker when deciding

which vertices are to have a given label in their lists. Ranker wins by creating a ranking of G before any

vertex has its list filled with unused labels, and Taxer wins otherwise.

Given a graph G and a function f : V (G) → N, we say G is on-line f -list-rankable if Ranker has a

winning strategy for the game we shall denote R±(G, f), and we define the on-line list ranking number of

G, denoted ρ±` (G), to be the least k such that G is on-line f -list rankable when f(v) = k for all v ∈ V (G).

We similarly define the on-line list low-ranking number ρ−` (G) and on-line list high-ranking number ρ+` (G)

based on the games R−(G, f) and R+(G, f), respectively.

Just as we have seen that finding an f -ranking of G is equivalent to finding an L-ranking of G for a special

f -list assignment L, we will see that any f -list assignment can be modeled by special strategies for Taxer in

the games R−(G, f) and R+(G, f), and these games in turn can be modeled by special Taxer strategies in

R±(G, f). Thus our parameters will satisfy

ρ(G) ≤ ρ`(G) ≤ min{ρ−` (G), ρ+` (G)} ≤ max{ρ−` (G), ρ+` (G)} ≤ ρ±` (G).
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In Section 2.3 we investigate how ranking a graph relates to ranking its minors in our various versions of

the ranking problem.

In Sections 2.4 and 2.5 we consider paths and cycles, respectively. As stated in [2], ρ(Pn) = dlog2(n+ 1)e:

the largest label can appear only once, so rankings are achieved by individually ranking the subpaths on

either side of the vertex receiving the largest label. For instance, P7 can be ranked by labeling vertices from

left to right with 1, 2, 1, 3, 1, 2, 1. Furthermore, ρ(Cn) = 1 + dlog2 ne, as stated in [5]: the largest label can

appear only once, so rankings are achieved by ranking the copy of Pn−1 left by deleting the vertex receiving

the largest label.

The first main result of this chapter, proved in Section 2.4, is that the hierarchy of on-line list ranking

parameters collapses for paths.

Theorem 2.1.2. ρ±` (Pn) = ρ(Pn).

This theorem is proved using a more general result. For a nonnegative integer valued function f whose

domain includes some finite set V of vertices, define σf (V ) =
∑

v∈V 2−f(v). We prove that Pn is on-line

f -list-rankable if σf (V (Pn)) < 1. The result is sharp, because P2k is not even k-rankable. We can extend

to Pn for all n the construction of a function f such that Pn is not f -rankable and σf (V (Pn)) = 1. On the

other hand, for n ≥ 5 there are functions f satisfying σf (V (Pn)) > 1 such that Pn is on-line f -list-rankable.

In Section 2.5, relying heavily on the work of Section 2.4, we prove that the hierarchy also collapses for

cycles.

Theorem 2.1.3. ρ±` (Cn) = ρ(Cn).

Turning our attention toward more complicated graphs, we note the following lower bound for ρ`(G).

Proposition 2.1.4. If G contains a tree T with q leaves, then ρ`(G) ≥ q.

Proof. Construct a (q − 1)-uniform list assignment L by giving each vertex that is not a leaf of T the list

[q − 1] and each leaf of T the list {q, . . . , 2q − 2}. If G has an L-ranking, then two leaves u and v of T

must receive the same label, but no internal vertex of the u, v-path through T can contain a larger label,

contradicting the definition of a ranking.

Thus ρ`(G)− ρ(G) can be made arbitrarily large, since for the star K1,n having one internal vertex and

n leaves, we have ρ(K1,n) = 2 (label the leaves with 1 and the center with 2) but ρ`(K1,n) ≥ n. Section 2.6

finds a class of trees in which the bound of Proposition 2.1.4 holds with equality, yielding our third main

result.
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Theorem 2.1.5. For any positive integer p, there is a positive integer qp such that for any tree T with p

internal vertices and at least qp leaves, ρ`(T ) equals the number of leaves of T .

The proof Theorem 2.1.5 gives a specific value of qp that is exponential in p, but this does not appear to

be anywhere near sharp.

Conjecture 2.1.6. If T is a tree with p internal vertices and q leaves, and q > p, then ρ`(T ) = q.

It also seems likely that Theorem 2.1.5 can be strengthened in another way.

Conjecture 2.1.7. For any positive integer p, there is a positive integer qp such that for any tree T with p

internal vertices and at least qp leaves, ρ±` (T ) equals the number of leaves of T .

2.2 On-Line List Ranking Games

In this section we introduce the various on-line versions of list ranking, presented as games between Taxer

and Ranker. The descriptor “on-line” comes from the fact that Taxer in effect fills out the lists one label at

a time, and Ranker must decide immediately which vertices are to actually be colored with that label. Let

G be a graph and f : V (G) → N. Each v ∈ V (G) starts the game possessing f(v) tokens (representing the

open slots in the list of labels available to v), and each round of the game corresponds to a label to be used

by Ranker to rank G. Taxer starts the round corresponding to the label c by taking tokens from a set T of

unranked vertices in G, in effect inserting c into the list of each vertex in T . Ranker must in effect extend

a ranking of G by assigning the label c to the vertices in an appropriate subset R of T , which in the game

is accomplished by removing R from G and further modifying the resulting graph based on c (if the rounds

corresponding to labels in [c− 1] have already transpired, then R must be an independent set and the graph

is modified by removing R and completing the neighborhood of each vertex in R; if all future rounds are to

correspond to labels in [c − 1], then no two vertices in R can lie in the same component and the graph is

modified by simply removing R). Taxer’s goal is to bankrupt some vertex without Ranker having been able

to assign it any of its possible labels.

The three on-line list ranking games we introduce differ in the order the potential labels are introduced.

We start with the game in which the labels are introduced in increasing order. In terms of the application

of list ranking from Section 1.1 concerning product assembly, this variation corresponds to determining the

feasibility of assembly when the list of individual parts that can be attached at each stage of construction is

not known until that stage is reached.

Definition 2.2.1. A graph G is on-line f -list low-rankable if Ranker has a winning strategy over Taxer in

14



the following game R−(G, f), which starts by setting G1 = G and allotting f(v) tokens to each vertex v.

During round i for i ≥ 1, Taxer takes a single token from each element of a nonempty set Ti of vertices of

Gi. Ranker responds by creating the graph Gi+1 from Gi by selecting a subset Ri of Ti that is independent

in Gi, adding an edge joining any two nonadjacent vertices that have a common neighbor in Ri, and finally

deleting Ri. Taxer wins after round i if Gi+1 contains any vertex without a token, and Ranker wins after

round i if Gi+1 is empty. Since Taxer takes at least one token each round, R−(G, f) ends after at most∑
v∈V (G) f(v) rounds. We say that G is on-line k-list low-rankable if G is on-line f -list low-rankable when

f(v) = k for all v ∈ V (G). Let the on-line list low-ranking number of G, denoted ρ−` (G), be the least k such

that G is on-line k-list low-rankable.

See Figure 2.1 for an example of a round in R−(G, f), where the number on each vertex counts the

tokens it has in the specified graph. Note that if Ranker wins the game after round j, then G can be given

a j-ranking by labeling each vertex in Ri with i. Indeed, suppose u, v ∈ Ri and P is some u, v-path in G.

Let P 1 = P , and for 1 < q ≤ i, let P q be the u, v-path in Gq obtained from P q−1 by replacing each vertex

w ∈ V (P q−1) ∩ Rq−1 with the edge in Gq joining the neighbors of w in P q−1. Since Ri is an independent

set in Gi, P
i has an internal vertex w that appears in Gi but not Ri, meaning w is an internal vertex of

P that receives a larger label than do u and v. Further note that G is f -list rankable if G is on-line f -list

low-rankable: finding an L-ranking from an f -list assignment L, whose set of labels we may presume to be

precisely [m], is equivalent to finding a winning strategy for Ranker in R−(G, f) where Taxer must declare

before the game that any vertex v remaining in round i will be put in Ti if and only if i ∈ L(v).

3 2 4
2

3
1

2

3
Ti

Ri

Gi Gi+1

ww �� ''gg 77

� //

Figure 2.1: A possibility for round i of R−(G, f) (or of R±(G, f), if the round is low).

We now introduce the on-line list ranking game in which the labels are introduced in decreasing order.

In terms of application of list ranking from Section 1.1 concerning product disassembly, this variation corre-

sponds to determining the feasibility of disassembly when the list of individual parts that can be detached

at each stage of deconstruction is not known until that stage is reached.

Definition 2.2.2. A graph G is on-line f -list high-rankable if Ranker has a winning strategy in the following

game R+(G, f), which starts by setting G1 = G and allotting f(v) tokens to each vertex v. During round
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i for i ≥ 1, Taxer begins play by taking a single token from each element of a nonempty set Ti of vertices

of Gi. Ranker responds by creating the induced subgraph Gi+1 of Gi by deleting from Gi a subset Ri of

Ti whose vertices lie in distinct components. Taxer wins after round i if Gi+1 contains any vertex without

a token, and Ranker wins after round i if Gi+1 is empty. Since Taxer takes at least one token each round,

R+(G, f) ends after at most
∑

v∈V (G) f(v) rounds. We say that G is on-line k-list high-rankable if G is

on-line f -list high-rankable when f(v) = k for all v ∈ V (G). Let the on-line list high-ranking number of G,

denoted ρ+` (G), be the least k such that G is on-line k-list high-rankable.

See Figure 2.2 for an example of a round in R+(G, f), where the number on each vertex counts its

remaining tokens. Note that if Ranker wins the game after round j, then G can be given a j-ranking by

labeling each vertex in Ri with j + 1 − i. Indeed, if u, v ∈ Ri then u and v are in different components

of Gi, so each u, v-path in G has an internal vertex w that does not make it to Gi, meaning w receives a

larger label than do u and v. Note also that G is f -list-rankable if G is on-line f -list high-rankable. Let L

be an f -list assignment, and since only the relative sizes of labels matter in rankings, assume without loss

of generality that the set of labels used in L is precisely [m]. Finding an L-ranking is equivalent to finding a

winning strategy for Ranker in R+(G, f) where Taxer defines Ti to be the set of vertices remaining in round

i that have m+ 1− i in their lists.

1 3
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Figure 2.2: A possibility for round i of R+(G, f) (or of R±(G, f), if the round is high).

Our final on-line list ranking game is a common generalization of the first two, in that at the beginning

of each round Taxer decides whether the label to be assigned to vertices in that round is either the least or

greatest label yet to be used.

Definition 2.2.3. A graph G is on-line f -list-rankable if Ranker has a winning strategy in the following

game R±(G, f), which starts by setting G1 = G and allotting f(v) tokens to each vertex v. During round i

for i ≥ 1, Taxer begins play by declaring the round to be either low or high; low rounds are played like rounds

of R−(G, f) and high rounds are played like rounds of R+(G, f). As in R−(G, f) and R+(G, f), Taxer wins
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R±(G, f) after round i if Gi+1 contains any vertex without a token, and Ranker wins after round i if Gi+1 is

empty. Since Taxer takes at least one token each round, R±(G, f) ends after at most
∑

v∈V (G) f(v) rounds.

We say that G is on-line k-list-rankable if G is on-line f -list-rankable when f(v) = k for all v ∈ V (G). Let

the on-line list ranking number of G, denoted ρ±` (G), be the least k such that G is on-line k-list rankable.

Note that if Ranker wins the game after round j, then G can be given a j-ranking by labeling each vertex

in Ri with r if round i was the rth low round and with j + 1− r if round i was the rth high round. Further

note that G is on-line f -list low-rankable and on-line f -list high-rankable if G is on-line f -list rankable:

a winning strategy for Ranker in R−(G, f) is a winning strategy for Ranker in R±(G, f) where Taxer is

required to declare each round low, and a winning strategy for Ranker in R+(G, f) is a winning strategy for

Ranker in R±(G, f) where Taxer is required to declare each round high.

We summarize our observations about the relationships among the parameters we have introduced.

Proposition 2.2.4. For any graph G,

ρ(G) ≤ ρ`(G) ≤ min{ρ−` (G), ρ+` (G)} ≤ max{ρ−` (G), ρ+` (G)} ≤ ρ±` (G). (2.1)

Currently we have no example of a graph G satisfying ρ`(G) < ρ±` (G); it would be especially interesting

to find a construction where ρ±` (G)− ρ`(G) is arbitrarily large. Furthermore, we know of no G and function

f such that G is on-line f -list high-rankable but not on-line f -list-rankable. We can, however, present for

n ≥ 4 a function f such that the path Pn is on-line f -list low-rankable but not on-line f -list high-rankable.

We use a lemma (which we will use several times in later sections) that provides list ranking and on-line list

ranking analogues of the following observation. If the vertices of a graph G can be labeled v1, . . . , vn so that

for some index k, the subgraph G′ of G induced by {v1, . . . , vk} is f -rankable, and f(vi) ≥ i for k < i ≤ n,

then we can construct an f -ranking of G by giving G′ a k-ranking (which is possible since at most k labels

can be used in a ranking of G′) and labeling vi with i for k < i ≤ n.

Lemma 2.2.5. Let G be a graph with vertices v1, . . . , vn, and for some index k let G′ be the subgraph of G

induced by {v1, . . . , vk}. Suppose that for every component C of G−V (G′), the set of vertices in G′ adjacent

to vertices in C is a (possibly empty) clique. Let f : V (G)→ N satisfy f(vi) ≥ i for k < i ≤ n. If G′ is f -list

rankable, then so is G. Also, for ∗ ∈ {−,+,±}, if Ranker wins R∗(G′, f), then Ranker also wins R∗(G, f).

Proof. We first prove the lemma for list ranking, and then we prove it for all three on-line list ranking

variations.

Claim. If G′ is f -list rankable and L is an f -list assignment for G, then G has an L-ranking.
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We create an L-ranking of G in the following manner: first rank G′ from L, then delete the labels, of

which there are at most k, used on G′ from the remaining lists, and finally label vk+1, . . . , vn in order from

their remaining lists using distinct labels, deleting the label given to vi from the list of each unlabeled vertex.

To see that this completes a ranking of G, we note that any path P in G between vertices with the same

label must have endpoints in G′, in which case P could be modified into a path P ′ in G′ by replacing each

maximal subpath of P in G− V (G′) with an edge in G′ (due to the hypothesis that there is an edge joining

any two vertices in G′ that have neighbors in the same component of G− V (G′)). Since G′ has a ranking,

and the endpoints of P ′ have the same label, an internal vertex of P ′ must contain a larger label, and this

vertex is also an internal vertex of P .

Claim. If Ranker has a winning strategy on R∗(G′, f) for some ∗ ∈ {−,+,±}, then Ranker can win

R∗(G, f).

We prove the claim by using induction on n; the base case n = 1 is trivial, so we assume that n > 1 and

that the statement holds if G has fewer than n vertices. Let T ⊆ V (G) be the set of vertices from which

Taxer takes a token in the first round of R∗(G, f). Let R ⊆ T be the set of vertices to be removed by Ranker

in response. Let H be the graph to be played on in the second round (H = G − R if the first round was

high, and H is obtained from G − R by completing the remaining neighborhood of each vertex from R if

the first round was low). Let H ′ be the subgraph of H induced by V (G′) − R. Define h : V (H) → N by

h(vi) = f(vi)− |T ∩ {vi}| (that is, h is obtained from f by decreasing the value by 1 for vertices that were

taxed but not ranked), and define g : N→ N by g(i) = i− |R ∩ {v1, . . . , vi−1}|.

We complete the proof by proving these facts. (1) Ranker can always choose R so that h(vi) ≥ g(i)

for vi ∈ V (H) − V (H ′). (2) Ranker has a winning strategy on R∗(H ′, h). (3) The set S of vertices in H ′

adjacent to any component C of H − V (H ′) is a (possibly empty) clique. The induction hypothesis then

applies to complete the proof. Fix such a component C, and define S as above. We separate the rest of the

proof into cases based on whether T includes any vertices from G′.

Case 1. T ∩ V (G′) = ∅.

Let R = {vj}, where j is the least index of any vertex in T (note that j > k); clearly this is a legal

move by Ranker. In this case, H ′ = G′, h(vi) = f(vi) for 1 ≤ i < j (with f(vi) ≥ g(vi) for k < i < j), and

h(vi) ≥ f(vi)− 1 = g(i) for j < i ≤ n. Since Ranker has a winning strategy on R∗(G′, f), Ranker also has a

winning strategy on R∗(H ′, h), since H ′ = G′ and h equals f on V (G′). Since all vertices in S are adjacent

in G to vertices in the component of G − V (G′) containing C, S is a subset of a clique and thus a clique

itself.
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Case 2. T ∩ V (G′) 6= ∅.

Let R consist of the vertices that Ranker would remove in a winning strategy on R∗(G′, f) in response

to Taxer playing T ∩ V (G′). This is a legal move by Ranker because if the first round is low, then R is

independent in G′ and thus also in G, and if the first round is high, then any two vertices in R are in different

components of G′ and thus also in different components of G (since otherwise some component of G−V (G′)

would have nonadjacent neighbors in G′). Clearly, h(vi) ≥ f(vi)− 1 ≥ g(i) for vi ∈ V (H)− V (H ′), Ranker

has a winning strategy on R∗(H ′, h), and C is a component of G− V (G′). We only need to show that S is

a clique.

If the first round is high, then H = G−R, so all vertices in S are adjacent in G to vertices in C, making

S a subset of a clique and thus a clique itself. If the first round is low, then H is obtained from G by deleting

each vertex in R after completing its neighborhood. Any vertex in S is either adjacent in G to a vertex in

C or adjacent in G to a vertex in R adjacent to a vertex in C, so S is a clique since the set of vertices in G′

adjacent to vertices in C is a clique, and the neighborhood of any vertex in R is completed when forming H

from G.

We are now ready to present, for n ≥ 4, a function f such that Pn is on-line f -list low-rankable but not

on-line f -list high-rankable. For convenience, if the vertices of the path Pn are in some order, say v1, . . . , vn,

and f : V (Pn)→ N, then we write f = (b1, . . . , bn) to denote f(vi) = bi for i ∈ [n].

Proposition 2.2.6. If the vertices of Pn are v1, . . . , vn in order, then the path Pn is on-line f -list low-

rankable but not on-line f -list high-rankable for the function f = (3, 1, 2, 3, 5, 6, . . . , n).

Proof. We show Pn is on-line f -list low-rankable by giving a winning strategy for Ranker on R−(Pn, f), and

we show Pn is not on-line f -list high-rankable by giving a winning strategy for Taxer on R+(Pn, f).

Claim. Ranker wins R−(Pn, f).

By Lemma 2.2.5 it suffices to exhibit a winning strategy for Ranker on R−(P4, (3, 1, 2, 3)). If Taxer takes

a token from v2 in the first round, let Ranker remove v2, and also remove v4 if Taxer also plays v4. Then,

assuming Taxer also removed tokens from v1 and v3 (the worst-case scenario for Ranker in this situation),

the game reduces to either R−(P2, (2, 1)) (v2 and v4 removed by Ranker) or R−(P3, (2, 1, 3)) (v2 removed),

both of which lead to victory for Ranker, by Lemma 2.2.5.

If Taxer does not remove a token from v2 in the first round, let Ranker remove v1 if selected, v3 if

selected, and v4 if selected and v3 is not selected. Then, assuming Taxer removed a token from v4 if one

was also taken from v3 (again, the worst-case scenario for Ranker in this situation), the game reduces to
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either R−(P2, (1, 2)) (v1 and either v3 or v4 removed), R−(P3, (1, 2, 3)) (only v1 removed), or R−(P3, (3, 1, 2))

(either v3 or v4 removed), each of which leads to victory for Ranker, by Lemma 2.2.5.

Claim. Taxer wins R+(Pn, f).

Let Taxer begin play by removing tokens from v1 and v4. If Ranker responds by removing v1, let Taxer

play {v2, v3, v4}, leaving v2 with no tokens and v3 and v4 with one each. Ranker must remove v2, and if

Taxer selects v3 and v4, Ranker can remove just one of these. The other vertex is left with no token, so

Taxer wins.

If Ranker responds to Taxer’s initial move by removing v4, let Taxer next remove tokens from v1 and v3,

leaving each vertex in {v1, v2, v3} with a single token and in the same component. Ranker cannot remove

both v1 and v3, leaving v2 adjacent to another vertex, each with a single token. If Taxer selects both of these

vertices then Ranker can remove just one, leaving the other with no token. Thus Taxer wins R+(Pn, f).

2.3 List Ranking and On-Line List Ranking Graph Minors

We now examine how ranking a graph relates to ranking one of its minors in our various versions of the

ranking problem. We first recall the definition of a graph minor and introduce some notation to be used in

this section.

Definition 2.3.1. A minor of a graph G is any graph G′ for which there exists a mapping that sends each

vertex w ∈ V (G′) to a connected subgraph Gw of G induced by some set U(w) ⊆ V (G) having the following

properties: for distinct vertices w1 and w2 of G′, U(w1) ∩ U(w2) = ∅, and if w1 and w2 are adjacent in G′,

then there exist u1 ∈ U(w1) and u2 ∈ U(w2) that are adjacent in G.

Equivalently, G′ is a minor of G if G′ can be obtained by performing zero or more edge contractions on

a subgraph F of G, where an edge uv is contracted from F by deleting u and v and adding a new vertex w

adjacent to all former neighbors of u and v in F .

For the rest of this section, fix a graph G and a function f : V (G) → N as well as a minor G′ of G and

a function f ′ : V (G′)→ N. For notational convenience, we say that G being f -list rankable is equivalent to

Ranker having a winning strategy for the game R`(G, f) (with Taxer’s goal in this game being to present

an f -list assignment L that admits no ranking of G); let ∗ ∈ {`,−,+,±}. Our results in this section give

sufficient conditions for Ranker to have a winning strategy on R∗(G′, f ′). Often one of our conditions is that

Ranker has a winning strategy in R∗(G, f); to prove Ranker can beat any Taxer strategy in R∗(G′, f ′), we

translate the strategy taken by Taxer in the game R∗(G′, f ′) to a strategy by Taxer in the game R∗(G, f),
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then translate Ranker’s winning strategy against Taxer in R∗(G, f) back to a winning strategy for Ranker

in R∗(G′, f ′). We first employ this technique to prove the following statement on list ranking minors.

Proposition 2.3.2. If G is f -list rankable, but Gw is not (f − f ′(w))-list rankable for each w ∈ V (G′),

then G′ is f ′-list rankable.

Proof. We show that G′ is f ′-list rankable by constructing an L′-ranking α′ from an arbitrary f -list as-

signment L′ for G′. For each w ∈ V (G′), let Lw be an (f − f ′(w))-list assignment for Gw such that Gw

has no Lw-ranking. Without loss of generality assume that the smallest label in any list assigned by L′

is larger than the largest label in any list assigned by any Lw (we may assume this since G′ has an L′-

ranking if and only if G′ has an L′′-ranking, where L′′ is any list assignment obtained from L′ by adding

the same integer constant to each label in each list assigned by L′; thus if require the smallest label used

in L′′ to be larger than the largest label used in any Lw, then we can replace L′ by L′′ and still show

that G′ has an L′-ranking by exhibiting an L′′-ranking). Let L be the f -list assignment for G obtained

from L′ by setting L(u) = L′(w) ∪ Lw(u) for each w ∈ V (G′) and u ∈ V (Hw), and L(t) = [f(t)] for each

t ∈ V (G)−
⋃

w∈V (G′) V (Hw).

By hypothesis G has an L-ranking α. We modify α into an L′-ranking α′ of G′ by letting α′(w) =

max{α(u) : u ∈ V (Hw)}. Note that α′(w) ∈ L′(w) for all w ∈ V (G′) since α cannot assign every vertex in

Gw a label from Lw (or else Gw would have an Lw-ranking), and the smallest label in L′(w) is larger than

the largest label anywhere in Lw. We prove that α′ is in fact a ranking of G′ by showing that if w1 · · ·wm

is a path P ′ in G′ satisfying w1 6= wm and α′(w1) = α′(wm), then α′(wi) > α′(w1) for some i.

By the definition of α′, for 1 ≤ i ≤ m there exists ui ∈ V (Gwi
) such that α(ui) = α′(wi). Since wi

and wi+1 are adjacent in G′ for 1 ≤ i < m, for 1 ≤ i ≤ m there exist (not necessarily distinct) vertices

xi, yi ∈ V (Gwi) such that x1 = u1, ym = um, and yi is adjacent to xi+1 in G for 1 ≤ i < m. Since each Gwi is

connected, there exists a xi, yi-path P i in Gwi
for 1 ≤ i ≤ m. Hence concatenating the paths P 1, P 2, . . . , Pm

forms a u1, um-path P in G. Since α is a ranking of G and α(u1) = α′(w1) = α′(wm) = α(um), for some i

there exists z ∈ V (P i) satisfying α(z) > α(u1), in which case α′(wi) ≥ α(z) > α(u1) = α′(w1).

Suppose that G′ is a subgraph of a graph G, and f ′(v) ≥ f(v) for each v ∈ V (G′). Clearly G′ is f ′-

rankable if G is f -rankable: every f -ranking of G is also an f ′-ranking of G′. Since G′ is also a minor of G,

with Gv = v and f(v) − f ′(v) ≤ 0 for each v ∈ V (G′) (so Gv is not (f − f ′(v))-list rankable), Proposition

2.3.2 yields that G′ is f ′-list rankable if G is f -list rankable. Lemma 2.3.3 extends this statement to the

on-line list ranking games.
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Lemma 2.3.3. Fix ∗ ∈ {−,+,±}. If Ranker wins R∗(G, f), G′ is a subgraph of G, and f ′(v) ≥ f(v) for

each v ∈ V (G′), then Ranker wins R∗(G′, f ′).

Proof. We perform induction on |V (G)|. The base case of |V (G)| = 1 is trivial, so we may assume that

|V (G)| > 1 and that the statement holds for smaller graphs. Taxer begins R∗(G′, f ′) by declaring the first

round high or low and then taking tokens from certain vertices of G′; let Taxer declare the first round of

R∗(G, f) to be of the same type before taking tokens from the same vertices of G. Whichever of these vertices

Ranker removes from G to create the graph F in a winning strategy on R∗(G, f), let Ranker respond in

R∗(G′, f ′) by removing the same set of vertices from G′ to create the graph F ′.

Since f ′(v) ≥ f(v) for each v ∈ V (G′), and every vertex in F ′ that lost a token during the first round

of R∗(G′, f ′) also lost one during the first round of R∗(G, f), every vertex in F ′ has at least as many

tokens remaining as its corresponding vertex in F . Furthermore, F ′ is a subgraph of F , with vertices in F ′

corresponding to the same vertices in F that they did in G: G′ was a subgraph of G, and if the first round

was low, then vertices selected by Ranker are deleted but their neighborhoods are completed, and if the first

round was high, then vertices selected by Ranker are simply deleted without adding any new edges. Since

Ranker wins R∗(G, f), Ranker wins the new game on F , so by the induction hypothesis Ranker wins the

new game on F ′ as well. Thus Ranker wins R∗(G′, f ′).

Proposition 2.3.4. Fix ∗ ∈ {−,±}, and recall the definitions of G′ and Gw from the beginning of this

section. If Ranker wins R∗(G, f) but Taxer wins R−(Gw, f − f ′(w)) for each w ∈ V (G′), then Ranker wins

R∗(G′, f ′).

Proof. From any Taxer strategy on R∗(G′, f ′), we define a strategy for Taxer in an auxiliary game R∗(G, f),

and we use Ranker’s winning strategy on R∗(G, f) to define a winning strategy for Ranker on R∗(G′, f ′). Let

Taxer begin the auxiliary game R∗(G, f) by isolating play to each Gw individually and copying a winning

strategy from R−(Gw, f − f ′(w)) until some u ∈ V (Hw) is left with at most f ′(w) tokens; once this happens

say that w and u are partners. Let Taxer continue the auxiliary game R∗(G, f) by declaring rounds to be

low and taking tokens from vertices of G not partnered with vertices of G′ until Ranker has removed all

such vertices (which Ranker must do since Ranker is playing a winning strategy on R∗(G, f) and thus will

never leave any vertex without a token).

Since each round so far has been low, the neighborhood of each vertex removed by Ranker has been

completed before the next round, so the partnership between the vertices of G′ and the vertices of the

altered graph H of R∗(G, f) is a graph isomorphism from G′ to a spanning subgraph of H. Letting h(u)

count the tokens on each u ∈ V (H), we note that h(u) ≤ f ′(w) if u is partnered with w ∈ V (G′). The
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auxiliary game R∗(G, f) has been reduced to R∗(H,h), for which Ranker has a winning strategy since Ranker

wins R∗(G, f). By Lemma 2.3.3, Ranker has a winning strategy for R∗(G′, f ′).

Proposition 2.3.5. If Ranker wins R+(G, f) but Taxer wins R+(Gw, f − f ′(w)) for each w ∈ V (G′), then

Ranker wins R+(G′, f ′) (refer to the beginning of this section for the definitions of G′ and Gw).

Proof. We show Ranker wins R+(G′, f ′) by performing induction on |V (G)|, with the base case of |V (G)| = 1

being trivial. Now assume |V (G)| > 1 and the statement holds for smaller graphs. Let Taxer begin R+(G′, f ′)

by taking tokens from vertices in the set T ′ ⊆ V (G′). Based on T ′, we decide from which set T ⊆ V (G)

Taxer will take tokens in the first round of the auxiliary game R+(G, f): let T =
⋃

w∈T ′ V (Hw). After

Ranker responds as part of a winning strategy in the auxiliary game R+(G, f) by removing the vertices of

some R ⊆ T to create the graph F , the set R′ ⊆ T ′ Ranker will remove from G′ to create the graph F ′ in

R+(G′, f ′) is given by R′ = {w ∈ T ′ : V (Hw) ∩R 6= ∅}.

The games R+(G, f) and R+(G′, f ′) have been reduced to R+(F, h) and R+(F ′, h′), respectively, where

F = G − R and F ′ = G′ − R′, with the functions h and h′ defined by h(v) = f(v) − 1 if v ∈ T − R and

h(v) = f(v) otherwise, and h′(w) = f ′(w) − 1 if w ∈ T ′ − R′ and h′(w) = f ′(w) otherwise. To complete

the proof, we show that Ranker wins R+(F ′, h′). Because Ranker wins R+(F, h) (since Ranker is playing

a winning strategy on R+(G, f)), and |V (F )| < |V (G)|, by the induction hypothesis we only need to show

that for w ∈ V (F ′), Gw survives to F , with F ′ a minor of F according to the mapping Fw = Gw and Taxer

having a winning strategy on R+(Gw, h− h′(w)).

Claim. For each w ∈ V (F ′) and v ∈ V (Gw), v survives as a vertex in F , and h(v)− h′(w) = f(v)− f ′(w).

Let w ∈ V (F ′) and v ∈ V (Gw). Note that either w ∈ V (G′) − T ′ or w ∈ T ′ − R′ (since F ′ = G′ − R′

and R′ ⊆ T ′ ⊆ V (G′)). If w ∈ V (G′)− T ′, then h′(w) = f ′(w) (since w ∈ V (F ′)− T ′), and for v ∈ V (Gw)

we have v ∈ V (F ) as well as h(v) = f(v) (since V (Gw) ∩ R ⊆ V (Gw) ∩ T = ∅ for w /∈ T ′). If w ∈ T ′ − R′,

then h′(w) = f ′(w) − 1, and for v ∈ V (Gw) we have v ∈ V (F ) as well as h(v) = f(v) − 1 (since V (Gw) ⊆

T −R ⊆ V (F ) for w ∈ T ′ −R′, as V (Gw) ⊆ T for w ∈ T ′ and V (Gw) ∩R = ∅ for w /∈ R′).

Claim. For each w ∈ V (F ′), Gw survives as a subgraph of F , with Taxer having a winning strategy on

R+(Gw, h− h′(w)).

Since F and F ′ are induced subgraphs of G and G′, respectively, and V (Gw) ⊆ V (F ) for each w ∈ V (F ′),

Gw survives as a subgraph of F for each w ∈ V (F ′). We have shown h(v)− h′(w) = f(v)− f ′(w) for each

v ∈ V (Gw), so Taxer wins R+(Gw, h − h′(w)) because Taxer wins R+(Gw, f − f ′(w)) by our original

hypothesis.
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Claim. F ′ is a minor of F according to the mapping Fw = Gw for w ∈ V (F ′).

Let v1 and v2 be distinct vertices in F , and let w1 and w2 be distinct vertices in F ′. The graph Gwi is

connected, and V (Gw1
)∩V (Gw2

) = ∅ since G′ is a minor of G, so Fwi
is connected and V (Fw1

)∩V (Fw2
) = ∅.

Furthermore, v1 is adjacent to v2 in F if and only if v1 is adjacent to v2 in G, since F is an induced subgraph

of G. Also, w1 is adjacent to w2 in F ′ if and only if w1 is adjacent to w2 in G′ since F ′ is an induced subgraph

of G′. Thus if w1 and w2 are adjacent in F ′, then they are also adjacent in G′, so some u1 ∈ V (Gw1
) is

adjacent to some u2 ∈ V (Gw2) in G since G′ is a minor of G, and thus u1 and u2 are also adjacent in F .

Hence F ′ is a minor of F .

We now present some corollaries of Propositions 2.3.2, 2.3.4, and 2.3.5, put in context by statements

concerning the original ranking problem. Recall that G being f -list-rankable means that Ranker has a

winning strategy for the game R`(G, f). Fix ∗ ∈ {`,−,+,±}.

Corollary 2.3.6. Let G′ be a minor of a graph G, and suppose f : V (G) → N and f ′ : V (G′) → N satisfy

f ′(w) ≥ minu∈V (Gw) f(u) for all w ∈ V (G′). If Ranker wins R∗(G, f), then Ranker also wins R∗(G′, f ′).

Proof. The statement follows from applying either Proposition 2.3.2, 2.3.4, or 2.3.5, since clearly Taxer wins

R∗(Gw, f − f ′(w)) for each w ∈ V (G′) such that f(u)− f ′(w) ≤ 0 for some u ∈ V (Gw).

Corollary 2.3.6 cannot be extended to the original ranking problem, however. Indeed, let n ≥ 3 and

consider G = Pn with vertices v1, . . . , vn in order, and let G′ be the minor of G consisting of a single edge

xy. Let f(v1) = f(vn) = f ′(x) = f ′(y) = 1 and f(vi) = n for 1 < i < n. We can give G an f -ranking by

labeling v1 and vn with 1 and vi with i for 1 < i < n, but we cannot give G′ an f ′-ranking because x and y

would both have to be labeled with 1 even though they are adjacent.

Clearly a graph is f -rankable if and only if each of its components is f -rankable, and this statement also

holds for the list versions of ranking.

Corollary 2.3.7. Ranker wins R∗(G, f) if and only if Ranker wins R∗(G′, f) for each component G′ of G.

Proof. If Ranker wins R∗(G, f), then Ranker wins R∗(G′, f) for each component G′ of G, by setting f ′ = f

in Corollary 2.3.6. Now suppose Ranker wins R∗(G′, f) for each component G′ of G. If ∗ = `, then Ranker

can win R∗(G, f) since each component can be dealt with individually. If ∗ ∈ {−,+,±}, then Ranker can

win R∗(G, f) by treating each move by Taxer on G as a collection of separate moves on the games R∗(G′, f)

and playing winning strategies for each of those games.

We shall see that the following statement does not hold for the original ranking problem.
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Corollary 2.3.8. Suppose G′ is obtained from G by contracting an edge uv into a vertex w, and f(u) =

f(v) = f ′(w) + 1 while f = f ′ elsewhere. If Ranker wins R∗(G, f), then Ranker wins R∗(G′, f ′).

Proof. Apply either Proposition 2.3.2, 2.3.4, or 2.3.5, since clearly Taxer wins R∗(Gw, f − f ′(w)) if Gw

consists of an edge uv such that f(u)− f ′(w) = f(v)− f ′(w) = 1.

To see why Corollary 2.3.8 cannot be extended to the original ranking problem, let n ≥ 6 and consider

G = Pn with vertices v1, . . . , vn in order and the minor G′ of G obtained by contracting the edge vn−1vn−2

into the vertex w. Let f(vi) = f ′(vi) = n for 1 ≤ i ≤ n − 3 while f(vn−2) = f ′(vn−2) = f ′(w) = 1 and

f(vn−1) = f(vn) = 2. We can give G an f -ranking by labeling vi with i for 1 ≤ i ≤ n− 3, vn−2 and vn with

1, and vn−1 with 2, but we cannot give G′ an f ′-ranking because vn−2 and w would both have to be labeled

with 1 even though they are adjacent.

2.4 Paths

To prove that ρ±` (Pn) = dlog2(n+ 1)e = ρ(Pn), we instead prove the stronger statement that Pn is on-line

f -list-rankable if σf (V (Pn)) < 1, where σf (V ) =
∑

v∈V 2−f(v) for a nonnegative integer-valued function f

defined on a set V of vertices. Bounding σf (V (Pn)) from above makes sense for this results, since σf (V ) is

small when many tokens are available at all vertices.

Throughout this section, we will refer to the vertices of Pn as v1, . . . , vn from left to right. Recall that

R±(Pn, f) starts with each vi having f(vi) tokens, with Taxer beginning play by declaring the round to be

low or high and then taking one token from each element of a nonempty set T of vertices of Pn. If the round

is low, then Ranker responds by choosing an independent set R ⊆ T to remove from Pn and replacing each

removed vertex with an edge between its neighbors to get a path on n − |R| vertices. If the round is high,

then Ranker responds by choosing a vertex v ∈ T to delete from Pn to get two path components on a total

of n− 1 vertices.

We isolate the following argument as a lemma because it alone is enough to show that Pn is on-line f -list

low-rankable (and thus f -list-rankable) if σf (V (Pn)) < 1. Ranker’s strategy is to remove from the set of

vertices selected by Taxer a large independent set R for which σf (R) is large, so the vertices that remain

still have enough tokens for Ranker to win the game.

Lemma 2.4.1. Suppose that Ranker has a winning strategy on R±(Pm, f
′) if m < n and σf ′(V (Pm)) < 1.

If σf (V (Pn)) < 1 and Taxer declares the first round of R±(Pn, f) low, then Ranker can win.

Proof. Let B = {v2i−1 : 1 ≤ i ≤ dn/2e} and C = {v2i : 1 ≤ i ≤ bn/2c}. Let R = B ∩ T if σf (B ∩ T ) ≥
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σf (C∩T ) and R = C∩T otherwise; Ranker plays R. The set R is independent, and σf (R) ≥ σf (T−R). The

game is reduced to R±(Pn−|R|, f
′), where f ′ = f−1 on T −R and f ′ = f elsewhere. Since σf ′(V (Pn)−T ) =

σf (V (Pn)− T ), σf ′(T −R) = 2σf (T −R), and σf (R) ≥ σf (T −R), we have

σf ′(V (Pn)−R) = σf (V (Pn)) + σf (T −R)− σf (R) ≤ σf (V (Pn)) < 1,

so Ranker wins this game and thus the original, by hypothesis.

Theorem 2.4.2. Ranker wins R±(Pn, f) if σf (V (Pn)) < 1.

Proof. We use induction on n. Clearly Ranker wins R±(P1, f) when f < 1, so we assume n > 1 and that

Ranker has a winning strategy on R±(Pm, g) when m < n and σg(V (Pm)) < 1. By Lemma 2.4.1 we may

also assume Taxer declares the first round high, so Ranker must remove one vertex v from the set T of

vertices from which Taxer removes a token.

We will examine the vertices of Pn in some order vp1
, . . . , vpn

to show that Ranker can start a winning

strategy by selecting v = vpi in the first round for the least index i such that vpi ∈ T . We will order

V (Pn) so that {vp1
, . . . , vpi

} induces a path (not necessarily with the vertices in that order) for 1 ≤ i ≤ n.

We will let V <pi = {v1, . . . , vpi−1} and P<pi be the subgraph of Pn induced by V <pi , and we will let

V >pi = {vpi+1, . . . , vn} and P>pi be the subgraph of Pn induced by V >pi . For 1 ≤ i ≤ n, set gi = f on

vp1
, . . . , vpi−1

and gi = f−1 elsewhere. As we construct our ordering of V (Pn), we will require σgi(V
<pi) < 1

and σgi(V
>pi) < 1 for 1 ≤ i ≤ n.

We construct our ordering vp1 , . . . , vpn of V (Pn) inductively. Select p1 as the least index such that

σf (V <p1 ∪{vp1
}) ≥ 1/2, unless σf (V (Pn)) < 1/2, in which case set p1 = n. Since g1 ≥ f − 1 at each vertex,

we have

σg1(V <p1) ≤ 2σf (V <p1) < 1

and

σg1(V >p1) ≤ 2σf (V >p1) < 1,

as desired. Now assume that k < n and p1, . . . , pk have been found such that {vp1
, . . . , vpk

} induces a path

and such that σgi(V
<pi) < 1 and σgi(V

>pi) < 1 for 1 ≤ i ≤ k. Let Pn − {vp1 , . . . , vpk
} consist of the paths

induced by {v1, . . . , vs} and {vt, . . . , vn}, where we set s = 0 or t = n + 1 if v1 or vn is in {vp1
, . . . , vpk

},

respectively.

Claim. Ranker can choose pk+1 ∈ {s, t} − {0, n+ 1} such that σgk+1
(V <pk+1) < 1 and σgk+1

(V >pk+1) < 1.
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Choosing pk+1 = s ≥ 1 yields

σgk+1
(V <pk+1) ≤ σgk(V <pk)− 21−gk(vs) < 1,

and choosing pk+1 = t ≤ n yields

σgk+1
(V >pk+1) ≤ σgk(V >pk)− 21−gk(vt) < 1.

Thus it only remains to show that Ranker can either choose pk+1 = s ≥ 1 such that σgk+1
(V >pk+1) < 1 or

choose pk+1 = t ≤ n such that σgk+1
(V <pk+1) < 1. If t = n + 1, then s = n − k ≥ 1, and setting pk+1 = s

yields

σgk+1
(V >pk+1) = σf (V >pk+1) < σf (V (Pn)) < 1.

If s = 0, then t = k + 1 ≤ n, and setting pk+1 = t yields

σgk+1
(V <pk+1) = σf (V <pk+1) < σf (V (Pn)) < 1.

Thus we may assume s ≥ 1 and t ≤ n. Note that

s∑
i=1

21−f(vi) + 2

t−1∑
i=s+1

2−f(vi) +

n∑
i=t

21−f(vi) = 2σf (V (Pn)) < 2,

so at least one of the following holds:

t−1∑
i=s+1

2−f(vi) +

n∑
i=t

21−f(vi) < 1,

in which case Ranker can set pk+1 = s to get σgk+1
(V >pk+1) < 1, or

s∑
i=1

21−f(vi) +

t−1∑
i=s+1

2−f(vi) < 1.

in which case Ranker can set pk+1 = t to get σgk+1
(V <pk+1) < 1.

Claim. If i is the least index such that vpi
∈ T , then selecting v = vpi

in the first round is a winning move

for Ranker.

Let g = f − 1 on T and g = f elsewhere. Setting v = vpi
reduces R±(Pn, f) to separate games of

R±(P<pi , g) and R±(P>pi , g), both of which Ranker wins by our inductive hypothesis: P<pi and P>pi each
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have fewer than n vertices, and g ≥ gi since vpj
/∈ T for 1 ≤ j ≤ i− 1, yielding

σg(V <pi) ≤ σgi(V <pi) < 1

as well as

σg(V >pi) ≤ σgi(V >pi) < 1.

Naturally we ask what happens when σfV (Pn) ≥ 1. To show the sharpness of Theorem 2.4.2, we exhibit

a function f such that σf (V (Pn)) = 1 but Pn is not even f -rankable, much less on-line f -list rankable.

Recall that the ranking number ρ(Pn) of the path Pn is dlog2(n+ 1)e, as stated in [2].

Proposition 2.4.3. For n ≥ 1, there is a function f such that σf (V (Pn)) = 1 and Pn is not f -rankable.

Proof. Fix n, and set k = blog2 nc. Define f(vi) = k if n − 2k < i ≤ 2k and f(vi) = k + 1 otherwise. If

n = 2k, then Pn is not f -rankable because ρ(Pn) = k + 1. If n > 2k, then only one vertex vi can be labeled

k+ 1, and i must satisfy 1 ≤ i ≤ n− 2k or 2k < i ≤ n. Thus one component of Pn − vi is a path on at least

2k vertices which must be given a k-ranking, which is impossible since ρ(Pm) = dlog2(m+ 1)e (as stated in

[2]).

From Proposition 2.4.3 one may hope that the converse of Theorem 2.4.2 holds, but unfortunately it

does not.

Proposition 2.4.4. For n ≥ 4, there is a function f such that σf (V (Pn)) = 1 and Ranker wins R±(Pn, f).

Proof. Let f(v1) = 2, f(v2) = 3, f(v3) = 1, f(vi) = i for 4 ≤ i ≤ n − 1, and f(vn) = n − 1. Note

that σf (V (Pn)) = 1. Suppose the first round is low. If n ≥ 5 and Taxer removes tokens from just vn−1

and vn, then Ranker can remove vn to reduce the game to R±(Pn−1, f
′), where f ′(vn−1) = n − 2 and

f ′ = f elsewhere, so we may assume n = 4 or T 6= {vn−1, vn}. If Ranker removes an independent set

R ⊆ T that maximizes σf (R), then σf (R) > σf (T − R), and the game will reduce to R±(Pn−|R|, g) where

σg(V (Pn−|R|)) < 1. Hence Ranker wins by Theorem 2.4.2.

Now suppose the first round is high. We continue use of the method and notation from the proof of

Theorem 2.4.2, visiting the vertices of Pn in some order vp1
, . . . , vpn

. Let p1 = 3, p2 = 2, p3 = 1, and

pi = i for 4 ≤ i ≤ n. For 1 ≤ i ≤ n, if i is the least index such that vpi ∈ T , then σgi(V
<pi) < 1 and

σgi(V
>pi) < 1. By Theorem 2.4.2, Ranker can win R±(Pn, f) by removing vpi

in the first round and then

winning R±(P<pi , gi) and R±(P>pi , gi).
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Recall Lemma 2.2.5, pertaining to a graph G with vertices v1, . . . , vn. Let G′ be the subgraph of G

induced by {v1, . . . , vk}. Suppose that for every component C of G − V (G′), the set of vertices in G′

adjacent to vertices in C is a (possibly empty) clique. Let f : V (G)→ N satisfy f(vi) ≥ i for k < i ≤ n. If

Ranker wins R±(G′, f), then Ranker also wins R±(G, f).

Corollary 2.4.5. For n ≥ 5, there is a function f such that σf (V (Pn)) > 1 and Ranker wins R±(Pn, f).

Proof. By Proposition 2.4.4, if f(v1) = 2, f(v2) = 3, f(v3) = 1, and f(v4) = 3, then Ranker wins R±(P4, f).

Let f(vi) = i for 5 ≤ i ≤ n, so σf (V (Pn)) = 17/16− 2−n. By Lemma 2.2.5, Ranker wins R±(Pn, f).

The natural remaining question concerns what happens when σf (V (Pn)) is large.

Conjecture 2.4.6. There exists a real number α such that for any positive integer n, if σf (V (Pn)) > α,

then Taxer wins R±(Pn, f).

2.5 Cycles

We now turn our attention to cycles, where the results are proved using many of the techniques and results

of Section 2.4. To prove that ρ±` (Cn) = 1 + dlog2 ne = ρ(Cn), we once again prove a stronger statement,

though we begin with a technical lemma.

Let X be a set of vertices and f be a function assigning a positive integer to each vertex in X, with the

elements x1, . . . , xn of X named so that f(x1) ≤ · · · ≤ f(xn). Set k = n if f(x1) < · · · < f(xn) and otherwise

let k satisfy f(x1) < · · · < f(xk) = f(xk+1). For X ′ = {xi ∈ X : 1 ≤ i < k} and X ′′ = {xi ∈ X : k < i ≤ n},

define τf (X) = σf (X ′) + 2σf (X ′′) (recalling that σf (V ) =
∑

v∈V 2−f(v)).

Lemma 2.5.1. If τf (V (Cn)) < 1, then Ranker wins R±(Cn, f) whenever Taxer declares the first round

high.

Proof. Recall that R±(Cn, f) starts with each v ∈ V (Cn) having f(v) tokens. If Taxer begins play by

declaring the first round high, then Taxer takes one token from each element of a nonempty set T ⊆ V (Cn),

and Ranker responds by choosing some u ∈ T to delete from Cn to get a path on n − 1 vertices. Set

Y = V (Cn) − T and Z = T − {u}, and define τ ′ = σf (Y ) + 2σf (Z). Thus after the first round the game

is reduced to R±(Pn−1, g), where V (Pn−1) = V (Cn) − {u} and g(v) = f(v) for v ∈ Y and g(v) = f(v) − 1

for v ∈ Z. Note that σg(V (Pn−1)) = τ ′, so by Theorem 2.4.2 Ranker wins R±(Cn, f) if Ranker can always

choose some u ∈ T so that τ ′ < 1.

Letting V (Cn) = {v1 . . . , vn}, named so that f(v1) ≤ · · · ≤ f(vn), we note that if f(vi) < f(vi+1) for

1 ≤ i < n, then Ranker wins R±(Cn, f) by Lemma 2.2.5. Thus we may assume f is not injective and let k
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be the least index such that f(vk) = f(vk+1). We complete the proof by showing that the minimum value

Ranker can make τ ′ (given Taxer’s choice of T ) is maximized when T = {vk, . . . , vn}. For that choice of T ,

Ranker can set u = vk to get τ ′ = τf (V (Cn)) < 1, so for any other T Ranker can choose some u ∈ T so that

τ ′ < 1.

Claim. The minimum value Ranker can make τ ′ (given Taxer’s choice of T ) is maximized when T =

{vk, . . . , vn}.

Suppose Taxer has chosen T to maximize the minimum value Ranker is able to make τ ′ through the

selection of u. For any choice of T , Ranker minimizes τ ′ by selecting u as the vertex in T having the

fewest tokens. Thus we may assume Taxer selects T = {vj , . . . , vn} for some j satisfying either j = 1 or

f(vj−1) < f(vj), since elements of Z contribute twice to τ ′. Given this choice of T , Ranker will select u = vj

to get τ ′ = σf (Y ) + 2σf (Z) for Y = {v1, . . . , vj−1} and Z = {vj+1, . . . , vn}. We prove the claim by showing

Taxer maximizes τ ′ by setting j = k.

We first show that j ≤ k by showing that if f(vi) = f(vi+1) < f(vj), then Taxer can increase τ ′ by

21−f(vj) by adding vi and vi+1 to T . Indeed, Ranker would choose u = vi, with τ ′ losing 21−f(vi) by removing

vi and vi+1 from Y but gaining 21−f(vi) + 21−f(vj) by adding vi+1 and vj to Z.

We now show that if j < k, then Taxer would not decrease τ ′ by removing vj , . . . , vk−1 from T . Indeed,

τ ′ would gain 2−f(vj) by adding vj to Y and only lose 21−f(vk) +
∑k−1

d=j+1 2−f(vd) by removing vk from Z

and switching vj+1, . . . , vk−1 from Z to Y , and we have

21−f(vk) +

k−1∑
d=j+1

2−f(vd) ≤ 21−f(vj)−k+j +

k−j−1∑
d=1

2−f(vj)−d

= 2−f(vj)(2−k+j +

k−j∑
d=1

2−d)

= 2−f(vj)

since f(vd) ≥ f(vj) + d− j for j ≤ d ≤ k.

Corollary 2.5.2. If σf (V (Cn)) < 1/2 + 2−dlog2 ne, then Ranker wins R±(Cn, f) whenever Taxer declares

the first round high.

Proof. By Lemma 2.5.1 it suffices to show τf (V (Cn)) < 1. Assume without loss of generality that f(v1) <

· · · < f(vk) = f(vk+1) ≤ · · · ≤ f(vn). Set Y = {v1, . . . , vk−1} and Z = {vk+1, . . . , vn}. If f(vk) ≤ dlog2 ne,

then

τf (V (Cn)) ≤ 2σf (V (Cn))− 21−f(vk) < 1 + 21−dlog2 ne − 21−dlog2 ne = 1.
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If f(vk) ≥ 1 + dlog2 ne, then we have

τf (V (Cn)) = σf (Y ) + 2σf (Z)

= σf (V (Cn))− 2−f(vk) + σf (Z)

< 1/2 + 2−dlog2 ne − 2−f(vk) + (n− 1)2−f(vk)

= 1/2 + 2−dlog2 ne + (n− 2)2−f(vk)

≤ 1/2 + 2−dlog2 ne + (n− 2)2−1−dlog2 ne

= 1/2 + n2−1−dlog2 ne

≤ 1.

Theorem 2.5.3. If σf (V (Cn)) < 1/2 + 2−dlog2 ne, then Ranker wins R±(Cn, f).

Proof. By Corollary 2.5.2 it suffices to show Ranker wins whenever Taxer declares the first round low, which

we do using induction on n. Let V (Cn) = {v1, . . . , vn} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n}, where subscripts

are taken modulo n. Note that C3 is on-line f -list rankable when σf (V (C3)) < 3/4: if f(v1) ≤ f(v2) ≤ f(v3)

and σf (V (C3)) < 3/4, then f(vi) ≥ i for each i, so by Lemma 2.2.5 Ranker can win R±(C3, f). Now suppose

Ranker wins R±(Cm, g) for 3 ≤ m < n and σg(V (Cm)) < 1/2 + 2−dlog2 me.

Recall that R±(Cn, f) starts with each vi having f(vi) tokens. If Taxer begins play by declaring the first

round low, then Taxer takes one token from each element of a nonempty set T ⊆ V (Cn), and Ranker responds

by choosing an independent set R ⊆ T to remove from Cn, replacing each removed vertex with an edge joining

its neighbors to get a cycle on n−|R| vertices (or possibly an edge if n ≤ 4). Let B = {v2i−1 : 1 ≤ i ≤ dn/2e}

and C = {v2i : 1 ≤ i ≤ bn/2c}.

Claim. If T = V (Cn) and n is odd, then Ranker can win.

Without loss of generality, index vertices so that f(vn) ≥ f(vi) for 1 ≤ i ≤ n. Hence f(vn) ≥ 1+dlog2 ne,

since otherwise

σf (T ) ≥ (n− 1)2−dlog2 ne + 2−dlog2 ne ≥ 1/2 + 2−dlog2 ne.

Set R = B−{vn} if σf (B−{vn}) ≥ σf (C) and R = C otherwise, so R is independent and the game reduces

to R±(C(n+1)/2, f − 1), where V (C(n+1)/2) = T − R and 2σf (R) ≥ σf (T ) − 2−f(vn). By the induction
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hypothesis Ranker wins, since

σf−1(T −R) = 2σf (T )− 2σf (R)

≤ σf (T ) + 2−f(vn)

< 1/2 + 2−dlog2 ne + 2−1−dlog2 ne

< 1/2 + 21−dlog2 ne

= 1/2 + 2−dlog2((n+1)/2)e.

Claim. If T 6= V (Cn) or n is even, then Ranker can win.

Without loss of generality assume vn /∈ T if n is odd (unlike in the proof of the previous claim, we

are no longer assuming f(vn) ≥ f(vi) for 1 ≤ i ≤ n). Set R = B ∩ T if σf (B ∩ T ) ≥ σf (C ∩ T ) and

R = C ∩ T otherwise, so R is independent and σf (R) ≥ σf (T − R). The game reduces to R±(Cn−|R|, g),

where V (Cn−|R|) = V (Cn)−R and g(v) = f(v)−|T ∩{v}|. By the induction hypothesis Ranker wins, since

σg(V (Cn)−R) = σf (V (Cn)) + σf (T −R)− σf (R)

≤ σf (V (Cn))

< 1/2 + 2−dlog2 ne

< 1/2 + 2−dlog2(n−|R|)e.

Once again we want to explore the boundary case. Note that showing G is not f -list-rankable is stronger

than showing that Ranker loses any of the on-line list ranking games. Also recall Corollary 2.3.8, pertaining

to a minor G′ obtained from a graph G by contracting an edge uv into a vertex w. If f(u) = f(v) = f ′(w)+1

while f = f ′ elsewhere, and G is f -list-rankable, then G′ is f ′-list-rankable.

Proposition 2.5.4. For n ≥ 3, there is a function f such that τf (V (Cn)) = 1 and σf (V (Cn)) = 1/2 +

2−dlog2 ne but Cn is not f -list-rankable.

Proof. Note that if f(v) = k + 1 for each v ∈ V (C2k+1), then τf (V (C2k+1)) = 1 and σf (V (C2k+1)) =

1/2 + 2−dlog2(2
k+1)e, but C2k+1 is not even f -rankable. By Corollary 2.3.8, if Cn is not f -list-rankable and

Cn+1 has the same vertices as Cn except for replacing some vertex w maximizing f on V (Cn) with adjacent

vertices u and v in Cn+1, then setting f(u) = f(v) = f(w)+1 precludes Cn+1 from being f -list-rankable. By

this construction τf (V (Cn)) = τf (V (Cn+1)) and σf (V (Cn)) = σf (V (Cn+1)), so the proposition follows.
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Proposition 2.5.5. For n ≥ 6, there is a function f such that τf (V (Cn)) = 1 and Cn is f -list rankable.

Proof. Let V (Cn) = {v1, . . . , vn} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n}, with f(v1) = 1, f(v2) = 3, f(v3) = 4,

f(v4) = 2, f(vi) = i for 5 ≤ i < n, and f(vn) = n−1. Let L be an f -list assignment, and over
⋃n

i=1 L(vi) let

m be the largest value, m′ be the second largest value, b be the smallest value, and b′ be the second smallest

value found. We wish to find a ranking of Cn such that each vi is labeled with ai ∈ L(vi).

Case 1. L(v1) ∩ {m,m′} 6= ∅.

We can create an L-ranking of Cn by choosing a1 ∈ L(v1)∩{m,m′} and then ranking the path P induced

by {v2, . . . , vn} so that ai ∈ L(vi)−{a1} for 2 ≤ i ≤ n. It was shown in Proposition 2.4.4 that P is (f−1)-list

rankable, and our ranking of P labels no vertex with a1 and at most one vertex with a label greater than

a1.

Case 2. L(vn) 6=
⋃n−1

i=1 L(vi).

Let j be the least index such that L(vj)−L(vn) 6= ∅. We create an L-ranking by choosing labels ai ∈ L(vi)

in the order i = 1, 4, 2, 3, 5, . . . , n such that each ai is distinct from its predecessors and aj /∈ L(Vn). We can

do this for 1 ≤ i < n since by the time ai is to be chosen only f(vi)− 1 previous labels will have been used,

and we can choose an ∈ L(vn)− {a1, . . . , an−1} since |L(vn)| = n− 1 and aj /∈ L(vn).

Case 3. b ∈
⋃n−2

i=1 L(vi).

We can choose a1, . . . , an−2 from L(v1), . . . , L(vn−2) to be distinct and contain b, leaving some a ∈

L(vn−1) − {a1, . . . , an−2} with a > b. We may assume a ∈ L(vn) (otherwise Case 2 applies), so we can

complete an L-ranking by either setting an−1 = a and an = b if a1 6= b or setting an−1 = b and an = a if

an−2 6= b.

Case 4. L(v1) = {b′}.

We may assume b /∈ L(v2) (otherwise Case 3 applies), so finding an L-ranking of Cn reduces to finding an

L′-ranking of the cycle Cn−1 created by deleting v1 and adding the edge vnv2, where L′(vi) = L(vi)−{b′} for

i ∈ {2, n−1, n} and L′(vi) = L(vi) for 3 ≤ i ≤ n−2. Indeed, we would have a2 > b′ (since L′(v2)∩{b, b′} = ∅)

and max{an−1, an} > b′ (since b′ /∈ L′(vn−1) ∪ L′(vn) and an−1 6= an), so the L′-ranking of Cn−1 could be

turned into an L-ranking of Cn by setting a1 = b′. If f ′(vi) = f(vi)−1 for i ∈ {2, n−1, n} and f ′(vi) = f(vi)
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for 3 ≤ i ≤ n− 2, then |L′(vi)| ≥ f ′(vi) for each i, and we have

τf ′(V (Cn−1)) = 2(1/4 + (

n−2∑
i=4

2−i) + 22−n + 22−n)

= 2(3/8 + 22−n)

≤ 2(3/8 + 1/16)

= 7/8

< 1.

By Lemma 2.5.1, Cn−1 is f ′-list rankable, giving us an L′-ranking of Cn−1 and thus an L-ranking of Cn.

Case 5. n = 6.

Without loss of generality assume L(v5) = L(v6) = [5] (since f(v5) = f(v6) = 5 and Case 2 applies if

L(v6) 6=
⋃5

i=1 L(vi)), so b = 1, b′ = 2, m′ = 4, and m = 5. Since Case 3 applies if 1 ∈
⋃4

i=1 L(vi), we may

assume that L(v1) = {3} (Case 1 applies if L(v1) ∩ {4, 5} 6= ∅, and Case 4 applies if L(v1) = {2}), L(v2)

contains 2 or 3 as well as 4 or 5, L(v3) = {2, 3, 4, 5}, and either L(v4) = {4, 5} or L(v4) contains 2 or 3. If

2 ∈ L(v4), let a1 = 3, a2 = 4 (or a2 = 5, if 4 /∈ L(v2)), a3 = 3, a4 = 2, a5 = 5 (or a5 = 4, if 4 /∈ L(v2)),

and a6 = 1. If 3 ∈ L(v4), let a1 = 3, a2 = 4 (or a2 = 5 if 4 /∈ L(v2)), a3 = 2, a4 = 3, a5 = 5 (or a5 = 4, if

4 /∈ L(v2)), and a6 = 1. If L(v4) = {4, 5}, let a1 = 3, a2 = 4 (or a2 = 5, if 4 /∈ L(v2)), a3 = 2, a4 = 5 (or

a4 = 4, if 4 /∈ L(v2)), a5 = 2, and a6 = 1.

Case 6. n ≥ 7.

We perform induction on n, using Case 5 as the base case. Thus we assume the cycle Cn−1 created by

deleting vn−2 and adding the edge vn−3vn−1 is f ′-list rankable, where f ′(vi) = f(vi) − 1 for i ∈ {n − 1, n}

and f ′ = f elsewhere. We may also assume b ∈ (L(vn−1) ∩ L(vn))− (L(v1) ∪ L(vn−2)) and b′ ∈ (L(vn−1) ∩

L(vn))−L(v1) (otherwise Case 3 or 4 applies). If a1, . . . , an−2 can be chosen from L(v1), . . . , L(vn−2) to be

distinct such that an−2 6= b′, then we can complete an L-ranking of Cn by setting an−1 = b′ and an = b.

If a1, . . . , an−2 cannot be chosen from L(v1), . . . , L(vn−2) to be distinct such that an−2 6= b′, then the only

lists containing b′ are L(vn−2), L(vn−1), and L(vn). By our inductive hypothesis, if L′(vi) = L(vi) for

1 ≤ i ≤ n − 3 and L′(vi) = L(vi) − {b′} for i ∈ {n − 1, n}, then the cycle Cn−1 created by deleting vn−2

and adding the edge vn−3vn−1 has an L′-ranking, which we can extend to an L-ranking of Cn by setting

an−2 = b′.

Corollary 2.5.6. For n ≥ 7, there is a function f such that τf (V (Cn)) > 1 and Cn is f -list rankable.
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Proof. By the above proposition, if f = (1, 3, 4, 2, 5, 5) then C6 is f -list rankable. Let f(vi) = i for 7 ≤ i ≤ n;

then τf (V (Cn)) = 33/32− 21−n and Cn is f -list rankable by Lemma 2.2.5.

Conjecture 2.4.5 says that if σf (V (Pn)) is large enough, then Pn is not f -list rankable. Since deleting an

edge of Cn leaves a copy of Pn and τf (V (Cn)) < 2σf (V (Cn)), Conjecture 2.4.5 would also imply that Cn is

not f -list rankable for large enough τf (V (Cn)) or σf (V (Cn)).

2.6 Trees With Many Leaves

In this section, we prove that ρ`(T ) = q if T is a tree having p internal vertices and q leaves, where

q ≥ 2p+2 − 2p− 4. Since Proposition 2.1.4 implies that ρ`(T ) ≥ q for any tree T with q leaves, we need only

prove the upper bound. We consider separately trees with two or fewer internal vertices. Recall that a star

is a tree having at most one internal vertex.

Proposition 2.6.1. If S is a star with q leaves, then ρ+` (S) = q.

Proof. We use induction on q to show Ranker has a winning strategy for the game R+(S, f), where f = q

everywhere. The statement is obvious if S has at most two vertices, and it follows from Theorem 2.4.2 if

S has three vertices. Thus we may assume that q ≥ 3 and that Ranker wins for stars having fewer than q

leaves.

If Taxer takes a token from the internal vertex in the first round, let Ranker respond by removing it; then

q isolated vertices remain, each with at least q−1 tokens, so Ranker can win the game. If Taxer takes tokens

from only leaves in the first round, then let Ranker respond by removing a leaf, leaving a star with q − 1

leaves and at least q − 1 tokens on each vertex. By the inductive hypothesis Ranker can win the game.

A double star is a tree having exactly two internal vertices.

Proposition 2.6.2. If T is a double star with q leaves (q ≥ 3), then ρ+` (T ) = q.

Proof. We show that Ranker has a winning strategy for the game R+(T, f), where f = q everywhere. Let

the (adjacent) internal vertices of T be x and y, with x adjacent to leaves x1, . . . , xm and y adjacent to

leaves y1, . . . , yn (so q = m + n ≥ 3). We may assume m ≤ n, so by hypothesis n ≥ 2. If Taxer selects an

internal vertex in the first round, then let Ranker respond by removing an internal vertex, leaving behind

isolated vertices and a star with at most q − 1 leaves. Each remaining vertex still has at least q − 1 tokens,

so by Proposition 2.6.1 Ranker can win the game.

Thus we may assume that Taxer selects only leaves in the first round, with Ranker responding by removing

a selected leaf. We use induction on q to show that Ranker has a winning strategy. If q = 3, then m = 1
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and n = 2. If Ranker removes y1 or y2, then a path on four vertices remains, with the internal vertices

having three tokens each and the leaves having at least two tokens each; by Theorem 2.4.2 Ranker can win

the game. If Taxer only selects x1 and Ranker removes x1, then a star with three leaves remains, with each

vertex having three tokens; by Proposition 2.6.1 Ranker can win this game.

Now assume q ≥ 4 and Ranker wins for trees having two internal vertices and between three and q − 1

leaves. If Ranker removes some yi, then a tree with q− 1 leaves and two internal vertices remains, with each

vertex having at least q − 1 tokens; by the inductive hypothesis Ranker can win this game. If Taxer only

selects leaves adjacent to x, then Ranker will remove some xi, leaving behind either a tree with two internal

vertices and q − 1 leaves, with each vertex having at least q − 1 tokens, or a star with q leaves, with each

vertex having q tokens. Either way Ranker can win this game.

Theorem 2.6.3. For any tree T having p internal vertices and q leaves, if q ≥ 2p+2−2p−4, then ρ`(T ) = q.

Proof. If p < min{3, q}, then ρ`(T ) ≤ ρ+` (T ) = q by Propositions 2.6.1 and 2.6.2, so we may assume p ≥ 3.

If T is a tree with p internal vertices and q leaves, with q ≥ 2p+2 − 2p− 4, then T has a vertex of degree at

least 3. For an internal vertex u, if u is a vertex of degree at least 3, or is adjacent to one, or is located on a

path whose endpoints each have degree at least 3 in T , let Tu be a component of T − u containing the most

leaves of T . If u is any other internal vertex, let Tu = Tw, where w is the unique vertex nearest to u that

has degree 2 and is adjacent to a vertex of degree at least 3 (in this case w 6= u).

For each internal vertex u, say Tu has pu internal vertices and qu leaves, q′u of which are also leaves of

T . Clearly pu < p and q′u ≤ qu < q. Let v be an internal vertex such that q′v is smallest. For any internal

vertex u besides v, we have q′u ≥ q/2 since either q′v ≥ q/2, in which case q′u ≥ q/2 by the minimality of q′v,

or q′v < q/2, in which case any subtree of T obtained by deleting from T a component of T − v has more

than q/2 leaves of T . Thus v has degree at least 3, and Tu contains the subtree of T obtained by deleting

the component of T − v containing u, giving Tu more than q/2 leaves of T .

Let L be a q-uniform list assignment on T , and for any internal vertex u let mu denote the largest element

of L(u). Call an internal vertex u special if q′u ≥ q/2 (that is, if u 6= v or u = v and q′v ≥ q/2) and there

are vertices u1, . . . , up that are leaves of both T and Tu and satisfy the following properties: each internal

vertex in Tu has at least two neighbors in Tu that are not one of these leaves, and from each L(ui) we can

select some ei such that e1 < · · · < ep < mu. We classify L by whether L admits a special vertex, and in

each case we show how to give T an L-ranking.

Case 1. L admits no special vertex.

If q′v < q/2 and mv is the largest label in any list, label v with it; since no component of T − v can have
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q/2 + p− 1 vertices, and q/2 + p− 1 ≤ q− 1, a ranking can be completed by deleting mv from the list of any

unlabeled vertex, and then for each component of T − v giving distinct labels to each vertex. Now assume

q′v ≥ q/2 or mv is not the largest label in any list. Give each leaf a separate label (which is possible since

there are q leaves and each vertex receives a list of size q), making sure to give some leaf a label larger than

mv if possible.

Since for each internal vertex u besides v, Tu contains fewer than p internal vertices of T and at least

q/2 leaves of T , we can fix a set Su of at least q/2− p+ 1 leaves of both T and Tu such that each internal

vertex in Tu has at least two neighbors in Tu that are not in Su (to get Su, delete from the set of leaves in

both T and Tu one leaf adjacent to each of the internal vertices of Tu adjacent to a leaf of T in Tu, of which

there are at most p− 1, and delete an additional leaf if Tu is a star).

For each internal vertex u besides v, L(u) contains at most p of the labels used on Su, since otherwise

u would be a special vertex (with u1, . . . , up being the elements of Su receiving the smallest labels). Then

L(u) contains at most q − ((q/2 − p + 1) − p), or q/2 + 2p − 1, of the labels used on the leaves of T , so

deleting from each L(u) the labels used on the leaves of T yields a list of size at least q − (q/2 + 2p − 1),

or q/2 − 2p + 1, which is greater than p for p ≥ 3. If q′v ≥ q/2, then the same holds for L(v), and we can

complete a ranking by giving distinct labels to each of the p internal vertices.

If q′v < q/2, then by hypothesis mv is not the largest label in any list. In this case the largest label must

be in the list of some leaf (or else the internal vertex u containing that label would be a special vertex, with

u1, . . . , up being any p elements of Su), and we assigned that label to such a leaf. Thus we can complete a

ranking by labeling v distinctly from the leaves (possible since |L(v)| = q and one of the q leaves was given

a label not in L(v)) and then labeling the remaining internal vertices distinctly.

Case 2. L admits a special vertex u.

We use induction on p; assume p ≥ 3. If u has degree 2 and is not adjacent to any vertex of degree at

least 3, and some component of T − u is a path, then let w be the vertex nearest to u that has degree 2 and

is adjacent to a vertex of degree at least 3, and without loss of generality assume no vertex between u and

w is special (if such a special vertex existed then we could just use the closest one to w instead of using u).

Label u with mu and each ui with ei, so by the positioning of u and the size of its label, no label given to

a vertex separated from Tu by u can cause a conflict with the label of any ui. Let A be the set of vertices

separated from Tu by u, and let A′ be the (possibly empty) set of vertices strictly between u and Tu; see

Figure 2.3 to see a possibility for T if u is a special vertex and A′ 6= ∅.

We complete the proof via a sequence of three claims that show a ranking of T can be completed in

the following way: first label the rest of Tu without using any of the previously used labels, then label the
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Figure 2.3: A possibility for T .

vertices of A without using mu or any labels larger than mu that were used on Tu (these labels cannot come

into conflict with any labels given to Tu since they are separated from each other by the label mu given to

u), and finally label any possible vertices in A′ with labels unused on the rest of T .

Claim. We can finish ranking Tu without using the labels mu, e1, . . . , ep.

If we delete mu, e1, . . . , ep from the list of each of the pu + qu − p unlabeled vertices in Tu, then each

such list must still have size at least q − p− 1, and thus we can finish ranking Tu if the subtree induced by

its unlabeled vertices is (q − p− 1)-list rankable (since no vertex already labeled could be part of a path in

Tu between vertices with the same label, once the remaining vertices are labeled from their truncated lists).

By our inductive hypothesis this subtree is in fact (q − p− 1)-list rankable, since it has pu internal vertices

and qu − p leaves, with pu ≤ p− 1 and

qu − p ≥ q/2− p ≥ (2p+2 − 2p− 4)/2− p = 2p+1 − 2p− 2 = 2(p−1)+2 − 2(p− 1)− 4.

Claim. We can rank A without using mu or any labels larger than mu that were used on Tu.

Let b denote the minimum size of a list assigned to a vertex in A after deleting mu as well as any labels

larger than mu that were used on Tu. We prove the claim by showing |A| ≤ b, since then a ranking of the

vertices of A can be completed trivially by giving them distinct labels from their truncated lists (these labels

cannot come into conflict with any labels given to Tu since they are separated from each other by the label

mu given to u). We have |A| = p+ q − pu − qu − |A′| − 1, since T has p+ q vertices and A does not include

the pu + qu vertices of Tu, nor the vertices of A′, nor u. We also have b ≥ q− (pu + qu−p+ 1), since each list

assigned to an unlabeled vertex started out with q elements, and the only ones that could have been deleted

were mu as well as any of the labels given to Tu that exceeded mu, of which there were at most pu + qu− p.

Thus |A| ≤ b− |A′|.
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Claim. We can rank A′ using labels previously unused on the rest of T .

Let b′ denote the minimum size of a list assigned to a vertex in A′ after deleting any labels used on the

rest of T . We prove the claim by showing |A′| ≤ b′, since then a ranking of T can be completed trivially by

giving each of the vertices in A′ distinct and previously unused labels. Since for each z ∈ A′, Tz contains

fewer than p internal vertices of T and exactly q − 1 leaves of T , we can fix a set Sz of at least q − p leaves

of both T and Tz such that each internal vertex in Tz has at least two neighbors in Tz that are not in Sz (to

get Sz, delete from the set of leaves in both T and Tz one leaf adjacent to each of the internal vertices of Tz

adjacent to a leaf of T in Tz, and delete an additional leaf if Tz is a star). For each z ∈ A′, L(z) contains

at most p of the labels used on Sz, since otherwise z would be a special vertex (with z1, . . . , zp being the

elements of Sz receiving the smallest labels). Then L(z) contains at most 2p − 1 of the labels used on the

leaves of Tz, so deleting from each L(z) the labels used on the leaves of Tz or on any of the other p vertices

of T besides z (i.e., the leaf of T not in Tz along with any of the p− 1 internal vertices of T besides z) yields

a list of size at least q − 3p + 1. Thus we can finish ranking T because |A′| ≤ p − 2 ≤ q − 3p + 1 ≤ b′ for

p ≥ 3.

We conclude by noting that no statement similar to Theorem 2.6.3 can be applied to graphs in general.

Proposition 2.6.4. For p ≥ 3 and q ≥ 0, there is a graph G with p internal vertices and q leaves such that

ρ`(G) > q.

Proof. Let G be obtained by connecting q leaves to Kp, the complete graph on p vertices, such that at least

one internal vertex v is not adjacent to any leaf. Then G contains a spanning subtree of which v is a leaf;

this tree has q + 1 leaves, so ρ`(G) > q by Proposition 2.1.4.
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Chapter 3

On-Line Ranking of Trees

3.1 Introduction

In this chapter, we deal with the on-line variation of vertex ranking, introduced by Tuza and Voigt in 1995

[46]. Recall that a k-ranking of a graph G is a labeling of its vertices from [k] such that any path between

distinct vertices whose endpoints have the same label contains a larger label. The ranking number of G,

denoted by ρ(G), is the minimum k such that G has a k-ranking. See Section 1.1 for more details on ranking.

We define the on-line vertex ranking problem as a game between two players, Presenter and Ranker. A

class G of unlabeled graphs is shown to both players at the beginning of the game. In round 1, Presenter

presents to Ranker the graph G1 consisting of a single vertex v1, to which Ranker assigns a positive integer

label f(v1). For i > 1, if Gi−1 is not a proper induced subgraph of some element of G, then the game is

over. Otherwise, in round i Presenter extends Gi−1 to an i-vertex induced subgraph Gi of a graph G ∈ G

by presenting an unlabeled vertex vi (without specifying how Gi fits as an induced subgraph of a graph in

G). Ranker must then extend the ranking f of Gi−1 to a ranking of Gi by assigning f(vi).

Presenter seeks to maximize the largest label assigned during the game, while Ranker seeks to minimize

it. The on-line ranking number of G, denoted here by ρ̊(G) (though in the literature often as χ∗r(G)), is the

minimum over all Ranker strategies of the maximum label that Presenter can force that strategy to use. If

Presenter can guarantee that arbitrarily high labels are used, then ρ̊(G) = ∞. If G is the class of induced

subgraphs of a graph G, then we define ρ̊(G) = ρ̊(G).

Note that ρ̊(G′) ≤ ρ̊(G) if every graph in G′ is an induced subgraph of a graph in G, since any strategy

for Ranker on G includes a strategy on G′. Also ρ(G) ≤ ρ̊(G) trivially.

Several papers have been written about the on-line ranking number of graphs, including [4], [5], [6], [43],

and [42]; some of the results from these papers will be mentioned later. On-line vertex ranking has also

been looked at from the perspective of seeking a fast algorithm for determining the smallest label Ranker is

allowed to use on a given turn; see [12], [20], [27], and [28]. Our results are of the former variety.

A minimal ranking of G is a ranking f with the property that decreasing f on any nonempty set of vertices

40



produces a non-ranking. Let ψ(G) be the largest label used in any minimal ranking of G. Isaak, Jamison,

and Narayan [21] showed that the minimal rankings of G are precisely the rankings produced when Ranker

plays greedily (i.e., labeling each newly presented vertex with the smallest label that preserves the ranking

property), so ρ̊(G) ≤ ψ(G). For the n-vertex path Pn, this yields ρ̊(Pn) ≤ ψ(Pn) = blog2(n+ 1)c+ blog2(n+

1 − 2blog2 nc−1)c, a slight improvement over the upper bound ρ̊(Pn) ≤ 2blog2 nc + 1 given by Bruoth and

Horn̆ák [5]. Bruoth and Horn̆ák [6] did give the best known lower bound for paths ρ̊(Pn) > 1.619 log2 n− 1.

As mentioned in Section 1.1, every vertex ranking of G is also a conflict-free coloring of G with respect

to paths as well as a parity coloring of G, so an on-line ranking algorithm for G also provides G with a

conflict-free coloring with respect to paths and a parity coloring when its vertices are presented on-line.

These problems have been studied in [1], [10], and [11].

In Sections 3.2 and 3.3, we give algorithmic bounds on the on-line ranking number of Tk,d, defined for

k ≥ 2 and d ≥ 0 to be the largest tree having maximum degree k and diameter d, i.e., the tree all of whose

internal vertices have degree k and all of whose leaves have eccentricity d. Since the family of trees with

maximum degree at most k and diameter at most d is precisely the set of connected induced subgraphs of

Tk,d, our upper bound on ρ̊(Tk,d) also serves as an upper bound for the on-line ranking number of this class

of graphs.

Theorem 3.1.1. There exist positive constants c and c′ such that if d ≥ 0 and k ≥ 3, then c(k − 1)bd/4c ≤

ρ̊(Tk,d) ≤ c′(k − 1)bd/3c.

We find it informative to compare the on-line ranking number of Tk,d to the regular ranking number of

Tk,d.

Proposition 3.1.2. For k ≥ 3, we have ρ(Tk,d) = dd/2e+ 1.

Proof. The construction for the upper bound assigns label i + 1 to vertices at distance i from the nearest

leaf, with the exception of labeling one of the vertices in the central edge of Tk,d with (d+ 3)/2 if d is odd.

For the lower bound, note that choosing the unique highest ranked vertex v of a tree T reduces the ranking

problem to individually ranking the components of T − v. Thus if there exists u ∈ V (T ) such that for every

w ∈ V (T ) each component of T − u is isomorphic to a subtree of some component of T − w, then T can be

optimally ranked by optimally ranking each component of T − u and labeling u one greater than the largest

label used on those components. Letting Fi denote the subforest of Tk,d induced by the set of vertices within

distance i of a leaf, we conclude by induction on i that for 1 ≤ i ≤ dd/2e, each component of Fi is optimally

ranked by the upper bound construction.

Setting n = |V (Tk,d)| and using Theorem 3.1.1 and Proposition 3.1.2, we see that ρ̊(Tk,d) = Ω(
√
n) while
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ρ(Tk,d) = O(log n). Thus ρ̊ is exponentially larger than ρ on these trees. Theorem 3.1.4 shows that this

large separation between ρ and ρ̊ does not hold for all trees. Nevertheless we conjecture a general upper

bound like that of Theorem 3.1.1.

Conjecture 3.1.3. There exist universal constants a and b satisfying 0 < a < 1 < b such that ρ̊(T ) ≤ b(kn)a

for any n-vertex tree T with maximum degree k.

In Section 3.4, we consider the on-line ranking number of trees with few internal vertices. Let T p,q be

the family of trees having at most p internal vertices and diameter at most q. The main result of that section

is an algorithmic upper bound on ρ̊(T p,q) for any p and q.

Theorem 3.1.4. ρ̊(T p,q) ≤ p+ q + 1.

Since q ≤ p+ 1, this establishes ρ̊(T p,q) ≤ 2p+ 2. In Section 3.5, we improve Theorem 3.1.4 for the class

of double stars (trees having diameter exactly 3) by computing ρ̊(T 2,3) = 4 (note that every tree having

diameter at most 3 has at most two internal vertices, so T 2,3 is the family of trees having diameter at most

3). This extends the work of Schiermeyer, Tuza, and Voigt [42], who characterized the families of graphs

having on-line ranking number 1, 2, or 3.

3.2 A Lower Bound on ρ̊(Tk,d)

In this section, we exhibit a strategy for Ranker to establish an upper bound on ρ̊(Tk,d) (recall that Tk,d is

the largest tree having maximum degree k and diameter d). For convenience, we let T ∗k,r denote the tree

with unique root vertex v∗ such that every internal vertex has k children and every leaf is distance r from

v∗. For U ⊆ V (G), recall that G[U ] denotes the subgraph of G induced by U .

Theorem 3.2.1. Let G be a connected graph. Suppose for some U ( V (G) that G − U has components

G0, G1, . . . , Ga, all isomorphic to some graph F . If U contains disjoint subsets U1, . . . , Ua so that each U i

consists of the internal vertices of a path joining a vertex of G0 to a vertex of Gi, then ρ̊(G) ≥ ρ̊(F ) + a.

See Figure 3.1.

Proof. Presenter has a strategy to produce a copy of F on which Ranker must use a label at least ρ̊(F ),

and G − U has a + 1 components isomorphic to F . Presenter begins the game on G by presenting a + 1

components isomorphic to F , playing independently on each component a strategy guaranteeing that one of

its vertices receives a label at least ρ̊(F ). Index the resulting copies of F as G0, G1, . . . , Ga so that G0 is a
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Figure 3.1: The graph G of Theorem 3.2.1.

copy whose largest label is smallest (in the labeling by Ranker) among the copies of F . Present U in any

order to complete G.

Let m0 denote the largest label given to a vertex in G0. For 1 ≤ i ≤ a, let mi denote the largest label

given to a vertex in V (Gi)∪U i. Set Hi = G[V (G0)∪U i ∪V (Gi)] for 1 ≤ i ≤ a. For each i, mi is the largest

label given to a vertex in Hi, and Hi also contains a vertex labeled m0. Since Hi is connected, its largest

label is unique, so m0 < mi. For i 6= j, Hi∪Hj is a connected subgraph of G whose largest label is either mi

or mj , so mi 6= mj since the largest label is unique. Thus the largest mi satisfies mi ≥ m0+a ≥ ρ̊(F )+a.

Note that Tk,2r consists of a copy of T ∗k−1,r and a copy of T ∗k−1,r−1 with an edge joining their roots, and

Tk,2r+1 consists of two copies of T ∗k−1,r with an edge joining their roots. Hence in both cases T ∗k−1,bd/2c is

an induced subgraph of Tk,d, so a lower bound on ρ̊(T ∗k−1,bd/2c) also serves as a lower bound on ρ̊(Tk,d).

Corollary 3.2.2. If k ≥ 2 and r ≥ 0, then ρ̊(T ∗k,r) ≥ kbr/2c.

Proof. Since T ∗k,r is an induced subgraph of T ∗k,r+1, we have ρ̊(T ∗k,r) ≤ ρ̊(T ∗k,r+1), so we may assume that r

is even. Set a = kr/2, and let U be the set of vertices u1, . . . , ua at distance r/2 from v∗. Define G to be the

subtree of T ∗k,r obtained by deleting, for each ui ∈ U , all but one of the k maximal subtrees of T ∗k,r rooted at

a child of ui. Now G−U consists of a+ 1 disjoint copies of T ∗k,r/2−1. Let G0 be the component rooted at v∗,

and for 1 ≤ i ≤ a let Gi be the component rooted at the child of ui. Setting U i = {ui} for 1 ≤ i ≤ a, we see

that U i contains the lone vertex of the path joining G0 and Gi. By Theorem 3.2.1, ρ̊(T ∗k,r) ≥ ρ̊(G) ≥ a.

Corollary 3.2.3. If k ≥ 3 and d ≥ 0, then ρ̊(Tk,d) ≥ (k − 1)bd/4c.

We finish this section with a comment on Conjecture 3.1.3. Subdivide each edge of the star K1,a to

get a (2a + 1)-vertex tree G. Letting G0, G1, . . . , Ga correspond to the vertices of the unique maximum

independent set of G, Theorem 3.2.1 yields ρ̊(G) ≥ a + 1 > |V (G)|/2. Thus Conjecture 3.1.3 cannot be

strengthened to the statement “There exist universal constants a and b satisfying 0 < a < 1 < b such that

ρ̊(T ) ≤ bna for any n-vertex tree T .”
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3.3 An Upper Bound on ρ̊(Tk,d)

In this section, we exhibit a strategy for Ranker to establish an upper bound on ρ̊(Tk,d) (recall that Tk,d

is the largest tree having maximum degree k and diameter d). In Section 3.4 we shall see ρ̊(Tk,4) ≤ k + 6

and ρ̊(Tk,5) ≤ 2k + 6 (Theorem 3.4.3), and in Section 3.5 we shall see ρ̊(Tk,d) = d + 1 for 0 ≤ d ≤ 3 ([42]

and Proposition 3.5.2), so here we only consider d ≥ 6. As in Section 3.2, let T ∗k,r denote the tree with

unique root vertex v∗ such that every internal vertex has k children and every leaf is distance r from v∗. In

specifying a strategy for Ranker on Tk,d, we will give a procedure for ranking the presented vertex v based

solely on the component containing v in the graph presented so far.

Definition 3.3.1. Let T (v) denote the component containing v when v is presented. Given two nonempty

sets A and B of positive integer labels, not necessarily disjoint, let TB(v) be the largest subtree of T (v)

containing v all of whose other vertices are labeled from B. Should it exist, let fAB (v) denote the smallest

element of A that would complete a ranking of TB(v).

The following lemmas gives sufficient conditions for fAB (v) to exist and (should fAB (v) exist) provide a

valid label that Ranker can give v.

Lemma 3.3.2. Suppose that each vertex u ∈ V (TB(v)) labeled from A was given label fAB (u) when it arrived.

If minA > max((B−A)∪{0}), and every component of TB(v)− v lacks some label in A, then fAB (v) exists.

Proof. Let A = {a1, . . . , am}, with a1 < . . . < am. For a component T of TB(v)− v having q distinct labels

from A, we claim that the largest label used on T is aq. Each vertex u ∈ V (TB(v)) labeled from A was

given label fAB (u) when it arrived, with minA > max(B−A), so if fAB (u) = ai then either i = 1 or ai−1 was

already used in TB(u) (since otherwise ai−1 would complete a ranking). Hence all used labels are less than

all missing labels in A. Since every component of TB(v) − v lacks some label in A, we thus have aq < am.

Therefore am is a valid label for v in TB(v) because the largest label on any path through v would be used

only at v. Hence fAB (v) exists.

Lemma 3.3.3. Suppose that fAB (v) exists. If T (v) = TB(v) or if all vertices of T (v) − V (TB(v)) having

a neighbor in TB(v) are in the same component of T (v) − v and have labels larger than max(A ∪ B), then

setting f(v) = fAB (v) is a valid move by Ranker.

Proof. Set f(v) = fAB (v). Let P be an x, y-path in T (v) such that x 6= y, f(x) = f(y) = `, and v ∈ V (P ).

We show that P has an internal vertex z satisfying f(z) > `. Since fAB (v) completes a ranking of TB(v),

we may assume that T (v) 6= TB(v) and P contains some vertex outside TB(v). The vertex v cuts P into

two subpaths (one of which may be trivial, consisting of v only). Exactly one of these subpaths contains
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a vertex outside TB(v) because by hypothesis all such vertices having a neighbor in TB(v) are in the same

component of T (v)− v, so we may assume x ∈ V (T (v))− V (TB(v)) and y ∈ V (TB(v)).

Since v is labeled from A and TB(v) − v is labeled from B with y ∈ V (TB(v)), we have ` ∈ A ∪ B. By

hypothesis all vertices of T (v) − V (TB(v)) having neighbors in TB(v) have labels larger than max(A ∪ B),

so x has no neighbor in TB(v). Hence P contains some internal vertex z outside TB(v) with a neighbor in

TB(v). By hypothesis, f(z) > max(A ∪B) ≥ `.

Set j = bd/3c. Partition the set of labels from 1 to 3|V (T ∗k−1,j)| into three subsets, with X consisting

of the lowest |V (T ∗k−1,j−1)| labels, Y the next |V (T ∗k−1,j)| − |V (T ∗k−1,j−1)| labels, and Z the remaining high

labels. For k ≥ 3, we give Ranker a strategy in the on-line ranking game on Tk,d that uses labels from

X ∪ Y ∪ Z. Since ρ̊(Tk,d) ≤ 3|V (T ∗k−1,j)| = 3((k − 1)j +
∑j−1

i=0 (k − 1)i) < 6(k − 1)j , this establishes the

following.

Theorem 3.3.4. If d ≥ 0 and k ≥ 3, then ρ̊(Tk,d) ≤ 6(k − 1)bd/3c.

If a vertex v ∈ V (Tk,d) has eccentricity at least d− j, then exactly one component of T (v)− v, denoted

H(v), has large diameter (at least d − j − 1), and each other component of T (v) − v is isomorphic to a

subgraph of T ∗k−1,j−1. The goal of our strategy for Ranker is to label from X ∪ Y many vertices that lie

within distance j − 1 of a leaf, saving enough labels in Z for the vertices having lower eccentricity.

Algorithm 3.3.5. Compute f(v) according to the following table.

Case f(v) Conditions

I fXX (v) (1) TX(v) is isomorphic to a subgraph of T ∗k−1,j−1, and

(2) either TX(v) = T (v) or there exists a vertex u in T (v)

labeled from Y such that TX(v) is the component of T (v)−u

containing v.

II fYX∪Y (v) (1) The eccentricity of v in T (v) is at least d− j, and

(2) there exists no vertex u in T (v) labeled from Y such

that TX(v) is the component of T (v)− u containing v.

III fZX∪Y ∪Z(v) (1) The eccentricity of v in T (v) is less than d− j, and

(2) either TX(v) is not isomorphic to a subgraph of T ∗k−1,j−1

or TX(v) 6= T (v).

Before we go any further, we need to show that Algorithm 3.3.5 does, in fact, give well-defined labeling

instructions for every situation. Note that d− j ≥ 2j.
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Proposition 3.3.6. When playing the on-line ranking game on Tk,d, each presented vertex v satisfies the

conditions of exactly one of the three cases (I)–(III).

Proof. If the eccentricity of v in T (v) is less than d− j, then case II does not apply. If furthermore TX(v) is

isomorphic to a subgraph of T ∗k−1,j−1 and TX(v) = T (v), then case I applies but case III does not. Otherwise,

case III applies, but case I does not since if TX(v) is isomorphic to a subgraph of T ∗k−1,j−1, then TX(v) 6= T (v)

and a vertex u in T (v) such that TX(v) is the component of T (v)− u containing v would have eccentricity

at most max{d− j − 2, 2j − 1}, which is less than d− j, precluding u from being labeled from Y .

If the eccentricity of v in T (v) is at least d − j, then case III does not apply. If furthermore TX(v) is

isomorphic to a subgraph of T ∗k−1,j−1, then the eccentricity of v in TX(v) is at most 2j− 2, so TX(v) 6= T (v)

since 2j − 2 < d − j. Thus case I only applies if TX(v) is isomorphic to a subgraph of T ∗k−1,j−1 and there

exists a vertex u in T (v) labeled from Y such that TX(v) is the component of T (v)− u containing v.

If there does exist a vertex u in T (v) labeled from Y such that TX(v) is the component of T (v) − u

containing v, then u had eccentricity at least d− j in T (u), so TX(v) is isomorphic to a subgraph of T ∗k−1,j−1

since Tk,d has diameter d. Hence case I applies. If there exists no vertex u in T (v) labeled from Y such that

TX(v) is the component of T (v)− u containing v, then case II applies.

We now show that Algorithm 3.3.5 produces a valid label in each of the three cases (I)–(III). Assume that

the algorithm has assigned valid labels before the presentation of v. Note that for (A,B) ∈ {(X,X), (Y,X ∪

Y ), (Z,X ∪ Y ∪ Z)}, each vertex u ∈ V (TB(v)) labeled from A was given label fAB (u) when it arrived, and

minA > max((B − A) ∪ {0}). Hence by Lemma 3.3.2, fAB (v) exists if every component of TB(v) − v lacks

some label in A.

Proposition 3.3.7. In case I, fXX (v) exists, and setting f(v) = fXX (v) is a valid move for Ranker.

Proof. Note that fXX (v) exists by Lemma 3.3.2 because |V (TX(v))| ≤ |X|. Furthermore, fXX (v) provides a

valid label for v by Lemma 3.3.3 because either TX(v) = T (v) or there exists a vertex u in T (v) such that

f(u) > maxX and TX(v) is a component of T (v)− u, making u the only vertex outside TX(v) neighboring

a vertex inside TX(v).

If y satisfies the conditions of case II, then let H(y) be the component of T (y) − y having greatest

diameter.

Lemma 3.3.8. If y is labeled from Y , then each vertex separated from H(y) by y (at any point in the game)

is labeled from X.
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Proof. The eccentricity of y in T (y) is at least d− j, so H(y) has diameter at least d− j−1. This forces each

other component of T (y)−y to be isomorphic to a subtree of T ∗k−1,j−1. Any vertex r of such a component is

labeled from X, since T (r) was isomorphic to a subgraph of T ∗k−1,j−1, implying TX(r) = T (r). Furthermore,

any subsequently presented vertex s satisfying y ∈ V (T (s)) that is separated from H(y) by y is labeled from

X, since TX(s) is isomorphic to a subgraph of T ∗k−1,j−1 and is the component of T (s)− y containing s.

Lemma 3.3.9. Every path in TX∪Y (v) contains at most two vertices labeled from Y (including possibly v).

Proof. Let y, y′, and y′′ be distinct vertices in TX∪Y (v) labeled from Y (one could possibly be v). Since

y′ and y′′ are labeled from Y , neither is separated from H(y) by y, by Lemma 3.3.8. If u is the neighbor

of y in H(y), then the edge uy must be part of any path containing y and at least one of y′ or y′′. Hence

edge-disjoint y′, y- and y, y′′-paths do not exist, so no path contains y between y′ and y′′. By symmetry, no

path contains each of y, y′, and y′′.

Lemma 3.3.10. If T (v) contains a vertex labeled from Y (possibly v), then T (v)−v contains a vertex labeled

from Z, and no path in T (v) contains a vertex labeled from Z and multiple vertices of TX∪Y (v) labeled from

Y .

Proof. For the first claim, let y be the first vertex in T (v) labeled from Y . The diameter of H(y) is greater

than the diameter of T ∗k−1,j−1 because d − j − 1 > 2j − 2, so some vertex r ∈ V (H(y)) violated the first

condition of case I when presented and was thus not labeled from X. Since r was presented before y, it is

labeled from Z.

For the second claim, let z be a vertex of T (v) labeled from Z, and y′ and y′′ be distinct vertices of

TX∪Y (v) labeled from Y . If u is the neighbor of z in the direction of v, then zu must be an edge in each

path that contains z and a vertex of TX∪Y (v). Hence edge-disjoint y′, z- and z, y′′-paths do not exist, so no

path can contain z between y′ and y′′.

By Lemma 3.3.8, any vertex separated from H(y′) by y′ is labeled from X, so y′′ is not separated from

z by y′. Similarly, y′ is not separated from z by y′′. Thus no path can contain each of z, y′, and y′′.

Figure 3.2 provides a possible labeling of Tk,d for vertices with high eccentricity, where xi ∈ X, yi ∈ Y ,

and zi ∈ Z. This gives an example of what Lemmas 3.3.8, 3.3.9, and 3.3.10 guarantee about the placement

of labels from Y .

Proposition 3.3.11. In case II, fYX∪Y (v) exists, and setting f(v) = fYX∪Y (v) is a valid move for Ranker.

Proof. Let S be the set consisting of v and every vertex in TX∪Y (v) labeled from Y . By Lemma 3.3.9, the

elements of S are only separated by vertices labeled from X, so the smallest subtree T of TX∪Y (v) containing
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x2 x1
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Figure 3.2: A possible labeling of Tk,d.

all of S has all its internal vertices labeled from X. Therefore the set of internal vertices of T induces a

tree T ′ isomorphic to a subtree of T ∗k−1,j−1. Furthermore, |V (T )| ≤ |V (T ∗k−1,j)|, since there are at most

|V (T ∗k−1,j)|+1 vertices in the largest subtree of T (v) whose set of internal vertices is V (T ′), but not all leaves

of this tree can be labeled from Y if T ′ 6= ∅ (otherwise we would contradict Lemma 3.3.10, since either T (v)

would contain no vertex labeled from Z, or some path in T (v) would contain a vertex labeled from Z and

multiple vertices of TX∪Y (v) labeled from Y ). Thus |S| = |V (T )| − |V (T ′)| ≤ |V (T ∗k−1,j)| − |V (T ∗k−1,j−1)| =

|Y |, so fYX∪Y (v) exists by Lemma 3.3.2.

Finally, the only vertices outside TX∪Y (v) that neighbor a vertex inside TX∪Y (v) are in H(v) and labeled

from Z. Hence fYX∪Y (v) provides a valid label for v, by Lemma 3.3.3.

Lemma 3.3.12. If v is assigned a label m ∈ Z previously unused in T (v), then v is a leaf of some subtree

of TX∪Z(v) containing every label in Z smaller than m.

Proof. By Lemma 3.3.8, two vertices labeled from Z are never separated by a vertex labeled from Y , so all

vertices in T (v)− v labeled from Z lie in TX∪Z(v). We use induction on m, with the base case m = minZ

being trivial. If m > minZ, let u be the first vertex in TX∪Z(v) labeled with m−1. Since u arrived as a leaf

of some subtree containing every label in Z smaller than m − 1, adding to that tree the u, v-path through

TX∪Z(v) yields the desired tree.

Lemma 3.3.13. The largest subtree T of Tk,d having diameter d− j − 1 has at most 2|V (T ∗k−1,j)| vertices.

Proof. Let u1u2 be the central edge of T if d − j − 1 is odd and any edge containing the central vertex

of T if d − j − 1 is even. Deleting u1u2 from T then leaves two trees T1 and T2 containing u1 and u2,

respectively, with ui having degree at most k − 1 and eccentricity at most b(d− j − 1)/2c in Ti. Thus

each Ti is isomorphic to a subtree of T ∗k−1,j , since b(d− j − 1)/2c ≤ j for j = bd/3c. Hence |V (T )| =

|V (T1)|+ |V (T2)| ≤ 2|V (T ∗k−1,j)|.
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Proposition 3.3.14. In case III, fZX∪Y ∪Z(v) exists, and setting f(v) = fZX∪Y ∪Z(v) is a valid move for

Ranker.

Proof. Note that TX∪Y ∪Z(v) = T (v), so if fZX∪Y ∪Z(v) exists, then by Lemma 3.3.3 it is a valid label

for v. If T (v) uses at most 2|V (T ∗k−1,j)| labels from Z, then by Lemma 3.3.2 fZX∪Y ∪Z(v) exists, since

|Z| = 2|V (T ∗k−1,j)|. By Lemma 3.3.12 and the first condition of case III, the number of labels from Z used

in T (v) is at most the number of times a vertex u in TX∪Z(v) was presented as a leaf of TX∪Y (u) having

eccentricity less than d−j in TX∪Y (u). Since any leaf added adjacent to a vertex having eccentricity at least

d−j will itself have eccentricity at least d−j, it suffices to show that growing a subtree of Tk,d by iteratively

adding one leaf 2|V (T ∗k−1,j)| times eventually forces some new leaf to have eccentricity at least d− j at the

time of its insertion. Since any leaf whose insertion raises the diameter of the tree has eccentricity equal to

the higher diameter, this statement follows from Lemma 3.3.13.

3.4 An Upper Bound on ρ̊(T p,q)

In this section, we exhibit a strategy for Ranker to prove ρ̊(T p,q) ≤ p+q+1 (recall that T p,q is the family of

trees having at most p internal vertices and diameter at most q). During the on-line ranking game on T p,q,

let S be the component of the current graph containing the unlabeled presented vertex v. We give Ranker

a procedure for ranking v based solely on S and the labels given to the other vertices of S.

Algorithm 3.4.1. If v is the only vertex in S, let f(v) = q + 1. If v is not the only vertex in S, then let m

denote the largest label already used on S. If there exists a label smaller than m that completes a ranking

when assigned to v, give v the largest such label. Otherwise, let f(v) = m+ 1.

Lemma 3.4.2. If v arrives as a leaf of a nontrivial component S whose highest ranked vertex has label m,

then Algorithm 3.4.1 will assign v a label smaller than m.

Proof. Suppose that Algorithm 3.4.1 sets f(v) = m+ 1. Let v0 = v. We now select vertices v1, . . . , vj from

S such that v0, v1, . . . , vj in order form a path P and vj arrived as an isolated vertex. For i ≥ 0, let vi+1

be a vertex with the least label among all vertices that were adjacent to vi when vi was presented, unless

vi arrived as an isolated vertex, in which case set j = i. Since S is finite, the process must end with some

vertex vj . Since vi was presented as a neighbor of vi+1, P is a path of length j.

Note that if Algorithm 3.4.1 sets f(u) = a, then a 6= q + 1 only if u arrives as a neighbor of a vertex w

such that f(w) ≤ a + 1. Since f(v1) = 1 (otherwise f(v0) = f(v1) − 1 < m), we must have f(vi) ≤ i for

1 ≤ i < j. Also, f(vj) = q + 1 because vj arrived as an isolated vertex. Since vj was chosen as the neighbor
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with the least label when vj−1 arrived, f(u) > q for any such neighbor u. Hence f(vj−1) ≥ q. Therefore

j − 1 ≥ q, which gives P length greater than q, contradicting S having diameter at most q.

Theorem 3.4.3. Algorithm 3.4.1 uses no label larger than p+ q + 1.

Proof. By Lemma 3.4.2, the only way for a new largest label greater than q + 1 to be used on S is for the

unlabeled vertex to arrive as an internal vertex. Only the p internal vertices of an element of T p,q can be

presented as such, and each time a new largest label is used it increases the largest used value by 1, so the

largest label that could be used on one of them would be p+ q + 1.

3.5 Double stars

In this section, we improve the bound of Theorem 3.1.4 for the class of double stars by proving ρ̊(T 2,3) = 4.

This extends the work of Schiermeyer, Tuza, and Voigt [42], who characterized the families of graphs with

on-line ranking number 1, 2, or 3. For any forest F , they proved ρ̊(F ) = 1 if and only if F has no edges,

ρ̊(F ) = 2 if and only if F has an edge but no component with more than one edge, and ρ̊(F ) = 3 if and only

if F is a star forest with maximum degree at least 2 or F is a linear forest whose largest component is P4.

Since P4 is the only tree having diameter 3 and on-line ranking number less than 4, proving ρ̊(T 2,3) = 4 only

requires a strategy for Ranker, and our result implies ρ̊(T ) = 4 for any tree T besides P4 having diameter

3. We now make some observations about the on-line ranking game on T 2,3 before giving a strategy for

Ranker.

When a vertex u is presented, let G(u) be the graph at that time, and let T (u) be the component of

G(u) containing u. When the first edge(s) appear, the presented vertex v is the center of a star; thus T (v)

is a star, while G(v) may include isolated vertices in addition to T (v). Let v′ be the first vertex to complete

a path of length 3. The graph G(v′) is connected and has two internal vertices, properties that remain true

as subsequent vertices are presented. Let T be the final tree.

Consider the round when a vertex u is presented. If u is presented after v′, or u = v′ and u is a leaf

of T (u), then G(u) = T (u), and u must be a leaf in T . If u is presented after v but before v′, then either

T (u) = u or T (u) is a star not centered at u. If additionally G(u) is disconnected, then u must wind up as

a leaf in T , since T has diameter 3. Call u a forced leaf in this case, the case that u is presented after v′, or

the case that u = v′ and u is presented as a leaf of T (u). Otherwise, if u is presented after v but before v′,

then u is a leaf of T (u), and say that u is undetermined (since u may or may not wind up as a leaf in T ).

Also call v undetermined, as well as v′ if v′ is not a forced leaf.
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Algorithm 3.5.1. Give label 3 to the first vertex presented, label 2 to any subsequent vertex presented

before v, and label 1 to any forced leaf. The rest of the algorithm specifies how to rank the undetermined

vertices in terms of the labeling of G(v).

If G(v) = P2, then give label 4 to v and label 2 to any subsequent undetermined vertex. If G(v) has

more than one edge (disconnected or not), and v is adjacent to the vertex labeled 3, then give label 4 to v

and label 3 to any subsequent undetermined vertex.

If neither of the previous cases hold, then G(v) is disconnected, and v and v′ are the only undetermined

vertices. If G(v) has exactly one edge, and v is adjacent to the vertex labeled 3, then give label 2 to v and

label 4 to v′. In the remaining case, v is not adjacent to the vertex labeled 3; give label 3 to v and label 4

to v′.

The possible ways for Algorithm 3.5.1 to label G(v) are shown in Figure 3.3.

3 4
v

3 4
v

2 2 3 2
v

2 2 3
v

3

Figure 3.3: Possibilities for G(v).

Proposition 3.5.2. ρ̊(T 2,3) = 4.

Proof. Because P4 is the only tree with exactly two internal vertices having on-line ranking number at most

3, we need only to verify that Algorithm 3.5.1 is a valid strategy for Ranker.

If G(v) = P2, then every vertex labeled 1 is a leaf, and the only label besides 1 that can be used more

than once is 2. Any two vertices labeled 2 must be separated by one of the vertices labeled 3 or 4.

If G(v) has more than one edge, and v is added adjacent to the vertex labeled 3, then every vertex labeled

1 is a leaf, and the only vertex labeled 4 is v, which is an internal vertex. If the other internal vertex is

labeled 3, then each leaf adjacent to it is labeled 1 or 2. Any two vertices labeled 3 must be separated from

each other by v, which is labeled 4, and any two vertices labeled 2 must be separated from each other by

an internal vertex, which is labeled either 3 or 4. If the internal vertex besides v is labeled 2, then each

adjacent leaf must be labeled 1. Any two vertices with the same label of 2 or 3 would have to be separated

from each other by v, which is labeled 4.

If G(v) has exactly one edge but more than two vertices, and v is adjacent to the vertex labeled 3, then

any vertex labeled 1 will be a leaf, only the first vertex presented will be labeled 3, and any two vertices

labeled 2 will be separated from each other by v′, which is the only vertex labeled 4.

If G(v) has more than two vertices, and v is not adjacent to the vertex labeled 3, then any vertex labeled
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1 will be a leaf, and any two vertices with the same label of 2 or 3 will be separated from each other by v′,

which is the only vertex labeled 4.
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Chapter 4

Graphs on Proper Colorings

4.1 Introduction

Suppose we have a proper k-coloring φ of a graph H, but we want to see what other proper k-colorings of

H look like. We could generate such colorings by first coloring H according to φ and then applying the

following mixing process: pick any vertex v ∈ V (H), change the color on v while maintaining a proper

coloring (if possible), and repeat. Let the k-color graph of H, denoted Gk(H), have the proper k-colorings

of H as its vertices, with two colorings adjacent whenever they differ on exactly one vertex. We can obtain

all proper k-colorings of H using the mixing process if and only if Gk(H) is connected.

The connectedness of Gk(H) arises in the study of efficient algorithms for almost-uniform sampling of

k-colorings. The mixing number of H, denoted k1(H), is the least K such that Gk(H) is connected for all

k ≥ K. In 2008, Cereceda, van den Heuvel, and Johnson [8] studied k1(H). In particular, they showed that

k1(H) ≤ d+ 2 if H is d-degenerate, meaning every subgraph of H has a vertex of degree at most d.

A Gray code is an ordering of the elements of a given set such that consecutive elements differ in

specified allowable small changes; a cyclic Gray code is a Gray code where the elements are arranged in

cyclic order. Gray codes allow one to traverse an entire set of objects while doing little work changing

between consecutive elements. A Gray code on the set of proper k-colorings of H is an ordering of these

colorings such that consecutive colorings differ on exactly one vertex. There is a cyclic Gray code on the set

of proper k-colorings of H if and only if Gk(H) is Hamiltonian.

Cyclic Gray codes of proper colorings were first considered by Choo and MacGillivray [13] in 2011. The

Gray code number of H, denoted k0(H), is the least K such that Gk(H) is Hamiltonian for all k ≥ K. Since

every Hamiltonian graph is connected, we have k0(H) ≥ k1(H). In [13] it was shown that k0(H) ≤ d+ 3 if

H is d-degenerate.

When Gk(H) is not connected, but something similar to the mixing process is still desired, or when Gk(H)

is not Hamiltonian, but something similar to a cyclic Gray code of proper k-colorings of H is desired, it is

natural to ask by how much the adjacency conditions on Gk(H) need to be relaxed. We relax the requirement
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that consecutive colorings differ only on a single vertex, but we still want the differences between consecutive

colorings to be localized.

Definition 4.1.1. For a graph H and positive integer k ≥ χ(H), let the j-localized k-coloring graph of

H, denoted Gj
k(H), be the graph whose vertices are the proper k-colorings of H, with edges joining two

colorings if H contains a connected subgraph on at most j vertices containing all vertices where the colorings

differ (see Figure 4.1). Let the k-color mixing number of H, denoted gk(H), be the least j such that Gj
k(H)

is connected, and let the k-color Gray code number of H, denoted hk(H), be the least j such that Gj
k(H) is

Hamiltonian.

G1
3(P3) = 121

131132

231
232

212

213
312

313
323

123

321

G2
3(K3) = 1

23

1
32

2
13

2
31

3
12

3
21

Figure 4.1: Two examples of localized coloring graphs.

Since G1
k(H) = Gk(H), the statement “k1(H) = K” is equivalent to “gk(H) = 1 for k ≥ K but

gK−1(H) > 1,” and the statement “k0(H) = K” is equivalent to “hk(H) = 1 for k ≥ K but hK−1(H) > 1.”

Also note that if j < `, then Gj
k(H) is a spanning subgraph of G`

k(H). Clearly gk(H) ≤ hk(H), with Gj
k(H)

connected if and only if j ≥ gk(H), and Gj
k(H) Hamiltonian if and only if j ≥ hk(H).

Rephrasing the previously stated degeneracy results, in [8] it is shown that gk(H) = 1 if H is (k − 2)-

degenerate, and in [13] it is shown that hk(H) = 1 if H is (k− 3)-degenerate. We first note that gk(H) and

hk(H) exist whenever k ≥ χ(H). If H is a connected k-colorable n-vertex graph, then gk(H) and hk(H)

exist because Gn
k (H) is a complete graph and thus Hamiltonian. If H consists of components H1, . . . ,Hm,

and k ≥ χ(H), then clearly Gj
k(H) = Gj

k(H1)� · · ·�Gj
k(Hm). The Cartesian product of graphs is connected

if and only if each of the graphs is connected, and it is Hamiltonian if all are Hamiltonian, so gk(H) =

maxi∈[m] gk(Hi) and hk(H) ≤ maxi∈[m] hk(Hi) (see [16] for details about the Hamiltonicity of Cartesian

products).

Observation 4.1.2. For every graph H and integer k ≥ χ(H), gk(H) and hk(H) exist.
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The inequality hk(H) ≤ maxi∈[m] hk(Hi) is obviously an equality when hk(Hi) = 1 for each i ∈ [m], but

the inequality can also be strict: the Cartesian product of a Hamiltonian graph G1 and a connected graph G2

is Hamiltonian if |V (G1)| ≥ ∆(G2), so if H = H1 +H2 and there are at least ∆(Gj
k(H2)) proper k-colorings

of H1 for j = gk(H2), then hk(H) ≤ max{hk(H1), gk(H2)}. Let H consist of a copy of C4 and at least two

isolated vertices. Note that G1
3(K1) = K3, which is Hamiltonian, so h3(K̄n) = 1 for all n. Furthermore,

there are 3n proper 3-colorings of K̄n, and in [8] and [13] it is shown that G1
3(C4) has maximum degree 4

and is connected but not Hamiltonian, so g3(C4) = 1 < h3(C4). Thus h3(H) ≤ max{h3(K̄n), g3(C4)} = 1 <

h3(C4).

One would like to bound gk(H) and hk(H) in terms of χ(H) and k. Such a statement is impossible,

however: in Section 4.2 we generalize a construction from [8] to prove the following.

Theorem 4.1.3. For i and k fixed with 1 < i ≤ k, the functions gk and hk are unbounded on the set of

i-chromatic graphs.

The construction Lm from [8] is a bipartite graph such that gk(Lm) = 1 if and only if 3 ≤ k 6= m; hence

increasing k can increase gk(H), though the degeneracy bounds imply that gk(H) = hk(H) = 1 for large

enough k. The author has yet to see an example where increasing k increases hk(H), though the construction

from Theorem 4.1.3 would seem to be a promising candidate for such an H.

Question 4.1.4. Does there exist a graph H and integer k such that hk(H) < hk+1(H)?

In Section 4.3 we provide upper bounds for gk(H) and hk(H) in terms of gk(H ′) and hk(H ′) for certain

induced subgraphs H ′ of H. The statements of these results involve the notion of choosability. Given a

graph F and function f : V (F ) → N, an f -list assignment for F is a function L that gives each v ∈ V (F )

a list of f(v) positive integers. An L-coloring of F is a proper coloring φ of F such that φ(v) ∈ L(v) for all

v ∈ V (F ). A graph F is f -choosable if every f -list assignment L admits an L-coloring. Note that if F if

f -choosable, then there exists a proper coloring φ of F such that φ(v) ≤ f(v) for each v ∈ V (F ) (simply let

φ be an L-coloring for the f -list assignment L defined by L(v) = [f(v)] for all v ∈ V (F )).

As an application of the theorems of Section 4.3, we consider gk(H) and hk(H) for any tree or cycle H.

In [8] it is shown that g3(Cn) = 1 if and only if n = 4 (so h3(Cn) ≥ g3(Cn) > 1 for n 6= 4), and in [13] it is

proved that h3(C4) > 1 but hk(Cn) = 1 for k ≥ 4 and n ≥ 3 (so gk(Cn) = 1 for k ≥ 4 and n ≥ 3). In [13]

it is also proved for k ≥ 3 and any tree T that hk(T ) = 1 except in the case k = 3 and T = K1,2m for some

m ≥ 1 (so g3(T ) = 1 if T 6= K1,2m, and h3(K1,2m) > 1). Obviously any connected n-vertex bipartite graph

H has exactly two proper 2-colorings, which differ in all n vertices, so g2(H) = h2(H) = n. Since trees and

cycles of even length are connected bipartite graphs, and cycles of odd length are not 2-colorable, the only
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remaining computations for trees and cycles are g3(K1,2m), h3(K1,2m), g3(Cn), and h3(Cn). We compute

these values by applying the theorems of Section 4.3 and using the fact that if H = K1,2m or H = Cn for

n 6= 4, then there exists v ∈ V (H) such that H − v is some tree T satisfying h3(T ) = 1.

Proposition 4.1.5. For n ≥ 3, g3(Cn) = h3(Cn) = 2 (except g3(C4) = 1), and for m ≥ 1, g3(K1,2m) = 1

and h3(K1,2m) = 2.

If χ(F ) > k ≥ 2 but we only have k colors available, subdividing each edge of F will alter F into a

k-colorable graph H while still preserving some structure of F . In Section 4.4, we bound gk(H) and hk(H)

for k ≥ 3 and and any graph H obtained from a multigraph M by subdividing each edge of M at least some

prescribed number of times (some edges can be subdivided more than others). If H can be constructed by

subdividing each edge of M once or more, then H is 2-degenerate, so gk(H) = 1 for k ≥ 4 and hk(H) = 1

for k ≥ 5. We prove the following results.

Theorem 4.1.6. Suppose that H is obtained from a multigraph M by subdividing each edge of M at least

` times. If ` = 2 and M is loopless, then g3(H) ≤ 2 and h4(H) = 1. If ` = 3, then h3(H) ≤ 2.

Since g3(Cn) = 2 for n ≥ 4, k = 4 is the least number of colors for which gk(H) = 1 holds in general

for graphs H obtained from multigraphs M by subdividing each edge of M at least ` times for any `. We

believe the statements made about hk(H) in Theorem 4.1.6 can be improved, however.

Conjecture 4.1.7. If H is obtained from a multigraph M by subdividing each edge of M at least once, then

h3(H) ≤ 2 and h4(H) = 1.

Many of the proofs in Sections 4.3 and 4.4 follow the same pattern. We are given a subgraph H ′ of

a graph H such that every k-coloring of H ′ can be extended to a k-coloring of H. To compute an upper

bound on gk(H) or hk(H) based on gk(H ′) or hk(H ′), we start with a path or Hamiltonian cycle in Gj
k(H ′),

and alter it into a path or Hamiltonian cycle in Gj′

k (H) for some j′ not much larger than j. In creating

a Hamiltonian cycle in Gj′

k (H), we list consecutively the extensions of each proper k-coloring of H ′. The

surprisingly tricky aspect of such proofs is showing that we can close a Hamiltonian path through Gj′

k (H)

into a Hamiltonian cycle.

In [13] it is shown that G1
k(Kn) is edgeless if k = n and Hamiltonian if k > n, so hn(Kn) ≥ gn(Kn) > 1

and gk(Kn) = hk(Kn) = 1 for k > n > 1. Computing gn(Kn) and hn(Kn) is a matter of viewing proper

n-colorings of Kn as permutations on [n] and applying the Steinhaus-Johnson-Trotter algorithm [26], which

lists the permutations on [n] in cyclic order so that consecutive permutations differ only by transpositions.

Hence gn(Kn) = hn(Kn) = 2 for n > 1. In Section 4.5 we use these results in generalizing from complete

graphs to complete multipartite graphs.
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Theorem 4.1.8. If H = Km1,...,mk
, where m1 ≤ · · · ≤ mk, then the following hold:

• gk(H) = hk(H) = m1 +mk

• g`(H) = 1 for ` > k

• hk+1(H) = 1 if each mi is odd

• hk+1(H) = 2 if some mi is even

We close this section by asking what relationships between j and k can guarantee the connectedness or

Hamiltonicity of Gj
k(H). We have observed for a d-degenerate graph H that k ≥ d + 2 implies gk(H) = 1

and k ≥ d+ 3 implies hk(H) = 1, but the hypotheses of these statements are independent of j. It would be

interesting to see what functions X(j, k) and Y (H) nontrivially yield that X(j, k) ≥ Y (H) implies gk(H) ≤ j

or that X(j, k) ≥ Y (H) implies hk(H) ≤ j, potentially under restrictions of j, k, and H. For example, we

know j + k ≥ 4 implies hk(Cn) ≤ j for j ≥ 1 and k ≥ 3. Continuing along these lines, we ask the following.

Question 4.1.9. Are there constants c and c′ such that if H is d-degenerate, then gk(H) ≤ j when j ≥

d− k − c and hk(H) ≤ j when j ≥ d− k − c′?

4.2 Unboundedness of gk and hk on Graphs with Fixed

Chromatic Number

In this section we prove Theorem 4.1.3. The graph Lm is defined in [8] as Km,m minus a perfect matching,

and there it is shown for k,m ≥ 3 that G1
k(Lm) is disconnected if and only if k = m. We generalize their

construction to obtain the graph L(i, j, k) defined for 1 < i ≤ k and any j ≥ 1, noting that our L(2, 1,m) is

identical to their Lm.

Construction 4.2.1. For i = k, let L(i, j, k) be the balanced complete i-partite graph with part size dj/2e.

For i < k, let the vertices of L(i, j, k) have a partition into sets X1, . . . , Xi such that X` = {x`1, . . . , x`kdj/ie}

for each ` ∈ [i]. Put an edge between xac and xbd if and only if a 6= b and c 6≡ d mod k. Figure 4.2 shows

L(2, 3, 3) as the complete bipartite graph K6,6 minus the illustrated edges..

Theorem 4.2.2. If 1 < i ≤ k and j ≥ 1, then χ(L(i, j, k)) = i and gk(L(i, j, k)) ≥ j.

Proof. Clearly χ(L(i, j, k)) = i, since L(i, j, k) is an i-partite graph containing a i-clique. Starting with i = k,

the graph L(k, j, k) is the balanced complete k-partite graph with part size dj/2e, and Gj−1
k (L(k, j, k)) is
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L(2, 3, 3) = K6,6 −

x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

Figure 4.2: An illustration of L(2, 3, 3).

edgeless: any proper k-coloring of L(k, j, k) assigns the colors of [k] in a one-to-one fashion to the partite

sets, each of which has at least j/2 vertices, so any distinct proper k-colorings of L(k, j, k) differ on at least

j vertices of L(k, j, k).

For i < k, we exhibit a proper k-coloring φ of L(i, j, k) that is isolated in Gj−1
k (L(i, j, k)). Define φ by

φ(xac ) = c′, where c′ ∈ [k] and c ≡ c′ mod k. This defines a proper k-coloring of L(i, j, k) because if two

vertices receive the same color, then they must be of the form xac and xbd where c ≡ d mod k, in which case

they are not adjacent.

Now consider any nonempty set S of fewer than j vertices; we complete the proof by showing that φ

cannot be changed into another proper k-coloring of L(i, j, k) by recoloring only the vertices of S. Without

loss of generality let Xi be a partite set containing the fewest vertices of S, so |S ∩Xi| < j/i. Thus we are

guaranteed that each residue class modulo k has a representative ` ∈ [k dj/ie] such that xi` /∈ S, allowing us

to further assume without loss of generality that xi` /∈ S for each ` ∈ [k]. Therefore changing the color on

xac ∈ S −Xi to any new color e would create a monochromatic edge xacx
i
e in L(i, j, k). Hence modifying φ

into another proper coloring requires changing the colors on at least j vertices, so φ is an isolated vertex in

Gj−1
k (L(i, j, k)).

Corollary 4.2.3. For i and k fixed with 1 < i ≤ k, the functions gk and hk are unbounded on the set of

i-chromatic graphs.

4.3 Subgraphs

For this section, fix positive integers j and k, a graph H, and disjoint subgraphs H ′ and H ′′ of H such that

χ(H ′) ≤ k, H ′′ is connected and has at most j vertices, and H ′ = H − V (H ′′). We investigate what can

be said about gk(H) and hk(H) based on gk(H ′), hk(H ′), and H ′′. Before continuing, we introduce some

definitions to be used throughout the section.

Definition 4.3.1. Let F be a subgraph of H ′, and let v ∈ V (H ′′). Let dF (v) = |NH(v) ∩ V (F )|; for

convenience, set d′(v) = dH
′
(v). Define fF (v) = k− d′(v)− dF (v) and f(v) = k− d′(v)−min{d′(v), j}. For

58



u ∈ V (H ′′), define fFu (v) = fF (v) − δu,v and fu(v) = f(v) − δu,v, where δu,v = 1 if u = v and δu,v = 0 if

u 6= v.

We start with the parameter gk(H), recalling the definition of choosability from Section 4.1.

Proposition 4.3.2. If H ′′ is (k − d′(v))-choosable, then gk(H) ≤ gk(H ′) + j.

Proof. Set ` = gk(H ′). Let φ and π be any proper k-colorings of H, and let φ′ and π′ be the proper k-

colorings of H ′ obtained, respectively, by restricting φ and π to H ′. There exists a (φ′, π′)-path in G`
k(H ′),

which we alter into a (φ, π)-path in G`+j
k (H) to complete the proof. In G`+j

k (H), φ is adjacent to any other

extension of φ′ and π is adjacent to any other extension of π′, so we need only show that any adjacent

colorings α′ and β′ in G`
k(H ′) have extensions α and β that are adjacent in G`+j

k (H). For γ′ ∈ {α′, β′},

γ′ can be extended to a proper k-coloring of H by coloring H ′′ from the list assignment L defined by

L(v) = [k]− {γ′(u) : u ∈ V (H ′), uv ∈ E(H)}, since H ′′ is (k − d′(v))-choosable.

Let F be a connected subgraph of H ′ on at most ` vertices that includes everywhere α′ and β′ differ.

If H contains no edge joining H ′′ and F , then any coloring of H ′′ that extends α′ to a proper k-coloring α

of H also extends β′ to a proper k-coloring β of H, and α is adjacent to β in G`+j
k (H) since they still only

differ on F . If some edge in H joins H ′′ and F , then any extension α of α′ is adjacent in G`+j
k (H) to any

extension β of β′, since they differ only on the subgraph of H induced by V (F )∪V (H ′′), which is connected

and has at most `+ j vertices.

Corollary 4.3.3. If H ′′ consists of a single vertex v having degree less than k in H, then gk(H) ≤ gk(H ′)+1.

Proof. We have k − d′(v) ≥ 1, so H ′′ is (k − d′(v))-choosable, so the result follows by setting j = 1 in

Proposition 4.3.2.

Note that the hypothesis k > dH(v) is necessary in Corollary 4.3.3, since if H ′ = Kk and H = Kk+1,

then H ′ is k-colorable but H is not.

Proposition 4.3.4. If gk(H ′) ≤ j and H ′′ is fF -choosable for each connected subgraph F of H ′ on at most

gk(H ′) vertices, then gk(H) ≤ j.

Proof. Let φ and π be any proper k-colorings of H, and let φ′ and π′ be the proper k-colorings of H ′

obtained, respectively, by restricting φ and π to H ′. There exists a (φ′, π′)-path in Gj
k(H ′), which we alter

into a (φ, π)-path in Gj
k(H) to complete the proof. If α′ and β′ are adjacent colorings in Gj

k(H ′), then the

sets of extensions of α′ and β′ to proper k-colorings of H are cliques in Gj
k(H), so we need only show that

α′ and β′ have extensions α and β that are adjacent in Gj
k(H).

59



Let F be a connected subgraph of H ′ on at most j vertices that includes everywhere α′ and β′ differ.

Both α′ and β′ can be extended to proper k-colorings α and β of H by coloring H ′′ from the list assignment

L defined by L(v) = [k] − {α′(u) : u ∈ V (H ′), uv ∈ E(H)} ∪ {β′(u) : u ∈ V (H ′), uv ∈ E(H)}, since H ′′ is

fF -choosable and |{α′(u) : u ∈ V (H ′), uv ∈ E(H)} ∪ {β′(u) : u ∈ V (H ′), uv ∈ E(H)}| ≤ d′(v) + dF (v) for

all v ∈ V (H ′′). Since α and β only differ on F , they are adjacent in Gj
k(H).

Corollary 4.3.5. If gk(H ′) ≤ j and H ′′ is f -choosable, then gk(H) ≤ j.

Proof. We need only show f(v) ≤ fF (v) for any connected subgraph F of H ′ on at most j vertices, since

then H ′′ is fF -choosable, and the result follows from Proposition 4.3.4. We have d′(v) ≥ dF (v) since

V (F ) ⊆ V (H ′), and j ≥ dF (v) since F has at most j vertices, so fF (v)−f(v) = min{d′(v), j}−dF (v) ≥ 0.

Corollary 4.3.6. If H ′′ consists of a single vertex v such that k > dH(v) + min{dH(v), gk(H ′)}, then

gk(H) ≤ gk(H ′).

Proof. Set j = gk(H ′) in Corollary 4.3.5: H ′′ is f -choosable since H ′′ consists of a single vertex v and

f(v) = k − d′(v)−min{d′(v), j} = k − dH(v)−min{dH(v), gk(H ′)} ≥ 1.

We now turn to the parameter hk(H).

Proposition 4.3.7. If H ′′ is (k − d′(v))-choosable, then hk(H) ≤ hk(H ′) + j.

Proof. We may assume that H ′′ is not its own component of H, since otherwise we would have hk(H) ≤

max{hk(H ′), hk(H ′′)} ≤ hk(H ′) + j. Set ` = hk(H ′), so there exists a Hamiltonian cycle C ′ = [φ1, . . . , φb]

through G`
k(H ′) such that φ1 and φb differ on a neighbor of a vertex in H ′′. To complete the proof, we alter

C ′ into a Hamiltonian cycle C through G`+j
k (H) such that the extensions of each φi appear consecutively in

C. Note that each φi can be extended to a proper k-coloring of H by coloring H ′′ from the list assignment

L defined by L(v) = [k]− {φi(u) : u ∈ V (H ′), uv ∈ E(H)}, since H ′′ is (k − d′(v))-choosable. Thus the set

of extensions of each φi to a proper k-coloring of H is a nonempty clique in G`+j
k (H), so it suffices to order

the extensions of each φi in any manner such that the last extension of φi is adjacent to the first extension

of φi+1 in G`+j
k (H) (setting b+ 1 = 1).

Put the extensions of φ1 in any order. Now consider 2 < i ≤ b, and let F be a connected subgraph of H ′

on at most ` vertices that includes everywhere φi−1 and φi differ. If H contains no edge joining H ′′ and F ,

then any coloring of H ′′ that extends φi−1 to a proper k-coloring of H also extends φi to a proper k-coloring
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of H, and these extensions are adjacent in G`+j
k (H) since they still only differ on F . In this case, let the

first extension of φi be any neighbor of the last extension of φi−1, and put the remaining extensions of φi

in any order. If some edge in H joins H ′′ and F , then any extension φi−1 is adjacent in G`+j
k (H) to any

extension of φi, since they differ only on the subgraph of H induced by V (F ) ∪ V (H ′′), which is connected

and has at most `+ j vertices. In this case, put the extensions of φi in any order. Since we stipulated that

φ1 and φb differ on a neighbor of a vertex in H ′′, this completes the Hamiltonian cycle C.

Corollary 4.3.8. If H ′′ consists of a single vertex v having degree less than k in H, then hk(H) ≤ hk(H ′)+1.

Proof. We have k − d′(v) ≥ 1, so H ′′ is (k − d′(v))-choosable, so the result follows by setting j = 1 in

Proposition 4.3.7.

For distinct vertices u and v of H ′′ and a subgraph F of H ′, recall that fFu (u) = fF (u) − 1 and

fFu (v) = fF (v).

Lemma 4.3.9. Suppose φ and π are adjacent in Gj
k(H ′), so the set of vertices on which φ and π differ

lies in some connected subgraph F of H ′ on at most j vertices. If there exists u ∈ V (H ′′) such that H ′′ is

fFu -choosable, then there exist distinct proper k-colorings α and β of H ′′ each of which extends both φ and

π to adjacent colorings in Gj
k(H).

Proof. For each v ∈ V (H ′′), let S(v) be the set of all colors used by φ and π on neighbors of v in H ′. Define

the list assignment L for H ′′ by L(v) = [k] − S(v), so any L-coloring of H ′′ extends φ and π to proper

k-colorings φ∗ and π∗ of H. Note that φ∗ and π∗ would be adjacent in Gj
k(H), since they would differ only

on F . To finish the proof, we use the fact that H ′′ is fFu -choosable to find distinct L-colorings α and β of

H ′′. Indeed, we can construct a L-coloring α because, for all v ∈ V (H ′′),

|L(v)| = k − |S(v)| ≥ k − |NH(v) ∩ V (H ′)| − |NH(v) ∩ V (F )| = fF (v) ≤ fFu (v).

Now, obtain the fFu -list assignment L′ from L by deleting α(u) from L(u). We can find an L′-coloring β

because

|L′(u)| = |L(u)| − 1 ≥ fF (u)− 1 = fFu (u).

Since α(u) 6= β(u) and L′(v) ⊆ L(v) for each v ∈ V (H ′′), α and β are distinct L-colorings.

Proposition 4.3.10. If hk(H ′) ≤ j, and for each connected subgraph F of H ′ on at most j vertices, there

exists u ∈ V (H ′′) such that H ′′ is fFu -choosable, then hk(H) ≤ j.
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Proof. We may assume that H ′′ is not its own component of H, since otherwise we would have hk(H) ≤

max{hk(H ′), hk(H ′′)} ≤ j (Gj
k(H ′′) is a complete graph since H ′′ is a connected graph on at most j

vertices, so hk(H ′′) = 1). There exists a Hamiltonian cycle C ′ = [φ1, . . . , φb] through Gj
k(H ′); to complete

the proof, we alter C ′ into a Hamiltonian cycle C through Gj
k(H) such that the extensions of each φi appear

consecutively in C. By Lemma 4.3.9, for each i ∈ [b] there exist distinct proper k-colorings αi and βi of H ′′

each of which extend both φi and φi−1 to adjacent colorings in Gj
k(H). Thus the set of extensions of each φi

to a proper k-coloring of H is a nonempty clique in Gj
k(H), so it suffices to order the extensions of each φi

in any manner such that the last extension of φi−1 is adjacent to the first extension of φi in Gj
k(H) (setting

b+ 1 = 1).

Certainly α1 does not extend every proper k-coloring of H ′ to a proper k-coloring of H (by assumption

some vertex v in H ′ neighbors a vertex in H ′′, and some proper k-coloring of H ′ colors a neighbor of v in

H ′ with α1(v)). Hence there exists m ∈ [b − 1] such that α1 extends φ1, . . . , φm to proper k-colorings of

H, but α1 does not extend φm+1 to a proper k-coloring of H. Let the first extension of φm be obtained

by coloring H ′′ according to α1, and for i 6= m let the first extension of φi be obtained by coloring H ′′

according to whichever of αi or βi was not used in the first extension of φi+1 (possibly neither αi nor βi

was used to extend φi+1). Thus for i ∈ [b], the first extension of φi is adjacent in Gj
k(H) to the extension

of φi−1 obtained by coloring H ′′ in the same way, and this extension of φi−1 is not the first extension of

φi−1 in order because they disagree on H ′′ (the first extensions of φm and φm+1 disagree on H ′′ since φm+1

cannot be extended to H by coloring H ′′ according to α1). Obtain the last extension of φi−1 by coloring

H ′′ according to the first extension of φi, and put the other extensions of φi in any order between the first

and last ones. This gives a Hamiltonian cycle through Gj
k(H), since the last extension of φi−1 is adjacent

to the first extension of φi in Gj
k(H).

For distinct vertices u and v of H ′′, recall that fu(u) = f(u)− 1 and fu(v) = f(v).

Corollary 4.3.11. If hk(H ′) ≤ j, and there exists u ∈ V (H ′′) such that H ′′ is fu-choosable, then hk(H) ≤ j.

Proof. We need only show fu(v) ≤ fFu (v) for each u, v ∈ V (H ′′) and connected subgraph F of H ′ on

at most j vertices, since then H ′′ would be fFu -choosable, and the result would follow from Proposition

4.3.10. We have d′(v) ≥ dF (v) since V (F ) ⊆ V (H ′), and j ≥ dF (v) since F has at most j vertices, so

fFu (v)− fu(v) = min{d′(v), j} − dF (v) ≥ 0.

Corollary 4.3.12. If H ′′ = u and k ≥ 2 + dH(u) + min{dH(u), hk(H ′)}, then hk(H) ≤ hk(H ′).
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Proof. Set j = hk(H ′) in Corollary 4.3.11: H ′′ is fu-choosable since H ′′ consists of a single vertex u and

fu(u) = f(u)− 1 = k − d′(u)−min{d′(u), j} − 1 = k − dH(u)−min{dH(u), gk(H ′)} − 1 ≥ 1.

We note that Corollaries 4.3.6 and 4.3.12 can be used to recover the results in [8] and [13] that respectively

state gk(H) = 1 if H is (k − 2)-degenerate, and hk(H) = 1 if H is (k − 3)-degenerate. Indeed, order V (H)

as v1, . . . , vn, where vn is a vertex of minimum degree in H, and for each i ∈ [n − 1], vi is a vertex of

minimum degree in the induced subgraph Hi of H defined by Hi = H − {vi+1, . . . , vn}. Setting Hn = H,

we have dHi
(vi) ≤ d for i ∈ [n] if H is d-degenerate. If k = d + 2, then clearly gk(H1) = 1 (G1

k(H1) is

a complete graph on k vertices), and if gk(Hi−1) = 1, then we get gk(Hi) = 1 by Corollary 4.3.6, since

k = d+ 2 > dHi(vi) + 1 = dHi(vi) + min{dHi(vi), gk(Hi−1)}. If k = d+ 3, then clearly hk(H1) = 1 (G1
k(H1)

is a complete graph on k vertices for some k ≥ 3), and if hk(Hi−1) = 1, then we get hk(Hi) = 1 by Corollary

4.3.12, since k = d+ 3 ≥ 2 + dHi
(vi) + 1 = 2 + dHi

(vi) + min{dHi
(vi), hk(Hi−1)}.

To conclude this section, we prove Proposition 4.1.5 concerning the computations g3(K1,2m), h3(K1,2m),

g3(Cn), and h3(Cn).

Setting H = K1,2m and H ′′ = v for some leaf v of H, we have dH(v) = 1 and H ′ = K1,2m−1. Hence

g3(H ′) = h3(H ′) = 1, so g3(K1,2m) = 1, by Corollary 4.3.6, and h3(K1,2m) = 2, by Corollary 4.3.8 (and the

fact that h3(K1,2m) > 1).

Setting H = Cn for n 6= 4 and H ′′ = v for any vertex v of H, we have dH(v) = 2 and H ′ = Pn−1. Hence

h3(H ′) = 1 since n 6= 4, so h3(Cn) = 2, by Corollary 4.3.8 (and the fact that h3(Cn) > 1).

Finally, we confirm h3(C4) = 2 by exhibiting the following Hamiltonian cycle through G2
3(C4): 1312,

1212, 1232, 1213, 1313, 1323, 2123, 2323, 2313, 2321, 2121, 2131, 3231, 3131, 3121, 3132, 3232, 3212.

4.4 Subdividing Edges

In this section, we prove Theorem 4.1.8, concerning a graph H obtained from a multigraph M by subdividing

each edge of M at least ` times for some ` ≥ 1. Note that χ(H) ≤ 3: the vertices of H that originated in

M form an independent set in H and thus can each be given color 1, and a proper 3-coloring of H can be

completed by coloring the remaining vertices from {2, 3} since each component of H − V (M) is a path.

Obtain a subforest F of H by deleting ` consecutive vertices from each subdivision of an edge in M .

Note that each component of H − V (F ) is a path on ` vertices v1, . . . , v` such that dH(vj) = 2 for j ∈ [`].
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By adding these components of H − V (F ) back to F one at a time, we get the following observation.

Observation 4.4.1. If a graph H is obtained from a multigraph M by subdividing each edge of M at least

` times, then there exists a sequence H0, H1, . . . ,Hm−1, Hm = H of subgraphs of H such that H0 is a forest,

and for i ∈ [m], Hi−V (Hi−1) consists of a path vi1, . . . , v
i
` such that dH(vj) = 2 for j ∈ [`]. Furthermore, the

distance between the neighbors of vi1 and vi` in Hi−1 is greater than ` if those neighbors are distinct, which

is always the case if M is loopless.

Proposition 4.4.2. Let H ′ be a 3-colorable subgraph of a graph H such that H − V (H ′) consists of an

edge uv, with u having a single neighbor x ∈ V (H ′) and v having a single neighbor y ∈ V (H ′) − N [x]. If

g3(H ′) ≤ 2, then g3(H) ≤ 2.

Proof. Set H ′′ as the edge uv, j = 2, and k = 3 in Proposition 4.3.4 (if F is a connected subgraph of H ′ on

at most 2 vertices, then F does not contain both x and y since y /∈ N [x], so either fF (u) ≥ 1 and fF (v) ≥ 2

or fF (u) ≥ 2 and fF (v) ≥ 1; either way H ′′ is fF -choosable).

Corollary 4.4.3. If H is obtained from a loopless multigraph M by subdividing each edge of M at least

twice, then g3(H) ≤ 2.

Proof. Let H0, H1, . . . ,Hm−1, Hm = H be a sequence of subgraphs of H such that H0 is a forest, and for

i ∈ [m], Hi − V (Hi−1) consists of an edge uivi, with ui having a single neighbor xi ∈ V (Hi−1) and vi

having a single neighbor yi ∈ V (Hi−1)−N [xi]. We have g3(H0) = 1 since H0 is a forest, and for i ∈ [m], if

g3(Hi−1) ≤ 2, then g3(Hi) ≤ 2, by Proposition 4.4.2. Hence g3(H) ≤ 2.

We note that the condition that M be loopless is necessary for Corollary 4.4.3 to hold. Indeed, suppose

M has a vertex x with loops L1, . . . , Lj that are subdivided exactly twice in forming H, with new vertices ui

and vi in Li for i ∈ [j]. If φ and φ′ are proper 3-colorings of H such that φ(x) 6= φ′(x), then φ and φ′ lie in

different components of Gj
3(H): for each i ∈ [j], ui and vi are neighbors of x, and {φ(ui), φ(vi)} = [3]−φ(x)

since φ is proper, so x cannot be recolored without also recoloring one of the new vertices from each of

L1, . . . , Lj .

Let H ′ be a 4-colorable subgraph of a graph H such that H − V (H ′) consists of an edge uv, with u

having a single neighbor x ∈ V (H ′) and v having a single neighbor y ∈ V (H ′)−{x}. For proper 4-colorings

ψ1 and ψ2 of H ′ satisfying ψ1(x) = ψ2(x) = 1 and ψi(y) = i, Figure 4.3 shows each subgraph F i of G1
4(H)

induced by the set of proper 4-colorings ψi
1, ψ

i
2, . . . of H that agree with ψi on H ′, with node ψi

` of F i labeled

ψi
`(x)ψi

`(u)ψi
`(v)ψi

`(y). Note that if π is one of the vertices of F 2 labeled 1212, 1342, or 1432, and α is any

vertex of F 2 besides π, then there is a Hamiltonian path through F 2 whose endpoints are π and α. If instead
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π is in {1232, 1412} but α is not, or π is in {1242, 1312} but α is not, then again there is a Hamiltonian path

through F 2 whose endpoints are π and α.

F 1 = 1231

12411341

1321

1421 1431

F 2 = 1212

1312

1342

1242 1232

1432

1412

Figure 4.3: Two induced subgraphs of G1
4(H).

Lemma 4.4.4. Let H ′ be a 4-colorable subgraph of a graph H such that H − V (H ′) consists of an edge uv,

with u having a single neighbor x ∈ V (H ′) and v having a single neighbor y ∈ V (H ′) − {x}, and let φ and

φ′ be proper 4-colorings of H ′ adjacent in G1
4(H ′). Letting G denote the subgraph of G1

4(H) induced by the

proper 4-colorings of H that agree on H ′ with φ, for every π ∈ V (G) there exists α ∈ V (G)− {π} such that

there is a Hamiltonian path through G from π to α, and α is adjacent in G1
4(H) to some proper 4-coloring

of H that agrees with φ′ on H ′.

Proof. Since φ and φ′ are adjacent in G1
4(H ′), they differ on exactly one vertex w of H ′. Thus we may

assume without loss of generality that φ(x) = φ′(x) = 1. Let π ∈ V (G); we find α ∈ V (G)− {π} such that

there is a Hamiltonian path through G from π to α, with α(u) 6= φ′(x) and α(v) 6= φ′(y) (allowing φ′ to

be extended to some proper k-coloring α′ of H by coloring uv like α does, so α and α′ will be adjacent in

G1
4(H) since they only differ on w).

First suppose φ(y) = 1, in which case G looks like F 1 from Figure 4.3. Either φ′(y) = 1 or φ′(y) 6= 1, in

which case without loss of generality assume φ′(y) = 2. In either case, there are extensions of both φ and φ′

to H that label uv as 43, 23, 24, and 34, with every vertex in G adjacent to at least one of these extensions.

Thus no matter whether φ′(y) = 1 or φ′(y) = 2, we can let α be a neighbor of π that labels uv as either 43,

23, 24, or 34 (α ends the Hamiltonian path through G that starts at π and moves in the opposite direction

from α).

Now suppose φ(y) 6= 1; without loss of generality assume φ(y) = 2, in which case G looks like F 2 from

Figure 4.3. If φ′(y) ∈ [2], then there are extensions of both φ and φ′ that label uv as 43 and 34; for each

π ∈ V (G) there is a Hamiltonian path through G from π to at least one of these vertices, which we set as α.

If φ′(y) /∈ [2], then we assume without loss of generality that φ′(y) = 3, in which case there are extensions

of both φ and φ′ that label uv as 24 and 41; for each π ∈ V (G) there is a Hamiltonian path through G from

π to at least one of these vertices, which we set as α.
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Proposition 4.4.5. Let H ′ be a 4-colorable subgraph of a graph H such that H − V (H ′) consists of an

edge uv, with u having a single neighbor x ∈ V (H ′) and v having a single neighbor y ∈ V (H ′) − {x}. If

h4(H ′) = 1, then h4(H) = 1.

Proof. Since h4(P4) = 1, we may assume there exists a vertex z ∈ V (H ′) − {x, y}. Since h4(H ′) = 1,

there exists a Hamiltonian cycle [φ1, . . . , φb] through G1
4(H ′). There exists i such that φi(z) 6= φi+1(z),

in which case φi(x) = φi+1(x) and φi(y) = φi+1(y). If there exists an i such that φi(x) = φi+1(x) 6=

φi(y) = φi+1(y), then without loss of generality assume φb−1(x) = φb(x) = 1 and φb−1(y) = φb(y) = 2.

If there exists no such i, then there must exist ` such that φ`(x) = φ`(y) = φ`+1(x) = φ`+1(y), but

either φ`+1(x) = φ`+2(x) 6= φ`+2(y) or φ`+1(y) = φ`+2(y) 6= φ`+2(x); without loss of generality assume

φb−2(x) = φb−2(y) = φb−1(x) = φb−1(y) = φb(x) = 1 and φb(y) = 2. Call this situation Case 1, and call

the previously discussed situation Case 2. To complete the proof, we alter the Hamiltonian cycle through

G1
4(H ′) into a Hamiltonian cycle through G1

4(H) such that the extensions of each φi appear consecutively,

with the last extension of φi agreeing with the first extension of φi+1 on u and v.

For each i ∈ [b], let Gi denote the subgraph of G1
4(H) induced by the proper 4-colorings of H that agree

on H ′ with φi. By Lemma 4.4.4, for every π ∈ V (Gi) there exists α ∈ V (G) − {π} such that there is a

Hamiltonian path through Gi from π to α, and α is adjacent in G1
4(H) to some proper 4-coloring of H

that agrees with φi+1 on H ′. Let the first extension of φ1 be any coloring in V (G1) for which there exist

distinct colorings π and α in V (Gb) such that there is a Hamiltonian path through Gb from π to α, and α

is adjacent in G1
4(H) to our extension. Letting m = b − 2 if Case 1 holds and m = b − 3 if Case 2 holds,

order the extensions of φ1, . . . , φm, plus the first extension of φm+1, so that the extensions of each φi form a

Hamiltonian path through Gi, with the last extension of φi adjacent in G1
4(H) to the first extension of φi+1.

Let the last extension of φb be the coloring in V (Gb) adjacent in G1
4(H) to the first extension of φ1.

Case 1. We have m = b− 3 as well as φb−2(x) = φb−2(y) = φb−1(x) = φb−1(y) = φb(x) = 1 and φb(y) = 2.

Note that Gb−2 and Gb−1 both look like F 1 from Figure 4.3, while Gb looks like F 2. If we select the

last extension of φb−2 as a neighbor of the first extension of φb−2 in Gb−2, the first extension of φb−1 as the

coloring in V (Gb−1) that agrees with the last extension of φb−2 on u and v, and the last extension of φb−1

as some neighbor in Gb−1 of the first extension of φb−1, then there is a path in G1
4(H) that first touches

every vertex of Gb−2 and then every vertex of Gb−1 (the last extension of φb−2 is adjacent in G1
4(H) to the

first extension of φb−1 because they only differ on the vertex of H ′ where φb−2 and φb−1 differ).

If the last extension of φb uses a color outside of {3, 4} on u or v, then set the last extension of φb−2 as

a common neighbor in Gb−2 of the first extension of φb−2 and a coloring π ∈ V (Gb−2) that colors u and v
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from {3, 4}, also set the first extension of φb−1 as the coloring in V (Gb−1) that agrees with the last extension

of φb−2 on u and v, and also set the last extension of φb−1 as the coloring in V (Gb−1) that agrees with π

on u and v. If the last extension of φb uses both 3 and 4 on {u, v}, then set the last extension of φb−2 as a

common neighbor in Gb−2 of the first extension of φb−2 and a coloring α ∈ V (Gb−2) satisfying α(u) = 2 and

α(v) ∈ {3, 4}, also set the first extension of φb−1 as the coloring in V (Gb−1) that agrees on u and v with the

last extension of φb−2, and set the last extension of φb−1 as the coloring in V (Gb−1) that agrees with α on

u and v.

We complete our Hamiltonian cycle through G1
4(H) by first taking our path through Gb−2 and Gb−1,

then setting the first extension of φb as the coloring in V (Gb) that agrees with the last extension of φb−1

on u and v (this extension of φb exists because φb(u) = 1 and φb(v) = 2 while the last extension of φb−1

colors u from {2, 3, 4} and colors v from {3, 4}, and the last extension of φb−1 and the first extension of φb

are adjacent in G1
4(H) because they only differ on the vertex of H ′ where φb−1 and φb differ), and finally

finding a Hamiltonian path through Gb (such a path exists: if the last extension of φb uses a color outside

of {3, 4} on u or v, then we selected the first extension of φb−1 to color u and v from {3, 4}, so there exists

a Hamiltonian path through Gb from that extension to any other vertex; if the last extension of φb colors u

and v from {3, 4}, then we selected the first extension of φb−1 to color u with 2 and v from {3, 4}, so there

exists a Hamiltonian path through Gb from that extension to any coloring that colors u and v from {3, 4}).

Case 2. We have m = b− 2 as well as φb−1(x) = φb(x) = 1 and φb−1(y) = φb(y) = 2.

Note that Gb−1 and Gb both look like F 2 from Figure 4.3. Notice that if π is one of the vertices of F 2

labeled 1212, 1342, or 1432, and α is any vertex of F 2 besides π, then there is a Hamiltonian path through

F 2 whose endpoints are π and α; pick π to be any element of {1212, 1342, 1432} that disagrees on uv with

both φb−11 and φb∗(b). When traversing the extensions of φb−1, take the Hamiltonian path through Gb−1 from

the first extension of φb−1 to the coloring corresponding to π, and when traversing the extensions of φb, take

the Hamiltonian path through Gb−1 from the coloring corresponding to π to the last extension of φb. This

completes a Hamiltonian cycle through G1
4(H) because the last extension of φb−1 and the first extension of

φb only disagree on the vertex where φb−1 and φb disagree, so they are adjacent in G1
4(H).

Corollary 4.4.6. If H is obtained from a loopless multigraph M by subdividing each edge of M at least

twice, then h4(H) = 1.

Proof. Let H0, H1, . . . ,Hm−1, Hm = H be a sequence of subgraphs of H such that H0 is a forest, and for

i ∈ [m], Hi − V (Hi−1) consists of an edge uivi, with ui having a single neighbor xi ∈ V (Hi−1) and vi
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having a single neighbor yi ∈ V (Hi−1)− {xi}. We have h4(H0) = 1 since H0 is a forest, and for i ∈ [m], if

h4(Hi−1) = 1, then h4(Hi) = 1, by Proposition 4.4.5. Hence h4(H) = 1.

Let H ′ be a 3-colorable subgraph of a graph H such that H − V (H ′) consists of an edge uwv, with u

having a single neighbor x ∈ V (H ′) and v having a single neighbor y ∈ V (H ′)−N(x). For proper 3-colorings

ψ1 and ψ2 of H ′ satisfying ψ1(x) = ψ2(x) = 1 and ψi(y) = i, Figure 4.4 shows each subgraph F i of G2
3(H)

induced by the set of proper 3-colorings ψi
1, ψ

i
2, . . . of H that agree with ψi on H ′, with node ψi

` of F i labeled

ψi
`(x)ψi

`(u)ψi
`(w)ψi

`(v)ψi
`(y). Note that if π is one of the vertices of F 1 such that π(u) = π(v), and α is any

vertex of F 2 besides π, then there is a Hamiltonian path through F 2 whose endpoints are π and α; if instead

π is in {12131, 13121} but α is not, then again there is a Hamiltonian path through F 2 whose endpoints are

π and α. Also note that if π is one of the vertices of F 2 labeled 12312, 13132, or 13232, and α is any vertex

of F 2 besides π, then there is a Hamiltonian path through F 2 whose endpoints are π and α; if instead π is

in {12132, 13212} but α is not, then again there is a Hamiltonian path through F 2 whose endpoints are π

and α.

F 1 =

12121

12321

13131

13121

13231

12131 F 2 =

12312

13212 13232

1213213132

Figure 4.4: Two induced subgraphs of G2
3(H).

Lemma 4.4.7. Let H ′ be a 3-colorable subgraph of a graph H such that H−V (H ′) consists of an edge uwv,

with u having a single neighbor x ∈ V (H ′) and v having a single neighbor y ∈ V (H ′)−N(x), and let φ and

φ′ be proper 3-colorings of H ′ adjacent in G2
3(H ′). Letting G denote the subgraph of G2

3(H) induced by the

proper 3-colorings of H that agree on H ′ with φ, for every π ∈ V (G) there exists α ∈ V (G)− {π} such that

there is a Hamiltonian path through G from π to α, and α is adjacent in G2
3(H) to some proper 3-coloring

of H that agrees with φ′ on H ′.

Proof. Since φ and φ′ are adjacent in G2
3(H ′), they differ on either one vertex or adjacent vertices of H ′.

Since x and y are nonadjacent in H ′ but φ and φ′ are adjacent in G2
3(H ′), we either have x = y, or at least

one of φ(x) = φ′(x) or φ(y) = φ′(y); in the former case, we assume without loss of generality that φ(x) = 1,

and in the latter case, we assume without loss of generality that φ(x) = φ′(x) = 1. Let π ∈ V (G); we find

68



α ∈ V (G) − {q} such that there is a Hamiltonian path through G from π to α, with α(u) 6= φ′(x) and

α(v) 6= φ′(y) (allowing φ′ to be extended to some proper k-coloring α′ of H by coloring uv like α, so α and

α′ will be adjacent in G2
3(H) since they only differ where φ and φ′ differ).

First suppose φ(y) = 1, in which case G looks like F 1 from Figure 4.4. Either φ′(y) = 1 or φ′(y) 6= 1,

in which case without loss of generality assume φ′(y) = 2. Thus we have φ(x) = φ(y) = 1 as well as either

φ′(x) = φ′(y) ∈ [2], or φ′(x) = 1 and φ′(y) = 2. In either case, there are extensions of both φ and φ′ to H

that label uwv as 313 and 323; for each π ∈ V (G) there is a Hamiltonian path through G from π to at least

one of these vertices, which we set as α.

Now suppose φ(y) 6= 1 (so x 6= y, and φ′(x) = 1 by assumption); without loss of generality assume

φ(y) = 2, in which case G looks like F 2 from Figure 4.4. If φ′(y) ∈ [2], then there are extensions of both φ

and φ′ that label uwv as 313 and 323; for each π ∈ V (G) there is a Hamiltonian path through G from π to

at least one of these vertices, which we set as α. If φ′(y) = 3, then there are extensions of both φ and φ′

that label uwv as 231 and 321; for each π ∈ V (G) there is a Hamiltonian path through G from π to at least

one of these vertices, which we set as α.

Proposition 4.4.8. Let H ′ be a 3-colorable subgraph of a graph H such that H − V (H ′) consists of a path

uwv, with w having no neighbor in H ′, u having a single neighbor x ∈ V (H ′), v having a single neighbor

y ∈ V (H ′)−N(x), and there existing a vertex z ∈ V (H ′)−N [x] ∪N [y]. If h3(H ′) ≤ 2, then h3(H) ≤ 2.

Proof. Since h3(H ′) ≤ 2, there exists a Hamiltonian cycle [φ1, . . . , φb] through G2
3(H ′). There exists i such

that φi(z) 6= φi+1(z), in which case φi(x) = φi+1(x) and φi(y) = φi+1(y) since neither x nor y is z or

is adjacent to z. If there exists an i such that φi(x) = φi(y) = φi+1(x) = φi+1(y), then without loss of

generality assume φb−1(x) = φb−1(y) = φb(x) = φb(y) = 1. If there exists no such i, then there must exist

` such that φ`(x) = φ`+1(x) 6= φ`(y) = φ`+1(y); without loss of generality assume φb−1(x) = φb(x) = 1

and φb−1(y) = φb(y) = 2. To complete the proof, we alter the Hamiltonian cycle through G2
3(H ′) into a

Hamiltonian cycle through G2
3(H) such that the extensions of each φi appear consecutively, with the last

extension of φi agreeing with the first extension of φi+1 on u, v, and w.

For each i ∈ [b], let Gi denote the subgraph of G2
3(H) induced by the proper 3-colorings of H that agree

on H ′ with φi. By Lemma 4.4.7, for every π ∈ V (Gi) there exists α ∈ V (G) − {π} such that there is a

Hamiltonian path through Gi from π to α, and α is adjacent in G2
3(H) to some proper 3-coloring of H that

agrees with φi+1 on H ′. Set the first extension of φ1 as any coloring in V (G1) for which there exist distinct

colorings π and α in V (Gb) such that there is a Hamiltonian path through Gb from π to α, and α is adjacent

in G2
3(H) to our extension. Order the extensions of φ1, . . . , φb−2, plus the first extension of φb−1, so that the

extensions of each φi form a Hamiltonian path through Gi, with the last extension of φi adjacent in G2
3(H)
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to the first extension of φi+1. Let the last extension of φb be the coloring in V (Gb) adjacent in G2
3(H) to

the first extension of φ1.

By assumption we have either φb−1(x) = φb−1(y) = φb(x) = φb(y) = 1, or φb−1(x) = φb(x) = 1 and

φb−1(y) = φb(y) = 2. In the former case, Gb−1 and Gb both look like F 1 from Figure 4.4. Notice that if

π is one of the vertices of F 1 labeled 12121, 12321, 13131, or 13231, and α is any vertex of F 1 besides π,

then there is a Hamiltonian path through F 1 whose endpoints are π and α; pick π to be any element of

{12121, 12321, 13131, 13231} that disagrees with the first extension of φb−1 and the last extension of φb on

u, w, and v. In the latter case, Gb−1 and Gb both look like F 2 from Figure 4.4. Notice that if π is one

of the vertices of F 2 labeled 12312, 13132, or 13232, and α is any vertex of F 2 besides π, then there is a

Hamiltonian path through F 2 whose endpoints are π and α; pick π to be any element of {12312, 13132, 13232}

that disagrees with the first extension of φb−1 and the last extension of φb on u, w, and v. In either case,

we can traverse the extensions of φBb− 1 by taking the Hamiltonian path through Gb−1 from the first

extension of φb−1 to the coloring corresponding to π, and we can traverse the extensions of φb by taking

the Hamiltonian path through Gb−1 from the coloring corresponding to π to the last extension of φb. This

completes a Hamiltonian cycle through G2
3(H) because the last extension of φb−1 and the first extension of

φb only disagree on the vertex where φb−1 and φb disagree, so they are adjacent in G2
3(H).

Corollary 4.4.9. If H is obtained from a multigraph M by subdividing each edge of M at least three times,

then h3(H) ≤ 2.

Proof. Since h3(Pn) = 1 for n ≥ 5 and h3(Cn) = 2 for n ≥ 4, we may assume M has more than one

edge. Let H0, H1, . . . ,Hm−1, Hm = H be a sequence of subgraphs of H such that H0 is a forest, and for

i ∈ [m], Hi − V (Hi−1) consists of an edge uiwivi, with wi having no neighbor in Hi−1, ui having a single

neighbor xi ∈ V (Hi−1), vi having a single neighbor yi ∈ V (Hi−1) − N(x), and there existing a vertex

zi ∈ V (Hi−1) − N [xi] ∪ N [yi]. We have h3(H0) ≤ 2 since H0 is a forest, and for i ∈ [m], if h3(Hi−1) ≤ 2,

then h3(Hi) ≤ 2, by Proposition 4.4.8. Hence h3(H) ≤ 2.

4.5 Complete Multipartite Graphs

In this section we prove Theorem 4.1.8, concerning complete multipartite graphs. To prove our first result,

we use the following theorem of Kompelmakher and Liskovets from 1975 [29]. Given a set T of transpositions

acting on permutations of [n], let G(T ) be the graph whose vertices are the elements of [n], with edges joining

b and c if and only if some transposition in T swaps the values in positions b and c; we call T a basis of

transpositions if G(T ) is a tree. If T is a basis of transpositions, then the permutations of [n] can be ordered
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cyclically so that consecutive permutations differ by a transposition in T . Note that if T consists of all

transpositions involving the first position, then G(T ) is a star, so T is a basis of transpositions.

Theorem 4.5.1. If H = Km1,...,mk
, where k ≥ 2 and m1 ≤ · · · ≤ mk, then gk(H) = hk(H) = m1 +mk.

Proof. Since gk(H) ≤ hk(H), it suffices to show gk(H) ≥ m1+mk and hk(H) ≤ m1+mk. Let the partite sets

of H be X1, . . . , Xk, with |Xi| = mi for each i ∈ [k]. The only proper k-colorings of H assign the elements

of [k] to the partite sets X1, . . . , Xk in a one-to-one fashion, coloring each partite set monochromatically.

Thus the proper k-colorings of H correspond in a one-to-one fashion with the proper k-colorings of Kk.

For colorings differing on Xk to be in the same component of Gj
k(H), there must be adjacent vertices in

Gj
k(H) that differ on Xk and some other partite set. Since X1 is the smallest partite set, gk(H) ≥ m1 +mk.

By [29], there is a cyclic ordering C of the permutations of [k] such that consecutive permutations differ

in the first position and exactly one other position. When j ≥ m1 + mk, the ordering C corresponds to a

Hamiltonian cycle through Gj
k(H), since successive steps are performed by interchanging the colors on the

smallest partite set and one other partite set. Hence hk(H) ≤ m1 +mk.

Theorem 4.5.2. If H is a complete k-partite graph and ` > k, then g`(H) = 1.

Proof. We prove the theorem by first showing that any proper `-coloring of H is in the same component

of G1
`(H) as some proper k-coloring of H, then showing that all proper k-colorings of H are in the same

component of G1
`(H). For the first claim, if φ is a proper `-coloring of H, then φ assigns no color to multiple

partite sets, so each partite set X can be recolored monochromatically to some color assigned by φ to one

of its vertices. For the second claim, suppose φ only uses a set S of k colors, and note that the color b given

to any partite set X could be changed one vertex at a time to any color c /∈ S. If X is to be recolored with

some color d already assigned to some partite set Y , then recolor Y with c before recoloring X with d. Since

no proper coloring gives the same color to multiple partite sets, this process can be applied to each partite

set until the desired coloring is obtained.

Given distinct colors b and c, let Qn(b, c) be the n-dimensional hypercube with a vertex for each n-bit

binary string from the alphabet {b, c} and an edge between vertices differing in exactly one coordinate. As

in [13], we shall use the well-known facts that Qn(b, c) is Hamiltonian for all n ≥ 2, and Qn(b, c) contains a

Hamiltonian path from b · · · b to c · · · c if and only if n is odd.

Theorem 4.5.3. Let H be a complete k-partite graph. Then hk+1(H) = 1 if each partite set has an odd

number of vertices, and hk+1(H) = 2 otherwise.
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Proof. Let H have partite sets X1, . . . , Xk, and let Kk have vertex set [k]. Set n = (k + 1)!. Since

hk+1(Kk) = 1, there exists a Hamiltonian cycle [φ1, . . . , φn] through G1
k+1(Kk). For i ∈ [n], let ai be the

vertex of Kk that receives different colors from φi and φi+1, with φi(ai) = bi and φi+1(ai) = ci; note that

ai 6= ai+1 (if ai = ai+1, then we would have φi+2 = φi if ci+1 = bi, and φi+2 = φi+1 if ci+1 = ci, with φi+2

using color ci+1 on both ai and some neighbor of ai if ci+1 ∈ [k+ 1]− {bi, ci}). If R is a path α1, . . . , αm in

G1
2(Xai) such that each α` colors the vertices of Xai using colors bi and ci, then let φi · R denote the path

π1, . . . , πm in G1
k+1(H) such that π`(v) = r`(v) if v ∈ Xai

, and π`(v) = φi(d) if v ∈ Xd for d ∈ [k] − {ai}.

Indeed, φi ·R is a path in G1
k+1(H) because π` and π`+1 differ only on the vertex of Xai

where α` and α`+1

differ.

For i ∈ [n], view each vertex of the hypercube Q|Xai
|(bi, ci) as a coloring of Xai

using the colors bi and ci

(so the jth vertex of Xai
is colored according to the jth coordinate of the given hypercube vertex). Hence

paths in Q|Xai
|(bi, ci) correspond to paths in G1

2(Xai), since adjacent vertices α and β in Q|Xai
|(bi, ci) differ

in exactly one coordinate, which is the only vertex of Xai
on which the colorings of Xai

corresponding to α

and β differ.

We are now ready to prove the theorem via three claims.

Claim. We have hk+1(H) ≤ 2.

There exists a Hamiltonian cycle through Q|Xai
|(bi, ci) for each i ∈ [n]; break that cycle up into two

directed paths Ri and Si, with Ri starting at bi · · · bi and Si starting at ci · · · ci. Note that the other endpoint

of Ri uses bi exactly once, and the other endpoint of Si uses ci exactly once. Let S′i be Si with ci · · · ci deleted,

so S′i starts by using bi exactly once. To prove the claim, we show that φ1 ·R1, . . . , φn ·Rn, φ1 ·S′1, . . . , φn ·S′n

is a Hamiltonian cycle through G2
k+1(H):

• Every proper (k + 1)-coloring φ of H is included exactly once: the proper (k + 1)-colorings of H that

use only k colors correspond to the proper (k+1)-colorings of Kk (since no color can appear in multiple

partite sets), which in turn correspond to the initial colorings of φi ·Ri for i ∈ [n]. The proper (k+ 1)-

colorings of H that use all k+1 colors can be uniquely obtained from our Hamiltonian cycle [φ1, . . . , φn]

through G1
k+1(Kk) by coloring Xai

using both bi and ci (the ways of doing which correspond to the

vertices of Q|Xai
|(bi, ci) besides bi · · · bi and ci · · · ci) while coloring Xd monochromatically with φi(d)

for each d 6= ai; thus these colorings of H correspond to those in φi ·Ri or φi ·S′i for i ∈ [n], minus the

initial colorings of φi ·Ri.

• For i ∈ [n], φi ·Ri and φi · S′i are paths in G1
k+1(H).
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• For i ∈ [n − 1], the last coloring of φi · Ri is adjacent in G1
k+1(H) to the first coloring of φi+1 · Ri+1

because they differ only on the lone vertex in Xai
colored bi by the last vertex in Ri.

• The last coloring of φn · Rn is adjacent in G2
k+1(H) to the first coloring of φ1 · S′1 because they differ

only on the edge uv, where u is the lone vertex in Xan
colored bn by the last vertex in Rn, and v is

the lone vertex in X1 colored b1 by the first vertex in S′1 (u and v are adjacent because an 6= a1).

• For i ∈ [n − 1], the last coloring of φi · S′i is adjacent in G2
k+1(H) to the first coloring of φi+1 · S′i+1

because they differ only on the edge uv, where u is the lone vertex in Xai
colored ci by the last vertex

in S′i, and v is the lone vertex in Xai+1 colored bi+1 by the first vertex in S′i+1 (u and v are adjacent

because ai 6= ai+1).

• The last coloring of φn · S′n is adjacent in G1
k+1(H) to the first coloring of φ1 · R1 because they differ

only on the lone vertex in Xan colored cn by the last vertex in S′n.

Claim. If |Xi| is odd for each i ∈ [k], then hk+1(H) = 1.

If each partite set of H has an odd number of vertices, then there exists a Hamiltonian path Ti from bi · · · bi

to ci · · · ci in the hypercube Q|Xai
|(bi, ci) for each i ∈ [n]; let T ′i be Ti with ci · · · ci deleted, so the last vertex

of T ′i uses bi exactly once. To prove the claim, we show that φ1 · T ′1, . . . , φn · T ′n is a Hamiltonian cycle

through G1
k+1(H):

• Every proper (k + 1)-coloring φ of H is included exactly once: the proper (k + 1)-colorings of H that

use only k colors correspond to the proper (k + 1)-colorings of Kk, which in turn correspond to the

initial colorings of φi · T ′i for i ∈ [n]. The proper (k+ 1)-colorings of H that use all k+ 1 colors can be

uniquely obtained from our Hamiltonian cycle [φ1, . . . , φn] through G1
k+1(Kk) by coloring Xai

using

both bi and ci (the ways of doing which correspond to the vertices of Q|Xai
|(bi, ci) besides bi · · · bi

and ci · · · ci) while coloring Xd monochromatically with φi(d) for d 6= ai; thus these colorings of H

correspond to those in φi · T ′i for i ∈ [n], minus the initial colorings of φi · T ′i .

• For i ∈ [n], φi · T ′i is a path in G1
k+1(H).

• For i ∈ [n], the last coloring of φi ·T ′i is adjacent in G1
k+1(H) to the first coloring of φi+1 ·T ′i+1 (letting

φn+1 = φ1 and T ′n+1 = T ′1) because they differ only on the lone vertex in Xai
colored bi by the last

vertex in T ′i .

Claim. If hk+1(H) = 1, then |Xi| is odd for each i ∈ [k].

73



Let i ∈ [k]. Either |Xi| = 1, or there exists a proper (k + 1)-coloring φ of H that uses distinct colors b and

c on Xi. Note that φ must color each vertex of Xi with b or c, and each partite set besides Xi must receive

exactly one color, which cannot appear elsewhere (there are k− 1 partite sets besides Xi, and they must be

colored with the k − 1 colors of [k + 1] − {b, c} in order for φ to be a proper (k + 1)-coloring of H). If φ′

is adjacent to φ in G1
k+1(H), then φ′ must disagree with φ on Xi and agree with φ outside of Xi (if φ and

φ′ agreed on Xi, then they would have to disagree on multiple partite sets besides Xi, in which case they

wouldn’t be adjacent in G1
k+1(H)). Therefore, if W is the set of (k + 1)-colorings of H that agree with φ

outside of Xi, then there are only two colorings π and α in W that have neighbors in G1
k+1(H) outside of

W : one colors Xi monochromatically with b, and the other colors Xi monochromatically with c. Thus any

Hamiltonian cycle through G1
k+1(H) must contain a π, α-path P whose vertices are the colorings agreeing

with φ outside of Xi. Hence the restriction of P to Xi yields a Hamiltonian path through the hypercube

Q|Xai
|(b, c) between b · · · b and c · · · c, so |Xi| must be odd.
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Chapter 5

Game Acquisition on Complete
Bipartite Graphs

The results of this chapter are part of a yet-to-be published manuscript coauthored with Milans, Stocker,

West, and Wigglesworth [34]. The results credited to this manuscript in Section 5.1 were proved by these

coauthors, while the results from the rest of the chapter were proved by the author of this dissertation.

5.1 Introduction

Suppose military forces are dispersed throughout a region, with roads connecting some of the troop locations.

If the troops need to be consolidated, it would be safer to limit travel to adjacent towns, and it would make

sense for outposts to accept troops from outposts with equal or fewer numbers, rather than have larger units

move to join smaller ones. Thus we have the basis for acquisition moves in a graph.

Given a graph each vertex v of which has a nonnegative integer weight w(v), an acquisition move consists

of a vertex x taking all the weight from a neighbor y satisfying w(y) ≤ w(x) before the move. The acquisition

number of a graph G, written a(G), is the minimum size of an independent set reachable by acquisition moves

from the configuration in which every vertex has weight 1.

Acquisition number was introduced by Lampert and Slater [30], who showed that a(G) ≤ d(n+ 1)/3e and

that the bound holds with equality for certain trees. Slater and Wang [45] proved that testing a(G) = 1 is NP-

complete, and they provided a linear-time algorithm to compute a(G) when G is a caterpillar. LeSaulnier

et al. [32] showed that a(G) = (n + 1)/3 for a broader family of trees having diameters between 6 and

2
3 (n + 1), showed that the maximum is Θ(

√
n log n) for trees with diameter 4 or 5, characterized the trees

with acquisition number 1 (which allows testing a(G) ≤ k in time O(nk+2) when G is a tree), gave sufficient

conditions for a(G) = 1 that yield min{a(G), a(G)} = 1 when G 6= C5, and showed that the maximum

increase in the acquisition number when an edge is deleted from an n-vertex graph is Θ(
√
n). LeSaulnier

and West [31] characterized the n-vertex graphs with a(G) = (n + 1)/3; these are the trees obtained from

K2 by iteratively growing a path with three edges from a neighbor of a leaf. Other models of acquisition, in

which not all the weight must be transferred in a move, are discussed in [40, 47].
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Competitive versions of optimization parameters model scenarios where the optimizer does not make all

the decisions. For example, weather or enemy troops may prevent desired acquisition troop movements. In

the acquisition game on a graph G, players Min and Max alternate acquisition moves. Min seeks to minimize

the size of the final independent set, while Max seeks to maximize it. The game acquisition number is the

size of the final set under optimal play, written ag(G) when Min starts the game and âg(G) when Max starts.

The choice of who starts the game can make quite a difference, as we see with the star K1,n: ag(K1,n) = 1

(Min starts by moving weight from a leaf to the center, and all subsequent moves must do the same), but

âg(K1,n) = n (Max starts by moving weight from the center to the leaf, ending the game).

The game acquisition number was introduced by Slater and Wang [44]. They proved ag(Pn) = 2n
5 + c,

where c is a small constant depending only on the congruence class of n modulo 5. In [34] it is proved that

âg(Km,n) = n−m+ 1 for m ≤ n; by moving first, Max is able to immediately absorb weight into the larger

partite set and thus force the final independent set to reside there.

In this chapter, we study the Min-start game on the complete bipartite graph Km,n, where m ≤ n. This

turns out to be much more difficult to analyize than the Max-start game, especially the lower bound. In Sec-

tion 5.2, we give a strategy for Min that proves the upper bound ag(Km,n) ≤ min{
⌊
n−m

3

⌋
+2, 2 log3/2m+18}.

In Sections 5.3 through 5.5, we give a strategy for Max to prove that ag(Km,n) ≥ min{
⌊
n−m

3

⌋
, 2 log3/2m−

2 log3/2 log3/2m− 26}. Thus we have the following.

Theorem 5.1.1. For m ≤ n, we have

ag(Km,n) ∼ min

{
n−m

3
, 2 log3/2m

}
.

For the rest of the chapter, we shall refer to the partite sets of Km,n as X and Y , with |X| = m, |Y | = n,

and m ≤ n. A live vertex is a vertex having weight at least 1, a pawn is a vertex having weight exactly 1,

and a king is a vertex having weight at least 2. Let x̂ and ŷ denote specified currently heaviest vertices in

X and Y , respectively. When an acquisition move transfers the weight of a vertex u to another vertex v, we

say that u is absorbed into v and that u is killed. Each move of the acquisition game on Km,n consists of a

vertex from one partite set being absorbed into a vertex in the other partite set.

5.2 Min’s Strategy

In this section we obtain two upper bounds on ag(Km,n) via strategies for Min. The first is in terms of

n−m and is strong when n is near m; the second is in terms of m only and is strong when n is large.
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Lemma 5.2.1. Suppose that X consists of q kings and p pawns and Y consists of t kings and s pawns,

where q, t ≥ 1 and s ≥ p. Let r = t + max{0, s − p − q + 1}. If Max moves next, then Min can guarantee

ending with at most max{q, r} live vertices.

Proof. We use induction on p. If p = 0, then the live vertices are q kings in X plus t kings and s pawns in

Y . Each move by Min absorbs a pawn in Y into a king in X, until no more pawns exist in Y or no more

kings exist in X. Since no more kings can now be created, the game either ends in X with at most q kings,

or it ends in Y with at most t kings and some number of remaining pawns. Min can ensure that at least

min{s, q − 1} pawns are absorbed into X, since Max absorbs at most one king from X into Y with each

move. Hence Min ensures that at most max{0, s − q + 1} pawns remain in Y when the game ends. The

number of vertices at the end is then at most q or at most r, as claimed.

For p ≥ 1, the strategy for Min is:

(1) If Max creates a king, then Min absorbs it into a king on the other side.

(2) If Max absorbs a king, then Min creates a king to replace it.

(3) If Max absorbs a pawn into a king, then Min does the same on the other side.

In each case, after the two moves both X and Y lose a pawn, but the number of kings on each side remains

unchanged. Hence the values of r and q also remain unchanged. By the induction hypothesis, the game ends

with at most max{q, r} live vertices.

Theorem 5.2.2. ag(Km,n) ≤
⌊
n−m

3

⌋
+ 2.

Proof. Since Min can keep kings from surviving in Y , always ag(Km,n) ≤ m, so we may assume n−m
3 < m.

Min begins by creating a king in X. While X has fewer than
⌈
n−m

3

⌉
kings, Min uses the following strategy,

which never leaves a king in Y after a move by Min:

(1) If Max creates a king in Y , then Min absorbs it into a king in X.

(2) If Max creates a king in X, then Min absorbs a pawn from Y into a king in X.

(3) If Max absorbs a pawn from Y into a king in X, then Min creates a king in X.

Since Min never leaves a king in Y , Max has no other options. During this strategy, each Max-Min pair of

moves decreases the number of pawns on each side by 1, except that each round that creates a king in X

(Type 2 or Type 3) uses an extra pawn from Y .

Let q =
⌈
n−m

3

⌉
+ 1. If the number of kings in X never reaches q, then the game ends in X with fewer

than q live vertices, since Min never leaves a king in Y . Otherwise, when the number of kings in X is q and
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Min is to move, Min creates a king in Y . For each king that was created, except the first (and possibly the

last if q > 1), one more pawn was removed from Y than from X.

Max moves next with q kings in X, one king in Y , and at least as many pawns in Y as in X. Thus

Lemma 5.2.1 applies, with

s− p− q + 1 ≤ (n−m)− (q − 2)− q + 1 = (n−m)− 2

⌈
n−m

3

⌉
+ 1 ≤

⌊
n−m

3

⌋
+ 1,

and Min can end the game with at most max{
⌈
n−m

3

⌉
+ 1,

⌊
n−m

3

⌋
+ 2} live vertices.

When n > 4m, the bound
⌊
n−m

3

⌋
+ 2 is worse than the trivial bound ag(Km,n) ≤ m that Min can

guarantee by starting with a king in X and immediately absorbing into X every king that Max creates in

Y . In fact, we show in the rest of this section that Min can do much better, cutting ag(Km,n) to a multiple

of logm.

The idea is that Min builds a king x̂ in X with large weight. When x̂ is heavy enough, Min can afford

to allow one king ŷ to remain temporarily in Y to absorb weight from X. Min will still have time to absorb

ŷ into x̂ later, before the weight of ŷ becomes dangerously large. In this way, x̂ can wind up absorbing not

only weight from Y but also much of the weight that originates in X.

Call the position after Min moves safe if w(x̂) ≥ 2w(ŷ) and Y has at most one king. With an initial

move that makes a king in X, Min creates a safe position.

Algorithm 5.2.3. After a move by Max from a safe position, Min responds as follows.

(1) If Max created a king in Y or w(x̂) < 2(w(ŷ) + 2), then Min absorbs ŷ into x̂.

(2) If Max did not create a king in Y and w(x̂) ≥ 2(w(ŷ) + 2), then Min absorbs into ŷ

from X a king of weight 2 (if this is possible) or a pawn.

(3) If Y has no king and X has no pawn, then the remaining moves absorb pawns into

X to end with |X| live vertices.

Lemma 5.2.4. Algorithm 5.2.3 is well-defined, leaves safe positions, and ends the game in X.

Proof. The conditions for (1)–(3) are disjoint; note that the comparison of w(x̂) and w(ŷ) is after the move

by Max. As long as both X and Y are nonempty, x̂ and ŷ exist. Since w(x̂) ≥ 2w(ŷ) in the previous safe

position, absorbing ŷ into x̂ is an available move for Min. The second type of move is also available unless

Y has no king and X has no pawn.

Let t and t′ be the numbers of kings in X before the move by Max and after the move by Min. Since

t ≤ 1, each move guarantees t′ ≤ 1. If t′ = 0, then the existence of a king in X makes the new position safe.
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If t′ = 1, then under (1) the weight of the king remaining in Y is 2, while x̂ reaches weight at least 4. If (2)

applies, then w(ŷ) increases by at most 2 when Min moves, so the required inequality on weights still holds.

The game ends in X, because each move by Min leaves the heaviest vertex in X.

Under Algorithm 5.2.3 for Min, the game ends in X. Therefore, Max wishes to preserve as many vertices

in X as possible. Intuitively, Max wants to create kings in X. If Max makes a king in X with each move, as

long as pawns exist in Y , then Min will absorb those kings into ŷ except on a move when Min absorbs ŷ into

x̂ and the subsequent move when Min recreates a king in Y . Since ŷ is absorbed into x̂ when w(ŷ) reaches

about w(x̂)/2, Max preserves two kings in X for each increase in w(x̂) by a factor of 3/2. This explains the

leading term 2 log3/2m in the upper bound.

First we prove that Algorithm 5.2.3 ensures the upper bound.

Lemma 5.2.5. Let Min play the game on Km,n using Algorithm 5.2.3. With Max about to move, let p, q, s

be the numbers of pawns in X, kings in X, and pawns in Y , respectively, and let r = q + max{0, p − s}.

Always this invariant increases by at most 1 during the Max-Min pair of moves, with increase occurring at

most 2b times, where b is the number of moves by Min that absorb ŷ into x̂ when w(x̂) < 2(w(ŷ) + 2).

Proof. Say that a move where Min absorbs ŷ into x̂ when w(x̂) < 2(w(ŷ) + 2) is a big move. The initial

move by Min is big and produces r = q + 0 = 1. The effect of one move by Max or Min on the invariant r

is as follows:

creating a king in X: +1

absorbing a pawn from Y into a king in X: +1 or 0

absorbing a king from Y into a king in X: 0

creating a king in Y : 0

absorbing a pawn from X into a king in Y : −1 or 0

absorbing a king from X into a king in Y : −1

We consider each subsequent type of round, combining one move each by Max and Min. We have already

proved that each move by Min leaves at most one king in Y . Also Min always leaves w(x̂) ≥ 2w(ŷ), so the

game cannot end in Y . When moves of type (3) are reached, the value of r remains unchanged.

Type (1a): Max creates a king in Y ; Min absorbs ŷ into x̂. Each move produces no change in the

invariant.

Type (1b): Min makes a big move. The move by Min produces no change. Every move by Max changes

the value by at most 1.
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Type (2): Max does not create a king in Y and w(x̂) ≥ 2(w(ŷ) + 2). Min absorbs a vertex into Y and

hence does not increase the invariant, while Max increases it by at most 1. Hence it suffices to show that if

Max absorbs a pawn from Y to create or enlarge a king in X, then Min’s move reduces the invariant every

time except once before the next big move.

A move to reduce the invariant must absorb a vertex from X into an existing king in Y . After a big

move a succession of moves of type (1) that are not big may leave no king in Y , so the first after a big move

that has a move of type (2) may increase the invariant. It leaves a king in Y . During the subsequent type

(2) moves until the next big move, if Max absorbs the king from Y , then Min will recreate it, not changing

the invariant.

Thus if Max absorbs a pawn from Y , then there is a king available in Y to absorb a vertex from X. If

X has a king of weight 2 (such as when Max created a king), then Min absorbs it to reach net change 0 on

the round. Hence the remaining case is p ≥ s ≥ 1. Here, Max absorbs a pawn from Y into a king in X to

increase the invariant, and X has no king of weight 2. Since this increases the invariant only when p ≥ s,

there remains a pawn in X for Min to absorb into ŷ to reach net change 0 on the round.

We have proved that the invariant can increase on a round with a big move and on at most one other

round before the next big move.

Theorem 5.2.6. If m ≤ n, then ag(Km,n) ≤ 2 log3/2m+ 18.

Proof. Define p, q, r, s as in Lemma 5.2.5. At the start of the game, q = 0 and s = n ≥ m = p, so r = 0.

Under Algorithm 5.2.3, Min guarantees that the game ends in X, with s = 0 and q + p live vertices, so the

value of the game is the final value of r. By Lemma 5.2.5, it suffices to bound the number of big moves.

Let ak be the weight of x̂ achieved by the kth big move after the weight of x̂ first reaches at least 6. Thus

a0 ≥ 6.

At the time of the kth subsequent big move, the weight of x̂ is at least ak−1, and the gain on that move

is w(ŷ). Since the move occurs when w(x̂) < 2(w(ŷ) + 2), we have ak − ak−1 ≥ (ak−1 − 1)/2 − 2. The

recurrence simplifies to ak ≥ 3
2ak−1 −

5
2 . With a0 ≥ 6, we obtain ak ≥ ( 3

2 )k + 5.

The final ingredient is that w(ŷ) is always less than 2m. The moves by Min that increase the weight on

ŷ are all type (2), which involve ŷ absorbing a vertex of weight at most 2 from X. At least half of all such

weight is the weight that was originally on a pawn in X (other than x̂), and there are fewer than m such

units.

Therefore, the weight on x̂ is less than 6m after the last big move. We conclude that the number of big

moves is at most log3/2(6m − 5). We obtain ag(Km,n) ≤ 2 log3/2(6m) + c, where c is the number of times

the invariant r can increase before w(x̂) first reaches 6. With c bounded by 10, the result follows.
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5.3 An Overview of Max’s Strategy

In this section, we give an overview of Max’s strategy to prove that there exists some constant κ such that

ag(Km,n) ≥ min{
⌊
n−m

3

⌋
, 2 log3/2m−2 log3/2 log3/2m}−κ. Henceforth, let p count the pawns in X, q count

the kings in X, s count the pawns in Y , and t count the kings in Y , and set r = |Y | − |X|. Let t̃ count the

kings in Y weighing more than 2 (so t̃ = 0 if and only if w(ŷ) ≤ 2).

If r is large, then Max can end the game with many live vertices in Y if given the opportunity. We want

to give conditions that allow Max to do just that.

Lemma 5.3.1. If Max makes a move leaving w(ŷ) ≥ 2w(x̂), then Max can guarantee the game ends with

at least r live vertices in Y .

Proof. Set r0 = r directly after Max’s move. We use induction on |X|. If |X| = 0, then the game is over,

and Y has r0 live vertices. Otherwise, Min’s next move either kills the last vertex in X, ending the game

with r0 live vertices in Y , or it leaves a live vertex in X. In the latter case, Min’s move kills at most one

vertex from Y , but it does not more than double the weight of any vertex in x. Thus Min’s move decreases r

by at most 1, does not change |X|, and leaves w(ŷ) ≥ w(x̂). Max can respond by absorbing x̂ into ŷ, which

increases r by 1, decreases |X| by 1, and leaves w(ŷ) ≥ 2w(x̂). The induction hypothesis applies, and the

game ends with at least r0 live vertices in Y .

At a given time, let q̇ count the kings in X weighing more than the heaviest king in Y , and let q̈ count

the kings in X weighing more than the second-heaviest king in Y . Call a Min move foolish if it leaves q = 0

or q̈ > t, as well as some live vertex x ∈ X satisfying w(x̂)−w(ŷ) < w(x) ≤ w(ŷ) (“foolish” because it allows

Max to end the game with many live vertices in Y ).

Lemma 5.3.2. If Min makes a foolish move, then Max can guarantee the game ends with at least r+ 1 live

vertices in Y .

Proof. Set r0 = r directly after Min’s foolish move. If q = 0, then Max can absorb a vertex from X into Y ,

and Lemma 5.3.1 applies immediately. Otherwise, use induction on |X| to prove the claim in the case q̈ > t.

Let x be a live vertex in X satisfying w(x̂) − w(ŷ) < w(x) ≤ w(ŷ), and let Max respond to Min’s foolish

move by absorbing x into ŷ; this is a valid move (due to the second inequality), and it leaves w(ŷ) > w(x̂)

(due to the first inequality), q̈ ≥ t, and r = r0 + 1. If |X| = 1, then Max’s move ends the game, and Y has

r0 + 1 live vertices. Otherwise, Min’s response either kills the last vertex in X, ending the game with r0 + 2

live vertices in Y , or it leaves a live vertex in X; for the rest of the proof we assume the latter case.

If Min’s response kills a pawn from Y or any vertex from X, then it leaves w(ŷ) ≥ w(x̂) and r ≥ r0.

Max can then absorb x̂ into ŷ, leaving w(ŷ) ≥ 2w(x̂) and r ≥ r0 + 1; Lemma 5.3.1 applies, and the game
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ends with at least r0 + 1 live vertices in Y . If instead Min’s move kills a king y ∈ Y , then y 6= ŷ since

w(ŷ) > w(x̂), and the move leaves q̈ > t ≥ 1 and r = r0. The induction hypothesis applies, and the game

ends with at least r0 + 1 live vertices in Y .

Because Min starts the game, there is no guarantee that Max will be given the opportunity to end the

game in Y . Thus we need to give Max some tools for ending the game with live vertices in X. Recall that

q̇ counts the kings in X heavier than ŷ.

Lemma 5.3.3. If it is Max’s turn and w(x̂) ≥ w(ŷ), then Max can guarantee the game ends with at least

max{q̇, q − t} live vertices in X.

Proof. Let Max absorb ŷ into x̂, leaving w(x̂) ≥ 2w(ŷ) and not decreasing q̇. We complete the proof by using

induction on |Y | to show that if w(x̂) ≥ 2w(ŷ) and it is Min’s turn, then Max can guarantee the game ends

with at least max{q̇, q− t} live vertices in X. If |Y | = 0, then the game has ended with at least max{q̇, q− t}

live vertices in X. Otherwise, Min’s move either kills the last vertex in Y , which doesn’t decrease q̇ or q − t

but does end the game with at least max{q̇, q− t} live vertices in X, or Min’s move leaves a live vertex in Y .

In the latter case, Min’s move could not kill a king in X counted by q̇, nor could it decrease q− t by more

than 1 (a move that kills a king from X cannot also create a king in Y ), nor could it leave w(x̂) < w(ŷ). Thus

Max can respond by absorbing ŷ into x̂, re-establishing w(x̂) ≥ 2w(ŷ) and decreasing |Y |. Compared to after

Max’s previous move, w(ŷ) could not have increased, so all kings in X counted by q̇ after Max’s previous

move are also currently counted by q̇. Max’s response keeps q− t constant if Min’s move left t = 0, in which

case Min’s move could not have decreased q − t, and Max’s move increases q − t if Min’s move left t > 0.

Since |Y | has decreased, the induction hypothesis applies, and the game ends with at least max{q̇, q− t} live

vertices in X.

According to Lemmas 5.3.2 and 5.3.3, a strategy that creates many kings in X heavier than ŷ will allow

Max to end the game with many live vertices in Y if Min makes a foolish move, or end the game with many

live vertices in X if Min does not make a foolish move. Thus we seek such a strategy for Max. Call a move

by Max efficient if it either creates a king in X or kills a king from Y , and say that Max plays efficiently if

all his moves are efficient.

Proposition 5.3.4. Suppose that Min starts a turn with r = r0, q = q0, and t = t0, and after some number

of moves by each player Max ends a turn with r = r1, q = q1, and t = t1. If Min made d moves either

creating a king in X or killing a king from Y , and e moves absorbing a pawn into a king, and Max made

only efficient moves, then r0 − r1 ≤ 2d+ 2e and (q1 − t1)− (q0 − t0) = 2d+ e.
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Proof. Every Max move either creates a king in X or kill one from Y , which increases q−t by 1 and decreases

r by 1. If Min kills a vertex from X, then Min’s move increases r by 1, so r stays constant after Max’s

response. If Min kills a vertex from Y , then Min’s move decreases r by 1 and increases d + e by 1, so r

decreases by 2 after Max’s response. If Min makes a move counted by d, then Min’s move increases q− t by

1, so q − t increases by 2 after Max’s response. If Min makes a move counted by e, then Min’s move keeps

q− t constant, so q− t increases by 1 after Max’s response. If Min makes a move counted by neither d nor e,

then Min either creates a king in Y or kills a king from X, which decreases q− t by 1, so q− t stays constant

after Max’s response. Summing over all pairs of Min moves and Max responses, we get r0 − r1 ≤ 2(d + e)

and (q1 − t1)− (q0 − t0) = 2d+ e.

The smaller w(ŷ) is, the easier it is for Max to create many kings in X heavier than the heaviest king in

Y . If Min wants to increase w(ŷ) without making a foolish move, then Min needs w(x̂) to be large too. If Min

accomplishes this by absorbing kings from Y into X, then Max can increase q − t, according to Proposition

5.3.4. If Min does not absorb kings from Y into X in order to raise w(x̂), then we need to measure how well

this can be exploited by Max.

Proposition 5.3.5. If Max plays efficiently, and after some turn leaves w(x̂) ≥ w(ŷ) and q ≥ t, then

qw(x̂) ≥ m− p.

Proof. Each vertex starts the game as a live pawn, and once it is killed, its weight resides within a king.

Thus any live vertex z contains its own original weight of 1 plus the weight of w(z) − 1 dead pawns, so

the total number of vertices killed during the game equals the combined weight of all the kings minus the

number of kings. By assumption, each king weighs at most w(x̂), and t ≤ q, so there are at most 2q kings,

and the total number of vertices killed is at most 2q(w(x̂)− 1). Each move during the game kills one vertex,

so after Max’s turn, Min and Max have killed an equal number of vertices. By playing efficiently, Max never

kills a vertex from X, so at most half of the vertices killed came from X. Every vertex in X that isn’t a

pawn is either a king or is dead, yielding m− p ≤ q + q(w(x̂)− 1) = qw(x̂).

We are now ready to give the full motivation behind Max’s strategy. Call Max’s strategy secure if it

maintains q̇ > t after each Max move.

Theorem 5.3.6. If Max plays an efficient and secure strategy that maintains w(x̂) ≤ κ( 3
2 )

q
2 for some

constant κ until either Min makes a foolish move or Max starts a turn with p = 0 or r ≤
⌊
n−m

3

⌋
, then Max

can end the game with at least min{
⌊
n−m

3

⌋
, 2 log3/2m− 2 log3/2 2κ log3/2m} live vertices.

Proof. Let Max play such a strategy described in the statement of the theorem. If Min makes a foolish

move, then Min will also leave q̈ > t (since Min can neither kill any vertex heavier than w(ŷ) nor raise
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the weights of multiple vertices in Y with a single move) as well as r ≥
⌊
n−m

3

⌋
− 1 (since Max started his

previous move with r ≥
⌊
n−m

3

⌋
+ 1), so by Lemma 5.3.2, Max can end the game with at least

⌊
n−m

3

⌋
live

vertices in Y . If Min does not make a foolish move, then eventually Max will start a turn with p = 0 or⌊
n−m

3

⌋
− 1 ≤ r

⌊
n−m

3

⌋
.

We first consider consider the case that Max starts a turn with p = 0. The previous move by Min must

have either killed the last pawn in X or turned it into a king, so either way it did not kill a king in X. Before

Min’s move, we had w(x̂) ≤ κ( 3
2 )

q
2 by hypothesis, so by Proposition 5.3.5, we currently have qκ( 3

2 )
q
2 ≥ m.

It follows that q ≥ 2 log3/2m− 2 log3/2 2κ log3/2m, for otherwise we have

qκ(
3

2
)

q
2 < (2 log3/2m− 2 log3/2 2κ log3/2m)

κm

2κ log3/2m
≤ m.

We now consider the case that Max starts a turn with
⌊
n−m

3

⌋
− 1 ≤ r ≤

⌊
n−m

3

⌋
. The previous move by

Min must have decreased r by 1, so it absorbed a vertex from Y into X. Suppose that before that move by

Min, Min had made d moves either creating a king in X or killing a king from Y , and e moves absorbing a

pawn into a king. Since at the start of the game r = n −m and q − t = 0, and Max has played efficiently

since then, by Proposition 5.3.4 we have n −m − r ≤ 2d + 2e and q − t = 2d + e. Hence q − t ≥
⌈
n−m

3

⌉
because

q − t ≥ e ≥ n−m− r − q + t ≥ n−m−
⌊
n−m

3

⌋
− q + t =

⌈
2(n−m)

3

⌉
− q + t.

By Lemma 5.3.3, Max can guarantee the game ends with at least
⌈
n−m

3

⌉
live vertices in X.

5.4 Details of Max’s Strategy

In this section we discuss the invariants that Max will maintain as part of an efficient and secure strategy

that, combined with Theorem 5.3.6, proves the lower bound of Theorem 5.1.1. We carry over the notation

from Section 5.3. Define an endpoint to be a Max turn starting with p = 0 or r ≤
⌊
n−m

3

⌋
, or after a foolish

move by Min; by Theorem 5.3.6, we need only define our strategy until Max reaches an endpoint. Note that

as part of a secure strategy, Max maintains q > t after each of his turns, so he must also start each turn

with s > 0 since
⌊
n−m

3

⌋
< r = |Y | − |X| < s− p.

In order for Theorem 5.3.6 to apply, Max will need to maintain w(x̂) ≤ κ(3/2)q/2 for some κ. To

accomplish this, we first show that Max can play an efficient and secure strategy at the start of the game

during which he will maintain w(x̂) ≤ 8q + 14. Max will either reach an endpoint, in which case we

are done, or reach a point in the game at which he can continue to play efficiently and securely while
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continuously cycling through stages until he reaches an endpoint. If a stage starts with w(x̂) = a0 and

q − t = `0, then after each of his moves during the stage, Max will maintain w(x̂) ≤ a0 + q − t − `0 if

q − t − `0 ≤ 1, and Max will maintain w(x̂) ≤ (a0 + 5)(3/2)
q−t−`0

2 + 75 if q − t − `0 ≥ 2. The first stage

will start with q ≥ 4 and 45 ≤ a0 ≤ 8q + 14, so we shall always have w(x̂) ≤ σbq/2c + 1, where σ2 = 46 and

σi+1 = (σi+5)(3/2)+75 for i ≥ 3. Solving this recurrence, we get σi < 94(3/2)i, so we have w(x̂) ≤ 94(3/2)
q
2 .

Since log3/2(2× 94) ≤ 13, setting κ = 94 in Theorem 5.3.6 implies that Max can end the game with at most

min{
⌊
n−m

3

⌋
, 2 log3/2m− 2 log3/2 log3/2m− 26} live vertices, yielding the desired lower bound.

We start by showing how Max is to begin the game.

Proposition 5.4.1. While maintaining w(x̂) ≤ 4 and t = 0, Max can efficiently and securely reach either

a point in the game where it is Min’s turn with 4 ≤ q ≤ 6, or an endpoint.

Proof. If Min begins the game by creating a king in Y , then this move is clearly foolish. Thus we assume

Min begins the game by creating a king in X, to which Max responds by creating another king in X, leaving

q1 = 2 and t = 0. If Min’s next move creates a king in Y , then Max’s turn starts with one king in Y and

two kings in X, each weighing 2; hence Min’s move was foolish. Thus we assume Min absorbs a pawn from

Y into a vertex in X, and Max responds by creating another king in X. We are left with no kings in Y and

either four in X, each weighing 2, or three in X, one weighing 3 and the others weighing 2. If Min’s next

move creates a king in Y , then that move is foolish. Thus we assume Min absorbs a pawn from Y into a

vertex in X, and Max responds by creating another king in X. It is now Min’s turn, with 4 ≤ q ≤ 6, t = 0,

and w(x̂) ≤ 4.

From here on out, Max will maintain a set X∗ of three kings in X, named x∗, x∗∗, and x∗∗∗ (these names

can be transferred to other kings in X as necessary). Choose x∗, x∗∗, and x∗∗∗ as the three lightest kings in

X; the weights of these kings will be maintained near specific values so as to bound how heavy Min can make

kings in Y without making a foolish move. Call state of the game prepared if it is Min’s turn and q− t ≥ 4,

w(ŷ) ≤ 2, (w(x̂) + 1)/2 < w(x∗) ≤ (w(x̂) + 1)/2 + 2, and all kings x ∈ X −X∗ satisfy w(x) ≥ w(x∗) + 4,

with 3w(x∗)/2 + 5 ≤ w(z) < 3w(x∗)/2 + 7 for z ∈ {x∗∗, x∗∗∗}.

Proposition 5.4.2. Suppose it is Min’s turn, with w(ŷ) ≤ 2 and q̇ − t ≥ 4, and suppose j0, k0, t0, and

a0 are fixed constants such that j0 = min{t, q − q̇}, k0 = q − t, t0 = t, 2w(ŷ) ≤ w(x̃) ≤ a0 for the heaviest

king x̃ ∈ X −X∗, w(ŷ) < w(x∗) ≤ a0

2 , and w(ŷ) < w(z) ≤ 3a0

4 for z ∈ {x∗∗, x∗∗∗}. Then Max can play an

efficient and secure strategy maintaining w(x̂) ≤ a0 + 4j0 + 8(q− t− k0) + 1 and t ≤ t0 until reaching either

a prepared state of the game where w(x̂) ≥ a0, or an endpoint.
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Proof. We define an efficient and secure strategy for Max to play until either the game reaches a prepared

state with t ≤ t0 and a0 ≤ w(x̂) ≤ a0 + 4j0 + 8(q − t− k0) + 1, or Max reaches an endpoint. At any point

in the game, let j = j0 −min{t, q − q̇}, and let k = q − t− k0. Note that if w(ŷ) = 2, then q − q̇ counts the

kings in X weighing exactly 2.

Let x̃ be the heaviest king in X −X∗, so w(x̃) ≥ 2w(ŷ). Max will maintain the following invariants after

each of his moves: t ≤ t0, w(ŷ) ≤ 2, 2w(ŷ) ≤ w(x̂) ≤ a0+4j+8k+1, w(x∗) ≤ max{w(x̃)+1
2 , a0+1

2 +2j+4k}+2,

and w(z) < max{ 3w(x∗)
2 , 3(a0+1)

4 + 3j+ 6k}+ 7 for each z ∈ {x∗∗, x∗∗∗}. Since we are starting with w(ŷ) ≤ 2

and q̇−t ≥ 4, and Max is maintaining w(ŷ) ≤ 2 after each of his moves, he will also be maintaining t̃ > t0 ≥ t

(by playing efficiently, Max never adds weight to vertices in Y , and thus the only kings from X that Min can

kill are those that did not outweigh ŷ at the start). Note that if w(x̃) ≥ a0+4j+8k, then w(x∗) ≤ w(x̃)+1
2 +2

and w(z) < 3w(x∗)
2 + 7 for each z ∈ {x∗∗, x∗∗∗}.

We present Max’s strategy as responses to individual Min moves; for clarity in the analysis of this

strategy, we let w(x), q̇, q, t, j, and k denote their normal values at the time before Min’s move, and we let

w′(x), q̇′, q′, t′, j′, and k′ respectively values after Max’s response (for example, if Min absorbs a pawn from

Y into a king x ∈ X, and Max responds by creating a king in X, then w′(x) = w(x) + 1, q′ = q + 1, and

t′ = t). The following strategy has Max kill a king from Y whenever possible, so t′ ≤ t ≤ t0 is maintained

throughout.

• If Min does not leave a king in Y , then Max creates a king in X. Clearly w′(ŷ) = 1 and w′(x̃) ≥ 2 =

2w′(ŷ), and we confirm that all of the invariant upper bounds still hold. Note that w′(x) ≤ w(x) + 2

for each x ∈ X, and j′ = j0 ≥ j and k′ ≥ k + 1, since t′ = 0 and q′ = q + 1. We have need only worry

about z ∈ X∗, since for each x ∈ X we have

w′(x) ≤ w(x) + 2 ≤ a0 + 4j + 8k + 3 < a0 + 4j′ + 8k′ + 1.

Note that w(x̃) ≤ a0 + 4j + 8k + 1, so

w(x̃) + 1

2
≤ a0 + 4j + 8k + 2

2
= a0/2 + 2j + 4k + 1,

so since a0/2 + 2j + 4k + 1 > a0+1
2 + 4k we have

w(x∗) ≤ max{w(x̃) + 1

2
,
a0 + 1

2
+ 4k}+ 2 = a0/2 + 2j + 4k + 3.
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The upper bound on the weight of x∗ still holds, since

w′(x∗) ≤ w(x∗) + 2 ≤ a0
2

+ 2j + 4k + 5 ≤ a0
2

+ 2j′ + 4k′ + 1 ≤ a0 + 1

2
+ 2j′ + 4k′ + 2.

Also note that

3w(x∗)

2
≤ 3(a0/2 + 2j + 4k + 3)

2
=

3a0
4

+ 3j + 6k +
9

2
,

so since 3a0

4 + 3j + 6k + 9
2 >

3(a0+1)
4 + 3j + 6k, for z ∈ {x∗∗, x∗∗∗} we have

w(z) < max{3w(x∗)

2
,

3(a0 + 1)

4
+ 3j + 6k}+ 7 ≤ 3a0

4
+ 3j + 6k +

23

2
.

The upper bound on the weight of z ∈ {x∗∗, x∗∗∗} still holds, since

w′(z) ≤ w(z) + 2 <
3a0
4

+ 3j + 6k +
27

2
≤ 3a0

4
+ 3j′ + 6k′ +

15

2
<

3(a0 + 1)

4
+ 3j′ + 6k′ + 7.

• If Min creates a king x ∈ X, leaving a king y ∈ Y , then Max absorbs y into x. This leaves w′(ŷ) ≤

w(ŷ) = 2, w′(x̃) = w(x̃) ≥ 2w(ŷ) = 4, w′(x) = 4, and w′(z) = w(z) for all z ∈ X − {x}. We have

j′ ≥ j and k′ ≥ k, since q̇′ ≥ q̇ + 1, q′ = q + 1, and t′ = t− 2, so the invariant upper bounds still hold.

• If Min absorbs a vertex from X into a king y ∈ Y , then Max absorbs y into x̃, which is possible because

w(x̃) ≥ 2w(ŷ). This leaves w′(ŷ) ≤ w(ŷ) = 2, w′(x̃) ≥ w(x̃) + 3 > 2w(ŷ) = 4, and w′(x) = w(x) for

all x ∈ X − {x̃}. We have q̇′ ≥ q̇ and t′ = t − 1; if w(x) = 1, then q′ = q, in which case j′ ≥ j

and k′ = k + 1, and if w(x) = 2, then q′ = q − 1, in which case j′ ≥ j + 1 and k′ = k. Hence

w′(x̃) ≤ w(x̃) + 4 ≤ a0 + 4j + 8k + 5 ≤ a0 + 4j′ + 8k′ + 1, and the other invariant upper bounds still

hold.

• If Min creates a king y ∈ Y , then Max absorbs y into a king in x ∈ X according to rules we set out

below. First, note that w′(ŷ) = w(ŷ) ≤ 2 and w′(x̃) ≥ w(x̃) ≥ 2w(ŷ) = 2w′(ŷ); also, j′ ≥ j and k′ = k

since q̇′ ≥ q̇, q′ = q, and t′ = t, so the required upper bounds do not decrease.

– If w(x̃) < a0 + 4j + 8k, then Max absorbs y into x̃, leaving w′(x̃) ≤ a0 + 4j + 8k + 1.

– If w(x̃) ≥ a0 + 4j + 8k and w(x∗) ≤ w(x̂)+1
2 , then Max absorbs y into x∗, leaving w′(x∗) ≤

w(x̂)+1
2 + 2.

– If w(x̃) ≥ a0 + 4j + 8k, w(x∗) > w(x̂)+1
2 , and w(z) < 3w(x∗)

2 + 5 for some z ∈ {x∗∗, x∗∗∗}, then

Max absorbs y into z, leaving w(z) < 3w(x∗)
2 + 7.
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– If w(x̃) ≥ a0 + 4j + 8k, w(x∗) > w(x̂)+1
2 , w(z) ≥ 3w(x∗)

2 + 5 for each z ∈ {x∗∗, x∗∗∗}, and

2 ≤ w(x) ≤ w(x∗)+3 for some x ∈ X−X∗, then Max absorbs y into x, leaving w(x) ≤ w(x∗)+5.

Note that these conditions are disjoint, and at least one of them must hold, or else the game would

have been in a prepared state, in which case q = q̇ and thus

a0 ≤ w(x̂) ≤ a0 + 4j + 8k + 1 = a0 + 4j0 + 8(q − t− k0) + 1.

Corollary 5.4.3. While maintaining w(x̂) ≤ 8q+14, Max can efficiently and securely reach either a prepared

state of the game where w(x̂) ≥ 45, or an endpoint.

Proof. By Proposition 5.4.1, while maintaining w(x̂) ≤ 4 and t = 0, Max can efficiently and securely reach

either a point in the game where it is Min’s turn with 4 ≤ q ≤ 6, or an endpoint. In the latter case we are

done, so we assume the former, in which case we can apply Proposition 5.4.2 with j0 = 0, 4 ≤ k0 ≤ 6, t0 = 0,

and a0 = 45. While maintaining w(x̂) ≤ 45 + 8(q − 4) + 1 = 8q + 14, Max can reach either a prepared state

of the game where w(x̂) ≥ 45, or an endpoint.

We let Max begin the game according to Corollary 5.4.3, and assume Max reaches a prepared state of

the game where 45 ≤ w(x̂) ≤ 8q + 14. We complete Max’s strategy by showing that he can continue to

play efficiently and securely while continuously cycling through stages until he reaches an endpoint, with

each stage starting in a prepared state. Recall that we need to show that if a stage starts with w(x̂) = a0

and q − t = `0, then after each of his moves during the stage, Max maintains w(x̂) ≤ a0 + q − t − `0 if

q − t− `0 ≤ 1, and Max maintains w(x̂) ≤ (a0 + 5)(3/2)
q−t−`0

2 + 75 if q − t− `0 ≥ 2.

Each stage will be partitioned into STATE A, STATE B, and STATE C, with STATE B further subdivided

into STATE B1, STATE B2, and STATE B3. We shall introduce the states, then give Max’s strategy for

navigating among them, but first we introduce some notation.

Max’s strategy will be given in terms of responses to individual moves by Min. Given a Min move and

Max response, for any vertex z, let w(z) denote the weight of z before Min’s move, and let w′(z) denote the

weight of z after Max’s response; we treat other parameters similarly, letting the unprimed version denote

the value before a given Min move, and letting the primed version denote the value after Max’s response.

Let a = w(x̂), and let c = w(ŷ) (so a′ and c′ denote the respective weights of the heaviest vertices in X and

Y after Max’s response). Set a0 as the value of a at the beginning of the stage and b0 as the value of w(x∗)

at the beginning of the stage. Note that a0 ≥ 45 and b0 ≥ 24, with a0 + 2 ≤ 2b0 ≤ a0 + 5.
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For a given stage, let d count the times Min either kills a king in Y or creates one in X, and let e count

the times Min absorbs a pawn into a king, with ẽ denoting the times Min absorbs a pawn from Y into

a king in X∗. We shall let X̄ denote a certain set of kings in X, and set q̄ = |X̄|; in STATE A, we let

X̄ = {x ∈ X − X∗ : b0 + 4 ≤ w(x) ≤ a0 + e}, but we add restrictions to X̄ after STATE A. For a vertex

x ∈ X −X∗, let χ(x) be the indicator variable satisfying χ(x) = 1 if x is a live king in X weighing at most

b0 + 3, and χ(x) = 0 otherwise (so during STATE A, we have q = 3 + q̄ +
∑

x∈X−X∗ χ(x), since each king

in X is either one of the three kings of X∗, or one of the q̄ kings of X̄, or one of the
∑

x∈X−X∗ χ(x) kings

of X −X∗ weighing at most b0 + 3).

We now introduce the conditions of STATE A, then follow with a discussion of their purposes. Since we

begin each stage in a prepared state with d = e = 0, the conditions of STATE A hold initially.

STATE A:

1. d = 0, e ≤ 1, and a0 ≤ a ≤ a0 + e

2. max{b0, c+ 1} ≤ w(x∗) ≤ b0 + ẽ and 3b0/2 + 5 ≤ w(z) < 3b0/2 + 7 + ẽ for z ∈ {x∗, x∗∗}

3. t < q̄ + χ(x−) = q − 3− χ(x−−), with χ(x−−) = e and w(x−−) = 2 (if χ(x−−) = 1)

Note that by Condition 2, c ≤ b0 + e− 1 ≤ b0, so all three kings in X∗ weigh more than c by Condition 2,

and all other kings in X besides potentially x− and x−− also weigh more than 2 by Condition 3. Hence the

only kings from X that Min can kill are x− and x−−, and we maintain q̇ > t. If Min leaves a vertex y ∈ Y

such that w(y) ≥ w(x∗), then this is a foolish move, since w(x∗) + w(y) ≥ 2w(x∗) ≥ 2b0 > a0 + 1 ≥ a and

q̈ ≥ t + 3 (before Min’s move we had q̇ ≥ q̄ + |X∗| ≥ t + 3, and Min can neither kill any vertex weighing

more than c nor add weight to multiple vertices in Y ).

Min’s last move of STATE A will be her first to leave d = 1 or e = 2; that is, Min will either kill a king

from Y or create one in X for the first time of the stage, or absorb a pawn into a king for the second time

of the stage. If Min created a king in X with her last move of STATE A, then call this king x−−−. The

stage will advance to STATE B if t̃ > 0 and STATE C if t̃ = 0. At this point in the game, the only possible

kings in X weighing at most c are x−, x−−, and x−−−, and we have w(x−−) ≤ 4 (if χ(x−−) = 1) as well as

w(x−−−) = 2 (if χ(x−−−) = 1).

We now introduce some notation to be used in STATE B, the most important of which will involve a

potential function f(x). For each vertex x ∈ X, initialize f(x) = 0, except f(x−−) = 1 if Min’s last move of

STATE A was absorbing a king into x−− (which would leave w(x−−) = 4). At any point in the stage, let

f =
⌊
2d+e−

∑
x∈X f(x)

2

⌋
. For all other kings x ∈ X weighing at most c at any point in the stage, henceforth

increase f(x) by 2 each subsequent Min move either turning x from a pawn into a king or absorbing a king
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from Y into x, and increase f(x) by 1 each subsequent Min move absorbing a pawn from Y into the king x.

Once x is killed or reaches a weight greater than c, reset f(x) = 0.

Define α = 2b0(3/2)f and β = 3γ+28−20χ(x−)−4χ(x−−)−4χ(x−−−), where γ =
⌈
2d+e−

∑
x∈X f(x)

2

⌉
−⌊

2d+e−
∑

x∈X f(x)

2

⌋
. The variables α and β will be used in various ways to bound the weight of kings in X,

with a ≤ α + β in particular; β is more of an error term, and its maximum value is 31, with β ≤ 11 if

χ(x−) = 1. If Min absorbs a vertex from Y into a king in x ∈ X, leaving w(x) ≤ c, then f(x) increases

immediately, but this move does not affect f and thus α until x is either killed or satisfies w(x) > c.

We now add an upper bound to the requirements of membership in X̄: at any given time, let X̄ = {x ∈

X −X∗ : b0 + 4 ≤ w(x) ≤ 2α/3 + β}, and again set q̄ = |X̄|. The elements of X̄ will be used in STATE B

to absorb the kings in Y weighing at least 3, so we will maintain q̄ ≥ t̃.

Our strategy for Max during STATE B will dictate that Max play aggressively : if Min leaves a king in

Y , then Max absorbs into a king in X weighing more than c either ŷ or a king in Y to which Min added

weight with the previous move. Hence c′ ≤ c for after each Max response to a Min move, so once a king in

X weighs more than c, Max protects it from being killed by Min. Furthermore, the only time Max would

absorb a vertex from Y into a vertex in X weighing at most c would be if Min left no kings in Y , in which

case Max would create a king in X with the last move before STATE C. At any time during STATE B,

we therefore have w(x−−) ≤ 3 if f(x−−) = 0, w(x−−) ≤ 4 if f(x−−) = 1, w(x−−) ≤ 6 if f(x−−) = 2,

w(x−−) ≤ 8 if f(x−−) ≤ 3, w(x−−−) = 2 if f(x−−−) = 0, w(x−−−) = 3 if f(x−−−) = 1, and w(x−−−) ≤ 6

if f(x−−−) ≤ 3. If Min creates a king x ∈ X during STAGE B, then as long as w(x) ≤ c, we will have either

f(x) = w(x) = 2, f(x) = w(x) = 3, or f(x) ≥ 4 and w(x) ≥ 4.

We now present the conditions of STATE B. All substates of STATE B will satisfy a ≤ α+ β, q̄ ≥ t̃ > 0,

and c < w(x∗∗∗) ≤ 2α/3 + β, and the substates will satisfy conditions on f , χ(x−), w(x∗), and w(x∗∗)

according to Table 5.1.

Table 5.1: Invariants Satisfied by the Substates of STATE B

STATE f χ(x−) w(x∗) w(x∗∗)

B1 = 1 = 1 ≤ 3b0/2 + 7 + ẽ 3b0/2 + 5 < w(x∗∗) ≤ 3b0/2 + 7 + ẽ
B2 ≥ 2 = 1 ≤ α/2 + β 2c < w(x∗∗) ≤ min{2α/3, α− 2b0 + 12}+ β
B3 ≥ 1 = 0 ≤ α/2 + β c < w(x∗∗) ≤ 2α/3 + β

Note that in STATE B1, ẽ ≤ 2f + 1 = 3, so w(z) ≤ 3b0/2 + 10 for z ∈ {x∗, x∗∗}. Also note that in

STATE B2, α − 2b0 + 12 ≤ 2α/3 if and only if f = 2: indeed, if f = 2, then α = 9b0/2, in which case

α− 2b0 + 12 = 3b0− b0/2 + 12 ≤ 2α/3 (recalling that b0 ≥ 24), and if f ≥ 3, then α ≥ 27b0/4, in which case

90



2α/3 ≤ α− 9b0/4 < α− 2b0 + 12.

Max sends the game to STATE C after his first move from either STATE A or STATE B to leave t̃ = 0.

In addition to that condition, STATE C will also start with q̇ > t, a ≤ α + 31, w(x∗) ≤ α/2 + 31, and

w(z) ≤ 2α/3 + 31 for each z ∈ {x∗∗, x∗∗∗} (recall that the maximum value of β is 31. We fully describe the

goings on of STATE C before presenting actual strategies for Max during STATE A and STATE B.

At the start of STATE C, fix f0 = f , f0(x) = f(x) for x ∈ X, j0 = min{t, q − q̇}, k0 = q − t, and

α0 = α+ 62. Since c ≤ 2, j0 is at most the number of kings in X weighing exactly 2. After STATE A, the

only possible kings in X weighing exactly 2 were x−, x−−, and x−−−. Max plays aggressively in STATE B,

so Max would only create a king in X if there are no kings in Y , which would only occur for Max’s last move

before proceeding to STATE C. Hence in that case we would presently have j0 = t = 0, and in general j0 is

at most 3 more than the number of kings in X created by Min during STATE B that did not subsequently

gain any weight. If t > 0, then c = 2, so f(x) = 2 for each such king, and thus j0 ≤ 3 +
∑

x∈X f(x)

2 ; this

upper bound also holds if t = 0, since then j0 = 0.

At the start of STATE C, we have a < α0, w(x∗) ≤ α0/2, and w(z) ≤ 3α0/4 for each z ∈ {x∗, x∗∗}. By

Proposition 5.4.2, while maintaining α0 ≤ a ≤ α0 + 4j0 + 8(q − t− k0) + 1, Max can securely reach either a

prepared state of the game or an endpoint. Since Max plays efficiently throughout the stage, by Proposition

5.3.4, q− t increases by 2d+ e. Note that 2d+ e ≥ 2f0 +
∑

x∈X f0(x) + q− t− k0: if we consider the moves

by Min that contribute to 2d + e, we see that they contribute to exactly one of 2f0 or
∑

x∈X f0(x) if they

occurred during STATE A or STATE B, and they contribute to q − t − k0 if they occurred during STATE

C. Hence at the end of STATE C we have, as desired due to the discussion at the beginning of this section,

a ≤ α0+4j0+8(q−t−k0)+1 ≤ (2b0(3/2)f0 +62)+(12+2
∑
x∈X

f0(x))+8(q−t−k0)+1 ≤ (a0+5)(3/2)d+e/2+75.

5.5 More Details of Max’s Strategy

In this section we explicitly state the moves Max is to make in STATE A and STATE B as outlined in

Section 5.4.

We now give Max’s strategy for STATE A, as well as some analyis as to why the stage remains in STATE

A or proceeds to STATE B or STATE C.

• If χ(x−) = 0 and Min creates a king in Y , then Max responds by creating the king x− in X. We

remain in STATE A: Condition 1 is maintained because d′ = d, e′ = e, and a′ = a. Condition 2 is

maintained because max{b0, c′ + 1} = max{b0, c+ 1} ≤ w′(x∗) ≤ b0 + e∗′, and w′(z) = w(z) for each
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z ∈ X∗. Condition 3 is maintained because t′ = t + 1, q̄′ = q̄, χ′(x−) = 1 = χ(x−) + 1, q′ = q + 1,

χ′(x−−) = χ(x−−), e′ = e, and w′(x−−) = w(x−−) = 2 (if χ(x−−) = 1).

• If χ(x−) = 1 and Min creates a king y ∈ Y , then Max responds by absorbing y into x−. We remain in

STATE A: Condition 1 is maintained because d′ = d, e′ = e and a′ = a (since w′(x−) = w(x−) + 2 ≤

b0 + 5 < a0). Condition 2 is maintained because c′ = c and w′(z) = w(z) for each z ∈ X∗. Condition

3 is maintained because t′ = t, q̄′ + χ′(x−) = q̄ + χ(x−) (if w′(x−) ≤ b0 + 3, then q̄′ = q̄ and

χ′(x−) = 1 = χ(x−), but if w′(x−) ≥ b0 + 4, then q̄′ = q̄ + 1 and χ′(x−) = 0 = χ(x−) − 1), q′ = q,

χ′(x−−) = χ(x−−), e′ = e, and w′(x−−) = w(x−−) = 2 (if χ(x−−) = 1).

• If e = 0, and Min absorbs a pawn into a king, then Max creates the king x−− in X. We remain in

STATE A: Condition 1 is maintained because d′ = d, e′ = e+ 1 = 1, and a′ ≤ a+ 1 ≤ a0 + 1 = a0 + e′.

Condition 2 is maintained because ẽ increases by 1 if w′(z) = w(z) + 1 for any z ∈ X∗, and Min’s

move would have been foolish if it left some y ∈ Y weighing as much as x∗. Condition 3 is maintained

because t′ = t, q̄′ + χ′(x−) = q̄ + χ(x−) (if χ′(x−) = χ(x−), then q̄′ = q̄, but if χ′(x−) 6= χ(x−),

then Min absorbed a pawn into x− to make w′(x−) = b0 + 4, thus adding a vertex to X̄ and leaving

q̄′ = q̄ + 1), q′ = q + 1, χ′(x−−) = 1 = χ(x−−) + 1, e′ = 1 = χ(x−−), and w′(x−−) = 2.

• If Min kills x− or x−−, then Max responds by creating a king in X and giving it the label of the king

killed by Min. We remain in STATE A: Condition 1 is maintained because d′ = d, e′ = e, and a′ = a.

Condition 2 is maintained because w′(z) = w(z) for each z ∈ X∗, and Min’s move would have been

foolish if it left some y ∈ Y weighing as much as x∗. Condition 3 is maintained because t′ = t, q̄′ = q̄,

χ′(x−) = χ(x−), q′ = q, χ′(x−−) = χ(x−−), e′ = e, and w′(x−−) = w(x−−) = 2 (if χ(x−−) = 1).

• If and Min absorbs a king y ∈ Y into a king x ∈ X, then Max absorbs ŷ into any king in X̄ − {x}

if Y has any kings, and Max creates a king in X otherwise. In the former case, q̄ ≥ t ≥ 2 before

Min’s move, so the response by Max would be possible, and it would leave some king x̄ ∈ X̄ weighing

at most 2b0 if x ∈ X∗. If x = x∗, then Max swaps x∗ and x∗∗∗, leaving w′(x∗) < 3b0
2 + 7 + ẽ′ and

w′(x∗∗∗) ≤ 2b0 + ẽ′. If x = x∗∗, then Max resets the previous x∗∗∗ as the new x∗∗ and x̄ as the new

x∗∗∗, leaving w′(x∗) < 3b0
2 + 7 + ẽ′ and w′(x∗∗∗) ≤ 2b0. If x = x∗∗∗, then Max resets x̄ as the new x∗∗∗,

leaving w′(x∗∗∗) ≤ 2b0. We also have a′ ≤ 3b0 = α and at least t′ kings in X weighing between b0 + 4

and 2b0 (since q̄′ ≥ q̄ − 2 ≥ t− 2 = t′). If c′ ≥ 3, then proceed to STATE B. If c′ ≤ 2, then proceed to

STATE C.

• If e = 1 ≤ t, and Min absorbs a pawn into a king, then Max absorbs ŷ into any king in X̄, leaving

a′ ≤ 3b0 = α. If c′ ≥ 3, then proceed to STATE B. If c′ ≤ 2, then proceed to STATE C.
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• If e = 1, t = 0, and Min absorbs a pawn into a king, or if t = 0 and Min creates a king x−−− ∈ X, or

if t = 1 and Min absorbs the only king from Y into some king x ∈ X, then Max creates a king in X.

We have t = 0, so proceed to STATE C.

We now turn our attention to Max’s strategy in STATE B, first proving a helpful lemma for analyzing

the strategy.

Lemma 5.5.1. Suppose we are in STATE B, and Min makes a move that leaves a king y ∈ Y weighing at

least 3 and f ′ = f . If Min absorbs into y some x ∈ X − {x−}, or if y = ŷ and Min either creates a king in

Y or kills a vertex from Y , then Max can respond by absorbing y into x̄ ∈ X̄, and in either case a′ ≤ α′+β′

and q̄′ ≥ t̃′.

Proof. Since f ′ = f , if Min absorbs into y some x ∈ X − {x−}, then f(x) ≤ 1 and thus w(x) ≤ 4, and if

Min absorbs a vertex from Y into some x ∈ X, then either w′(x) = w(x) + 1 or w′(x) ≤ c′. Hence Max can

respond to Min’s move by absorbing y into x̄, since w(x̄) ≥ b0 + 4 ≥ w(y) + 4.

First suppose Min absorbs into y some x ∈ X − {x−}, and Max responds by absorbing y into x̄, so

w′(x̄) = w(x̄) + w(x) + w(y) ≤ 2α/3 + β + w(x) + w(y). Note that β′ = β + 3 if w(x) = 1 (since γ′ = 1 if

e′ = e+ 1 and f ′ = f), and β′ = β + 4 if 2 ≤ w(x) ≤ 4 (since x ∈ {x−−, x−−−} if x ∈ X − {x−}, w(x) ≥ 2,

and f(x) ≤ 1). If w(y) = 2, then β′ = β + w(x) + w(y), so w′(x̄) ≤ 2α′/3 + β′, in which case a′ ≤ α′ + β′

and q̄′ ≥ q̄ ≥ t̃ = t̃′. If w(y) ≥ 3, then β′ ≥ β + w(x), so w′(x̄) ≤ 2α/3 + β′ + b0 ≤ α′ + β′, in which case

a′ ≤ α′ + β′ and q̄′ ≥ q̄ − 1 ≥ t̃− 1 = t̃′.

Now suppose Min either creates a king in Y or kills a vertex from Y , and Max responds by absorbing ŷ

into x̄. If Min creates a king in Y or absorbs a vertex from Y into some x ∈ X satisfying w(x) ≤ b0, then

w′(x) ≤ 2b0 < α′ + β′ and w′(x̄) ≤ 2α/3 + β + b0 ≤ α′ + β′. If Min absorbs a vertex from Y into some

x ∈ X satisfying w(x) > b0, then that vertex from Y was a pawn and β′ = β + 3 (otherwise f ′ > f), so

w′(x) ≤ w(x) + 1 ≤ α+ β + 1 < α′ + β′ if x 6= x̄, and w′(x̄) ≤ 2α/3 + β + b0 + 1 ≤ α′ + β′. In any of these

cases, we have a′ ≤ α′ + β′ and q̄′ ≥ q̄ − 1 ≥ t̃− 1 = t̃′.

First suppose Min absorbs some y ∈ Y into some x ∈ X.

• If w(x) + w(y) ≤ c′, or if w(y) = 1 and γ = 0, then Max absorbs ŷ into x̄ (note that in either case

f ′ = f). We have w(ŷ) ≥ 3, because otherwise w(y) ≥ 3 (since t̃ > 0) and thus c′ ≤ 2 < w(x)+w(y), a

contradiction. Hence Lemma 5.5.1 applies. Note that ẽ increases by 1 and β increases by 3 if x ∈ X∗

(since then w′(x) > c and thus w(y) = 1 by hypothesis), so the bounds on elements of X∗ still hold.

If t̃′ > 0, then the state of the game does not change. If t̃′ = 0, then the game proceeds to STATE C.
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• If w(x) + w(y) > c′, and w(y) ≥ 2 or γ = 1, then we shall show that Max can always respond to send

the game to STATE B2, STATE B3, or STATE C. Note that f ′ = f + 1 ≥ 2, so 3b0 ≤ α = 2α′/3,

β′ = β if w(y) ≥ 2, and β′ = β − 3 if w(y) = 1.

– If Min kills the last king in Y , then Max responds by creating a king in X and setting it as the

new x∗. If c < w(x) ≤ δα+ β, where 2/3 ≤ δ ≤ 1, then

w′(x) ≤ δα+ β + b0 ≤ δ(α′ − 3b0/2) + β′ + b0 ≤ δα′ + β′.

Hence a′ ≤ α′ + β′, the elements of X∗ still maintain the system of inequalites required of them

by STATE B3, and q̄′ ≥ q̄ ≥ t̃ = t̃′. Proceed to STATE C.

– If x = x∗, then Max absorbs ŷ into x∗∗ and resets x̄ as the new x∗ if w(y) ≥ 3, in either case

leaving q̄′ ≥ t̃′ and

w′(x∗) ≤ 2α/3 + β = 3α/4− α/12 + β ≤ α′/2− b0/4 + β < α′/2 + β′.

Coming from STATE B1, we have e ≤ 3, f = 1, and f ′ = 2, so 3b0 = α = 2α′/3 and

2c′ ≤ w′(x∗∗) ≤ 3b0/2 + 7 + e+ b0 ≤ α′ − 2b0 + 10 ≤ min{2α′/3, α′ − 2b0 + 12}+ β′,

leaving the game in STATE B2 if t̃′ > 0 and STATE C if t̃′ = 0. Coming from STATE B2 or

STATE B3, we have

2c′ ≤ w′(x∗∗) ≤ 2α/3 + β + b0 ≤ 2α′/3 + β′ = min{2α′/3, α′ − 2b0 + 12}+ β′.

Thus the state of the game does not change if t̃′ > 0, and the game proceeds to STATE C if

t̃′ = 0.

– If x = x∗∗, then Max absorbs ŷ into x∗ and resets the previous x∗∗∗ as the new x∗, the previous

x∗ as the new x∗∗, and the previous x∗∗ as the new x∗∗∗, leaving

c′ < w′(x∗) ≤ 2α/3 + β ≤ 3α/4− b0/4 + β ≤ α′/2 + β′

and

c′ < w′(x∗∗∗) ≤ 2α/3 + β + b0 ≤ 2α′/3 + β′.
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Coming from STATE B1, we have e ≤ 3, f = 1, f ′ = 2, and 3b0 = α = 2α′/3, so

2c′ ≤ w′(x∗∗) ≤ 3b0/2 + 7 + e+ b0 ≤ α′ − 2b0 + 10 ≤ min{2α′/3, α′ − 2b0 + 12}+ β′,

leaving the game in STATE B2 if t̃′ > 0 and STATE C if t̃′ = 0. Coming from STATE B2 or

STATE B3, we have

2c′ ≤ w′(x∗∗) ≤ α/2 + β + b0 ≤ 2α′/3 + β′ = min{2α′/3, α′ − 2b0 + 12}+ β′,

keeping the game in the same state if t̃′ > 0, and leaving the game in STATE C if t̃′ = 0.

– If x /∈ {x∗, x∗∗}, then Max absorbs ŷ into x∗∗. Coming from STATE B1, we have

2c′ < w′(x∗∗) ≤ 3b0/2 + 7 + e+ b0 = α′ − 2b0 + 10 ≤ min{2α′/3, α′ − 2b0 + 12}+ β′,

leaving the game in STATE B2 if t̃′ > 0, and leaving the game in STATE C if t̃′ = 0. Coming

from STATE B2 or STATE B3, we have

2c′ < w′(x∗∗) ≤ 2α/3 + β + b0 ≤ 2α′/3 + β′ = min{2α′/3, α′ − 2b0 + 12}+ β′,

keeping the game in the same state if t̃′ > 0, and leaving the game in STATE C if t̃′ = 0.

Now suppose Min absorbs some x ∈ X into some y ∈ Y .

• If w(x) = w(y) = 1, then Max absorbs ŷ into x̄. By Lemma 5.5.1, a′ ≤ α′ + β′ and q̄′ ≥ t̃′. The state

of the game does not change.

• If x = x−, then Max absorbs y into x∗∗, and removes x̄ from X̄ to reset it as the new x∗∗ if w(y) ≥ 3.

Hence we either have q̄′ ≥ q̄ ≥ t̃ ≥ t̃′ (if x̄ is not removed from X̄) or q̄′ ≥ q̄ − 1 ≥ t̃ − 1 = t̃′

(if x̄ is removed from X̄). Starting from STATE B1, we have χ(x−) = 1, f = 1, and 3b0/2 + 5 <

w(x∗∗) ≤ 3b0/2 + 10, so it is possible for Max to absorb y into x∗∗ because otherwise we would have

w(x∗∗) < w(x)+w(y) and thus w(x∗∗)+w(x)+w(y) > 2w(x∗∗) ≥ 3b0 +11 ≥ α+β ≥ a, making Min’s

move foolish. Starting from STATE B2, we have χ(x−) = 1, f ≥ 2, and 2c < w(x∗∗) ≤ min{2α/3, α−

2b0 + 12}+β, so it is possible for Max to absorb y into x∗∗ because w(x) +w(y) ≤ 2c ≤ w(x∗∗). Since

χ(x−) = 1 and χ′(x−) = 0, we have β′ ≥ 20 ≥ β + 17.
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– If w(y) = 2, then afterwards we have

c′ < w′(x∗∗) = w(x∗∗) + 4 ≤ 2α/3 + β + 4 ≤ 2α′/3 + β′.

Proceed to STATE B3 if t̃′ > 0, and proceed to STATE C if t̃′ = 0.

– If w(y) ≥ 3, then after removing x̄ from X̄ to reset it as the new x∗∗, we have

c′ < w′(x∗∗) ≤ 2α/3 + β ≤ 2α′/3 + β′.

Letting z denote the old x∗∗, coming from STATE B1 we have

w′(z) ≤ 2w(z) ≤ 3b0 + 20 = α+ 20 ≤ α′ + β′,

and coming from STATE B2 we have

w′(z) ≤ w(z) + 2b0 ≤ α+ 12 + β ≤ α′ + β′.

Proceed to STATE B3 if t̃′ > 0, and proceed to STATE C if t̃′ = 0.

• If x 6= x−, w(y) ≥ 2, and γ + f(x) ≤ 1, then Max absorbs y into x̄. By Lemma 5.5.1, a′ ≤ α′ + β′ and

q̄′ ≥ t̃′. The state of the game does not change.

• Coming from STATE B1 or STATE B2, if x 6= x− and γ + f(x) ≥ 2, then Max absorbs ŷ into x∗∗.

– First suppose 2 ≤ γ + f(x) ≤ 3, so w(x) ≤ 8. Coming from STATE B1, we have 3b0/2 + 5 <

w(x∗∗) ≤ 3b0/2 + 7 + ẽ and 3b0 = α = 2α′/3, with ẽ − γ ≤ 2 (or else f ≥ 2 and we wouldn’t

be in STATE B1). We claim that ẽ + w(x) ≤ 5 + β′. Indeed, if x /∈ {x−−, x−−−}, then

w(x) = f(x) ≤ 3 − γ, so ẽ + w(x) ≤ ẽ + 3 − γ ≤ 5. If x ∈ {x−−, x−−−}, then β′ ≥ 3γ′ + 4; if

f(x) ≤ 2, then w(x) ≤ 6, so ẽ+w(x) ≤ 9 ≤ 5 + β′, and if f(x) = 3, then w(x) ≤ 8 and γ′ = 1, so

ẽ+ w(x) ≤ 11 ≤ 4 + β′. We thus have

2c′ < w′(x∗∗) ≤ 3b0/2 + 7 + ẽ+ b0 + w(x) ≤ 5b0/2 + 12 + β′ = α′ − 2b0 + 12 + β′ ≤ 2α′/3 + β′.

Coming from STATE B2, we have 2c ≤ w(x∗∗) ≤ min{2α/3, α− 2b0 + 12}+ β and 9b0/2 ≤ α ≤
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2α′/3, so

2c′ < w′(x∗∗) ≤ 2α/3 + β+ b0 + 8 ≤ 2α′/3− 3b0/2 + β+ b0 + 8 ≤ 2α′/3 + β′ < α′− 2b0 + 12 + β′.

Proceed to STATE B2 if t̃′ > 0, and proceed to STATE C if t̃′ = 0.

– Now suppose γ + f(x) ≥ 4, in which case 3b0 ≤ α ≤ 4α′/9. Coming from STATE B1 or STATE

B2, we have

2c′ < w′(x∗∗) ≤ w(x∗∗) + 2b0 ≤ 2α/3 + β + 2b0 ≤ 2α′/3 + β′ ≤ α′ − 2b0 + 12 + β′.

Proceed to STATE B2 if t̃′ > 0, and proceed to STATE C if t̃′ = 0.

• Coming from STATE B3, if γ + f(x) ≥ 2, then Max absorbs y into x̂. Note that 3b0 ≤ α ≤ 2α′/3.

– First suppose w(y) = 2. If c < w(x̂) ≤ δα+ β, where 1/2 ≤ δ ≤ 1, then

w′(x̂) ≤ δα+ β + 4 ≤ δ(α′ − 3b0/2) + β′ + 7 ≤ δα′ + β′ − 3b0/4 + 7 ≤ δα′ + β′.

Hence a′ ≤ α′ + β′, the elements of X∗ still maintain the system of inequalites required of them

by STATE B3, and q̄′ ≥ q̄ ≥ t̃ = t̃′. Proceed to STATE B3 if t̃′ > 0, and proceed to STATE C if

t̃′ = 0.

– Now suppose w(y) ≥ 3, so t̃′ = t̃− 1. If 2 ≤ γ + f(x) ≤ 3, then f(x) ≤ 3, 3b0 ≤ α = 2α′/3, and

w(x) + β ≤ β′+ 7 (indeed, either f(x) = 1, w(x) ≤ 4, and β′ ≥ β− 3; or f(x) = 2, w(x) ≤ 6, and

β′ ≥ β; or f(x) = 3, w(x) ≤ 8, and β′ ≥ β + 3), so

w′(x̂) ≤ α+ β + w(x) + w(y) ≤ α′ − 3b0/2 + β′ + 7 + b0 ≤ α′ + β′.

If γ + f(x) ≥ 4, then 3b0 ≤ α ≤ 4α′/9 and β′ ≥ β − 3, so

w′(x̂) ≤ α+ β + 2b0 < α′ − 3b0 + β′ + 3 + 2b0 < α′ + β′.

In either case, if x̂ ∈ X∗, then remove x̄ from X̄ and give it the label assigned to x̂, which is

acceptable because 2α/3 + β ≤ 4α′/9 + β ≤ α′/2 + β′ and q̄′ ≥ q̄ − 1 ≥ t̃ − 1 ≥ t̃′. Proceed to

STATE B3 if t̃′ > 0, and proceed to STATE C if t̃′ = 0.
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