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ABSTRACT

The purpose of this dissertation is to experimentally validate a new approach

to robotic manipulation of deformable objects. As a case study, it will focus

on the manipulation of objects that can be modeled as Kirchhoff elastic rods,

for example a metal wire that is held at each end by robotic grippers. Any

curve traced by this wire when in static equilibrium can be described as the

solution to an optimal control problem with boundary conditions that vary

with the position and orientation of each gripper. Recent work has shown

that the set of all local solutions to this problem over all possible boundary

conditions is a smooth manifold of finite dimension that can be parameterized

by a single chart, the coordinates for which have a direct interpretation as

forces and torques. These coordinates—in principle—allow the problem of

manipulation planning to be formulated as finding a path of the wire through

its set of equilibrium configurations, something that was previously thought

impossible and that has significant advantages. However, this approach has

never before been applied to hardware experiments.

We begin by considering a metal wire that is confined to a planar workspace.

We derive global coordinates for this wire and characterize the extent to

which they accurately describe its shape during robotic manipulation. In

particular, we show that differences between predicted and observed manip-

ulation (which can be quite large) derive primarily from small errors in the

position and orientation of each robotic gripper. We reduce these differences

in two ways. First, we give an algorithm for manipulation planning that lo-

cally minimizes sensitivity to errors in gripper placement. Second, we give a

feedback control policy (based on force sensor data as well as on position and

orientation estimates) that locally minimizes the sum-squared error between

planned and observed paths in our global coordinate chart for the wire.
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We conclude by showing—again, with hardware experiments—that these

results extend directly to enable robotic manipulation of a metal wire in a

three-dimensional workspace.
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CHAPTER 1

INTRODUCTION

This dissertation presents and experimentally validates a new approach to

the robotic manipulation of flexible objects, specifically “linear deformable

objects” that can be described by the shape of their centerline. In this

introduction, we will present a motivating application (Section 1.1), state a

canonical problem that must be solved in order to enable this application

(Section 1.2), describe the challenges posed by this problem (Section 1.3),

and discuss our approach to addressing these challenges (Section 1.4).

1.1 Motivation

Our work has been driven by the need of small-to-medium sized businesses

in the United States to automate handling and assembly of compliant parts,

a critical and widespread manufacturing task that is often done manually.

These businesses have unique requirements that are not served by traditional

industrial robots or approaches to automation. These requirements princi-

pally derive from low production volumes (e.g., hundreds rather than millions

of items) and small capital budgets. Small-to-medium sized businesses can-

not afford to buy different robots for different production lines, nor can they

afford to hire engineers to retool and reprogram a single robot. By some es-

timates, there is a $16B market for a low-cost, easy-to-use, general-purpose

robot that can do simple, repetitive tasks that involve light payloads (e.g.,

pick-and-place, machine operation, part sorting, packing, finishing).

“Baxter” is a robot that targets this market (Figure 1.1a). It has two arms,

each with seven degrees of freedom. It has a payload capacity of 5 lb. It is

human scale, standing 6’1” on a pedestal. Most importantly, it is low-cost

($27K, an order of magnitude less than traditional industrial robots) and

can be “programmed” by physical demonstration—simply by taking hold of

1



(a) (b)

Figure 1.1: (a) Baxter, a low-cost industrial robot with two arms that each
have seven degrees-of-freedom. (b) Delphi wire harness. The installation of
this device in an automobile is a critical manufacturing task that is hard for
Baxter.

an arm and moving it to a desired location. Compliant joints with series-

elastic actuators enable the physical interaction and, more broadly, enable

operation in close proximity to human partners without the need for “safety

cages.” Vision, touch, force, and position sensors—coupled with software

tools like ROS (Robot Operating System) and OpenCV (Open-Source Com-

puter Vision)—enable recognition and handling of rigid objects. At the time

of writing this thesis, it remains to be seen if Baxter will succeed in the mar-

ketplace, but early results are exciting: promotional video shows line workers

teaching this robot to perform simple tasks in under 10 minutes.

A common manufacturing task that, at the time of writing this thesis,

Baxter cannot perform yet is the installation of a wire harness (Figure 1.1b).

This harness is a collection of wires that are joined at various points and that

terminate in electrical connectors. Installation means routing these wires

through an existing structure (e.g., a hybrid electric vehicle or a medical

device) and plugging in the connectors. The connectors are rigid objects,

so plugging them in is equivalent to classical “peg-in-hole” manipulation,

for which Baxter is already well suited. However, the wires are deformable
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objects, and reasoning about their deformation poses a significant challenge.

This challenge has so far limited even special-purpose robotic installation

systems—costing an order of magnitude more than Baxter and requiring

engineers to program—to success rates of 50% in the laboratory [1].

1.2 Problem

In this dissertation, we will restrict our attention to quasi-static manipulation

of a thin, flexible strip of metal with an industrial robot (Figure 1.2 and

Figure 1.3). The metal strip can be modeled as a planar elastic rod such as

a “Kirchhoff” elastic rod [2]. So, henceforth we will refer to it as a “planar

elastic rod” (or more simply as an “elastic rod” or just a “rod”). The metal

strip behaves like one piece of a wire harness (Section 1.1) — a single wire

— that has been confined to a horizontal plane. One end of the metal strip

is attached to a table and the other end of the metal strip is held by a

Selective Compliance Assembly Robot Arm (SCARA), an industrial robot.

By assuming that the manipulation is performed in a quasi-static manner [3],

we can ignore the dynamics of the rod. This assumption entails that given

the boundary conditions of the rod, the position and orientation of the table

and the robot, the rod will be in a configuration that locally minimizes the

stored potential energy. For instance, an example of a manipulation task

could be to move the metal strip from between the two configurations shown

in Figure 1.4. Throughout the duration of performing manipulation, the

elastic rod must avoid configurations that are physically infeasible. This

class of infeasible configurations includes shapes in which the rod experiences

instabilities, configurations in which the rod experiences a self-collision, and

configurations that are physically unrealizable by the robotic manipulator.
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Adept

Robot

Metal

Strip

Camera

Force

Sensor

Figure 1.2: Adept XL-One robot attached to one end of a strip of blue
spring steel. The other end of the strip is attached to a table with a clear,
polyurethane surface. A digital camera is mounted below the surface to
capture images of the strip as it is manipulated.
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fixed base
flexible metal strip
(“planar elastic rod”)

end held by robot

modeled shape (magenta)

Figure 1.3: This photograph, taken using the camera below the surface of
the table, depicts a thin, flexible metal strip being placed into a particular
configuration. One end is secured to the table and the other end is attached
to a robot. The magenta curve depicts the modeled shape of the strip.
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Figure 1.4: Example of an initial and goal configuration for a strip of spring
steel. The magenta curve plots the modeled shape of the strip on top of the
photo taken from below the surface of the experimental table. The two con-
figurations of the planar elastic rod have the same boundary conditions. This
means that the robot is placed in the exact same position and orientation.
However, the metal strip has two different shapes.
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1.3 Challenges

There are two reasons why quasi-static manipulation of a planar elastic rod

is hard. First, the configuration space of the rod has infinite dimension.

Elements of this space are continuous maps q : [0, 1] → SE(2), the shape

of which in general must be approximated. Second, a countable number

of configurations may be in static equilibrium for a given placement of the

robot, none of which (typically) can be computed in closed form. Because of

these two challenges, techniques to perform manipulation struggle to not only

describe the shape of the rod, but to also describe how the rod changes shape

as the boundary conditions are altered. For these reasons, it is not clear how

to plan a path of the rod through its set of equilibrium configurations, which

is how standard methods of manipulation planning work for rigid objects.

An approach taken by Lamiraux and Kavraki [4] on manipulation of elas-

tic objects has been applied by Moll and Kavraki [5] to “deformable linear

objects” like the planar elastic rod we consider here. This previous work

clearly states that the set of equilibrium configurations is the space through

which one should construct a manipulation plan. However, it ultimately sug-

gests exploring this set indirectly, by sampling displacements of the robot

and using numerical simulation to approximate their effect on the rod.

1.4 Approach

In the remainder of this dissertation, we will provide three contributions.

• We present a concise model of the planar elastic rod. We have devel-

oped a chart that uniquely maps configurations to a point in R3. We

show that this point in R3 is the force and torque at the base of the

metal strip. To move from an initial to a goal configuration, we plan

a path, using this global coordinate chart, that produces a sequence of

configurations through which to move the robotic manipulator so the

metal strip remains in static equilibrium. We show with hardware ex-

periments that this model accurately predicts configurations that will

cause the metal strip to experience an instability, configurations that

will cause self-collisions, and configurations that will exceed joint limi-

tations of the Adept robot. With hardware experiments, in addition to
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predicting infeasible configurations, our model can also determine when

configurations of the metal strip are sensitive to small perturbations in

robot placement. This material is the topic of Chapter 3.

• We present a “robust” planner that ensures that the metal strip avoids

both infeasible configurations and configurations that are sensitive to

small perturbations in robot placement. We have created a cost func-

tion that assesses a high cost to configurations that are sensitive to

small perturbations in the boundary conditions and configurations of

the metal strip that are infeasible due to instabilities, self-collisions, and

joint limitations. We show with hardware experiments that planning

minimum-cost paths using the total cost function avoids both configu-

rations that exhibit large amounts of model error and that are close to

being infeasible. This material is the topic of Chapter 4.

• We present a controller that compensates for any remaining differences

between predicted and observed motion of the elastic rod. This con-

troller utilizes an estimator that uses measurements of both the force at

the end of the rod and the position. Both measurements are weighted

based on the sensitivity of each sensor to error. Using a proportional-

integral (PI) control law, we show with hardware experiments that

using feedback reduces the error between the measured and observed

configuration when performing manipulation. This material is the topic

of Chapter 5.

The algorithms presented for manipulating planar elastic rods directly ex-

tend to the manipulation of spatial elastic rods that are not confined to the

horizontal plane. We present two proof of concept prototypes for perform-

ing experiments with the Baxter robot. We provide preliminary results and

provide a description for how these results can be improved by future work.

This material is the topic of Chapter 6.
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CHAPTER 2

RELATED WORK

In this chapter, we discuss previous work on manipulation of flexible objects

that are modeled as elastic rods (Section 2.1) and on manipulation by flexible

objects that are modeled as elastic rods (Section 2.2). In each case, we

describe the methods used for modeling and for manipulation planning. We

continue by discussing cost functions that have been used to plan optimal

manipulation of flexible objects (Section 2.3), and conclude by discussing

methods of incorporating closed-loop feedback (Section 2.4).

2.1 Manipulation of Flexible Objects Modeled as

Elastic Rods

In this section, we describe four motion planning algorithms for manipulating

flexible objects that are modeled as elastic rods. All of these methods describe

the shape of a flexible object as a curve of minimum energy and present

algorithms for moving from an initial shape to a goal shape. The methods

proposed in Section 2.1.1, 2.1.2, and 2.1.3 are directly related to our research.

These methods assume a flexible object is modeled as an elastic rod where

both ends can both rotate and translate. The research presented in 2.1.4

performs manipulation with a flexible object that is treated as an elastic

rod but both ends are only allowed to rotate about fixed axes that cannot

translate in any direction.

While our work builds upon the motion planning algorithm presented by

Moll et al., which is described in Section 2.1.1, the description that we present

in this thesis provides some benefits over all of the methods discussed in

this section. All of these methods, along with our method, describe the

shape of a flexible object as a curve of minimum energy. However, we use

three parameters to describe all of the feasible shapes of a planar flexible
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object. This contrasts with the methods discussed in this section that do not

present a formulation for describing all feasible curves of minimum energy.

Furthermore, these methods require more than three parameters to represent

the shape of a flexible object.

2.1.1 Method of Moll et al.

Elastic Rod Description

Moll and Kavraki [5] describe flexible objects using a subdivision technique

that involves splitting the object into smaller pieces and then describing

each segment using the Frenet frame. Using this technique, the rod will

be described by a n × 3 matrix of parameters where n is the number of

segments into which the rod has been divided. This method provides a trade-

off between accuracy and representation size. The accuracy improvement

comes at the expense of increasing the number of parameters required to

describe the rod. The three parameters, tangent (τ), bi-normal (κ), and

length (s), are used to describe each segment of a curve x. The energy of the

rod is defined as

energy(q) =
n∑
i=1

(
κi

2 + τi
2
)
· si. (2.1)

Initially just three parameters are used to describe the entire rod. With

each iteration, the subdivision scheme uses the difference formula

(
(κi+1 − κi)2 + (τi+1 − τi)2) ·max (si, si+1) (2.2)

to determine adjacent segments with the largest difference in energy. One

of these two segments is then divided in two and the parameters (τ and

κ) are optimized to minimize the total energy of the elastic rod. Thus,

each step reduces the energy by smoothing segments that vary the most.

This procedure continues until the error at the endpoints and the difference

between consecutive segments are both less than predetermined thresholds.
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Manipulation Algorithm

Moll and Kavraki perform path planning with the elastic rod by searching

a roadmap of minimal energy curves to determine a sequence of curves that

move from an initial configuration to a goal configuration. The roadmap is

constructed by sampling a small displacement of a robot connected to one

end of the flexible object. For each displacement, the distance between a

curve (q0) and the curve that results from the robot displacement (q1) is

calculated by integrating

d(q0 − q1) =

√∫ 1

0

(
(κ0(s)− κ1(s))2 + (τ0(s)− τ1(s))2) ds (2.3)

over the entire length of the curve. When the distance between the two curves

is less than a parameter ε, the roadmap adds a connection between these two

configurations. Performing motion planning to move from an initial shape to

a goal shape simply requires finding a path in the roadmap between the two

configurations. A local planner is then used to move between the connected

configurations.

2.1.2 Method of Hermansson et al.

Recent work by Hermansson et al. [6] focuses on two problems related to the

wiring of flexible cables and hoses within an automobile. This work examines

not only predicting the stability of cables when the vehicle is subjected to

vibrations, but also routing individual wires of a wire harness through obsta-

cles. This manipulation problem corresponds directly with our motivating

application of enabling Baxter to install a wire harness.

Elastic Rod Description

The approach taken by Hermansson et al. assumes that a cable or hose can be

modeled as an elastic rod. The center line, ψ, comprises the centers of all of

the cross sections along the entire length [0, L]. The elastic rod has a rotation

vector (R(s)) composed of three vectors d1, d2, and d3 where d3 = d1 × d2.

The rod has the shearing and stretching strain vector (Γ = (Γ1,Γ2,Γ3)) that
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is defined as

Γ(s) = R(s)T δsϕ(s)− e3. (2.4)

The potential energy due to this type of strain is calculated by

wΓ(s) =
1

2
Γ(s)TKΓΓ(s). (2.5)

The rod has the curvature/torsion strain vector (Ω = (Ω1,Ω2,Ω3)) defined

as

Ωs = R(s)T δsR(s). (2.6)

The potential energy due to this type of strains is calculated by

wΩ(s) =
1

2
Ω(s)TKΩΩ(s). (2.7)

The rod is assumed to be in equilibrium if the shape minimizes the potential

energy, W , where

W =

∫ L

s=0

wΓ(s) + wΩ(s)−KρgT (ϕ(s))ds. (2.8)

Given a set of boundary conditions, the rod is first discretized using an adap-

tive finite difference algorithm. A Quasi-Newton method is then employed

to minimize the potential energy function.

Manipulation Algorithm

Hermansson et al. use this formulation of the rod to perform motion plan-

ning using handles, or control points that are attached to points along cables,

to install a wire harness [7]. First the constraints are relaxed by removing all

handles along the cable and removing the gravity constraint. Once these two

constraints are removed, the shape of the rod is determined by calculating

its shape when it is in static equilibrium. After the shape of the harness in

equilibrium is determined, this algorithm seeks to find a path to move it out

of the environment without colliding with obstacles within the workspace. A

potential function U assesses a cost to positions that are near the boundary

of obstacles within the environment. Then, the A∗ algorithm is used to deter-

mine a path to move the wire harness that maximizes the clearance for a ball

(Br) around the master handle that controls the junction of the wire harness.
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Once the harness has been removed from the environment, cables in the har-

ness are then unfolded or untangled. This is done by straightening each of

the individual wires and ensuring they do not collide with the environment

with the derived motion plan. Given that this procedure identifies a feasible

path to remove the wire harness from the workspace without experiencing

a collision, identifying a path to install the wire harness is trivial. Simply

reversing the path of the wire harness yields a motion plan for installing the

wire harness.

2.1.3 Method of Saha and Isto

In addition to modeling hoses and cables, Saha and Isto model a piece of

rope as an elastic rod and perform experiments in which both ends of the

rope are manipulated by robots [8]. This approach determines a sequence

of motions that allows for moving a rope from an initial topology to a goal

topology. One of the more common applications addressed by their work is

tying knots, as with surgical suturing.

Elastic Rod Description

The description proposed by Saha and Isto requires a geometric model and a

physical model. The rope is modeled as a curved cylinder of non-zero radius

where the centerline of the cylinder is a smooth curve (c) of the form

c : s ∈ [0, L] −→ c(s) ∈ R3, (2.9)

where s is the arc distance and L is the curvilinear length. The rope is dis-

cretized into a set of grasp points s1, s2, ... sk which correspond to positions

that can be manipulated by the robot. Saha and Isto utilize the physical

model proposed by Wang et al. This procedure describes the rope as a group

of massless springs that are connected by rigid links [9]. The position and

orientation of each of the links is then determined by calculating the config-

uration that minimizes the energy stored in the springs. Their formulation

ignores the dynamics of the system and only considers the rope when it is

stable.

In addition to the geometric model and the physical model, Saha and Isto
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also present a topological model for describing the rope. The topological state

of the rope requires the knowledge of the crossings. A crossing is simply a

point of intersection when the shape of the rod is projected onto a plane. To

determine the topology of a rope, “walk” is performed and a triplet of the

form (X1
j , X

2
j , εj) is generated for each intersection on the plane. For this

representation, X1
j and X2

j indicate the crossing. The term εj is the sign of

the crossing. The sign is determined by whether the crossing goes under or

over a second portion of rope.

Manipulation Algorithm

The manipulation planning algorithm presented by Saha and Isto identifies

a strategy to move control points along the rope so that the shape in trans-

formed from the initial configuration (qinit) to the goal configuration (xgoal).

Once the shape of the rod is determined and represented using the previ-

ously described topology, a probabilistic roadmap is constructed. The initial

configuration, qinit, is treated as the root of the roadmap. Nodes with a bias

towards xgoal are probabilistically sampled and are connected to the roadmap

if there is a collision-free path to move between the two configurations. This

algorithm then checks to determine if a crossing in the rope that indicates a

new loop is formed. When a crossing is formed, a needle, or control point, is

added to preserve the loop formed by this crossing. In addition to ensuring

there is a feasible, collision-free path, paths must also be checked to ensure

that proposed motions do not require the robot to achieve infeasible config-

urations. This process of probabilistically sampling nodes and checking to

determine whether they can be connected to the roadmap continues until one

of two conditions is met. Either a successful query is found to move from

the initial configuration to the goal configuration or the maximum number

of samples is reached and the algorithm exits and indicates that no viable

paths have been found.

2.1.4 Methods of Hirose and Yamada

Yamada and Hirose have presented robots that perform locomotion on land

and in water. The robots are composed of closed elastic rods that are con-

nected to rotating actuators at both ends. These systems include robots
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that jump [10] as well as robots that maintain contact with the ground [11].

The crawling robots are inspired by snakes that are also capable of perform-

ing locomotion in water. In addition to snake robots, Yamada has shown

swimming robots that use the elastic rod in a fashion similar to the fin of a

fish [12].

Elastic Rod Description

The method presented by Yamada and Hirose does not seek to describe the

entire shape of the metal strip, but does utilize elastic rod theory. Their work

solely requires calculating the existence of an inflection point along the metal

strip. The metal strip is discretized to n points where the static equilibrium

equation at each point along the rod is described as

kθi − ezT{(pn − pi−1)× λe + τe} = 0 (2.10)

(i = 1....n), (2.11)

where pi is the position along the rod, pn is the position at one end of the

rod, λe = [λ1, λ2, 0]T is the force, and τe = [0, 0, τ3]T is the joint torque. The

existence of an inflection point along the elastic rod requires that

ez
T{(pn − pc)× λe + τe} = 0. (2.12)

Manipulation Algorithm

The manipulation algorithm for these robotic systems determines a plan for

rotating the actuators in a manner that induces “snap-through” buckling.

Initially, the elastic rod is in the shape of an arch. By rotating one of the

ends of the elastic rod, the rod is placed into an ‘S’ shape. Continuing to

rotate this end forces the elastic rod to experience an instability and causes

the shape of the rod to become an inverted ‘S’. Yamada et al. leverage this

transition, or snap-through buckling, to provide locomotion. Essentially, this

procedure aims to force the metal strip to have an inflection point. When

there are no inflection points along the rod, λ2 = 0. As one end of the rod

is rotated, the rod gains one inflection point. Continued rotation produces a
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second inflection point along the metal strip when the rod is symmetric about

the line crossing its center. The model predicts that snap-through buckling

transpires approximately when the second inflection point appears. After

this buckling completes, the rotation joint must be rotated in the opposite

direction in order to induce another instance of snap-through buckling.

2.2 Manipulation by Devices Modeled as Elastic Rods

While in the previous section we discussed research that examined the ma-

nipulation of flexible objects, in this section we present work that focuses

on how to use flexible devices to manipulate other objects. Both the model-

ing techniques and the motion planning algorithms described in the previous

section can directly extend to performing manipulation with flexible devices.

Though we do not conduct experiments in which the metal strip is used to

manipulate other objects, our work can be directly applied to some of the

applications described in this section.

2.2.1 Method of Tang et al.

The application of manipulating body tissues has created interest in the de-

sign and the motion planning algorithms for medical devices such as guidewires

and catheters [13]. In addition to guidewires and catheters, flexible nee-

dles [14–17] and active cannula [18–22] have some advantages over rigid med-

ical instruments. All of these devices provide the ability to “steer” around

obstacles including sensitive tissue and vital organs. While rigid instruments

can only manipulate tissues that have a straight-line-path to the insertion

site, flexible medical instruments allow for manipulating tissue that is more

difficult to access.

Elastic Rod Description

Tang et al. simulate elastic rods using a discretization approach that is based

on previous work by Bergou et al. [23]. The guidewire is represented as a

set of vertices x0, x1, ..., xn+1 and edges e0, e1, ..., en. The “dynamics”

of the curve traced by the guidewire are described using the R3 vectors uki
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(control), xki (position), vki (velocity), and aki (acceleration) for each point

along the rod (i) at each time step (k). The position and velocity along the

rod evolve with the discrete state equations where

xk+1 = xk + ∆tvk + t2((
1

2
− β)ak + βak+1) (2.13)

and

vk+1 = vk + ∆t((1− γ)ak + γak+1). (2.14)

The parameters β and γ are both constants.

The acceleration is approximated using the relationship

F
(
xk, vk

)
+
δF

δx

(
xk+1 − xk

)
+
δF

δv

(
vk+1 − vk

)
≈Mak+1, (2.15)

which is derived by applying one iteration of the Newton-Raphson method

to the equation

F
(
xk+1, vk+1

)
= Mak+1. (2.16)

Once the acceleration is determined, the entire shape can be calculated by

substituting the acceleration into Equation (2.13) and Equation (2.14).

The energy stored by an elastic rod must be a local minimum given the

set of boundary conditions imposed by the position and orientation of both

ends of the guidewire. The guidewire is capable of storing energy due to both

bending and also twisting [23]. The total elastic energy for a configuration

is defined as

E(Γ) = Ebend(Γ) + Etwist(Γ), (2.17)

where the bending energy is defined as

Ebend(Γ) =

∫
1

2
ακ2ds (2.18)

and the twisting energy is defined as

Etwist(Γ) =

∫
1

2
βm2ds. (2.19)

For these formulas, κ is the curvature (normal) vector of the centerline and

m is the twist about the centerline. The constants α and β are based on
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Young’s modulus for the material. This is the ratio of the energy due to

stress to the energy due to strain.

Manipulation Algorithm

The motion planning algorithm proposed by Tang et al. approximates a

cubic spline of the centerline of a blood vessel and steers a guidewire in a

manner that ensures the shape of the guidewire is approximately the shape of

the centerline. The shape of the guidewire can be controlled by two motion

primitives. The guidewire can only be controlled by inserting the rod and

also by rotating the rod at the insertion point. As the guidewire is inserted,

its shape is dictated by contacts with vascular walls. Given the boundary

conditions that are imposed by contact between the guidewire and vascular

walls, the guidewire forms a curve of minimal energy. Once the guidewire

reaches a junction, additional actuation is required to steer into the desired

blood vessel. A steering force is applied in a direction that is tangential to the

desired vessel to explore and then insertion continues. As the guidewire is in-

serted into a vessel, the shape is continually simulated to compare the shape

of the guidewire to the centerline of the vessel. This comparison is then used

to determine the next action. In addition to the contrast in motion plan-

ning algorithms, the object representation differs from our approach. While

we use a total of three parameters to describe all possible configurations of

a metal strip, the method proposed by Tang et al. uses 12 parameters for

each vertex. The representation of the guidewire is also of variable length

where the accuracy comes at the expense of a larger representation. Fur-

thermore, the algorithm does not produce global representation of feasible

configurations of the guidewire.

2.2.2 Method of Hannan and Walker

As opposed to applications that perform manipulation with small objects,

other research examines manipulation at a larger scale. Hannan and Walker

propose experiments where they perform manipulation using an elephant

trunk robot [24]. The robot they use to perform manipulation is similar to

other variants of continuum robots [25–28]. These hyper-redundant robots

are composed of multiple links that are connected by hinges that allow for
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rotating. The shape of these robots can be dictated by either springs, cables,

or servo motors. Research that has examined continuum robots, such as

the robot shown by Hannan and Walker, has provided another compelling

application for our work. The relationship between these robots and flexible

devices was pointed out by Tanner [29]. Additionally, the continuum robot

designed by Gravagne [26] is composed of a spring steel spine. This is the

material that we use to validate the theoretical framework proposed in this

work.

Robot Description

R

x(0) x(s)
‖x(s)‖

Ψ
Φ

α

θ
s

Figure 2.1: Sector which corresponds to one section of the hyper-redundant
robot that Hannan and Walker use to perform manipulation experiments.

The approach taken by Hannan and Walker relies on describing each seg-

ment of the hyper-redundant robot using a constant curvature model and

then using the Denavit-Hartenberg procedure to determine the kinematics

of the entire robot. Each link is treated as a sector of a circle, as shown in

Figure 2.1, with a chord that has points x(0) and x(s). The norm of this

chord is ‖x(s)‖ and the sector has the interior angle Φ. The angle Ψ is half

of the interior angle. For this section of the robot the following relationships

hold:
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Φ =
s

R
= κs (2.20)

Ψ =
Φ

2
=
κs

2
, (2.21)

where R is the radius of the circle, s is the arc length, and κ is the curvature.

This produces the result where

‖x‖ =
2

κ
sin(θ) =

s

θ
sin(θ). (2.22)

Given the length of the chord, ‖x(s)‖, Hannan and Walker use this expression

to calculate θ, the tangent at the chord. This equation is then used to

produce the transformation matrix which relates the position and angle of

two adjoined links in the hyper-redundant robot.

Manipulation Algorithm

The manipulation algorithm implemented by Hannan and Walker utilize the

direct relationship between the D-H kinematics analysis and the velocity

kinematics. Planning is done by solving the general equation

ẋ = J q̇ (2.23)

where ẋ is the differentiation of the task space vector, J is the Jacobian, and

q̇ is the differentiation of a vectoring consisting of the rotation angle and

curvature of each section of the robot. Hannan and Walker show that the

general solution to Equation (2.23) is

q̇ = J(q)+ẋ + {I − J(q)+J(q)}ε. (2.24)

The error, ε, is

ε = k(qr − q), (2.25)

where k is a gain value, qr is the desired configuration and q is the current

configuration. Solving Equation (2.23) produces the solution in joint space

to move towards the desired configuration.
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2.2.3 Methods of Yamada and Mochiyama

Yamada and Mochiyama propose a method for manipulating devices that

involve inducing instabilities or “snap-through” buckling. In addition to lo-

comotion applications that were described in Section 2.1.4, they use planar

metal strips to enable actuation. Instead of using the strip to move a robot

between configurations, the metal strip is used to manipulate other objects

within the environment. In addition to enabling swimming, the robotic swim-

mer presented by Yamada et al. also serves as a catapult system [10,30]. As

with the robotic system, the catapult is composed of a metal strip that is

connected to two rotating actuators. While the application greatly contrasts

with the applications discussed in Section 2.1.4, the elastic rod description

and manipulation algorithms are identical.

2.3 Manipulation Using a Cost Function

In this section, we will discuss the cost functions that have previously been

applied to motion planning with flexible objects that are modeled as elastic

rods. We then describe an algorithm for identifying the optimal motion plan

given a particular cost function. While the goal of motion planning algo-

rithms is to determine a feasible path to move from an initial configuration

to a goal configuration, additional objectives can be taken into considera-

tion in order to ensure “improved” manipulation. While common motion

planning objectives include minimizing the amount of time or the amount of

force required to complete a task, additional objectives can be used to ensure

other assurances. First, we describe previous cost functions that have been

applied to the problem of manipulating flexible objects and hyper-redundant

robots to ensure that systems avoid self-collisions and joint limitations. Sec-

ondly, we discuss a cost function that is associated with the manipulability of

the flexible object. This section concludes with a description of the motion

planning algorithm we have implemented to identify paths that are optimal

with respect to the cost functions we utilize.
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2.3.1 Method of Khatib

Previous work conducted by Khatib [31] describes components of a cost func-

tion that directly apply to the task of installing a wire with a robot such as

Baxter. This work presents a cost function in the form of a potential field

that ensures collision-free manipulation. While preventing collisions is the

primary concern, Khatib also presents a cost function, in the form of a poten-

tial field, that can be used to avoid configurations that approach the physical

limitations of the robotic manipulator.

The first component of the cost function addresses avoiding configurations

that experience self-collision. The potential field, U, is defined

Ucollision =
1

2
η(

1

p
− 1

p0

)2 (2.26)

for p < p0 where η is the scaling factor of this cost function, p is the shortest

distance to a collision and p0 is the limit distance or distance at which the

cost function is 0. When the minimum distance to a collision is greater

than or equal to p0, the cost due to self-collisions is 0. When the minimum

distance to a collision is less than p0, the cost increases exponentially. When

the rod experiences self-collision, p = 0, this component of the cost function

is infinite.

An additional constraint to motion planning could be imposed by the joint

limitations of the robotic manipulator. The cost component that Khatib et

al. use to avoid joint limitations is the potential function

Ujoint limitation = η(
1

pi
− 1

pi(0)
)

1

pi2
, (2.27)

where the difference between the ith joint angle qi and the minimum possible

value for that angle qi is defined as

pi = qi − qi. (2.28)

Again, the term η is used to scale this component of the cost function with

respect to other components. When qi = qi, or an angle is at its maximum

value, the value of the cost function is infinite. The value of this component

of the cost function decreases as the pi increases.

While the cost functions derived by Khatib et al. are suited to working with

22



rigid robots, this method does not directly extend to elastic rod functions.

Mainly, determining the exact minimum distance to a self-collision can be

computationally expensive. A variety of collision detection algorithms have

been implemented to calculate the presence of a collision or proximity to

a collision [32–35]. These techniques use bounding volume hierarchies to

surround portions of deformable objects, such as elastic rods. Once the rod

is discretized, these bounding volumes are checked for collisions or overlap in

volumes. These volumes can also provide an estimate of the proximity to a

collision.

2.3.2 Method of Yoshikawa

In addition to using potential fields to avoid configurations that experience

self-collision and joint limitations, previous work by Yoshikawa has also de-

scribed a cost function that is based on the manipulability of a flexible ob-

ject or hyper-redundant robot [36]. This work is similar to the notion of

the “shape Jacobian” that has been discussed by Mochiyama for kinematic

chains [25]. The work by both Yoshikawa and Mochiyama points out that

the Jacobian relationship between the shape of a kinematic chain and the

position of the endpoints can be used to identify configurations that are sen-

sitive to small changes in boundary conditions. The work by Yoshikawa is

related to our work, whereas we also use a measure of the magnitude of the

Jacobian matrix for performing motion planning.

Yoshikawa considers a hyper-redundant robot with joints that have angles

θi, for i = 1,2,...,n and for the positions rj for j=1,2,...,m. The positions of r

are functions of the variable θ where

r = f(θ) (2.29)

for the joint vector

θ = [θ1, θ2, ..., θn, ] (2.30)

and the manipulation vector

r = [r1, r2, ..., rm, ] . (2.31)

The Jacobian of the position with respect to the joint angle is calculated by
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differentiating Equation (2.29) with respect to time such that

ṙ = J(θ)Θ̇. (2.32)

Given the Jacobian for a set of joint angles, the manipulability (w) is calcu-

lated

w =
√
det(J(θ)J(θ)T ). (2.33)

Yoshikawa uses this measure of manipulability to avoid configurations where

the robot experiences a singularity. This measure also allows for creating

motion plans based on which joint has the most manipulability. When mov-

ing from an initial position vector, r, the manipulability for each of the joint

angles θj is calculated. The joint angle with the largest manipulability is

chosen for modification to move towards the goal configuration.

2.3.3 Motion Planning Algorithm

Once a cost function is derived, the task of identifying the path that min-

imizes the total cost over the course of a manipulation task must be iden-

tified. The optimal probabilistic roadmap (PRM∗) [37–39] is the algorithm

we use to identify an optimal path to move from an initial configuration to

a goal configuration. This algorithm requires two phases. The first phase of

the algorithm randomly samples states through the configuration space and

calculates the cost to move between “nearby” configurations. A graph, or

roadmap, that contains collision-free paths within the configuration space is

maintained. This procedure can become computationally expensive, espe-

cially with configuration spaces of high dimension. After the configuration

space has been sufficiently sampled, the second phase of the PRM∗ proceeds.

During this phase, a path is sought to move from the initial configuration

to the goal configuration. A graph search is used to identify the sequence

of states to move through that minimizes the total path cost. In section

4.3.1, we discuss our implementation of the PRM∗ algorithm that is used to

minimize a cost function that was derived to ensure robust manipulation of

an elastic rod.
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2.4 Application of Feedback to Manipulation

The integration of sensor information through the implementation of feed-

back is an additional tool that can be used to ensure robust manipulation of

an elastic rod. In order to provide feedback, it is necessary to provide mea-

surements of the rod’s current state. It is also necessary to provide a control

input based on the error message and control law that will move the rod

towards the desired state. In this section we will describe existing methods

for performing closed-loop manipulation with an elastic rod. This includes

both the task of measuring the current state of the elastic rod and performing

actuation in a manner to move the elastic rod to the goal configuration.

2.4.1 Measurement of Elastic Rod State

The most direct method for measuring the shape of an elastic rod is to use

computer vision to extract the shape from captured images. This requires

the implementation of image segmentation algorithms, such as that by Shi

and Malik [40], to isolate the elastic rod from the background of the image.

Once this is done, the shape can be measured. Borum et al. [41] also use

computer vision to track the configuration of a metal strip that has been

annotated with a small set of fiducial markers spaced along the length of the

rod.

There are also some alternatives to direct measurements of the state of

elastic rods through the use of computer vision. A common technique is to

use force measurements, such as with whisker sensors [42–45]. These systems

are comprised of thin elastic objects that extend directly from a force sensor.

These sensors allow for locating and identifying nearby obstacles. The entire

shape of the whisker can be determined by using force measurements at its

base.

2.4.2 Application of Feedback

Once the state of the rod has been measured, it is necessary to determine

the control input required to achieve the desired configuration. This involves

determining the appropriate translation and rotation of an end point that

transforms the shape of the rod to the goal shape. This procedure must take
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into consideration the entire shape of the rod and not just the position and

orientation of the boundary conditions. In some elastic rod manipulation

literature, this relationship is termed the “shape Jacobian” or simply Jaco-

bian [25,27]. The Jacobian provides the relationship between changes in the

position and orientation at the end of the rod and the entire shape of the rod.

This relationship provides a mechanism for transforming the shape from an

initial configuration to a goal configuration.

In addition to using the shape Jacobian, the Jacobian of the force with

respect to the position at the end of the rod can be used to apply feedback

for closed-loop manipulation. The relationship between the force exerted

at the end of an elastic rod and the position has been shown by Tang et

al. [13]. In Chapter 3, we describe the relationship between the shape and the

force and torque seen at the end of the rod. This relationship between force

and positions along the rod provides an additional mechanism for applying

feedback.
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CHAPTER 3

MODEL

In this chapter we present a theoretical framework for manipulating a metal

strip that is modeled as a planar elastic rod. First we show that all feasible

shapes of the metal strip can be represented by a point in R3. A short

version of this work was published in our IROS conference paper [46]. The

coordinates used to represent the shape correspond to the force and torque at

the base of the strip. After presenting the configuration space, we describe

the free space and then describe an algorithm to move the strip from an

initial configuration to a goal configuration. This chapter concludes with the

presentation of two sets of experiments and a discussion of the results. We

confirm the relationship between our coordinates and the force and torque

at the end of the rod and validate the predicted boundary of the feasible

configurations.

3.1 Theoretical Framework

We will see in Section 3.2 that the framed curve traced by a planar elastic

rod in equilibrium is a local solution to a geometric optimal control problem.

Here, we provide the framework to characterize this solution. Section 3.1.1

states necessary and sufficient conditions for optimality on manifolds. Sec-

tion 3.1.2 derives coordinate formulae to test these conditions. We are citing

work by Bretl and McCarthy [47].

In what follows, we denote the space of all smooth real-valued functions

on a smooth manifold M by C∞(M). We also recall that a smooth map

F : M → N between smooth manifolds M and N is degenerate at m ∈ M
if the Jacobian matrix of any coordinate representation of F at m has zero

determinant. We use TmF and T ∗mF to denote the pushforward and pullback

of F , respectively. The rest of our notation is standard [48,49].
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3.1.1 Optimal Control on Manifolds

Let M be a smooth manifold and let U ⊂ Rm for some m > 0. Assume

g : M × U → R and f : M × U → TM are smooth maps. Consider the

optimal control problem

minimize
q,u

∫ 1

0

g (q(t), u(t)) dt

subject to q̇(t) = f (q(t), u(t)) for all t ∈ [0, 1]

q(0) = q0, q(1) = q1,

(3.1)

where q0, q1 ∈ M and (q, u) : [0, 1] → M × U . Define the parameterized

Hamiltonian Ĥ : T ∗M × R× U → R by

Ĥ(p, q, k, u) = 〈p, f(q, u)〉 − kg(q, u),

where p ∈ T ?qM .

Theorem 1 (Necessary Conditions). Suppose

(qopt, uopt) : [0, 1]→M × U

is a local optimum of (3.1). Then, there exists k ≥ 0 and an integral curve

(p, q) : [0, 1]→ T ∗M of the time-varying Hamiltonian vector field XH , where

H : T ∗M × R→ R is given by

H(p, q, t) = Ĥ(p, q, k, uopt(t)),

that satisfies q(t) = qopt(t) and

H(p(t), q(t), t) = max
u∈U

Ĥ(p(t), q(t), k, u) (3.2)

for all t ∈ [0, 1]. If k = 0, then p(t) 6= 0 for all t ∈ [0, 1].

Proof. See Theorem 12.10 of [50].

The integral curve (p, q) in Theorem 1 is an abnormal extremal when k = 0

and a normal extremal otherwise. As usual, when k 6= 0 we may assume

k = 1. We call (q, u) abnormal if it is the projection of an abnormal extremal.
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We call (q, u) normal if it is the projection of a normal extremal and it is not

abnormal.

Theorem 2 (Sufficient Conditions). Suppose

(p, q) : [0, 1]→ T ∗M

is a normal extremal of (3.1). Define H ∈ C∞(T ∗M) by

H(p, q) = max
u∈U

Ĥ(p, q, 1, u), (3.3)

assuming that the maximum exists and that ∂2Ĥ/∂u2 < 0. Define u : [0, 1]→
U so that u(t) is the unique maximizer of (3.3) at (p(t), q(t)). Assume that

XH is a complete vector field and that there exists no other integral curve

(p′, q′) of XH satisfying q(t) = q′(t) for all t ∈ [0, 1]. Let ϕ : R × T ∗M →
T ∗M be the flow of XH and define the endpoint map φt : T

∗
q(0)M → M by

φt(w) = π ◦ϕ(t, w, q(0)). Then, (q, u) is a local optimum of (3.1) if and only

if there exists no t ∈ (0, 1] for which φt is degenerate at p(0).

Proof. See Theorem 21.8 of [50].

3.1.2 Lie-Poisson Reduction

Let G be a Lie group with identity element e ∈ G. Let g = TeG and

g∗ = T ∗eG. Denote the functional derivative of any h ∈ C∞(g∗) at µ ∈ g∗ by

δh/δµ ∈ g, as in [49].

Theorem 3 (Reduction of Necessary Conditions). Let

H : T ∗G× [0, 1]→ R

be both smooth and left-invariant for all t ∈ [0, 1]. Denote the restriction of

H to g∗ by h = H|g∗×[0,1]. Given p0 ∈ T ∗q0G, let µ : [0, 1]→ g∗ be the solution

of

µ̇ = ad∗δh/δµ(µ) (3.4)

with initial condition µ(0) = T ∗e Lq0(p0). The integral curve (p, q) : [0, 1] →
T ∗G of the time-varying Hamiltonian vector field XH with initial condition
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p(0) = p0 satisfies

p(t) = T ∗q(t)Lq(t)−1 (µ(t))

for all t ∈ [0, 1], where q is the solution of

q̇ = Xδh/δµ(q)

with initial condition q(0) = q0.

Proof. See Theorem 13.4.4 of [49].

It is convenient for us to introduce coordinates on g and g∗. Let {X1, . . . , Xn}
be a basis for g and let {P1, . . . , Pn} be the dual basis for g∗. We write ζi to

denote the ith component of ζ ∈ g with respect to this basis, and so forth.

Define the structure constants Ck
ij ∈ R by

[Xi, Xj] =
n∑
k=1

Ck
ijXk (3.5)

for i, j ∈ {1, . . . , n}.
In addition to these three theorems, we also build upon Theorem 3 of Bretl

and McCarthy [47] which shows a reduction of sufficient conditions.

3.2 Application to a Planar Elastic Rod

The previous section derived coordinate formulae to compute necessary and

sufficient conditions for a particular class of optimal control problems on

manifolds. Here, we apply these results to a planar elastic rod. Section 3.2.1

recalls that the framed curve traced by the rod in static equilibrium is a local

solution to a geometric optimal control problem [51,52]. Section 3.2.2 proves

that the set of all trajectories that are normal with respect to this problem is

a smooth manifold of dimension three that can be parameterized by a single

chart (Theorem 5). Section 3.2.3 proves that the set of all normal trajectories

that are also local optima is an open subset of this smooth manifold, and

provides a computational test for membership in this subset (Theorem 6).

These two results suffice to describe all possible configurations of the elastic

rod that can be achieved by quasi-static manipulation.
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3.2.1 Model

q(0) = 0

q(1) = b

(q1(t), q2(t))

q3(t)

Figure 3.1: Schematic of an elastic rod. This graphic is annotated with
labels indicating the start of the elastic rod where q(0) = 0 and the end of
the rod where q(1) = b.

We model the object in Figure 1.3 as a planar elastic rod. Assuming it is

thin, inextensible, and unit length, we describe the shape of this rod by a

continuous map q : [0, 1]→ G, where G = SE(2). A schematic of this model

is shown in Figure 3.1. We require this map to satisfy

q̇ = q(X1 + uX3) (3.6)

for some u : [0, 1]→ U , where U = R and

X1 =

0 0 1

0 0 0

0 0 0

 X2 =

0 0 0

0 0 1

0 0 0

 X3 =

0 −1 0

1 0 0

0 0 0


is a basis for g. Denote the dual basis for g∗ by {P1, . . . , P3}. We refer to

q and u together as (q, u) : [0, 1] → G × U or simply as (q, u). We assume

the base of the rod is held fixed at the origin, so that q(0) = e. The other
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end is held by a robotic gripper, which we assume can impose arbitrary q(1).

Figure 3.1 shows a schematic of the model where both grippers are labeled.

We denote the space of all q(1) by B = G. For fixed q(1), the rod will

remain motionless only if its shape locally minimizes total elastic energy. In

particular, we say that (q, u) is in static equilibrium if it is a local optimum

of

minimize
q,u

1

2

∫ 1

0

u2dt

subject to q̇ = q(X1 + uX3)

q(0) = e, q(1) = b

(3.7)

for some b ∈ B.

3.2.2 Necessary Conditions for Static Equilibrium

Theorem 4. Define

A =
{
a ∈ R3 : (a2, a3) 6= (0, 0)

}
.

A trajectory (q, u) is normal with respect to (3.7) if and only if there exists

µ : [0, 1]→ g∗ that satisfies

µ̇1 = µ2u µ̇2 = −µ1u µ̇3 = −µ2 (3.8)

q̇ = q(X1 + uX3) (3.9)

u = µ3 (3.10)

with q(0) = e and µ(0) =
∑3

i=1 aiPi for a ∈ A.

Proof. We begin by showing that (q, u) is abnormal if and only if u = 0.

Theorem 1 tells us it is equivalent that (q, u) is the projection of an integral

curve (p, q) of XH that satisfies (3.2), where H(p, q, t) = Ĥ(p, q, 0, u(t)) and

Ĥ(p, q, 0, u) = 〈p, q(X1 + uX3)〉 .

Since H is left-invariant, the existence of (p, q) satisfying Theorem 1 is equiv-

alent to the existence of µ satisfying the conditions of Theorem 3, namely
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that

µ̇ = ad∗δh/δµ(µ) and q̇ = q(δh/δµ),

where h = H|g∗ . Application of the sufficient conditions produces (3.8)-(3.9),

where we require µ3 = 0 to satisfy (3.2). We therefore have µ2 = −µ̇3 = 0,

hence also µ1u = −µ̇2 = 0. Since µ cannot vanish when k = 0, we must have

µ1 6= 0, hence u = 0.

Now, we return to the normal case. Theorem 1 tells us that (q, u) is normal

if and only if it is not abnormal and it is the projection of an integral curve

(p, q) of XH that satisfies (3.2), where H(p, q, t) = Ĥ(p, q, 1, u(t)) and

Ĥ(p, q, 1, u) = 〈p, q(X1 + uX3)〉 − (u2/2).

As before, H is left-invariant. Application of the sufficient conditions to

the conditions of Theorem 3 produces the same formulae (3.8)-(3.9), where

(3.10) follows from (3.2) because Ĥ is quadratic in u. It remains to show

that trajectories produced by (3.8)-(3.10) are not abnormal if and only if

a ∈ A. We prove the converse. First, assume a ∈ R3\A, so (a2, a3) = (0, 0).

From (3.8) and (3.10), we have u = 0, hence (q, u) is abnormal. Now, assume

(q, u) is abnormal, so u = 0. From (3.10), we therefore have µ3 = 0, and in

particular a3 = 0. Plugging this result into (3.8), we see that µ2 = −µ̇3 = 0,

hence also that a2 = 0. So, a ∈ R3\A. Our result follows.

Theorem 4 provides a set of candidates for local optima of (3.7), which we

now characterize. Denote the set of all smooth maps (q, u) : [0, 1] → G × U
under the smooth topology by C∞([0, 1], G× U). Let C ⊂ C∞([0, 1], G× U)

be the subset of all (q, u) that satisfy Theorem 4. Any such (q, u) ∈ C is

completely defined by the choice of a ∈ A, as is the corresponding µ. Denote

the resulting maps by Ψ(a) = (q, u) and Γ(a) = µ. We require three lemmas

before our main result (Theorem 6).

Lemma 1. If Ψ(a) = Ψ(a′) for a, a′ ∈ A, then a = a′.

Proof. Suppose (q, u) = Ψ(a) and µ = Γ(a) for some a ∈ A. It suffices to

show that a is uniquely defined by u (and its derivatives, since u is clearly

smooth). From (3.8) and (3.10), we have

a2 = −µ̇3(0) = −u̇(0) a3 = u(0). (3.11)
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We differentiate (3.8) to compute

ü(0) = a3a1
...
u (0) = a2

(
a2

3 − a1

)
. (3.12)

At least one of these two equations allows us to compute a1 unless (a2, a3) =

(0, 0), which would violate our assumption that a ∈ A. Our result follows.

Lemma 2. The map Ψ: A → C is a homeomorphism.

Proof. The map Ψ is a bijection—it is well-defined and onto by construction,

and is one-to-one by Lemma 1. Continuity of Ψ follows from Theorem 4. It

remains only to show that Ψ−1 : C → A is continuous—this result is an

immediate consequence of (3.11)-(3.12).

Lemma 3. If the topological n-manifold M has an atlas consisting of the

single chart (M,α), then N = α(M) is a topological n-manifold with an

atlas consisting of the single chart (N, idN), where idN is the identity map.

Furthermore, both M and N are smooth n-manifolds and α : M → N is a

diffeomorphism.

Proof. Since (M,α) is a chart, then N is an open subset of Rn and α is a

bijection. Hence, our first result is immediate and our second result requires

only that both α and α−1 are smooth maps. For every p ∈ M , the charts

(M,α) and (N, idN) satisfy α(p) ∈ N , α(M) = N , and idN ◦ α ◦ α−1 = idN ,

so α is a smooth map. For every q ∈ N , the charts (N, idN) and (M,α) again

satisfy α−1(q) ∈ M , α−1(N) = M , and α ◦ α−1 ◦ idN = idN , so α−1 is also a

smooth map. Our result follows.

Theorem 5. C is a smooth 3-manifold with smooth structure determined by

an atlas with the single chart (C,Ψ−1).

Proof. Since Ψ: A → C is a homeomorphism by Lemma 2 and A ⊂ R3 is

open, then (C,Ψ−1) is a chart whose domain is C. Our result follows from

Lemma 3.
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3.2.3 Sufficient Conditions for Static Equilibrium

Theorem 6. Let (q, u) = Ψ(a) and µ = Γ(a) for some a ∈ A. Define

F =

 0 µ3 µ2

−µ3 0 −µ1

0 −1 0

 G =

0 0 0

0 0 0

0 0 1



H =

 0 µ3 0

−µ3 0 1

0 0 0

 .
Solve the (linear, time-varying) matrix differential equations

Ṁ = FM J̇ = GM + HJ (3.13)

with initial conditions M(0) = I and J(0) = 0. Then, (q, u) is a local

optimum of (3.7) for b = q(1) if and only if det(J(t)) 6= 0 for all t ∈ (0, 1].

Proof. As we have already seen, normal extremals of (3.7) are derived from

the parameterized Hamiltonian function

Ĥ(p, q, 1, u) = 〈p, q(X1 + uX3)〉 − (u2/2).

This function satisfies ∂2Ĥ/∂u2 = −1 < 0 and admits a unique maximum at

u = 〈p, qX3〉. The maximized Hamiltonian function is

H(p, q) = 〈p, qX1〉+ 〈p, qX3〉2 /2.

It is clear thatXH is complete. By Lemma 1, the mapping from (q, u) to a and

hence to µ = Γ(a) is unique. By Theorem 3, it is equivalent that the mapping

from (q, u) to (p, q) is unique. As a consequence, we may apply Theorem 2

to establish sufficient conditions for optimality. Since H is left-invariant,

we may apply the equivalent conditions of Theorem 4 of [47]. Noting that

h = H|g∗ ∈ C∞(g∗) is given by

h(µ) = µ1 + µ2
3/2,

it is easy to verify that F, G and H take the given form.
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p1(t)
p2(t)

p3(t)

p1(t+ ∆t)

p2(t+ ∆t)

p3(t+ ∆t)

µ1(t)
µ2(t)

µ3(t)

µ1(t+ ∆t)

µ2(t+ ∆t)

µ3(t+ ∆t)

Figure 3.2: The forces and torques applied to a piece of the planar elastic rod
that correspond to the balance equations in Equation (3.8). This representa-
tion provides a physical interpretation of the costate trajectory µ : [0, 1]→ g∗.
Equilibrium configurations are uniquely defined by the choice of a = µ(0).

Theorem 6 provides a computational test of which points a ∈ A ac-

tually produce local optima Ψ(a) ∈ C of (3.7). Let Astable ⊂ A be the

subset of all a for which the conditions of Theorem 6 are satisfied and let

Cstable = Ψ(Astable) ⊂ C. An important consequence of membership in Astable

is smooth local dependence of (3.7) on variation in b. Define

Bstable = {q(1) ∈ B : (q, u) ∈ Cstable}

and let Φ: C → B be the map taking (q, u) to q(1). Clearly Astable is open,

so

Ψ|Astable
: Astable → Cstable

is a diffeomorphism. We arrive at the following result:

Theorem 7. The map Φ◦Ψ|Astable
: Astable → Bstable is a local diffeomorphism.

Proof. The map Φ ◦ Ψ|Astable
is smooth and by Theorem 6 has non-singular

Jacobian J(1). Our result follows from the Implicit Function Theorem [53,

Theorem 7.9].

3.2.4 Modeled Force at the Base of the Rod x(0)

The coordinate chart A has a physical interpretation. To derive it, we will

assume that µ(t) describes the force and torque acting on the rod at t ∈ [0, 1],

and we will show that this assumption allows us to reconstruct (3.8) and

(3.10). Consider a small piece of the rod (Figure 3.2). Choose (v1, v2, θ) so
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that: cos θ − sin θ v1

sin θ cos θ v2

0 0 1

 = q(t)−1q(t+ ∆t).

In static equilibrium, a force and torque balance requires that:

0 = −µ1(t) + µ1(t+ ∆t) cos θ − µ2(t+ ∆t) sin θ

0 = −µ2(t) + µ1(t+ ∆t) sin θ + µ2(t+ ∆t) cos θ

0 = −µ3(t) + µ3(t+ ∆t) + µ1(t+ ∆t) (v1 sin θ

−v2 cos θ) + µ2(t+ ∆t) (v1 cos θ + v2 sin θ) .

In the limit as ∆t → 0, we recover (3.8). Equation (3.10) then follows from

the linear relationship between stress and strain. It is now clear that A is a

space of forces and torques, and in particular that µ(0) = a ∈ A describes

the force and torque at the base of a planar elastic rod. The reader may

also verify that abnormal (q, u) are exactly those configurations of the rod

at which µ(0) is indeterminate.

3.3 Manipulation Planning

In this section, we present an algorithm for manipulation planning with a

metal strip. First, the configuration space is defined and we describe how

to sample a point uniformly at random in this space. We then define the

free space, which corresponds to configurations of the metal strip that are

feasible, and describe how to test whether a sampled point in configuration

space is also in free space. Given this description of the free space, we present

an algorithm for identifying a path the robot should follow so that the metal

strip moves from an initial configuration to a goal configuration.

3.3.1 Configuration Space Sampling

In order to implement a sampling-based planner, it is necessary to define

a configuration space and to also describe the task of sampling a point at

random in this space. For the application of manipulating a metal strip, the

configuration space represents all of the feasible curves that can be formed.
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Figure 3.3: These images all show configurations that were generated by
uniformly sampling the configurations space by finding a vector in R3 for
each curve where a1 ∈ [−150, 150], a2 ∈ [−150, 150], and a3 ∈ [−20, 20].

In the previous two sections, we have shown that each configuration can be

represented by a point in R3. Simply integrating Equations 6.1 for the initial

costate values for a1, a2, and a3 produces a unique minimal energy curve.

Sampling points in A refers to randomly sampling three rational numbers

using a uniform distribution. Figure 3.3 shows six configurations that were

generated using a random number generator to select three numbers with

a1 ∈ [−150, 150], a2 ∈ [−150, 150], and a3 ∈ [−20, 20]. All of the config-

urations in this image do not correspond with feasible shapes that can be

realized using the robot gripper. For example, the curve in the top-left expe-

riences a self-collision. It is necessary to ensure that sampled configurations
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are feasible, or a ∈ Afree.

3.3.2 Definition of Afree

While the configuration space, A, allows for describing all configurations of

the elastic rod using three coordinates, not all configurations can be achieved

with an actual metal strip. In order to implement a sampling-based planner,

it is necessary to describe obstacles within the configuration space. In this

section we will describe the constraints on Afree, feasible configurations of

an elastic rod. With respect to sampling-based motion planning algorithms,

these conditions constitute obstacles in the configuration space (A) that must

be avoided. The following sections will describe three types of constraints

on Afree and show how these conditions can be included into our model to

ensure that paths planned in A safely move from an initial configuration to

a goal configuration.

Instabilities

Figure 3.4: Schematics of what takes place before and after the rod experi-
ences an instability. The image on the left shows the metal strip before it has
experienced an instability. As a result of moving the robot gripper, the strip
experiences an instability. The image on the right shows the shape after the
gripper has moved and the rod has experienced an instability.

Instabilities are characterized by the deviation between the theoretical

shape of an elastic rod from the physical shape. Some instabilities can re-

sult in the metal strip undergoing large deformations quickly as the strip

moves from an unstable configuration to a stable configuration. Figure 3.4

shows the metal strip before and after it has experienced an instability. The
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placement of the robot has moved a small amount. However, this small per-

turbation results in a large deformation of the shape of the metal strip. As

described in Section 3.2.3, the Jacobian of the system provides information

about the stability of elastic rod configurations. This relationship provides

an indication of the effect that small perturbations in the robot’s placement

have on the configuration in A. We check points along the curve to deter-

mine whether the Jacobian vanishes for t ∈ [0, 1]. The presence of a singular

Jacobian indicates that the configuration is unstable.

Collisions

Figure 3.5: Two schematics in which the metal strip experiences a self-
collision.

In addition to instabilities, there are two other constraints imposed on

experiments as a result of using the Adept XL-One robot to manipulate

the metal strip. The theoretical formulation allows for configurations that

include self-collisions. Essentially, the rod is able to pierce itself without

altering its shape. This does not happen with hardware experiments where

collisions can result in permanent deformations of the metal strip. Figure 3.5

shows two configurations that experience self-collisions. In order to perform

collision detection for the elastic rod application, it is necessary to check for

collisions between

• the metal strip and itself

• the metal strip and end the gripper at table or on robot

• the gripper on the table and the robot gripper on the robot
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Whether the metal strip experiences a self-collision can be determined

using a variety of collision checking algorithms [33, 34, 54] . Planning paths

that avoid configurations that cause self-collisions requires the addition of

constraints to limit Afree.

Robot Joint Limits

Figure 3.6: Two schematics that require the angle of the manipulator to
exceed its rotation limit.

The Adept robot imposes a constraint due to its joint limitations. The joint

controlling θ only provides a range of 540◦. The Adept robot can only achieve

configurations that fall within the range where θ ∈ [−3π
2
, 3π

2
]. To calculate the

position and orientation, the differential equations from Equation (3.13) must

be integrated using the values for a. The orientation (q3(1)) corresponds to

the orientation of the robot and must be checked to ensure the value is within

the limits of the Adept robot. Figure 3.6 shows two configurations that are

infeasible to realize with the Adept robot due to the joint limitations.

Predicted Boundary of Afree

By combining the previously described constraints, we can predict whether

a configuration mapping to a point in A is feasible. Furthermore, we can

construct a boundary of Afree such that all of the configurations inside the

boundary are feasible. The flow chart in Figure 3.7 shows the algorithm to

determine whether a point a ∈ Afree. The input to the algorithm is a point

in R3. This algorithm produces two outputs. First the algorithm produces a
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Boolean value indicating whether the configuration is feasible. Second, the

algorithm produces a b ∈ B which indicates the position and orientation to

hold the robot gripper to achieve the minimal energy curve with an initial

costate vector corresponding with the input value, a.

use event location to find tconj ∈ (0, 1]
at which det(J(tconj)) = 0 and output
TRUE if none exists, FALSE otherwise

AND

use bounding volume hierarchies to find
a point of (self-) collision and output
TRUE if none exists, FALSE otherwise

a ∈ A = {a ∈ R3 : (a2, a3) 6= (0, 0)}

b ∈ B = SE(2)

define b = q(1)

J

FREECONF (a) ∈ {TRUE, FALSE}

solve
µ̇1 = µ̇2u
µ̇2 = −µ̇1u
µ̇3 = −µ̇2
with the initial condition

u(0) = 0
on the domain t ∈ [0, 1]

solve

q̇ = q(

0 0 1
0 0 0
0 0 0

 + u

0 −1 0
1 0 0
0 0 0

)

with initial condition

q(0) = 0

on the domain t ∈ [0, 1]

solve

Ṁ = FM

with initial condition

M(0) = I and J(0) = 0

on the domain t ∈ [0, 1], where

F =

 0 µ3 µ2
−µ3 0 −µ1

0 −1 0


G =

0 0 0
0 0 0
0 0 1


H =

 0 µ3 0
−µ3 0 1

0 0 0



Figure 3.7: This flow chart shows the algorithm required to ensure that a
configuration, indicated by a coordinate a ∈ A ⊂ R3, is a feasible configura-
tion. This algorithm also indicates the position to place a gripper at the end
of the rod.
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Figure 3.8: These plots show four individual boundaries or slices for Afree.
For each slice, the value a3 is fixed. A continuation method is used to deter-
mine the boundary for the a1 and a2 coordinates.

Predicted boundary of Afree

Though the elastic rod has an infinite number of configurations, the 3-

dimensional boundary can be calculated, even with the additional constraints

due to the limitations of the robotic manipulator. For each value of a3, ran-

dom values where a1 ∈ [−125, 125] and a2 ∈ [−125, 125] are selected. Each

random point is tested to determine whether it is a feasible configuration

in Afree. When a feasible configuration is identified, points along a line that

passes through this point are tested for feasibility until a point on the bound-

ary of Afree is detected. Once a point on the boundary is identified, a con-

tinuation method identifies the remaining points on the boundary for the

selected value of a3. Figure 3.8 shows four individual slices of a3.
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Figure 3.9: Calculation of the entire 3-dimension volume of Afree. This
region contained within the volume represents the coordinates of all of the
feasible configurations for the elastic rod. This volume is constructed using
the continuation method with a3 increments of 0.2.

Figure 3.9 shows the calculation of the entire boundary of Afree. This
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was calculated by starting with a3 = −16.0, the minimum a3 with feasible

configurations. We then calculate the boundary for each value of a3 up

to the maximum value with feasible configurations at 0.2 intervals. While

most slices consist of just one connected component, for values where −14 <

a3 < −9.8 and 9.8 < a3 < 14 there are two connected components. For

these values of a3 with multiple connected components, the continuation

method is applied twice. In order to correctly identify both boundaries, the

method is initialized with separate starting points that are within both of

the components.

3.3.3 Motion Planning Algorithm

With a concise model and coordinate system for describing feasible config-

urations of the metal strip (Section 3.2) and a representation within this

coordinate system of the constraints on Afree (Section 3.3.2 ), we can now

perform motion planning to move the strip from an initial configuration to

a goal configuration. This section describes the algorithm used to move the

metal strip from an initial configuration to a goal configuration by following

a path planned in the new configuration space, A.

We now know that any equilibrium configuration of a planar elastic rod

can be represented by a point in Astable ⊂ A ⊂ R3 (Theorems 4-6 ) and

that any path of the rod in Astable can be realized by a path of the robotic

gripper in Bstable (Theorem 7). These results allow us to apply a sampling-

based algorithm for manipulation planning (here, we describe one based on

PRM [37]):

• Sample points inA, for example uniformly at random in {a ∈ A : ‖a‖∞ ≤ w}
for some w > 0. Note that it is possible to choose w by taking advan-

tage of the correspondence between a and forces/torques at the base of

the elastic rod (Section 3.2.4 ).

• Keep points that are in Astable and add them as nodes in the roadmap.

This test requires only solving the ordinary differential equations (3.8)-

(3.10) in 3 variables and the matrix differential equations (3.13) in 18

variables.

• Try to connect each pair of nodes a and a′ with a straight-line path
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in A, adding this path as an edge in the roadmap if it lies entirely in

Astable. This test can be approximated in the usual way by sampling

points along the straight-line path at some resolution, again solving

(3.8)-(3.10) and (3.13) for each point.

• Declare astart, agoal ∈ Astable to be path-connected if they are connected

by a sequence of nodes and edges in the roadmap. This sequence is a

continuous and piecewise-smooth map

α : [0, 1]→ Astable,

where α(0) = astart and α(1) = agoal.

• Move the robotic gripper along the path

Φ ◦Ψ|Astable
◦ α : [0, 1]→ Bstable.

This path is again continuous and piecewise-smooth, and can be evalu-

ated at waypoints s ∈ [0, 1] by solving the matrix differential equation

(3.9) on SE(2).

Each step is trivial to implement using modern numerical methods. It is also

easy to include other constraints within this basic framework. For the exper-

iments that we describe in the following section, we check for self-collision

(using hierarchical bounding volumes) and enforce bounds on position and

orientation of the robotic gripper.

The “initial” and “goal” for the manipulation planning problem must be

points in Astable, or equivalently points in Cstable through the diffeomorphism

Ψ. It is insufficient to specify start and goal by points in Bstable since these

points do not uniquely define configurations of the rod.

Figure 3.10 shows a flow chart of the PRM algorithm implemented to move

between two configurations. This algorithm takes the a values of the initial

configuration and goal configuration as inputs. In addition, the algorithm

requires stop criteria that determines when the PRM algorithm terminates

execution if a viable path between the two points in A is not identified. If

a feasible path is determined before the stop criteria are met, the algorithm

terminates and returns true. When the PRM completes successfully, this

algorithm also produces a sequence of points in A to move from the initial
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create a tree consisting of
a node astart

sample     near a       to find point a. TRUE 
if FREECONF(a) = TRUE, FALSE otherwise  

A FALSE

connect the sampled point a to points in
the tree using a straight line paths.TRUE 
if a straight-line path exists for at least
one point in tree, FALSE otherwise  

FALSE

FALSE

TRUE

TRUE

a = a  goal

TRUE

a      , a   start      goal         free A

start

∈

Figure 3.10: Motion planning algorithm that moves from an initial configu-
ration astart to a goal configuration agoal.

configuration to the goal configuration.

Figure 3.11 shows an example of quasi-static manipulation that was planned

by our sampling-based algorithm. Notice that the start and goal configura-

tions are both associated with the same boundary conditions, each one being

a different local minimum of total elastic energy, i.e., a different local optima

astart, agoal ∈ Astable of (3.7) for the same choice of b ∈ Bstable. The motion

shown in Figure 3.11 therefore does not correspond to a single straight-line

path in Bstable where planning has traditionally been done (e.g., [4,5]). How-

ever, this motion does indeed correspond to a single straight-line path in

Astable and was trivial to generate with our planning algorithm. We have not

yet performed comprehensive experiments that compare our sampling-based

algorithm to others in terms of running time, failure probability, etc.—these

experiments are a topic of ongoing work. However, a number of planning
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heuristics like lazy collision-checking [55]—which bring huge speed-ups in

practice—are easy to apply when planning in Astable but hard to apply when

planning in Bstable. Also, should we still want to plan in Bstable (i.e., to con-

nect nearby configurations by straight-line paths in Bstable rather than in

Astable), it is now easy to do so by using the Jacobian matrix J(1), which is

non-singular in Bstable by construction. In particular, there is the relationship

δb = J(1)δa, which can be inverted to move along straight lines in Bstable.

Without this relationship, it would be necessary to apply gradient descent in

the infinite-dimensional space of inputs u : [0, 1]→ U , prompting methods of

approximation like the one described in [5]. In any case, the key insight was

realizing that the set of equilibrium configurations has dimension three—at

that point, nearly any planning algorithm will perform well.

Figure 3.11: Sequence of frames depicting configurations of the metal strip
while moving from an initial configuration to a goal configuration. Notice
that the initial and goal configurations have identical boundary conditions.
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3.4 Experimental Validation

In this section, we will present the design of experiments used to compare

the theoretical model to physical devices. Without loss of generality, we are

able to hold one end of the strip at a fixed location and manipulate the other

end with a robotic manipulator that is capable of translating in the x-y plane

and rotating about the z-axis. This framework is used to perform qualitative

and quantitative comparisons between the modeled configuration and the

measured configuration.

3.4.1 Hardware

Metal Strip

Figure 3.12: Strip of spring steel that is used for experiments. The strip has
2 holes on each side that are used for attaching to the Adept robot and the
experiment table. This strip has red tape affixed to the bottom that allows
for image segmentation. A ruler is placed blow the metal strip to provide
the scale.

All of the experiments were conducted with stock spring steel that required

minimal modifications. The shape formed by the rod is not a function of the

length. The experiments we show were conducted using a strip of 5.08 cm

wide 1095 spring steel. Each strip is approximately 23 cm. We model the

metal strip of length 20 cm. At each end, 1.5 cm is used to attach the metal

strip to the Adept robot and the table. Figure 3.12 shows an image of a strip

of spring steel used to conduct experiments. A ruler is shown below the strip
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to provide the scale. To increase the visibility and improve segmentation, the

metal strip is instrumented with red electrical tape along its bottom edge. In

addition to this tape, we have also affixed yellow map tacks that are spaced at

2 cm intervals. The tape and the map tacks are assumed to have a negligible

impact on the shape of the metal strip.

Experiments using metal strips with a thickness ranging from 0.1016 mm

to 0.1778 mm all provided similar results. Thinner metal strips do not exhibit

elastic characteristics and were also more likely to develop permanent folds.

Thicker metal strips were too strong to be bent using the Adept robot. The

release of potential energy when thicker strips experience instabilities has the

potential to damage test equipment.

Experiment Table

Figure 3.13: The system used for conducting experiments. This included
the Adept robot, the table constructed, the metal strip, and the camera used
to capture images.
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We have designed and constructed a custom table and lighting solution

that allows for capturing images using a digital camera below the surface.

Figure 3.13 shows an image of the experiment table. The main structure is

composed of 2x4 boards. The mass was sufficient to prevent the table from

moving as a result of the force applied by the metal strip. The surface of the

table consists of a .635 cm thick sheet of polyurethane. At the center of the

sheet, two screws are used to attach a polyurethane end effector to the top

of the surface. This end effector has two holes in addition to the holes drilled

in the bottom, for attaching to the metal strip.

A metal plate is mounted below the surface of the table which has holes

drilled to align with the mounting holes for the Pt Grey Flea 2 camera. A

piece of white poster board is placed above the metal plate so that reflections

of the table are not visible in images captured by the camera. To reduce

the amount of variability in lighting within images captured by the digital

camera, four lights are placed on all sides of the experiment table. The clear

surface allows for capturing images of the metal strip from below the surface

of the table. This is opposed to capturing images from the side or from above

(mounted on the robot). Both of these alternatives have disadvantages which

include occlusions for certain configurations and the need to adjust each

frame to account for the motion of the camera.

Experiment Manipulator

Adept Robot and Robot Controller

One end of the metal strip is manipulated using an Adept XL-One robot.

This robot provides five degrees of freedom. Only three are necessary for

manipulating planar metal strips. Similar to the mount on the table, an

end effector is also attached to the bottom of the Adept-XL One robot arm.

This mount has two holes that allow the metal strip to be attached using

two screws and two nuts. An Adept 6-axis force sensor is attached between

the robot arm and the mount, which is attached to the metal strip. This

sensor is aligned with an end effector so that the axes correspond with the

orientation of the end of the metal strip. White foam board is attached to

the robot below the force sensor to ensure that the background behind the

metal strip is a consistent color.
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Figure 3.14: Block diagram of hardware interfaces and data that is transmit-
ted by each component. This includes the Adept robot used for manipulation,
the robot controller, and the host machine.

The Adept robot has three channels for providing information to the host

machine and the digital camera. Figure 3.14 shows a schematic of the in-

terconnects between all of the components. The Adept robot has a parallel

port which allows for a GPIO interface. We use a custom cable that allows

for one bit of this interface to provide a trigger to the digital camera. The

Adept robot is also connected to the host machine via USB and Ethernet

connections. The USB connection is required to make system calls. We have

written scripts, using the Expect programming language, that automate in-

teractions with the terminal interface to the USB port. The faster Ethernet

connection is used when communicating force measurements and position

measurements.

Camera

The camera is responsible for capturing images from below the surface of the

table and passing these images to the host machine. The results presented

in this thesis are taken using a Pt Grey Flea 2 camera. The camera has one

input and one output. Pin 1 is the input trigger that comes from the Adept

controller. A parallel cable was modified to connect a digital output from the

Adept controller and a ground pin to a connector that is compatible with the

Flea2 camera. The images are sent via an IEEE 1394 (Firewire) interface
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to the host machine. All images are captured in RGB format and have a

resolution of 640x480 pixels. The camera is configured manually and the

configuration settings for the experiments are provided in Table D.1. The

manual configuration along with the lighting solution ensures more consistent

RGB values for all of the images captured over the duration of experiments.

The camera is configured to only capture images when the input trigger

coming from the Adept controller detects a rising edge.

Host Machine

The host machine has three interfaces that allow for communicating with

both the robot and the digital camera. Two interfaces connect the host

machine to the Adept robot for communicating control commands and data.

The third interface is the IEEE 1394 connection to the digital camera. Though

the camera is triggered using a GPIO port on the Adept robot, the captured

images are transferred to the host machine for storage and off-line processing.

Experimental Software

The details of our software implementation can be found in Appendix D.

This includes low level software that controls the Adept robot. We have

written robot control software that initializes the state of the robot and

configures experiment parameters. Higher-level code has been implemented

that controls the robot position and captures images and records data mea-

surements from the robot. We have also developed post-processing software

that parses the generated experiment files, generates annotated images of

the elastic rod, and compares the results of experiments to the model we

have presented. This software can be downloaded at http://www.mathar-

labs.com/research/MatthewsSourceCode.tar.gz.

3.4.2 Validation of Configuration Space

The first hardware experiment we present shows the relationship between

the derived coordinates, A, and the force and torque at the end of a planar

metal strip. Our model predicts the parameters a1, a2, and a3 are directly

proportional to the force in the x direction (fx), the force in the y direction
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(fy), and the moment about the z axis (mz) at the base of the elastic rod.

This was shown in Section 3.2.1. The scaling factor between these sets of

quantities is a function of the stiffness and length of the object being manip-

ulated. With this experiment, we validate this relationship. We also show

how this relationship can allow for a quantitative measurement of the current

configuration of the elastic rod using a force/torque sensor.

Procedure
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Figure 3.15: These schematics show the same configuration, but with two
different origins. The green end effector indicates the x(0). The schematic
on the left shows the configuration with the force sensor is mounted on the
table. The schematic on the right shows the same configuration but with the
force sensor mounted to the robotic manipulator.

In order to validate the relationship between the configuration space (A)

and the force at the end of the rod, we perform experiments that determine

the linear relationship between these two quantities. We have conducted an

experiment where the metal strip moves through a sequence of configurations

and the force at the end effector attached to the robot is measured for each

configuration. The Adept robot is instrumented with a 6-dimensional force

sensor that measures the force applied to the robot by the metal strip. The

force sensor provides both force and torque measurements in each of the x,

y, and z directions. We attach the force sensor to the robot and so the

end of the metal strip that is connected to the robot is considered to be

x(0) and the end connected to the table is considered to be x(1). This is
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simply done by calculating the difference between the original end of the

strip, x(1), and each of the points along the strip. After the offset has been

calculated for each point, all of the points are rotated by the angle x3(1).

Figure 3.15 shows an example of this transformation. These schematics show

the identical configuration, but with different origins. The schematic on the

left shows the configuration where a = [−5, 0,−2] when the origin, x(0),

corresponds with the end connected to the table. The schematic on the right

shows the same configuration, but with the origin connected to the robotic

manipulator.

The goal of this experiment is to calculate a matrix, H, that transforms a

point in A to the force-torque such that fxfy
mz

 = H

a1

a2

a3

 . (3.14)

If there is an invertible matrix H, there will also be the inverse relationship

where a1

a2

a3

 = H−1

 fxfy
mz

 . (3.15)

Error Metric

The force/torque sensor provides a straight forward measurement of the error

between the predicted and observed configuration. Once the H matrix has

been determined, the configuration of the metal strip can be measured by

applying Equation (3.15) to the force. For experiments, there is a predicted

configuration (a1,a2,a3) and the observed configuration (a′1,a′2,a′3). We define

the error as

error2 = (a1 − a′1)2 + (a2 − a′2)2 + λ2(a3 − a′3)2. (3.16)

Because the torque is not the same unit as the two force components, the

error (a3 − a′3)2 is scaled by a constant value λ. For data shown in this

thesis, λ = 4. This was calculated based on the measured ratio between the

magnitude of the force measurements and the torque measurements.

55



For this experiment, we identified 32 straight-line paths between points in

Afree. Each path is equally divided into 50 equidistant points. For each point,

the position to place the robot is calculated using the algorithm shown in

Figure 3.7 and the robot is moved to the appropriate position and orientation.

The robot remains in this configuration while 50 force/torque measurements

are taken by the Adept robot. We retain the median measurement for each

step of the experiment.

After the experiment is completed, two matrices are constructed. The first

matrix is constructed by concatenating all of the predicted points such that

A =

a1(1) a1(2) ... a1(i)

a2(1) a2(2) ... a2(i)

a3(1) a3(2) ... a3(i)

 , (3.17)

where a1(2) is the value of a1 for step 2 of the experiment. The second matrix

is constructed by concatenating all of the measurements such that

F =

 fx(1) fx(2) ... fx(i)

fy(1) fy(2) ... fy(i)

mz(1) mz(2) ... mz(i)

 . (3.18)

Once these two matrices have been constructed, linear least squares regres-

sion is used to calculate the matrix H where

H = F \ A. (3.19)

Results

The results from this experiment validate the relationship between the con-

figuration space and the force/torque at the end of the rod. The experiment

produced the transformation

H =

0.0052 −0.1267 −0.0060

0.1275 −0.0045 0.0213

0.0000 0.0008 −0.0263

 (3.20)

for a strip of spring steel strip with a thickness of .007”. Figure 3.16 shows

the comparison between the predicted components for each a1, a2, and a3 and
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Figure 3.16: Comparison between the modeled configuration in A and mea-
sured configuration using a force-torque sensor.

the observed values of these quantities. We determined the measured value,

a’, by applying the inverse of the H matrix to the force/torque measurements

using Equation (3.15). The lines corresponding to the measured values for

a and the modeled values are nearly identical for the majority of the path
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Figure 3.17: This plot shows the error between the predicted configuration
and the observed configuration for the experiment shown in Figure 3.16 using
Equation (3.16).

planned. Figure 3.17 shows the error as defined by Equation (3.16). This

plot shows that a relatively small amount of error was observed with this

experiment. With the exception of one “peak”, the measured error2 < 200.

In Section 3.4.4, we will describe the cause of this peak where the highest

error is seen.

Ideally, the transformation matrix would be a diagonal matrix where

H = Iγ. (3.21)

The parameter γ is correlated with the stiffness of the elastic rod. This

is not a diagonal matrix due to a 90 degree rotation of the force sensor.

Additionally, the third row refers to the torque exerted by the rod. Because

this quantity is a product of force and distance measurements, the scaling

incorporates the length.
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The relationship between force and A provides the ability to describe the

shape of the rod with only knowledge of the force at the base. Addition-

ally, the inverse of this operation can be performed. Force measurements

can be performed with a camera and computer vision algorithms that deter-

mine points along the rod and use this information to estimate the current

configuration in A.

3.4.3 Validation of Free Space

The second set of experiments serves to confirm that our model accurately

predicts infeasible configurations of the metal strip. These experiments pro-

vide valuable insight for future manipulation of flexible objects. Certain

events, such as instabilities and self-collisions, can damage either the metal

strip or the robotic manipulator. By performing these experiments, we are

able to further constrain A to better ensure that manipulation tasks do not

produce undesired outcomes. This characterization provides insight for plan-

ning paths that approach the boundary of our model for configurations that

can be achieved.

Procedure

The goal of the experimental procedure is to recreate the boundary seen

in Figure 3.9 with hardware experiments. Experiments were performed for

9 different values for a3 ∈ −16,−14,−12,−10,−8,−6,−4,−2, 0. For each

slice, the calculated a1 and a2 boundary is sampled at 36 equidistant intervals.

For each experiment performed on a slice in a3, the initial configuration is

the exact same configuration. Figure 3.18 shows the paths for the predicted

boundary where a3 = −8.0. All of the experiments for this value of a3 start

at the configuration where a = [−59.0, 48.0,−8.0]. The green lines show the

path followed for each experiment until the predicted boundary is reached.

The red circles denote the point at which the path reaches the predicted

boundary. Each path that is confined to the slice of a3 is then planned to a

point along the calculated boundary. This ensures that any variation from

our model takes place within the plane of a3 and identifies a boundary point

for the selected slice. The robot then follows this path and the experiment

continues until one of the three constraints on A is observed. For each
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Figure 3.18: This plot shows paths that move from a point in Afree to points
along the predicted boundary where a3 = −8.0. Each blue line corresponds
to a separate experiment. The green circle indicates the point in A at which
all of the experiments start. The boundary point where the experiment is
predicted to terminate is indicated by the red circle.

step of the experiment, an image of the metal strip is captured and then

annotated with the predicted shape of the metal strip. The configuration is

also measured using the force sensor for each configuration.

A human operator is responsible for terminating experiments once the ob-

served configuration deviates from the predicted configuration. The three

types of infeasible configurations are shown in Figures 3.19 - 3.21. Figure

3.19 shows the metal strip before and after it experiences an instability that

resulted in a large deformation of its shape. Notice that the two end effec-

tors are in approximately the same position and orientation. However, this

small change has resulted in a large change in the shape of the elastic rod.

Figure 3.20 shows three types of collisions that can be experienced when per-

forming manipulation with the metal strip. When performing manipulation

experiments, it is necessary to ensure there are no collisions between: the
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Figure 3.19: These two images show the shape of the rod immediately before
and after it experiences an instability. The result of this instability is a large
deformation in which the shapes of the metal strip differ significantly.

Figure 3.20: Three types of collisions that can be experienced. These situ-
ations include the metal strip colliding with itself, the metal strip colliding
with the robot and the robot colliding with the table.

robot and the table, the robot and the metal strip, and the metal strip and

itself. Figure 3.21 shows two examples of infeasible configurations that are

due to limitations of the Adept robot. These two images show the rod when

the robot has reached a joint limit. After the experiment is terminated, the

metal strip is moved back to an initial configuration.

Error Metric

We define error in these experiments as the Euclidean distance between the

observed boundary of A and the predicted boundary. For each of the 36

experiments for each value of a3, the error is calculated by

error2 = (a1 − a′1)2 + (a2 − a′2)2 (3.22)
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Figure 3.21: Two configurations for the metal strip in which the robot has
reached its maximum rotation angle.

where a1 and a2 correspond to the predicted point on the boundary for this

value of a3. The values a′1 and a′2 correspond with the point in A where

the metal strip is placed into an infeasible configuration. The component

a3 is not factored into the error calculation for these experiments because it

remains constant for the entire path.

Results

We have shown with hardware experiments that the observed boundary ad-

heres to the predicted boundary extremely well for some values of a3. The

results shown in Figures 3.22 - 3.37 both show the ability of our model to pre-

dict when the metal strip will be placed into an infeasible configuration. The

plots in Figures 3.22 - 3.29 show a contrast between the predicted boundary

for eight values of a3. Each plot shows two curves. The red curve indicates

the predicted boundary of Afree that was calculated using a continuation

method. The plot also includes a blue curve along with blue circles. Each

circle corresponds with the point in A at which the experiment was termi-

nated because the configuration was determined to be infeasible. The blue

curve connects adjacent circles.

The predicted boundary of Afree does not always correspond well with the

observed boundary. For experiments where a3 > −10 the predicted boundary

contains a long, narrow region where a1 increases. The observed boundary
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does not include this same long, narrow region. While the calculated error

for points in this region can be rather large, this region has a rather small

volume. In addition to this discrepancy, we also see other deviations be-

tween the predicted boundary and the observed boundary. For values where

a3 > −6, the observed boundary of Afree does not correspond well with the

predicted boundary as a2 increases. All of these experiments terminated sig-

nificantly before the predicted boundary was reached due to the metal strip

experiencing an instability.

The histograms shown in Figures 3.30 - 3.37 also illustrate the discrepancies

that are shown in the plots in Figures 3.22 - 3.29. When a3 < −8, we

see that error < 20. With these experiments, the long, narrow region is

disconnected from the portion of the boundary that is validated. With the

histograms that correspond with when a3 ≥ −6, more experiments have

error > 20. However, for all values of a3 more than half of the experiments

have error < 17.
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Figure 3.22: Comparison between modeled and measured boundary for a3 =
−14.0. The red line indicates the boundary found using the continuation
method for a3 = −14.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary. The experiments conducted only validate the boundary of the
larger of the two connected components.
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Figure 3.23: Comparison between modeled and measured boundary for a3 =
−12.0. The red line indicates the boundary found using the continuation
method for a3 = −12.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary. The experiments conducted only validate the boundary of the
larger of the two connected components.
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Figure 3.24: Comparison between modeled and measured boundary for a3 =
−10.0. The red line indicates the boundary found using the continuation
method for a3 = −10.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary. The experiments conducted only validate the boundary of the
larger of the two connected components.
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Figure 3.25: Comparison between modeled and measured boundary for a3 =
−8.0. The red line indicates the boundary found using the continuation
method for a3 = −8.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary.
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Figure 3.26: Comparison between modeled and measured boundary for a3 =
−6.0. The red line indicates the boundary found using the continuation
method for a3 = −6.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary.
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Figure 3.27: Comparison between modeled and measured boundary for a3 =
−4.0. The red line indicates the boundary found using the continuation
method for a3 = −4.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary.
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Figure 3.28: Comparison between modeled and measured boundary for a3 =
−2.0. The red line indicates the boundary found using the continuation
method for a3 = −2.0. The blue points indicate the point at which the
shape of the metal strip disagrees with the model. The blue line connects
the points to allow for a comparison between the modeled and experimental
boundary.
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Figure 3.29: Comparison between modeled and measured boundary for a3 =
0.0. The red line indicates the boundary found using the continuation method
for a3 = 0.0. The blue points indicate the point at which the shape of the
metal strip disagrees with the model. The blue line connects the points to
allow for a comparison between the modeled and experimental boundary.
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Figure 3.30: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −14 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.31: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −12 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.32: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −10 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.33: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −8 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.34: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −6 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.35: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −4 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.36: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = −2 to the observed boundary.
The error for each experiment was calculated using Equation (3.22).
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Figure 3.37: This histogram shows the error for each of the experiments that
compare the predicted boundary where a3 = 0 to the observed boundary. The
error for each experiment was calculated using Equation (3.22).
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3.4.4 Errors in Validation

While the results shown in Section 3.4.2 validate the linear relationship be-

tween the A and the measured force, this relationship does not always hold.

For certain configurations, the measured value, a’, does not correspond with

the planned configuration. In fact, the discrepancy can be quite large. In

this section, we present an experiment that shows that the Jacobian of our

coordinate system (A) with respect to the position of the end of the rod in-

dicates configurations that exhibit large amounts of error. This error is seen

both using the error metric from the previous section and also results in a

discrepancy between the modeled shape and the physical shape of the metal

strip. We conclude by presenting results from hardware experiments that

validate that configurations with a “large” value for J(1, a)−1, the inverse of

the Jacobian at the end of the rod for a point a in A, exhibit a “large” error.

The Jacobian, as described in Section 3.3.2, provides valuable insight about

when the shape and force of the rod are sensitive to small changes in the

boundary conditions. When the norm of the inverse of the Jacobian of a

value in A with respect to the position (‖ J−1(1, a) ‖) is “large”, changes

in the boundary conditions result in large changes in the force at the end of

the rod. The presence of sub-millimeter error in robot placement can result

in errors in force larger than 100%. On the other hand, when ‖ J−1(1, a) ‖
is “small”, a large change in the boundary conditions only results in a small

change in the force at the end of the rod. For the calculation of the norm for

matrices in this thesis, we use the Frobenius norm.

Figure 3.38a shows two pairs of configurations that correspond to feasible

shapes for the rod. The blue and cyan configurations are more similar in

shape than the red and magenta curves. Despite the similarity in shape,

the blue and cyan rods correspond to configurations that are separated by

a larger distance in A. Figure 3.38b shows all four points, corresponding

to both pairs of configurations. These points, which all have a3 = −0.4,

are plotted onto a contour plot of the function of log(‖ J−1(1, a) ‖). The

red region, where both the blue and cyan points reside, indicates that this

function where δa ≈ J−1(1, a)δb, a small δb yields a large δa. To summarize,

when J−1(1, a) is large, even a small change (or error) in b produces a large

change in a. In regions where J−1(1, a) is small, small changes in b have a

smaller impact on the force seen at the end of the rod.
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Figure 3.38: (top) This plot shows two different pairs of configurations.
Both of these configurations appear to have “similar” shapes. (bottom) The
four points show the points in A that correspond to the configurations shown
in the top two images. This illustration shows that two configurations with
approximately the same shape can have points inA with significant variation.
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Procedure

To better validate these deviations from our model, we have conducted an

experiment where the elastic rod intentionally moves through regions of A
that have “large” values of ‖ J(1, a)−1 ‖. We ensure this value is greater than

1000. For three values for a3 ∈ −1,−2,−3, 12 distinct paths were planned.

Only four paths were planned for when a3 = −4. The same values for a1 and

a2 were used for each of the values of a3. This allows for the determination

of how the sensitivity to error at the boundary conditions is impacted by

the value for a3 or the torque around the z axis. For this experiment, all 42

experiments were performed consecutively. Each path planned had a fixed

length of 50 steps. For every step of the experiment, the measured value for

A using the force sensor was compared with the planned value in A.

Results

The experiment confirms that the predicted configuration deviates from the

observed configuration when ‖ (J(1, a))−1 ‖ is large. Figure 3.39 shows a

comparison between a path that was planned in A and the measured config-

uration from the force sensor attached to the end effector. In this graph, the

blue line corresponds with the measured error2 between the planned con-

figuration and the configuration measured using the force sensor. The red

line shows the calculated quantity ‖ (J(1, a))−1 ‖ for each of the planned

configurations. Note that the results from the hardware experiment coincide

well with the model, except for small regions where significant error is seen.

The configurations that exhibit large amounts of error all have a large value

for ‖ (J(1, a))−1 ‖. These results clearly show that the measured value for A
deviates from the model when the quantity ‖ (J(1, a))−1 ‖ increases.

The sensitivity to small perturbations in the robot placement can manifest

in both error between the predicted and observed shape of the metal strip and

error, as defined in Section 3.4.2. Figure 3.40 shows a picture of the rod while

executing a straight-line-path planned in A. This particular path travels

through a region where some configurations have ‖ J−1(1, a) ‖> 3 × 103.

These configurations are extremely sensitive to the robot placement. For

the configuration shown, the shape of the rod deviates from the modeled

shape. This deviation in shape transpires when we see large error. In the
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Figure 3.39: Calculated error between the measured configuration of the
elastic rod using a force-torque sensor and the modeled configuration. This
error plotted on the same horizontal axis as ‖ J−1(1, a) ‖ for a path planned
in A.

next chapter, we present a cost function and a motion planning algorithm to

move between configurations in a manner that ensures the metal strip does

not exhibit large error, but remains close to the predicted configuration.
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Figure 3.40: Comparison between the predicted and observed configuration
of the metal strip. The two shapes have a noticeable deviation.

80



CHAPTER 4

PLANNER

In this chapter we will describe an extension to the path-planning algorithm

presented in Section 3.3 that ensures that the metal strip will avoid config-

urations that could be infeasible with hardware experiments due to small

amounts of error. While our hardware experiments are conducted with a

planar metal strip, the cost function we present directly extends to other de-

vices such as flexible cables. First, we provide motivation by explaining why

simply identifying a feasible path can be problematic. We then introduce a

cost function that not only avoids infeasible configurations, but also avoids

configurations where the rod is sensitive to small error in robot placement.

This function also incorporates costs that avoid configurations that are close

to collisions and joint limitations of the robotics manipulator. We validate,

through the use of hardware experiments, that using the cost function to plan

paths reduces the error between the predicted and observed configuration.

4.1 Motivation

In this section, we will provide the motivation behind the cost function that

we use to perform planning with a metal strip in a manner that avoids con-

figurations where the predicted configuration deviates from the observed

configuration. In fact, with a small amount of error, these configurations

can actually be infeasible. For example, our model does not take into ac-

count the thickness of the metal strip used for experiments when checking

for self-collisions. Due to this assumption, the metal strip may experience a

self-collision though our model predicts that the configuration is feasible.

In addition to avoiding configurations that our model predicts are nearly

infeasible, we designed our cost function to take into account the sensitivity

of the force exerted by the metal strip to small errors in the placement of
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Figure 4.1: Contour of the function log(‖ (J(1, a))−1 ‖) for a3 = −1.0 along
with a line segment between an initial and goal point. This line segment
corresponds to a performing manipulation through configurations that are
sensitive to small error in the placement of the robot’s end effector.

the robotic manipulator. As described in Section 3.3.2, our chart provides

for a straight forward calculation of the Jacobian which provides information

about the relationship between perturbations in A and the related change in

B for a particular configuration. This relationship can be used to perform

manipulation in a manner that prevents the rod from moving through shapes

that are sensitive to the robot placement.

To illustrate the cost function, we show a concrete example where a straight-

line path in A produces a path where the metal strip moves through configu-

rations that are sensitive to error in the placement of the robotic manipulator.

Figure 4.1 shows a contour plot of the quantity ‖ (J(1, a))−1 ‖ for a3 = −6.

The blue areas of the plot correspond with when the quantity ‖ (J(1, a))−1 ‖
is relatively small. On the other hand, the red areas of the plot correspond

with when this quantity is large. This plot shows points in A that corre-
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Figure 4.2: This plot shows a contour of the function log(‖ (J(1, a))−1 ‖)
for a3 = −1.0. The path that minimizes the total cost to move between an
initial configuration and a goal configuration is displayed on top of the plot
of the cost function.

spond with feasible configurations of the metal strip. These two points are

connected by a straight-line path that could be produced by our motion plan-

ning algorithm. All of the points on this line are in Afree. However, this path

moves through a region with a high value of ‖ (J(1, a))−1 ‖.
In contrast to the motion planning algorithm where two feasible configu-

rations are connected with a straight line, we can perform motion planning

in a manner that avoids regions that are undesirable. Figure 4.2 shows the

same initial and goal configuration. However, the path between these two

points is not a straight line, but consists of curves that move around this

region where the value of ‖ (J(1, a))−1 ‖ is large. While the length of this

path, or the total Cartesian distance between these two points, is longer, the

total cost is still significantly lower than moving through configurations that

are sensitive to error in robot placement. Figure 3.40 shows how the shape
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of the metal strip deviates from the predicted shape when the configuration

is sensitive to the robotic placement. By following a path that avoids these

regions of high sensitivity, we can avoid similar deviations.

4.2 Cost Function to Ensure Robust Manipulation

In this section, we describe the three terms of the cost function that are used

to plan robust paths to move between two configurations of the metal strip.

The first term of the cost function is used to avoid configurations where the

metal strip is sensitive to error in the placement of the robotic manipulator.

The second two components are used to penalize configurations that are

nearly infeasible due to the proximity to a self-collision or the proximity to

robotic manipulator reaching a joint limitation.

4.2.1 Cost Due to Sensitivity to Robot Placement

The first term in the cost function avoids configurations that experience

instabilities and configurations that are highly sensitive to robot placement.

Both of these types of configurations can be identified using the Jacobian

matrix, as described in Section 3.3.2. We define the cost due to sensitivity

to boundary conditions as

costsensitivity =‖ (J (1, a))−1 ‖2 . (4.1)

While this penalizes configurations where the metal strip is sensitive to

small changes in the placement of the robotic manipulator, the error term,

‖ (J(1, a))−1 ‖2, naturally increases as the rod approaches an instability.

Recall, to test for an instability, we check the determinant along the rod

to ensure that det(J(1, a)) 6= 0 along the whole length of the rod. As the

determinant approaches 0, the term ‖ (J(1, a))−1 ‖2 approaches ∞. Figure

4.3 shows a contour plot of the cost due to this term. All of the cost plots show

the log of the cost to provide more contrast. The infeasible configurations are

indicated with red. The dark blue region of this contour plot indicates points

in Afree where the metal strip is less sensitive to the robotic placement. This

contour plot also shows a region in the center of Afree where the cost increases
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Figure 4.3: Cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −6.0.

significantly. Within Afree, the cost also increases towards the points along

the boundary where our model predicts the rod will experience an instability.

4.2.2 Cost Due to Proximity to Collision

The second term of the cost function is due to the proximity to a configu-

ration in which the metal strip experiences a self-collision. When detecting

the proximity to self-collisions, we use a bounding volume hierarchy to de-

tect when two points along the rod approach intersection with each other.

To calculate the cost function due to collisions, we divide the rod into 20

segments. A circle of diameter 1
20

is constructed around each of the selected

points. The center of the circle is a point along the predicted shape of the
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Figure 4.4: This plot shows the component of the total cost due to the
proximity to self-collision as defined by Equation (4.2) and Equation (4.3)
for the plane where a3 = −6.0.

metal strip. An exhaustive search then determines which two non-adjacent

volumes have the smallest distance between their centers. Adjacent portions

of the metal strip are naturally in proximity so adjacent volumes are not

checked for collisions.

When the distance between the two volumes is less than 0.11 we assess a

cost due to proximity to collision using two calculations. The first calculation

adjusts the minimum distance to take into account the radius of the bounding

volumes. We consider the minimum distance to be

adjusted mindist = max (.00001,mindist − .05) . (4.2)

This adjustment ensures that the cost function is both positive and finite.

When the distance between the center of the two nearest volumes is less than
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0.05, or twice the radius of the bounding volumes, the metal strip is consid-

ered to experience a self-collision. The second calculation assesses a cost to

configurations that are not determined to experience a self-collision, but have

volumes with an adjusted minimum distance where adjusted mindist =< 0.06.

The cost function associated with these configurations is

costcollision = 5× 108

(
1

.06− (.06− adjusted mindist)

)2

. (4.3)

Figure 4.4 shows a contour plot of the cost due to the proximity to self-

collisions for the plane where a3 = −6.0. This plot does not have as much

contrast as the plot of the sensitivity to the placement of the robotic manip-

ulator. For very few configurations towards the right boundary of Afree, the

plot has green points that indicate that the cost is non-zero and non-infinite.

4.2.3 Cost Due to Proximity to Robot Joint Limits

While the first two terms of the cost function are applicable to all manipu-

lation tasks, the last term of the cost function is required due to constraints

imposed by the robotic manipulator. In addition to the cost due to sensitivity

to boundary conditions and instabilities, our cost function has a component

that is related to the angle at the end of the rod, θ. The orientation of the

Adept robot’s gripper is limited to θ < |4π
3
| by imposing an infinite cost to

configurations with a larger magnitude. The cost due to the rotation angle

is calculated for configurations with θ > 7π
6

using the formula:

costrotation = 5× 108

(
1

4π
3
− θ
− 1

4π
3
− 7π

6

)2

. (4.4)

Only a small region of feasible configurations are impacted by the cost

function for the rotation angle. Figure 4.5 shows the cost due to the rotation.

The cost due to the orientation is either ∞ for infeasible configurations or

mostly 0 for feasible configurations. A small region towards the right of the

feasible configurations is green which indicates that these configurations are

feasible, but have an orientation that exceeds 7π
6

. For this slice of a3, and for

other slices, only a small region of Afree correspond to feasible configurations

with θ < 4π
3

.
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Figure 4.5: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −6.0.

4.2.4 Total Cost Function

We calculate the total cost function as the sum of the three individual terms

such that

totalcost = costsensitivity + costcollision + costrotation. (4.5)

The total cost for feasible configurations is truncated with a limit of 5× 107.

This is done to ensure that feasible configurations that are extremely close

to the boundary do not receive an infinite cost. This could result in motion

plans that extend outside of Afree instead of consisting completely of feasible

configurations. Figure 4.6 shows a contour of the total cost function. This

function largely resembles the cost due to the sensitivity of the configuration

to error in robotic placement. As seen with the plots of the individual terms

of the cost function, the second two terms of the cost function are either
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Figure 4.6: Total of all three components of the cost function Equation (4.1),
Equation (4.3), and Equation (4.4) for the plane where a3 = −6.0.

0 or infinite for the majority of configurations. The plots of the total cost

function, along with plots for each of the components of the cost function,

can be found in Appendix B.

4.3 Experimental Validation of Reduced Error Using

Minimal Cost Paths

The purpose of this set of experiments is to contrast the error seen when per-

forming motion planning using the cost function presented in this chapter to

motion planning that only ensures that configurations are in Afree. Hardware

experiments in the previous chapter validated that our algorithm successfully

plans a path to move from an initial configuration to a goal configuration.

However, this planning algorithm was also shown to move the metal strip
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through configurations where the observed strip deviates from the our pre-

diction. The hardware experiments reported in this chapter show the extent

to which planning using the cost function reduces the error experienced when

performing manipulation.

4.3.1 Procedure

Initial and Goal Configuration Selection

To validate the ability to plan paths that minimize sensitivity to small error

in robot placement, 30 experiments were performed to compare straight-line

paths to paths that minimized the total path cost using our cost metric. To

best demonstrate the benefit of using the robust planner, 30 configurations

were selected from within Afree where ‖ (J (1, a))−1 ‖2> 1 × 106, is larger

than 1× 106. Two configurations that are collinear with the initial high-cost

point are then selected where ‖ (J (1, a))−1 ‖2< 1.5× 104. All configurations

that are on the straight-line path in A between the two configurations are

checked to ensure feasibility. After this straight-line path is identified, the

LRM* algorithm is used to identify a path that minimizes the total cost

between these two configurations.

Planner Implementation

The ability to represent all feasible configurations for an elastic rod with just

three parameters can be leveraged to decrease the amount of time needed

to search the state space for a path of minimal cost. In addition to be-

ing of low state space, we have found that feasible values for each of the

three dimensions (a1, a2, a3) are bounded. The LRM* implementation re-

quires time to sample the feasible configuration space and generate data

structures with this sampled information. However, subsequent paths can

be determined faster than single-query approaches. We have implemented

a lattice roadmap [38] that creates a 3D lattice that samples the cost func-

tion at intervals of 0.2 in each dimension. This results in an array of size

1251x1251x81. Though the sampling of the state space is deterministic and

not random, this representation provides a few key benefits. The lattice
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structure allows for a simple data structure that allows for constant data

access time. Instead of requiring a structure that requires dynamically al-

located memory, this lattice structure can be stored in a 3D array. Array

cells that are within one cell of a particular cell can be accessed with a sim-

ple mathematical operation that requires only addition and multiplication.

This regular structure also allows for scalable search time for determining

optimal paths. Instead of checking the neighbors within the data struc-

ture ( [x− 1, y, z][x+ 1, y, z][x, y + 1, z][x, y − 1, z][x, y, z − 1][x, y, z − 1] ),

we can trivially increase the distance to “neighbor” cells ( [x − 10, y, z][x +

10, y, z][x, y+10, z][x, y−10, z][x, y, z−10][x, y, z−10] ). This property allows

for developing more coarse motion plans that are not as optimal, but can be

generated with less time. Once this data structure is constructed, searches to

identify paths that minimize the total cost can be performed using Dijkstra’s

algorithm or A* algorithm.

While this implementation does require significant up-front calculation to

construct (approximately 240 hours with Intel Core i5 processor), it provides

some key benefits. Searches using Dijskstra’s algorithm of this structure to

find optimal paths through this graph can be conducted faster than other

algorithms. The LRM* implementation completed searches for paths in less

than 10 seconds when the interval size was 1 and less than 30 minutes when

the interval size was set to .2.

Path Execution

After the LRM* algorithm has generated an optimal path to follow to move

from the initial configuration to the goal configuration, a straight-line path

is planned to move back to the initial configuration. For each point along

the path which includes both the robust path and the straight-line path,

the position and orientation are calculated using Equations (3.7) - (3.10).

The Adept robot is initialized at the starting configuration and the robust

path is used to move to the goal configuration. Figure 4.7 shows a plot of

the predicted values for a1, a2, and a3 for the entire experiments shown in

Figures 4.1 and 4.2. The vertical black line in Figure 4.7 indicates when

the goal configuration was reached using the robust planner. The remaining

400 steps show the path planned back to the initial configuration. The cost

due to sensitivity is also provided in Figure 4.7 to show how the minimum
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Figure 4.7: Results of experiments that compare straight-line-paths in A to
paths that minimize the total cost to move from an initial configuration to
a goal configuration. The first part of the path moves from starting config-
uration to goal configuration using the robust planner. A straight-line path
is used to move back to the goal configuration. The sensitivity to boundary
conditions is also shown for this entire experiment.

cost path is significantly less sensitive than the straight-line-path. Figure 4.8

shows a 3D plot of this same experiment to help contrast the two paths in

A to move between the two configurations. As with Figure 4.7, the red line

shows the straight-line path and the blue line shows the robust path that

was calculated using the LRM* algorithm.

For these experiments, the force sensor is used to measure the force exerted

by the metal strip against the robot. The camera is also used to capture

images for each configuration after the robot has completed movement to

the desired pose. We use the same error metric given in Equation (3.16) to

compare the robust paths to the straight-line paths.
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Figure 4.8: Complete path in A for an experiment. The two circles indicate
the initial and goal configuration. The blue line shows the robust path for
manipulating the metal strip. The straight red line shows the path followed
to move back to the initial configuration.
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4.4 Results

The hardware experiments conclusively show that using the cost function

significantly reduced the error between the observed configuration and the

predicted configuration. Similar results are seen for several of the experiments

comparing straight-line-paths in A to minimum cost paths. Figures 4.9 - 4.18

show the results from ten experiments. Additional results can be found in

Appendix C. These plots show a comparison between the predicted and

observed configuration for each of the three dimensions of A. These plots

also plot the error and the value of our cost function for each step in the

experiment. The results in Table 4.1 show both the median and maximum

error2 value seen during each experiment. Figure 4.19 graphically shows the

data contained within this table. While some of the straight-line paths have

maximum error2 values less than 20, with some experiments, this quantity is

larger than 6×104. These deviations correspond to large deviations between

the predicted and observed force.

Path planning using minimum cost paths does come with some potential

drawbacks. First, these paths are longer than the straight-line-paths. This is

both in terms of distance traveled in A and also the total distance the robot

moves. While the planned paths do involve a larger range in forces exerted

by the robotic manipulator, these forces are smaller than the observed forces

using straight-line-paths. These paths do sometimes move close to configu-

rations that are near instabilities. This proximity to instabilities sometimes

causes the shape of the rod to deviate from the predicted configuration. De-

spite this error in shape, the observed value of a is still smaller than when

moving along a straight-line-path. Second, the determination of minimum-

cost-paths does require a computation cost. Unlike the straight-line-paths

where the robot placements can be calculated in a trivial amount of time,

more time is necessary to calculate minimum-cost paths.
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Figure 4.9: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−6.4, 16.6, 0.0] and
[−6.4,−16.6, 0.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.10: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a
path planned using our cost function between the points [−1.6, 11.4, 0.0] and
[−1.6,−11.4, 0.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.11: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−12.0, 22.8, 0.0] and
[−12.0,−22.8, 0.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).

97



0 100 200 300 400 500 600 700 800 900
0

10000

20000

30000

40000

50000

60000

er
ro

r2

Experiment Step

0

200000

400000

600000

800000

1e+06

0 100 200 300 400 500 600 700 800 900

||J
(a

)-1
||

-30
-20
-10

0
10
20
30

0 100 200 300 400 500 600 700 800 900

a 3

-100

-50

0

50

100

0 100 200 300 400 500 600 700 800 900

a 2

-50

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900

a 1

Observed
Predicted

Comparison Between Straight-Line Path
and Path Generated Using Cost Function

Figure 4.12: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−16.4, 26.2, 0.0] and
[−16.4,−26.2, 0.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.13: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components inA when we follow both a straight-line path and a path planned
using our cost function between the points [1.6,−14.2, 0.0] and [1.6, 14.2, 0.0].
The region to the left of the black line shows the robust path while the region
to the right shows the straight-line path. The bottom plot shows the error2

(green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.14: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a
path planned using our cost function between the points [2.2, 7.2,−1.0] and
[0.8,−16.6,−1.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).

100



0 200 400 600 800 1000 1200
0

10000

20000

30000

40000

50000

er
ro

r2

Experiment Step

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200

||J
(a

)-1
||

-30
-20
-10

0
10
20
30

0 200 400 600 800 1000 1200

a 3

-100

-50

0

50

100

0 200 400 600 800 1000 1200

a 2

-50

0

50

100

150

200

0 200 400 600 800 1000 1200

a 1

Observed
Predicted

Comparison Between Straight-Line Path
and Path Generated Using Cost Function

Figure 4.15: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [0.8,−16.6,−1.0] and
[2.2, 7.2,−1.0]. The region to the left of the black line shows the robust path
while the region to the right shows the straight-line path. The bottom plot
shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.16: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a
path planned using our cost function between the points [−1.6, 11.4, 0.0] and
[−1.6,−14.6,−1.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.17: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−12.0, 22.8, 0.0] and
[−10.4,−17.0,−1.0]. The region to the left of the black line shows the ro-
bust path while the region to the right shows the straight-line path. The
bottom plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure 4.18: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−16.4, 26.2, 0.0] and
[−15.4,−16.2,−1.0]. The region to the left of the black line shows the ro-
bust path while the region to the right shows the straight-line path. The
bottom plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Table 4.1: Comparison of the median and maximum error2 value for 30
experiments that used both the robust planner and a straight-line path in A
to move between two configurations.

Robust Planner Straight-Line Paths

Medianerr2 Maxerr2 Medianerr2 Maxerr2

1 5.13 12 5.84 63200
2 3.78 13.1 4.24 62600
3 7.31 21.2 12.9 59900
4 8.5 1 14.7 4.7 58600
5 3.27 9.85 3.87 54400
6 15.5 28.5 4.85 52300
7 3.76 106 1.61 49500
8 30.8 43.3 32.5 42000
9 20.9 30.8 30.3 33000

10 19.8 29.8 23.9 28300
11 8.28 17.12 4.18 14640
12 18.41 26.36 7.77 10860
13 8.5 19.17 2.68 8463.5
14 10.21 18.39 1.84 6318.6
15 12.32 19.59 3.36 5220.3
16 10.259 21.768 3.6837 5113.2
17 7.6119 22.642 3.9306 4932.9
18 12.237 27.538 3.4528 4034.2
19 17.183 27.537 15.26 3621.4
20 19.64 30.458 15.709 2548.5
21 10.378 18.676 2.6024 2418.7
22 12.517 23.225 1.9009 2035.5
23 11.725 25.087 2.7445 1808.2
24 11.785 35.273 2.7105 1128.8
25 11.044 19.732 1.4762 947.57
26 12.309 21.511 3.3374 586.9
27 21.261 30.05 20.156 454.03
28 10.751 20.08 3.2406 441.04
29 13.799 23.971 7.7549 420.91
30 25.043 36.089 26.871 122.03
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Path planning using the cost function to identify minimum cost paths pre-

vents the rod from experiencing large amounts of error. This error translates

to a large deviation between the predicted and observed force exerted by the

robotic manipulator. Recall from Section 3.2.4 that the observed value of a is

the observed force applied at the end of the rod. When the rod experiences a

large deviation from the planned value for A, the rod is exerting a force that

varies from the expected value. Figure 4.20 shows the force measured by the

robotic manipulator for an experiment where the cost function was applied

to identify a robust path between two configurations and a straight-line path

was used to return to the original starting configuration. For this plot, only

the magnitude of the fx and fy are shown and not the torque, mz.

With this experiment, the graph comparing the observed and predicted

forces shows that the planned force with the robust path is larger than the

maximum that was planned for the straight-line path. However, the rod

experiences a large deviation in force with the straight-line path. The maxi-

mum force experienced at the end of the rod when using a straight-line path

exceeds 30 N. This result gives cause for concern. When performing manipu-

lation tasks, the force exerted against the robot is more than 15 times larger

than our model suggests. The maximum deviation between observed force

and predicted force experienced when using the robust planner is less than 1

N compared with more than 30 N seen with the straight-line path.

Using the cost function to determine minimum cost paths does not remove

all of the error. As shown in Table 4.1, both the median error2 and maximum

error2 values for the robust planner often exceed 8. In fact, the median error

for the robust planner is larger than the median error for the straight-line-

paths. Though the error is greatly reduced using the cost function to plan

paths, additional techniques can further reduce the observed error.
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CHAPTER 5

CONTROLLER

In the previous chapter, we presented a cost function that can be used to

plan paths for a robotic manipulator that ensure that the metal strip avoids

configurations that are either nearly infeasible or sensitive to small amounts

of error. We uniformly sampled the entire region of Afree to calculate the

cost for each configuration and then completed experiments to contrast the

paths that minimize the total cost to straight-line paths. The experiments

conducted validate that performing motion planning using this cost function

significantly reduced the error between observed configurations and predicted

configurations.

In this chapter, we present the design of a closed-loop controller that uti-

lizes feedback from sensor measurements to manipulate of a metal strip in

a manner that reduces the amount of observed error. The controller serves

as a compliment to the motion planning algorithm shown in the previous

chapter. First we describe a method for measuring the configuration of the

metal strip using a position sensor and then present an estimator that com-

bines two different types of measurements of the elastic rod’s configuration

in. Next, we describe the implementation of the feedback controller that

incorporates our estimator and provide experimental results that compare

the error observed when performing open-loop manipulation to the observed

error when utilizing the controller.

5.1 Estimator

In Chapter 3, we demonstrated the ability to estimate the configuration of

the strip by measuring force and torque at one end. In this section, we

demonstrate the ability to estimate the configuration of the strip by mea-

suring the position of a finite number of points along its length. While the
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position sensor usually provides the best measurement of the metal strip’s

configuration, this is not the case when the configuration is sensitive to error

in the robotic manipulator placement. The estimator we have designed com-

bines both types of sensor measurements in a manner that weighs the force

sensor more heavily when our model predicts the position is less accurate.

5.1.1 Measurement of aposition

We have previously shown a method for recovering the configuration from a

the position of points along the metal strip [41]. We denote the position by

(X̄, Ȳ ) and this orientation by θ̄, and let x̄ = X̄/L and ȳ = Ȳ /L. We assume

that a camera has a line of sight. This camera is orthogonal to the plane in

which the rod is deforming and is placed at a fixed distance from this plane.

Let B be a linear transformation that takes points in the image plane of the

camera and converts them to points in the world frame and then scales these

points by L. After applying this transformation to the rod observed by the

camera, the resulting rod will have unit length.

The metal strip is in some configuration (q, u) corresponding to some a ∈
A. Thus determining the configuration (q, u) of the rod (which is an infinite-

dimensional curve) is equivalent to determining the finite-dimensional value

of a, and we denote this dependence by (q(t, a), u(t, a)).

We assume that fiducial markers are placed at known locations along the

rod. Assume that n markers are located at distinct positions along the

rod, given by 0 < L1 < L2 < ... < Ln < L, and let lj = Lj/L. Let

(X̃j, Ỹj) be the location of the jth marker observed in the image plane, and

let (x̃j, ỹj) = B((X̃jỸj)), i.e. (x̃j, ỹj) is the position of the jth marker in the

plane of the rod scaled by the length of the rod. For any a ∈ A, let x(t, a)

and y(t, a) be the position coordinates and let θ(t, a) be the orientation of

point t along the configuration (q(t, a), u(t, a)).

Define F (a) to be
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F (a) =



x(l1, a)− x̃1

y(l1, a)− ỹ1

.

.

.

x(ln, a)− x̃n
y(ln, a)− ỹn
x(1, a)− x̄
y(1, a)− ȳ
θ(1, a)− θ̄



(5.1)

If the configuration corresponding to a matches the observed configuration

exactly, then we will have F (a) = 0. We now have a system of 2n + 3

nonlinear equations. If we let Ĵ(a) denote the Jacobian of F (a), we can use

the Newton-Raphson method to recursively approximate a using Equations

(5.2) and (5.3). For the experiments we present in this thesis, aforce is the

initial configuration for this method.

∆a(i) = (Ĵ(a(i))T Ĵ(a(i)))−1Ĵ(a(i))TF (a(i)) (5.2)

a(i+1) = a(i) −∆a(i) (5.3)

All that remains is to find Ĵ(a). The kth column of J(t) is

[
δx(t,a)
δak

δy(t,a)
δak

δθ(t,a)
δak

]
. (5.4)

Denoting the dependence of J(t) on a explicitly and denoting the kth row

of J(t, a) by Jk(t, a), we have
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Ĵ(a) =



J1(l1, a)

J2(l1, a)

.

.

.

J1(ln, a)

J2(ln, a)

J1(1, a)

J2(1, a)

J3(1, a)



. (5.5)

In [41] we use computer vision to measure the position of markers along

the metal strip, but for the experiments we present in this thesis, we look at

a special case of this formulation. We consider the case where the positions

of markers are not used (n = 0). Only the position and orientation at the

end of the rod are measured. The Adept robot provides a measurement of

its current placement. This includes the planned position along with the

addition of a small amount of noise due to the alignment of the table. The

manufacturer reports that the Adept robot has a repeatability of +/−0.025

mm for the xy plane. The table alignment procedure that is utilized allows

for repeatability of less than 1mm.

5.1.2 Estimator Design

Once the configuration of the metal strip has been measured using the force

sensor and the position sensor, these two measurements must be combined

to form an estimate. In previous sections, we have shown that the position

sensor attached to the robot most often is sufficient for measuring the con-

figuration. We have also shown that the position measurement becomes less

accurate as the norm of the inverse of the Jacobian of a with respect to q

at the end of the strip (‖ J(1, a)−1 ‖ ) increases. The Jacobian provides

a relative measurement of the sensitivity of each sensor to error. We have

designed an estimator â where:

â = aforce
Γ

Γ+ ‖ (J(a [n])−1 ‖
+ aposition

‖ (J(a [n])−1 ‖
Γ+ ‖ (J(a [n])−1 ‖

. (5.6)
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Γ
Γ+‖(J(a[n])−1‖

Σ

a [n]force

a [n]position

Low
Pass
Filter

‖(J(a[n])−1‖
Γ+‖(J(a[n])−1‖

Figure 5.1: The design of the estimator that combines measurements from
the position sensor and the force sensor.

This estimator requires Γ, a parameter that we select, and ‖ (J(1, a)−1 ‖
which is calculated for the observed configuration (aforce). The block dia-

gram of the estimator is shown in Figure 5.1. This weighting allows for the

combined measurement to be biased towards the force sensor when the metal

strip is determined to be in a configuration that is highly sensitive to small

perturbations. When the rod is less sensitive to these perturbations, the

combined measurement is biased towards the position measurement. After

the two weighted measurements are combined, a low-pass filter is applied to

remove high-frequency noise.

5.2 Controller Design

In this section, we describe the design of the proportional integral (PI) con-

troller implemented that incorporates the observer presented in the previous

section. Figure 5.2 shows the block diagram of the controller. The input

to this system is the signal aref[n], the reference configuration. For each es-

timate, the difference between the reference configuration and the observed

configuration is calculated. An integrator calculates the sum of the error

observed from each measurement. This cumulative sum is multiplied by the

integral gain Ki. The current error measurement is scaled by the proportional

gain Kp. The integral and proportional components are then combined to
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aref [n]

â [n]

Σ

Σ

ΣKp

Ki

J (a [n]) Plant

a [n]position

a [n]f orce

Estimator

Figure 5.2: The feedback controller loop implemented for hardware experi-
ments. This controller uses a force sensor and a position sensor to perform
regulation at a point in A and tracking a straight-line path in A

determine δa, the desired change in a. In order to determine the adjustment

in robot placement required to achieve a desired configuration, the Jacobian

of the system must be calculated. The Jacobian of aforce[n] is calculated and

then this matrix is multiplied by the vector obtained from combining the

integral error and proportional error components such that

δb = J (1, aforce [n]) δa. (5.7)

The position of the robot is adjusted by this calculated value for δb. After the

robot is relocated to the new position and both sensors measure the current

configuration of the metal strip, the estimator from Section 5.1.2 is applied,

and another iteration of the feedback loop is executed.

Time-Varying aref

We use the feedback controller to track a time-varying point in A. Instead

of a constant value of aref[n] for all n, the value can change over time. For

the experiments presented, the paths tracked are the same straight-line paths

used with the previous chapter. When tracking trajectories through A, the

aref is updated with each iteration of the feedback controller such that

aref [n+ 1] = aref [n] + δa. (5.8)
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5.3 Experiments

5.3.1 Purpose

The purpose of this set of experiments is to validate that using a feedback con-

troller to manipulate a metal strip reduces the observed error below the error

seen when performing open-loop manipulation. These experiments show that

using sensor measurements of the current configuration to determine a feed-

back input ensures more robust manipulation. In addition to the planning

paths that are minimally sensitive to the placement of the robotic manipula-

tor, as shown in Chapter 4, we show that error can be reduced by using the

sensor information.

5.3.2 Procedure

Experiment Paths

We performed a set of experiments where the feedback controller, presented

in Section 5.2, is applied to paths that move through configurations that

are sensitive to error in robot placement. The paths chosen are a subset of

the paths used for experiments from Chapter 4. Each path moves through

configurations that are extremely sensitive to the robot placement while the

other path moves through configurations that are significantly less sensitive

(‖ J(1, a)−1 ‖> 3000). Each path is sampled at an interval of l 1
400

where l is

the length of the path so that the trial will have the same number of steps

as the open-loop manipulation experiment in Chapter 4.

Parameter Selection

The implementation of the feedback controller requires the selection of two

sets of parameters. First, we must select Γ, the constant that is used in

the estimator described in Section 5.1. For the experiments in this chapter,

Γ = 175. This value was determined using a tuning procedure. The second

set of parameters that we selected are the gains for the feedback controller.

For the experiments in this chapter, Kp = 1.000 and Ki = 0.005. These

values were also determined using a tuning procedure.
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Error Metric

The error metric used for these experiments is the distance between the

observed configuration and the predicted configuration

error2 = (a1 − a′1)2 + (a2 − a′2)2 + (a3 − a′3)2. (5.9)

We use the estimate which combines measurements of the configurations from

the force sensor and measurements using the position sensor.

5.3.3 Results

The results demonstrate that the application of a PI feedback control law

reduced the maximum error observed below the error observed when perform-

ing open-loop manipulation. The first set of graphs, Figure 5.3 and Figure

5.4, show the impact of the PI feedback controller. The black line shows a

plot of the planned straight-line path but projected onto the a3 plane. The

blue lines in both plots show the observed path when the feedback controller

is used along with the observed path using just open-loop control.

With both experiments, the observed configurations correspond well to-

wards the ends of both line segments using an open-loop controller. The

ends of both line segments correspond with configurations that are mini-

mally sensitive to the robot placement. There is a large deviation from the

planned paths for portions towards the middle of the line segment. Both sets

of graphs show that the feedback controller follows the planned path better

than the open-loop control strategy. However, the deviation from the planned

path is less pronounced with the second trajectory that is less sensitive to

robot placement. These results suggest that the application of the feedback

controller to paths that minimize sensitivity to error in robot placement can

better ensure robust manipulation when moving between configurations.

The second set of graphs, Figure 5.5 and 5.6, contrast the error observed

when performing open-loop manipulation to the error observed when per-

forming closed-loop manipulation. The trajectory in the first plot moves

through configuration in A that are extremely sensitive to small perturba-

tions in boundary conditions. The open-loop control has a maximum error2

that is more than 10x the maximum experienced with the closed-loop con-

116



troller. Though the closed-loop controller deviates from the planned path,

the magnitude of error does not compare with the error seen with open-

loop manipulation. With the second trajectory, the straight-line path does

not move through configurations that are as sensitive to the placement of

the robot as with the first trajectory. The maximum error2 for both the

open-loop and closed-loop controllers is significantly smaller than with the

first trajectory. However, the error is still reduced by the application of the

feedback controller.
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an open-loop controller, and the observed configurations using a closed-loop
controller.
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Figure 5.4: A straight-line path in A, the observed configurations using
an open-loop controller, and the observed configurations using a closed-loop
controller.
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Figure 5.5: Reduction in error due to the implementation of the PI controller.
For this experiment, the path planned in A is a straight-line path through a
region in A that is extremely sensitive to error at the boundary conditions.
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Figure 5.6: Reduction in error due to the implementation of the PI controller.
For this experiment, the path planned in A is a straight-line path through a
region in A that is less sensitive to error at the boundary conditions.

121



CHAPTER 6

FUTURE WORK AND CONCLUSION

In this chapter we discuss potential future work that is related to the research

presented in this thesis. We begin by revisiting our motivating application

and sharing how the problem formulation that we validated for the planar

metal strip directly extends to spatial metal cables. The problem formulation

is followed by the presentation of preliminary results that have been obtained

with both the Adept robot and the Baxter robot. We close this chapter with

remarks that conclude the work presented in this thesis.

6.1 Future Work

6.1.1 Motivation

The application of installing a wire harness using an industrial robot, such

as Baxter, serves as motivation for the work we have conducted with a pla-

nar metal strip. The formulation applied to planar elastic rods can easily

be extended to describe three-dimensional elastic rods as well. We can ap-

ply this theory to model thin, inextensible materials, such as thin rods and

cables. The implementation of manipulation with spatial flexible objects,

such as wires, has direct applications to industrial settings. Figure 6.1 shows

Baxter, a new industrial robot, manipulating one end of a wire for a wire

harness prototype with two cables. This prototype consists of two wires that

are connected at one end. The other end of both cables is instrumented

with a magnetic connector that enables connecting to the workspace. This

prototype is representative of possible usages for the Baxter robot and the

formulation that we present is capable of enabling the installation of cables

using this environment or other industrial settings.
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Figure 6.1: Baxter performing manipulation with a cable assembly proto-
type. This prototype contains two separate wires that are attached at one
end. The Baxter robot is attaching the other end of one of the wires to a
connector of a table surface.

6.1.2 Theoretical Framework for A with Spatial Elastic Rod

Our manipulation work builds upon previous work by Bretl and McCarthy

[56] that describes the shape of kinematic chains and spatial elastic rods. We

will focus on manipulating “massless” elastic rods, allowing us to neglect the

impact of gravity on the shape formed as a result of end effector placement.

Similar to the planar elastic rod, feasible shapes for the spatial elastic rod

minimize the total energy given a set of boundary conditions. However, both

endpoints are in SE(3) instead of SE(2).

We model the metal wire as a thin, inextensible, and unit length where

the shape of this rod by a continuous map q : [0, 1] → G, as shown by Bretl

and McCarthy, where G = SE(3). Abbreviating TeLq(ζ) = qζ, we require

this map to satisfy

q̇ = q(u1X1 + u2X2 + u3X3 +X4) (6.1)

123



for some u : [0, 1]→ U , where U = R3 and

{X1, . . . , X6} ={[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
,

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
,

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]}
(6.2)

is a basis for g. Denote the dual basis for g∗ by {P1, . . . , P6}. We refer

to q and u together as (q, u) : [0, 1] → G × U or simply as (q, u). For our

experiments, we assume that both ends of a wire are affixed to grippers at

locations q(0) and q(1). We also assume that q(0) = e, however, this pose

is free to change within the world frame such that q(1) is just the offset

from the base of the rod. The other end of the rod, q(1), is free to take any

configurations in B = G. Unlike the planar elastic rod that only could bend

in one plane and had only one component for potential energy, the spatial

has three potential energy components that must be minimized in order for

the rod to be in static equilibrium. Similar to Bretl and McCarthy [56], we

assume the rod has total elastic energy 1
2

∫ 1

0
(c1u

2
1 + c2u

2
2 + c3u

2
3) dt for given

constants c1, c2, c3 > 0 [51]. These constants c1, c2, c3 are weighting factors

that relate the three sources of potential energy, ui. This is essentially the

Poisson’s ratio.

In order for the rod to be in static equilibrium, the rod must be in the

minimal energy configuration given the boundary conditions. This energy is:

minimize
q,u

1

2

∫ 1

0

(
c1u

2
1 + c2u

2
2 + c3u

2
3

)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = e, q(1) = b

(6.3)

for some b ∈ B.

Necessary Conditions for Static Equilibrium

In previous work by Bretl and McCarthy [56], Theorem 5 states:

Theorem 8. A trajectory (q, u) is normal with respect to (6.3) if and only
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if there exists µ : [0, 1]→ g∗ that satisfies

µ̇1 = u3µ2 − u2µ3 µ̇4 = u3µ5 − u2µ6

µ̇2 = µ6 + u1µ3 − u3µ1 µ̇5 = u1µ6 − u3µ4 (6.4)

µ̇3 = −µ5 + u2µ1 − u1µ2 µ̇6 = u2µ4 − u1µ5,

q̇ = q(u1X1 + u2X2 + u3X3 +X4), (6.5)

ui = c−1
i µi for all i ∈ {1, 2, 3}, (6.6)

with initial conditions q(0) = e and µ(0) =
∑6

i=1 aiPi for some a ∈ A, where

A =
{
a ∈ R6 : (a2, a3, a5, a6) 6= (0, 0, 0, 0)

}
.

These equations are the spatial analog to Equations (3.8) - (3.10). Using

a differential equation solver, we can determine the shape of a 3D elastic rod

given the value in A.

6.1.3 Preliminary Experiments with Adept Robot

We have performed a preliminary set of experiments with the Adept robot

to compare the shape formed by the metal cable to the predicted shape from

the model described in Section 6.1.2. Figure 6.2 shows the testbed designed

for these experiments. As with planar experiments, one end of the “rod” is

anchored to a table and the other end is affixed to the Adept robot. The

thin, stranded steel cable used for these experiments is sufficiently strong

that gravity has only a small impact on the experienced shape. This allows

the rod to be treated as a massless elastic rod. Because the Adept robot only

provides five degrees of freedom, a servo motor has been integrated with the

robot to provide a sixth degree of freedom.

To track a finite set of points along the rod, the cable has been instru-

mented with infrared markers that allow the position of these locations to

be tracked using an Opti-Track motion capture system. In addition to the

markers along the cable, markers have been attached to the table and the

servo motor attachment to provide orientation information for both surfaces.

Three markers are used to annotate the surface of the table where the elastic

rod is anchored. Two markers are placed on the table and a marker is placed
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Figure 6.2: Steel cable that is attached at one end to an Adept robot.
The other end of the cable is attached a table. This cable and the table have
both been instrumented with infrared markers that are tracked by Opti-Track
cameras.

at the base of the metal cable. These markers allow for the determination

of the surface normal at the origin of the rod. Three markers on the servo

attachment are used to determine the surface normal vector of the end effec-

tor. All four markers on the attachment are used to calculate the centroid of

the servo surface. This centroid corresponds with the end of the elastic rod

attached to the robot.

Figure 6.3 shows plots of two sample configurations. We chose two points

in A and calculated the boundary conditions to determine the position and

orientation for the robot and Servo motor. The Opti-Track motion capture

system was used to determine the location of the IR markers. The yellow
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Figure 6.3: Two examples from hardware experiments with a spatial metal
cable that help to confirm that our model predicts the shape of a metal
wire. The spheres correspond with the detected position of the IR markers
along the rod. The yellow curve corresponds with the configuration that best
matches the detected marker positions.

rods in these images show the theoretical shape for the planned configuration.

The blue spheres correspond to the IR markers that were detected with the

experiment. The correlations between the markers and the planned shape

serves to validate that the shape of the elastic rod matches the predicted

configuration.

6.1.4 Preliminary Experiments with Baxter Robot

In addition to the preliminary experiments with the Adept robot, we also

conducted experiments with the Baxter robot. Figure 6.4 shows a picture of

an experimental setup where both ends of a metal, spatial cable are held by

the Baxter robot. This configuration was planned in A and the position and

orientation to place Baxter’s gripper to realize this shape were calculated by

integrating Equation (6.5). The motion capture system recorded the position

of 5 points along the cable. Figure 6.5 shows a comparison between the

detected position of IR markers along the metal cable and the corresponding

points along the predicted shape of the curve. Though these two shapes

do show some correlation, the results are not as accurate as the model for

planar rods. Our current speculation is that the discrepancy in shape is due

to imprecise realization of Cartesian coordinates using Baxter as well as the

wire’s natural curvature.
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Future work is necessary to reduce the amount of error between the pre-

dicted and observed shape of the metal cable. The error could be reduced by

implementing a planning strategy that avoids configurations where the cable

is sensitive to the gripper placement. The cost function shown in Chapter 4

directly extends to the spatial metal cable. Furthermore, future work should

also refine the placement of the grippers of the Baxter robot. Unlike the

Adept robot that is precise to a fraction of 1 mm, the Baxter robot repeata-

bility is orders of magnitude larger.

In addition to planning robust paths and improving the placement of the

robot grippers, manipulation can be improved by planning in a configuration

space of higher dimension. The ability of Baxter to perform manipulation

with two grippers that each have 7 degrees-of-freedom can also be leveraged to

improve manipulation of 3D rods. With all of our experiments, we have relied

upon one end of the rod being fixed. With the Baxter robot, we can perform

manipulation using both ends of the rod and remove the constraint on one

end of the rod. Motion planning can be done using a space of dimension 20

(7 degrees of freedom for each arm and 6 degrees of freedom to describe the

shape of the rod). Though this formulation would greatly increase the size of

the configuration space, planning using this space produces plans that involve

simultaneous motion with both arms and remove the constraint that one end

of the cable remains fixed. Planning in this configuration space produces a

motion plan that fully leverages Baxter’s capabilities.
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Figure 6.4: Baxter holding an elastic rod that has been instrumented with
IR markers along its length. The bottom of the rod is affixed to a flat surface
with IR markers that allow for determining the surface normal at the origin
of the rod.
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Figure 6.5: This plot shows a comparison between the predicted configura-
tion of a wire and the shape seen in a hardware experiment using a Baxter
robot. The turquoise curve and circles indicate the predicted shape of the
metal cable and the position of the IR markers. The maroon curve and circles
show the observed shape of the metal cable and position of the markers. The
four green circles indicate the position of the IR markers used for determining
the surface normal of the base of the metal cable.
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6.2 Conclusion

In this dissertation, we have shown a new method for performing manip-

ulation with a planar rod. We begin by modeling a thin metal strip as a

Kirchhoff elastic rod whose movement is confined within a plane. This co-

ordinate chart corresponds with the force and torque at one end of the rod.

Using this description, that can uniquely describe all possible shapes for a

planar rod, manipulation can be performed by identifying a sequence of fea-

sible configurations with our chart. Each configuration represents a unique

shape that can be determined using integration. Once the end of the rod is

determined for each configuration, a robot is used to move the end of the rod

to the correct position and orientation.

We provided evidence in the form of hardware experiments to validate

that our approach is capable of performing manipulation in a manner that

allows us to precisely transform the shape of a flexible object from a starting

configuration to a goal configuration. In addition to showing proof-of concept

experiments that display the ability to change the shape, we examine the

ability of our model to accurately predict when the shape of the metal strip

will deviate from our model.

We presented a cost function that ensures that a flexible object avoids con-

figurations that are nearly infeasible. The Jacobian for our coordinate chart

provides a measurement of the sensitivity of the force to small perturbations

at the boundary conditions. Using the relationship where δa = J−1δb, we

derived a cost function that assesses a penalty to configurations that are

sensitive to boundary conditions. In addition to the sensitivity to small per-

turbations, a cost is also assessed for configurations that have an orientation

at the end of the rod that approaches the manipulator joint limitations and

also configurations that are close to self-collision.

We showed that by planning paths that minimize the total cost to tran-

sition from one state to another state, manipulation can be performed that

ensures the observed force remains consistent with the predicted force. In

addition to showing the success of manipulation using this cost function,

we also show experimental results that clearly show that motion planning

strategies that do not take the sensitivity to boundary conditions can result

in the rod exerting forces larger than 15x the intended force.

While planning robust paths using the cost function reduces the observed
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error, we also demonstrated that error can also be reduced by applying a feed-

back controller that utilizes measurements of the state using a force sensor

and a position sensor. The implemented feedback policy locally minimizes the

sum-squared error between the planned and observed paths in our global co-

ordinate chart for the wire. We showed that this feedback controller reduces

the error between the planned configuration and the observed configuration.

In addition to the wires whose movement is constrained to translation ro-

tation in SE(2), we extend our formulation to apply to spatial cables. We

presented some preliminary experiments where the wire is manipulated with

an Adept robot and show that the shape of the rod can accurately be de-

scribed using our formulation. To demonstrate the utility of our approach, we

designed a prototype for a wire harness as well as a circuit board prototype.

We also presented results from proof-of-concept manipulation experiments

with the Baxter robot and the Adept robot.
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APPENDIX A

REVIEW OF SAMPLING-BASED
PLANNERS

A.1 Review of Sampling Based Planner

This section provides an overview of sampling based motion planners to pro-

vide a foundation for the algorithms that we implement for performing ma-

nipulation with both planar and spatial elastic rods. These planners gen-

erate a sequence of steps that move a system from a starting state to a

destination state. Sampling based planners are described thoroughly in text-

books [57], [58], [59] and also survey papers [60], [39], [61].

A.1.1 Configuration and Configuration Space

For robotic systems, the state can be represented as a vector with a dimension

that corresponds to the available degrees of freedom. For example, with a 2

dimensional Cartesian space, the values for x and y can be used to describe

the position of an object within the environment. The vector representation,

also called a configuration (c ), is simply a point that corresponds to the

system’s state.

The configuration space, C-space, represents all possible configurations

that the system may take. C-space consists of both feasible configurations

(Cfree) and infeasible configurations (Cobs). The infeasible configurations for

the system correspond to obstacles without the configuration space that in-

dicate imposed constraints. These infeasible configurations correspond to

obstacles. For a robot within a 2D environment, these obstacles could con-

sist of external boundaries or items that occupy space within the environment

that prevent the robot from moving to locations. Figure A.1 shows a 2D con-

figuration space. The three polygons indicate obstacles within the workspace

(Cobs). The remaining space indicates feasible configurations (Cfree).
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Figure A.1: Graphic of free space along with obstacles

While the shape of these three polygons could be explicitly described in

C-space, describing (Cobs) for some robotic systems can be significantly more

complex.

Figure A.2: Result of sampling configuration space to determine collision-
free obstacles

Sampling based motion planners provide an alternative to having to rep-

resent Cobs explicitly. These planners simply require the determination of

whether a selected configuration corresponds with a configuration that is

within (Cobs) or (Cfree). Figure A.2 depicts the result of sampling the 2D

configuration space to determine configurations within Cfree. The o’s corre-

spond to sampled points within C that are obstacle-free. The x’s were found

to be within the boundaries of infeasible regions.

Once the space has been sampled, it is necessary to identify pairs of con-

figurations that have a path between them that does not intersect with ob-
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Figure A.3: Determination of whether paths between sampled configurations
collide with obstacles in C

stacles. To perform this task a straight-line path between two configurations

is sampled at an interval small enough to ensure a collision will be detected

if there is an intersection with an obstacle. Figure A.3 shows the result of

checking four pairs of configurations for collisions with obstacles. The two

green lines indicate that the path between the feasible configurations was

collision-free. The two purple lines correspond with pairs of configurations

that cannot be connected with a straight-line path.

Figure A.4: Connection of configurations with collision-free paths

Figure A.4 shows a result of performing a search for nodes that can be

connected with collision-free paths. The image shown does not indicate ev-

ery pair of configurations that can be connected without passing through an
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obstacle is stored. To exhaustively check all paths between configurations re-

quires n (n− 1) paths. This procedure could be computationally prohibitive.

However, a distance metric could be used to reduce the number of paths that

need to be checked for collisions. The collision-free paths are stored in a data

structure such as an adjacency matrix.

Figure A.5: Determination of paths to move to the start configuration and
the goal configuration

Figure A.6: Determination of path from start to goal

This structure that stores feasible paths between configurations is known

as a roadmap. It can be used to identify a sequence of paths to take to move

from a starting configuration to a goal configuration. The start configura-

tion and the goal configuration are both added to the roadmap by finding

collision-free paths from these configurations to the existing roadmap. Figure

A.5 shows the roadmap after the start and goal configurations are connected.
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Once these two configurations have been added, a graph search algorithm,

such as breadth-first search, can be used to traverse the graph to find a se-

quence of states to visit in order to move between the two configurations.

Figure A.6 shows a feasible path to move from the start configuration to

the goal configurations. With the sample configuration space shown, there

are multiple paths that could move from the start configuration to the goal.

With some robotic systems, costs can be assessed to each path that could

correspond to criteria such as proximity to obstacles or total distance trav-

eled. This cost information can be used to determine the optimal path to

take in the event that multiple feasible paths exist between the start and

goal configuration.
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APPENDIX B

CALCULATION OF COMPONENTS OF
COST FUNCTION

In this appendix, we show the calculations of the three components of the

cost function used for performing robust motion planning. The plots are

shown for a3 increments of 2. Only the planes where a3 is negative are

shown due to the symmetry in the cost function. For any configuration,

C(a1, a2, a3) = C(a1,−a2,−a3) where C is the cost at the point (a1,a2,a3) in

A. Figures B.1 - B.6 show the cost due to the quantity log(‖ (J(a))−1 ‖)2

which indicates the sensitivity to the placement of the robotic manipulator.

Figures B.7 - B.12 show the cost due to the proximity to self-collision. Figures

B.13 - B.18 show the cost due to the orientation angle of the end of the metal

strip. Figures B.19 - B.24 show the total cost, which is the sum of all three

components.
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Figure B.1: The cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −14.0.
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Figure B.2: The cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −12.0.
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Figure B.3: The cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −10.0.
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Figure B.4: The cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −8.0.
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Figure B.5: The cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −4.0.
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Figure B.6: The cost assessed to configurations due to the sensitivity of the
configuration to error in the placement of the robotic manipulator for the
plane where a3 = −2.0.
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Figure B.7: Component of the total cost due to the proximity to self-collision
as defined by Equations (4.2) and (4.3) for the plane where a3 = −14.0.
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Figure B.8: Component of the total cost due to the proximity to self-collision
as defined by Equations (4.2) and (4.3) for the plane where a3 = −12.0.

146



0

2

4

6

8

10

12

14

16

a
2

a1

log(Cost Due to Collision)   a3 = -10

-100

-50

0

50

100

-100 -50 0 50 100

Figure B.9: Component of the total cost due to the proximity to self-collision
as defined by Equations (4.2) and (4.3) for the plane where a3 = −10.0.
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Figure B.10: Component of the total cost due to the proximity to self-
collision as defined by Equations (4.2) and (4.3) for the plane where a3 =
−8.0.
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Figure B.11: Component of the total cost due to the proximity to self-
collision as defined by Equations (4.2) and (4.3) for the plane where a3 =
−4.0.
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Figure B.12: Component of the total cost due to the proximity to self-
collision as defined by Equations (4.2) and (4.3) for the plane where a3 =
−2.0.
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Figure B.13: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −14.0.
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Figure B.14: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −12.0.
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Figure B.15: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −10.0.
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Figure B.16: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −8.0.
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Figure B.17: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −4.0.
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Figure B.18: Component of the total cost function due to the rotation angle
as defined by Equation (4.4) for the plane where a3 = −2.0.
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Figure B.19: Total of all three components of the cost function (Equations
(4.1), (4.3), and (4.4)) for the plane where a3 = −14.0.
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Figure B.20: Total of all three components of the cost function (Equations
(4.1), (4.3), and (4.4)) for the plane where a3 = −12.0.
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Figure B.21: Total of all three components of the cost function (Equations
(4.1), (4.3), and (4.4)) for the plane where a3 = −10.0.
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Figure B.22: Total of all three components of the cost function (Equations
(4.1), (4.3), and (4.4)) for the plane where a3 = −8.0.
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Figure B.23: Total of all three components of the cost function (Equations
(4.1), (4.3), and (4.4)) for the plane where a3 = −4.0.
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Figure B.24: Total of all three components of the cost function (Equations
(4.1), (4.3), and (4.4)) for the plane where a3 = −2.0.
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APPENDIX C

ROBUST PATH PLANNING RESULTS

In this appendix, we show plots of results from experiments that compare

paths planned using the cost function described in Chapter 4 to straight-line

paths. The results from the first ten experiments of Table 4.1 were shown

in Section 4.4. Figures C.1 - C.20 show the remainder of the results. These

plots are sorted in decreasing order of the maximum error.
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Figure C.1: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−2.2, 11.6,−3.0] and
[0.2,−14.0,−1.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.2: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−3.2, 13.4,−2.0] and
[−5.2,−21.0,−2.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.3: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [0.2,−14.0,−1.0] and
[−0.6, 1.8,−3.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.4: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−1.2,−15.6,−2.0] and
[−5.6, 22.0,−3.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.5: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−4.6, 24.2,−3.0] and
[−14.2,−16.2,−1.0]. The region to the left of the black line shows the ro-
bust path while the region to the right shows the straight-line path. The
bottom plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.6: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−0.6, 1.8,−3.0] and
[−6.2,−16.2,−1.0]. The region to the left of the black line shows the ro-
bust path while the region to the right shows the straight-line path. The
bottom plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).

169



0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

er
ro

r2

Experiment Step

0
500

1000
1500
2000
2500
3000
3500
4000

0 200 400 600 800 1000

||J
(a

)-1
||

-15
-10
-5
0
5

10

0 200 400 600 800 1000

a 3

-40

-20

0

20

40

60

0 200 400 600 800 1000

a 2

-40

-20

0

20

40

60

0 200 400 600 800 1000

a 1

Observed
Predicted

Comparison Between Straight-Line Path
and Path Generated Using Cost Function

Figure C.7: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−14.2,−16.2,−1.0] and
[−3.6, 16.2,−3.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.8: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−3.6, 16.2,−3.0] and
[−1.2,−15.6,−2.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.9: The top three plots show a comparison between the predicted
configuration (red) and observed configuration (blue) for each of the three
components in A when we follow both a straight-line path and a path
planned using our cost function between the points [2.6,−16.8,−3.0] and
[−1.6, 4.0,−3.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.10: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−1.6, 4.0,−3.0] and
[−3.8,−14.4,−3.0]. The region to the left of the black line shows the ro-
bust path while the region to the right shows the straight-line path. The
bottom plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.11: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−2.2,−16.2,−2.0] and
[−3.2, 14.4,−4.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.12: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−5.6, 22.0,−3.0] and
[−9.2,−15.2,−2.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.13: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−5.8, 12.6,−4.0] and
[−2.2,−16.2,−2.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).

176



0 200 400 600 800 1000
0

200

400

600

800

1000

1200

er
ro

r2

Experiment Step

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

||J
(a

)-1
||

-10

-5

0

5

10

0 200 400 600 800 1000

a 3

-30
-20
-10

0
10
20
30
40
50

0 200 400 600 800 1000

a 2

-50
-40
-30
-20
-10

0
10
20
30

0 200 400 600 800 1000

a 1

Observed
Predicted

Comparison Between Straight-Line Path
and Path Generated Using Cost Function

Figure C.14: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−3.2, 14.4,−4.0] and
[−7.2,−18.8,−2.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.15: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−7.2,−18.8,−2.0] and
[−4.8,−18.4,−4.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.16: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−4.8, 18.4,−4.0] and
[−3.8,−25.2,−3.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.17: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−3.4, 5.0,−4.0] and
[−7.2,−23.8,−4.0]. The region to the left of the black line shows the ro-
bust path while the region to the right shows the straight-line path. The
bottom plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.18: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−9.2,−15.2,−2.0] and
[−3.6, 6.2,−4.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.19: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−3.8,−25.2,−3.0] and
[−4.4, 10.8,−4.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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Figure C.20: The top three plots show a comparison between the pre-
dicted configuration (red) and observed configuration (blue) for each of the
three components in A when we follow both a straight-line path and a path
planned using our cost function between the points [−9.6,−24.2,−5.0] and
[−5.9, 12.2,−5.0]. The region to the left of the black line shows the robust
path while the region to the right shows the straight-line path. The bottom
plot shows the error2 (green) and the ‖ (J (1, a))−1 ‖2 (blue).
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APPENDIX D

CAMERA CALIBRATION AND IMAGE
PROCESSING

In this appendix, we describe the image processing and data analysis soft-

ware that has been implemented to measure the shape of the metal strip

used in experiments. First, we describe the procedure for calculating the

extrinsic camera parameters which allow for converting between the world

frame and the image plane. This requires the implementation of image seg-

mentation procedures to detect markers placed along the metal strip. Once

segmentation is performed, the detected markers are transformed into nondi-

mensional coordinates and the position is compared against the theoretical

positions to determine the difference between the predicted shape and the

observed shape.

D.1 Camera Sensor Calibration

The intrinsic parameters for the camera are calculated using OpenCV’s cv-

CalibrateCamera2 function for a set of 70 checkerboard images. This pro-

duces a matrix with intrinsic parameters and the distortion parameters for

the Flea2 camera. The calibration procedure produced the following values:

IntrinsicParameters =

5.21× 102 0 3.21× 102

0 5.21× 102 2.43× 102

0 0 1



DistortionParameters =


−1.67× 10−1

1.55× 10−2

3.32× 10−3

−3.97× 10−3

5.11× 10−2


Once the table is aligned, we calculate extrinsic camera parameters that

allow the transformation between the world frame and the image plane. This
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Figure D.1: Alignment images for calibrating extrinsic camera parameters

Figure D.2: Labeled end effector used for calibration

is done by capturing an image of the robot’s end effector in 32 configurations.

This consists of 16 different positions with two rotations at each location.

Figure D.1 shows eight images of configurations used for calibration. For

each image, a pixel at each of the four corners of the end effector is labeled

using the colors red, green, blue, and yellow. This procedure produces 128

points in the image frame that correspond to 128 points calculated using

the end effector’s position that is read from the robot. Figure D.2 shows

how the image is labeled. Once the points are gathered, OpenCV’s function

cvFindExtrinsicCameraParams2 and cvRodrigues are used to calculate the

translation vector, rotation vector, and rotation matrix.

We calculated rotation matrix and translation vector to be

RotationMatrix =

 2.38× 10−2 −9.99× 10−1 6.31× 10−3

9.99× 10−1 2.40× 10−2 4.31× 10−2

−4.32× 10−2 5.27× 10−3 9.99× 10−1
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TranslationV ector =

−1.91× 101

−6.16× 102

−3.99× 101.



D.2 Image Segmentation and Quantitative

Comparison

Figure D.3: This image shows the metal strip that has been instrumented
with red tape and yellow map tacks that are spaced at 2cm.

By implementing image segmentation algorithms, we can identify the posi-

tion of a discrete number of points along the rod and compare these positions

to their predicted positions. The position in the image plane of the yellow

map tacks is transformed to a position in the world frame. By comparing

the positions of the markers in the world frame to the predicted position for

these same intervals for the predicted strip, we have an intuitive error mea-

surement. Figures D.3 and D.4 show the metal strip along with annotations

of the observed and predicted position of the markers. The distance metric

between these two sets of positions is a more objective error metric than

simply using visual comparison.

To detect the markers along the rod, we have implemented an algorithm

that first detects the metal strip and then identifies the yellow markers that

are attached to the metal strip. First, each image of the elastic rod is con-

verted to the Hue Saturation Value (HSV) color space. This color space has
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Figure D.4: This image shows the same metal strip, but it has been anno-
tated with blue circles that show the predicted position of the map tacks and
green circles that indicate the detected position of the map tacks using our
segmentation algorithm.

been shown to improve segmentation of images over the RGB color space [62].

To cluster similar colors, the pyramid mean shift algorithm is used to cluster

similar colors [63]. The result of these two operations is shown in Figure

D.5a. Once the image has been converted and the pyramid mean shifting

algorithm has been applied, a threshold is applied to the HSV values. The

pixels that are within the HSV ranges of the threshold are retained. The

result of this thresholding is shown in Figure D.5b. While this procedure

detects the tape along the rod, these threshold values do not detect the yel-

low markers. We create a mask that consists of the region around the rod

and only search this region for yellow markers. OpenCV’s erosion function

is applied to the thresholded image to increase the region that the mask ac-

cepts. The result of this operation is shown in Figure D.5c. We then apply

this mask to the HSV image and only retain pixels from the original HSV

image (Figure D.5a) that are within the masked region. The result of this

operation is shown in Figure D.5d. We then apply the threshold algorithm

gain to this masked region to identify the yellow map tacks. The result of

this operation is shown in Figure D.5e where the pixels that fall within the

ranges of the “yellow filter” are highlighted in green. After these pixels are

detected, OpenCV’s FindContours function is used to cluster the detected

pixels and identify contours that surround them. This function also returns
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(a) (b)

(c) (d)

(e) (f)

Figure D.5: These images show the stages of the algorithm used for perform-
ing segmentation to detect the markers placed along the metal strip. This
procedure first limits the search to regions near the red tape along the edge
of the metal strip and then identifies contours of the yellow map tacks.
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a centroid for each of the contours detected. The result of this operation is

shown in Figure D.5f.

Once we have performed segmentation algorithms and determined the pixel

coordinates of each marker in an image, we can determine its position in the

world frame. Given a rotation matrix where

R =

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (D.1)

and a translation matrix where

T =

 t1t2
t3,

 , (D.2)

the equation from a point in the world frame (x,y,z) to a pixel coordinate

(u,v) is usvs
s

 =

r1,1x r1,2y r1,3z

r2,1x r2,2y r2,3z

r3,1x r3,2y r3,3z

+

t1t2
t3

 , (D.3)

where s is the distance from the camera to the image plane. Applying Gaus-

sian elimination to reduce the rows and remove the variable s produces the

two following equations:

u(r3,1x+ r3,2y + r3,3z + r3,4) = r1,1x+ r1,2y + r1,3z + r1,4 (D.4)

v(r3,1x+ r3,2y + r3,3z + r3,4) = r2,1x+ r2,2y + r2,3z + r2,4. (D.5)

These two equations can be manipulated to yield the matrix equations[
ur3,1 − r1,1 ur3,2 − r1,2

vr3,1 − r2,1 vr3,2 − r2,2

][
x

y

]
=

[
r1,3z − ur3,3z + r1,4 − ur3,4

r2,3z − vr3,3z + r2,4 − vr3,4

]
. (D.6)

Solving this equation for x and y produces the position of the marker in the

world frame.
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D.3 Parameters Used for Performing Image

Segmentation

We configure all of the camera settings to prevent automatic adjustments

from dynamically modifying these settings for each image. Table D.1 shows

the values for the camera settings used for the experiments we conducted.

Tables D.2 and D.3 show the settings to detect the red tape and the yellow

map tacks that are attached to the metal strip.

Table D.1: Camera settings for the Flea2 used when conducting hardware
experiments. The camera was configured manually to ensure that automatic
adjustments did not alter these parameters.

FPS 15
Brightness 200

Auto Exposure 400
Sharpness 2000

White Balance (Blue/U) 850
White Balance (Red/V) 450

Hue Off
Saturation 2800

Gamma 2400
Shutter 700

Gain 20
Trigger Delay 0
Frame Rate 480

Table D.2: Minimum and maximum thresholds applied in the HSV color
space to detect the red tape that is attached to the metal strip.

Parameter Min Max
H 0 15
S 65 120
V 170 255
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Table D.3: Minimum and maximum thresholds applied in the HSV color
space to detect the yellow map tacks that are attached to the metal strip.

Parameter Min Max
H 15 35
S 125 165
V 210 255
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