
c© 2015 Ana Gainaru

FAILURE AVOIDANCE TECHNIQUES FOR HPC SYSTEMS BASED
ON FAILURE PREDICTION

BY

ANA GAINARU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Marc Snir, Chair
Professor William Gropp
Professor William Kramer
Professor Franck Cappello
Professor Andrew Chien, University of Chicago

Abstract

A increasingly larger percentage of computing capacity in today’s large high-

performance computing systems is wasted due to failures and recoveries.

Moreover, it is expected that high performance computing will reach exas-

cale within a decade, decreasing the mean time between failures to one day

or even a few hours, making fault tolerance a major challenge for the HPC

community. As a consequence, current research is focusing on providing fault

tolerance strategies that aim to minimize fault’s effects on applications. By

far, the most popular and used techniques from this field are rollback-recovery

protocols. However, existing rollback-recovery techniques have severe scala-

bility limitations and without further optimizations the use of current pro-

tocols is put under serious questions for future exascale systems. A way of

reducing the overhead induced by these strategies is by combining them with

failure avoidance methods. Failure avoidance is based on a prediction model

that detects fault occurrences ahead of time and allows preventive measures

to be taken, such as task migration or checkpointing the application before

failure. The same methodology can be generalized and applied to anomaly

avoidance, where anomaly can mean anything from system failures to per-

formance degradation at the application level. For this, monitoring systems

require a reliable prediction system to give information on when failures will

occur and at what location. Thus far, research in this field used ideal pre-

dictors that do not have any implementation in real HPC systems.

This thesis focuses on analyzing and characterizing anomaly patterns at

both the application and system levels and on offering solutions to prevent

anomalies from affecting applications running in the system. Currently, there

is no good characterization of normal behavior for system state data or how

different components react to failures within HPC systems. For example,

in case a node experiences a network failure and is incapable of generating

log messages, the failure is announced in the log files by a lack of generated

ii

messages. Conversely, some component failures may cause logging a large

numbers of notifications. For example, memory failures can result in a single

faulty component generating hundreds or thousands of messages in less than

a day. It is important to be able to capture the behavior of each event type

and understand what is the normal behavior and how each failure type affects

it. This idea represents the building block of a novel way of characterizing the

state of the system in time by analyzing the properties of each event described

in different system metrics, considering its own trend and behavior. The

method introduces the integration between signal processing concepts and

data mining techniques in the context of analysis for large-scale systems. By

shaping the normal and faulty behavior of each event and of the whole system,

appropriate models and methods for descriptive and forecasting purposes

are proposed. After having an accurate overview of the whole system, the

thesis analyzes how the prediction model impacts current fault tolerance

techniques and in the end integrates it into a fault avoidance solution. This

hybrid protocol optimizes the overhead that current fault tolerance strategies

impose on applications and presents a viable solution for future large-scale

systems.

iii

Behind any PhD student there is a strong team of technical and creative

people. This thesis is dedicated to my amazing fantastic four: Adi, Cici, Cri

and Dan.

iv

Acknowledgments

First and foremost I want to thank my advisor, professor Marc Snir, for en-

couraging my research and for helping me grow as a research scientist. It has

been an honor to work with him. I appreciate all his contributions of time,

ideas, and funding to make my Ph.D. experience productive and stimulating.

I am also very grateful to professor Franck Cappello for his scientific advice

and knowledge and many insightful discussions and suggestions. They have

both been tremendous mentors for me. I would also like to thank professors

William Gropp, William Kramer and Andrew Chien for serving as my com-

mittee members and contributing to one of my proudest moments. I would

like to thank them for their comments and suggestions which made my thesis

stronger.

A special thank you is reserved for the people from the National Cen-

ter for Supercomputing Applications who have contributed immensely to

my personal and professional time at UIUC. The group has been a source

of friendships as well as good advice and collaboration. Professor William

Kramer has been a mentor and an excellent example on how to be a great

scientist. He has supported me not only by providing a research assistantship

for over five years, but also by giving me the moral support and the freedom

I needed to finish this thesis. I would also like to thank Cristina Beldica, who

has been helpful in providing advice many times during my graduate school

career and who represents an excellent role model as a successful woman

scientist in HPC. My thesis would not have been as strong if not for all

the contradictory discussions with the people from the Blue Waters project:

Jeremy Enos, Mike Showerman and Joshi Fullop.

During my time at UIUC I met many amazing people who have helped

and taught me immensely and who have become my friends along the way:

Leonardo Bautista Gomez, Amina Guermouche, Matthieu Dorier, Thomas

Ropars, Bogdan Nicolae, Mohamed Slim Bouguera, Vincent Baudoui and

v

Guillaume Aupy. The joy and enthusiasm everyone has for HPC and re-

search in general was contagious and motivational. Their presence has made

conferences and collaborations become vibrant and full of energy and had a

tremendous positive effect on the overall quality of my research.

The hybrid preventive and proactive checkpointing solution discussed in

this dissertation would not have been possible without the FTI tool devel-

oped by Leonardo Bautista Gomez and the help given by the HPC group

of professor Satoshi Matsuoka at the Tokyo Institute of Technology. I have

greatly appreciated their collaboration and have been impressed with their

work ethic and efficiency.

In my later work of studying the effect of I/O congestion on application

performance degradation, I am particularly indebted to the people from ENS

Lyon. Yves Robert, Anne Benoit and Guillaume Aupy made significant

contributions, especially to the scheduling and theory part of the work. I

would also like to thank the I/O group at Argonne National Laboratory for

inspirational discussions with us regarding our experiments on this topic.

I gratefully acknowledge the funding sources that made my Ph.D. work pos-

sible. This research is part of the Blue Waters sustained-petascale computing

project, which is supported by the National Science Foundation (award num-

ber OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort of

the University of Illinois at Urbana-Champaign and its National Center for

Supercomputing Applications. This research was done in the context of the

INRIA-Illinois Joint Laboratory for Petascale Computing. The work was

also supported by the U.S. Department of Energy, Office of Science, under

Contract No. DE-AC02-06CH11357.

My time at UIUC was made enjoyable in large part due to the many friends

and groups that became a part of my life. I am grateful for the time spent

playing board games with Alex, Laura, Ben, Yun, Ryan and many others; for

my climbing buddies and our memorable trips into the mountains: Santiago,

Manish, Andrew; for Elena and Zach who were always there for me. A special

thanks goes to Kevin, my first and only house mate, who put up with my

messiness.

Lastly, I would like to thank everyone in my family for supporting me in

all my pursuits and for being my best friends. I have an amazing family,

whose members are unique and complement each other in a wonderful way:

my mother, Cici, is creative and has the best advice for any situation; my

vi

father, Dan, is technical and analytical and I can always bounce ideas with

him; my sister, Cri, is artistic and independent and has been invaluable in

de-stressing me between deadlines; and my husband, Adi, who has been my

rock during the past 5 years, always putting things in perspective with his

analytical thinking and great sense of humor.

vii

Table of Contents

List of Tables . xi

List of Figures . xiii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Focus areas . 3
1.3 Outline of the thesis . 5
1.4 Definition of terms . 6

Chapter 2 State of the art on fault tolerance for HPC systems 9
2.1 Observations . 9
2.2 Failure detection methods . 16
2.3 Prediction methods . 18

2.3.1 Prediction based on failure statistics 20
2.3.2 Prediction based on system models 22
2.3.3 Event driven prediction 23

2.4 Checkpointing challenges . 25

Chapter 3 HPC systems description 28
3.1 Mercury . 29
3.2 Systems at LANL . 30
3.3 Blue Gene systems . 31
3.4 Blue Waters . 35

Chapter 4 Analyzing the system behavior 40
4.1 Preprocessing . 41

4.1.1 Propagation analysis on the Mercury system 45
4.2 Extracting the normal and faulty event behavior 47

4.2.1 Periodic events . 49
4.2.2 Noise and silent signals 52
4.2.3 Anomaly detection . 54

4.3 Filtering methods based on signal analysis 56
4.4 Failure analysis . 61

4.4.1 Location propagation 61

viii

4.4.2 Failure statistics . 63
4.4.3 Failure correlation . 66

Chapter 5 Failure prediction . 69
5.1 Failure prediction based on signal analysis 70

5.1.1 Analysis modules . 71
5.1.2 Dissecting event correlation 76
5.1.3 Dissecting prediction 80

5.2 Parameter influence on the results 83
5.2.1 Preprocessing parameters 83
5.2.2 Prediction parameters 84
5.2.3 Discussion . 86

5.3 Online failure prediction . 87
5.3.1 Results . 91

5.4 Results on the Blue Waters system 94
5.4.1 Detail breakdown of prediction results 96
5.4.2 Location propagation 98

5.5 Comparison Blue Waters results with smaller systems 100
5.6 Prediction from the application’s perspective 103

5.6.1 Details statistics . 104
5.6.2 Details prediction . 105

5.7 Discussion . 108

Chapter 6 Combining failure prediction with checkpointing 112
6.1 Analysis of prediction methods for failure avoidance 113

6.1.1 Real Time Failure Prediction Challenges 113
6.1.2 Lead time distribution 114
6.1.3 False negative distribution 115

6.2 Implementation of the hybrid approach 118
6.2.1 Adapting FTI to handle checkpoint requests 118
6.2.2 Embedding ELSA into FTI 121

6.3 Hybrid implementation overhead 123
6.4 Simplistic model to compute the protocol’s benefit 127
6.5 Evaluation of the hybrid strategy benefit 131

Chapter 7 Future work . 136
7.1 Application level . 136
7.2 Specific predictors: File systems 136

7.2.1 Metrics . 136
7.2.2 Anomaly detection . 137

Chapter 8 Conclusion . 140
8.1 Overview of the thesis . 140
8.2 Summary of contribution . 141
8.3 Future work . 143

ix

References . 145

x

List of Tables

2.1 Failure categories used in the HPC field 12
2.2 Different studies and their results on failure characterization . 13
2.3 Prediction results for different state-of-the-art related work . . 25

3.1 Log file statistics . 28
3.2 Log file statistics for different sources for the Blue Waters

system . 29
3.3 Characteristics of the Mercury System 29

4.1 Mercury error templates . 46
4.2 Failure inter-event statistics (in days) 47
4.3 Examples of templates and their event types 49
4.4 Statistics for different signal types 53
4.5 Filtering results . 60
4.6 Percentage of different failure types 63
4.7 Average number of failures per month for each type (with

the standard deviation) . 65
4.8 Main specific failure types . 66

5.1 Sequence of correlated events 77
5.2 Precision and recall for different methods 82
5.3 System parameters . 84
5.4 Input file entries required by the online methodology 90
5.5 Most frequent types of failures 96
5.6 Recall of different failure types for different systems 101
5.7 Blue Waters application exit codes, their meaning and the

number of occurrences . 106
5.8 Correlation between different system failure types and ap-

plication crashes . 106
5.9 Recall for predicting application crashes (Precision between

70-75%) for the Blue Waters system 108

6.1 Precision results for LANL systems 116
6.2 Precision results for the Blue Gene/L system 116

xi

6.3 Best fitting distributions (fitting parameters scale are in
seconds) . 117

6.4 Percentage waste improvement in checkpointing strategies . . 130
6.5 Computing platform configuration 133

7.1 Metrics used in the analysis 137

xii

List of Figures

1.1 Failure Fault propagation . 4
1.2 Overview of the research statement 5
1.3 Error propagation and cascading failures 7

2.1 MTTFs of identical nodes over 4 year time. Image from [1] . . 15
2.2 Online failure prediction taxonomy 19

3.1 Blue Gene architecture . 33
3.2 Cray system 3D torus network 36
3.3 Lustre filesystem architecture 37

4.1 HELO radix tree implementation 43
4.2 HELO methodology . 44
4.3 Distribution of nodes affected by failures 48
4.4 Different signals generated by HPC systems 50
4.5 Auto-correlation plots for different signals 51
4.6 Filtering the power spectrum 52
4.7 The spectrogram of ECC warnings on Blue Waters 54
4.8 Applying PCA on a noise signal 55
4.9 Anomaly extraction methodology 57
4.10 The filtering methodology . 59
4.11 Percentage of sequences propagating on different racks,

midplanes and nodes on Blue Gene/L 63
4.12 Percentage of different failures 64
4.13 Percentage of most frequent hardware failures 64
4.14 Percentage of main software failures 65
4.15 Correlations between failures on the Blue Waters system

within a time window of one hour 67
4.16 The probability that any node-failure follows a failure of

type X on the Blue Waters system 68

5.1 Methodology overview of the hybrid ELSA approach 71
5.2 Online outlier detection . 72
5.3 Correlation example between three signals 73
5.4 Sequence size distribution . 80

xiii

5.5 Time delay distribution between events in sequences 80
5.6 Prediction time window . 81
5.7 Recall breakdown on different categories 83
5.8 The influence of the HELO ”cluster goodness” parameter

on the template list and on the prediction results 85
5.9 The influence of ELSA’s parameters on the prediction result . 86
5.10 Failure prediction: simulate online 88
5.11 Online failure prediction . 88
5.12 Precision and recall for simulate online and online 92
5.13 Precision and recall for the Blue Waters 94
5.14 Breakdown precision and recall for different root causes 95
5.15 Errors propagating in the same cabinet. Predicted failures

are marked with orange and unpredicted failures with blue . . 98
5.16 Location propagation results 100
5.17 Prediction results when using the location propagation method

for 70% precision . 101
5.18 Recall for the main software failures 103
5.19 I/O throughput decrease (percentage per application in-

stance, over 400 applications) on Intrepid. 107
5.20 Summary of per cabinet behavior 109

6.1 Lead time distribution between events in sequences for the
BGL predictions . 114

6.2 PP-plot and CDF for exponential type distribution (a) and
Weibull type (b) . 119

6.3 The hybrid implementation architecture 121
6.4 Overhead of the proactive checkpoint implementation 124
6.5 Overhead for different checkpoint intervals 125
6.6 Checkpoint Restart mechanism 127
6.7 Variation of the improvement percentage versus the varia-

tion of the prediction recall (a) and the prediction precision
(b). 134

7.1 Quality of service for 100 OST for 100 time units 138
7.2 Signal and spectrogram for OST ID 101 139

xiv

Chapter 1

Introduction

1.1 Motivation

The last few years have been a fertile ground for the development of many

scientific and data-intensive applications in all fields of science and indus-

try. These applications provide an indispensable means of understanding

and solving complex problems through simulation and data analysis. As

large-scale systems evolve towards post-petascale computing to accommo-

date applications increasing demands for computational capabilities, many

new challenges need to be faced, among which fault tolerance is a crucial

one [2, 3]. At the scale of today’s large scale systems, fault tolerance is no

longer an option, but a necessity. With failure rates predicted in the order

of tens of minutes for the exascale era [4] and applications running for ex-

tended periods of time over a large number of nodes, an assumption about

complete reliability is highly unrealistic. Because processes from scientific

applications are, in general, highly coupled, even more pressure is put on the

fault tolerance protocol since a failure to one of the processes will normally

lead to the failure of the entire application.

By far, the most popular fault tolerance technique to deal with applica-

tion failures is the Checkpoint-Restart strategy. However, checkpointing and

restarting has a cost in time and energy. Some projections [5] estimate that,

with the current technique, the time to checkpoint and restart may exceed the

mean time to interrupt of state-of-the-art future generation supercomputers.

This new projection means that multiple errors must be handled by current

fault tolerance protocols. Moreover, the current approach is developed to ap-

ply the same fault tolerance method to all types of faults (permanent node

crash, detected transient errors, network errors, file system failures) and for

the whole duration of the execution. However, not all faults require the same

1

expensive checkpoint-restart approach.

Since exascale supercomputers, which are expected by 2023-2025, will ex-

hibit much more complexity and many more faults than todays supercom-

puters, it is imperative that we design fault tolerance systems with as low

overhead as possible. Moreover, the instability of exascale systems with their

diversity of faults and the limitations of ”one size fits all” fault tolerance ap-

proaches, creates the need to develop a set of dedicated solutions in addition

to the current general purpose ones.

Currently, there are several fault tolerant methods implemented at dif-

ferent levels of the software stack, from ECC implemented at the hardware

level to more complex application level recovery methods. A complement to

the classical checkpoint-restart approach is failure avoidance, by which the

occurrence of a fault is predicted and preventive measures are taken. Failure

avoidance uses the information received by a failure predictor to facilitate

proactive fault tolerance mechanisms such as preventive job migration or

proactive checkpoint. In general, failure prediction is based on the obser-

vation that there is a Fault-Error-Failure propagation graph as shown in

Figure 1.1 (page 4). The fault generates a number of errors that, frequently,

can be observable at the system level either by generating notifications in the

event and activity log files or by changing values for several performance met-

rics. Some faults, however, might change the function of the system without

being observable in the logs or metrics. The propagation chain ends with

the failure which is observed at the application level and usually is repre-

sented by either a failover, a recovery action or an application interruption.

Or, in some cases, the error could propagate and generate other effects like

performance degradation.

Over the years, different methods have been developed that deal with fail-

ure prediction in the HPC community [6], methods that have been used

extensively on different HPC systems and that present a variety of results.

There are two levels of failure prediction in literature: component level and

system level failure prediction. The first level assumes methods that ob-

serve components with their specific parameters and domain knowledge and

define different approaches that give best prediction results for each. One

example of this type is to compare the execution of good components with

failed ones [7, 8]. The second level is represented by system failure pre-

diction, in which monitoring daemons observe different system parameters

2

(system logs, scheduler logs, performance metrics, etc) and investigate the

existence of correlations between different events. There are numerous meth-

ods, starting with simple brute force extraction of rules between non-fatal

events and failures [6] with more sophisticated techniques. In [9], the authors

are using a meta-learning predictor to chose between a rule-based method

and a statistical method depending on which gives better predictions for a

corresponding state of the system. Other research include Support Vector

Machines (SVM) [10], Hidden-Markov chains [11] or Bayesian networks [12].

Our experience with HPC systems has shown me that different system

components exhibit different types of syndromes, both during normal oper-

ation and as they approach failure. Our key observation is errors are often

predicted by changes in the frequency or regularity of various events. For

this purpose, we investigate the integration of signal processing concepts and

data mining techniques in the context of failure analysis for large-scale sys-

tems. By shaping the normal and faulty behaviour of each event, and of the

whole system, we are able to propose appropriate models and methods for

describing the chains of events occurring before failures. The results show

that conventional signal processing techniques can create clear markers for

changes in events behavior. Moreover, machine learning techniques become

much more efficient when applied to the derived markers, rather than to the

original signal.

We develop a prototype implementation of preventive checkpointing cou-

pled with periodic multi-level checkpointing. The preventive checkpointing

save the state of the application in each node’s memory, providing fast check-

point, which is necessary in order to act quickly between the failure predic-

tion and the moment of the failure. Our method improves the performance

of classical fault tolerance techniques when dealing with failures in petascale

systems and the results show the potential of using such an approach on

future exascale systems.

1.2 Focus areas

In order to address the challenges presented in the previous subsection, in

this thesis we address the following research questions:

• Characterizing the behaviour of HPC systems in failure free situations

3

Figure 1.1: Failure Fault propagation

and how different types of failures affect this behaviour.

• Developing efficient methods for online analysis of the data generated

by HPC systems for descriptive and predictive purposes.

• Developing forecasting methods that take into consideration the topol-

ogy of HPC systems for predicting the locations along which a failure

propagates.

• Characterizing failure precursors and their correlation with different

levels of failures.

• Translating the failure prediction at the application level by correlating

system and application events and metrics with application failures and

performance degradation.

• Developing hybrid methods of preventive and proactive fault tolerance

methods dependent of the type of failures affecting the applications.

This thesis introduces a new layer between the system and the fault tol-

erance protocols running beneath the applications. Figure 1.2 on page 5

presents an overview of our contribution. The layer we introduce is able to

characterize the failures affecting the system and crashing applications. By

monitoring the state of the system at all times, our modules are able to find

patterns that lead to failures and to trigger alerts whenever the patterns are

seen in real time. These alerts act as input to fault tolerance protocols that

can then save the application’s state or migrate the application before the

failure actually affects it.

4

Figure 1.2: Overview of the research statement

1.3 Outline of the thesis

This section presents an overview of the thesis by presenting a summary of

the contents for each chapter of the thesis. This thesis is structured in 6

additional chapters.

Chapter 2 introduces the context of the thesis, presents the state-of-

the-art in event analysis and prediction methods, as well as in current fault

avoidance theoretical techniques for todays large scale applications.

Chapter 3 presents a thorough analysis of several HPC systems current

and past and introduces a characterization of the behavior of each. In this

chapter we investigate the statistical properties of events and failures and

their propagation behavior and we highlight the underlining differences and

similarities between different HPC systems. Based on this information we

propose new methods based on signal analysis concepts that automatically

extract from log files the behavior of each event and create a universal global

view of the system.

Chapter 4 focuses on proposing an accurate failure prediction method-

ology that includes the time and location of future failures. By combining

signal analysis with data mining we were able to find patterns between events

described in the log files and failures. We investigate the influence of different

parameters on the overall prediction results and we highlight the best pos-

5

sible combination. Secondly, we investigate the feasibility of online failure

prediction methods on a petascale machine. We are looking at a completely

online approach based on the hybrid method for the Blue Waters system.

This chapter also presents a location propagation methodology that uses net-

work topology information. Finally, we show the differences between larger

and smaller HPC systems that influence the prediction results and highlight

possible future research directions.

Chapter 5 presents an implementation of a hybrid fault tolerance proto-

col that combines failure prediction with a multi-level checkpointing strategy.

We show the overhead of such an approach and study the system utilization

achieved for several HPC applications. This chapter also studies the bene-

fit of our hybrid implementation on current and future exascale system by

proposing several theoretical mathematical models.

Chapter 6 discusses on-going research related to application level failure

prediction and specific predictors. We analyze the statistical characteristics

of application crashes as well as the effect different failure types have on

applications. We then focus on filesystem failures and the way they propagate

to the applications. We show preliminary results for a new predictor focused

on performance and environmental metrics used to extract patterns related

to filesystem failures.

Chapter 7 is the last chapter of the thesis, it presents the conclusions

of this work and includes a list of thesis contributions. The chapter also

presents future research directions.

1.4 Definition of terms

The absence of consistent definitions and metrics for supercomputer reliabil-

ity, availability and serviceability has been a problem for the community in

the past [13]. In order to avoid this problem, the workshop organized by the

Institute for Computing Sciences on August 2012 proposed a taxonomy of

terms to be used as standard. The definitions that were proposed were based

almost entirely on [14].

We will enumerate the most important ones in this section. For a complete

list of metrics and definitions, consult the workshop’s report [15] or the initial

paper of A. Avizienis at al [14].

6

Figure 1.3 shows the propagation chain from faults to failures in a system.

A fault represents the cause of an error, like a stuck bit or alpha particles. An

error is the part of total state that might lead to a failure and the failure is

a transition to incorrect function. Faults can be active or inactive, meaning

actually causing errors or not. In general, a fault is local to one component

while errors and failures may propagate from one component to another. In

case of failures this propagation is called cascading failures. The distinction

between hard and soft faults is not a strict one. Faults may be due to

complex combination of internal state and external conditions that occur

rarely and are difficult to reproduce. Memory errors can be classified into

soft errors, which randomly corrupt bits but do not leave physical damage;

and hard errors, which corrupt bits in a repeatable manner because of a

physical defect.

Figure 1.3: Error propagation and cascading failures

Error identification identifies the presence of an error but does not nec-

essarily identify which part of the system state is incorrect, and what fault

caused this error. By definition, every fault causes an error. Almost always,

the fault is detected by detecting the error the fault caused. Therefore, fault

detection or error detection refer often to the same thing. Latent or silent

errors are errors that are not detected.

There are several means of dealing with faults: 1) Forecast is used to

estimate the future number, future incidence and likely consequinces of faults;

2) Prevention is used to prevent fault occurences; 3) Removal is used to

reduce the fault number and severity; 4) Tolerance is used to avoid failures

in the presence of faults.

Time to Failure (TTF) is the interval between the end of last failure and

the beginning of next failure. Time between Failures (TBF) is the interval

between the beginnings of two consecutive failures. Time to Repair (TTR)

is synonymous with Unscheduled Downtime and it represents an unplanned

service outage or an incorrect service. In current supercomputers, several

7

repairs can be done without any downtime for the system. Scheduled Down-

time represents a planned service shutdown during which system upgrades

and configuration changes are taking place. Production uptime is character-

ized by a correct operation service. Formally:

MTBF (Mean time between failures) = TotalT ime
NumFailures

MTTF (Mean time to failure) = Uptime
NumFailures

MTTR (Mean time to repair) = UnscheduledDowntime
NumFailures

We use two metrics for measuring the results of a predictor, namely preci-

sion and recall. Precision is seen as a measure of fidelity and represents the

proportion of correctly predicted failures to the total number of predictions

made. Recall is the ratio of corrected predictions to all the existing failures

in the system and represents a measure of completeness. The lead time rep-

resents the time between when a prediction is triggered and when the failure

occurs. The lead time can be used by fault avoidance techniques to take a

proactive action before the failure manifests in the system.

The components (such as memory, CPU, disk, and the network) of such

systems arguably have different failure dynamics in terms of time and space.

Some components may fail randomly and frequently while others may fail in a

correlated fashion though rarely. Most modern supercomputers concurrently

use multiple heterogeneous types of networks, storage and processors (such

as GPUs, general purpose processors, and FPGAs). This potentially makes

the failure dynamics even more diverse.

8

Chapter 2

State of the art on fault tolerance for HPC
systems

Understanding the failure behavior of large scale parallel systems is crucial

for achieving high utilization of large systems. The process requires continual

online monitoring and analysis of all events generated in the system including

normal notifications, performance metrics and failures over extended periods

of time.

The data obtained from such analysis can be useful in several ways. The

failure data can be used by hardware and system software designers during

early stages of machine deployment in order to correct product defects. It

can help system administrators for maintenance, diagnosis, and enhancing

the overall system health (uptime). They can isolate where problems occur,

and take appropriate remedial actions (replace the node-card, replace the

disks/switches, reboot a node, select points for software rejuvenation, sched-

ule down-times, etc.). Finally, it can be useful in predicting failures in these

systems so that different algorithms could take preventive measures.

There is a significant number of research papers and tools in the area of

event analysis in HPC systems that are used for many reasons, from system

characterization to failure prediction or root cause analysis. This chapter

discusses the challenges of event analysis in large scale systems and presents

an overview of solutions proposed in the course of the last several years, while

discussing their advantages and shortcomings.

2.1 Observations

The design of extreme-scale platforms that are expected to become avail-

able in 2022 will represent a convergence of technological trends and the

boundary conditions imposed by over half a century of algorithm and ap-

plication software development. The precise details of these new designs

9

are not yet known. However, there are numerous papers that look at the

configurations and properties of existing systems and make predictions re-

garding the future of HPC systems. Others present statistical information

about failures and events by analyzing generated log files and gathered per-

formance/environmental metrics.

There are several exascale/petascale reports that focus on resiliency and

programming models for future exascale systems. The DARPA white paper

on system resilience at extreme scale from 2008 [16] points out that current

high end systems waste in average 20% of its computing capacity on failure

and recovery. The paper outlines possible research in order to bring this

number down to 2%. The DOD/DOE report issued from 2009 [17] identifies

resilience as a major emerging issue for HPC. It proposes research in five

thrust areas: theoretical foundations, enabling infrastructure, fault predic-

tion and detection, monitoring and control and end-to-end data integrity.

The paper published in the International Journal of High Performance Com-

puting Applications in 2009 [18] describes the challenges resiliency faces in

the exascale era and possible directions in order to address these needs. The

DOD/DOE report [2] issued in 2012 identifies six high priorities: fault char-

acterization, detection, fault-tolerant algorithms, fault-tolerant programming

models, fault tolerant system services and tools. The DOE workshop from

2012 [3] describes the required HPC resilience for critical DOE mission needs

and details what HPC resilience research is already being done at the DOE

national labs and what is expected to be done by industry and other groups.

Also, the workshop focused on determining what fault management research

is a priority for DOE’s Office of Science and NNSA over the next five years.

The exascale report from March 2013 [15] gathered the main points discussed

at the workshop organized by the Institute for Computing Sciences on August

2012. The report analyzes the state of resiliency for HPC and proposes three

design approaches: 1) business as usual where the global checkpoint/restart

is used; 2) system-level resilience where vendors do not provide sufficiently

low SDC rates at an acceptable acquisition and operation cost and a combi-

nation of hardware and software technologies is needed to hide the increased

failure rates from the application; 3) application-level resilience for which

there is an assumption that application codes will need to be modified in or-

der to handle the increased failure rate. The paper makes recommendations

for each alternative in order for them to become solutions for future systems.

10

The International exascale Software Project (IESP) Workshop [19], held in

Kobe, Japan on the 12th-13th of April 2012 discusses what will be the major

obstacles that the climate community will face at exascale and proposes

and evaluates possible ways to overcome these obstacles. The focus of the

workshop is on node-level performance, scalability and resilience.

Continuous availability of HPC systems has become a primary concern

with the continuing increase of system size. Understanding the behavior of

failures in current systems is increasingly important in order to design more

reliable systems. To this extent, failure data analysis of current HPC systems

can serve three purposes. First, it can highlight dependability bottlenecks

and might serve as a guideline for designing more reliable systems in the

future. Second, real data can be used to drive numerical evaluation of per-

formance models and simulations, which are an essential part of reliability

engineering. Third, these models can be used to predict resource availabil-

ity, which is useful for characterization and scheduling. The knowledge of

resources reliability can reduce performance loss due to unexpected failures,

and QOS (Quality of Service) either by Reliability-aware Scheduling, where

a system schedules jobs with different sizes on nodes based on the node’s

reliability or by Reliability-aware Checkpointing, where the optimal check-

pointing interval can be computed based on the reliability of a set of nodes.

There are several papers that study the statistics of reliability/failure data,

including the root cause of failures, the mean time between failures, and the

mean time to repair. Work on characterizing failures in computer systems

differs in the type of data used; the type and number of systems under study;

the time of data collection; the system’s maturity (time since installation);

and the number of failure or error records in the data set. Most of these

statistics are based on reliability, availability and serviceability (RAS) data

mainly provided by major HPC laboratories in the USA: Los Alamos Na-

tional Laboratory(LANL), National Energy Research Scientific Computing

Center (NERSC), Pacific Northwest National Laboratory, Sandia National

Laboratory (SNL), Laurence Livermore National Laboratory (LLNL), and

National Center for Supercomputing Applications (NCSA).

Most studies divide failures into two categories: software and hardware,

each having different sub-categories. Reliability monitoring and analysis con-

siders failures that affect a single node; failures affecting a group of nodes;

failures that may affect applications or important services; and operator er-

11

Hardware failures Software failures
Failures that affect group of nodes

Interconnect; Power Supply Scheduler; FS; Cluster Management
Software

Individual node failure
Processor; Memory; Mother Board;
Disk

OS; Client Daemon

Table 2.1: Failure categories used in the HPC field

rors. Table 2.1 presents examples of what is used in literature.

Table 2.2 presents a summary of the papers presenting failure statistics

for different machines. Depending on the study and on the analyzed system,

the table shows a wide range of results. There is not a consistent main root

cause of failures among all systems, nor a consistent MTBF or MTTR.

Some of the studies give additional information to what is presented in the

table. Schroeder et. al. [24], demonstrates that the number of failures per

processor in different systems is rather stable over the course of time interval

between 1996 to 2004. They also find that average failure rates differ wildly

across systems, ranging from 20-1000 failures per year, mainly because of

their size. The normalized failure rates show significantly less variability, in

particular across systems with the same hardware type.

In a paper from 2011, Zheng et. al. [25] analyze the Blue Gene/P at

Argonne National Laboratory and by using both RAS and job logs, they

filter out failures that do not affect any jobs. By characterizing only the

failures that lead to application interruptions they make a couple of inter-

esting observations which might influence the fault tolerance protocol used

by different applications. For example they observe the probability of job

interruption is high if there exist historical records of application-related in-

terruptions. Moreover, most application errors tend to be reported in the

first hour. Therefore it is inadvisable to introduce checkpointing early in

the execution period if the job has historical records of application-related

interruptions. The failures remaining after filtering follow a Weibull distri-

bution as do all failures analyzed together. Although both distributions have

decreasing hazard rates, the value of the distribution’s shape parameter af-

ter the job-related preprocessing is much higher than that for all failures.

The MTBF after job-related filtering is about three times larger than that

12

System MTBF Root cause analysis Citation

A cluster of 12 SGI Origin 2000
(1500 CPUs)
A PC cluster (1000 CPUs)
A cluster of 162 Itanium dual
CPUs

MTTI of 1
day, less than
1 hour and
about 6 hours
respectively

Software was at the
origin of most outages
(59-84%)

[20]
2005

22 HPC systems including a
total of 4,759 machines and
24k processors from LANL
during 1995-2005

Around 8h

Over 50% of failures
due to hardware, soft-
ware only around 20%

[21]
2007

Blue Gene/L during 6 months More than 10h - [22]
2008

Blue Gene/L (131k CPUs)
Red Storm (11k CPUs)
Thunderbird (9k CPUs)
Spirit (1k CPUs)
Liberty (512 CPUs)

-
Software caused 64%
of failures, while hard-
ware only 18%

[23]
2007

22 different systems at LANL,
mostly large clusters of SMP
and NUMA nodes, over a pe-
riod of 10 years

-

Hardware is the main
cause of failures (from
30% to more than
60%). Software is the
second largest contrib-
utor, with 5% to 24%

[24]
2007

Blue Gene/P

Job level
MTBF is three
times larger
than that
system level
MTBF

- [25]
2011

Blue Gene/L, Blue Gene/P,
SciNet, Google

-

Over a third DRAM
errors are hard errors,
most commonly in the
form of repeating er-
rors on the same phys-
ical address

[26]
2012

Platium, Titan 6h

Software represent the
cause of most failures
with 84% for Platium
and 60% for Titan

[27]
2013

Table 2.2: Different studies and their results on failure characterization

13

without job related filtering.

Tsai et. al. [28] present a study that uses data collected from a population

of over 50,000 customer deployed disk drives to examine the relationship

between soft errors and failures, in particular failures manifested as hard

errors. They observe soft errors alone cannot be used as a reliable predictor

for all hard errors. However, in those cases where soft errors do accurately

predict hard errors, sufficient warning time exists for preventive actions.

In [26], Hwang et. al. analyze data on DRAM errors collected on a diverse

range of production systems in total covering nearly 300 terabyte-years of

main memory. The authors provide a detailed analytical study of DRAM

error characteristics, including both hard and soft errors and show that a

large fraction of DRAM errors in the field can be attributed to hard errors.

The paper also provides a detailed analytical study of their characteristics

and proposes future directions to increase the reliability of systems.

After observing that each node may have a different failure distribution, the

study from [1] uses the failure trace obtained from prominent HPC platform

to study and compare how well they are distributed by different distributions,

such as Exponential, Weibull and Lognormal. Their results indicate that

Weibull distribution results in a better reliability model and that if node

failures possess a degree of dependency, the system becomes less reliable.

Recently, systems have started to have heterogeneous nodes, which may

have different failure rates. The study from 2013 [1] has shown that even

homogeneous nodes present different rates. Figure 2.1, taken from this paper,

shows an average MTTF per node of 7,514 hrs with a variance of 23,110 hours

depending on the node ID that is analyzed. Thus, failure rate and reliability

varies with location.

Most studies that analyze distribution fitting show that the Weibull dis-

tribution to be a good fit [24, 23, 29, 30]. In [24] the authors takes into

considerations two types of view: the first as seen by an individual node

in which they study the time between failures that affect only this particu-

lar node and the second as seen by the whole system in which they study

the time between subsequent failures that affect any node in the system.

They found that failures that affect the whole system best fit the Weibull

(with a hazard rate function decreasing, having the Weibull shape parameter

of 0.78) and gamma distributions, while the lognormal and exponential fits

are significantly worse. Individual node failures are best fit by the lognormal

14

Figure 2.1: MTTFs of identical nodes over 4 year time. Image from [1]

distribution, followed by the Weibull and the gamma distribution. Two stud-

ies [21, 31] report correlations between workload and failure rate where [21]

reports a correlation between the workload intensity and the failure rate.

In our work published at SC 2011 [32] we show that the failure distribution

changes depending on the failure type under study. We present some of these

results in the following chapter.

Three of the studies analyze the mean time to repair [22, 24, 21]. In [24]

the authors discovered that the lognormal distribution is the best fit, both

visually as well as measured by the negative log-likelihood. The Weibull

distribution and the gamma distribution are weaker fits than the lognormal

distribution, but still considerably better than the exponential distribution.

As expected the exponential distribution is a very poor fit given the high

variability in the repair times. Both [24, 21] conclude that hardware type

has a major effect on repair times. While systems of the same hardware

type exhibit similar mean and median time to repair, repair times vary sig-

nificantly across systems of different type. Unfortunately the study reports

that repair times has different values for different types of system without

characterizing this difference. In [33] , the authors analyze the Blue Waters

system and show that failures with software root causes were responsible for

53% of the total node repair hours, although they constituted only 20% of

the total number of failures. Hardware root causes, however, despite causing

42% of all failures, resulted in only 23% of the total repair time.

15

2.2 Failure detection methods

There are several general methods used in the literature in order to detect fail-

ures, from modeling the hardware system and finding outliers in this model,

to implementing fault detection at the application and programming model

levels. We will briefly present a few examples from each method.

One method used extensively in the past was to measure the system be-

havior and compare it to the expected normal behavior. An event is cate-

gorized as a failure in case of a significant deviation. Most examples from

this category use performance metrics [8, 34]. Zheng et. al. [8] record system

performance metrics every interval from various components in the system,

and then aggregate all system information into a single large matrix. By

normalizing and performing principal component analysis (PCA) they are

able to determine anomalies.

Another similar methodology models the components and their interac-

tions and then monitor the model. Most examples are using pattern recog-

nition [35, 36] algorithms to model the system. Others include context free

grammars [37] and mathematical equations [38]. Yamanishi et. al. [36] fo-

cuses on network failure symptom detection and event correlation discovery

by modeling the system with a Hidden Markov Model (HMM). Chen et.

al. [37] uses the runtime paths that requests follow as they move through

the system as their core abstraction based on which they characterize com-

ponent interactions. Automated statistical analysis of multiple paths allows

to detect and put a diagnosis on complex failures. In [38] the authors apply

deterministic function approximation techniques to characterize the func-

tional relationships between the target function and some work metrics as

input data. The focus is to develop deterministic models for approximating

the leading indicators of aging and an automated procedure for statistical

testing of their correctness. They automated modeling can be applied in

server-type applications whose performance degrades depending on the work

done since last rejuvenation, for example the number of served requests.

In [39], the authors present an online failure detection method for clouds

by using metric distributions rather than individual metric thresholds. The

study uses entropy as a measurement that captures the degree of dispersal or

concentration of such distributions, aggregating raw metric data across the

cloud stack to form entropy time series. Their algorithm has three phases:

16

metric collection, entropy time series construction and entropy time series

processing: spike detection, signal processing or subspace method in order

to find anomalous patterns which are indications of anomalies in monitored

systems.

A current approach for detecting node failure is to use heartbeats as a way

of constantly monitoring a system. There are hardware health monitoring

methods (e.g., IPMI an open standard hardware management specification

that defines a set of common interfaces to hardware and firmware). For

example, some network failures partition the file system into two or more

groups of nodes that can only see the nodes in their group. These types

of failures can be easily detected through a hardware heartbeat protocol.

Software health monitoring systems [40] are also implemented on several

large-scale systems by using timeouts to detect node problems.

Rani et. al. [40] propose a fault tolerant approach that provides the abil-

ity to detect and self-recover parallel runtime environment in cases of com-

pute node failure. Their solution consists of a lightweight heartbeat protocol

(BHB) that addresses the scalability issues in system monitoring and fail-

ure detection. Their focus are common fault tolerance issues in large scale

systems, especially due to permanent component failure. Varma et. al. [41]

develops a scalable approach to reconfigure the communication infrastructure

after node failures. Their solution is a decentralized (peer-to-peer) protocol

that maintains a consistent view of active nodes in the presence of faults.

The failure detection method is based on a time out mechanism.

Application level failure detection is in general used for large servers or

for large web application. For example, in [42], the authors present an

application-generic framework for using statistical learning techniques to de-

tect and localize likely application-level failures in component-based Internet

services. In the HPC field, Hoefler et. al. [43] proposes a study of generic

fault detection capabilities at the MPI level. The authors implement multiple

detectors at various layers of the software stack: at the MPI communication

layer and a separate one as stand-alone processes across nodes.

17

2.3 Prediction methods

Over the years, approaches on failure prediction have been developed in

relation to reliability theory and preventive maintenance [44, 45, 24]. Models

evolved by trying to incorporate several factors into the distribution, for

example the manufacturing process [46] or code complexity [47]. However,

all these methods are tailored to long-term predictions and do not work

appropriately for online failure prediction.

More recent methods for short-term failure prediction are typically based

on runtime monitoring as they take into account a current state of the system.

There are two levels of online failure prediction in literature: component level

and system level failure prediction. The first level assumes methods that ob-

serve components (hard drive, mother board, DRAM, etc) with their specific

parameters and domain knowledge and define different approaches that give

best prediction results for each [26]. One example of this type of approach

is to compare the execution of good components with failed ones. A couple

of studies from different fields that fit in this category are [7, 48]. For the

HPC community, one example is [8] in which matrices are used to record

system performance metrics at every interval. The algorithm afterwards de-

tects outliers by identifying the nodes that are far away from the majority.

Another example is [49], where the authors implement their own data col-

lection module that gathers relevant data across the system and assembles

them into a uniform format. In the second step they apply two feature ex-

traction techniques, principal component analysis (PCA) and independent

component analysis (ICA) to generate matrices with lower dimensionality;

and in the last step the nodes that are far away from the majority are de-

termined and considered potential anomalies. Their data mining algorithm

is specifically designed for HPC systems and the results are different than

previous studies.

The second level is represented by system level failure prediction, in which

monitoring daemons observe different system parameters (system log, sched-

uler logs, performance metrics, etc) and investigate the existence of correla-

tions between different components. In the last couple of years, a significant

number of papers focus on providing predictions by analyzing different HPC

systems. However, most predictors are able to use the information extracted

in the training phase for only short prediction span after which a new train-

18

Figure 2.2: Online failure prediction taxonomy

ing phase is required. For example, [50] is using almost 3 months of training

for predicting only half of month of execution. When dealing with real long

time execution of a HPC system, the results of this type of prediction are

unknown and can become unusable for real large-scale applications.

The taxonomy we will be using is presented in Figure 2.2. System level

failure prediction has several categories:

1. Based on Failure Statistics. The basic idea of failure prediction based

on failure statistics is to draw conclusions about upcoming failures from

the occurrence of previous failures. This may include the time of oc-

currence as well as the types of failures that have occurred. The two

sub-categores includes: Probability Distribution Estimation and Co-

Occurrence. Prediction methods belonging to the first category try to

estimate the probability distribution of the time to the next failure

from the previous occurrence of failures. For the second type of failure

predictors uses the fact that system failures can occur close together

either in time or in space (e.g., at proximate nodes in a cluster envi-

ronment). This can be exploited to make an inference about failures

that might come up in the near future.

2. Based on System Models. The motivation for analyzing periodically

19

measured system variables such as the amount of free memory or CPU

usage in order to identify an imminent failure is the fact that some types

of errors affect the system even before they are detected. The key no-

tion of failure prediction based on monitoring data is that some errors

can be grasped by their side-effects on the system such as exceptional

memory usage, CPU load, disk I/O, or unusual function calls in the

system. These side-effects are called symptoms. Symptom-based on-

line failure prediction methods frequently address non-failstop failures,

which are usually more difficult to grasp. The following subcategories

are included in this category: function approximation that refers to

mimicking a target value, which is supposed to be the output of an

unknown function of measured system variables as input data (this in-

cludes stochastic models, regression and machine learning); classifiers

where failure prediction is achieved by classifying whether the current

situation is failure-prone or not (this includes for example Bayesian

networks); and time-series analysis where sequences of monitored sys-

tem variables are treated as time series and time-series analysis is used

in order to predict outlier moments in the series.

3. Event Driven Failure Prediction. Failure prediction approaches that use

error reports as input data have to deal with event-driven input data.

This is one of the major differences to system model failure prediction

that uses symptom monitoring-based approaches, which in most cases

operate on periodic system observations. Furthermore, symptoms are

in most cases real-valued while error events mostly are discrete, cate-

gorical data such as event IDs, component IDs, log messages, etc.

2.3.1 Prediction based on failure statistics

In order to estimate the probability distribution of the time to the next

failure, non-parametric methods as well as Bayesian predictors have been

applied. In [51], the authors investigate reliability prediction by analyzing a

decade of field data made available by Los Alamos National Lab. They focus

on investigating the impact of factors, such as the power quality, temperature,

fan and chiller reliability, system usage and utilization, and external factors,

such as cosmic radiation, on system reliability. They observed that some

20

types of failures increase the likelihood of follow-up failures more than others

and that this information can be used for creating effective failure prediction

models based on root cause distribution.

Bayesian failure prediction has the goal of estimating the probability distri-

bution of the next time of failure by benefiting from the knowledge obtained

from previous failure occurrences in a Bayesian framework [52, 53]. In [53],

the authors use a mixture model of naive Bayes clusters trained by the using

expectation-maximization algorithm in order to predict disk failures.

Another paper [54] uses Bayesian statistics to develop an anomaly detec-

tion/prediction system that employed naive Bayesian networks to perform

intrusion detection on traffic bursts. Their model has the capability to po-

tentially detect distributed attacks in which each individual attack session is

not suspicious enough to generate an alert.

Due to sharing of resources, system failures can occur close together either

in time or in space (at a closely coupled set of components or computers).

It has been observed several times that failures occur in clusters in a tem-

poral as well as in a spatial sense. Liang et. al. [55] choose such an approach

to predict failures of IBMs BlueGene/L from event logs containing reliabil-

ity, availability and serviceability data. The key to their approach is data

preprocessing employing first a categorization and then temporal and spatial

compression. Temporal compression combines all events at a single location

occurring with inter-event times lower than some threshold, and spatial com-

pression combines all messages that refer to the different locations within a

certain time window. Prediction methods are rather straight-forward: Using

data from temporal compression, if a failure of type application I/O or net-

work appears, it is very likely that a next failure will follow shortly. If spatial

compression suggests that some components have reported more events than

others, it is very likely that additional failures will occur at that location.

Fu and Xu [56] further elaborate on temporal and spatial compression and

introduce a measure of temporal and spatial correlation of failure events in

distributed systems.

Another example of current fault predictor that is using a co-occurrence

method is [57] where the authors compare two failure prediction approaches

and study the influence that the observation window has on the results.

In [9], the authors use a meta-learning predictor to chose between a rule-

based method and a statistical method depending on which one gives better

21

predictions for a corresponding state of the system. Another approach for

analyzing the logs is given in [58], where the authors investigate both usage

and failure logs.

A different approach is given in [59] and [60], where the authors investi-

gate parameter co-occurrences between different application log messages for

extracting dependencies among system components. The authors mine de-

pendencies from the tuple-form representations of the log messages looking

for patterns that could indicate a failure in the system that prevented tasks

from completing.

2.3.2 Prediction based on system models

One frequently used method is represented by regression techniques where

parameters of a function are adapted such that the curve best fits the mea-

surement data, e.g., by minimizing mean square error. The simplest form of

regression is curve fitting of a linear function.

In [38], the authors apply deterministic function approximation techniques

such as splines to characterize the functional relationships between the target

function and input data. Deterministic modeling offers a simple and concise

description of system behavior with few parameters.

Pattern recognition techniques operate on sequences of error events trying

to identify patterns that indicate a failure-prone system state. The most

used method for pattern recognition is by far Markov chain models. The

approach is based on the assumption that failure-prone system behavior can

be identified by characteristic patterns of errors.

In [61] the authors propose to use hidden semi-Markov models (HSMM)

in order to add one additional level of flexibility to the theoretical method

proposed in [35]. Two HSMMs are trained from previously recorded log data:

One for failure and one for non-failure sequences. Online failure prediction is

then accomplished by computing likelihood of the observed error sequence for

both models and by applying Bayes decision theory to classify the sequence

(and hence the current system status) as failure-prone or not.

The second step implemented by [62] uses two semi-Markov models that

quantify the reliability of a node in the overall system. In the process the

method identifies nodes that tend to be the source of a large number of

22

failures and predicts the reliability of these nodes. The first discrete-time

semi-Markov model is built for each system where state transitions are driven

by functions derived from the distributions fitted to the result of the neural-

gas filtering analysis. The second semi-Markov process computes transaction

probabilities and event arrival rates directly from event observations.

[56] built a neural network to approximate the number of failures in a given

time interval. The set of input variables consists of a temporal and spatial

failure correlation factor together with variables, such as CPU utilization or

the number of packets transmitted by a computing node.

Murray et. al. [63] have applied the Support Vector Machines (SVM)

method in order to predict failures of hard disk drives. In the case of hard disk

failure prediction, five successive samples of each selected SMART attribute

set up the input data vector.

Several time series models are employed to model stationary as well as

non-stationary effects. One example in this category is Sahoo et. al. [9]

where the authors applied various time series models to data of a 350-node

cluster system to predict parameters like percentage of system utilization,

idle time and network IO.

2.3.3 Event driven prediction

Failure prediction methods in this category analyze the events generated by

the system and derive a set of rules/patterns/correlations between different

events. In general, the rules express temporal ordering of events in the form

”if errors A and B occur within x seconds, then error C occurs within y

seconds with probability of P%”. Several parameters such as the maximum

length of the data window, types of error messages, and ordering requirements

had to be per-specified.

The event-set method has been applied in [57], by using a three-phase fail-

ure predictor for the Blue Gene/L systems: event preprocessing where the

raw RAS log is cleaned and categorized; the base prediction phase where dif-

ferent base learning methods are applied on the preprocessed log to identify

fault patterns and correlations; and the meta-learning phase where meta-

learning is explored to adaptively integrate multiple base predictors to boost

prediction accuracy. Similarly, [9] uses a filtering system close to [57] in that

23

it uses a fixed time window for event grouping. The method consists of 2

steps: a preprocessing step that converts syslogs into a data set that is ap-

propriate for running classification techniques by extracting a set of features.

These features can accurately capture the characteristics of failures. In the

next step it applies different classifiers on the data (a rule-based classifier,

Support Vector Machines and a customized Nearest Neighbor method).

In [31] the authors propose to cluster failure events based on their cor-

relations using an in-depth understanding of the cause of failures and their

empirical and statistical properties. The authors use a failure signature that

captures the system performance metrics associated with a failure event.

The papers presented in this category have one major characteristic in

common: they all cluster the events in classes through different methods by

incorporating a training phase. Most of the papers use a predefined number of

classes; usually that number is defined by the system administrator. Since log

files can change during the course of a system’s lifetime and novel errors may

appear, the number of classes may need to change in time. In [62] the authors

propose a more realistic clustering method that groups events automatically.

After the clustering phase, many papers use different filtering techniques. All

the presented methods obtain good result for their own validation set.

Extensive research has been focused on using system logs, scheduling logs,

performance metrics or disk usage logs in order to extract a correlation be-

tween events generated by any component of a system. There are numerous

methods, starting with simple brute force extraction of rules between non-

fatal events and failures [6] with more sophisticated techniques. In [9], the

authors are using a meta-learning predictor to chose between a rule-based

method and a statistical method depending on which one gives better pre-

dictions for a corresponding state of the system. Other research include

SVM [10], hidden-Markov chains [11] or Bayesian networks [12]. A slightly

different approach is given in [59] where the authors investigate parameter

correspondence between different application log messages for extracting de-

pendencies among components.

In general, current state-of-the-art research is using some kind of data

mining algorithms extracting patterns that might lead to failures [57, 50, 9,

58, 55]. Most of these algorithms are using the same workflow: they group the

messages in the log file into categories, filter redundant events both in time

and space, extract correlations between events based on the small filtered set

24

System Method Precision Recall Lead time
(s)

Ref

BGL Rule-based 0.7 0.3-0.4 5 min [55]
BGL Statistical 0.5 0.48 - [9]
BGL Multiple 0.9 0.7 - [9]

BGP
Rule-based
different
lead time

0.4/0.4/0.35 0.8/0.7/0.6 0/300/600 [50]

BGP Rule-based 0.5 0.5 30 min [57]

Table 2.3: Prediction results for different state-of-the-art related work

of log messages and in the end use the correlations to predict future events or

failures. Each workflow step introduces imprecision or noise that influences

the accuracy of the prediction.

Table 2.3 presents the prediction results for the most successful studies

in literature up to date. At a first glance, the results presented in this ta-

ble seem good enough to be used for the construction of failure avoidance

techniques. However, these results are obtained either by using long train-

ing phases for only a couple of days of prediction, or not considering the

lead time between when the prediction is done and when the failure occurs.

Considering some preventive actions could take several minutes, the execu-

tion time of acting upon a prediction could sometimes exceed the lead time

provided. Moreover, all the presented methods do not provide any location

information. This makes it impossible for proactive methods to know which

application processes should be migrated. Predictions with location informa-

tion will enable checkpointing data only on those failure-prone components,

thereby avoiding application-wide checkpointing which is significantly time

consuming.

2.4 Checkpointing challenges

Most predictive methods offer small lead time windows for proactive actions

to be taken. To be compatible with short term prediction, checkpointing has

to be significantly improved. One promising direction is multi-level check-

25

pointing. There are currently two environments providing multi-level Check-

point/Restart: SCR (Scalable Checkpoint/Restart) [64] and FTI (Fault Tol-

erance Interface) [65]. Recent results show that a process context of 1GB can

be saved in 2-3 seconds in local SSD (i.e. 2 SSD mounted in RAID0). Such

checkpoint speed is orders of magnitude faster than checkpointing on a re-

mote file system which requires tens of minutes in current petascale systems

and may require several hours in projected exascale systems. An experiment

with FTI on a large scale execution (1/2 million GPU cores) of an earthquake

simulation on a hybrid system composed of CPU and GPUs demonstrated

very low overhead on the execution time (i.e. less than 10%) when using

such checkpoint strategy, compared to no fault tolerance. Other research re-

sults demonstrate that checkpointing on remote node memory is even faster

than on local HDD or SSD [66]. These results demonstrate that proactive

checkpoints can be taken even with a few seconds before the predicted failure

happens. However, proactive checkpointing introduces a whole new dimen-

sion with several challenges:

• To decrease the checkpoint size and maximize efficiency many appli-

cations rely on user-guided checkpointing, in which domain experts

specify points in the code where to checkpoint, so that the amount of

data that need to be saved is minimal. However, upon a failure pre-

diction, the checkpoint is triggered by the prediction runtime and the

application may be in the middle of a complex kernel execution that

requires a high memory footprint. Thus, how to combine user-guided

checkpointing with proactive checkpointing?

• Furthermore, it is important to remember that the application still

needs to restart after the failure and produce correct results. This is

the classic checkpointing coordination problem that may imply the use

of a fault tolerant protocol. In application level checkpointing, the co-

ordination is implicit, while in system level checkpointing capturing the

state of the execution is explicit and relies on a fault tolerant protocols.

If the approach relies on coordinated checkpointing or on hierarchical

fault tolerant protocols [67], the coordination (global or partial) should

be fast enough to store the state of the application before the failure

occurs.

26

Any proactive checkpointing implementation that does not provide high

performance solutions for of these two problems will not work efficiently for

large HPC systems. In chapter 6 we will present the solutions we propose

and how we implement them in order to create a runtime framework that

efficiently couples online failure prediction, ultra-fast proactive checkpoint-

ing and periodic multi-level checkpointing. As far as we know, this is the

first implementation of such a hybrid protocol to date. On the other hand,

there are several theoretical studies that propose to combine classic periodic

checkpointing with proactive fault tolerance actions in order to study the

theoretical benefit of such approaches.

One such example is presented in Aupy et. al. [68], where the authors

propose a fault tolerance strategy that uses the prediction alerts to compute

an optimal checkpointing interval. In their follow-up work [69], the authors

assume that the fault-prediction systems that do not provide exact prediction

dates, but instead time intervals during which faults are predicted to strike,

with different probabilities at each moment of time.

Li et. al. [70] consider a different prediction model that provides a prob-

ability of failure when the application ask for a prediction. Moreover, They

consider a specific application model where proactive checkpoints or migra-

tion can be performed at a predefined location during the execution.

Cappello et. al. [71] proposed two proactive fault tolerance strategies, both

relying on a perfect prediction mechanism. The perfect prediction mechanism

is supposed to have a 100% recall, 100% precision and enough lead time to

perform either checkpointing or migration. Even though the scenario is not

realistic since there is no prediction method that can offer these results, it

shows the trade-off of combining prediction either with checkpointing or with

migration.

In chapter 6, we will use the model in [72], as well as create our own based

on [71] with the actual data from our hybrid protocol implementation in

order to study the benefit of our approach.

27

Chapter 3

HPC systems description

The main focus of our analysis are logs generated by previous and current

large scale systems. In chapter 7 we also incorporate performance metrics

into our analysis. We analyzed several HPC systems: Mercury, a previous-

generation cluster at the National Center for Supercomputing Applications

(NCSA) [73], several systems from the Los Alamos National Laboratory

(LANL) [24], a Blue Gene/L machine [74], the Blue Gene/P system [50]

deployed at the Argonne National Laboratory and Blue Waters [75], cur-

rently the biggest supercomputer at NCSA. Mercury and Blue Waters logs

are owned by the NCSA and are not available to the public because of pri-

vacy issues. The LANL and Blue Gene traces are open and are downloaded

from the USENIX Computer Failure Data Repository [76]. Details regard-

ing the system’s characteristics are shown in Table 3.1. Additionally, details

about the sources that generate notifications for the Blue Water system can

be found in Table 3.2.

Log messages generated by all systems contain two separate parts, a mes-

sage header and body. The header contains information on the component in

the system that generated the notification, the timestamp and the affected

location in the system. Different systems have different header information.

For example, Blue Gene systems contain a severity field that is not present

in the any of the Cray systems. We manually created an entry pattern for

System Events/Day Total Event Types
Blue Waters 15GB (88mil events) 10,499
BlueGene/L 5.76MB (25,000 events) 186
BlueGene/P 8.12MB (120,000 events) 252

Mercury 152.4MB (1.5mil events) 563
LANL systems 433,490 in 5 years 53

Table 3.1: Log file statistics

28

Source Events/Day Total Event Types
Syslog 8GB (50mil events) 3,852
HPSS 1MB (900,000 events) 358

Sonexion 3.5GB (10mil events) 3,112
Moab 500 MB (15mil events) 725
ESMS 3GB (12mil events) 2,452

Table 3.2: Log file statistics for different sources for the Blue Waters system

Resource Phase 1 Phase 2
Production Jan 2004 2Q 2004
Number of Nodes 256 635
Processors 2x Itanium II @ 1.3 GHz 2x Itanium II @ 1.5 GHz

Memory
4 or 12 GB DDR1600
ECC RAM

4GB DDR2100 ECC
RAM

Filesystem GPFS (60TB) GPFS (170TB)

Storage
1x18GB, 1x73 GB Ul-
traSCSI drives

2x73 GB UltraSCSI
drives

Network
Gigabit Ethernet, Myrinet, Management Net-
work (Ethernet)

Table 3.3: Characteristics of the Mercury System

each system stating the type of data and where in the message the body

begins. We modify all the logs for each system into a common format. This

new structure log contains the message timestamp, location, facility for the

header information and the message description in the body.

3.1 Mercury

The Mercury cluster was a production high-performance computing system

at the National Center for Supercomputing Applications used for scientific

applications as part of TeraGrid over a 5-year period, from January 2004 to

March 2010, with roughly 98% uptime over its lifetime. During its operation,

it ran millions of parallel computing jobs for hundreds of researchers in fields

ranging from molecular and fluid dynamics simulation to DNA and gene

expression analysis.

Detailed technical information regarding the cluster is shown in Table 3.3.

29

The cluster started with 256 compute nodes, half having large amounts of

memory (12GB). In the second quarter of 2004, an additional 635 compute

nodes were added with faster processors. Over time, system components

were replaced due to failure and nodes repurposed to/from computing or

storage purposes. We tracked between 936 to 1050 nodes actively reporting

log messages over the lifetime of the cluster - this includes compute, login

and storage nodes.

We analyzed logs generated by 10 months of production in the second

Phase of the machine from February 2006 to December 2006. Each compute

node consisted of two Itanium processors running at 1.3 or 1.5 GHz with

4 or 12 GB ECC protected memory. Login and storage nodes had roughly

similar specifications. Storage was a combination of a network file system

and local hard disks serving as mount and scratch devices, as well as a wide-

area file system using AFS. The AFS system was generally not used directly

by applications, so we omit it from our analysis. High speed I/O was han-

dled by a GPFS file system connected by fiber channel. The Mercury system

contained three separate networks - a Gigabit Ethernet network for computa-

tion, a high speed Myrinet network for latency sensitive parallel applications,

and a management network for node maintenance and software updates. By

default there was no checkpointing or fail-over mechanism for applications

running on the cluster. Each application was responsible for managing its

own fault tolerance.

Logs from each node were collected centrally with each log message being

sent as a single packet to avoid truncation. Some events generated multiple

messages which could be interleaved in the logs with messages from other

machines. These logs contain the time of the message, node on which it

occurred and possibly details regarding the application which generated it.

3.2 Systems at LANL

Los Alamos National Laboratory has collected data for 22 of their supercom-

puting clusters, for the duration of 5 years. They publish data from system

logs and also information regarding failures that occurred in the system’s

lifetime. This data has been intensively analyzed in different papers in or-

der to extract data statistics for failure distribution and root cause analysis

30

[25, 24].

Most of these systems are large clusters of either NUMA (Non-Uniform

Memory Access) nodes, or 2-way and 4-way SMP (Symmetric Multi Pro-

cessing) nodes. In total all systems together include 4,750 nodes and 24,101

processors. The data provided does not include vendor specific hardware

information. Instead it uses capital letters (A-H) to denote a systems pro-

cessor/memory chip model.

In general, systems vary widely in size, with the number of nodes ranging

from 1 to 1,024 and the number of processors from 4 to 6,152. Different sys-

tems presents different hardware architecture and might not contain identical

nodes. While all nodes in a system have the same hardware type, they might

differ in the number of processors and network interfaces (NICs), the amount

of main memory, and the time they were in production use.

A failure record contains the time when the failure started, the time when it

was resolved, the system and node affected, the type of workload running on

the node and the root cause identified manually by the system administrators.

Most workloads are large-scale long-running 3D scientific simulations, hav-

ing long periods of CPU computation, interrupted every few hours by a few

minutes of I/O for checkpointing and for visualization. A complete descrip-

tion of the system can be found in [24]. The clusters represent the oldest

machines analyzed in this thesis and are used in comparison to the other

systems to understand how HPC machines evolved over time.

3.3 Blue Gene systems

In this thesis, we looked at the fastest deployment of a Blue Gene/L machine

and a Blue Gene/P system.

The Blue Gene/L system located at Lawrence Livermore National Lab-

oratory (LLNL) boasts a peak speed of over 596 teraFLOPS and a total

memory of 69 tebibytes. It is composed of 106,496 dual-processor compute

nodes, produced in 130-nm copper IBM CMOS 8SFG technology. Each node

is very simple, consisting of a single ASIC containing two processors and

nine double-data-rate (DDR) synchronous dynamic random access memory

(SDRAM) chips.

The nodes are interconnected through five networks, the most significant

31

being configured as a 32x32x64 3D torus where each node is connected in

six different directions for nearest-neighbor communications. This network

handles the bulk of all communication. There are virtually no asymmetries

in this interconnect; the nodes communicate with neighboring nodes that

are physically close on the same board and with nodes that are physically

far removed on a neighboring rack, with the same bandwidth and nearly the

same latency. This allows for a simple programming model because there

are no edges in a torus configuration. In addition, a global reduction tree

supports fast global operations such as global max/sum, and multiple global

barrier and interrupt networks allow fast task synchronization.

Each node contains two processors, which allows the system to have several

running modes. For example, each processor can handle its own communica-

tion (which called virtual node mode), or one processor can be dedicated to

communication and one to computation (communication co-processor mode).

Out of the total 212,992 PowerPC cores, 67% contain 512 MB RAM and

33% contain 1 GB. The first-level caches (L1) are contained within the

PPC440 core macro. The second-level caches (L2R and L2W) are very small

and basically serve as prefetch and write-back buffers for L1 data. The third-

level cache (L3) is large and is expected to provide high- bandwidth, low-

latency access. It is shared by instructions and data.

All Blue Gene machines present the same architecture design, as shown in

Figure 3.1 for LLNL’s Blue Gene/L and ANL’s Blue Gene/P. In the case of

Blue Gene/L, each node contains 2 chips of 2 processors each, 16 nodes and

up to 2 IO cards create a node card and a rack is composed of 32 node cards.

Blue Gene/L consists of a total of 104 racks.

RAS (Reliability, Availability, and Serviceability) events are logged through

the Central Monitoring and Control System (CMCS), and finally stored in

a DB2 database. The logging granularity is less than 1 millisecond. If an

individual node on the system fails, the primary RAS strategy is to isolate

and replace the failing node while restarting the application from a check-

point on a set of racks that does not contain the faulty node. Specifically,

each 512-node rack is on a separate power boundary, with a separate power

domain for the link chips, enabling it to be powered down without affecting

any other racks. Once powered down, the card containing the faulty node

can be replaced, and the rack can be restarted and brought online for the

job scheduling software. Thus, a node failure can temporarily bring down a

32

(a) Blue Gene/L at LLNL

(b) Blue Gene/P at ANL

Figure 3.1: Blue Gene architecture

512-node rack.

More information about the system can be found in [74]. In this thesis,

we analyzed a six month period from the system’s production time, from

June 3rd, 2005 to January 4th, 2006. During this time, there were 4,747,963

messages sent to the log for a total of 207 different event types. The system

at LLNL went into production mode starting with June 2004, so our analysis

is done outside the infant mortality phase.

The Blue Gene/P system that we analyzed, called Intrepid, is a 40-rack

machine (40,960 nodes, 163,840 processor cores) deployed at the Argonne

National Laboratory. The design of the Blue Gene/P represents an evo-

lution from the Blue Gene/L system. Each Blue Gene/P Compute chip

33

contains four PowerPC 450 processor cores, running at 850 MHz. The cores

are cache coherent and the chip can operate as a 4-way symmetric multi-

processor (SMP). As for the Blue Gene/L system, the memory subsystem

on the chip consists of small private L2 caches, a central shared 8 MB L3

cache, and dual DDR2 memory controllers. The chip also integrates the logic

for node-to-node communication, using the same network topologies as Blue

Gene/L, but at more than twice the bandwidth.

In the Blue Gene/P case, a compute card contains 4 cores and 32 compute

cards form a node card. A midplane contains 16 node cards, 4 I/O cards

(containing the I/O chips), and 24 midplane switches (through which differ-

ent midplanes connect). Each rack consists of 2 midplanes, and a midplane is

the granularity of job allocation. Intrepid has a total of 40 racks, each with

a total of 1024 node cards. The system utilizes a total of 640 I/O nodes,

contributing 7.6 PB of total disk space.

A compute card contains a Blue Gene/P chip with 2 GB DRAM. A single

compute node has a peak performance of 13.6 GFLOPS. 32 Compute cards

are plugged into an air-cooled node board. By using many small, low-power,

densely packaged chips, Blue Gene/P exceeded the power efficiency of other

supercomputers of its generation, and at 371 MFLOPS/W Blue Gene/P

installations ranked at or near the top of the Green500 lists in 2007-2008.

Blue Gene/P integrates some degree of fault tolerance in the torus network

by ensuring that packets are injected in a manner that forces them to avoid

failed nodes; this requires non-minimal routing and can handle up to three

concurrent failures in a partition provided they are not collinear. A bad node

that still has a viable torus network interface can be left in the network. This

provides a good solution for a system that has a high node-failure rate.

Additional error-detecting mechanisms that allow monitoring and isolat-

ing faults include the power-supply monitor module and additional link cyclic

redundancy checks. A extended approach for fault isolation has been devel-

oped that allows the ability to detect and isolate failed components. More

details about the Blue Gene/P system can be found in [77].

Intrepid was in production mode starting with June 2008 until it was

decommissioned in December 2013. We analyzed nine months of activity,

from Jan 2009 to Sept 2009, for a total of 1.9GB of generated events and 252

event types.

34

3.4 Blue Waters

The Blue Waters system is a Cray XE/XK hybrid machine at the National

Center for Supercomputing Applications composed by a combination of XE6

nodes (two AMD Interlagos CPU modules - four processor chips) and XK7

nodes (one AMD Interlagos CPU module and one NVIDIA Kepler K20X

GPU) connected by the Cray Gemini torus interconnect. Divided into 237

Cray XE6 and 44 Cray XK7 cabinets, Blue Waters contains over 25 thou-

sand computing nodes, reaching a peak performance of 13.2 Petaflops and

offering a total system memory of over 1.66 PB. The online storage gives

26.4 PB of total usable storage with an aggregate I/O bandwidth of over 1

TB/s. We used 5 major sources of logs: syslogs that contain usual RAS in-

formation, HPSS (High Performance Storage System) which is the near-line

storage designed for moving large files and large amounts of data, Sonexion

storage system used for storing the Lustre filesystem, Moab job scheduler

and ESMS, the data system manager. Table 3.2 presents these sources and

their characteristics.

Blue Waters high-speed network consists of a Cray Gemini System In-

terconnect. Each blade includes a network mezzanine card that houses 2

network chips, each one attached on the HyperTransport AMD bus shared

by 2 CPUs and powered by 2 mezzanine dual-redundant voltage regulator

modules (VRM). The topology is a three-dimensional (3D) 24x24x24 reen-

trant torus: each node has 6 possible links towards other nodes. Mapping

location ids on the torus of a Cray system follows the algorithm described

in figure 3.2. Every cube in the torus represents a Gemini hub (consecutive

nodes). Two neighbor Gemini hubs on the OY axes create a slot, multi-

ple consecutive slots on the OZ axes form a cage and multiple consecutive

cages on the OZ axes create a cabinet. The cabinets are divided into two

dimensions, first on the YOZ plane and then on the OX. For the Blue Waters

system, there are 2 Gemini hubs in each slot, 8 slots form a cage and 3 cages

create a cabinet. Each cabinet is as wide as the OZ portion of the torus, so

the entire Gemini hub set is divided into 24 cabinets on the OX axes and 12

cabinets on the OY for a total of 288 cabinets.

Every node in the system is checked and managed by the Hardware Su-

pervisor System (HSS). This system contains the HSS network, blade and

cabinet controllers in charge of monitoring the nodes, replying to heartbeat

35

Figure 3.2: Cray system 3D torus network

signal requests and collecting data on temperature, voltage, power, network

performance counters, runtime software exceptions. The system also con-

tains a HSS manager in charge of collecting node health data and executing

the management software. Upon detection of a failure, represented in most

cases by a missing heartbeat, the HSS manager triggers failure mitigation op-

erations. These mitigations include: i) warm swap of a compute/GPU blade

to allow the system operator to remove and repair system blades with tem-

porary performance differences of the workload; ii) service node and Lustre

node failover mechanisms; and iii) link degradation and route reconfiguration

to enable routing around failed nodes in the topology.

Compute and GPU nodes execute the lightweight kernel Compute Node

Linux (CNL) developed by Cray. The operating system is reduced to mini-

mize the overhead on the nodes and includes only essential components, such

as a process loader, a Virtual Memory Manager, and a set of Cray ALPS

agents for loading and controlling jobs. Service nodes execute a full-featured

version of Linux, the Cray Linux Environment (CLE), which is based on the

Suse Linux Enterprise Server 11 kernel 3.0.42.

All blades are diskless and use the shared parallel file system for IO op-

36

Figure 3.3: Lustre filesystem architecture

erations. Blue Waters hosts the largest Lustre installation to date. The

parallel file system consists of Cray Sonexion 1600 storage modules. Lustre

is designed as a client-server architecture, with many clients communicating

with multiple I/O servers and one or more metadata servers. Figure 3.3

shows the architecture of the filesystem used by the Blue Waters system.

Compute nodes are stored in a 3D torus with IO nodes being distributed

among them. Applications use the closest IO node in order to access the

data on different disks. The communication between the IO nodes and the

disk is done through an Infiniband network. Blue Waters provides three dif-

ferent file systems: (i) /u storage for home directories; (ii) /projects storage

for project home directories; (iii) /scratch high performance, high capacity

transient storage for applications.

All three filesystems on Blue Waters are built using Cray Sonexion 1600

Lustre appliances that provide the basic storage building block for the Blue

Waters I/O architecture and are referred to as a ”Scalable Storage Unit”

(SSU). Each SSU is RAID protected and is capable of providing up to 5.35

GB/s of IO performance and around 120 TB of usable disk space. The

/scratch file system uses 180 SSUs, each SSU containing 4 OSTs (Object

Storage Target), each with 10 RAID disks. Blue Waters is using one MDS

(Meta-Data Server) for each filesystem that is interrogated each time a file

is created, opened or closed.

A Sonexion module has 2 SSD of 2 TB in a RAID 1 configuration for jour-

naling and logging, 22 disks of 2 TB for metadata storage, and 80 disks of 2

37

TB for data storage, organized in units of 8 disks in RAID 6. All disks are

connected to two redundant RAID controllers. In each unit, two additional

disks serve as hot spares, which automatically provide failover for a failed

drive. Each Lustre service node and Sonexion module is configured as an

active-passive pair connected to a shared storage device. In this configura-

tion, the passive replica node becomes active when the HSS detects a failure

of a Lustre node; the shared storage device is then mounted in a read-only

mode to avoid data inconsistency until the failed node has been replaced with

the standby replica. After failure recovery, clients reconnect and replay their

requests serially in order to reconstruct the state on the replaced node. Until

a client has received a confirmation that a given transaction has been written

to stable storage, the client holds on to the transaction (waiting on a time-

out), in case it needs to be replayed. If the timeout is reached, all the jobs

waiting to reconnect fail. The recovery process can take up to 5-30 minutes

(60 for MDS), depending on the number of clients using the file system at

the moment of the failure. More information about the system’s architecture

can be found in [78] as well a study about we the impact of this architecture

on application I/O performance. Moreover, [79] presents the experiences

observed during the deployment of Blue Waters, involving several steps of

preparation, delivery, installation, testing and acceptance.

For the Blue Waters system, we had access to the job logs as well as system

and failure logs so we were able to follow the propagation of failures from

the hardware to the application level. There are numerous applications that

are running on Blue Waters. Examples include earthquake engineering for

which simulations want to capture seismic waves in 1Hz range, which is 256

times more computationally demanding than current simulations; cosmology

applications that desire to model the first billion years after the Big Bang;

epidemiology applications that model local and global disease outbreaks;

tornado simulations where forecasters can identify conditions that make a

tornado likely, they can pinpoint when and where they start, their path, and

strength.

Information about failures is kept into a distinct failure log where Cray

system administrators document the approximate timestamp for each failure

and the possible cause. At the same time, system administrators from NCSA

inspect the logs generated by the system and decide which messages represent

failures. We correlated the two sources and only kept entries that appear in

38

both. Since the Cray failure files are manually written, we correlated these

failures with events from the logs by using a rather large window of 6 hours,

starting 3 hours before the manually written timestamp occurrence. All

messages from the log that were marked as suspicious in this timeframe were

gathered in a file, after which, together with system administrators from

NCSA, we filter out those that were not referring to the same problem. We

mention that the Cray failure file has been already analyzed and validated

by NCSA staff and their observations were published in [33]. For each failure

entry, a failure type has been identified by using one of the following exclusive

categories: hardware, software, missing heartbeat, network, environment,

and unknown (failures for which the cause could not be determined). We

use these categories when analyzing the results of our prediction. Overall,

we analyzed 7 months of activity since September 2013, to February 2014.

39

Chapter 4

Analyzing the system behavior

Event logs are a rich source of information for analyzing the cause of failures

in cluster systems. Together with performance metrics, they represent the

main method used by system managers to understand the behavior of HPC

systems. However, the size of these files has continued to increase with

the ever growing size of supercomputers, making the task of analyzing log

files a hard and error prone process when handled manually. The most

common method used by system managers for searching through the log

data is pattern matching, by comparing numerical thresholds or doing regular

expression matching on vast numbers of log entries looking for each pattern of

interest. By using this method, only those faults that are already previously

known to the domain expert can be detected. Moreover, there is not a

consistent normal behavior of system state data or how different components

react to failures, within the system. For example, once a fault is triggered in

the system, it can generate multiple events, that propagate within the system

and that, consequently, generate multiple notifications in the log [32, 24].

Conversely, some components have the opposite behavior and stop generating

events when a failure occurs. It is important to be able to capture the

behavior of each event type and understand what is the normal behavior

and how each failure type affects it. Systems experience software upgrades,

configuration changes and even installation of new components during the

course of their lifetime [80, 24]. This makes it difficult for the algorithms to

learn patterns since the system will experience phase shifts in behavior.

There is considerable research on analyzing log files, for different purposes,

from detecting outliers in the system [8] and being able to filter events re-

ferring to the same problem [81] to offering prediction for the state of the

system [57, 9] or analyzing the root cause of a failure [82]. A widely used

strategy for extracting information for all these algorithms is to correlate

events. However, the correlation is most of the time a statistical observation

40

about the occurrence of different messages. They do not take into consid-

eration the diversity of events’ behavior, and treat all notifications in the

same way. Furthermore, most of the studies build their analysis on a pre-

processing step where events are filtered to decrease the total size of the log.

As shown in [83] these methods have limitations and can affect the overall

performance of the analysis module.

We proposed, implemented and verified a novel way of analyzing the char-

acteristics of each event described in the log file by considering its own trend

and behavior. For this purpose we introduce signal analysis concepts in the

context of HPC system. We present novel methods for shaping the normal

and faulty behavior of each event and of the whole system in this chapter

and used them to propose appropriate models for descriptive and forecasting

purposes in the following chapters. After having an accurate model for each

event we create a global view of the whole system by merging the informa-

tion and correlating events. We will show that events are different one from

another, and faults affect them in a different way.

4.1 Preprocessing

An event’s notification message is constructed by using variables and constant

words in order to describe a specific event. Constants are words that carry

crucial information since they are in charge of describing the event type,

while message variables identify manipulated objects or states for the event.

For example, the notification ”Connection from 192.168.10.6 port 25” has

3 constant words: ”Connection”, ”from”, ”port”; and 2 variables: the ip

address and the port number.

Extracting the message types from log files makes it possible to abstract

the contents of event logs and facilitates further analysis and construction

of computational and correlation models. Message type descriptions are the

templates that preserve the constants in a message and replaces the variables

with wildcards. For example, the line of C code that generates a network no-

tification: sprintf(message, ”Connection from %s port %d”, ipaddress, port-

number); produces the following entries in the log file:

Connection from 192.168.08.1 port 25

Connection from 192.168.08.2 port 25

41

Connection from 192.168.08.1 port 80

We want to be able to retrieve the template ”Connection from %s port %d”

by just inspecting the log lines.

For this purpose, we developed HELO (Hierarchical Event Log Organiser),

a tool for preprocessing log files. HELO parses event logs and identifies fre-

quently occurring messages with similar syntactic patterns that represent

different message types. These patterns are called templates and are basi-

cally regular expressions that try to mimic the source code that generated

each notification. These templates can be used by system managers to set

alerts for the occurrence of different message types. At the same time they

can be used by analysis methods to find anomalies and detect failures. Ta-

ble 4.3 presents several templates from different systems and the event they

represent. The two template examples in the table that refer to the Blue Wa-

ter system are used by the alert mechanism at NCSA to trigger notifications

to system managers and others whenever these failures occur.

The tool has two different components: an offline classification part where

message lines found in historic log files are used to create the initial template

set by dividing them according to their description patterns; and an online

clustering part that classifies each new event and dynamically reshapes the

previous found templates accordingly.

As mentioned, a template represents a line of text where variables are

represented by different wildcards. HELO uses three types of wildcards:

d+ represents numeric values, * represents any other single words, and n+

represents strings of words that have a value for some of the messages and

do not exist for others.

The current set of templates is kept in a radix tree [84] which makes

the classification process efficient and capable of dealing with the messages

generated by supercomputers even during storms of events. A radix tree,

which represents a compact prefix tree, is a space-optimized structure in

which each node with only one child is merged with its parent. The classical

radix tree implementation was modified to deal with wildcards and partial

matches.

Figure 4.1 presents a radix tree for 6 templates from the Blue Waters

system. Special nodes have been introduced to accommodate the 3 wildcards

HELO is using. The tree is constructed after the HELO’s online phase and

it is searched for a match each time there is a new message generated in the

42

system. The matching phase uses the classical radix tree search algorithms

for nodes that do not contain wildcards. For the * and d+ wildcards, the

algorithm jumps the parsing string to the next space character and continues

the matching from there (with an extra step for d+ to check if the skipped

string represents a numerical value). The n+ wildcard is always a leaf in

the tree, so the search can be stopped and a match returned. All leaves

have an additional information that represents the ID number given to each

template. The IDs are used to describe the signal and the correlations in an

easier format.

Figure 4.2 shows an example of how HELO offline finds structure in a

subset of logs and how the online phase updates the radix tree for every

template that is not a match.

HELO considers that different type of words have different priorities depen-

dent on their semantics. There are three types of considered words: English

words, numeric values and hybrid tokens (words that are composed of letters,

numbers and symbols of any kind). Numeric values have the lowest prior-

ity since the algorithm considers that these words have the most chances of

becoming variables in the clusters. Hybrid values are represented by tokens

like check..0. The algorithm extracts and considers only the English words

incorporated in the hybrid token. For our example both check..0 and check..1

are considered as the word check.

HELO starts with the whole unclustered log file as the first group and

recursively partitions it until all groups have cluster goodness over a specified

threshold. The cluster goodness characterizes how similar all messages in

Figure 4.1: HELO radix tree implementation

43

one group are and is defined as the percentage of common words in all the

messages over the average message length. We will analyze in the following

paragraph the influence of this parameter over how general and specific the

templates become and how this affects the prediction results.

In each partition iteration, HELO chooses the best splitting column by

identifying the word position that contains the minimum number of constants

when looking at all entries in the log. For example, in figure 4.2, the splitting

column in the first iteration represents all words that occur at the beginning

of each log entry, and in the second iteration all words on the 3rd position.

We consider that words with a high number of appearances on one position

has more chances of being a constant in the final template, so HELO searches

for the column where most unique words have a high appearance rate.

More details about HELO can be found in the 2011 paper [85]. The tool

was integrated in NCSA’s Blue Waters monitoring software and is the foun-

dation of the failure alert system used by Blue Waters managers to quickly

handle system failures. The HELO version used by NCSA has a few of op-

timizations that the initial version did not contain, a couple of which are

described in [86].

Figure 4.2: HELO methodology

The number of events generated by the Blue Waters system is two orders

of magnitude larger than previous generation systems (Table 3.1). The in-

creased number of event types creates complex patterns that need longer

training phases to be discovered. HELO did not require any modification,

but the correlation and prediction modules needed to become lighter in or-

44

der to be applied on the Blue Waters system. We present the changes in the

following chapters.

Monitoring each event type separately is important since information re-

garding the events of interest might be hidden when the analysis is made at a

lower granularity. For example, when looking at all types of failures at once,

the logs show close to no spatial propagation. However, when analyzing only

a certain type of filesystem errors only around 20% of failures affect only one

node, the rest propagating on a variable number of locations [32]. In the

following paragraph we will show such an example for the Mercury system.

4.1.1 Propagation analysis on the Mercury system

We analyzed all failures and then separately 6 individual failures given after

inspecting the templates generated by HELO. The individual failures are

described in table 4.1. We assume that failure events are instantaneous, and

focus on modeling the time between two consecutive failure events.

We derive statistical distributions of failure rates over the whole system.

Table 4.2 shows the mean and median rate of each failure over the entire

system across all epochs. Among all types of failures, there was an average

of between 1.8 and 3.6 failures per day. Assuming an equal probability of

failure over all nodes, this is a per-node mean rate of between 248 to 484 days

to failure. This table also shows there is a wide range in inter-event times for

different types of failures. For example, failure type F1 has a mean inter-event

time of 77 hours, while failure type F3 has a mean of 20 hours. Inter-event

times can also vary significantly between different epochs in the system for

the same failure. For example, mean inter-event time between F1 failures

increases from roughly 35 hours in Mercury’s second year of production to

78 hours in the third.

We also examine the number of nodes affected by a failure. We observed

that F1, F3, F5 and F6 rarely occur at close intervals on separate nodes.

Therefore we consider each of these as affecting only a single node. However,

F2 and F4 can occur simultaneously on multiple nodes. A plot of the CDF for

the number of nodes affected by a failure over all epochs is shown in Figure 4.3

with the black line indicating the actual data and the red line showing the

fitted distribution. For example, with the combined failure model, 91% of

45

Code Message Error type

F1
scsi error: * status=02h
key=4h (hardware error);
fru=02h asc/ascq=11h/00h ””

Hardware reported error in a
device on the SCSI bus

F2
rpc: bad tcp reclen * (non-
terminal)

NFS related error indicating
unavail- ability of the network
file system for a machine

F3

pbs mom: sister could not
communicate * in xxxxxx,
job start error from node
xxxxx in job start error

Failure of a PBS (Portable
Batch Sys- tem) daemon to
communicate

F4
ifup: could not get a valid in-
terface name: -> skipped

Node is restarted but could not
connect to either the Gigabit
or management networks

F5

+ mem error detail: physical
address: * address mask: *
node: d+ card: d+ module:
d+ n+

Error in the memory

F6
processor error map: *
processor state param: xxx
processor lid: *

Error in the processor cache

Table 4.1: Mercury error templates

failures affect just one node, 3% affect two nodes, and 6% affect more than

two nodes. We model the number of nodes affected by the combined failure

as a Weibull distribution, by an F2 failure as a log normal distribution, and

by an F4 failure as an exponential distribution.

These properties can be used to optimize fault tolerance protocols depend-

ing on what components the applications are using. The failure distribution

used by Daly’s formula depends on two factors, namely the specific compo-

nents and number of nodes used by the application. Analyzing the specific

failures extracted by HELO allowed us to notice that this distribution is

different depending on the failure type. We will further analyze how this

observations can influence fault tolerance protocols in chapter 6.

46

2004 2005 2006 2007 2008

All
Mean
Median

0.39
0.21

0.54
0.23

0.37
0.15

0.27
0.08

0.28
0.1

F1
Mean
Median

1.45
0.98

2.72
1.01

3.27
2.23

12.7
3.46

14.9
9.08

F2
Mean
Median

31.2
34.6

7.9
7.9

6.9
0.77

12.2
14

12.4
14

F3
Mean
Median

-
-

1.1
0.07

0.82
0.31

0.42
0.09

0.4
0.11

F4
Mean
Median

1.45
0.12

1.45
0.06

1.5
0.12

1.21
0.07

1.8
0.09

F5
Mean
Median

1.18
0.84

5.11
2.89

9.88
5.42

7.95
4.41

3.39
1.51

F6
Mean
Median

1.52
0.9

2.65
1.74

2.68
1.82

4.27
3.25

4.09
2.7

Table 4.2: Failure inter-event statistics (in days)

4.2 Extracting the normal and faulty event behavior

Large scale systems experience a large variety of events during their lifetime

and they output notifications for each of them. Once an error is triggered for

one component, either software or hardware, there is not a consistent way of

recording how the system will behave. For example, in case a node experience

a network failure and is incapable of generating log messages, the failure is

announced in the log files by a lack of generated messages. Conversely, some

component failures may cause logging a large numbers of notifications. For

example, memory failures can result in a single faulty component generating

hundreds or thousands of messages in less than a day.

At the same time, some errors are notified by a single message. For example

on NCSA’s Mercury system, NFS related errors that indicate unavailability

of the network file system for a machine, need a single instance of the gener-

ated message to notify a potentially fatal failure to an application using this

resource. However, this is not always the case. Memory errors, for exam-

ple, are often correctable by the ECC capabilities, so only when the system

generates a large numbers of these errors in a short time span, it is likely to

have a permanent failure of a component.

Each failure type behaves differently and affects the systems differently.

It is important to be able to model the normal behavior of the system for

47

Figure 4.3: Distribution of nodes affected by failures

each of the events that might be generated and characterize the way a failure

affects these models. We use HELO to extract all the event types and then

treat the number of occurrences per time period for each event type as a

separate signal. Each event type has occurrences at different times in a

system lifespan. By choosing a sampling rate and mapping the number of

messages generated by the system in each time period and for each event

type, we extract a time series for each template. The obtained time series

are regarded as signals and can be analyzed with signal processing methods.

The sampling rate is chosen differently depending on the characteristics of

each signal type and we will discuss the implications of the choice in the next

sub-paragraphs.

After extracting all the signals for all the analyzed systems, we observed

that there are three types of time series: periodic, silent and noise. An

example of each of the three types can be seen in figure 4.4. Usually, periodic

signals are generated by daemons or by events that deal with monitoring

information. Examples of these signals are presented in Figure 4.4c. We call

the second type silent signals because most of the signal is a flat line around

the zero value, and only from time to time there is a burst of messages.

48

System Template Event type

BGL
failed to configure resourcemgmt sub-
system err = d+

Processor cache error

Blue Waters * panic - * syncing: * LBUG

Blue Waters
Lustre: * @@@ Request sent has failed
due to network error: n+

MDT Failure

BGQ component state change: component *
is in the * state *

Info notification

BGQ
ECC-correctable single symbol error:
DDR Controller d+, failing SDRAM
address *, BPC pin *, n+

DDR single symbol error

Table 4.3: Examples of templates and their event types

This type is presented in Figure 4.4a and is usually characteristic for error

messages, for example in case of PBS errors. Noise are verbose signals that

send notifications very often. Two examples of such events are presented

in Figure 4.4b. This type of signal are usually warning messages that are

generated both in case of normal behavior and failures, usually preceding

error messages or when a problem is corrected. We observed that even some

failure events can experience this behavior, for example in the case of memory

errors that could be corrected by ECC.

In the next paragraphs we will look at the three types of signals that we

identified previously.

4.2.1 Periodic events

Periodic events generate messages regularly having, in general, a fixed occur-

rence frequency (for example in the case of daemons) but they could also have

multiple frequencies. We extract periodic events in two distinct steps: first

we parse the data to find the best sampling rate, and then use the frequency

spectrum to find all frequencies that represent the signal. The second step

is computational expensive, so after the first step we create a list with only

the periodic signals, and apply the expensive second process only to those.

Also, the second step gives good results for periodic signals, but is not very

accurate when dealing with non-periodic events.

For extracting the correct sampling rate we use the Nyquist theorem. The

49

(a) Silent signals

(b) Noise signals

(c) Periodic signals

Figure 4.4: Different signals generated by HPC systems

theorem states that, if a function x(t) contains no frequencies higher than

B hertz, it is completely determined by giving its ordinates at a series of

points spaced 1/(2B) seconds apart. In the first step we test if the signal has

a periodic behavior while still respecting the Nyquist theorem. We want to

choose the smallest possible time sample rate, however, as stated previously,

faults triggered in the system might create more messages or might make

notifications disappear, so choosing the minimum lag between adjacent events

is not realistic and inefficient.

We implemented a recursive process, where we start with an initial low

sample rate and keep increasing the rate until either it exceeds the maximum

50

time lag between two adjacent occurrences or the extracted signal is periodic.

We stop the process if the signal is periodic only if the ratio between the

sampling rate and the period of the signal respects the Nyquist theorem [87].

The initial value used for this process is the mean time delay between two

event appearances of the same type. The value increases exponential, in each

step being doubled. After extracting the signal, we use the auto-correlation

function for determining if a signal is periodic or not. The auto-correlation

function is used to compute the similarity between a signal with itself, for

different time lags. When applied to signals, if the similarity value is over a

threshold than the signal can be considered periodic.

Examples of the auto-correlation function, for a periodic and random sig-

nal, can be seen in Figure 4.5. The random signals have only one peak for lag

0, which means that the signal has a high similarity only with itself. Periodic

signals have multiple peaks, visible in Figure 4.5b.

In the second step, only for signals that show a periodic behavior, we ex-

tract the frequencies that make up the event. A clean view of the signal’s

fundamental frequencies is given by looking at the signal in the power spec-

trum. The periodogram is computed from the FFT (Fast Fourier Transform)

and it is used to highlight the periodic behavior of a signal. By transforming

the signal into the power spectrum, periodic signals of low frequency have a

smooth appearance whereas those of high frequency have a irregular behav-

ior. If a time series has a very smooth appearance, then the values of the

periodogram for low frequencies will be large relative to its other values. For

a purely random series, all of the sinusoids should be of equal importance

and thus the periodogram will vary randomly around a constant.

(a) Random signals (b) Periodic signals

Figure 4.5: Auto-correlation plots for different signals

51

If a time series has a strong periodic signal for some frequency, then there

will be a peak in the periodogram at that frequency. In case of faults that

modify the signal, the periodogram might present some picks of lower values

that must be filtered out. The idea behind the filtering method is that only

the highest peaks are the periodic frequencies and for all cases these peaks

represent a very small number from the total frequencies in the periodogram.

We are performing a recursive filtering method, in each step leaving only 5%

of the values from the periodogram, until we are not eliminating any of

the peaks in two adjacent steps. The process is illustrated in Figure 4.6.

The signal in the figure has a period of 10 time units, but due to failures

affecting this event, the initial image presents a various number of peaks.

After filtering them, the last image shows only the peak corresponding to a

period of 10.

Figure 4.6: Filtering the power spectrum

4.2.2 Noise and silent signals

All the signals that are not periodic are analyzed separately. When we extract

the time series, we use a fix sample rate of 10 seconds. We extract the

timestamp of the first and last occurrence of any of the log messages and

create a signal for each template, for this interval. This makes the size of the

signal to be the same for all the event types, and makes it easier to correlate

them in the next step. We classify the signal as noise or silent by looking at

its behavior in the majority of its lifespan. Silent signals have a high number

52

System Mercury LANL
Periodic signals

Number 11 2
Percentage 2.7% 3.8%

Silent signals
Number 338 39
Percentage 82.6% 73.6%

Noise signals
Number 60 12
Percentage 14.7% 22.6%

Table 4.4: Statistics for different signal types

of sampling intervals with zero or a low number of messages compared to

the noise signals that are formed in general by high number of notifications

for the whole length of the signal. Table 4.4 presents the percentage of each

type of signals found in the Mercury and LANL system’s logs.

In [88], the authors propose a methodology for measuring different noise

parameters, by using time-series methods, like extracting the trend, curve-

fitting or interpolation. Their research is focused for chip level analysis tools,

by looking at the noise induced by coupling capacitance. However, the overall

idea can be used for log file analysis. Specifically we use the same main idea

of glitch modeling by examining both glitch hight and width to accurately

analyze the noise in the signals.

We characterize what is the normal shape of the noise, the behavior that

the signal has most of the time, and when the signal frequency or inten-

sity changes. For this reason, we will transform our signal to a mixture of

time and frequency domain and apply different signal processing methods to

extract anomalies. The algorithm decomposes our data set in chunks of over-

lapping time intervals, then apply FFTs on each interval in order to create

the frequencies of the signal over time. Figure 4.7 presents the spectrogram

for one event type occurring on the Blue Waters system in one month. Fre-

quencies are represented on the vertical axes, time on the horizontal one and

the intensity of each frequency is given by the color of each point. We also

use a couple of filters that act as either an averaging filter or one that pro-

duces details depending on the characteristics of the signal that highlight the

normal behavior [89].

53

Figure 4.7: The spectrogram of ECC warnings on Blue Waters

4.2.3 Anomaly detection

In this section we focus on the faulty behavior for each of the signals. This

step is done offline as a prerequisite for both the proposed filtering method

and short-term prediction. Knowing what is the normal shape of the signals,

we will now investigate changes in the frequency and intensity. For some

signals an increase in the frequency of the messages could indicate a problem,

while for others a lack of notifications should be taken into consideration.

Intensity is of equal importance, so we are also investigating the total number

of messages generated in a single time unit.

A time series spectrogram can be considered as a combination of two com-

ponents: the set of frequencies and their intensity. The components influence

the trend and seasonality of signals. It is important to determine whether

trend and/or periodicity exist in a series in order to choose appropriate mod-

els and methods for descriptive or forecasting purposes. Exploring the char-

acteristics of a signal is enhanced by suppressing one type of pattern for

better visualizing the other patterns. For example, suppressing the changes

in intensity can make a modification in the normal frequency rate more vis-

ible.

Feature extraction

Transforming the input data into the set of features is called feature extrac-

tion which involves simplifying the amount of elements required to describe

a large set of data accurately. In general, the more features we have, the

better we will be able to distinguish different spike shapes. The spectrogram

represents a M × N matrix where M is the number of features that might

appear in a signal and N represents time. The result of the feature extraction

54

step is a K × N matrix, where K is the number of extracted features. We use

the classical technique of Principal Component Analysis (PCA) to reduce di-

mensionality from M to K. Figure 4.8 shows the amount of information given

by each frequency. In this example, we could reduce the dimensionality to

2 components since these first two components are giving over 90% of the

information needed to characterize the signal. All the analysis is done of the

reduced matrix.

Figure 4.8: Applying PCA on a noise signal

Changes in the frequency

First we identify shifts by looking at the frequency with which the system

generates messages. After inspecting all the signals from both systems, we

observed that the only concern we need to analyze is an increase in the

frequency. For events that stop generating notifications in case of errors,

the frequency does not progressively decrease, but rather drops to 0 in a

short amount of time. This case is analyzed in the next paragraph and

is considered a decrease in the intensity of the signal. Here, we will only

focus on increases in the signal frequency. We can use the same method for

all three signal types, after we apply a filter to modify the original event by

enhancing the difference between the normal frequency and the moments with

an increase rate and after we transform the signal into the frequency domain

55

and reduce its dimensionality. For the first step, we use the moving average

technique. In signal analysis, a moving average is a type of finite impulse

response filter used for analyzing a signal by creating a series of averages

of different subsets of the full data set. Basically, this method smooths the

signal by simply replacing each data value with the average of neighboring

values. After applying the filter, the new signal presents unknown patterns

on areas with a high frequency of messages and known values otherwise.

Changes in the intensity

In the second case we focus on identifying changes in the total number of mes-

sages generated by the system per time unit. For silent signals, the changes

in the normal intensity are seen as peaks at different points in time. However

for random and periodic signals we investigate either bursts of messages or

a decrease in the normal intensity of the signal.

The signal is modified so that the intensity anomalies are more visible

for the extraction algorithm. We are applying two filters, one for putting

emphasis on large values in order to enhance the difference between peaks and

the normal behavior, and the other on abnormal small values for enhancing

the deviation of time units with decreasing intensities from normal. In both

cases, we apply a filter for skewing the signal after which we applied the same

methods for transforming the signal to frequency domain and for reducing

the dimensionality. Anomaly extraction algorithms are then applied in order

to find moments of time where there are unknown patterns in the reduced

spectrogram.

Figure 4.9 presents the methodology for identifying the anomalies in the

signal.

4.3 Filtering methods based on signal analysis

Even though none of our analysis requires a filtering step, other studies on

failure analysis [9, 62, 83] use it extensively in their analysis and this step

influences the final results considerably. Since log files have a large dimension,

most data mining algorithms require a step that compresses the logs, while

still keeping intact information about all failures and events generated. For

56

Figure 4.9: Anomaly extraction methodology

this purpose, event occurrences need to be identified and only redundant

information needs to be filtered.

We show in this section how analyzing log files as a collection of signals

is a flexible and useful way for widely used event log analysis methods. We

use the modules described previously in a pipeline manner by applying suc-

cessive filters to the initial signals, modifying them so that they enhance the

information we need to extract. Specifically, we implement a filtering algo-

rithm that can be used as a preprocessing step for a multitude of tasks. We

show the use of signal processing concepts allows us to automate this step

completely and gives better or similar results compared to recent filtering

techniques.

Most research in the area of failure data analysis is using a step for filtering

out entries that are not useful or that are redundant error entries from any

log file. As stated previously, a fault, once triggered, can generate multiple

errors that propagate within the system, so most current analyzing algo-

rithms require a preprocessing step where these multiple entries for an event

are filtered. A widely used strategy for filtering the entries in the log is by

using a time window.

Current research is analyzing the entries produced by the system belong-

57

ing to a specific error category, for example memory or network, separately.

In [83], the authors show that simplistic filtering methods that just use a

fixed time window loose around 10% of the messages that should be ana-

lyzed independently. However, when the logs are analyzed at a finer grain,

by looking at each type of events and not only at general error categories,

the difference is much lower [58]. In our previous work, we found filtering

each event type results in the previous algorithm still loosing around 5% of

the events.

Usually the entries that need to be analyzed are triggered by either a

fault in the system, whose effects propagate between different locations or by

two independent faults on different locations that occur coincidentally and

generate notifications at the same time. The messages triggered in both cases

could involve multiple event types. The filtering method we propose follows

this idea and uses the modules described in the previous section.

Firstly, we only group error events that correlated. This means that if two

messages of separate types occur frequently together, in a small time window,

there are high chances that we are dealing with one cause. Otherwise, we

consider the two notifications separately.

In the next step, we investigate each event type, by extracting the signals

for each possible location and correlating these signals between each other.

We found that signals on multiple locations for the same event type, share the

same characteristics in terms of normal and faulty behavior with their base

signal. For example, a silent signal analyzed per location will generate silent

signals for each of the analyzed nodes. Correlating these signals will give a

good statistical information about the propagation behavior of the event. If

there are location signals that are generally correlated one to another, we

consider that the event type has a propagation behavior.

We are grouping the event types related to the same fault manifestation so

that our results are significant to the needs of the analysis methods described

in the chapter 2. Consequently, we group events that need to be analyzed

together and statistical information about the propagation behavior of each

of them. The entire methodology of our filtering technique is presented in

Figure 4.10. Previous algorithms have a parameter to decide on the length

of the filtering window. For our analysis, this parameter is implemented

into the sampling rate used to extract the signals. After identifying the

groups of related events and the statistic information about the propagation

58

Figure 4.10: The filtering methodology

behavior, the filtering process is straightforward. For all events that do not

have a propagation behavior, our method merges the signals from different

locations as one. Also, all event types that are in one group will be merged

as one. At the end a filter is applied by trimming all signals to a value of 1

in all the sampling units that had at least one occurrence.

This is, basically, equivalent to merging messages that occur together in a

filtering window, given by our sampling window. Events merged are always

statistically related to the same error cause and, either happen in the same

location or have a statistical propagation behavior, in case the messages

appear on different nodes. In all other cases, the two messages are analyzed

independently.

For comparing the filtering approaches, we use the same measuring unit

as in [83]. This paper has the objective of quantifying the extent of the

distortion introduced by filtering out events that should have been analyzed

independently. According to previous studies [50, 25, 55], choosing a time

window of 240s is a reasonable choice for most of large-scale systems, so we

will use the same value for the sampling rate of our systems. We then test

the influence of different sampling rates around this value on the final results.

The results are summarized in Table 4.5, where T represents the number of

messages left in the log after filtering with the previous classic method, and

T+ the number obtained with our method. If we analyze the percentage of

how many independent events were filtered with the classic method (column

5 in the table), it is visible that for a time window of 240 seconds, used

widely in current research, there is a 12% difference for the LANL systems

59

Time window T+ T Diff Percentage
LANL system

160 1,450 1,344 106 7.3%
200 1,323 1,194 128 9.7%
240 1,212 1,068 143 11.8%
280 1,171 1,028 143 12.2%

Mercury
160 12,872 12,189 682 5.3%
200 12,732 12,006 726 5.7%
240 12,644 11,720 923 7.3%
280 12,591 11,596 994 7.9%

Table 4.5: Filtering results

and over 7% for Mercury. Also, it can be observed that the number of filtered

independent events increases as the time window increases.

Grouping the error entries related to the same fault manifestation is cru-

cial to obtain realistic measurements. By analyzing events separate for each

specific type we were able to extract the set of events that frequently occur

together and filter them together. However, since other methods are doing

this filtering for all failures at once, they filter failures that occur close in

time even though they might refer to two/multiple separate problems. The

”Diff” column in Table 4.5 show the number of such cases not identified by

simple filtering methods and that are identified by ours. Without manual

inspection, the exact number of independent events in a system is not known

we cannot show how close to the optimal filtering our method is. We believe

that even our method filters some failures that might describe two indepen-

dent problems. However, it preserves 7-13% more failures that other used

techniques.

Our results are similar to the ones presented in [83], however we do not

require any preprocessing step where a system managers identify the groups

of messages relevant to different error types. Our process is completely auto-

matic. Furthermore, once the initial signals are extracted, our algorithm is

applying recursive filters to transform the signals in the final form, making

the process efficient and flexible. If we need an additional step we can just

add one more filter in the pipeline. Moreover, our approach allows replacing

or removing one or multiple steps for an easy change of the scope and results

of any process.

60

4.4 Failure analysis

In this section we analyze the faults and failures of the HPC systems pre-

sented in chapter 3 and we highlight the similarities and differences be-

tween each. We are looking at root causes as identified manually by system

managers and statistical information as well as inter-failure correlations and

propagation characteristics. On average, in the analyzed timeframe, for the

biggest system, there was a failure of any type every 6.7 hours, while the

system suffered system-wide outages approximately every 160 hours. The

MTBF has decreased from once every couple of months for LANL systems

to every several hours for the Blue Waters system. Moreover, the time to

restart the machine and the applications after a system wide outages is tak-

ing longer times for larger machines. The frequency of failures and the sys-

tem complexity is making the task of failure detection and prediction much

harder. In this section we open the hood, analyze the behavior of failures,

and highlight the properties that can be used by a failure predictor.

4.4.1 Location propagation

In general, 12-25% of failures affect more than one node (without considering

system wide outages). For prediction purposes each node affected by a failure

is a potential false positive or negative. For example, on the Blue Waters

system, failures in the voltage converter module (VRM) of the mezzanine, or

problems with the cabinet controller, affect a whole blade consisting of four

nodes. From a prediction perspective, these are 4 failures. All nodes failing

as part of a multi-node failure represent more than a quarter of total failures

affecting the system.

Large-scale systems contain nodes that are organized in an hierarchy. For

example for the BlueGene systems, nodes are gathered into midplanes and

multiple midplanes form a rack. After a closer analysis, we observed that the

propagation path for different error types follows closely the way components

are connected in the system. For example, if a fan breaks, all nodes sharing

the same rack will be affected. In general, sequences of events following a

failure do not propagate on different locations and if they propagate they

affect a small number of nodes, only around 22% of sequences extracted for

Mercury and 25% for BlueGene/L show any kind of propagation.

61

Between 80% and 85% of the sequences that show a propagation behavior

affect less than 10 nodes. The rest, which represents less than 2% from the

total number of correlations, influence a large number of nodes. An example

of such a failure can be seen on the Mercury machine, when we investigated

NFS (network file system) problems. The event ”rpc: bad tcp reclen d+ (non-

terminal)” indicates the network file system unavailability to any requests

for a node. In applications using the network file system this could cause

file operations to fail and the application to quit. Also all nodes from which

the application tries to access the network file system will be affected by this

problem. This failure usually occurs nearly simultaneously on a large number

of nodes.

To get a more realistic view of the behavior of sequences, we analyzed

the initial pair of correlated events for the BlueGene/L machine and broke

down the propagation on racks, midplanes and nodes. Figure 4.11 shows

that around 75% of correlations show no propagation at all and only around

2.16% propagates outside of the same midplane.

From our observation, in the Mercury system network failures can occur

nearly simultaneously on multiple nodes. For example, the event ”ifup: could

not get a valid interface name: -> skipped” represents an unexpected node

restart caused by unexpected hardware failure, and propagates across differ-

ent nodes. In general, errors in memory or processor caches do not show the

same behavior. On the other hand, in the BlueGene/L system we observed

that some memory errors propagate to different node cards in a midplane.

For example, the sequence

d+ ddr errors(s) detected and corrected on rank 0, symbol * bit *

total of * ddr error(s) detected and corrected

occurs frequently together and refers to a ddr memory error that was de-

tected and corrected in a certain locations and in most of the cases affects

multiple nodes in the same midplane in a short period of time.

On the other hand, errors related to node cards do not propagate on mul-

tiple locations. For example the sequence:

can not get assembly information for node card

linkCard power module * is not accessible

no power module * found found on link card

gives information about a node card problem that is not fully functional.

Events marked as ”severe” and ”failure” occur about one hour after the first

62

Figure 4.11: Percentage of sequences propagating on different racks,
midplanes and nodes on Blue Gene/L

Category Blue Waters Blue Gene/P LANL systems
Hardware 43.12% 52.38% 61.58%
Software 26.67% 30.66% 23.02%
Interconnect 11.84% 14.28% 1.8%
Facility/Environment 3.34% 2.66% 1.55%
Unknown 2.98% - 11.38%
Heartbeat 12.02% - -

Table 4.6: Percentage of different failure types

message and report that the link card module is not accessible from the same

midplane and that the link card is not found. The sequence is generated by

the same node for all its occurrences in the log.

For 75% of correlations containing messages that do not appear on multiple

nodes, the analysis and prediction system does not need to worry about

finding the right location that is affected by a failure. However, for the

other 25% that propagate, a wrong prediction will lead to a decrease in both

precision and recall. For the Blue Waters system, the complexity of the

propagation behavior increases since we have more sources of notification,

thus more failure data than for other systems. We will further analyze this

behavior in Chapter 5

4.4.2 Failure statistics

We divided all failures in 5 main categories that can be encountered in all

systems: hardware, software, network or interconnect, facility and unknown.

Figure 4.12 presents the percentage of failures of each type and table 4.7

shows the average number of failures for one month of production. Both

63

Figure 4.12: Percentage of different failures

Figure 4.13: Percentage of main hardware failures

tables consider the categories that were identified by system managers for

each system.

Hardware represents the majority of failures for all systems, with the lowest

percentage of 43.12% for the Blue Waters system and 61.58% for the LANL

systems. As shown in figure 4.13, the majority of hardware failures were

memory and processors errors. Moreover, failures with hardware root causes

were limited to a single node in 96% of the cases, or a single blade consisting

of 4 nodes in 99.3% of the cases. In over 90% of the correlation chains (46

out of 51 total correlation chains), precursor events appear on the same node

where the failure occurs. For this reason, the mis-predictions caused by not

offering the correct location are rare for hardware failures.

On the Blue Waters system, each node receives a periodical heartbeat re-

quest that triggers a number of specific tests. If the tests fail or the heartbeat

is not received by the system management console, the node is marked as

down. The test is automatically repeated, by default, every 60 seconds for

35 minutes following a failure. We use this information to filter out messages

that refer to the same problem and what is left is reported in Figure 4.12.

In general, failures labeled as heartbeat failures have a separate root cause,

either hardware, software or network.

64

Figure 4.14: Percentage of main software failures

Category Blue Waters Blue Gene/P LANL systems
Total 118 56.5 40.9
Hardware 55.4 (std 6.3) 27.5 (std 4.1) 26.3 (std 3.2)
Software 27.1 (std 5.82) 17.4 (std 3.7) 7.2 (std 2.4)
Interconnect 14.1 (std 3.1) 8.9 (std 1.3) 0.5 (std 0.4)
Facility/Environment 2.9 (std 1.2) 4.2 (std 2.9) 0.4 (std 0.3)
Unknown 2.7 (std 1.7) - 6 (std 2.3)
Heartbeat 15.3 (std 2.43) - -

Table 4.7: Average number of failures per month for each type (with the
standard deviation)

Software errors represent over 30% of total failures for the Blue Waters sys-

tem, while for the LANL system they represent only 23%. For the systems

presented in this study we can observe that current generation suprecom-

puters present a higher percentage of software failures while the hardware

failures represent a smaller percentage compared to older systems.

Figure 4.14 presents the main causes of software failures. The main ones

are filesystem problems (Lustre for the Blue Waters system, GPFS for BGL

and several for LANL: Cluster File System, Parallel File System, NFS,

Scratch FS and Vizscratch FS); failures of the job scheduler and operating

system problems. On the Blue Waters system, 12% of the software failures

caused system wide outages (SWO) and represent over 75% of all causes that

triggered SWO. Moreover, software failures, when not causing a system-wide

outage, propagate to more than one node in 15% of the non SWO failures.

The correlation chains are also more complex than for hardware failures, over

67% (49 out of 73) of chains having at least one precursor on a different node

than the predicted failure, and almost 37% having all precursors on different

nodes.

65

Blue Waters Blue Gene/P LANL systems
Hardware

RAM 33.12%
CPU 27.04%

L1 data cache parity
error 35.27%
CPU 21.81%
Memory 16.72%

CPU 41.35%
DIMM 20.08%

Software

FS 27.2%
Scheduler 18.9%

OS 62.11%
FS 36.02%

Other software 21.89%
OS 20.99%
DST (Distributed stor-
age) 21.02%
FS 12.33%

Table 4.8: Main specific failure types

Environmental failures include power-outages, failures related to temper-

ature, cooling hardware problems and others. Most of the failures in this

category are predictable when performance metrics are added in the predic-

tion methodology so we will take a closer look at this type of failures in the

following chapters.

Table 4.8 presents the primary failure types for each main category for

each system. The table presents the terms used by system managers from

each data center when annotating the failure logs. The same term might

refer to slightly different errors depending on the system. For example, CPU

for Blue Waters and the LANL systems include L1 cache errors while for

Blue Gene/P the two are separate types.

4.4.3 Failure correlation

In the second part of our study we focus on correlations between failures.

This study focuses on the results for the Blue Waters system and only briefly

discusses the differences for all other systems. As a starting point, we calcu-

late the daily probability of a node failure. For this we compute the number

of locations that fail in one random day (as the mean of all days in our time-

frame). We then compare this result against the probability of a node failing

during a day following another failure (in a 24h time window). For example,

if we consider two days, and one of them had a SWO where all nodes failed,

the results would suggest that, on average, almost 13,000 nodes fail per day

66

(a) Probability of a node having a failure
of any type after it had failure of type X

(b) Probability of failure of type X
following another failure of any type

Figure 4.15: Correlations between failures on the Blue Waters system
within a time window of one hour

(and a probability of node failure of 50%). Since SWOs skew the results, we

compute the same probabilities after filtering out SWOs.

We found that the unconditional probability of a node failure within one

day is 0.63% when filtering out SWOs and the daily failure probability is

higher during the day following a previous failure, namely 1.19%. This cor-

responds to roughly a 2X increase, which suggests that failures are correlated

in the system. We also extracted the same data per failure type. We look at

the probability that a node will fail within 24 hours following a failure of a

particular type. At the same time we are looking at the percentage of cases

when a node failure of any type follows a particular type of failure within

an hour window. The percentage of cases when a failure of a particular type

follows any failure within a one hour time window is also investigated. The

results are presented in Figures 4.15.

Figure 4.15a shows what types of failures are good precursors for other

failures and Figure 4.15b shows the types of failures that have precursors.

Many failures seem to follow environmental and network failures. Also, by

looking at Figure 4.16, we observe that these failures in general affect a large

number of nodes which suggest they propagate not only in time but also

space. Software errors have many precursors in other failures (37% of failures

have a previous failures within an hour time window), more than hardware

67

Figure 4.16: The probability that any node-failure follows a failure of type
X on the Blue Waters system

failures. One explanation is that failed hardware is often shut down, while

a software error does not shut off failed components, which means that our

correlations reflect not only intrinsic properties of failures, but also recovery

actions performed. This result might also indicate that a failure that was

assigned to a software cause had, in reality, a different root cause. The

prediction for hardware failures, however, has the potential of having better

results because hardware failures have more non-failure precursors in the log

files that could make the prediction more successful.

68

Chapter 5

Failure prediction

Over the years, different methods have been developed that deal with failure

prediction in the HPC community [6], methods that have been used exten-

sively on different HPC systems and that present a variety of results. A

widely used strategy for extracting information for all these algorithms is to

correlate events. However, the correlation is most of the time a statistical

observation and does not take into consideration the diversity of events be-

havior. Furthermore, most of the studies build their analysis on a pre-process

step where events are filtered to decrease the total size of the log. As shown

in the previous chapter these methods have limitations that affect the overall

accuracy of the analysis module.

In the previous chapter, we introduced the concept of signal analysis in the

context of event analysis, which allowed us to characterize the behavior of

different events and to identify anomalies. Our own analysis of inter-failure

correlations and propagation behavior, as well as current related work have

shown that failure prediction is a theoretical viable solution for future fault

tolerance techniques.

A large fraction of experiments and results for failure prediction methods

used in the literature have been the result of the analysis of different HPC

systems in simulated online environments. We call simulated online predic-

tions the predictions obtained by methods that manually tune the parameters

used in the offline phase in order to achieve the best possible results in the

studied online phase. While these methods show prediction results that could

theoretically be achieved in real scenarios, they do not reflect the reality of

running in realtime and predicting failures using best local parameters.

In this chapter, we present an analysis of failure prediction on different

HPC system and we introduce a new method for predicting failures based on

signal analysis concepts. Firstly, we analyze this method in simulated online

environments in order to compare the results of our implementation with

69

other state of the art methods. Second, we will investigate the feasibility

of online failure prediction methods on a petascale machine by looking at

a online approach on the Blue Waters system. Our method does not use

”simulate online” approaches by automatically choosing parameters for the

online phase. With a sustained performance of 1 Petaflop on a range of real-

world science and engineering applications, the Blue Waters supercomputer

is representative of todays large scale systems and provides new insights into

the performance of current fault predictors.

5.1 Failure prediction based on signal analysis

In the previous chapter, we introduced signal analysis concepts in the context

of log file analysis. We observed that a fault does not have a consistent

representation in the logs. For example, a memory failure will cause the

faulty module to generate a large number of messages. Conversely, in case of

a node crash the error will be characterized by a lack of notifications. Data

mining algorithms in general assume that faults manifest themselves in the

same way and in consequence fail to handle more than one type of behavior.

For example, even though silent signals represent the majority of event

types, data mining algorithms fail to extract the correlation between them

and other types of signals. This affects fault prediction in both the total

number of faults seen by the method and in the time delay offered between

the prediction and the actual occurrence of the fault.

Signal analysis methods can handle all three signal types, and thus provide

a larger set of correlations that can be used for prediction. However, data

mining algorithms are more suited in characterizing correlations between

different high dimensionality sets than the cross correlation function offered

by signal analysis. Data mining is a powerful technology that converts raw

data into an understandable and actionable form, which can then be used to

predict future trends or provide meaning to historical events.

Additionally, outlier detection has a rich research history in incorporating

both statistical and data mining methods for different types of datasets.

Moreover, it is able to implicitly adapt to changes in the datasets and to

apply threshold based distance measures separating outliers from the bulk

of good observations. In this chapter, we combine the advantages of both

70

Figure 5.1: Methodology overview of the hybrid ELSA approach

methods in order to offer a hybrid approach capable of characterizing different

behaviors resulting from events generated by a HPC system and provide an

adaptive forecasting method by using latest data mining techniques.

In the following sections we present the methodology used for preprocess-

ing the log files and extracting the signals and then we introduce the novel

hybrid method that combines signal analysis concepts with data mining tech-

niques for outlier detection and correlation extraction. An overview of the

methodology is presented in figure 5.1.

In the next sections we will build on the signal analysis methods in ELSA,

described in section 4 and add data mining prediction functionalities. We

will refer this combination of signal analysis with data mining as the hybrid

version of ELSA.

5.1.1 Analysis modules

Outlier detection

All analysis modules are novel hybrid modules that apply data mining tech-

niques on the previously extracted set of signals and their characterization.

Since the offline phase is not run in real-time and the execution time is not

constrained, we did not optimize this step. For outlier detection in the online

phase, we use as input the adapted set of signals and apply a simple data

71

(a) Original data (b) Signal after filtering

Figure 5.2: Online outlier detection

cleaning method for identifying the erroneous data points.

We implement this step as a filtering signal analysis module so that is can

be easily inserted between signal analysis modules. The transformation was

intuitive since the data mining algorithm is based on a causal moving data

window that is appropriate to realtime applications: the observed data point

yk is compared to the median ymk of past data points, both the erroneous

and the replaced ones. If the distance between these points is large relative

to a threshold based on the normal behavior of the system, yk is declared

an outlier and a replacement with a more reasonable value yck is proposed.

Figure 5.2 presents a synthetic noise signal in its original form and after

applying the online outlier detection with replacement for the erroneous data

points.

For a window of N points, the analyzed list of points for the current yk is:

Vk = {yck−N , ..., y
c
k−1, yk−N , yk−N+1, ..., yk}

out of which the median is extracted ymk . For our experiments we use an N

value of two months.

We use predefined thresholds for each signal, specified automatically in

the preprocessing step based on knowledge about the normal behavior of the

event type and how this was affected by outlier in the offline phase.

The replacement strategy decreases the influence of severe outliers on sig-

nals by saving both the initial value and one that is more consistent with

the rest of the dataset. At the same time it minimizes the effects of a large

number of faults hitting the same signal for a larger period of time.

Having a low execution time is a requirement for the online modules. The

on-the-fly filter makes the process faster than what is proposed in the pre-

72

Figure 5.3: Correlation example between three signals

vious chapter. We will show in the experiment section the number of faults

missed because the outlier detection and prediction took too long to notify

the applications.

Signal correlation

Gradual itemset mining [90] is used in the data mining community for ex-

tracting patterns of the form ”the more/less X1, .. , the more/less Xn”. The

goal of the algorithm is to discover frequent co-variations between different

attributes. This method has the advantage of extracting multiple event cor-

relations instead of only pairs like the output of the signal cross-correlation

function. A large number of data mining algorithms divide the logs into

chunks and extract sets of failures that frequently occur together in these

chunks. This method is called itemset mining. Gradual itemset is a slightly

more advanced form of itemset mining in the sense partitioning the logs is no

longer necessary. The algorithm searches for shifts in the data and creates

automatic snapshots with the state of all events at that particular time. Af-

terwards, frequently occurring patterns inside these snapshots are extracted.

We use the sequential GRITE algorithm presented in [91] by adapting it to

work with our signals. Since the purpose of our method is to predict faults,

we are only correlating signals depending on the occurrences of outliers in

each of the signals. For this, we filter out the normal behavior and leave

only the outliers. In order to simplify the correlation process, we replace

each point in the signal with 0 in case of normal behavior and 1 for outliers,

no matter on the real representation in the log. For example, if a failure is

manifested as a lack of notifications, then the portion of the signal with value

0 will become a 1. At the same time some failures are represented by bursts

73

of messages, like the second and third signal in Figure 5.3). In this case, the

highlighted moments in the figure become 1s in the final signal and the rest

will be set at 0. This representations makes all signals uniform and thus, it

allows to represent signals as attributes that can be handled by the gradual

itemset mining algorithms.

The sequential algorithm relies on a tree-based exploration, where each

level is built by using information from the previous level. In its original

form, the first level of the tree is initialized with all attributes. However

in our case, the initial level is composed of the 2-pair correlations obtained

with the signal cross-correlation function. Gradual itemset mining is a very

complex and computationally expensive data mining algorithm so sequential

methods cannot yet scale to large datasets. By merging it with a fast signal

analysis module we were able to guide the extraction process toward the final

result and so reducing the complexity of the original data mining algorithm.

Recently, research on gradual itemset mining has focused on proposing par-

allel methods that are able to use multi-core architecture for the extraction

of itemsets [90]. We plan to investigate the use of such methods online in

order to adapt correlations to changes in the system.

Itemsets from the L level are computed by combining frequent itemsets

siblings from the L-1 level by using a procedure for joining two itemsets

into a larger one. Candidates which are more frequent than a pre-defined

threshold are retained in level L and are further used in the next level.

In its usual form, gradual itemset mining algorithms look for patterns

that take place at the same time in a subset of attributes. For example, the

pattern (0→1, -, 0→1) related to Figure 5.3 describes the fact that frequently

in the analyzed time frame, the first signal experiences an anomaly at the

same time as the third, while the second signal can have any state. For our

purposes, we are interested in associating signals that have a fixed delay one

from another. For example, if one event type usually occurs T time units

after another event type, these two signals will be shifted with T time units

one from the other (as an example, in figure 5.3 the last two signals have a

time delay of one minute, with the third signal following the second one).

The correlation module must be able to capture this scenario.

We modify the initial algorithm to check different delays between signals

by shifting one of the signals with the corresponding delay and applying the

gradual itemset mining algorithm. To optimize the process we choose a small

74

time window for the delay values based on the results given by the initial

cross-correlation function.

The general gradual mining algorithm uses a comparison operator in {≥
,≤}, meaning that it identifies when a signal changes its state either from

normal to anomaly or the opposite. However in our case we only care about

the decreasing patterns (if an outlier occurs in S1, we want to find all other Si

signals where an outlier occurs with a fixed delay). We change the algorithm

to only search for the ≥ operator. This means we are only looking for 0->1

moments when a signal goes from normal behavior to anomaly. For a better

understanding of our hybrid approach we will present an example in the next

paragraph that goes through all the steps used by the method.

Given a table set of signals S, a gradual item is a pair (Si, θi) where Si is

an attribute in S and θi represents a delay in the signal. A gradual itemset

G = {(S1, θ1), ..., (Sk, θk)} is a set of gradual items of cardinality greater than

or equal to 2.

In the example illustrated in figure 5.3, the initial set of gradual itemsets

which is given by the cross-correlation function between all combinations of

signals, is SGinit
= {{(S1, 0), (S2, θ12)}, {(S1, 0), (S3, θ13)}, {(S2, 0), (S3, θ23)}}.

This means that signal S1 is correlated with S2 and S2 occurs θ12 time units

after S1.

The join function used in GRITE will return the merge between the sets

in SGinit
and create:

SG1 = {{(S1, 0), (S2, θ12), (S3, θ13)}, {(S1, 0), (S2, θ12), (S3, θ12 + θ23)}, ...},

with different delays. In case all delays are consistent, for example if

θ13 = θ12 + θ23, SG1 will have only one element. The testing part is left

almost unchanged from the gradual itemset mining with the difference that

we only use one operator.

We use two different thresholds in order to decide what patterns occur

frequently and what patterns are sub-frequent, meaning they do not have

enough appearances in the analyzed time frame, but have the potential of

becoming frequent in the future. We keep both sets of patterns, but only use

the frequent ones for prediction. The sub-frequent patterns are monitored as

time goes by and their count is updated. If it exceeds the ”frequent pattern”

threshold they are upgraded and moved in the frequent set.

75

Location correlation

Large-scale systems contain a large number of nodes that are organized in

an hierarchy. For example for the Blue Gene systems, nodes are gathered

into midplanes and multiple midplanes form a rack. When analyzing differ-

ent errors that might affect a HPC system we investigated the propagation

behavior of each of them. Our observation show that some errors influence

multiple nodes, depending on their location in the machine.

After a closer analysis, we observed that the propagation path for different

error types follows closely the way components are connected in the system.

For example, if a fan breaks, all nodes sharing the same rack will be affected.

For a better understanding of the behavior of different event types, we an-

alyzed the logs generated by Blue Gene/L and Mercury systems, and later

by the Blue Waters system. We show that it is important to consider the

topology of the network when modeling the propagation behavior of failures.

The heuristic used to extract location correlations is based on the of-

fline correlation chains extracted in a previous step. We parse the logs

and monitor each occurrence of a correlation Gi = {(S1, θ1), ..., (Sk, θk)}.
Based on it we extract the list of possible locations for each chain Loci =

{(L11, .., L1k1), ..., (Lm1, .., Lmkm)}, where (L11, .., L1k1) is a list of unique lo-

cations where events in the chain have occurred and m is the number of

occurrences for the corresponding sequence of events. In case of a correla-

tion that does not propagate events from one node to another, the list of

locations will be composed of only one element for each occurrence: Loci =

{(L1), (L2), ..., (Lm)}.

5.1.2 Dissecting event correlation

Our first set of experiments are made mostly on the BlueGene/L machine.

Most modules from our framework are platform independent and so are easy

to adapt to run on different machines. To demonstrate this and to compare

the results from different systems, we made additional experiments on the

Mercury system.

In this section we focus on analyzing the correlations we were able to

extract with our method. First, we were interested to understand what type

of patterns our method is able to extract in general. Table 5.1 presents

76

Memory error
correctable error detected in directory *

after 6 time units (one minute)
uncorrectable error detected in directory *
capture first directory correctable error address..0

after 1 time unit
DDR failing data registers: * *
number of correctable errors detected in L3 EDRAMs.*
parity error in read queue PLB.*

Node card failure
midplaneswitchcontroller performing bit sparing on * bit *

after 44 time units
linkcard power module * is not accessible

after 4 time unit

problem communicating with service card, ido chip: * java.io.ioexception:
could not find ethernetswitch on port:address 1:136

after 6 time unit
prepareforservice is being done on this part * mcardsernum(*) * * mtype(*) by *

Multi-line messages
general purpose registers:
lr:* cr:* xer:* ctr:*

Component restart sequence

idoproxydb has been started: $name: d+ $ input parameters: -enableflush
-loguserinfo db.properties bluegene1
ciodb has been restarted.
bglmaster has been started: ./bglmaster –consoleip 127.0.0.1 –consoleport
32035 –configfile bglmaster.init –autorestart y
mmcs db server has been started: ./mmcs db server –usedatabase bgl –
dbproperties * –iolog /bgl/bluelight/logs/bgl –reconnect-blocks all n+

Table 5.1: Sequence of correlated events

several examples returned by our method. At a first look, we observed that

the method was capable of detecting sequences of events that lead to a failure

but was also able to capture the relationship between informational messages.

For example, multi-line messages are identified by HELO as multiple event

types. However, they have the exact same behavior so our correlation was

able to cluster them together.

Messages generated during the installation of a component or during a

restart are another example of informational messages. Our tool characterizes

their behavior as silent signals since most of the time they do not appear

77

in the log. Every time there is a restart, these event types’ occurrences

are regarded as outliers. This allows our system to correlate these signals

with every other event type and extract the complete restart sequence. At

the same time, these sequences do not give any benefit to our prediction

since they do not affect an application’s execution in any way. As a natural

consequence, we investigated what is the percentage of correlations that are

not useful in the prediction phase. This turned out to be a complex task since

some messages might indicate harmless events in some contexts and indicate

failures in others. At this point we only eliminated the obvious non-error

sequences and analyzed the rest separately, as described in the prediction

section of this paper.

We observed that only around 23% of sequences do not have any potential

of predicting a problem in the system. We did this only for the Blue Gene/L

machine because it offers a severity field that helped us in determining if a

event type could be a failure in at least one context. We eliminated these

sequences for the rest of the analysis. For the Blue Gene/L system this

was done automatically by eliminating all sequences that contain only event

types with INFO severity messages. For other systems, a system manager

identifies which templates represent failures. This information can be used

to filter correlations that do not contain at least one failure.

In-depth Analysis

First, we investigated how many events are in average part of a correlation

chain. For this, we plotted the distribution of the event types that compose a

sequence in figure 5.4. The figure shows that in general the sequences contain

a small number of event types, the average length of the chain being 4 for

both systems. However, there are some correlations containing more event

types, 20% of them containing more that 8 events.

Next, we analyzed the time delay between correlations offered by our sys-

tem. First we analyzed simply the pair of initial correlations and then the

complete sequences. We observed that 33.7% of the correlations have less

than 10 seconds delay between events, the majority (56%) having delays be-

tween 10 seconds and one minute and the rest having time delays of more

than one minute. For both systems, about 2.5% of the sequences have more

than 10 min between events. For a better understanding of how this large

78

percentage of correlations affect the final prediction, we analyzed the com-

plete sequences as well.

We plotted the time delay distribution between the first message indicating

the beginning of a sequence and the last visible symptom. Figure 5.5 on

page 80 presents the results only for Blue Gene/L but Mercury has a very

similar distribution. Only 12.8% of the sequences do not offer any prediction

window larger than 10s, 48.4% correlations offer between 10 seconds and one

minute and there is a significant percentage for which the delay is larger

than one minute. Moreover, the correlation system is able to extract some

sequences with hours time delay between the first symptom and the final

failure message.

We also observed that there is a relatively simple pattern between the

confidence of a sequence and the delay between the first and last event in

the sequence. The confidence of a correlation represents how frequent the

sequence has been seen occurring before a failure type over all occurrences

of this failure type. In general, for delays larger than 5 minutes, the larger

the delay the lower the similarity degree between the signal and so the lower

the confidence. Sequences with a confidence of over 95% usually contain the

correlations between events that are generated close in time, in the order of

seconds. However, there are some node card failure sequences that have high

confidence and offer more than one hour prediction window.

In the following section, we look into closer detail for failures that have

extreme time delays. In general, we observed that node card failures offer

sequences with longer time delays. This should be reflected in a larger pre-

diction window for these kind of errors, and as a consequence more time for

fault avoidance strategies. For example, the node card failure presented in

table 5.1 offers around 9 minutes (the equivalent of 54 time units) between

the first and the last event in the sequence. Other node card examples show

even one hour after the first symptoms occurs. The memory errors detected

with our system, like the one presented in table 5.1, usually offer in average

a one minute prediction window.

The Blue Gene/L system has a separate process, CIODB, that runs on

service nodes and handles the job loading and starting. This process starts

and monitors jobs, and updates the job table as the job goes through the

states of being loaded, started and terminated. We observed that sequences

or events related to CIODB usually have a very short time delay between

79

Figure 5.4: Sequence size distribution

Figure 5.5: Time delay distribution between events in sequences

them, the majority happening almost at the same time.

In all our experiments, we used logs that offer less than 10 months of

activity. Thus, there was no reason to implement any correlation updating

modules since the changes in such a short time are not relevant to the whole

lifetime of a system.

5.1.3 Dissecting prediction

Figure 5.6 shows an overview of the prediction process. The observation win-

dow is used for the outlier detection. The analysis time represent the over-

head of our method in making a prediction: the execution time for detecting

the outlier, triggering a correlation sequence and finding the corresponding

locations. The prediction window is the time delay until the predicted event

will occur in the system. The prediction window starts right after the obser-

vation point but is visible only at the end of the analysis time.

In the next section we analyze the prediction based on the visible prediction

window.

80

Figure 5.6: Prediction time window

Analysis

In the online phase the analysis is composed of the outlier detection and the

module that triggers the predictions after inspecting the correlation chains.

We computed the execution time for different regimes: during the normal

execution of the system and during the periods that put the most stress on

the analysis, specifically periods with bursts of messages. If the incoming

event type is already in an active correlation list, we do not investigate it

further since it will not give us additional information.

The systems we analyzed generate in average 5 messages per second and

during bursts of messages the logs present around 100 messages per second.

The analysis window is negligible in the first case and around 2.5 second in

the second. The worst case seen for these systems was 8.43 seconds during an

NFS failure on Mercury. By taking this analysis window into consideration

we examined how many correlation chains are actually used for predicting

failures and which failures are we able to detect before they occur.

The results on LANL systems showed 43% recall and 93% precision by

using a purely signal analysis approach. However, at that time, we did not

attempt to predict the location where the fault would occur. In this chapter,

we focus on both location and the prediction window. We compute the results

for the Blue Gene/L system.

We analyzed the number of sequences found with our initial signal analysis

approach, the data mining algorithm described in [50] and the present hybrid

method. Signal analysis gives a larger number of sequences, in general having

a small length, making the analysis window higher. Also, the online outlier

detection puts extra stress on the analysis making the analysis window exceed

30 seconds when the system experiences bursts. Due to our data mining

81

Prediction method Precision Recall Seq used Pred failures

ELSA hybrid 91.2% 45.8% 62 (96.8%) 603
ELSA signal 88.1% 40.5% 117 (92.8%) 534
Data mining 91.9% 15.7% 39 (95.1%) 207

Table 5.2: Precision and recall for different methods

extraction of multi-event correlation we were able to keep only the most

frequent subset making the online analysis work on a much lighter correlation

set. On the other extreme, the data mining approach looses correlations

between signals of different types, so even if the correlation set is much smaller

than our hybrid method, the false negative count is higher.

Table 5.2 shows the precision and recall obtained with three methods: i)

ELSA signal, a purely signal analysis method by using cross-correlation to

extract the failure patterns; ii) ELSA hybrid, the method described in this

chapter and iii) Data mining, the GRITE based method described in this

chapter applied on the raw log file before applying signal analysis. The recall

value for the signal analysis method is lower than in our previous findings.

This can be explained by the location prediction since now there is room for

errors in this part as well. What is interesting is that the precision value

for the data mining approach is higher than the other methods. This can

be explained by the fact that the low number of sequences found by the

data mining method are mostly the ones that do not show a propagation

behavior. When running ELSA hybrid without checking the location we

obtain a precision of around 94%. The results show that the hybrid method

combines the precision given by the data mining approach with the recall of

the signal analysis method.

We analyze in detail the results by breaking down the predicted events on

different categories. The results are presented in figure 5.7, where each bar

represents how often a certain type of error appears in the log as a percentage

to all errors reported in the system. The dark portion of every bar represents

the correctly predicted cases out of the total occurrences. We observed that

the node card errors were the type that our system detected with a high rate,

more than 80% of the occurrences were predicted. This is explained in the

high confidence sequences obtained for this type in the offline section. We

plan to analyze in the future the reason why there is such a low percentage

in detecting network and cache failures.

82

Figure 5.7: Recall breakdown on different categories

The total number of error messages in the log represent 18% of everything

that is recorded in the log. An interesting thing we observed after this

analysis is that even though the large majority of correlations are used at

least once, there is a small set that is used frequently. More exactly, 3.12% of

sequences are never used for prediction (the events occur only in the training

set) and 23.4% are used in the majority of the cases.

We also analyzed the visible prediction window offered by the sequences

used in this process and observed that around 85% of the prediction offer

more than 10 seconds after the analysis window ended, out of which more

than 50% offer one minute or more and around 6% more than 10 minutes.

This means that fault avoidance techniques that take a checkpoint or mi-

grate a process in less than one minute could be applied on 42% of the total

predicted failures on Blue Gene/L, respectively 20% of total failures. When

using a fast checkpointing strategy, like the one from [65] the total number

of failures for which avoidance techniques could be applied increases to 40%.

5.2 Parameter influence on the results

5.2.1 Preprocessing parameters

HELO generates templates that consist of constant words and variables.

Variables identify manipulated objects or states for the program and are

replaced by wildcards. In case constants are mistakenly replaced by wild-

cards the template becomes too general and, when variables are identified

as constants by HELO, we call the corresponding templates too specific. In

order to compute HELO’s accuracy, we analyzed the Blue Gene/P system

83

MTBF Failure distribution Nodes System lifespan Propagation Lead time

1day Weibull 40960 one year Yes Weibull
scale=8116.7 20% of failures mean=50s

shape=0.387,187

Table 5.3: System parameters

which offers error codes for every message line in the log file. The following

line:

26124022 KERN 080A KERNEL bgp unit ddr bgp err ddr SSE count

WARN 2009-01-05-00.41.28.758978 - 0 - ANL-R45-M0-512 R45-M0-

N11-J17 DDR controller 1, chipselect 0 single symbol error count 19747

is an example message that appears in the log generated by this machine.

The string bgp unit ddr represents the error code and ”DDR controller 1,

chipselect 0 single symbol error count 19747” represents the message descrip-

tion that will be used by HELO for extracting the templates.

We plotted the ratio of general and specific templates generated by HELO

compared to the error codes of Blue Gene/P in Figure 5.8a and how these

differences affect the final prediction in Figure 5.8b. Cluster goodness rep-

resents the similarity threshold that defines when two messages are part of

one single events. Depending on the cluster goodness, there is a 2 to 30%

difference between the template set generated by HELO and the error codes

of Blue Gene/P. However this is translated into a much smaller difference

when looking at the impact on prediction, the highest impact showing a me-

dian difference of only 5% for recall and 3% for precision. Only for extreme

values the impact is higher. We argue that this step affects in a small way

the final prediction so automatic processes provide great benefits compared

with human interaction without significantly affecting the final results.

5.2.2 Prediction parameters

All modules implemented in ELSA have online phases where they update

the data generated in the training phase. In general, current research is not

updating the correlations found offline and thus have limitations when they

are using a short training set. We believe this limitation makes the prediction

unrealistic when used on real production systems. To study the impact of

not adapting the correlation set on the prediction’s result, we used the data

84

(a) Percentage of incorrect templates

(b) Precision/Recall decrease

Figure 5.8: The influence of the HELO ”cluster goodness” parameter on
the template list and on the prediction results

collected by ELSA during the training phase to predict the next 9 months of

Blue Gene/L and plotted the recall for each month in Figure 5.9a. We have

similar results when using the synthetic logs, however due to space limitation

we did not present this figures.

It is clear that the prediction keeps a high recall value only for the first

couple of months and then decreases dramatically. We argue that by adapting

the correlations and signal characterization over time we were able to keep

the recall value almost constant throughout the entire studied life cycle of

the system.

For some fault avoidance techniques the cost of predicting a failure that

does not appear in the system is low compared with experiencing an un-

predicted failure. This is, for example, the case of object migration with

85

(a) Recall on different months
without updating the correlation list

(b) Recall/Precision when varying
the ”correlation threshold” parameter

Figure 5.9: The influence of ELSA’s parameters on the prediction result

Charm++ [66]. Therefore, we did a study of the recall/precision trade-off

in Figure 5.9b. These values represent the precision/recall from analyzing

all 9 months of log data and using updates every 3 months. In general, the

recall increases when using low threshold values for deciding when a correla-

tion is strong. Interestingly, the maximum recall value reached by ELSA is

63% which is close to what we observed in the previous section as being the

amount of predictable failures. However, the cost in precision is really high,

making more than 70% of ELSA’s predictions wrong. It is also noticeable

that the precision decreases at a higher rate than the increase in recall. De-

pending on the fault avoidance technique different values might be the best

option.

5.2.3 Discussion

Accurate predictions are necessary for proactive fault tolerance solutions.

These solutions have the benefit of reducing the overhead due to fault toler-

ance actions and the amount of lost work due to predicted failures. However,

an extra overhead is added due to wrong predictions. The trade-off between

this overhead and the benefit is highly influenced by the predictors recall and

precision as well as by the cost of the fault tolerance action. We believe that

understanding current prediction methods and their limitations is crucial in

86

designing failure avoidance techniques for exascale systems.

The correlation extraction method has the highest impact on prediction

results. Therefore the choice of the methodology is the most important part

of the prediction. We plan in the future to analyze various algorithms and

study their results on large-scale production systems to get a better under-

standing of their limitations. Data mining algorithms have particularly poor

results on noise and periodic signals. Our observation that failures do not

affect in the same way the system and are represented in different ways in

system logs allowed us to analyzed failures differently and, in the end, offer

more accurate predictions.

Adapting the set of correlations and behavior characterization is a necessity

when working on real systems. Correlations using the last couple of months

become unusable after less than one month of predictions. Since patterns

are no longer useful after only a couple of months and since new patterns are

added throughout the lifetime of a systems due to upgrades or configuration

changes, it is no longer viable for system managers to manually tune the

patterns extracted.

With the implementation of more accurate failures predictors there have

been developed a number of mathematical models [60, 92] that deal with

characterizing the benefit of merging predictors with current checkpointing

protocols. We further look at analyzing the benefit of a hybrid preventive

and proactive checkpointing strategy in the following chapter.

5.3 Online failure prediction

The prediction methods used in literature, as well as the one presented in

the previous sections, follow the same general design. The historic log files

are divided in two parts: training and testing. Predictors use a variety of

methods in the testing phase in order to learn patterns and correlations

between different events in the system. This phase usually uses 10% of the

whole log and can take between a couple of weeks [9] to months [57]. These

patterns are then used in the second phase of the analysis by applying them

on the second part of the log in order to predict failures. Based on the actual

failures from this part, recall and precision values can be computed for a

given method.

87

Figure 5.10: Failure prediction: simulate online

Figure 5.11: Online failure prediction

Every step in the training method contains parameters used to decide when

a pattern is reliable enough to be used in the second phase. As shown in the

previous section, these parameters have a high influence on the final results

of a predictor. Depending on the results obtained on the testing part of the

log, the parameters can be tuned and the training analysis can be redone in

order to increase the accuracy of the final results.

Choosing and tuning the parameters is usually a manual process and can be

done using domain knowledge about the system or using previous experiences

with other similar systems. Repeating the prediction for the same testing

piece of log until obtaining the best possible results is a good way of analyzing

the limitations of a predictor. However, it is not a valid methodology when

deploying a predictor to work online on a real system since it does not provide

a way of preparing for unknown events. Moreover, any manual process is

unrealistic when dealing with supercomputers at petascale size.

The solution we propose is presented in figure 5.11 and is currently imple-

mented in the ELSA toolkit. For online prediction there is a historic log file

and a stream of events that are generated as the system continues to run.

The historic log file is divided in two parts as before, one for training and

one for testing. The training is done automatically in order to achieve the

best results on the second part of the log, either by implementing rules as

to how parameters modify the precision and recall ratio or by a brute force

strategy. By best results, we mean tuning the parameters in order to obtain

either the best possible precision, recall or a ratio between the two. We call

this process simulate online, because the methodology takes advantage by

88

the fact that the testing phase can be redone multiple times.

After the best results have been reached, the process stops and the param-

eters are used online on the incoming stream of events. The methodology can

be tested on a historic log, by dividing the log into 3 parts, one for training,

one for simulate online and the rest for online predictions. The best param-

eters are chosen based only on the training and simulate online parts either

manual or automatic, then online predictions are made on the third part of

the log only once and the results of this one time execution defines the recall

and prediction values.

In time the learned patterns used for prediction become less and less accu-

rate because of new updates in the system and so both precision and recall

decrease over time. Values for this degradation can be found in the previ-

ous section. Our online methodology (figure 5.11) deals with this problem

by triggering a new session of training and simulate online in parallel with

the online prediction each time the precision or/and recall decrease below a

threshold.

We replace the manual process with an automatic algorithm. This on-

line methodology can be applied to any failure predictor that works with a

predefined set of parameters. The historic log file is divided in three parts,

one for training, one for validation, and one for testing. The training and

validation phases are repeated by an automatic supervisor that is using a

different parameter mix each time. The testing phase is done only once after

the automatic algorithm has finished finding the best set of parameters for a

given goal.

The automatic algorithm works on a couple of input files that need to

be provided by the user. These files contain information specific to the

failure prediction method that will be used. In this chapter, we use the

ELSA predictor [92] to demonstrate how online failure prediction can be

achieved, but any other predictor can be used as long as the files needed by

our algorithm are provided. In the current format of our online methodology

there are three files needed. The first one is an xml file that describes the

parameters used by the predictor with a range of values that need to be

inspected. The second file contains information about how the executables

are using the parameters that are described in the first file. The last one

describes the objectives of the validation process. A snapshot of these files

is presented in Table 5.4.

89

Example parameter description
< parameters >
< param name=’correlation threshold’ >

< range >
< min > 50 < \min >
< max > 100 < \max >
< step > 5 < \step >

< \range >
< \param >
...
< \parameters >
Example file describing executables
< rule >

< executable > elsa preprocessing < \executable >
< param name=’correlation threshold’ > $1 < \param >
< param name=’input log’ > bgl log < \param >

...
< \rule >
Example objective file
< objective >

< recall > MAX < \recall >
< precision > GT60 < \precision >

< \objective >

Table 5.4: Input file entries required by the online methodology

In our example, the correlation threshold parameter is used by the pre-

processing modules of ELSA (specifically the elsa preprocessing executable

is using it as its first input parameter). This specific parameter describes

the minimum threshold required by the pattern detection module in order to

consider two separate events as being correlated. The values that need to be

inspected for this parameter, begin from 50 (events that occur together 50%

of the time) and end with 100 in 5 unit increments. The objective of the

online methodology described in the last file is to find the maximum value

for the recall, while preserving a precision of more than 60%. At the time of

this paper, we implemented the basic objective functions: MAX, GT (greater

than) , GE (greater or equal). In the future it might be desirable to be able

to specify a ration between the precision and recall or any cost function as

an objective function.

The online methodology uses the provided files to search the space of

90

results offered by different parameter mixes, in order to chose the best one

for a given objective. Due to failure predictors generally having a very large

search space, we implemented a data mining algorithm used to find pattern

and trends between the parameter values and the precision and recall values

obtained for them. We use the GRITE algorithm [91], a specialized data

mining algorithm that extracts complex order patterns in the form ”The

more/less X1,X2,... the more/less Y1, Y2”, where Xi represent parameters

and Yi represents recall and precision. We store every entry containing the

set of values used as input parameters and their corresponding precision and

recall into a data structure. We apply the data mining algorithm on this

data structure and save the generated patterns into a separate structure.

These patterns are used to decide what mix of parameters to use in the next

iteration. We apply the classical sequential GRITE algorithm (see [91] for

the detailed algorithm) every time there is an entry that does not correspond

to the patterns already extracted. We call this method a guided space search,

since not all parameter combinations are tested. The experiments done with

the ELSA predictor over the Blue Waters system have shown that less than

15% of parameter combinations were necessary to reach a solution. One

example of such a pattern is the ratio between the correlation parameter

and recall seen in Figure 5.9b on page 5.9b. Specifically, each time the

correlation threshold is increased, the recall decreases. This pattern guided

the online methodology to start with low values for this parameter and go

up until the precision reached the 60% limit.

After the results best fitting the given objective have been reached, the

process stops and the parameters are used online on the testing phase or on

an incoming stream of events if the predictor is running as a daemon in the

system.

5.3.1 Results

We tested our method, first onto the same Blue Gene/L log used in our

previous studies and on the Blue Waters system. For the training phase, we

chose to tune the parameters in an automatic way with a hybrid version of

domain knowledge and brute force. There are three categories of parameters

in ELSA’s testing phase, one in the classification phase, two in the outlier

91

Figure 5.12: Precision and recall for simulate online and online

identification phase and two in the correlation extraction phase. The previous

section presented a few of the most influential parameters. Some parameters

have a direct relation with both precision and recall (for example, it is clear

from Figure 5.9b on page 86 that an increase in the threshold parameter

decreases the recall and increases the precision). For the second type of

parameters there is no straightforward relation. Our method starts with all

parameters in brute force mode by trying all possible values. After computing

values for the first few tries, our method uses a regression algorithm in order

to find relations between thresholds and recall/precision values. If a relation

is found, a guided search is used for the rest of the threshold values.

The first experiment was done on the Blue Gene/L log which was down-

loaded from the computer failure data repository [93]. In the previous section

we focused on offering the best precision possible because we desired to have

as few wrong predictions as possible. There are fault avoidance techniques

for which the overhead of a misprediction is higher than the benefit of cover-

ing a larger set of failures in which case highest precision is the best solution.

In the next chapter 6, we investigate the impact of combining our prediction

method with a multi-level checkpointing strategy and we observed that a

decrease in recall has a higher impact on the benefit of this hybrid fault tol-

erance method than precision. For this reason, in this chapter we remade our

previous experiments on Blue Gene/L focusing on both best precision and

92

best recall. Figure 5.12 shows the precision and recall for different scenarios.

The left part of the figure shows the results when focusing on obtaining the

best precision possible and the right side focuses on best recall.

The first column in each bar set (the blue column) shows the results for

the manual simulate online method. In this case, we divide the log in two

parts (training and testing) and manually change the parameters used in the

testing phase in order to get the best results on the testing phase. The second

column from the left (the red one) in each bar set represents the results when

using the automatic script for finding the best parameters. For computing

the first two bars, the first part of the log is used for extracting patterns and

the last part is used for computing the recall and precision value. The other

two experiments compute these values also using the last part of the log but

using the first two parts for training as described in figure 5.11 on page 88.

This way all four experiments compute the recall and precision by predicting

failures only on the online part of the logs and by using only data from the

training phase. The online methodology uses the simulate online part of the

log only to tune the parameters and to optimize the correlations found in

the training part. If a correlation cannot be found in the training part and

its present in the simulate online part our predictor will not see it.

The results using the automatic script are very similar to the ones obtained

by manual tuning. For the best recall values, the automatic method gives

a better recall, however, paying the price of having a lower precision. The

variations happens because the automatic algorithm goes through a larger

set of parameter combinations. Overall, the difference is less than 1% which

shows that the manual process can be completley replaced by our automaic

method.

The third column (green column) presents recall and precision values for

the online methodology when no updates are being made and the last col-

umn shows the results when there is one update after one month of exe-

cution. When no update is made, the recall and precision values both are

much smaller than in the simulate online case, having a difference of almost

5% compared to the manual process. However, after one update the values

become again very similar.

The results on Blue Gene/L shows that the online methodology gets similar

results by choosing automatically the parameters that otherwise should be

manually tuned and updated every couple of months. However, when we

93

Figure 5.13: Precision and recall for the Blue Waters

applied the same strategy on the Blue Waters systems we observed a couple

of limitations. We will focus on analyzing these limitations and proposing

solutions in the next section.

5.4 Results on the Blue Waters system

Figure 5.13 presents the precision and recall of applying prediction on the

Blue Waters system. We focused on achieving the best possible recall, at the

same time trying to keep the precision at a reasonable value. Based on the

study from the next chapter, we chose this value to be 60% since it offers the

best results for balancing the overhead of a misprediction with the benefit of

covering a large set of failures for checkpointing strategies.

Figure 5.13 shows the precision and recall obtained for the Blue Waters

system for both manual tuning of the parameters (manual inspection bars)

for each individual month, and by using the online methodology with and

without updates (online bars). The manual and automatic methods give

similar results, which shows that the online methodology is a valid strategy

on larger systems. The automatic method gives a better recall value for

January 2014, however, paying the price of having a lower precision. The

variation happens because the automatic algorithm goes through a larger set

of parameter combinations. Overall, the difference is less than 1%, which

shows that the manual process can be completely replaced by our automatic

94

method.

The last two sets of columns present the recall and precision values for the

online methodology, when no updates are being made, and when there is one

update after the first month of execution. When no updates are made, the

recall and precision values are slightly smaller showing a difference of around

8% compared to the manual process (which was optimized for each month).

This difference corresponds to a power failure that propagated on multiple

nodes inside one of the cabinets. This failure was not predicted so all node

failures became false negatives. After an update, by including January in the

validation process, this failure was correctly predicted, which corresponds to

the 8% increase. We will analyze into detail all these correlations in the next

sections. In general, from our previous observations, an update is required

every few months, depending on the system.

We further investigate the reason for the low recall value obtained for the

Blue Waters system when compared to previous generation HPC machines,

like Blue Gene/L. For prediction purposes each node affected by a failure

is a potential false positive or negative. For example a fan malfunction can

bring a increase the temperature on a cabinet consisting of 96 four nodes.

Depending on how many nodes start presenting failures, a prediction will

have to identify multiple failures.

Figure 5.14: Breakdown precision and recall for different root causes

In general our method has good results for hardware and heartbeat failures

and less than desirable recall values for the software, network and environ-

mental category. We will analyze into more detail each category in the next

95

Hardware Software Environmental Network
Memory 33.12% FS 27.2% Fan Tray Assy

27.02%
Gemini Lane
66.41%

CPU 27.04% Scheduler 18.9% XDP Valve
21.62%

Cabling 8.39%

Table 5.5: Most frequent types of failures

section.

5.4.1 Detail breakdown of prediction results

In order to better understand the prediction results, we further break them

down on more specific failure types. Table 5.5 presents the most frequent fail-

ure types for each category: hardware, software, environmental, network. We

correlate these specific types with log messages and analyzed their behavior.

An analysis similar to the one in the previous subsection shows that mem-

ory failures are preceded by other failures in 21.9% of the cases and act as

precursors for other failures in 20.8% of the cases. This happens because

we discovered that memory failures are self-correlated. When looking at all

events and not only failures, memory failures have precursors in 72.4% of

the cases. We investigated the message in the log file describing the Memory

Error Check and observed that the message is self-correlated in 87.31% and

is preceded by Correctable Memory Errors in 69.5% of the cases. However,

from the event’s perspective, Correctable Memory Errors lead to a Mem-

ory Error Check in less than 10% of the cases. The signal analysis outlier

detection modules implemented in ELSA caught the fact that, even though

Correctable Memory Errors happen frequently and without causing any fail-

ure, when their frequency increase in a short time interval it leads to Memory

Error Check in over 75% of the cases. When our predictor is only considering

cabinets and not node predictions, memory errors can be predicted with a

53% recall. The complexity of error propagation (85% of following memory

failures are on different cabinets than the precursor) is making the prediction

reach only 31% recall when node prediction is required. We will analyze this

further in the next section.

Node Heartbeat Faults messages are self correlated in 98.66% and their

location propagation is constrained within the same cabinet. Moreover, in

96

98% of the cases they are preceded by a Blade Power Failure message 400 to

800 seconds in advanced. With a recall of 62% and over 72% precision, this

type of failure has the best results. Moreover, 7.1% job crashes in the system

follow a node heartbeat failure so these predictions could be also useful at

the application level.

Lustre failures are very complex and in general have many, but low con-

fidence, correlations. Most of Lustre failures are not predicted, with some

exceptions. OST Write Operation Failed is self correlated in 91.1% cases

and has a precursor event in 89.2% of cases. This precursor refers to a Write

Operation Timeout. In over 75% of the cases the failure occurs on the same

cabinet as the precursors. While this type of failure does not cause applica-

tion crashes it does lead to a MDT Failure within the next 45 to 950 seconds,

failure that causes job crashes in 23% of the cases. Both these failures were

correctly predicted by our method.

In general, network failures have few precursor events in the log. The Gem-

ini Routing Table corruption for example has no precursors in other failures

or in other events. System administrators are still working to understand the

root cause of this failure. However, it is visible from our correlations that

it leads in 72.41% of the cases to a Network Quiesce Error. For this reason

this second failure can be predicted with lead times of over one minute. In

general, we observed that network failures need different types of precursors

since logs files are not sufficient for predicting it. Our preliminary work in-

dicates that performance metrics could predict network failures, improving

the prediction. In the future we will focus more on network failures.

Environmental failures are in general in strong relation to basic perfor-

mance metrics, like temperature, power or fan speeds. We created log mes-

sages each time we see an anomaly in the following metrics: PCB tempera-

ture, INLET temperature, XDP air temperature and fan speeds. We use the

ELSA signal analysis module to detect outliers. The new introduced mes-

sages seemed good precursors for a large percentage of the environmental

failures. After this step, the recall value for the environmental failures has

increased to almost 40% having the same precision as before (when predicting

cabinets and not node failures).

97

Figure 5.15: Errors propagating in the same cabinet. Predicted failures are
marked with orange and unpredicted failures with blue

5.4.2 Location propagation

One of the main problems brought by the complexity of Blue Waters is the

fact that the patterns between precursor events and failures are now more

complicated. Often, precursors from one node location indicate a failure on

a completely different node. Moreover, some problems, like the majority of

Lustre failures, although they have precursors on the same set of Sonexion

nodes, they crash applications running on sets of compute nodes. In this

section we will analyze the relation between the location of precursors and

their corresponding failures.

On Blue Waters, the locations for compute nodes have the following for-

mat: c0-0c0s0n0 which represents the cabinet id, cage id, slot id and node id.

The location prediction used by ELSA keeps a structure with learned cor-

relations between locations based on the correlation chains between events

and failures. Our first optimization to this method uses a simple algorithm

that finds patterns between different locations using the location ids. We

investigate, for each of the correlation chains that contain events appearing

on multiple locations, if they are propagating beyond the same node/slot etc.

If, for example a precursor and its error are always on the same slot but not

necessary on the same node, the prediction engine could use this information

and predict that the whole slot will fail.

This new methodology uses a hierarchical algorithm for locations predic-

tion. It basically over-predicts the number of nodes that fail in order to

increase the true positive base. Figure 5.15 presents an example of a heart-

beat failure caused by a power failure that affected 17 nodes in cabinet c2-10

(out of the 96 total nodes). Only 25% of locations are predicted correctly. If

98

the prediction could predict the whole cabinet then all failures will be cap-

tured. We implemented this methodology in ELSA and after running it on

Blue Waters we obtained the results from figure 5.16. We observed that 87%

of the correlation chains contain events that appear in the same cabinet, out

of which 43% appear in the same cage (from the same cabinet), 48% in the

same slot and 71% on the same node. In Blue Waters, a slot has 4 nodes,

a cage has 8 slots (32 nodes) and a cabinet has 3 cages (96 nodes). This

number gives the upper bound on the recall improvement when considering

the new method (when all failures propagating are corrected predicted) and

a worst case over node estimation (for example when a cabinet is predicted

but only one node failed, the method has a mis-prediction of 95 nodes). The

prediction module is using the hierarchical location method by predicting dif-

ferent location classes (node level, slot level, etc.) depending on the chains

used to trigger the future failure event. A true positive in this scenario rep-

resents a prediction for which, firstly, the failure occurred, and, also, the set

of locations affected by the failures is a subset of the predicted locations.

In order to make the location propagation method even more general, we

mapped the location ids of each compute node on the 24x24x24 3D torus

network used by the Blue Waters system. We looked at patterns at this level

rather than just in the location ids. In chapter 3, we presented the topology

used by the Blue Waters system in figure 3.2 on page 36.

The algorithm used for extracting patterns in the torus looks at relations

between precursors in a chain and the predicted failure, and also at location

propagation patterns for the same failure. For this paper, we implemented

a simple neighbor regression algorithm that looks for mathematical relation-

ships between nodes on each of the three axes. We use the method from [94]

that extracts repeatedly occurring shape structures from a set of solid models

for design-rule mining, and model data compression. Basically after elimi-

nating outlier nodes, the algorithm extracts a 3D shape of minimal dimension

that captures all the active nodes (nodes where failures are occurred).

We recomputed the precision and recall values considering the new hierar-

chical prediction method with its corresponding definitions for true positives.

Figure 5.17 presents these results. The heartbeat, hardware, and network

failure types present very little improvement compared to the initial results,

each for a different reason. Network failures did not have many high ac-

curacy correlations to begin with, so the main reason for the low results is

99

Figure 5.16: Location propagation results

not location mis-prediction, but a lack of precursors events in the logs. 85%

of network failures that were mis-predicted because of wrong location were

transformed into true positives with the new method. This accounts for the

1.2X improvement factor from figure 5.17b. The heartbeat failures, on the

other hand, had a high recall value from the beginning, because most of the

failures were correctly predicted even without using the new methodology.

Cases like the one presented in figure 5.15 are rare and account for the 1.04X

improvement factor. Hardware failures do not propagate on more than one

node in over 90% of the cases, so the lack of improvement was to be expected.

Software and environmental failures had the most improvement since they

are the top failure types that propagate in the system. With the new lo-

cation propagation method, the predictor was able to forecast 41.8% of all

environmental failures and 39.7% of software failures. Moreover, almost half

of failures reported as heartbeat errors (49.24%) were correctly predicted,

which corresponds to a total recall of 35.5%. This means that more than a

third of the failures on Blue Waters were correctly predicted both in time and

space. Moreover, our analysis indicates a couple of potential future directions

for improving even further this result.

5.5 Comparison Blue Waters results with smaller

systems

Similar to section 4.4.2 in chapter 4, we are comparing the results on different

systems side by side in order to better understand the differences that cause

100

(a) Precision and recall (b) Improvement factor

Figure 5.17: Prediction results when using the location propagation method
for 70% precision

Category Blue Waters Blue Gene/P LANL systems
Hardware 40.9% 45.7% 49.1%
Software 28.2% 49.2% 53.1%
Network 22.3% 41% 43.1%
Facility/Environment 26.1% 31.4% 32.7%
Total 32.9% 47.3% 49.8%

Table 5.6: Recall of different failure types for different systems

the gap in recall values. We are using the automatic online method in ELSA

to find the best recall while keeping the precision value as close to 60% as

possible. Following the structure given in table 4.6, we show in table 5.6 the

recall obtained for different general categories for each system.

Hardware recalls are higher for smaller systems compared to Blue Wa-

ters. However, the recall values for this category is somewhat similar to all

three systems. When looking into detail at the results obtained for the main

hardware failures (Memory, CPU and L1 data cache), the recall for the Blue

Waters system is around 15% less for each of the failure types. Since the fail-

ures are more complex and the propagation behavior harder to predict, we

were expecting smaller overall recall values. We believe that having longer

training phases will decrease the gap between the systems.

Blue Waters and Blue Gene/L have similar percentage of network failures

and much smaller than software or hardware failures (Table 5.6). The recall

obtained for Blue Waters is half as much as for the other two systems and

it cannot be explained by the small training phase or by the size of the

101

correlation chains. After manually analyzing the logs, we observed that there

are not a lot of precursors in the logs for this type of failures. Since the total

percentage of network failures is around 10-15%, by increasing the recall value

for these failures to what was obtained for the LANL systems, we would get

the overall recall to 35% (from the initial 33%). Therefore there is not much

to be gained from improving recall for network failures.

Facility failures have the lowest recall value for all systems. We believe

that including environmental and performance metrics into the analysis will

help prediction for this category of failures. However, they represent less

than 3% of all failures so improving the results will not influence greatly the

overall recall.

Software failures have increased in percentage as clusters increased in size.

Specifically, there are more and more complex filesystem and scheduler fail-

ures that could not be predicted. Figure 5.18 shows the recall value obtained

for the main software failures. We did not have information about scheduler

failures for the Blue Gene/L systems so they were not included in the study.

Considering the other two analyzed systems had low recall values for sched-

uler failures, we believe that including scheduler failures into the results for

the Blue Gene/L would negatively influence the overall recall.

Operating system failures represent a large percentage (over 60%) of soft-

ware failures affecting Blue Gene/L. The recall results for this type of failures

are the best for all systems. This explains the good results obtained for the

LANL and Blue Gene machines. For the Blue Waters system, the OS failures

represent only 22% of software failures while file system represent over 40%.

The low recall values for file system failures influence the total recall for Blue

Waters and we believe this is the area that needs more investigation. If we

could increase the recall for the file system failures to what is obtained for the

LANL system, the resulted total recall becomes 48% and if the file system

recall can be increased to 100% we would be able to predict 53% of all failures

that affected Blue Waters. We investigate creating specific detectors for the

types of failures that do not present precursors in the log files in chapter 7.

102

Figure 5.18: Recall for the main software failures

5.6 Prediction from the application’s perspective

Figure 5.20a shows the usage of the system for the analyzed period and the

number of failures in the analyzed time frame summarized per cabinet. In

general, we would expect higher failure rates with heavier workload. How-

ever, our results show no correlation between number of failures and the

average load of the corresponding cabinet. Moreover, a failure in the system

most of the time does not seem to impact a large numbers of jobs. At a

closer analysis, we observed that only around 44% of the failures led to at

least one application crash. The same analysis shows that 62% of the failure

types predicted by ELSA refer to failures that lead to application crashes.

Filtering out from the analysis all failures that have no effect on any of the

running applications corresponds to an increase in the recall value of 5%-15%

compared to failure prediction at the system level.

Location prediction gets a slightly new meaning when application crashes

need to be predicted instead of system failures. If our method predicts a

failure correctly in time, but the failure occurs on a different node, our previ-

ous method will give a false negative and a false positive in the final results.

However, if an application was running on multiple nodes, one of which cor-

responds to the predicted node, and the application takes global preventive

actions, the mis-predicted failure could be masked. Depending on the fault

avoidance strategy, a predictor that only looks at applications as a whole and

not as a set of running nodes could increase the recall significantly. By taking

the lead time and the new definition of location prediction into consideration

we recomputed the results and obtained 35% recall and 70% precision for

predicting application failures.

103

5.6.1 Details statistics

We extracted information about applications running on Blue Waters for

6 months of production activity from May 2014 to October 2014. Our

dataset includes 1,051,353 user application runs of more than 1,500 code

bases, 396,178 jobs and 201,502,257 error events stored in over 2TB of logs.

During this time over 60% of the total user runs are XE applications and the

rest XK applications using CPU and GPU accelerators.

Many applications do not execute for a long time. During the analyzed

time frame around one third of the full-scale XE applications ran for less than

5 h, with a median of 1.2 h. In general, over 50% of the jobs used less than

one cabinet, or 96 nodes and over 80% use less than 10 nodes. Large-scale

applications that occupy close to 25% of the machines represent less than 5%

of all applications running on Blue Waters. Applications that take more than

50% of the machine are rare and represent less than 0.5% of all applications.

These percentages are obtained by looking at the count of the jobs. When

the same analysis is done from the node hours used on the machine, over

50% of the total time is allocated to jobs that run on over 2,000 nodes.

We analyzed all exit codes of applications and determined the cause of

their crash. Overall, in the analyzed time frame, three quarters of the ap-

plications are successful, 5% not completing within the allocated wall clock

time, 15% terminating abnormal caused by user-related problems. The left of

5% represent application instances that are terminated due to system-related

issues caused by any of the considered system errors.

Failures do not necessary crash applications. We observed that 38% of fail-

ures that experience at least one system error during their lifetime terminate

in a crash, and over 50% complete successfully.

We computed the ratio between the number of applications completing

successfully during a system error of different category to the total number

of applications experiencing this type of failure. We notice that smaller

applications present higher numbers for all types of failures than large ones.

A more visible decrease is presented for interconnect and system problems.

The ratio for small applications (<96 nodes) is relative constant for all failure

types, between 35-40%. Applications that take 25% of tha machine present

an uniform decrease of 15% for all failure types, while applications running

on more than 50% of Blue Waters nodes show values of 10-15% for lustre

104

and node failures and 30-35% for Gemini and LNET errors.

The ratio for applications running at full scale are not uniform and depend

heavily on the failure type. This is because at full scale application, users

generally adopt many resiliency mechanisms to protect application against

variety of errors. Also, these applications usually run for only a few hours

which means that they will be limited in how many types of failures they

will encounter.

Operating system (OS) failures, like kernel panics, are very critical at any

scale. Although, they are not frequent they crash applications almost in all

cases. File system failures, on the other hand, are more likely to degrade

applications’ performance rather than crash them.

5.6.2 Details prediction

Our study in chapter 5 has shown that only around 44% of the failures on

the Blue Waters system lead to at least one application crash. The same

analysis shows that 62% of the failure types predicted by ELSA refer to

failures that lead to application crashes. We analyze, in this section, the

error/failure sensitivity and their influence on prediction of a variety of more

than 1 million of user applications launched during the analyzed data.

In average, there were 1,093 jobs per day on the Blue Waters system, with

a gross load (utilization) computed over 24h of around 70%. Overall, an

average job lasts for less than 10h (in 95% of the cases the average is 1.5h).

We consider that an application crashed if its exit code is different than 0.

Table 5.7 shows some examples of exit codes, their meaning and the number

of occurrences in 6 months of production in 2014.

Depending on the month, between 3-10% of all application crashes can

be correlated to different types of system failures. When looking at all ap-

plications that experienced an error during their lifetime, depending on the

month, between 35-40% of applications terminated abnormally.

Table 5.8 presents the correlation statistics between each type of failure

and application crashes on the Blue Waters system. For each failure type,

we show the ratio between the number of failures of the given type that leads

to application crashes over the total number of failures of the given type,

as well as the ratio of how many application crashes are correlated to this

105

Failure reason No. app MTBF (h)
Assertion/Error Meassage (runtime bug) 235 18.4

Hangup/death controlling process 1093 2.1
Illigeal Instruction 35 110.1

job exec failed after files 99 30.6
job exec failed before files; no retry 25 185.6

Machine Problem 194 23.4
Possible Memory Leak 3 1658
Segmentation violation 118 38.6

Total 1.802 97

Table 5.7: Blue Waters application exit codes, their meaning and the
number of occurrences

Failure type % lead to app crashes % from total app crashes
Hardware 62 38
Software 18.3 32
Network 34.1 12

Facility/Environment 45.5 18
Total 44 100

Table 5.8: Correlation between different system failure types and
application crashes

type of failure to the total number of application crashes. It is clear that

hardware, network and facility failures have the most influence on applica-

tions while software seems not to lead to application interruptions. Note that

system wide outages were not included into this table. Out of the software

failures, operating system problems represent the large majority of applica-

tion crashes. When looking in detail for file system failures (which have the

worst prediction result), we notice that less than 10% of file system failures

actually crash applications.

The method used for finding correlations between failures and application

crashes is based on creating a window of time following each failure and

checking if during this time there are any application crashes with exit code

different than 0 and that does not represent a well known code for application

bugs. The window size was chosen empirically to be one hour.

File system failures, in general, degrade the performance of applications,

rather than crash them. For example, during an OST failure, when appli-

cations attempt to read or write to/from a failed Lustre target, they are

106

Figure 5.19: I/O throughput decrease (percentage per application instance,
over 400 applications) on Intrepid.

blocked waiting for the OST recovery. An application does not detect any-

thing unusual, except that the I/O may take longer to complete. An analysis

of Intrepid, the Blue Gene/P system at Argonne, shows that congestion can

cause up to a 70% decrease in the I/O efficiency seen by an application

(Figure 5.19).

Rarely, when an OST is marked as inactive, the file operations that involve

the failed OST will return an IO error and the application might be termi-

nated. However, this process can take a long time, so our 60 minute window

might not be long enough to capture this behavior. Moreover, in most cases,

this degradation seen at the application level can cause the application to

exceed its maximum allocated time, which will make this scenario seem as

an unintentional termination and not a crash.

We use the Darshan tool [95], an application level I/O characterization tool

developed at Argonne, to capture the behavior of applications running on In-

trepid in order to extract their instances of degraded performance. There are

numerous reasons for application performance degradation, starting with re-

source exhaustion to network and file system problems. The Darshan tool

has just started working on the Blue Waters system. We plan to fully an-

alyze the causes of performance degradation on this system. We also plan

to investigate the correlations between performance degradation as well as

crashes at the application level and file system failures.

Table 5.9 presents the recall for application crashes due to different failure

types. Since file system, scheduler and some network failures do not crash

applications, overall the recall value for these types of failures is consider-

able better than for predicting system failures. Another interesting obser-

107

Failure type Recall August Recall September Recall October
Hardware 52 67 58
Software 54 63 61
Network 50 60 55

Facility/Environment 43 53 49
Total 52 64 59

Table 5.9: Recall for predicting application crashes (Precision between
70-75%) for the Blue Waters system

vation from the table is that the prediction result is highly dependable on

the workload for the analyzed framework, recall values ranging from 52-64%

depending on the analyzed time frame.

5.7 Discussion

In general, the results show that the recall and precision depend greatly on

the failure type. Figure 5.20b shows the number of failures that occurred

in around 3 months of production, on each cabinet of the Blue Waters sys-

tem. Cabinets are order by the way they are arranged in the torus network.

Consecutive points in the figure represent adjacent cabinets on the OY axes

and points 12 spaces apart are adjacent cabinets in the OX axes. Blue parts

represent failures that were correctly predicted using the location prediction

method and orange parts are failures that were not seen by our method.

Since this figure shows only the compute node cabinets, every failure that

does not occur on these nodes will not be visible. This means that scheduler

and filesystem failures have been filtered. We observed that by removing

these failures, the overall recall value increased to 40.08% with a precision of

approximately 70%. When looking only at software failures, the new predic-

tor can correctly forecast over half of the software failures after file system

and scheduler failures have been filtered out. One visible example is the

LNET failure that refers to moments of low memory conditions when the

out-of-memory (OOM) killer kicks in and picks a process to kill using a set

of heuristics. This result shows that prediction is possible on the Blue Waters

system and can offer good results for some types of failures.

Another observation after examining figure 5.20b is that some cabinets are

more error prone than others, but this does not seem to influence the recall

108

(a) Usage (node hours) per cabinet

(b) Number of failures per cabinet

Figure 5.20: Summary of per cabinet behavior

109

value (some cabinets with a higher number of failures have low recall values

while others behave the opposite). Recall is also not influenced by usage. We

also examined the types of failures occurring on each cabinet. The analysis

showed the higher failure rate for some cabinets cannot be attributed to a

particular type of failure. However, the recall value per cabinets is strongly

correlated to the percentage of each type of failures on the corresponding

location. In fact, our observations show that the characteristics of each type

of failures is the main factor that explains recall values.

File system failures are one of the main reasons for the low recall obtained

for software errors. For example, the Lustre Metadata failures have very few

precursors and since most of them occur at the same time with the actual

failure, our method disregards the majority. Metadata servers for the Lustre

filesystem store namespace metadata, such as filenames, directories, access

permissions, and file layout. When applications detect an MDT failure, they

connect to the the backup MDT and continue their execution. Just in less

than 17% of the cases, applications having trouble connecting to the back-up

MDT fail. During an OST failure, when applications attempt to do I/O to a

failed Lustre target, these are blocked waiting for OST recovery. An applica-

tion does not detect anything unusual, except that the I/O may take longer

to complete. Rarely, when an OST is marked as inactive, the file operations

that involve the failed OST will return an IO error and the application might

be terminated. In general prediction from the application’s point of view is

more complex and differs in results compared to the one for system failures.

Similar to system failures, application failures caused by Lustre failovers have

low recall values, but for slightly different reasons. Lustre MDTs and OSTs

are stored on the Sonexion storage system and so they use different location

ids than the compute nodes. The Sonexion nodes are using a fat tree network

and comunicate with the compute nodes through Infiniband. Since applica-

tions are running on compute nodes, the prediction does not have enough

information to predict the exact applications that might suffer from a Lustre

failover. Even in the case of Lustre failures that cause system wide outages,

we observed that less than half of the applications that were running in the

system at the time of the failure are terminated. Information about what

files are used by an application is necessary in order to predict application

crashes. Better understanding of how and when filesystem and scheduler

failures occur and in what cases they cause application crashes would greatly

110

benefit the prediction process.

Overall, the conclusion of our detailed analysis is that prediction is pos-

sible; the preliminary results are very promising. As a general observation,

it would be good to have more/better precursors in order to increase our re-

sults on the Blue Waters, either from the system level or from the application

level. For example, we observed that whenever a certain mix of application

runs concurrently in the system, in over 50% of the cases the system expe-

riences a MTD failover. Information about what applications are doing, in

general, might offer new failure precursors both at the system and application

level. Monitoring the I/O patterns of an application could help with location

prediction for application crashes caused by Lustre errors. Moreover, we ob-

server that filesystem performance degradation can often cause performance

degradation at the application level that can later lead to filesystem failures.

We plan to investigate all these directions in the future.

111

Chapter 6

Combining failure prediction with
checkpointing

Future large scale HPC systems are expected to have a higher error rate

than current system. Most of the existing projections [19, 96] for exascale

systems consider that soft errors and in particular uncorrectable soft errors in

memory cells, latches and processor logic will significantly increase, leading

to a higher frequency of application interruptions. Several fault tolerance

techniques have been proposed and studied in the HPC community. The

most popular and widely used one is Checkpoint/Restart. Unfortunately,

classic periodic checkpointing, as used today, will be prohibitively expensive

at exascale because of the large amount of time that is required to dump the

checkpoint data into the remote Parallel File System (PFS) [97]. To decrease

this overhead, multi-level checkpointing [65, 98, 99, 100] has been proposed

with a large arsenal of techniques combined with new hardware devices and

it has successfully decreased the checkpoint-storing time drastically. How-

ever, multi-level checkpointing remains a preventive technique in which the

application is restarted from the last saved snapshot, after each application

failure.

The prediction performance presented in the previous chapter is good

enough to envision using failure prediction to reduce application execution

failures. For this purpose, failure prediction is useful only when coupled with

a proactive failure management that tries to apply countermeasures. The

decision to actually trigger a countermeasure may follow a complex process

involving (i) cost of the action, (ii) the confidence in the prediction and (iii)

the effectiveness and complexity of the actions [6]. The advances in failure

prediction precision and recall open the possibility to reduce drastically the

rework time by actually checkpoint right before the failure; a technique know

as proactive checkpointing.

However, proactive checkpointing alone, cannot systematically avoid re-

executing the application from scratch if failures are not perfectly predicted.

112

Since executions on large scale HPC systems are very expensive (in time and

energy), taking the risk of long (potentially near to full) re-executions is un-

acceptable. Therefore, failure prediction and proactive checkpointing should

be combined with periodic checkpointing. Nevertheless, little is known about

the benefits of failure prediction and proactive checkpointing when combined

with periodic checkpointing. The objective of this chapter is to provide a bet-

ter understanding of this combination on execution performance, using state

of the art failure prediction and checkpointing techniques.

6.1 Analysis of prediction methods for failure

avoidance

6.1.1 Real Time Failure Prediction Challenges

Failure prediction methods have been exhaustedly analyzed in the previous

chapter. However, in order to create a failure avoidance technique, systems

need to couple failure prediction with some fault proactive tolerance tech-

nique; this involves three important challenges:

• The failure prediction framework needs to perform online detection of

propagation chains on the same compute nodes where the application is

running without imposing a too expensive overhead on the application

execution.

• In addition, it is critical to study the behavior of systems in the presence

of frequent false positives and verify whether the overhead involved by

the proactive schemes is acceptable or not.

• Moreover, the lead time observed for the most efficient prediction ap-

proaches is short (e.g. seconds), hence proactive techniques need to

be capable of reacting extremely fast to successfully finish before the

failure strikes.

To successfully couple failure prediction, proactive fault tolerance tech-

niques and preventive checkpointing, these three aspects need to be studied

and any implementation should demonstrate low overhead (even in the pres-

ence of false positives) and high reactivity.

113

Figure 6.1: Lead time distribution between events in sequences for the BGL
predictions

6.1.2 Lead time distribution

We plotted the time delay distribution between the first message indicating

the beginning of a sequence and the last visible symptom. Figure 6.1 presents

the results for BlueGene/L.

In general, we observed that node card failures offer sequences with longer

time delays. This is reflected in a larger prediction window for these kind of

errors, and as a consequence more time for fault avoidance strategies. For

example, the node card failure presented in table 5.1 offers around 9 minutes

(the equivalent of 54 time units) between the first and the last event in the

sequence. Other node cards examples show even one hour after the first

symptoms occurs. The memory errors detected with our system, like the

one presented in table 5.1, usually offer in average a one minute prediction

window.

The Blue Gene/L system has a separate process, CIODB, that runs on

service nodes and handles the job loading and starting. This process starts

and monitors jobs, and updates the job table as the job goes through the

states of being loaded, started and terminated. We observed that sequences

or events related to CIODB usually have a very short time delay between

them, the majority happening almost at the same time.

For the purpose of combining prediction with checkpointing strategies, we

are including the lead time when triggering a prediction. Depending on the

114

preventive action that the fault tolerance strategy might take, we only keep

the predictions that offer a large enough lead time. In case the prediction

lead time represents a window, with different probabilities on each moment

of time, we apply the same strategy. However, in this case we check the entire

window before triggering the preventive action or ignoring the prediction.

We analyzed Blue Waters as well and noticed that the lead time for the

extracted correlations are larger than for the Blue Gene/L system. For com-

puting the benefit of a hybrid checkpointing/prediction strategy we will use

the worst case scenario, which is given by the lead time offered for the Blue

Gene machine.

6.1.3 False negative distribution

In this section, we are investigating the time-varying behavior of failures in

large-scale distributed systems in the presence of a prediction module. Specif-

ically we are interested to see how the failure distribution changes when filter-

ing out all failures that are predicted. False positives, namely the predictions

that are not actually failures, pose additional overheads on fault tolerance

techniques. Even worse, failures that are not visible to the prediction mod-

ule (false negatives), are the failures that crash applications and require the

restart step in the classical checkpointing strategy. Thus, the mean time be-

tween two consecutive false negatives, as well as their distribution influence

the choice of the optimal checkpoint interval.

We analyzed all the failures that affected the Blue Gene/L as well as LANL

systems. We use the annotated failure information for the LANL systems,

provided in the additional failure file, and a filtered set of failures for the

Blue Gene machine.

For the LANL systems, the system managers divided the failure types into

the 6 categories studied in the previous chapters. For the Blue Gene/L, we

use the type of failure given in the header of each message log. Table 6.2

and 6.1 show the percentage of each type of failure for each system. Human

errors has no representation for the Blue Gene/L system because traces do

not give context information about the failures and so the actual root cause

is unknown.

In general, there is a large difference of coverage between different types

115

LANL (MTBF 125h)
Category Percentage Recall/Precision
Facilities 2% 38% / 89.2%
Hardware 62% 45.1% / 93.8%

Human Error <1% 9.2% / 80.8%
Network 2% 42.8% / 91.2%
Software 23% 41.1% / 93.7%

Table 6.1: Precision results for LANL systems

Blue Gene/L (MTBF 24.4h)
Category Percentage Recall

Node Cards 16% 61%
Midplane switch 4% 45%

Memory 22% 15%
Network 17% 62%
APP IO 25% 41%

Table 6.2: Precision results for the Blue Gene/L system

of failures which indicates that certain failure types appear in patterns and

correlations more than others. Depending on the resources an application

might use, and so on which parts of the system are more stressed and prone

to failures, the overheads and benefits of preventive checkpointing techniques

might vary.

We investigate both the classical stochastic model that describes the inter-

arrival time between failures as well as the influence of failure prediction

on this model. The interval of time that separates two false negatives can

be later used either to compute the optimal interval between checkpoints

[101, 102, 103] (following sections) or to schedule jobs in order to maximize

the reliability [104].

Fitting methodology

Different methods are available to fit the empirical data to probability dis-

tribution functions. The most common methodology is to first select a set

of candidate distributions, after which to estimate the values of distribution

parameters based on the empirical distribution and keep the best one. We

conduct the fitting process using the commonly used distribution functions

to model failures in HPC systems [105, 32, 24], namely exponential, Weibull,

116

log-normal, normal and gamma.

As a second step, we look for the maximum likelihood estimates (MLE)

[106] that will show what is the distribution that is more likely fit to the

empirical data. Technically, MLE aims to maximize the logarithm of the

likelihood function that corresponds to the closest distance between the em-

pirical distribution and samples from distributions with certain parameters.

We then use the Negative log likelihood value produced by the MLE to rank

the different distributions.

This still does not means that this given distribution is a good model for

the empirical data. Thus we check also the goodness of fit between the data

sample and synthetic sample. Literature describes dozens of goodness-of-fit

tests, but only a handful are used in practice. We use the Kolmogorov-

Smirnov [107] test and the standard probability-probability PP plot as a

visual method.

Fitting results

Table 6.3 reports the fitting results with the best probability distribution for

each system. We note that the parameter µ is the mean in seconds for the

exponential distribution. For the weibull parameter a denotes the scale and

b denotes the shape parameter.

System name Failures False negative
Mean CV Best Fit KS Mean CV Best Fit KS

Blue Gene/L 1040.5 0.92 exponential µ = 62431.3 0.10 1888.1 1.10 exponential µ = 113289 0.79
LANL Sys 3 3595.1 1.1 exponential µ = 215705 0.98 6559.0 1.1 exponential µ = 393538 0.70
LANL Sys 4 3409.1 1.1 exponential µ = 204544 0.77 6187.0 1.1 exponential µ = 371218 0.99
LANL Sys 5 3294.5 1.1 exponential µ = 197671 0.95 6377.9 1.2 exponential µ = 382671 0.35
LANL Sys 6 16796.7 0.9 exponential µ = 1007800 0.81 31878.2 1.1 exponential µ = 1912690 0.99
LANL Sys 23 9288.2 1.3 weibull a = 509380 b = 0.846905 0.97 16272.3 1.2 weibull a = 895274 b = 0.851258 0.98

Table 6.3: Best fitting distributions (fitting parameters scale are in seconds)

It is visible that there is a relationship between the initial failure distribu-

tion and the false negative distribution. In fact, as it can been seen in table

6.3, the best fitted distribution for the data concerning the false negative

alerts is exactly the same distribution for the failures intervals, but having

different parameters. Hence, intuitively we can say that the failure prediction

process does not change the initial distribution and it affects only the scale

parameters of the initial distribution.

117

Also, we can notice, for the exponential distribution, the ratio between the

initial parameter µu and the false negative parameter µy is given by µy/µu ≈
1 − r where r is the recall. For Weibull as well, we have approximately the

same shape parameter for both distributions and the scale parameter of the

false negative ay is approximately equal to au/(1− r). This means that the

failure prediction mechanism act as a scaling filter that affects only the scale

in terms of time. Therefore we can estimate the distribution of the false

negative alerts using just the recall and the initial failure distribution.

We note that the failure prediction process does not have an impact on the

variability of the data. As we can see in table 6.3 the coefficient of variation

(CV) is almost the same for both data. The Kolmogorov-Smirnov test values

(denoted by KS) in table 6.3 indicate that all the found distributions pass

successfully the test of goodness.

In order to asses the fitting results visually we report in figures 6.2a and

6.2b the probability plots. Figure 6.2a reports the pp-plot for the exponential

type distributions, while Figure 6.2b looks at the Weibull distribution. As

it can be seen the figures confirm that the exponential/Weibull distributions

present a good visual fitting.

Since the false negative distribution can be computed from the original

failure distribution and the recall values, we can simplify the model for com-

bining checkpointing with prediction in the next sections.

6.2 Implementation of the hybrid approach

In this section, we are coupling failure prediction with a fast proactive check-

pointing implementation. For this purpose, we have merged the ELSA

tool presented in the previous chapter, with the Fault Tolerance Interface

(FTI [65]) that provides fast multi-level checkpointing. This merging has

introduced multiple technical challenges that we have addressed in order to

achieve high efficiency and low overhead.

6.2.1 Adapting FTI to handle checkpoint requests

FTI is a multi-level checkpointing library that works in a distributed fashion

and applies erasure codes on the checkpoint data stored locally to guaran-

118

0 1 2 3 4 5 6 7 8 9

x 10
6

0.1
0.25

0.5

0.75

0.9

0.95

0.99

0.995

0.999

0.9995

0.9999

Data

P

ro
b

a
b

ili
ty

LANL Sys 3
 Exponential Sys 3
LANL Sys 4
 Exponential Sys 4
LANL sys 5
 Exponential sys 5
LANL sys 6
 Exponential sys 6
FN LANL Sys 4
 Exponential FN LANL Sys 4
FN LANL Sys 6
 Exponential FN Sys 6
FN LANL sys 5
 Exponential FN Sys 5
FN LANL Sys 3
 FN Exponential Sys 3
BlueG L
 Exponential BlueG L
FN BlueG L
 FN exponential BlueG L

(a) PP-plot for BlueG/L and LANL systems: 3, 4, 5 and 6

10
3

10
4

10
5

10
6

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.999

0.9999

Data

P
ro

b
a

b
ili

ty

LANL Sys 23
 Weibull LANL Sys 23

FN LANL Sys 23
 FN Weibull LANL Sys 23

(b) PP-plot for LANL system 23

Figure 6.2: PP-plot and CDF for exponential type distribution (a) and
Weibull type (b)

119

tee checkpoint availability. FTI requires to spawn an extra thread per node

to encode the checkpoint files concurrently with the application execution.

This fault tolerance dedicated thread is called the Head of the node. In the

multi-level scheme implemented in FTI, L1 only checkpoint the data in local

storage, L2 stores in local and encodes the checkpoints using Reed-Solomon

(RS) and L3 stores the checkpoint data in the PFS. Between two consecu-

tive L2 checkpoints (and therefore encoding), one or multiple L1 checkpoints

might take place. Between two consecutive encodings the Head of the node

is idle and therefore, can execute extra actions. Hence, we have embedded

ELSA in the Head of the node, which introduced some other technical chal-

lenges that we have addressed. However, in this section we will see ELSA

as a black box that is interrogated frequently to know if there are predicted

failures.

FTI implements application-level checkpoint where the user calls the check-

point function every x iterations and then contact the Head of the node

trough the FTI API to start the encoding. In other words, the application

processes act as clients and the Head as a server. This communication pat-

tern in which the clients trigger the encoding does not match the proactive

checkpointing technique in which upon a failure prediction, the Head needs

to quickly order a checkpoint to all the application processes. However, inter-

rupting the application processes at any arbitrary point may not guarantee a

consistent state and may lead to save execution states of huge sizes. There-

fore, it is necessary to develop a scheme in which application processes can

be quickly checkpointed in a coordinated fashion, at execution points where

the state is small, upon a failure prediction communicated by the Head of

the node.

Our solution is to extend the FTI API to check at high frequency if the

Head has predicted a failure. This function calls should be placed in a inner

loop of the application that is executed at high frequency (1 second or less).

FTI will measure the duration of the inner loop and will decide how many

iterations (same for all processes) should pass before interrogating the Head

for predictions. For instance, if the optimal interrogation frequency is every

10 seconds and each iteration lasts 0.1 seconds, the application processes will

communicate with the Head every 100 iterations. It is important to notice

that the communications between the Head and the application processes

are intra-node communications that are usually optimized in most of MPI

120

Figure 6.3: The hybrid implementation architecture

implementations. Furthermore, FTI can dynamically adapt the checking

window (i.e. number of iterations between two checkings) if the duration of

the inner loop iterations changes trough the execution.

6.2.2 Embedding ELSA into FTI

Figure 6.3 presents the merged architecture of ELSA with FTI. In the current

implementation, ELSA is embedded into each FTI Head process, which forces

the prediction to be called by FTI at a fixed interval instead of running

continuously. This poses a number of challenges that will be discussed in this

section. First, by distributing the prediction process on each node where FTI

is running, the access to the generated log events is limited to the context

of each node, forcing ELSA to analyze only per-node predictions and so to

loose failures that affect multiple-nodes. Depending on the system, the new

methodology might have a higher number of undetected failures [92], thus in

the future we plan to focus on improving this limitation. However, Tsubame

2.0, the system we used in our experiments, does not present many correlated

failures across multiple nodes [64, 65] so the results are not influenced by this

limitation.

Another challenge is represented by disrupting the continuous execution

121

of ELSA. FTI interrogates the prediction engine at a fixed interval and feeds

the entire set of events generated in the corresponding time interval. This

gives a more general view of the state of the node and increases the accuracy

of the prediction. However, this reduces the prediction’s lead time. We will

show in the experiment section that by tuning the time interval at which FTI

pulls predictions, we can keep the impact of the prediction window on the

application wasted time due to failures and the proposed protocol negligible.

However, discontinuity in the prediction process makes it harder to keep

the correlation set updates. Past suspicious events and predictions are saved

and verified each time ELSA is triggered and in case a prediction is wrong

it is straightforward to adapt the correlations accordingly. However, when

the prediction is correct and the corresponding node experience a failure,

the information about past predictions is reset with the application’s restart,

making it more complicated to have positive updates on the correct corre-

lations. One possible positive way of updating the correlation set that is

incorporated in ELSA is described in the following paragraphs.

Based on the predictions made by ELSA, the FTI Head requests proactive

checkpoints to the application processes running on the same node. However,

in practice, not all predictions are beneficial and it is ELSAs responsibility

to filter the predictions forwarded to the FTI Head. There are two categories

of filtering rules, the first one for prediction that cannot be used by the fault

tolerance protocol and the second for predictions that cannot be used in the

current moment but that have the potential of being useful in the near future.

Predictions that do not leave enough time to take a checkpoint or that

happen just after a checkpoint has been taken are both represented by the

first category. In the second case, we use a simple mathematical model to

decide when the overhead of taking a checkpoint is greater than the overhead

of loosing the work made since the last checkpoint.

Predictions with low confidence values and with high lead time are part of

the second type of filtering rules. In this case the predictions are added in

the suspicious list and are monitored and triggered when they give a higher

benefit. In the first case, for low confidence values, the log is monitored for

further symptoms that might increase the confidence. A confirmed suspicious

prediction gives ELSA a way of positively updating the correlation set. For

predictions with high lead time, it is more beneficial to take the checkpoint as

close to the predicted moment as possible. For this reason, these predictions

122

are added in another list and the prediction is triggered later when the waste

due to an application crash is minimal.

6.3 Hybrid implementation overhead

Our first set of experiments shows the overhead of our preventive check-

point implementation on a real large-scale system and computes its overhead

compared to the time to execute an application without any fault tolerance

protocol for failure free scenarios. Tsubame 2.0 is a supercomputer deployed

at the Tokyo Institute of Technology. Details about Tsubame 2.0’s configu-

ration can be found in [108].

The applications we considered are part of the Gadget2 Code [109] for

cosmological N-body/SPH simulations on massively parallel computers. The

same code can be used for studies of isolated systems, for simulations of

the cosmological expansion of space or for other fluid dynamics simulations.

Gadget2 was used for the Millennium Run, one of the largest N-body simu-

lation ran to investigate how matter in the universe evolved over time. We

used two different applications, the Blob test [110] and the Kelvin-Helmholtz

test [111], that are both used for testing the evolution of multiphase flows in

smoothed particle hydrodynamics. The Blob test simulates a spherical cloud

of gas that is placed in a wind-tunnel with periodic boundary conditions and

the Kelvin-Helmholtz test records the evolution of mixing two fluids in pres-

sure equilibrium with opposing velocities when the interface between them

is perturbed. Both applications have around 100 MB checkpoint size per

process, are using MPI and were modified in order to incorporate the FTI

library for fault tolerance.

Overheads

We computed the overheads for FTI before the modifications and for FTI

with ELSA for failure free executions considering different scenarios and dif-

ferent checkpointing intervals. The extracted overheads include the preven-

tive and proactive checkpoint waste and also protocol specific overheads for

example due to the communication between FTI and the application pro-

cesses. Moreover, the measured overhead includes the overhead of dedicating

123

(a) KT12 Overhead (b) Blob Overhead

Figure 6.4: Overhead of the proactive checkpoint implementation

1 extra thread per node for FTI. Figure 6.4 presents the results for the Blob

test and the Kelvin-Helmholtz test (KH12) when tuning the number of nodes

the application executes on or the number of threads in each node.

The first analysis examines the overhead when increasing the number of

threads per node. In this scenario the total number of nodes does not change,

so FTI will start the same number of Head processes, keeping the same

inter-node communications constant. Also, the checkpoint size per node

will not change from one case to the next. However, there is more intra-

node communications that could increase the overhead when the number of

threads per node increases.

In general, for KH12 the difference between the execution time with our

current FTI and ELSA implementation and the version without checkpoint

stays almost the same, so it is normal to see a slight increase in the overhead

with more number of threads per node. However, for the Blob test this

is not true, the results show no pattern in the overhead. One cause for

this is that Blob is an irregular application in the sense that iterations have

different execution times. This forces FTI to adapt and change the interval

for checking the predictions. This overhead will affect more the cases with

a higher execution time since FTI will need to adapt multiple times. This

is the reason for the high overhead for small number of threads and why

the overhead decreases until 6 threads when the irregularity does not change

significantly. From this point Blob behaves as KH12. Overall the overhead

for FTI in its original form is around 6%, our current implementation of FTI

and ELSA has min 10% and max 15% of overhead.

For all the experiments we also tested the case when ELSA has a false

positive. For the extreme case, ELSA will generate a prediction on one node

124

Figure 6.5: Overhead for different checkpoint intervals

each time FTI checks. We used an interval of 10 seconds and observed an

additional overhead of around 2% in this case.

Figure 6.4 presents also the overhead results when the number of threads

per node are kept the same and the total number of nodes are changed. Since

there is one FTI Head per node, increasing the number of nodes also increases

the inter node communication. However, since we made experiments for the

same number of total particles in all applications, the checkpoint size per

node decreases for more nodes. Figure 6.4 also shows that the false positives

affect slightly less the overhead when the number of nodes is increased. The

node that predicts a false positive every 10s and that saves its checkpoint

on another nodes has a smaller amount of memory to save, accounting for

around 1.5% overhead.

Blob shows a similar pattern as in the case of modifying the number of

threads per node. For KH12 the difference between the execution time for

FTI with ELSA and the execution of the application without any checkpoint

slightly increases when the number of nodes increases. This is probably

because even though the per-node checkpoint size decreases, overall the whole

application needs to save the same amount of data or event more due to local

variables in each thread. Thus, the overall overhead increases.

Figure 6.4 also shows that the false positives affect slightly less the overhead

when the number of nodes is increased. The node that predicts a false positive

every 10s and that saves its checkpoint on another nodes has a smaller amount

of memory to save, accounting for around 1.5% overhead.

125

Overall, both the figures presented above show that, in general, the over-

head differs depending on how the processes are divided on the processing

units. The same number of total processes divided in more nodes with less

number of threads per node will induce a lower overhead.

Figure 6.5 plots the overhead for the same number of total processes but

for different checkpoint intervals. The lower the checkpoint interval, the

higher number of checkpoints the application will take during its execution

which as a consequence increases the total overhead. Interestingly, when the

application is executed with FTI and ELSA, but no checkpoints are taken,

the overhead is around 5.44%. This represents the lower bound overhead

of our implementation and reflects its internal communications, metadata

management and the fact that one thread per node has been dedicated for

fault tolerance. The overhead for FTI without prediction is with 2 to 6

percent lower in all cases, the protocol overhead alone representing 2.87%.

The difference of 3% represents the overhead of the multi-level checkpoint

when combined with prediction, compared with the classical strategy.

In order to understand the impact of the prediction parameters on the

overhead, we analyzed the degree at which the correlation and template

set used by ELSA influence the results. In general, we observed that if the

analysis of the correlation is shorter than the interval at which FTI is checking

the predictions, there is no extra overhead due to ELSA. As an example, for

the Tsubame 2.0 system, the analysis takes in average 2 seconds and FTI

checks prediction every 10 seconds, thus for our experiments there is no

visible impact.

Checking interval

The observations made in the previous subsection show the overheads for

FTI with ELSA and allow us to predict the overhead of a large-scale applica-

tion when running longer periods of time. We investigate what is the impact

of the checking interval on the number of usable predictions made by ELSA

(which influences the recall value and so the benefit of the protocol). We

first allowed ELSA to monitor the activity of the system in real time without

being interrupted by FTI and use the results as a baseline. Afterwards we

executed FTI with ELSA with different checking intervals and compared the

results with the base line. For Tsubame 2.0, we observed that the benefit for

126

Figure 6.6: Checkpoint Restart mechanism

our chosen time interval of 10 seconds shows a similar result as the baseline,

having recall differences of less than 1%. However, for larger checking inter-

vals we observed significant differences in the recall and the benefit value,

since some of the predictions will require shorter lead time and will be fil-

tered out. It is important to tune this parameter for the configuration of

each system.

6.4 Simplistic model to compute the protocol’s benefit

In this section we derive an analytical model for the impact of prediction on

adaptive checkpointing strategies in order to highlight the benefit brought

by our method. We will modify the formula used to compute the optimal

checkpointing interval [71] in order to consider ELSA’s prediction.

If no failure prediction is available, then fault tolerance mechanisms must

use periodic checkpointing and rollback recovery. We start from the model

from [71] that computes the waste of a coordinated checkpointing strategy

when no prediction is offered and then integrate the impact of precision

and recall on this model. Figure 6.6 presents the variables used in creating

the model. With T, we represent the checkpoint interval, W represents the

percentage of wasted time and MTTF the mean time to failure for each

node. We also assume a task of a job running on a node can be checkpointed

locally on that node in C seconds, and the checkpoint can be loaded back

into memory in R seconds. The downtime of a node and the time to restart

the application on a different node or the same node in case of rejuvenation

is D seconds.

We assume that we are able to predict a fraction N of the failures with

127

a precision of P, with N,Pε[0, 1]. We assume the failure distribution for the

non-predicted failures remains exponential and that preventive actions are

taken before the failure occurs for all predicted failures. This is a realistic

assumption since the empirical data from the previous section has shown

that the false negativ distribution follows the initial failure distribution, with

different parameters.

In case of no prediction, we start with the following model:

W =
C

T
+

T

2mttf
+
R +D

mttf
(6.1)

with the assumption that T� mttf .

The formula accounts for the lost of C seconds every T seconds for taking

checkpoints, the lost due to faults that occur every mttf seconds and lose an

average of T
2

time-steps each time and in the last term for the lost due to the

recovery time that is taken for every failure.

The optimal checkpointing interval can be used to compute the minimum

waste and it is given by Young’s formula.

Toptimum =
√

2Cmttf (6.2)

We now introduce the prediction model. First we assume having a recall of

N and perfect precision. In this case the mttf of the unpredicted events will

become mttfnew = mttf
1−N

. For example if 25% of errors are predicted, the new

mttf is 4mttf
3

. The rest of the failures are predicted events and have a mean

time between them of mttf
N

seconds. We showed in the previous section that

the exponential distribution of failures is preserved for unpredicted failures.

By applying the new mttf for the unpredicted failures to equation 6.2, the

new optimal checkpoint interval becomes

Toptimum =

√
2C

mttf

1−N
(6.3)

The first two terms from equation 6.1 need to change to consider only the

unpredicted failures since for all the others preventive actions will be taken.

By adding the first two terms and incorporating the value for the checkpoint

interval from equation 6.3, the minimum waste becomes:

128

W recall
min =

√
2C(1−N)

mttf
+

(R +D)

mttf
(6.4)

The last term from equation 6.1 will not change since for all failures, both

predicted and unpredicted, the application needs to be restarted. Additional

to the waste from 6.4, each time an error is predicted, the application will take

a checkpoint and it will waste the time execution between this checkpoint

is taken to the occurrence of the failure. This value depends on the system

the application is running on and can range between a few seconds to even

one hour. However, for the systems we analyzed, in general, the time delay

is very low and for our model we consider that is negligible compared to the

checkpointing time. We add the waste of C seconds for each predicted failure,

which happens every mttf
N

seconds. After adding this waste equation 6.4

becomes:

W recall
min =

√
2C(1−N)

mttf
+

(R +D)

mttf
+

CN

mttf
(6.5)

In the ideal case, when N=1, the minimum waste is equal to the time

to checkpoint right before every failure and the time to restart after every

failure. The formula assumes a perfect precision. In case the precision is

P, the waste value must also take into consideration the cases when the

prediction is wrong. The predicted faults happen every mttf
N

seconds and

they represent P of total predictions. This means that the rest of (1-P) false

positives predictions will happen every P
1−P

mttf
N

seconds. Each time a false

positive is predicted, a checkpointing is taken that must be added to the

total waste from equation 6.5:

W recall
min =

√
2C(1−N)

mttf
+

(R +D)

mttf
+

CN

mttf
+
CN(1− P)

Pmttf
(6.6)

As an example, we consider the values used by [71] to characterize cur-

rent systems: R = 5, D = 1 in minutes and study two values for the time

to checkpoint: C=1 minute and from [65] C=10 seconds. We computed the

gain from using the prediction offered by our hybrid method with different

precision and recall values and for different MTTFs. Table 6.4 presents the

129

C Precision Recall MTTF for the whole system Waste reduction

1min 92 20 one day 9.13%
1min 92 36 one day 17.33%
10s 92 36 one day 12.09%
10s 92 45 one day 15.63%

1min 92 50 5h 21.74%
10s 92 65 5h 24.78%

Table 6.4: Percentage waste improvement in checkpointing strategies

results. The first 4 cases present numbers from real systems and checkpoint-

ing strategies. Interestingly, for future systems with a MFFT of 5h if the

prediction can provide a recall over 50% then the waste time decreases by

more than 20%.

We use the same model for the Blue Waters system, with the prediction

results presented in the previous chapter, and considering FTI as the chek-

pointing strategy used. This scenario assumes a MTBF of 8 hours, 10 seconds

checkpoiting time, around 70% precision and 40% recall. The gain of such

a scenario gives 14.7% gain compared to having the checkpointing strategy

alone. Even in the worst case month, where we obtained only 30% recall,

with 70% precision, our implementation still gives us a benefit of 10% com-

pared to checkpointing alone. The overhead of our method when the optimal

checkpoint interval is used for the Blue Waters scenario is between 3-4% over

the overhead given by FTI running alone. According to our model, on av-

erage, we optimize the fault tolerance protocol with 8-10% even on current

petascale systems and when using a state of the art checkpointing strategy.

The predictions for future systems shows an even larger improvement.

Moreover, when looking at prediction from the application’s perspective,

we have shown in chapter 5 that we can predict up to 60% of the failures.

When considering applications crashes the results are showing around 25%

waste reduction on petascale systems.

Since the model used is simplistic, it does not consider the optimizations

done in our implementation. For example, not taking checkpoints when the

last one was done close in the past to where the prediction was triggered,

or restarting the chekpointing interval after each triggered checkpoint. In

order to better study the impact of this hybrid approach on future exascale

systems, we look, in the next section, to more complex models.

130

6.5 Evaluation of the hybrid strategy benefit

We will also present, in this section, a set of simulations to investigate the

impact of precision and recall values on the benefits that we can obtain by

using the proposed combination of failure prediction, proactive checkpointing

and preventive checkpointing in actual and future HPC systems. To provide

the simulation results, we developed a discrete event simulator. We consider

the following inputs to feed the simulator with failures and prediction alerts:

• Randomly generated failure times using an exponential distribution.

Numbers are generated using the GSL[112] random number generator

library.

• As failures are randomly generated, true positive alerts are raised by

generating uniformly a number between [0,1] each time a failure is

happening. Then, if the generated number is lower than r (i.e. re-

call), this failure is considered as correctly predicted since this event

is supposed to be a true positive alert. Otherwise this failure hits the

application. Similarly false positive alerts are generated during the ex-

ecution such that the ratio between the number of false positive alerts

(fpositive) and true positive alerts (tpositive) verifies the following inequal-

ity fpositive/tpositive ≤ p/p.

• To feed the simulator with lead time intervals, we use actual data col-

lected from BlueGene/L system located at Los Alamos National Cen-

ter. In this failure log, we have 235 failure occurrences and it covers

a period of 6 months, from June 3rd to December 8th 2005. Using

ELSA we extract 113 failure alerts with the corresponding lead time.

Then to estimate the parameter s in our model that depends on the

distribution of the lead time the lead time distribution is used. This

distribution is obtained by fitting the current date to probability dis-

tribution functions. In our case, the best fit distribution is the Burr

Distribution with the following parameters k = 0.5189, a = 2.3798 as

a continuous shape and b = 10.873 as a continuous scale. We point out

that the obtained P-values are 0.1968 using the Kolmogorov-Smirnov

test and 0.12602 using Chi-Squared test. One outcome of this analysis

is that the lead time distribution should be modeled carefully and the

exponential distribution can not be chosen arbitrarily to represent it.

131

Before investigating any model, we set the parameters that characterize

current systems as well as future exascale systems. The used parameters are

presented in table 6.5. For petascale systems, we take as references the Jaguar

system installed at ORNL and other systems of the 10 Petaflops class based

on commodity microprocessors, including the Blue Waters system. These

systems have typically a MTBF between 24h to 6h. Checkpointing the full

memory to the PFS takes about half an hour. There are some variations:

some systems may take less time (15 minutes), while others, may need sev-

eral hours for this operation. We consider intermediate system the machines

that have a sustained performance of 100 Petaflops. We consider a reduction

of the MTBF to 6h or 4h for the full system. This is consistent with a sig-

nificant increase of the number of nodes compared to 10 Petaflops systems

and an increase of the error detection and correction mechanisms at hard-

ware level. We assume that in such systems, the checkpoint size per node is

between 100GBs and 200GBs and the writing speed is about 350MB/s. The

preventive checkpoint cost in such systems is in the range of several minutes.

For optimistic exascale system, we take a value discussed during a DoE ICIS

workshop on resilience in summer 2012 [113], namely 2h. In [96], the ex-

pected MTBF is more in the range of 30 minutes. We take this last value for

the pessimistic exascale system. exascale systems are expected to have be-

tween 32 and 64 petabytes of memory, divided by 100k nodes makes several

hundreds of GBs per node, thus we can assume a checkpoint size per node

between 200GBs and 500GBs. Also by 2018, we should have technologies,

like non volatile RAM (NVRAM), Phase Change Memories (PCM) and 3-D

circuit staking that are supposed to improve drastically the writing band-

width to GB/s (for the optimistic scenario we consider a writing bandwidth

of 3GB/s and 1GB/s for the pessimistic scenario). Hence, the checkpointing

times could remain in the order of several minutes. The proactive check-

point time is estimated from the amount of memory per node to move over

a 10-40GB network interface. We estimate the proactive checkpoint time in

these conditions between 1 to 5 seconds. For recovery from checkpointing,

we consider a down time of 1 minute after a failure happens. This time

corresponds to the killing of all remaining processes after the detection of a

failure, the allocation of enough resources to restart and the re-scheduling of

the application processes on the allocated nodes (we assume that the job is

not re-queued but immediately relaunched after the failure). We also con-

132

sider that the time to retrieve a checkpoint image from storage is the same

as the checkpoint time. This implies that the restart cost is equal to the

checkpoint cost.

petascale Intermediate exascale exascale
Paramters Jaguar, 10PF 100PF Optimistic Pessimistic

MTTF 24h to 6h 6h to 4h 2h to 1h 30 min
Preventive Checkpoint time 30 min 10 min 2.5 min 10 min
Proactive Checkpoint time 10 to 5 sec 5 to 1 sec 5 to 1 sec 5 to 1 sec

Table 6.5: Computing platform configuration

We constructed a mathematical model for our hybrid implementation. De-

tails about this model can be found in [72]. In our simulations, we compare

the performance of the failure prediction associated to an optimal proac-

tive checkpointing and preventive checkpointing protocol with two strategies.

The first is the classic periodic checkpointing strategy based on Young’s in-

terval [101] without proactive actions. The second is the simplistic model,

presented in the previous section, that uses the classic periodic checkpoint-

ing strategy for the unpredicted failures and the online method to perform

proactive checkpoints for each prediction triggered. The second method is

called ”Optimal” in the following figures.

In the first set of simulations, we investigate the impact of the recall r

on the application performance. We plot in figure 6.7a the improvement in

terms of computing efficiency that we can obtain using the optimal or the

sub-optimal comparing to the classic periodic checkpointing alone.

These results show clearly that the proposed strategy outperforms the

classical periodic strategy and the sub-optimal as well. Moreover, we can see

that the recall parameter has an important impact on the improvement. It

is important to notice that figure 6.7a demonstrates that with a prediction

recall value corresponding to the best known prediction approach (i.e. 50%),

the proposed fault tolerance strategy improves the computing efficiency. This

improvement ranges between 10% and 20%. Moreover, this figures shows that

we can improve the computing efficiency of the application up to 30% with

a prediction recall of 90%.

The results of these simulation, when varying the precision value, are de-

picted in figure 6.7b for a prediction recall of 50%. This figure shows that

the precision has minor impact on the percentage of improvement that we

133

 0

 10

 20

 30

 40

 50

 60

 70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

 P
e
rc

e
n
te

n
tg

e
 o

f
im

p
ro

v
e
m

e
n
t
in

 t
e
rm

s
 o

f
e
ff
ic

ie
n
c
y

recall

Optimal Optimistic Exascale MTTF=1
Optimal Pessimistic Exascale MTTF=0.5
Optimal Intermediate Petascale MTTF=4

Optimal Petascale MTTF=12
Daly proactive Optimistic Exascale MTTF=1

Daly proactive Pessimistic Exascale MTTF=0.5
Daly proactive Intermediate Petascale MTTF=4

Daly proactive Petascale MTTF=12

(a) Recall variation when precision is set to 70%

 0

 5

 10

 15

 20

 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
te

n
tg

e
 o

f
im

p
ro

v
e
m

e
n
t
in

 t
e
rm

s
 o

f
c
o
m

p
u
ti
n
g
 e

ff
ic

ie
n
c
y

Precision

Optimal Optimistic Exascale MTTF=1
Optimal Pessimistic Exascale MTTF=0.5
Optimal Intermediate Petascale MTTF=4

Efficiency improvement Petascale MTTF=12
Proactive Daly Optimistic Exascale MTTF=1

Proactive Daly Pessimistic Exascale MTTF=0.5
Proactive Daly Intermediate Petascale MTTF=4

Proactive Daly Petascale MTTF=12

(b) Precision variation when recall is set to 40%

Figure 6.7: Variation of the improvement percentage versus the variation of
the prediction recall (a) and the prediction precision (b).

134

can obtain using the an optimal strategy. This is explained by the fact that

the cost of the of the proactive checkpointing is bounded. However, in the

pessimistic exascale case, a precision value less than 40% can have an impact

of more than 10% for the hybrid strategy. These two figures, each focusing

on one of the recall and the precision values, suggest that our future research

on failure prediction will focus on improving the recall.

The figures show that the benefit of our predictor in its present form gives

a decrease in the waste of the checkpointing strategy of around 10% for the

Blue Waters system and over 20% for Blue Gene/L. Considering the extra

3-4% overhead induced by the initial hybrid approach, we expect to get over

15% benefit for the Blue Gene/L system, around 7% for Blue Waters, and

20% for future exascale systems compared to classical checkpointing.

Since checkpointing is applied at the application level, not all failures are

important for this study. Only those that lead to application crashes should

be analyzed since the rest are tolerated withing the application. The recall

for application crash prediction is around 52-64% while keeping a precision

of around 70-75%. The benefit for our hybrid approach in this case is over

15% for the Blue Water system and up to 30% for future exascale systems.

135

Chapter 7

Future work

7.1 Application level

7.2 Specific predictors: File systems

In this section, we are investigating the benefit of adding performance and

environmental metrics into the analysis in order to better understand and

predict file system failures. This is an on-going work, in collaboration with

the system administrators at NCSA. Thus, in this section, we will present

the preliminary results and the future work in this direction.

7.2.1 Metrics

Blue Waters system administrators gather 256 metrics across all levels of the

system. For our problem we only focused on file system and network metrics,

since these components give the most frequent problems for Lustre (as shown

in chapter 5). We analyze OS-level and network-level performance metrics,

without requiring any modifications to the file system, the applications or

the OS. In Blue Waters these performance metrics are made available in a

database in time units of 20 to 60 seconds depending on the metric.

We have collected data at the OSS, OST, MDS and network levels (as

we are primarily concerned with performance problems due to storage and

network resources, although other kinds of metrics are available) as shown

in table 7.1.

We only had access to performance metrics for 3 weeks in September 2014.

Blue Waters experienced a total of 14 failures attributed to Lustre in the

first 2 weeks that we used for training and 6 more in the last week. We

136

MDS cpu CPU utilization (in percentage) for the MDS
MDS mem Memory utilization (in bytes) fot the MDS
OSS cpu CPU utilization (in percentage) for the OSS

OSS mem Memory utilization (in bytes) for the OSS

QOS write Quality of Service - The amount of time (in ms) it takes
for one write to each OST

QOS read Quality of Service - The amount of time (in ms) it takes
for one read to each OST

OST write The amount of data (in bytes) written to each OST
OST read The amount of data (in bytes) read to each OST
OST cpu CPU utilization (in percentage) for the OST

OST mem Memory utilization (in bytes) for the OST
Net prec/ptrans Packets received/transmitted per second
Net brec/btrans Bytes received/transmitted per second

Table 7.1: Metrics used in the analysis

analyzed LBUG problems (a panic-style assertion in the storage node kernel),

the unavailability of the Object Storage Target (OST) or of the metadata,

configuration problems. About 14% of Lustre failures in 2014 were due to

hardware problems, but these problems did not occur during the analyzed

time frame.

7.2.2 Anomaly detection

In general, we are interested in correlating anomalies moments on different

metrics with failures since we observed that failures change the behavior

of metrics. We are making the assumption that metrics present a fault-free

behavior most of the time. For OST, we also compare the behavior of multiple

OSTs at the same moments in time. Since clocks are not synchronized, we

shift the timestamps up to one minute before and after a failure in order to

find the most relevant correlations.

There is one MDS, 180 OSS and 1440 OSTs in the Blue Waters on-line

storage. There are moments in time when only one or a few OST have

degraded performance and there are moments when multiple OST perform

degraded simultaneously. For example, figure 7.1 shows several QOS per

OST for different interesting time units. It is visible that there are moments

of time when up to 160 OSTs degrade at the same time, but most of the

137

time all OSTs have relatively small, similar values.

The maximum number of OSTs that an application can access is 160, so

whenever an application takes a checkpoint that is stretched on the maximum

number of OSTs it is normal to see a spike in the QOS for these 160 OSTs.

Since information about what applications are doing at all moments in time

is not available to us, it is clear that looking at anomalies in one metric is

not enough.

Figure 7.1: Quality of service for 100 OST for 100 time units

We gathered all the metrics relevant to each OST into one big matrix

(OST * metrics, the metrics related to the OSS that contains the analyzed

OST and the MDS metrics). Because each metric has different values and

anomalies have a different behavior, we first extract anomalies for each line

of the matrix. We use the same methodology as described in chapter 5 by

using the signal analysis anomaly detection algorithm. Figure 7.2 presents

the original signal for the QOS write for a random OST, its spectrogram and

the anomalies plotted against the signal.

Next, we looked at the behavior of all OSTs at each moment of time. We

used the exact same method as before to detect anomalies, but this time on

the columns of the matrix, keeping the metric and timestamp constant and

analyzing the differences between OSTs.

Our first observation, and most trivial, is that whenever a failure occurs in

the system at least one metric in one OST presents an anomaly. We couldn’t

find any failure that occurred when all metrics where in their normal state.

However, the inverse does not hold. There are many moments when there

138

Figure 7.2: Signal and spectrogram for OST ID 101

are anomalies in the metrics of one or several OSTs and/or MDS when there

is no failure in the system.

Another observations is that QOS anomalies can be caused by anomalies

in the OST write/read metric or by MDS anomalies. When an application

is trying to write a large amount of data (which is seen as an anomaly in

OST write) the amount of time it takes to make one write increases. We

filter out the moments when there are correlated anomalies in these two

metrics. We afterward use the correlation method described previously in

chapter 5. There are several patterns extracted that we are in the process

of analyzing and understanding. For example, we notice a correlation be-

tween a decrease in the IO throughput in for large number of OSTs without

having any anomalies on the metadata server or in the OST Write with a

Luster problem caused by additional IO traffic that creates contention for

disk access. In most cases, the problem was given by an accumulation of

hung I/O threads on the file server from disconnected clients, which caused

the file server to eventually crash.

Even though the patterns are seen each time a particular failure occurs,

the reciprocal is not true. The same pattern could occur multiple times when

the failure does not occur. Thus, we are able to use these observations post-

failure to decide what the problem was, but not for prediction. We believe

we need to include more metrics and to combine them with log notifications

in order to find patterns that can be used for prediction. We plan to focus

on this topic in the future.

139

Chapter 8

Conclusion

8.1 Overview of the thesis

According to recent studies, current fault tolerance mechanisms will not be

able to cope with the increasing rate of failure with the future exascale sys-

tems. This thesis has focused on offering ways of reducing the overhead

induced by fault tolerance strategies, by combining them with failure avoid-

ance methods. Failure avoidance deals with predicting the occurrence of a

fault and triggering preventive measures. In order to offer a realistic alter-

native to current fault tolerance techniques, fault predictors must be able to

accurately detect faults’ precursor effects in the system. This thesis aims to

propose an accurate and novel failure prediction method that can be com-

bined with several failure tolerance protocols.

The research done in my first year resulted in a clustering engine that

identifies frequently occurring messages with similar syntactic patterns from

log files. These message templates are essentially regular expressions that

describe a set of syntactically-related messages that refer to the same system

event. By taking advantage of the characteristics of log files, our algorithms

are computational efficient, accurate and are able to keep up with rapidly

changing environments.

This thesis shows that different system components exhibit different types

of syndromes, both during normal operation and as they approach failure.

The key observation is that errors are often predicted by changes in the

frequency or regularity of various events. For this purpose, the thesis in-

vestigates the linkage between signal processing concepts and data mining

techniques in the context of failure analysis for large-scale systems. By shap-

ing the normal and faulty behaviour of each event, and of the whole system,

we were able to propose appropriate models and methods for descriptive and

140

forecasting purposes. Multiple experiments on different production HPC

systems, from Argonne’s Blue Gene systems, to NCSA’s Mercury and Blue

Waters and Tokyo Institute of Technology’s Tsubame2, have been made.

The results show that conventional signal processing techniques can create

clear markers for changes in events behavior. Moreover, machine learning

techniques become much more efficient when applied to the derived markers,

rather than to the original signal. Consequently, the thesis is proposing the

first hybrid fault tolerance implementation that combines proactive with pre-

ventive checkpointing methods based on the signal analysis predictor. Our

method improves the performance of classical fault tolerance techniques when

dealing with failures in petascale systems and the results show the potential

of using such an approach on future exascale systems.

8.2 Summary of contribution

We present, in this section, the list of contributions of this thesis. Each was

covered in one of the chapters and future work has been identified:

1. Characterizing the behavior of events generated by HPC systems

• We characterize the normal behaviour of HPC systems and the

effects of failures. For this purpose, we demonstrated the value of

combining signal processing concepts and data mining techniques

in the context of failure analysis for large-scale systems.

• We made experiments on different production HPC systems, in-

cluding Argonne’s Blue Gene systems, NCSA’s Mercury and Blue

Waters systems. Our results show conventional signal processing

techniques can create clear markers for changes in events behavior.

• We developed a fingerprinting algorithm that characterizes set of

events that frequently occur together. This set of events can be

used to give a summary report of events that happen during an

application run or to improve the prediction algorithm by moni-

toring outliers in events’ fingerprints.

2. Failure prediction methods for HPC systems

141

• We developed a hybrid methodology by combining data mining

and signal analysis for online failure prediction based on a pattern

extraction algorithm specifically designed for streams of data with

multiple dimensions. We showed machine learning techniques,

in general, become much more efficient when applied to derived

markers given by outliers, rather than to the original signal.

• We did experiments on small and large production system from

the Blue Gene/L and systems at LANL to NCSA’s Blue Waters.

The experiments focus on the difference between the two types of

systems and detailed observations are provided.

• In order to improve the results on the Blue Waters system, we

developed a location propagation algorithm specifically designed

for the 3D torus architecture used by the Blue Waters system.

3. Proactive checkpointing coupled with periodic multi-level checkpoint-

ing

• We developed a prototype implementation of proactive check-

pointing coupled with periodic multi-level checkpointing by com-

bining our failure predictor with FTI [65].

• We experimented using Tsubame 2.0 logs and we show that failure

prediction, proactive checkpointing and periodic multi-level check-

pointing can be coupled successfully, imposing only 2% to 6% of

overhead in comparison with a preventive checkpoint execution

only, giving a total of 10-12% total overhead.

• In order to compute the benefit of our method, we use different

mathematical models of failure prediction combined with proac-

tive and preventive checkpointing. These models capture the

checkpoint cost, the failure distribution, the precision and recall of

the failure prediction and the probability of success of the proac-

tive action. We add to these models the overhead of the prediction

method and study the theoretical benefit of the hybrid fault tol-

erance method depending on the prediction results.

142

8.3 Future work

There are several topic directions that can be investigated in the future re-

lated to fault tolerance and performance degradation for HPC systems. The

question that first needs an answer is ”How frequent do we need to snapshot

the state of different components in order to extract meaningful precursor to

different failures?” The preliminary results after analyzing file system failures

and performance degradation show there are clear markers in several metrics

(for example network and disk throughput) that indicate problems at the file

system level. However, since metrics are usually gathered in an aggregated

form, every minute (or several minutes), these markers cannot be used on-

line, but rather in a post-mortem manner. We noticed that increasing the

frequency of taking snapshots for different metrics could identify anomaly

moments that lead to failures with enough time in advance for applications

to take checkpoints (or other action). However, the space needed to store

all metrics at a frequent snapshot rate becomes unrealistic for exascale sys-

tems (even for current petascale systems). Dynamically choosing the rate to

gather each metric could solve this problem. This is a short term research

that has the potential to shape the way we store and deal with performance

and system metrics for future systems.

As a long term research direction, one topic focuses on the analysis of the

effects of different type of failures on applications and the design of novel

fault tolerance protocols that consider the type of failures that might affect

the application. The effects of failures on applications can also be included

into the predictor which later can be combined with different fault toler-

ance protocols. For example, for failures that affect the memory used by the

processes of one node, saving the state of that particular node in another

nodes memory might be enough; for failures that degrade the performance

of one node, migration of the entire node might be a better solution; and so

on. Some of these solutions could be implemented at the programming lan-

guage level (for example, in MPI). Moving to more specific observations, file

systems can experience performance problems that can be hard to diagnose

and isolate. Often, the most interesting and trickiest problems to diagnose

are not the outright failures, but rather those that result in a degraded but

not failed system, where the system continues to operate, but with degraded

performance. Understanding file system performance degradation and how

143

it propagates to the application level and modeling this propagation could

give useful guidelines to be included in future monitoring systems and have

the potential to bring advances in handling and diagnosing storage systems.

Another topic of interest comes from the positive preliminary results ob-

tained for the specific precursor for Lustre. We believe we can improve the

results for each failure type as long as we create a specific predictor for each.

For example, [114] proposes a new OS-based approach that proactively avoids

memory errors using prediction by focusing the analysis just on memory fail-

ures.

144

References

[1] T. Thanakornworakij, R. Nassar, C. B. Leangsuksun, and M. Paun,
“Reliability model of a system of k nodes with simultaneous failures
for high-performance computing applications,” International Journal
of High Performance Computing Applications, vol. 27, no. 4, pp. 474–
482, November 2013.

[2] “Inter-Agency Workshop on HPC Resilience at Extreme Scale,” http://
institute.lanl.gov/resilience/docs/Inter-AgencyResilienceReport.pdf,
2012, [Accessed on July 2013].

[3] “U.S. Department of Energy Fault Management Workshop,” http:
//shadow.dyndns.info/publications/geist12department.pdf, 2012, [Ac-
cessed on July 2013].

[4] M. Snir, W. Gropp, and P. Kogge, “Exascale Research: Preparing for
the Post-Moore Era,” Computer Science Whitepapers, 2012.

[5] W. Jones, J. Daly, and N. DeBardeleben, “Application monitoring and
checkpointing in HPC: looking towards exascale systems,” Proceedings
of the 50th Annual Southeast Regional Conference, pp. 262–267, 2012.

[6] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure predic-
tion methods,” Computing Surveys, vol. 42, pp. 1–42, 2010.

[7] N. Bolander, H. Qiu, N. Eklund, E. Hindle, and T. Rosenfeld, “Physics-
based Remaining Useful Life Predictions for Aircraft Engine Bearing
Prognosis,” Conference of the Prognostics and Health Management So-
ciety, 2009.

[8] Z. Zheng, Y. Li, and Z. Lan, “Anomaly Localization in Large-Scale
Clusters,” IEEE International Conference on Cluster Computing, pp.
322–330, 2007.

145

http:// institute.lanl.gov/ resilience/ docs/ Inter-AgencyResilienceReport.pdf
http:// institute.lanl.gov/ resilience/ docs/ Inter-AgencyResilienceReport.pdf
http:// shadow.dyndns.info /publications /geist12department.pdf
http:// shadow.dyndns.info /publications /geist12department.pdf

[9] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam, “Critical event prediction for
proactive management in large-scale computer clusters,” in Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’03. New York, NY, USA: ACM,
2003. [Online]. Available: http://doi.acm.org/10.1145/956750.956799
pp. 426–435.

[10] E. W. Fulp, G. A. Fink, and J. N. Haack, “Predicting computer system
failures using support vector machines,” WASL’08 Proceedings of the
First USENIX conference on Analysis of system logs, 2008.

[11] N. Muthumani, D. Thanamani, and A. Selvadass, “Optimizing Hidden
Markov Model for Failure Prediction - Comparison of Gaines optimiza-
tion and Minimum message length Estimator,” International Journal
on Computer Science and Engineering, vol. 3, 2011.

[12] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors for
autonomic failure management in cloud computing,” 20th Interna-
tional Conference on Computer Communications and Networks, pp.
1–6, 2011.

[13] J. Stearley, “Defining and measuring supercomputer reliability, avail-
ability and serviceability (ras),” Proceedings of the Linux Cluster In-
stitute Conference, 2005.

[14] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE Jour-
nal on Dependable and Secure Computing, vol. 1, January 2004.

[15] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, and A. A. C.
et al, “Addressing failures in exascale computing,” Argonne Report
ANL/MCS-TM-332, April 2013.

[16] E. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey,
A. Hoisie, K. McKinley, R. Melhem, J. Plank, and P. R. et al, “System
resilience at extreme scale,” Technical report for the Defence Advanced
Research Project Agency, 2008.

[17] N. DeBardeleben, J. Daly, S. Scott, and W. Harrod, “High-end com-
puting resilience: Analysis of issues facing the hec community and
path forward for research and development,” National HPC workshop
on Resilience, 2009.

[18] F. Cappello, A. Geist, B. Gropp, L. Kale, W. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Perfor-
mance Computing Applications, vol. 23, pp. 374–388, November 2009.

146

http://doi.acm.org/10.1145/956750.956799

[19] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C.
Andre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig,
F. Cappello, B. Chapman, and X. Chi, “The international
exascale software project roadmap,” Int. J. High Perform. Comput.
Appl., vol. 25, no. 1, pp. 3–60, Feb. 2011. [Online]. Available:
http://dx.doi.org/10.1177/1094342010391989

[20] C.-D. Lu and D. A. Reed, “Scalable diskless checkpointing for large
parallel systems,” Ph.D. Dissertation, Univ. of Illinois at Urbana-
Champain, Tech. Rep., 2005.

[21] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series 78:012022, 2007.

[22] Leangsuksun, G. Ostrouchov, and S. L. Scott, “Using log information
to perform. statistical analysis on failures encountered by large-scale
hpc deployment,” Proceedings of the 2008 High Availability and Per-
formance Computing Workshop, 2008.

[23] Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” IEEE International Conference on Dependable Systems
and Networks, 2007.

[24] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337–350, Oct 2010.

[25] Z. Zheng and L. Yu, “Co-analysis of RAS Log and Job Log on Blue
Gene/P,” Proceedings of the 2011 IEEE International Parallel and Dis-
tributed Processing Symposium, pp. 840–851, 2011.

[26] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: understanding the nature of dram errors and the
implications for system design,” SIGARCH Comput. Archit. News,
vol. 40, no. 1, pp. 111–122, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2189750.2150989

[27] C.-D. Lu, “Failure data analysis of hpc systems,” Technical Report
CoRR abs/1302.4779, 2013.

[28] T. Tsai, N. Theera-Ampornpunt, and S. Bagchi, “A study of soft error
consequences in hard disk drives,” IEEE International Conference on
Dependable Systems and Networks, pp. 1–8, June 2012.

[29] T. J. Hacker, F. Romero, and C. D. Carothers, “An analysis
of clustered failures on large supercomputing systems,” J. Parallel
Distrib. Comput., vol. 69, no. 7, pp. 652–665, July 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2009.03.007

147

http://dx.doi.org/10.1177/1094342010391989
http://doi.acm.org/10.1145/2189750.2150989
http://dx.doi.org/10.1016/j.jpdc.2009.03.007

[30] D. Nurmi, J. Brevik, and R. Wolski, “Modeling machine availability
in enterprise and wide-area distributed computing environments,” in
Euro-Par05, 2003, pp. 432–441.

[31] S. Fu and C.-Z. Xu, “Exploring event correlation for failure prediction
in coalitions of clusters,” in Supercomputing, 2007. SC ’07. Proceedings
of the 2007 ACM/IEEE Conference on, Nov 2007, pp. 1–12.

[32] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cap-
pello, “Modeling and tolerating heterogeneous failures in large parallel
systems,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2011, p. 45.

[33] C. D. Martino, F. Baccanico, J. Fullop, W. Kramer, Z. Kalbarczyk,
and R. K. Iyer, “Lessons Learned From the Analysis of System Failures
at Petascale: The Case of Blue Waters,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2014), 2014.

[34] J. Stearley and A. J. Oliner, “Bad words: Finding faults in spirits
syslogs,” The Eighth IEEE International Symposium on Cluster Com-
puting and the Grid, pp. 765–770, 2008.

[35] F. Salfner, “Modeling event-driven time series with generalized hidden
semi-markov models,” Technical Report 208, Department of Computer
Science, Humboldt University, 2006.

[36] K. Yamanishi, “Dynamic syslog mining for network failure monitor-
ing,” in In Proceedings of the 11th ACM SIGKDD, International Con-
ference on Knowledge Discovery and Data Mining. ACM Press, 2005,
pp. 499–508.

[37] M. Y. Chen, A. Accardi, E. Kcman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer, “Path-based failure and evolution management,” in
Proceedings of the International Symposium on Networked System De-
sign and Implementation (NSDI04, 2004, pp. 309–322.

[38] A. Andrzejak and L. M. Silva, “Deterministic models of software aging
and optimal rejuvenation schedules.” in Integrated Network Manage-
ment. IEEE, 2007, pp. 159–168.

[39] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, “Online detec-
tion of utility cloud anomalies using metric distributions.” in NOMS.
IEEE, 2010, pp. 96–103.

[40] S. Rani, C. Leangsuksun, A. Tikotekar, V. Rampure, and S. Scott.,
“Toward efficient failure detection and recovery in hpc,” In Proceedings
of High Availability and Performance Workshop, October 2006.

148

[41] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Scal-
able, fault-tolerant membership for mpi tasks on hpc systems,” in
ICS06, 2006.

[42] E. Kiciman and A. Fox, “Detecting application-level failures in
component-based internet services,” Neural Networks, IEEE Transac-
tions on, vol. 16, no. 5, pp. 1027–1041, Sept 2005.

[43] K. Kharbas, D. Kim, T. Hoefler, and F. Mueller, “Assessing hpc fail-
ure detectors for mpi jobs,” Proceedings of the 2012 20th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing, pp. 81–88, 2012.

[44] I. Gertsbakh, “Reliability theory: with applications to pre- ventive
maintenance,” Springer-Verlag, 2000.

[45] F. A. Nassar and D. M. Andrews, “A methodology for analysis of failure
prediction data,” IEEE Real-Time Systems Symposium, pp. 160–166,
1985.

[46] R. Vilalta, C. Apte, J. Hellerstein, S. Ma, and S. Weiss, “Predictive
algorithms in the management of computer systems,” IBM Systems
Journal, vol. 41, pp. 461–474, 2002.

[47] W. Farr, “Software reliability modeling survey,” Handbook of software
reliability engineering, pp. 71–117, 1996.

[48] A. Patra, S. Bidhar, and U. Kumar, “Failure Prediction of Rail Con-
sidering Rolling Contact Fatigue,” International Journal of Reliability,
Quality and Safety Engineering, vol. 3, 2010.

[49] Z. Lan, Z. Zheng, and Y. Li, “Toward automated anomaly identifica-
tion in large-scale systems,” IEEE Trans. on Parallel and Distributed
Systems, vol. 21, pp. 147–187, 2010.

[50] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman, “A Practical
Failure Prediction with Location and Lead Time for Blue Gene/P,”
IEEE Conference on Dependable Systems and Networks Workshops,
pp. 15–22, 2010.

[51] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how hpc systems fail,” in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Confer-
ence on, June 2013, pp. 1–12.

[52] A. Csenki, “Bayes predictive analysis of a fundamental software relia-
bility model,” IEEE Transactions on Reliability, vol. 39, pp. 177–183,
1990.

149

[53] G. Hamerly and C. Elkan, “Bayesian approaches to failure prediction
for disk drives,” In Proceedings of the Eighteenth International Confer-
ence on Machine Learning, pp. 202–209, 2001.

[54] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos,
“Improving the accuracy of network intrusion detection systems
under load using selective packet discarding,” in Proceedings of
the Third European Workshop on System Security, ser. EUROSEC
’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1752046.1752049 pp. 15–21.

[55] Y. Liang, “Bluegene/l failure analysis and prediction models,” Pro-
ceedings of the International Conference on Dependable Systems and
Networks, pp. 425–434, 2006.

[56] S. Fu and C. Xu, “Quantifying temporal and spatial fault event corre-
lation for proactive failure management,” IEEE Proceedings of Sympo-
sium on Reliable and Distributed Systems, 2007.

[57] L. Yu, Z. Zheng, Z. Lan, and S. Coghlan, “Practical Online Failure Pre-
diction for Blue Gene/P: Period-based vs Event-driven,” IEEE Con-
ference on Dependable Systems and Networks Workshops, pp. 259–264,
2011.

[58] N. Nakka, A. Agrawal, and A. Choudhary, “Predicting node fail-
ure in high performance computing systems from failure and usage
logs,” in Parallel and Distributed Processing Workshops and Phd Fo-
rum (IPDPSW), 2011 IEEE International Symposium on, May 2011,
pp. 1557–1566.

[59] J. Lou, “Mining dependency in distributed systems through unstruc-
tured logs analysis,” ACM The Special Interest Group on Operating
Systems (SIGOPS), vol. 44, 2010.

[60] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining,
ser. ICDM ’09. Washington, DC, USA: IEEE Computer Society,
2009. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2009.19
pp. 588–597.

[61] F. Salfner and M. Malek, “Using hidden semi-Markov models for ef-
fective online failure prediction,” in Symposium on Reliable Distributed
Systems, 2007, pp. 161 – 174.

[62] T. Hacker and F. Romero, “An analysis of clustered failures on super-
computing systems,” Journal of Parallel and Distributed Computing,
vol. 69, pp. 652–665, 2009.

150

http://doi.acm.org/10.1145/1752046.1752049
http://dx.doi.org/10.1109/ICDM.2009.19

[63] J. Murray, G. Hughes, and K. Kreutz-Delgado, “Hard drive failure
prediction using non-parametric statistical methods,” Proceedings of
ICANN/ICONIP, 2003.

[64] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, Nov. 2010. [Online]. Available: http://dx.doi.org/10.
1109/SC.2010.18 pp. 1–11.

[65] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “Fti: High performance fault toler-
ance interface for hybrid systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 1–32.

[66] G. Zheng, L. Shi, and L. Kale, “Ftc-charm++: an in-memory
checkpoint-based fault tolerant runtime for charm++ and mpi,” in
Cluster Computing, 2004 IEEE International Conference on, Sept
2004, pp. 93–103.

[67] A. Guermouche, T. Ropars, M. Snir, and F. Cappello., “Hydee: Failure
containment without event logging for large scale send-deterministic
mpi applications,” in Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, 2012, pp. 1216–1227.

[68] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni, “Impact of fault
prediction on checkpointing strategies,” INRIA, Rapport de recherche
RR-8023, July 2012.

[69] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni, “Checkpoint-
ing strategies with prediction windows,” in Dependable Computing
(PRDC), 2013 IEEE 19th Pacific Rim International Symposium on,
Dec 2013, pp. 1–10.

[70] Y. Li and Z. Lan., “Exploit failure prediction for adaptive fault-
tolerance in cluster computing,” in Cluster Computing and the Grid,
2006. CCGRID 06. Sixth IEEE International Symposium on, vol. 1,
2006.

[71] F. Cappello, H. Casanova, and Y. Robert, “Checkpointing vs. mi-
gration for post-petascale supercomputers,” in Parallel Processing
(ICPP), 2010 39th International Conference on, Sept 2010, pp. 168–
177.

151

http://dx.doi.org/10.1109/SC.2010.18
http://dx.doi.org/10.1109/SC.2010.18

[72] M. S. Bouguerra, A. Gainaru, F. Cappello, L. B. Gomez, N. Maruyama,
and S. Matsuoka, “Improving the computing efficiency of hpc systems
using a combination of proactive and preventive checkpointing,” in
Proceedings of IEEE IPDPS 2013. IEEE press, 2013.

[73] “National Center for Supercomputing Applications at the University
of Illinois,” www.ncsa.illinois.edu, Accessed on 2010.

[74] B. Steinmacher-Burow, “Blue Gene/L Architecture,” IBM Watson
Journal, 2004.

[75] W. Kramer, “Introduction to the blue waters project,” National Center
for Supercomputing Applications, 2014.

[76] Z. Xue, X. Dong, S. Ma, and W. Dong, “A survey on failure prediction
of large-scale server clusters,” in Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Computing, 2007. SNPD
2007. Eighth ACIS International Conference on, vol. 2, July 2007, pp.
733–738.

[77] S. Alam, “Early evaluation of ibm bluegene/p,” in Proceedings of 2008
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2008, p. 23.

[78] K. Chadalavada and R. Sisneros, “Analysis of the blue waters file sys-
tem architecture for application i/o performance,” in Cray User Group
Meeting (CUG2013), 2013.

[79] C. Mendes, B. Bode, G. H. Bauer, J. Enos, C. Beldica, and W. Kramer,
“Deploying a large petascale system: the blue waters experience,” in
Proc. 14th Int. Conf. Comput. Sci. (ICCS 2014), 2014.

[80] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, and D. Epema, “Anal-
ysis and modeling of time-correlated failures in large-scale distributed
systems,” in Grid Computing (GRID), 2010 11th IEEE/ACM Inter-
national Conference on, Oct 2010, pp. 65–72.

[81] C. Di Martino, M. Cinque, and D. Cotroneo, “Assessing time coales-
cence techniques for the analysis of supercomputer logs,” in Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP Interna-
tional Conference on, June 2012, pp. 1–12.

[82] E. Kiciman and L. Subramanian, “A root cause localization
model for large scale systems,” in Proceedings of the First
Conference on Hot Topics in System Dependability, ser. HotDep’05.
Berkeley, CA, USA: USENIX Association, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973400.1973402 pp. 2–2.

152

http://dl.acm.org/citation.cfm?id=1973400.1973402

[83] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. Iyer, “Improving log-
based field failure data analysis of multi-node computing systems,” in
Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st Interna-
tional Conference on, June 2011, pp. 97–108.

[84] K. Knizhnik, “Patricia tries: A better index for prefix searches,” in Dr.
Dobb’s Journal, 2008.

[85] A. Gainaru, F. Cappello, S. Trausan-Matu, and W. Kramer, “Event
log mining tool for large scale hpc systems,” in Proceedings of the 17th
international conference on Parallel processing - Volume Part I, ser.
Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 52–64.

[86] J. Fullop, A. Gainaru, and J. Plutchak, “Real time analysis and event
prediction engine,” Cray User Group (CUG), 2012.

[87] W. Waters and B. Jarrett, “Bandpass signal sampling and coherent
detection,” Aerospace and Electronic Systems, IEEE Transactions on,
vol. AES-18, no. 6, pp. 731–736, Nov 1982.

[88] G. K. Varshney, “An efficient methodology for noise characterization,”
International Conference on VLSI Design, pp. 330–335, 2005.

[89] T. Lane and C. E. Brodley, “Temporal sequence learning and
data reduction for anomaly detection,” ACM Trans. Inf. Syst.
Secur., vol. 2, no. 3, pp. 295–331, Aug. 1999. [Online]. Available:
http://doi.acm.org/10.1145/322510.322526

[90] A. Laurent, B. Negrevergne, N. Sicard, and A. Termier, “Pgp-mc:
Towards a multicore parallel approach for mining gradual patterns,”
Database Systems for Advanced Applications, vol. 5981, pp. 78–84,
2010.

[91] D. Jorio, A. Laurent, and M. Teisseire, “Mining frequent gradual item-
sets from large databases,” in Int. Conf. on Intelligent Data Analysis,
2009.

[92] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction
under the microscope: A closer look into hpc systems,” in Proceedings
of 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE press, 2012.

[93] “The computer failure data repository,” http://cfdr.usenix.org, 2011,
[Accessed on July 2011].

[94] L. Ma, Z. Huang, and Q. Wu, “Extracting common design
patterns from a set of solid models.” Computer-Aided Design,
vol. 41, no. 12, pp. 952–970, 2009. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/cad/cad41.html

153

http://doi.acm.org/10.1145/322510.322526
http://cfdr.usenix.org
http://dblp.uni-trier.de/db/journals/cad/cad41.html
http://dblp.uni-trier.de/db/journals/cad/cad41.html

[95] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale I/O workloads,” in Proceedings of CLUS-
TER09. IEEE, 2009, pp. 1–10.

[96] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. El-
nohazy, R. Harrison, W. Harrod, J. Hiller, S. Karp, C. Koelbel,
D. Koester, P. Kogge, J. Levesque, D. Reed, R. Schreiber, M. Richards,
A. Scarpelli, J. Shalf, A. Snavely, and T. Sterling, “Exascale software
study: Software challenges in extreme scale systems,” 2009.

[97] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen,
and P. Roth, “Modeling the impact of checkpoints on next-generation
systems,” in 24th IEEE Conference on Mass Storage Systems and Tech-
nologies, 2007, pp. 30–46.

[98] L. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka, “Dis-
tributed diskless checkpoint for large scale systems,” in Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, 2010, pp. 63–72.

[99] L. Gomez, A. Nukada, N. Maruyama, F. Cappello, and S. Matsuoka,
“Low-overhead diskless checkpoint for hybrid computing systems,” in
High Performance Computing (HiPC), 2010 International Conference
on, 2010, pp. 1–10.

[100] A. Moody, G. Bronevetsky, K. Mohror, and B. De Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem,” in High Performance Computing, Networking, Storage and Anal-
ysis (SC), 2010 International Conference for, Nov 2010, pp. 1–11.

[101] J. T. Daly, “A higher order estimate of the optimum checkpoint inter-
val for restart dumps,” Future Generation Computer Systems, vol. 22,
no. 3, pp. 303–312, 2006.

[102] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[103] M. Bouguerra, D. Kondo, and D. Trystram, “On the scheduling of
checkpoints in Desktop grids,” in Proceedings of the 11th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing (CC-
Grid 2011), ser. CCGRID ’11. NewPort Beach, CA, USA: IEEE Com-
puter Society, May 2011, pp. 305–313.

[104] E. Jeannot, E. Saule, and D. Trystram, “Optimizing performance
and reliability on heterogeneous parallel systems: Approximation algo-
rithms and heuristics,” Journal of Parallel and Distributed Computing,
2012.

154

[105] B. Javadi, D. Kondo, J. Vincent, and D. Anderson, “Discovering statis-
tical models of availability in large distributed systems: An empirical
study of seti@home,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 11, pp. 1896 –1903, 2010.

[106] E. Lehmann and G. Casella, Theory of Point Estimation. Springer
Verlag, 1998.

[107] J. Massey and J. Frank, “The kolmogorov-smirnov test for goodness of
fit,” Journal of the American statistical Association, vol. 46, no. 253,
pp. 68–78, 1951.

[108] S. Matsuoka, “Making tsubame2.0, the world’s greenest production
supercomputer, even greener: Challenges to the architects,” in Low
Power Electronics and Design (ISLPED) 2011 International Sympo-
sium on, Aug 2011, pp. 367–368.

[109] V. Springel, “The cosmological simulation code gadget-2,” in Monthly
Notices of the Royal Astronomical Society, vol. 364. Blackwell Science
Ltd, 2005, pp. 1105–1134.

[110] O. Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati, J. Read, and
L. Mayer, “Fundamental differences between sph and grid methods,”
Monthly Notices of the Royal Astronomical Society.

[111] D. J. Price, “Modelling discontinuities and kelvinhelmholtz instabilities
in sph,” Journal of Computational Physics, pp. 10 040 –10 057, 2008.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0021999108004270

[112] B. Gough, GNU Scientific Library Reference Manual - Third Edition,
3rd ed. Network Theory Ltd., 2009.

[113] “Addressing failures in exascale computing,” in Institute of Computing
in Science (ICiS) workshop, 2012.

[114] C. Costa, Y. Park, B. Rosenburg, C.-Y. Cher, and K. D.
Ryu, “A system software approach to proactive memory-error
avoidance,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.63 pp. 707–718.

155

http://www.sciencedirect.com/science/article/pii/S0021999108004270
http://www.sciencedirect.com/science/article/pii/S0021999108004270
http://dx.doi.org/10.1109/SC.2014.63

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Motivation
	Focus areas
	Outline of the thesis
	Definition of terms

	Chapter 2 State of the art on fault tolerance for HPC systems
	Observations
	Failure detection methods
	Prediction methods
	Prediction based on failure statistics
	Prediction based on system models
	Event driven prediction

	Checkpointing challenges

	Chapter 3 HPC systems description
	Mercury
	Systems at LANL
	Blue Gene systems
	Blue Waters

	Chapter 4 Analyzing the system behavior
	Preprocessing
	Propagation analysis on the Mercury system

	Extracting the normal and faulty event behavior
	Periodic events
	Noise and silent signals
	Anomaly detection

	Filtering methods based on signal analysis
	Failure analysis
	Location propagation
	Failure statistics
	Failure correlation

	Chapter 5 Failure prediction
	Failure prediction based on signal analysis
	Analysis modules
	Dissecting event correlation
	Dissecting prediction

	Parameter influence on the results
	Preprocessing parameters
	Prediction parameters
	Discussion

	Online failure prediction
	Results

	Results on the Blue Waters system
	Detail breakdown of prediction results
	Location propagation

	Comparison Blue Waters results with smaller systems
	Prediction from the application's perspective
	Details statistics
	Details prediction

	Discussion

	Chapter 6 Combining failure prediction with checkpointing
	Analysis of prediction methods for failure avoidance
	Real Time Failure Prediction Challenges
	Lead time distribution
	False negative distribution

	Implementation of the hybrid approach
	Adapting FTI to handle checkpoint requests
	Embedding ELSA into FTI

	Hybrid implementation overhead
	Simplistic model to compute the protocol's benefit
	Evaluation of the hybrid strategy benefit

	Chapter 7 Future work
	Application level
	Specific predictors: File systems
	Metrics
	Anomaly detection

	Chapter 8 Conclusion
	Overview of the thesis
	Summary of contribution
	Future work

	References

