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ABSTRACT

Bilinear inverse problems (BIPs), the resolution of two vectors given their

image under a bilinear mapping, arise in many applications. Without fur-

ther constraints, BIPs are usually ill-posed. In practice, properties of nat-

ural signals are exploited to solve BIPs. For example, subspace constraints

or sparsity constraints are imposed to reduce the search space. These ap-

proaches have shown some success in practice. However, there are few results

on uniqueness in BIPs. For most BIPs, the fundamental question of under

what condition the problem admits a unique solution, is yet to be answered.

As an effort to address the question, we propose a unified framework for

identifiability analysis in BIPs. We define identifiability of a BIP up to a

group of transformations. Then we derive necessary and sufficient conditions

for such identifiability, i.e., the conditions under which the solutions can be

uniquely determined up to the transformation group.

Blind gain and phase calibration (BGPC) is a structured bilinear inverse

problem, which arises in many applications, including inverse rendering in

computational relighting (albedo estimation with unknown lighting), blind

phase and gain calibration in sensor array processing, and multichannel blind

deconvolution (MBD). Applying our unified framework to BGPC, we derive

sufficient conditions for unique recovery under several scenarios, including

subspace, joint sparsity, and sparsity models. For BGPC with joint sparsity

or sparsity constraints, we develop a procedure to compute the transforma-

tion groups corresponding to inherent ambiguities. We also give necessary

conditions in the form of tight lower bounds on sample complexities, and

demonstrate the tightness of these bounds by numerical experiments.

Blind deconvolution (BD), the resolution of a signal and a filter given their

convolution, is another bilinear inverse problem routinely encountered in sig-

nal processing and communications. Existing theoretical analysis on unique-

ness in BD is rather limited. We derive sufficient conditions under which two
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vectors can be uniquely identified from their circular convolution, subject to

subspace or sparsity constraints. These sufficient conditions provide the first

algebraic sample complexities for BD. We first derive a sufficient condition

that applies to almost all bases or frames. Then we impose a sub-band struc-

ture on one basis, and derive a less demanding sufficient condition, which is

essentially optimal, using our unified framework. We present the extensions

of these results to BD with sparsity constraints or mixed constraints, with the

sparsity level replacing the subspace dimension. The cost for the unknown

support in this case is an extra factor of 2 in the sample complexity.
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CHAPTER 1

INTRODUCTION

Whereas linear inverse problems are well-understood and the literature on

them is vast, much less is known about bilinear inverse problems (BIPs).

BIPs, i.e., recovering two variables x and y given a bilinear measurement

z = F(x, y), have attracted considerable attention recently. However, in spite

of recent progress, the question of identifiability - or uniqueness of the solu-

tions in BIPs under a variety of realistic conditions - has been largely open.

BIPs arise in many important applications, such as blind deconvolution [1, 2],

phase retrieval [3, 4], dictionary learning [5], etc. These problems usually in-

volve recovering the inputs of an under-determined bilinear system. They

also suffer from scaling ambiguity among other possible ambiguities (e.g.,

shift ambiguity of blind deconvolution, multiplication by a permutation ma-

trix in dictionary learning, multiplication by an arbitrary invertible matrix in

matrix factorization problems, etc.). Therefore, these problems are ill-posed

and do not yield unique solutions. By introducing further constraints that

exploit the properties of natural signals, one can reduce the search space,

which may help identifiability. For example, cone constraints, such as posi-

tivity constraints, subspace constraints, and union of subspaces constraints

(e.g., sparsity or joint sparsity), are very common in BIPs. However, even

with a reduced feasible set, a BIP often still exhibits some ambiguities, such

as scaling [6].

In this thesis, we study the identifiability in bilinear inverse problems. We

expand the notion of identifiability and propose a unified framework, namely

identifiability up to transformation groups. We also study the identifiability

in two special BIPs, blind gain and phase calibration (BGPC) and blind

deconvolution (BD), within the unified framework.
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1.1 Bilinear Inverse Problem

1.1.1 Bilinear Inverse Problem

We formally state the bilinear inverse problem (BIP) in this section. First,

a bilinear mapping is defined as follows.

Definition 1.1.1. Let X , Y and Z be three linear vector spaces. A bilinear

mapping is a function F : X ×Y → Z such that for any y ∈ Y the mapping

x 7→ F(x, y) is a linear mapping from X to Z and for any x ∈ X the mapping

y 7→ F(x, y) is a linear mapping from Y to Z .

Given the measurement z = F(x0, y0), the following feasibility problem is

called the unconstrained bilinear inverse problem:

(Unconstrained BIP) find (x, y) ∈ X × Y ,

s.t. F(x, y) = z.

Bilinear inverse problems are usually underdetermined, and hence do not

yield unique solutions. A variety of constraints x ∈ ΩX ⊂ X , y ∈ ΩY ⊂ Y can

be imposed to reduce the search space and make the problem better-posed.

The constrained bilinear inverse problem is:

(Constrained BIP) find (x, y),

s.t. F(x, y) = z,

x ∈ ΩX , y ∈ ΩY .

(1.1)

For any nonzero scalar σ, the pairs (x0, y0) and (σx0,
1
σ
y0) map to the same

z and hence are non-distinguishable. If the constraint sets ΩX and ΩY contain

such scaled versions of (x0, y0), we say that this problem suffers from scal-

ing ambiguity. Suppose ΩX and ΩY are closed under scalar multiplication,

then {(σx0,
1
σ
y0) : σ 6= 0} is an equivalence class of solutions generated by a

group of scaling transformations. More complex ambiguities and equivalence

classes will be analyzed later. In Chapter 2, to address the issues of ambigu-

ity, we expand the notion of identifiability of BIPs. We resolve the ambiguity

issues by allowing uniqueness up to a group of transformations, which de-

fine equivalence classes of solutions. We then derive necessary and sufficient

conditions for identifiability in BIPs up to the transformation group.
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1.1.2 Related Work

A standard method for solving bilinear inverse problems is the Gauss-Newton

method, if F(x, y) is Fréchet differentiable with respect to (x, y). The Gauss-

Newton method is applied to minimize ‖r(x, y)‖2
2, where r(x, y) = F(x, y)−z

is the residual. After initializing with a guess of (x, y), in each step, the

algorithm linearizes the residual, and solves the normal equation that arises in

the minimization of ‖r(x, y)‖2
2 for the linearized residual. A related approach,

instead of solving the bilinear equation in x and y, is to solve a nonlinear

equation in one of the variables. If we assume that the BIP is uniquely

solvable for y given x, then the solution y = y(x) is a function of x [7, 8]. If

F(x, y(x)) is Fréchet differentiable with respect to x, then the Gauss-Newton

algorithm can be applied to minimize ‖F(x, y(x))− z‖2
2. To avoid inverting

the normal operator in the Gauss-Newton algorithm in large scale problems,

one can apply more computationally efficient iterative methods, such as the

conjugate gradient method or the Kaczmarz method [8]. These algorithms

usually take advantage of simple regularizers and constraints to resolve ill-

posedness. For example, a Tikhonov regularizer of (x, y) or a linear constraint

1∗x = 1 can eliminate the scaling ambiguity [9].

Another approach for attacking bilinear inverse problems is the Bayesian

approach. The measurement z is assumed to follow a probability distribu-

tion (e.g., Gaussian distribution) with mean F(x, y). The conditional dis-

tribution is called the likelihood. Instead of using deterministic models, the

Bayesian approach uses probabilistic models for x and y whose distributions

are called prior distributions. The posterior distribution of x and y given

z can be computed using Bayes’ rule. The maximum a posteriori (MAP)

estimator and the minimum mean square error (MMSE) estimator of (x, y)

are the mode and the expectation of the posterior distribution, respectively.

Markov chain Monte Carlo (MCMC) or variational methods can be deployed

to overcome computational challenges. Examples of applying Bayesian or

variational Bayesian methods to bilinear inverse problems include color con-

stancy in vision systems [10], blood-oxygen-level dependent (BOLD) signal

analysis in functional magnetic resonance imaging (fMRI) [11], and blind

image deconvolution [12, 13, 14, 15].

Recently, solving bilinear or quadratic inverse problems with the methodol-

ogy of “lifting” has attracted much attention. Examples include recent works
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on blind deconvolution [16] and phase retrieval [17, 18, 19]. The lifting frame-

work is based on the fact that for any bilinear mapping F : Cm × Cn → Z,

there exists a linear operator G : Cm×n → Z such that G(xyT) = F(x, y).

Given the measurement z = G(x0y
T
0 ) = F(x0, y0), one can recast the BIP as

the recovery of the rank-1 matrix x0y
T
0 ∈ ΩM = {xyT : x ∈ ΩX , y ∈ ΩY}.

(Lifted BIP) find M,

s.t. G(M) = z,

M ∈ ΩM.

Choudhary and Mitra [6] adopted this framework, and showed that the lifted

BIP has a unique solution M0 = x0y
T
0 if the null space of G does not contain

the difference of M0 and any other matrix in ΩM, i.e.,

N (G)
⋂
{M0 −M : M ∈ ΩM} = {0}.

The identifiability analysis hinges on finding the set of rank-2 matrices in the

null space of G. They addressed the question of identifiability in an abstract

BIP under the assumptions that the set of rank-2 matrices in N (G) has low

complexity (e.g., finite cardinality or small covering number). Using this

framework, they showed that blind deconvolution with a canonical sparsity

prior is not identifiable [20].

In contrast, we propose a more general framework in Chapter 2. Our

framework deals with bilinear mappings defined on general vector spaces

(not just Euclidean spaces). Besides scaling ambiguity, our framework allows

other ambiguities. We extend the notion of identifiability to identifiability up

to transformation groups. Our framework is amenable to BIPs with matrix

multiplications, such as dictionary learning [21, 22, 23, 24, 25] and blind gain

and phase calibration (cf. Chapter 3).

1.2 Blind Gain and Phase Calibration

Blind gain and phase calibration (BGPC) is a bilinear inverse problem that

arises in many applications. It is the joint recovery of an unknown gain

and phase vector λ and signal vectors φ1, φ2, · · · , φN given the entrywise
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product Y = diag(λ)Φ, where Φ = [φ1, φ2, · · · , φN ]. Given the measurement

Y = diag(λ0)Φ0, BGPC is the following constrained BIP:

find (λ,Φ),

s.t. diag(λ)Φ = Y,

λ ∈ ΩΛ, Φ ∈ ΩΦ.

In inverse rendering [26], when the surface profile (3D model) of the object

is known, the joint recovery of the albedo1 and the lighting conditions is a

BGPC problem. In sensor array processing [27], if the directions of arrival

of source signals are properly discretized using a grid, and the sensors have

unknown gain and phase, the joint recovery of the source signals and the

gain and phase of the sensors is a BGPC problem. In multichannel blind

deconvolution (MBD) with the circular convolution model, the joint recovery

of the signal and multiple channels is a BGPC problem. In all these problems,

it is common to impose subspace, joint sparsity, or sparsity constraints on

the signals represented by the columns of Φ.

After deriving general necessary and sufficient conditions for identifiability

in a BIP up to the transformation group in Chapter 2, we apply these to

BGPC and give identifiability results under several scenarios in Chapter 3.

We first consider a subspace constraint and provide an alternative proof for

the result in inverse rendering [26]. Then we consider a joint sparsity con-

straint. We develop a procedure to determine the relevant equivalence classes

and transformation groups for different bases. Then we give sufficient condi-

tions for the identifiability of jointly sparse signals (1D or 2D), or piecewise

constant signals.

For BGPC with subspace or joint sparsity constraints, we also give neces-

sary conditions in the form of tight lower bounds on sample complexities. We

show that the sufficient conditions and the necessary conditions coincide in

some cases. We design algorithms to check the identifiability of given signals

and demonstrate the tightness of our sample complexity bounds. We analyze

the gaps and present conjectures about how to bridge them.

Then we derive a universal sufficient condition for BGPC with a sparsity

constraint. This condition is the most stringent, but applies to all bases and

1Albedo, also known as reflection coefficient, is the ratio of reflected radiation from a
surface to incident radiation upon it.
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all equivalence classes of solutions. Once the condition is met, the solution of

the BGPC problem can be recovered uniquely up to an unknown generalized

permutation, regardless of the basis.

The structure of the BGPC problem arises in many signal processing ap-

plications. In each of these, the problem formulation and treatment were

tailored to the application. Instead, we address the identifiability of all these

problems within the one common framework. Nguyen et al. [26] showed a

sufficient condition for unique inverse rendering, which falls into the category

of BGPC problems with subspace constraints. By examining the problem in

our framework, we are able to replicate Nguyen’s result and provide an al-

ternative proof. In addition, we give a new necessary condition that features

a tight lower bound.

Morrison et al. [28] proposed an algorithm for SAR autofocus and showed

a necessary condition for their algorithm. If the support is unknown, the

SAR autofocus problem falls into the category of BGPC problems with joint

sparsity constraints. Using our notion of identifiability up to a transformation

group, we provide a sufficient condition for unique recovery up to an unknown

scaling and a circular shift.

Most works on the identifiability of MBD considered the linear convolution

model [29, 2]. These traditional works used finite impulse response (FIR)

models, and never incorporated joint sparsity, or sparsity. In contrast, we

consider the circular convolution model, which is more challenging in that

the circular convolution with a vector can be non-injective, while the linear

convolution with a vector is always injective. On the other hand, the circular

convolution model is more general. By zero padding the signal and the

channels (equivalent to Fourier domain oversampling), linear convolutions

can be rewritten as circular convolutions with a support constraint. That

falls into the category of BGPC with a subspace constraint. As an important

extension of the theory of MBD, we study in Chapter 3 MBD with subspace,

joint-sparsity, and sparsity constraints.

1.3 Blind Deconvolution

Blind deconvolution (BD) is the bilinear inverse problem of recovering the

signal and the filter simultaneously given the their convolution or circular
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convolution. It arises in many applications, including blind image deblurring

[1], blind channel equalization [30], speech dereverberation [31], and seismic

data analysis [32]. Without further constraints, BD is an ill-posed prob-

lem, and does not yield a unique solution. A variety of constraints have

been introduced to exploit the properties of natural signals and reduce the

search space. Examples of such constraints include positivity (the signals are

non-negative), subspace constraint (the signals reside in a lower-dimensional

subspace) and sparsity (the signals are sparse over some dictionary). In

Chapter 4 of this thesis, we focus on subspace or sparsity constraints, which

can be imposed on both the signal and the filter.

Consider the example of blind image deblurring: a natural image can be

considered sparse over a wavelet dictionary or the discrete cosine transform

(DCT) dictionary. The support of the point spread function (PSF) model-

ing the blur is usually significantly smaller than the image itself. Therefore

the filter resides in a lower-dimensional subspace. These priors serve as con-

straints or regularizers [33, 34, 35, 36, 16]. With a reduced search space, BD

can be better-posed. However, despite the success in practice, the theoretical

results on the uniqueness in BD with a subspace or sparsity constraint are

limited.

Early works on the identifiability in blind deconvolution studied mul-

tichannel blind deconvolution with finite impulse response (FIR) models

[29, 2], in which sparsity was not considered. For single channel blind de-

convolution, sparsity was imposed as a prior without theoretical justification

[33, 34, 36, 35, 37].

As mentioned in Section 1.1.2, Choudhary and Mitra [6] adopted the lift-

ing framework and showed that the identifiability in BD (or any bilinear

inverse problem) hinges on the set of rank-2 matrices in a certain nullspace.

In particular, they showed a negative result that the solution to blind decon-

volution with the linear convolution model and a canonical sparsity prior,

that is, sparsity over the natural basis, is not identifiable [20]. However, the

identifiability of blind deconvolution with the circular convolution model or

with signals that are sparse over other dictionaries has not been analyzed.

Using the lifting framework, Ahmed et al. [16] showed that BD with sub-

space constraints is identifiable up to scaling. More specifically, if the signal

subspace follows a random Gaussian model, and the filter subspace satisfies

some coherence conditions, convex programming was shown to recover the
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signal and the filter up to scaling with high probability, when the dimensions

of the subspaces m1 and m2 are in a near optimal regime m1 + m2 = O(n),

where n denotes the length of the signal. Ling and Strohmer [38] extended

the model in [16] to blind deconvolution with mixed constraints: the signal

is sparse over a random Gaussian dictionary or a randomly subsampled par-

tial Fourier matrix, and the filter resides in a subspace that satisfies some

coherence condition. They showed that the signal and the filter can be si-

multaneously identified with high probability using `1 norm minimization

(instead of nuclear norm minimization as in [16]) when the sparsity level s1

and the subspace dimension m2 satisfy s1m2 = O(n). Lee et al. [39] further

extended the model to blind deconvolution with sparsity constraints on both

the signal and the filter, and showed successful recovery with high probabil-

ity using alternating minimization when the sparsity levels s1 and s2 satisfy

s1 + s2 = O(n). A common drawback of these works is that the probabilistic

assumptions on the bases or frames are very limiting in practice. On the pos-

itive side, these identifiability results are constructive, being demonstrated

by establishing performance guarantees of algorithms. However, these guar-

antees too are shown only in some probabilistic sense.

In Chapter 3, we study multichannel blind deconvolution as a special case

of BGPC. Using the unified framework of identifiability up to transforma-

tion groups, we derive identifiability results under subspace, joint sparsity or

sparsity constraints.

In Chapter 4, we address the identifiability in single channel blind decon-

volution up to scaling under subspace or sparsity constraints. We present

the first algebraic sample complexities for BD with fully deterministic signal

models. First, we derive sufficient conditions for BD with generic bases or

frames, using the lifting framework. Then, we derive much less demand-

ing sufficient conditions for BD with a sub-band structured basis, using the

unified framework in Chapter 2. Notably, the sample complexities of the

sufficient conditions in this case match those of corresponding necessary con-

ditions, and hence are optimal.

8



CHAPTER 2

IDENTIFIABILITY IN BILINEAR
INVERSE PROBLEMS

2.1 Notations

We use ΩX ,ΩY to denote subsets of vector spaces X ,Y . The Cartesian

product of two sets is denoted by ΩX × ΩY . An element of ΩX × ΩY is

denoted by (x, y), where x ∈ ΩX and y ∈ ΩY . We use TX and TY to denote

transformation groups (to be defined in Section 2.2). The Cartesian product

of two transformation groups TX ,TY (also known as direct product in group

theory terminology) is denoted by TX ×TY . Elements of the transformation

groups are denoted by TX ∈ TX , TY ∈ TY and (TX , TY) ∈ TX ×TY .

2.2 Transformation Groups and Equivalence Classes

An important question concerning a bilinear inverse problem is to deter-

mine when it admits a unique solution. To formulate a good answer, we

need to be able to handle the ambiguities of a bilinear inverse problem. For

any nonzero scalar σ such that σx0 ∈ ΩX and 1
σ
y0 ∈ ΩY , by bilinearity,

F(σx0,
1
σ
y0) = F(x0, y0) = z. Therefore, the constrained BIP does not yield

a unique solution if ΩX ,ΩY contain such scaled versions of x0, y0. This is

called scaling ambiguity.

When ΩX ,ΩY are closed under scalar multiplication (e.g., subspaces or

unions of subspaces), the set [(x0, y0)] = {(σx0,
1
σ
y0) : σ 6= 0} is an equiva-

lence class with an exemplar (x0, y0). The transformation T : ΩX × ΩY →
ΩX ×ΩY such that T (x, y) = (σx, 1

σ
y) is an equivalence transformation. The

set of all such transformations

T = {T : T (x, y) = (σx,
1

σ
y), for some nonzero σ ∈ C} (2.1)
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forms a transformation group. In group theory terminology, the equivalence

class [(x0, y0)] is the orbit of (x0, y0) under the action of T [40].

Any valid definition of unique recovery must include uniqueness up to

scaling, i.e., the equivalence class [(x0, y0)] can be uniquely identified. There

can be other ambiguities for a particular bilinear inverse problem (e.g., shift

ambiguity of blind deconvolution).

We need formal definitions of transformation groups and equivalence classes

before proceeding towards identifiability.

Definition 2.2.1. A set TX of transformations from ΩX to itself is said to

be a transformation group on ΩX , if the following properties hold:

1. For any TX ,1, TX ,2 ∈ TX , the composition of the two transformations

TX ,2 ◦ TX ,1 belongs to TX .

2. TX contains identity transformation 1X (x) = x for all x ∈ ΩX .

3. For any TX ∈ TX , there exists T −1
X ∈ TX such that T −1

X ◦ TX = TX ◦
T −1
X = 1X .

If TX ,TY are transformation groups on ΩX ,ΩY respectively, then their

direct product TX ×TY is a transformation group on ΩX × ΩY . The action

of (TX , TY) ∈ TX ×TY on (x, y) ∈ ΩX ×ΩY is (TX (x), TY(y)). If there exists

T = (TX , TY) ∈ TX ×TY , such that

F(T (x, y)) = F(TX (x), TY(y)) = F(x, y),

for all (x, y) ∈ ΩX×ΩY , then T maps a pair (x, y) to another pair (TX (x), TY(y))

so that the two pairs cannot be distinguished by their images under F . If a

set of such T ’s form a subgroup of TX ×TY , we have a transformation group

associated with the bilinear mapping F .

Definition 2.2.2. A transformation group T on ΩX × ΩY is said to be a

transformation group associated with the bilinear mapping F if:

1. T ⊂ TX ×TY is a subgroup of the direct product of two transformation

groups TX and TY , on ΩX and ΩY , respectively.

2. For all (x, y) ∈ ΩX ×ΩY and for all T ∈ T , F(x, y) = F(T (x, y)). Or

equivalently, F = F ◦ T for all T ∈ T .
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To enable an identifiability result up to a transformation group (see Section

2.3), the transformation group must capture all inherent ambiguities of the

BIP. This motivates the following definition of the ambiguity transformation

group of the bilinear mapping.

Definition 2.2.3. A transformation group T on ΩX × ΩY is said to be the

ambiguity transformation group of the bilinear mapping F if T is the largest

transformation group associated with F , i.e., if T contains all transforma-

tion groups associated with F . A transformation T in the ambiguity trans-

formation group T of the bilinear mapping F is said to be an equivalence

transformation associated with F .

Next, we define an equivalence class associated with the bilinear inverse

problem.

Definition 2.2.4. Given the ambiguity transformation group T of the bi-

linear mapping F on ΩX × ΩY , and (x0, y0) ∈ ΩX × ΩY , the set

[(x0, y0)]T = {(x, y) ∈ ΩX × ΩY : (x, y) = T (x0, y0) for some T ∈ T }

is called the equivalence class of (x0, y0) associated with the bilinear inverse

problem in (1.1). In group theory terminology, [(x0, y0)]T is called the orbit

of (x0, y0) under the action of T .

Definition 2.2.5. Given the ambiguity transformation group T of the bi-

linear mapping F on ΩX × ΩY , and x0 ∈ ΩX , the set

[x0]LT = {x ∈ ΩX : ∃y0, y ∈ ΩY , s.t. (x, y) ∈ [(x0, y0)]T }

is called the left equivalence class of x0.

Similarly, given the ambiguity transformation group T of the bilinear map-

ping F on ΩX × ΩY , and y0 ∈ ΩY , the set

[y0]RT = {y ∈ ΩY : ∃x0, x ∈ ΩX , s.t. (x, y) ∈ [(x0, y0)]T }

is called the right equivalence class of y0.

The definition of a transformation group guarantees that the relation be-

tween elements in an orbit satisfies reflexivity, transitivity and symmetry.
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Therefore, an orbit is an equivalence class. If T is the ambiguity trans-

formation group of the bilinear mapping F , then all the elements in the

equivalence class [(x0, y0)]T share the same image under F . Therefore, they

are equivalent solutions to the bilinear inverse problem in (1.1). In fact, un-

der some mild conditions on the bilinear mapping, Definitions 2.2.2 and 2.2.3

have additional implications.

Proposition 2.2.6. Assume that the bilinear mapping F has no non-trivial

left annihilator of ΩY , i.e., if F(x0, y) = 0 for all y ∈ ΩY , then x0 = 0. Then

every equivalence transformation T = (TX , TY) ∈ T satisfies the following:

• If 0 ∈ ΩX , then TX (0) = 0.

• For x1, x2 ∈ ΩX and scalars a1, a2, if a1x1 + a2x2 ∈ ΩX , then

TX (a1x1 + a2x2) = a1TX (x1) + a2TX (x2).

If ΩX is a linear vector space, then TX is a linear transformation.

Similarly, assume that the bilinear mapping F has no non-trivial right

annihilator of ΩX , i.e., if F(x, y0) = 0 for all x ∈ ΩX , then y0 = 0. Then

every equivalence transformation T = (TX , TY) ∈ T satisfies the following:

• If 0 ∈ ΩY , then TY(0) = 0.

• For y1, y2 ∈ ΩY and scalars b1, b2, if b1y1 + b2y2 ∈ ΩY , then

TY(b1y1 + b2y2) = b1TY(y1) + b2TY(y2).

If ΩY is a linear vector space, then TY is a linear transformation.

Proof. Due to the symmetry, we only need to prove the results for TX .

If 0 ∈ ΩX , then F(TX (0), y) = F(T (0, T −1
Y (y))) = F(0, T −1

Y (y)) = 0 for

all y ∈ ΩY . By assumption, there is no non-trivial left annihilator of ΩY .

Therefore, TX (0) = 0.

12



If a1x1 + a2x2 ∈ ΩX , then

F(TX (a1x1 + a2x2), y)

=F(T (a1x1 + a2x2, T −1
Y (y)))

=F(a1x1 + a2x2, T −1
Y (y))

=a1F(x1, T −1
Y (y)) + a2F(x2, T −1

Y (y))

=a1F(TX (x1), y) + a2F(TX (x2), y)

=F(a1TX (x1) + a2TX (x2), y).

Then F(TX (a1x1 + a2x2) − (a1TX (x1) + a2TX (x2)), y) = 0 for all y ∈ ΩY .

There is no non-trivial left annihilator of ΩY . Hence TX (a1x1 + a2x2) =

a1TX (x1) + a2TX (x2), and TX is a linear transformation if ΩX is a linear

vector space.

Bilinear mappings that arise in applications usually have no non-trivial left

or right annihilators. Therefore, common equivalence transformations, such

as scaling and shift, are linear transformations. However, there are examples

where equivalence transformations are nonlinear (cf. Appendix A.1).

Before proceeding to identifiability, let us consider the following blind de-

convolution problem as a concrete example. The measurement z = x0 ~ y0 ∈
Cn is the circular convolution of two vectors.

find (x, y),

s.t. x~ y = z,

x ∈ Cn, y ∈ Cn.

Define transformation groups TX ,TY on X = Y = Cn:

TX = TY = {TCn : TCn(x) = σS`(x), for some σ 6= 0 and ` ∈ Z},

where the linear transformation S` is the circular shift by `, defined as follows.

If x = S`(x0), then x(j) = x
(k)
0 for all 1 ≤ j, k ≤ n where j − k = ` (modulo

n). Then the following subgroup T ⊂ TX × TY is a transformation group
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associated with circular convolution:

T =

{
T : T (x, y) =

(
σS`(x),

1

σ
S−`(y)

)
, for some σ 6= 0 and ` ∈ Z

}
.

(2.2)

Note that T is a transformation group associated with circular convolution,

and a subgroup of TX × TY . However, it is not separable, i.e., it cannot be

written as the direct product of two transformation groups. Furthermore,

T is not the ambiguity transformation group, because it does not capture

all the ambiguities of the above blind deconvolution problem. For example,

there exist non-trivial vectors u, v ∈ Cn such that u ~ v is the Kronecker

delta. Thus, (x ~ u, y ~ v) is an equivalent pair of (x, y). The set of such

transformations is not contained in T .

2.3 Identifiability up to a Transformation Group

The concept of identifiability should be generalized to allow unique recovery

up to the ambiguity transformation group. If the equivalence class containing

the solution can be uniquely identified, the solution is considered identifiable.

Definition 2.3.1. In the constrained BIP, the solution (x0, y0) in which

x0 6= 0, y0 6= 0 is said to be identifiable up to a transformation group T ,

if every solution (x, y) satisfies that (x, y) = T (x0, y0) for some T ∈ T , or

equivalently, (x, y) ∈ [(x0, y0)]T .

In general, the ambiguity transformation group for a certain BIP may not

be known a priori. It may require some insight to capture all the ambigu-

ities inherent in the problem. However, we can tell whether or not a given

transformation group is the ambiguity transformation group by checking the

identifiability. If there exists an identifiability result up to this transforma-

tion group, it has to be the largest. If the constraint sets ΩX and ΩY are

closed under scalar multiplication, then one can start by checking the group

of scaling transformations defined in (2.1). For some BIPs, the ambiguities

go beyond scaling ambiguity. Hence we have to choose larger transformation

groups. An example is BGPC with a joint sparsity constraint (Section 3.4.1).

We derive a necessary and sufficient condition for identifiability in Theorem

2.3.2, and a more intuitive sufficient condition in Corollary 2.3.3. Here is
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how we interpret these results: In order to prove that certain conditions are

sufficient to guarantee identifiability up to a transformation group, it suffices

to first show that x0 can be identified up to the transformation group; and

then show that once x0 is identified and substituted in the problem, y0 can be

identified. By the symmetry of the problem, we can derive another sufficient

condition by switching the roles of x0 and y0.

Theorem 2.3.2. In the constrained BIP, the pair (x0, y0) (x0 6= 0, y0 6= 0)

is identifiable up to T if and only if the following two conditions are met:

1. If F(x, y) = F(x0, y0), then x ∈ [x0]LT .

2. If F(x0, y) = F(x0, y0), then (x0, y) ∈ [(x0, y0)]T .

Proof. To prove sufficiency, we suppose Conditions 1 and 2 are met. Let

F(x, y) = F(x0, y0) for nonzero x0, y0. Then, by Condition 1, x ∈ [x0]LT .

Hence, there exists T1 = (TX ,1, TY,1) ∈ T such that x = TX ,1(x0). Therefore

F(x0, y0) = F(x, y) = F(T −1
1 (x, y)) = F(x0, T −1

Y,1 (y)). By Condition 2,

there exists T2 ∈ T such that (x0, T −1
Y,1 (y)) = T2(x0, y0). Hence (x, y) =

T1(x0, T −1
Y,1 (y)) = T1 ◦ T2(x0, y0), and (x0, y0) is identifiable up to T .

Next we prove necessity. Given that (x0, y0) (x0 6= 0, y0 6= 0) is identifiable

up to T , by Definition 2.3.1, if F(x, y) = F(x0, y0), then (x, y) ∈ [(x0, y0)]T .

The necessity of Conditions 1 and 2 follows.

Corollary 2.3.3. In the constrained BIP, the pair (x0, y0) (x0 6= 0, y0 6= 0)

is identifiable up to T if the following two conditions are met:

1. If F(x, y) = F(x0, y0), then x ∈ [x0]LT .

2. If F(x0, y) = F(x0, y0), then y = y0.

Furthermore, if F has no non-trivial right annihilator of ΩX , and for (TX , TY) ∈
T , TX (x0) = x0 only if TX = 1X , then the sufficient conditions above are

also necessary.

Proof. Given that y = y0, we have that (x0, y) = 1(x0, y0) and hence (x0, y) ∈
[(x0, y0)]T . Therefore, condition 2 in Corollary 2.3.3 is more demanding than

that of Theorem 2.3.2. Sufficiency follows.

The necessity of condition 1 also follows from Theorem 2.3.2. Next we

show that with the extra assumptions, condition 2 is also necessary. Given
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that (x0, y0) (x0 6= 0, y0 6= 0) is identifiable up to T , by Theorem 2.3.2,

if F(x0, y) = F(x0, y0), then there exists T = (TX , TY) ∈ T such that

(x0, y) = T (x0, y0). The first argument TX (x0) = x0, by the extra assump-

tion, TX = 1X . Now, for all (x1, y1) ∈ ΩX × ΩY , F(x1, y1) = F(T (x1, y1)) =

F(1X (x1), TY(y1)) = F(x1, TY(y1)), or equivalently, F(x1, y1 − TY(y1)) = 0.

By the extra assumption that F has no non-trivial right annihilator of ΩX ,

y1 − TY(y1) = 0 for all y1 ∈ ΩY , or equivalently, TY = 1Y . Therefore,

y = TY(y0) = y0, and condition 2 is necessary.

The extra assumptions in Corollary 2.3.3 are usually satisfied, which means

that Condition 2 is usually also necessary. Indeed, most bilinear mappings

that arise in applications have no non-trivial annihilators. The assumption

that “TX (x0) = x0 only if TX = 1X” is also true in many scenarios. For

example, if TX is scaling by a nonzero complex number and TX (x0) = x0 for

some nonzero x0, then TX has to be identity. However, there are examples

for which Corollary 2.3.3 is not necessary (cf. Appendix A.1).

Later in this thesis, we repeatedly apply Corollary 2.3.3 to various sce-

narios of the blind gain and phase calibration problem and derive sufficient

conditions for identifiability up to transformation groups.
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CHAPTER 3

IDENTIFIABILITY IN BLIND GAIN AND
PHASE CALIBRATION

3.1 Notations

We state the notations that will be used throughout the chapter. We use

upper-case letters A, X and Y to denote matrices, and lower-case letters to

denote vectors. The diagonal matrix whose diagonal entries are the entries

of vector λ is denoted by diag(λ). We use I to denote the identity matrix

and F to denote the normalized discrete Fourier transform (DFT) matrix.

Unless otherwise stated, all vectors are column vectors. The dimensions of

all vectors and matrices are made clear in the context. A vector is said to be

non-vanishing if all its entries are nonzero.

We use j, k to denote indices, and J,K to denote index sets. If a matrix

or a vector has dimension n, then an index set J is a subset of {1, 2, · · · , n}.
We use |J | to denote the cardinality of J , and J c to denote its complement.

We use superscript letters to denote subvectors or submatrices. Thus, x(J)

represents the subvector of x consisting of the entries indexed by J . The

scalar x(j) represents the jth entry of x. The submatrix A(J,K) has size

|J | × |K| and consists of the entries indexed by J × K. The vector A(:,k)

represents the kth column of the matrix A. The colon notation is inherited

from MATLAB.

We use ./ and � to denote entrywise division and entrywise product, re-

spectively. Circular convolution is denoted by ~. The direct sum of two

subspaces is denoted by ⊕. The Kronecker product of two matrices is de-

noted by ⊗. The row space and column space of a matrix are denoted by

R(·) and C(·), respectively.
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3.2 Problem Statement

Blind gain and phase calibration (BGPC) is the following constrained BIP

given the measurement Y = diag(λ0)Φ0:

find (λ,Φ),

s.t. diag(λ)Φ = Y,

λ ∈ ΩΛ, Φ ∈ ΩΦ,

where λ ∈ ΩΛ ⊂ Cn is the unknown gain and phase vector, Φ ∈ ΩΦ ⊂ Cn×N

is the signal matrix. In this chapter, we impose no constraints on λ, i.e.,

ΩΛ = Cn. As for the matrix Φ, we impose subspace, joint sparsity, or sparsity

constraints. In all three scenarios, Φ can be represented in the factorized

form Φ = AX, where the columns of A ∈ Cn×m form a basis or a frame (an

overcomplete dictionary), and X ∈ ΩX ⊂ Cm×N is the matrix of coordinates.

The constraint set becomes ΩΦ = {Φ = AX : X ∈ ΩX}. Under some mild

conditions1 on A, the uniqueness of Φ is equivalent to the uniqueness of X.

For simplicity, we treat the following problem as the BGPC problem from

now on.

(BGPC) find (λ,X),

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ ΩX .

Next, we elaborate on the three scenarios considered in this chapter:

(I) Subspace constraints. The signals represented by the columns of Φ

reside in a low-dimensional subspace spanned by the columns of A. The

matrix A is tall (n > m) and has full column rank. The constraint set is

ΩX = Cm×N .

In inverse rendering [26], the columns of Y = diag(λ)Φ represent images

under different lighting conditions, where λ represents the unknown albedos,2

and the columns of Φ represent the intensity maps of incident light. The

columns of A are the first several spherical harmonics extracted from the 3D

1Under a subspace constraint, A is required to have full column rank. Under a joint
sparsity or sparsity constraint, A is required to satisfy the spark condition [41].

2In inverse rendering, albedos are real and positive. We ignore this extra information
here for simplicity.
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model of the object. They form a basis of the low-dimensional subspace in

which the intensity maps reside.

Multichannel blind deconvolution (MBD) with the circular convolution

model also falls into this category. The measurement Y (:,j) = diag(λ)Φ(:,j)

can be also written as:

F ∗Y (:,j) =
1√
n

(F ∗λ) ~ (F ∗Φ(:,j)).

The vector λ represents the DFT of the signal, and columns of Φ represent

the DFT of the channels. The columns of F ∗A form a basis for the low-

dimensional subspace in which the channels reside. For example, when the

multiple channels are FIR filters that share the same support J , they reside

in a low-dimensional subspace whose basis is F ∗A = I(:,J). By symmetry,

the roles of signals and channels can be switched. In channel encoding, when

multiple signals are encoded by the same tall matrix E, they reside in a low-

dimensional subspace whose basis is F ∗A = E. In this case, the vector λ

represents the DFT of the channel.

(II) Joint sparsity constraints. The columns of Φ are jointly sparse over a

dictionary A, where A is a square matrix (n = m) or a fat matrix (n < m).

The constraint set ΩX is

ΩX = {X ∈ Cm×N : X has at most s nonzero rows}.

In other words, the columns of X are jointly s-sparse.

In sensor array processing with uncalibrated sensors, the vector λ repre-

sents unknown gain and phase for the sensors, and the columns of Φ represent

array snapshots captured at different time instants. If the direction of arrival

(DOA) is discretized using a grid, then each column of A represents the array

response of one direction on the grid. With only s unknown sources, each

column of Φ is the superposition of the same s columns of A. Hence the

columns of the source matrix X are jointly s-sparse.

In synthetic aperture radar (SAR) autofocus [28], which is a special mul-

tichannel blind deconvolution problem, X represents the SAR image and

A = F is the 1D DFT matrix. The entries in λ represent the phase error

in the Fourier imaging data, which varies only along the cross-range dimen-
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sion.3 If we extend the coverage of the image by oversampling the Fourier

domain in the cross-range dimension, the rows of the image X corresponding

to the region that is not illuminated by the antenna beam are zeros. Thus,

the SAR image X can be modeled as a matrix with jointly sparse columns.

(III) Sparsity constraints. The matrix Φ is sparse over a dictionary A,

where A is a square matrix (n = m) or a fat matrix (n < m). The constraint

set ΩX is

ΩX = {X ∈ Cm×N : X has at most s nonzero entries}.

A matrix X with sparse columns can be considered as a special case of this

scenario.

Consider the following multichannel blind deconvolution problem. An

acoustic signal is transmitted under reverberant conditions and recorded by

a microphone array. The DFT of the signal is λ, A = F is the DFT matrix,

each column of Φ = AX is the DFT of the channel of a corresponding mi-

crophone, and the corresponding column of X is a sparse multipath channel

that contains nonzero values at a few locations.

3.3 BGPC with a Subspace Constraint

In this section, we consider the identifiability of the BGPC problem with

a subspace constraint. The measurement in the following problem is Y =

diag(λ0)AX0. The known matrix A ∈ Cn×m is tall (n > m). The columns

of Φ = AX reside in a low-dimensional subspace. The constraint sets are

ΩΛ = Cn and ΩX = Cm×N , hence the problem in unconstrained with respect

to λ and X.

find (λ,X),

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ Cm×N .

3In SAR autofocus, the entries of the phase error λ have unit moduli. We ignore this
extra information here for simplicity.
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3.3.1 Sufficient Condition

As was mentioned earlier, the BGPC problem suffers from scaling ambiguity.

The ambiguity transformation group is defined as follows:

T = {T : T (λ,X) = (σλ,
1

σ
X), for some nonzero σ ∈ C}. (3.1)

Next, we investigate identifiability up to scaling within the framework of

Section 2. By applying Corollary 2.3.3, we provide an alternative proof for

the results by Nguyen et al. [26]. We need the following definition and lemma

(see Appendix B.1 for the proof).

Definition 3.3.1. The row space of a matrix A ∈ Cn×m is said to be de-

composable if there exists a non-empty proper subset (neither the empty set

nor the universal set) J ⊂ {1, 2, · · · , n} and its complement J c such that

R(A) = R(A(J,:))⊕R(A(Jc,:)).

Lemma 3.3.2. 1. If A has full row rank, then the row space of A is de-

composable.

2. If A ∈ Cn×m has full column rank and its row space is not decomposable,

then n > m.

3. The row space of A is not decomposable if and only if dim(R(A)) <

dim(R(A(J,:))) + dim(R(A(Jc,:))) for all non-empty proper subsets J ⊂
{1, 2, · · · , n}.

Nguyen et al. [26] referred to the property that “A has full column rank

and its row space is not decomposable” as “nonseparable full rank”. Here is

our restatement of the identifiability result followed by an alternative proof.

Theorem 3.3.3. In the BGPC problem with a subspace constraint, the pair

(λ0, X0) ∈ Cn×Cm×N is identifiable up to an unknown scaling if the following

conditions are met:

1. Vector λ0 is non-vanishing, i.e., all the entries of λ0 are nonzero.

2. Matrix X0 has full row rank.

3. Matrix A has full column rank and its row space is not decomposable.
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Proof. We apply Corollary 2.3.3 to the BGPC problem, and verify that the

two conditions in the corollary are satisfied. First, since the vector λ0 is non-

vanishing and the matrix A has full column rank, diag(λ0)A has full column

rank. It follows that if diag(λ0)AX0 = diag(λ0)AX1, then X1 = X0. Hence,

given λ0, the recovery of X0 is unique. This verifies Condition 2 in Corollary

2.3.3. To verify Condition 1, we only need to show that λ0 is identifiable up

to scaling.

We prove by contradiction. Suppose the opposite, that there exists (λ1, X1)

such that diag(λ0)AX0 = diag(λ1)AX1 but λ1 /∈ [λ0]LT . Recall that all the

entries of λ0 are nonzero, A has full column rank and X0 has full row rank.

Therefore, rank(diag(λ0)AX0) = rank(diag(λ1)AX1) = m, and X1 too has

full row rank. Since the row space of A is not decomposable, there are no

zero rows in A. Because X0 and X1 have full row rank, it follows that there

are no zero rows in AX0 or AX1. The vector λ0 is non-vanishing, hence

λ1 too is non-vanishing. Let γ = λ1./λ0 denote the entrywise ratio of λ1

over λ0, where γ(j) = λ
(j)
1 /λ

(j)
0 6= 0, j = 1, 2, · · · , n. By the assumption that

λ1 /∈ [λ0]LT , the entrywise ratio is not the repetition of the same number, i.e.,

there exist j1, j2 such that γ(j1) 6= γ(j2). Let T denote the number of distinct

values of γ(j). Create a partition of the index set {1, 2, · · · , n}, denoted by

J1, J2, · · · , JT , such that γ(j) = γt for all j ∈ Jt, t = 1, 2, · · · , T . Note that

γ1, γ2, · · · , γT are the distinct values of γ(j).

Consider the row spaces of A:

R(A) =
T∑
t=1

R(A(Jt,:)). (3.2)

Denote the dimension of R(A(Jt,:)) by mt. Then there exists a subset J bt ⊂ Jt

such that |J bt | = mt and the rows of A(Jb
t ,:) form a basis of R(A(Jt,:)). By the

condition that the row space of A is not decomposable, the sum in (3.2) is

not a direct sum, hence m = rank(A) <
∑T

t=1mt. Furthermore, by (3.2),

there exists a subset

J b = {j1, j2, · · · , jm} ⊂
T⋃
t=1

J bt ⊂
T⋃
t=1

Jt = {1, 2, · · · , n}

such that |J b| = m and the rows of A(Jb,:) form a basis of R(A). The set

(
⋃T
t=1 J

b
t )\J b is not empty because m <

∑T
t=1 mt. Without loss of generality,
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we may assume that there exists j0 ∈ J b1 \ J b. The row A(j0,:) can be written

as a linear combination of the rows of A(Jb,:) and the representation is unique.

We denote the representation by:

A(j0,:) = αj1A
(j1,:) + αj2A

(j2,:) + · · ·+ αjmA
(jm,:). (3.3)

The rows of A(Jb
1 ,:) are linearly independent, and j0 /∈ J b1

⋂
J b, hence A(j0,:)

cannot be written as a linear combination of the rows of A(Jb
1

⋂
Jb,:); there

exists at least one nonzero term in the representation (3.3) corresponding to

one of the rows of A(Jb\Jb
1 ,:). Thus, without loss of generality, there exists

j1 ∈ J b
⋂
J b2 , such that αj1 6= 0.

Recall that rank(diag(λ0)AX0) = rank(diag(λ1)AX1) = m, and X0 and

X1 have full row rank m. Therefore, the column spaces satisfy:

C(diag(λ0)A) = C(diag(λ0)AX0) = C(diag(λ1)AX1) = C(diag(λ1)A).

Hence rank([diag(λ0)A, diag(λ1)A]) = m. Defining matrix

B := [A, diag(γ)A] = [diag(λ0)]−1[diag(λ0)A, diag(λ1)A].

We have that

rank(B) = rank([diag(λ0)A, diag(λ1)A]) = m. (3.4)

Then we consider the row spaces of B. The dimension of the row space

R(B(Jt,:)) = R([A(Jt,:), γtA
(Jt,:)]) is also mt, and the rows of B(Jb

t ,:) form a

basis of the above row space. The rows of B(Jb,:) form a linearly independent

set of cardinality m. By (3.4), the rows of B(Jb,:) form a basis of R(B). The

row B(j0,:) can be can be written as a linear combination of the rows of B(Jb,:).

We denote the representation by:

B(j0,:) = βj1B
(j1,:) + βj2B

(j2,:) + · · ·+ βjmB
(jm,:). (3.5)

Recall that j0 ∈ J b1 , j1 ∈ J b2 , hence γ(j0) = γ1, and γ(j1) = γ2. Using the
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definition of B, we rewrite (3.5) as:

A(j0,:) = βj1A
(j1,:) + βj2A

(j2,:) + · · ·+ βjmA
(jm,:), (3.6)

γ1A
(j0,:) = βj1γ2A

(j1,:) + βj2γ
(j2)A(j2,:) + · · ·+ βjmγ

(jm)A(jm,:). (3.7)

Since the representation in (3.3) is unique, the representations in (3.6) and

(3.7) must satisfy:

βj1 = βj1
γ2

γ1

= αj1 6= 0.

It follows that γ1 = γ2, which contradicts the assumption that γ1 and γ2 are

distinct. Hence the assumption that λ1 /∈ [λ0]LT is false, and λ0 is identifiable

up to an unknown scaling.

For generic signals, we can show that Theorem 3.3.3 reduces to a simple

condition (Corollary 3.3.4) on the dimensions n, m and N . We say that a

property holds for almost all signals if the property holds for all signals but

a set of measure zero.

Corollary 3.3.4. In the BGPC problem with a subspace constraint, if n > m

and N ≥ m, then (λ0, X0) is identifiable up to an unknown scaling for almost

all λ0 ∈ Cn, almost all X0 ∈ Cm×N and almost all A ∈ Cn×m.

Proof. Almost all λ0 ∈ Cn are non-vanishing. If N ≥ m, almost all X0 ∈
Cm×N have full row rank. If n > m, almost all A ∈ Cn×m have full column

rank. Next we show that the row spaces of almost all A are not decomposable.

For almost all A, the submatrices A(J,:) and A(Jc,:) have full rank for every

non-empty proper subset J ⊂ {1, 2, · · · , n}. Therefore, one of the following

cases has to be true.

1. If |J | < m and |J c| < m, then for almost all A, dim(R(A)) = m,

dim(R(A(J,:))) = |J |, dim(R(A(Jc,:))) = |J c|. Hence for almost all A,

dim(R(A)) = m < n = |J |+ |J c| = dim(R(A(J,:))) + dim(R(A(Jc,:))).

2. If |J | ≥ m, then for almost all A, dim(R(A(J,:))) = m. Hence for almost

all A,

dim(R(A)) = m < m+ 1 ≤ dim(R(A(J,:))) + dim(R(A(Jc,:))).
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3. If |J c| ≥ m, then for almost all A, dim(R(A(Jc,:))) = m. Hence for

almost all A,

dim(R(A)) = m < 1 +m ≤ dim(R(A(J,:))) + dim(R(A(Jc,:))).

Therefore, dim(R(A)) < dim(R(A(J,:))) + dim(R(A(Jc,:))) for every non-

empty proper subset J ⊂ {1, 2, · · · , n}, establishing that the row spaces

of almost all A are not decomposable. By Theorem 3.3.3, given that N ≥ m

and n > m, the pair (λ0, X0) is identifiable up to an unknown scaling for

almost all λ0, X0 and A.

Corollary 3.3.4 shows that, in the BGPC problem with a subspace con-

straint, for almost all vectors λ0, almost all tall matrices A and almost all fat

matrices X0, the solution (λ0, X0) is identifiable up to an unknown scaling.

3.3.2 Necessary Condition

Given that λ0 is non-vanishing, Nguyen et al. [26] showed that “the row space

of A is not decomposable” is necessary. Lacking, however, is a necessary

condition for the sample complexity.

As we demonstrate in the next subsection by construction of counter-

examples, the sample complexity N ≥ m, as required by Theorem 3.3.3

implicitly and Corollary 3.3.4 explicitly, is not necessary. Instead, a neces-

sary condition is suggested by heuristically counting the number of degrees of

freedom and the number of measurements in Y = diag(λ)AX. The numbers

of free variables in λ and X are n and mN , respectively. The unknown scal-

ing of λ and X is counted twice, hence 1 is subtracted yielding n+mN − 1

for the total number of degrees of freedom. The total number of measure-

ments is nN . Heuristically, to achieve uniqueness, nN must be greater than

or equal to n + mN − 1, which implies N ≥ n−1
n−m . This turns out to be a

valid necessary condition, as we now state and prove rigorously.

Proposition 3.3.5. In the BGPC problem with a subspace constraint, if A

has full column rank, and (λ0, X0) (with a non-vanishing λ0) is identifiable

up to scaling, then N ≥ n−1
n−m .

25



Proof. We show that if N < n−1
n−m , then the recovery cannot be unique. Let

A⊥ ∈ Cn×(n−m) denote a matrix whose columns form a basis for the ortho-

complement of the column space of A. Hence A∗⊥ is an annihilator of the

column space of A. Consider the linear operator G : Cn → C(n−m)×N defined

by

G(x) := A∗⊥ diag(x)Y = A∗⊥ diag(x) diag(λ0)AX0.

We claim that every non-vanishing null vector of G produces a solution to

the BGPC problem. Indeed, if x ∈ N (G), then

A∗⊥ diag(x) diag(λ0)AX0 = 0,

hence the columns in diag(x) diag(λ0)AX0 must reside in the column space

of A. Let

diag(x) diag(λ0)AX0 = AX1.

If x is non-vanishing, then (λ1, X1) is a solution, where λ1 is the entrywise

inverse of x.

Let x0 denote the entrywise inverse of λ0, then x0 ∈ N (G). There are

N(n −m) equations in G(x) = 0. If N < n−1
n−m , i.e., N(n −m) ≤ n − 2, the

dimension of the null space N (G) is at least 2. Hence, there exists another

vector x1 ∈ N (G) such that x0, x1 are linearly independent. Let α be a

complex number such that 0 < |α| < 1
‖λ0‖∞‖x1‖∞

. Then x0 + αx1 ∈ N (G) is

non-vanishing, because the entries of x0 + αx1 satisfy that

∣∣x(j)
0 +αx

(j)
1

∣∣ ≥ ∣∣x(j)
0

∣∣−|α|∣∣x(j)
1

∣∣ ≥ 1

‖λ0‖∞
−|α| ‖x1‖∞ > 0, ∀j ∈ {1, 2, · · · , n}.

This null vector is not a scaled version of x0. Hence there exists a solution

that does not belong to the equivalence class [(λ0, X0)]T . Therefore, N ≥
n−1
n−m is necessary.

The two sample complexities N ≥ m and N ≥ n−1
n−m coincide when m = 1

or m = n − 1. The gap between these two sample complexities when 2 ≤
m ≤ n− 2 is analyzed next.
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3.3.3 Gap Between the Sufficient and the Necessary
Conditions

The sample complexity in the sufficient condition is N ≥ m, which can be

represented by the region above a line segment. The sample complexity in

the necessary condition is N ≥ n−1
n−m , which can be represented by the region

above part of a hyperbola. The gap between the two sample complexities is

the region between the line segment and the hyperbola (cf. Figure 3.1).
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Figure 3.1: The sample complexities for BGPC with a subspace constraint,
and the ratio of identifiable pairs generated randomly.

To explore this gap, we wish to determine whether (λ0, X0), in BGPC

with a subspace constraint, is identifiable up to scaling. We now show that

this can be done by Algorithm 1. Given A that has full column rank and

Y = diag(λ0)AX0 that has no zero rows, Algorithm 1 returns a Boolean

value indicating whether (λ0, X0) is identifiable up to scaling.

Algorithm 1 Identifiability of the BGPC problem with a subspace con-
straint

input: A,Y output: identifiability of (λ0, X0)

[Q,R] = qr(A) {QR decomposition of A}
A⊥ ← Q(:,m+1:n)

G←
[
[diag(Y (:,1))]∗A⊥ [diag(Y (:,2))]∗A⊥ · · · [diag(Y (:,N))]∗A⊥

]∗
if rank(G) ≤ n− 2 then

return False

else

return True

end if
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Proposition 3.3.6. Given A that has full column rank and Y = diag(λ0)AX0

that has no zero rows, the pair (λ0, X0) is identifiable up to scaling if Algo-

rithm 1 returns True, and not identifiable up to scaling if Algorithm 1 returns

False.

Proof. The columns of A⊥ form a basis for the ortho-complement of the

column space of A, hence A∗⊥ is an annihilator of the column space of A.

The matrix G ∈ CN(n−m)×n satisfies that Gx = vec(A∗⊥ diag(x)Y ). Given Y

that has no zero rows, any solution to the BGPC problem (λ,X) satisfies

that λ is non-vanishing, and that the entrywise inverse of λ is a null vector

of G. On the other hand, as argued in the proof of Proposition 3.3.5, any

non-vanishing null vector of G produces a solution (λ,X).

If Algorithm 1 returns True, then rank(G) ≥ n − 1. Given a solution

(λ0, X0), G has at least one null vector x0, which is the entrywise inverse

of λ0. Hence rank(G) = n − 1. All the null vectors of G reside in the

one-dimensional subspace spanned by x0. Therefore λ in any solution is a

scaled version of λ0, or λ ∈ [λ0]LT . Given non-vanishing λ0 and A with full

column rank, diag(λ0)A has full column rank and the recovery of X0 has to

be unique. By Corollary 2.3.3, (λ0, X0) is identifiable up to scaling.

If Algorithm 1 returns False, then rank(G) ≤ n − 2. By the proof of

Proposition 3.3.5, (λ0, X0) is not identifiable.

We now use Algorithm 1 to construct counter-examples demonstrating

that the sufficient condition in Theorem 3.3.3 is not necessary. Let n = 10,

1 ≤ m ≤ 9, and 1 ≤ N ≤ 9. The entries of λ0 ∈ Rn and X0 ∈ Rm×N are

generated as iid Gaussian random variables N(0, 1). The matrix A ∈ Rn×m

is the first m columns from an n × n random orthogonal matrix. Then A⊥

comprises the last (n−m) columns from the same random orthogonal matrix.

We use Algorithm 1 to determine whether or not (λ0, X0) is identifiable

up to scaling. For every value of m and N , the numerical experiment is

repeated 100 times independently. The ratio of identifiable pairs as a function

of (m,N) is shown in Figure 3.1. As is expected, the solution (λ0, X0) is

identifiable when N ≥ m, and is not identifiable when N < n−1
n−m . Meanwhile,

when n−1
n−m ≤ N < m, the ratio of identifiable pairs is 1. Therefore, N ≥ m

is not necessary.

On the other hand, the necessary condition in Proposition 3.3.5 is not

sufficient. For example, if n = 8, m = 4 and n−1
n−m < N = 2 < m, let A be
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the structured matrix

A =
[
A1 diag(γ)A1

]
,

where A1 ∈ C8×2, γ ∈ C8. There exists an A1 and a γ such that the matrix

A has full column rank and the row space of A is not decomposable. For

example, let A1 = 2
√

2F (:,1:2) and γ = 2
√

2F (:,3), then A = 2
√

2F (:,1:4).

However, (λ0, X0) is not identifiable and λ0AX0 = λ1AX1, if

X0 =


1 0

0 1

0 0

0 0

 , X1 =


0 0

0 0

1 0

0 1

 ,

λ0 = γ � λ1.

However, according to the ratio of identifiable pairs shown in Figure 3.1,

the unidentifiable case does not occur even once in 100 random trials. We

have the following conjecture:

Conjecture 3.3.7. In the BGPC problem with a subspace constraint, if n >

m and N ≥ n−1
n−m , then (λ0, X0) is identifiable up to an unknown scaling for

almost all λ0 ∈ Cn, almost all X0 ∈ Cm×N and almost all A ∈ Cn×m.

If the above conjecture is true, the necessary condition N ≥ n−1
n−m is tight

except for a set of measure zero.

3.4 BGPC with a Joint Sparsity Constraint

Here we consider the identifiability in the BGPC problem with a joint sparsity

constraint:

(P1) find (λ,X),

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ ΩX = {X ∈ Cn×N : the columns of X are jointly s-sparse}.

The measurement in the above problem is Y = diag(λ0)AX0. We only

consider the case where A ∈ Cn×n is an invertible square matrix. The vector

λ0 ∈ Cn is non-vanishing. The columns of X0 ∈ Cn×N are jointly s-sparse
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(X0 has at most s nonzero rows). Unless otherwise stated, we assume that

the sparsity level s is known a priori. However, if s is unknown, one can solve

the following optimization problem instead:

(P2) min.
(λ,X)

row-sparsity(X),

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ Cn×N .

In this section, we define ambiguities and transformation groups that de-

pend on the matrix A. For two special cases of A, we give sufficient conditions

for identifiability up to the ambiguity transformation groups.

3.4.1 Ambiguities and Transformation Groups

Geometrically, a joint sparsity constraint corresponds to a union of subspaces;

hence, it is less restrictive than the previously discussed subspace constraint.

This results in greater ambiguity in identifying a solution to BGPC with

a joint sparsity constraint, than just the scaling ambiguity. In this case,

to obtain identifiability results, we must choose the largest transformation

group associated with the BIP, which captures all ambiguities inherent in

the problem. In this section, we develop a procedure to do so.

A generalized permutation matrix is an invertible square matrix with ex-

actly one nonzero entry in each row and each column. It preserves the joint

sparsity structure. That is, if the columns of X0 are jointly s-sparse and

P is a generalized permutation matrix, then the columns of X1 = PX0

are also jointly s-sparse. Suppose there exists a vector γ ∈ Cn such that

P = A−1 diag(γ)A is a generalized permutation matrix; then clearly γ has

to be non-vanishing. Now, given a solution (λ0, X0) to the BGPC problem,

there exist λ1 = λ0./γ and X1 = PX0 ∈ ΩX such that

diag(λ1)AX1 = diag(λ0)[diag(γ)]−1AA−1 diag(γ)AX0 = diag(λ0)AX0.

This ambiguity is inevitable. To address this ambiguity, we define the set

Γ(A) = {γ ∈ Cn : A−1 diag(γ)A is a generalized permutation matrix},
(3.8)
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and the ambiguity transformation group

T = {T : T (λ,X) = (λ./γ, A−1 diag(γ)AX) for some γ ∈ Γ(A)}. (3.9)

Then (λ1, X1) is in the equivalence class [(λ0, X0)]T .

Note that the set Γ(A) depends on A. In particular, when A is the nor-

malized DFT matrix A = F ∈ Cn×n, the matrix F ∗ diag(γ)F is a circulant

matrix whose first column is 1√
n
F ∗γ. The matrix F ∗ diag(γ)F is a gener-

alized permutation matrix if and only if there is exactly one nonzero entry

in 1√
n
F ∗γ, which means that the circulant matrix F ∗ diag(γ)F is a scaled

circular shift. Therefore,

Γ(F ) =
{
γ = σ

√
nF (:,k) : σ ∈ C is nonzero, k ∈ {1, 2, · · · , n}

}
. (3.10)

T = {T : T (λ,X) = (λ./γ, F ∗ diag(γ)FX) for some γ ∈ Γ(F )}. (3.11)

An equivalence transformation T ∈ T defined in (3.11) is a complex expo-

nential modulation of λ scaled by 1
σ

and a circular shift of X scaled by σ. In

MBD, if we shift the signal by 1− k and scale it by 1
σ
, and shift the channels

by k−1 and scale them by σ, the outputs of the channels remain unchanged.

The ambiguity transformation groups for other choices of A can be figured

out in a similar fashion. For more examples, please refer to Section 3.4.3 and

to Appendix A.2.

3.4.2 Identifiability of Jointly Sparse Signals

In this section, we assume that A = F is the DFT matrix and the columns

of X are jointly s-sparse. In multichannel blind deconvolution, the non-

vanishing vector λ0 is the DFT of the signal and the jointly sparse columns

of X0 are the multiple channels. We derive a sufficient condition and a

necessary condition for (λ0, X0) to be identifiable up to the transformation

group defined in (3.11).

Sufficient Condition

We can prove a sufficient condition for identifiability up to the transformation

group in (3.11) within the framework of Section 2 by again invoking Corollary
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2.3.3. We need the following definition to state this sufficient condition.

Definition 3.4.1. The index set J = {j1, j2, · · · , js} ⊂ {1, 2, · · · , n} is said

to be periodic with period ` (` being an integer such that 0 < ` < n), if

J = {j1 + `, j2 + `, · · · , js + `} (modulo n). The smallest integer ` with this

property is called the fundamental period.

The universal set {1, 2, · · · , n} is always periodic with period ` (` being

any integer from 1 to n − 1). The fundamental period is 1. For n = 10

and s = 4, the set J = {1, 2, 6, 7} is periodic with fundamental period 5.

Periodicity has the following property.

Remark 3.4.2. If the set J = {j1, j2, · · · , js} is periodic with period `, then

the complement J c, the flipped version Jf = {−j1,−j2, · · · ,−js} (modulo n)

and the shifted version {j1 +k, j2 +k, · · · , js +k} (modulo n) are all periodic

with period `.

Here is the sufficient condition for the identifiability of the BGPC problem

with DFT matrix and a joint sparsity constraint.

Theorem 3.4.3. In the BGPC problem with DFT matrix and a joint sparsity

constraint at sparsity level s, the pair (λ0, X0) ∈ Cn × ΩX is identifiable up

to the transformation group T defined in (3.11) if the following conditions

are met:

1. Vector λ0 is non-vanishing.

2. Matrix X0 has exactly s nonzero rows and rank s.

3. The joint support of the columns of X0 is not periodic.

Proof. First, given non-vanishing λ0 and the DFT matrix F , the matrix

diag(λ0)F has full rank. If diag(λ0)FX0 = diag(λ0)FX1, then X1 = X0.

Hence, given λ0, the recovery of X0 is unique. By Corollary 2.3.3, to com-

plete the proof, we only need to show that λ0 is identifiable up to the trans-

formation group.

By assumption, the matrix X0 has rank s and the joint support of the

columns of X0, denoted by J = {j1, j2, · · · , js}, is not periodic. Given that

diag(λ0)FX0 = diag(λ1)FX1, we show that λ1 ∈ [λ0]LT . Now, the matrix

X0 has s linearly independent columns, diag(λ0)F has full rank, hence the
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corresponding columns of X1 are also linearly independent. Without loss of

generality, we may assume that X0 and X1 only have s columns, which are

linearly independent, by removing redundant columns at the same locations

in both matrices. Then X0, X1 ∈ Cn×s have full column rank s and exactly

s nonzero rows. Because F has no zero entries, it follows that there are no

zero rows in FX0 or FX1. The vector λ0 is non-vanishing, hence λ1 is also

non-vanishing. We know that

P = F ∗[diag(λ1)]−1 diag(λ0)F (3.12)

is a circulant matrix and that X1 = PX0. Let X†0 ∈ Cs×n denote the pseudo-

inverse (also the left inverse) of X0, and X0⊥ ∈ Cn×(n−s) denote a matrix

whose columns form a basis for the ortho-complement of the column space of

X0. Since X0 has full column rank s and exactly s nonzero rows indexed by

J , we may choose X†0 such that its nonzero columns are indexed by J , and

choose the columns of X0⊥ to be the standard basis vectors {I(:,k) : k ∈ J c}.
The matrix P as in X1 = PX0 satisfies

P = X1X
†
0 +QX∗0⊥, (3.13)

where Q ∈ Cn×(n−s) is a free matrix. Note that the nonzero columns of QX∗0⊥
are indexed by J c and the nonzero columns of X1X

†
0 are indexed by J . Hence

P (:,J) = X1X
†(:,J)
0 . The submatrix P (:,J) has no more than s nonzero rows

because X1 has s nonzero rows.

We prove λ1 ∈ [λ0]LT by contradiction. Suppose that λ1 /∈ [λ0]LT . By (3.10)

and (3.11), the entrywise ratio γ = λ0./λ1 /∈ Γ(F ), which means that 1√
n
F ∗γ,

the first column of the circulant matrix P (as in (3.12)), has more than one

nonzero entry. Denote the indices of the first two nonzero entries of P (:,1) by

k1 and k2. By the structure of circulant matrices, the rows of P (:,J) indexed

by the following two sets (interpreted modulo n) are nonzero:

K1 = {k1 + j1 − 1, k1 + j2 − 1, · · · , k1 + js − 1},

K2 = {k2 + j1 − 1, k2 + j2 − 1, · · · , k2 + js − 1}.

Note that |K1| = |K2| = s. Recall that P (:,J) has no more than s nonzero

rows, hence K1 = K2. It follows that set K1 is periodic with period ` =
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|k2 − k1|. By the property in Remark 3.4.2, the set J is also periodic with

the same period, and we reach a contradiction. Therefore, the assumption

that λ1 /∈ [λ0]LT is false, and Condition 1 of Corollary 2.3.3 is satisfied - the

vector λ0 is identifiable up to the transformation group.

Corollary 3.4.4. If N ≥ s, then the conclusion of Theorem 3.4.3 holds for

almost all λ0 ∈ Cn, and almost all X0 ∈ Cn×N that has s nonzero rows and

non-periodic joint support.

Proof. Almost all λ0 ∈ Cn are non-vanishing. If N ≥ s, then almost all

X0 ∈ Cn×N with s nonzero rows have rank s. In addition, the joint support

of X0 is not periodic. Therefore, the conditions in Theorem 3.4.3 are met,

and (λ0, X0) is identifiable up to the transformation group T defined in

(3.11).

Corollary 3.4.4 shows that, in the BGPC problem with DFT matrix and

a joint sparsity constraint, given that N ≥ s, the identifiability of generic

signals (λ0, X0) hinges on the joint support of X0. If the joint support is

non-periodic, (λ0, X0) is almost always identifiable. Other priors may imply

non-periodicity. For example, if the joint support is a contiguous block, or if

n and s are coprime, the joint support has to be non-periodic.

Corollary 3.4.5. If N ≥ s, then the conclusion of Theorem 3.4.3 holds for

almost all λ0 ∈ Cn, and almost all X0 ∈ Cn×N that has s nonzero rows that

are contiguous.

Corollary 3.4.6. If N ≥ s, and n and s are coprime, then the conclusion

of Theorem 3.4.3 holds for almost all λ0 ∈ Cn, and almost all X0 ∈ Cn×N

that has s nonzero rows.

Clearly, the coprimeness condition in Corollary 3.4.6 is satisfied for all

s < n if n is a prime number.

The above results are under the assumption that the sparsity level s is

known a priori. If s is unknown, instead of solving the feasibility problem

(P1), one can solve the optimization problem (P2). We have the following

corollary, whose proof is almost identical to that of Theorem 3.4.3.

Corollary 3.4.7. In the BGPC problem with DFT matrix and unknown

sparsity level, the pair (λ0, X0) ∈ Cn×ΩX is the unique minimizer of (P2) up
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to the transformation group T defined in (3.11), if the following conditions

are met:

1. Vector λ0 is non-vanishing.

2. Matrix X0 has rank equal to the number of nonzero rows.

3. The joint support of the columns of X0 is not periodic.

We can derive row sparsity minimization analogs of Corollaries 3.4.4, 3.4.5

and 3.4.6 in a similar fashion. These results are omitted for the sake of

brevity.

Necessary Condition

Given that λ0 is non-vanishing, “the joint support of the columns of X0 is not

periodic” is necessary. We prove this by contraposition. We assume that the

joint support of the columns of X0 is periodic with period `, and next show

that (λ0, X0) is not identifiable up to the transformation group in (3.11). Let

P be a circulant matrix whose first column has two nonzero entries P (1,1) = 1

and P (`+1,1) = 2. Thus, the DFT γ =
√
nFP (:,1) of the first column of P

is non-vanishing. Let λ1 = λ0./γ and X1 = PX0. Then P satisfies (3.12),

and diag(λ1)FX1 = diag(λ0)FX0. Since P is not a generalized permutation

matrix, X1 is not a scaled and circularly shifted version of X0. Hence (λ0, X0)

is not identifiable up to the transformation group in (3.11).

The above necessary condition does not address the sample complexity.

Like Proposition 3.3.5, we have the following necessary condition for the

sample complexity.

Proposition 3.4.8. In the BGPC problem with DFT matrix and a joint

sparsity constraint, if (λ0, X0) (λ0 is non-vanishing, X0 has at most s nonzero

rows) is identifiable up to the transformation group in (3.11), then N ≥ n−1
n−s .

Proof. The matrix X0 has at least n− s zero rows. If we know the locations

of n− s zero rows, the problem becomes a BGPC problem with a subspace

constraint. The columns of AX0 reside in an s-dimensional subspace. If

N < n−1
n−s , the pair (λ0, X0) is not identifiable up to scaling and circular shift.

The proof is almost identical to that of Proposition 3.3.5.
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The pair (λ0, X0) cannot be identified even if we know the locations of

n − s zero rows. Hence it is not identifiable without knowing the locations

of zero rows.

The above necessary condition gives a tight lower bound on sample com-

plexity. Morrison et al. [28] showed the same necessary condition for SAR

autofocus (in the case of known row support of X0). The two sample com-

plexities, N ≥ s, as is required by Theorem 3.4.3 implicitly and Corollary

3.4.4 explicitly, and N ≥ n−1
n−s , coincide when s = 1 or s = n − 1. The gap

between the sufficient condition and the necessary condition is analyzed next.

Gap Between the Sufficient and the Necessary Conditions

The sample complexity N ≥ s in the sufficient condition and the sample

complexity N ≥ n−1
n−s in the necessary condition can be represented by the

regions above the line segment and the hyperbola, respectively (cf. Figure

3.2).
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Figure 3.2: The sample complexities for BGPC with DFT matrix and a
joint sparsity constraint, and the ratio of identifiable pairs generated
randomly.

Algorithm 2 can be used to check the identifiability of BGPC with DFT

matrix and a joint-sparsity constraint. Given Y = diag(λ0)FX0 that has no

zero rows and joint support of X0 that has cardinality s, Algorithm 2 returns

a Boolean value indicating whether or not (λ0, X0) is identifiable up to the

transformation group in (3.11). The procedure enumerates all joint supports

of cardinality s.
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Algorithm 2 Identifiability of the BGPC problem with DFT matrix and a
joint sparsity constraint

input: Y , the joint support J output: identifiability of (λ0, X0)

for all support J ′ such that |J ′| = s do

GJ ′ ←
[
[diag(Y (:,1))]∗F (:,J ′c) [diag(Y (:,2))]∗F (:,J ′c) · · · [diag(Y (:,N))]∗F (:,J ′c)

]∗
if rank(GJ ′) ≤ n− 2 then

return False

end if

if rank(GJ ′) = n− 1 and J ′ is not a shifted version of J then

return False

end if

end for

return True

Proposition 3.4.9. Given Y = diag(λ0)FX0 that has no zero rows and the

joint support of X0 that has cardinality s, the pair (λ0, X0) is identifiable (up

to the transformation group in (3.11)) if Algorithm 2 returns True, and not

identifiable otherwise.

Proof. The matrixGJ ′ ∈ CN(n−s)×n satisfies thatGJ ′x = vec(F (:,J ′c)∗ diag(x)Y ),

where F (:,J ′c)∗ is an annihilator of the column space of F (:,J ′). Given Y that

has no zero rows, any solution to the BGPC problem (λ,X) satisfies that λ

is non-vanishing, and that the entrywise inverse of λ is a null vector of GJ ′ ,

where J ′ is the joint support of X. On the other hand, any null vector of

GJ ′ produces a solution (λ,X), where X is supported on J ′.

If Algorithm 2 returns False, then at least one of the following two cases

happens:

1. rank(GJ ′) ≤ n− 2 for some |J ′| = s. By the proof of Proposition 3.3.5,

the solution is not identifiable even if the support J ′ is known.

2. rank(GJ ′) = n− 1 for some J ′ that is not a shifted version of J . There

exists a solution (λ,X), for which X /∈ [X0]RT . Therefore (λ0, X0) is

not identifiable.

In either case, (λ0, X0) is not identifiable up to the transformation group in

(3.11).

If Algorithm 2 returns True, then rank(GJ ′) ≥ n−1 for all J ′ of cardinality

s, and rank(GJ ′) = n − 1 only if J ′ is a shifted version of J . Hence any
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solution (λ,X) must satisfy that the joint support J ′ is a shifted version of J .

Now, given any shifted joint support J ′, there exists a solution (λJ ′ , XJ ′) ∈
[(λ0, X0)]T . Therefore GJ ′ has at least one null vector xJ ′ , which is the

entrywise inverse of λJ ′ . Hence rank(GJ ′) = n − 1, and the null vectors of

GJ ′ reside in the one-dimensional subspace spanned by xJ ′ . It follows that

given the joint support J ′, λ in any solution must be a scaled version of λJ ′ .

Therefore λ ∈ [λJ ′ ]
L
T = [λ0]LT . On the other hand, given non-vanishing λ0,

diag(λ0)F has full rank and the recovery of X0 has to be unique. Hence,

by Corollary 2.3.3, (λ0, X0) is identifiable up to the transformation group in

(3.11).

The sufficient condition in Theorem 3.4.3 is not necessary, as shown by the

following numerically constructed counter-examples. Let n = 10, 1 ≤ s ≤ 9,

and 1 ≤ N ≤ 9. The joint support J of the columns of X0 ∈ Rn×N is chosen

uniformly at random. The entries of λ0 ∈ Rn and the nonzero entries of X0

are generated as iid Gaussian random variables N(0, 1). We use Algorithm 2

to determine whether (λ0, X0) is identifiable up to the transformation group

in (3.11). For every value of s and N , and every support J of cardinality s,

the numerical experiment is repeated independently. The ratio of identifiable

pairs as a function of (s,N) is shown in Figure 3.2. When n−1
n−s ≤ N < s

(between the line and the hyperbola), the ratio of identifiable pairs is nonzero.

Therefore, N ≥ s is not necessary.

The necessary condition in Proposition 3.4.8 is not sufficient. This too can

be demonstrated by Figure 3.2. The ratio of identifiable pairs is less than

1 in some regions above the hyperbola. Unidentifiable examples of (λ0, X0)

that satisfy the necessary condition can be found in Appendix A.3.

As shown by Figure 3.2, when N < n−1
n−s (below the hyperpola), the pairs

are not identifiable. When N ≥ s (above the line segment), the identifiability

hinges on the joint support of the columns of X0. The “stripes” above the line

segment where the ratios of identifiable pairs are slightly less than 1 are due

to periodic supports. Most supports are not periodic, hence most pairs are

identifiable. When n−1
n−s ≤ N < s (between the line and the hyperbola), the

situation is more complicated. Besides periodic supports, other joint supports

of X0 can also cause non-identifiability. However, given some “good” joint

support of X0 that depends on both s and N , a randomly chosen (λ0, X0)

is identifiable almost surely. Recall that non-periodicity of the joint support
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is necessary, hence “good” supports are a subset of non-periodic supports

when n−1
n−s ≤ N < s. For example, when s = 5 and N = 2, about 60% of

the non-periodic supports are “good”. When s = 7 and N = 3, there is

no “good” support. When s = 7 and N = 4, all non-periodic supports are

“good”. We have the following conjecture:

Conjecture 3.4.10. In the BGPC problem with DFT matrix and a joint

sparsity constraint, if N ≥ n−1
n−s , then for almost all λ0 ∈ Cn and almost all

X0 ∈ Cn×N that has s nonzero rows and some “good” joint support, the pair

(λ0, X0) is identifiable up to the transformation group T defined in (3.11).

Extensions of the Model

The results in Section 3.4.2 apply to A = F . This corresponds to MBD

where the multiple channels are jointly sparse in the standard basis. Since

the product of two circulant matrices is still a circulant matrix, we can easily

show that the above results also apply to A = FC, where C is a known

invertible circulant matrix. This corresponds to MBD where the multiple

channels are jointly sparse in the basis formed by the columns of C. In

fact, results such as Theorem 3.4.3 can also be derived for other matrices.

In Section 3.4.3, we derive a sufficient condition for the identifiability of

piecewise constant signals.

Although the results in Section 3.4.2 deal with 1D circular convolutions,

extensions to higher-dimensional circular convolutions are straightforward.

Let us consider a 2D MBD problem with a joint sparsity constraint as an

example, and present a sufficient condition analogous to Theorem 3.4.3. Here

A = F ⊗ F ∈ Cn×n is the 2D DFT matrix, where F ∈ C
√
n×
√
n is the 1D

DFT matrix. In the 2D problem, the row index of X can be represented

by a pair of vertical and horizontal indices. For example, the j-th row of X

corresponds to the following index pair:

(jv, jh) =

(
j −
√
n
⌊j − 1√

n

⌋
,
⌊j − 1√

n

⌋
+ 1

)
,

where b·c denotes the floor operation. Repeating the procedure in Section
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3.4.1, the transformation group for the 2D problem is defined by:

Γ(F ⊗ F ) =
{
γ = σ

√
n(F ⊗ F )(:,k) : σ ∈ C is nonzero, k ∈ {1, 2, · · · , n}

}
.

(3.14)

T = {T : T (λ,X) = (λ./γ, (F⊗F )∗ diag(γ)(F⊗F )X) for some γ ∈ Γ(F ⊗ F )}.
(3.15)

An equivalence transformation T ∈ T maps X into a scaled 2D circular shift

version of itself. The periodicity is defined as follows:

Definition 3.4.11. The index set J = {(jv1 , jh1 ), (jv2 , j
h
2 ), · · · , (jvs , jhs )} ⊂

{1, 2, · · · ,
√
n}2 is said to be periodic with period (`v, `h) (`v and `h being

integers such that 0 ≤ `v, `h <
√
n and at least one of the two integers is

nonzero), if J = {(jv1 + `v, jh1 + `h), (jv2 + `v, jh2 + `h), · · · , (jvs + `v, jhs + `h)}
(modulo (

√
n,
√
n)).

For example, if
√
n = 6, then the index set {(1, 1), (1, 4)} is periodic with

period (0, 3). The index set {(1, 1), (4, 4)} is periodic with period (3, 3). The

index set {(1, 1), (4, 1), (1, 4), (4, 4)} is periodic with period (3, 0), (0, 3), or

(3, 3). The index set {(1, 1), (5, 3), (3, 5)} is periodic with period (4, 2) or

(2, 4). The last two examples are shown in Figure 3.3.

Figure 3.3: Examples of 2D periodic index sets.

Here is the sufficient condition for the 2D problem, whose proof is almost

identical to that of Theorem 3.4.3.

Theorem 3.4.12. In the BGPC problem with 2D DFT matrix F ⊗ F ∈ Cn

and a joint sparsity constraint at sparsity level s, the pair (λ0, X0) ∈ Cn ×
ΩX is identifiable up to the transformation group T defined in (3.15) if the

following conditions are met:

1. Vector λ0 is non-vanishing.

2. Matrix X0 has exactly s nonzero rows and rank s.
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3. The joint support of the columns of X0, represented in the index pair

form, is not periodic.

3.4.3 Identifiability of Piecewise Constant Signals

Define the finite difference matrix D ∈ Cn×n and its inverse as:

D =


1

−1 1
. . . . . .

−1 1

 , D−1 =


1

1 1
...

...
. . .

1 1 · · · 1

 .

A piecewise constant signal u can be sparsified by the finite difference opera-

tor D. Equivalently, u has the representation u = D−1x in which x is sparse.

If U = D−1X in which the columns of X are jointly sparse, then the columns

of U are piecewise constant and the discontinuities are at the same locations.

In this section, we consider the following blind deconvolution problem.

The observation model is Y = diag(λ0)FD−1X0, where the matrix X0 has at

most s nonzero rows. The non-vanishing vector λ0 is the DFT of the filter.

The columns of D−1X0 are the signals, which are piecewise constant and

share the same discontinuities. An example is deblurring of hyperspectral

images. The recovery of (λ0, X0) is the BGPC problem with A = FD−1 and

a joint sparsity constraint.

First, we need to figure out the ambiguity transformation group. The

structured matrix P = A−1 diag(γ)A = DF ∗ diag(γ)FD−1 = DCD−1 is

P =



∑n
j=1 c

(j)
∑n

j=2 c
(j)

∑n−1
j=2 c

(j)
∑n−2

j=2 c
(j) · · · c(2)

0 c(1) − c(2) c(n) − c(2) c(n−1) − c(2) · · · c(3) − c(2)

0 c(2) − c(3) c(1) − c(3) c(n) − c(3) · · · c(4) − c(3)

0 c(3) − c(4) c(2) − c(4) c(1) − c(4) · · · c(5) − c(4)

...
...

...
...

. . .
...

0 c(n−1) − c(n) c(n−2) − c(n) c(n−3) − c(n) · · · c(1) − c(n)


,

(3.16)

where C = F ∗ diag(γ)F is a circulant matrix whose first column is

1√
n
F ∗γ = c = [c(1), c(2), · · · , c(n)]T.
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For P to be a generalized permutation matrix, we must have c(2) = c(3) =

· · · = c(n) = 0, and c(1) 6= 0. Hence γ =
√
nFc = c(1)[1, 1, · · · , 1]T. The

ambiguity transformation group in (3.9) becomes (3.1). We only allow an

unknown scaling in the recovery.

Next we investigate identifiability up to scaling within the framework of

Section 2 and derive a sufficient condition. As in Theorem 3.4.3, one of the

requirements is in terms of the joint support of the columns of X0. We need

the following definitions to state this sufficient condition.

Definition 3.4.13. Let the index sets J1, J2, · · · , JT be the nodes of an undi-

rected graph. There is an edge between Jt1 and Jt2 (1 ≤ t1 < t2 ≤ T ) if

Jt1
⋂
Jt2 6= ∅. The index sets J1, J2, · · · , JT are said to be connected if the

above graph is connected.

Definition 3.4.14. The index set J = {j1, j2, · · · , js} ⊂ {1, 2, · · · , n} is said

to be “friendly” if for any 0 ≤ k1 < k2 < · · · < kn−s ≤ n − 1, the circularly

shifted index sets J1, J2, · · · , Jn−s, defined by Jt = {j1+kt, j2+kt, · · · , js+kt}
(modulo n), satisfy that

1. |
⋃n−s
t=1 Jt| ≥ n− 1.

2. J1, J2, · · · , Jn−s are connected.

We make the convention that {1, 2, · · · , n} is friendly.

If the index set J is friendly, and the entries indexed by its circularly

shifted version Jt (1 ≤ t ≤ n − s) are equivalent in some sense, then due to

transitivity of the equivalence relation, and the connectivity of the circularly

shifted index sets, at least n−1 out of n entries are equivalent. This property

is used in the proof of Theorem 3.4.20.

Remark 3.4.15. If the index set J is friendly, then its flipped and shifted

versions are also friendly.

We have the following propositions regarding the “friendliness” of an in-

dex set. Proposition 3.4.16 shows that, for a non-trivial problem, a friendly

index set must have cardinality at least 3, which helps to avoid degener-

acy in the proof of Theorem 3.4.20. Propositions 3.4.17 and 3.4.18 give two

sufficient conditions for friendliness, which makes the property more read-

ily interpretable. Corollary 3.4.19 gives an alternative characterization of

Condition 1 in Definition 3.4.14. See Appendix B.2 for the proofs.
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Proposition 3.4.16. If n ≥ 4 and the index set J is friendly, then |J | ≥ 3.

Proposition 3.4.17. The index set J is friendly if |J | ≥ 3 and J is con-

tiguous.4

Proposition 3.4.18. The index set J is friendly if |J | > n
2

and J is not

periodic.

Corollary 3.4.19. Let |J | = s < n. Then |
⋃n−s
t=1 Jt| ≥ n− 1 for all choices

of n− s shifted index sets Jt if and only if J is not periodic.

Here is the sufficient condition for identifiability of piecewise constant sig-

nals.

Theorem 3.4.20. Consider the BGPC problem with A = FD−1 and two

constraints: λ is non-vanishing, and the columns of X are jointly s-sparse.

The pair (λ0, X0) ∈ Cn × ΩX is identifiable up to an unknown scaling, if the

following conditions are met (assume that n ≥ 4 and J = {j1, j2, · · · , js}
denotes the joint support of the columns of X0):

1. The vector λ0 is non-vanishing.

2. The matrix X0 has exactly s nonzero rows, and has rank s.

3. 1 /∈ J .

4. {1}
⋃
J is friendly.

Proof. First, given non-vanishing λ0 andA = FD−1, the matrix diag(λ0)FD−1

has full rank. If diag(λ0)FD−1X0 = diag(λ0)FD−1X1, then X1 = X0.

Hence, given λ0, the recovery of X0 is unique. By Corollary 2.3.3, to es-

tablish the result, we only need to show that λ0 is identifiable up to an

unknown scaling.

Assuming that Conditions 1-4 of the theorem are satisfied, we show that λ1

is a scaled version of λ0, if diag(λ0)FD−1X0 = diag(λ1)FD−1X1 for (λ1, X1)

that satisfies the two constraints. The matrix diag(λ0)FD−1 has full rank,

hence both X0 and X1 have rank s. Without loss of generality, we may

assume that X0 and X1 only have s columns, which are linearly independent,

by removing redundant columns at the same locations in both matrices. They

4Index sets like {n, 1, 2} are considered contiguous due to the circularity.
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both have full column rank s and exactly s nonzero rows. By assumption, the

vectors λ0 and λ1 are non-vanishing. Write X1 in terms of X0, X1 = PX0,

where

P = DF ∗[diag(λ1)]−1 diag(λ0)FD−1 = DF ∗ diag(γ)FD−1.

The matrix P has the structure in (3.16) where c = 1√
n
F ∗γ = 1√

n
F ∗(λ0./λ1).

Furthermore, P satisfies (3.13) in the proof of Theorem 3.4.3. The submatrix

P (:,J) = X1X
†(:,J)
0 has at most s nonzero rows and at least n − s zero rows.

The submatrix P (2:n,J) has at least n − s − 1 zero rows. We denote the

corresponding index set by K = {k1, k2, · · · , kn−s−1}. By (3.16), the row

P (k,J) (k ∈ K) is:

P (k,J) =
[
c(k+1−j1) − c(k), c(k+1−j2) − c(k), · · · , c(k+1−js) − c(k)

]
.

The index set Jk = {k, k + 1 − j1, k + 1 − j2, · · · , k + 1 − js} is a flipped

and shifted version of {1}
⋃
J = {1, j1, j2, · · · , js}. The above row P (k,J) is

zero, which means all the entries of the subvector c(Jk) are equal. By the

assumption that {1}
⋃
J is friendly, the index sets Jk1 , Jk2 , · · · , Jkn−s−1 are

connected. That means all the entries of c indexed by
⋃n−s−1
t=1 Jkt are equal.

Besides, |
⋃n−s−1
t=1 Jkt | ≥ n − 1. That means either all the entries of c are

equal or there is one entry with a different value. There are three different

cases:

1. All the entries of c are equal. Then the vector λ0./λ1 =
√
nFc has n−1

zeros, which contradicts the assumption that λ0, λ1 are non-vanishing.

2. All but the k0-th entry of c are equal, where k0 6= 1. Then all the

entries of P (2:n,J) that do not contain c(k0) are zeros, and all the entries

that contain c(k0) are nonzeros. The rows indexed by K are zeros, hence

they do not contain c(k0). The row indexed by k0 is shown in (3.17),

and is nonzero. The rows that contain any of the s entries in (3.18) are

also nonzeros.

c(k0−j1+1) − c(k0), c(k0−j2+1) − c(k0), · · · , c(k0−js+1) − c(k0) (3.17)

c(k0) − c(k0+j1−1), c(k0) − c(k0+j2−1), · · · , c(k0) − c(k0+js−1) (3.18)
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Note that no two entries in (3.18) can belong to the same row; no entry

in (3.18) belongs to the row in (3.17). If every entry in (3.18) belonged

to a row in P (2:n,J), there would be s+ 1 nonzero rows in P (2:n,J). The

number of nonzero rows in P (:,J) is at most s. Hence, one of the s

entries in (3.18) is not in any row of P (2:n,J). By observation, the only

entry that could be missing is c(k0)− c(1). Assume that, without loss of

generality, c(k0) − c(k0+j1−1) is not in any row of P (2:n,J). That implies

k0 + j1−1 = 1 (modulo n). Hence there exists an entry in the first row

P (1,j1) =
∑n+2−j1

j=2 c(j) =
∑k0

j=2 c
(j). Since n ≥ 4 and {1}

⋃
J is friendly,

by Proposition 3.4.16, |J | ≥ 2. Hence there exists another entry in

the first row P (1,j2) =
∑n+2−j2

j=2 c(j). Since there are s nonzero rows in

P (2:n,J), the first row P (1,J) must be zero. Hence,

k0∑
j=2

c(j) =

n+2−j2∑
j=2

c(j) = 0.

Recall that all the entries of c are equal except for c(k0). It follows that

c(1) = c(2) = · · · = c(n) = 0, resulting in a contradiction.

3. All but the first entry of c are equal. Then all the entries of P (2:n,J) that

do not contain c(1) are zeros, and all the entries that contain c(1) are

nonzeros. In particular, the entries c(1)− c(j1), c(1)− c(j2), · · · , c(1)− c(js)

in the rows indexed by j1, j2, · · · , js are nonzeros. Hence the first row

P (1,J) must be zero. Therefore, c(2) = c(3) = · · · = c(n) = 0, and

c(1) 6= 0.

The only case that does not cause a contradiction is the third, which leads

to c = [c(1), 0, 0, · · · , 0]T and λ0./λ1 =
√
nFc = c(1)[1, 1, · · · , 1]T. Therefore,

λ1 = 1
c(1)
λ0 is a scaled version of λ0.

A result for generic signals, analogous to Corollary 3.4.4, follows immedi-

ately.

The requirement N ≥ s, implied by Theorem 3.4.20, is not necessary.

We have the following necessary condition, which can be proved similarly to

Proposition 3.4.8.

Proposition 3.4.21. In the BGPC problem with A = FD−1 and a joint

sparsity constraint, if (λ0, X0) (λ0 is non-vanishing, X0 has at most s nonzero

rows) is identifiable up to scaling, then N ≥ n−1
n−s .
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An analysis of the gap between the sufficient and the necessary conditions,

similar to Section 3.4.2, can be carried out for these results too. It is omitted

for brevity.

3.5 Universal Sufficient Condition for BGPC with a

Sparsity Constraint

In this section, we consider the BGPC problem with a sparsity constraint

on the total number of nonzero entries in the matrix X, denoted by ‖X‖0.

Consider the following problem:

(P3) find (λ,X),

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ ΩX = {X ∈ Cn×N : ‖X‖0 ≤ s}.

The measurement is Y = diag(λ0)AX0. We only consider the case where A ∈
Cn×n is an invertible square matrix. The vector λ0 ∈ Cn is non-vanishing.

The matrix X0 ∈ Cn×N has at most s nonzero entries.

The ambiguity transformation group T associated with the matrix A is

the same as in Section 3.4.1. In Theorem 3.5.1, we show that X0 is identifi-

able up to a generalized permutation in the ambiguity transformation group

associated with A if the rows of X0 form the most sparse basis of its row

space. This is a universal sufficient condition for BGPC with a sparsity con-

straint, which applies to every invertible square matrix A. This universal

result is derived using the general framework in Section 2.

Theorem 3.5.1. In the BGPC problem with a sparsity constraint at sparsity

level s, the pair (λ0, X0) is identifiable up to the ambiguity transformation

group T associated with A, if the following conditions are met:

1. Vector λ0 is non-vanishing.

2. If an invertible matrix P ∈ Cn×n satisfies that ‖PX0‖0 ≤ ‖X0‖0, then

P is a generalized permutation matrix.

3. ‖X0‖0 = s.
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Proof. Given non-vanishing λ0 and invertible A, the matrix diag(λ0)A is

invertible. Hence given λ0, the matrix X0 is identifiable. By Corollary 2.3.3,

we only need to show that λ0 is identifiable. Suppose that diag(λ0)AX0 =

diag(λ1)AX1 and ‖X1‖0 ≤ s = ‖X0‖0. By the above Condition 2, X0 has

full row rank n. Otherwise, there exists an invertible matrix P that is not a

permutation matrix and satisfies PX0 = X0, which clearly violates Condition

2. The matrix diag(λ0)A is invertible, hence rank(X1) = rank(X0) = n.

There are no zero rows in AX0 or AX1. Hence λ1 is also non-vanishing.

Write X1 in terms of X0, X1 = PX0, where P = A−1[diag(λ1)]−1 diag(λ0)A.

By the above Condition 2, P has to be a generalized permutation matrix.

By (3.8) and (3.9), γ = λ0./λ1 ∈ Γ(A) and λ1 ∈ [λ0]LT . Therefore, λ0 is

identifiable.

If the sparsity level is not known a priori, we can solve the following opti-

mization problem (P4). Under the above Conditions 1 and 2, the minimizer

in (P4) is unique up to the same transformation group. If the minimizer to

(P4) has sparsity s, then it is the solution to (P3) as well.

(P4) min.
(λ,X)

‖X‖0 ,

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ Cn×N .

The following universal sufficient condition follows by combining Theorem

3.5.1 with results about the distribution of non-zero elements in random

matrices and in the products of such matrices with vectors [21].

Theorem 3.5.2. Suppose that the vector λ0 is non-vanishing, the matrix

X0 ∈ Cn×N is Bernoulli-Gaussian random matrix, where X0 = B � G, the

entries of B are iid Bernoulli random variables B(1, θ), and the entries of

G are iid Gaussian random variables N(0, 1). If 1
n
< θ < 1

4
and N >

Cn log n for a sufficiently large absolute constant C, then the pair (λ0, X0) is

identifiable in (P4), up to the ambiguity transformation group T associated

with A, with probability at least 1− exp(−cθN) for some absolute constant c.

Proof. We prove the identifiability by showing that Condition 2 in Theorem

3.5.1 is satisfied with probability at least 1 − exp(−cθN) given the above

Bernoulli-Gaussian model. Assume that P ∈ Cn×n is an invertible matrix
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but not a generalized permutation matrix. Since P is invertible, there exists a

permutation of 1, 2, · · · , n, denoted by j1, j2, · · · , jn, such that the support of

the kth row P (k,:) contain the index jk, i.e., P (k,jk) 6= 0, for 1 ≤ k ≤ n. Since

P is not a generalized permutation matrix, there exists at least one row with

more than one nonzero entries. If the row P (k,:) has only one nonzero entry

P (k,jk), then
∥∥(PX0)(k,:)

∥∥
0

=
∥∥P (k,:)X0

∥∥
0

=
∥∥∥X(jk,:)

0

∥∥∥
0
. Next, we show that

if P (k,:) has more than one nonzero entries, then
∥∥(PX0)(k,:)

∥∥
0
>
∥∥∥X(jk,:)

0

∥∥∥
0

with high probability.

By Lemma 17 in [21], if the Bernoulli-Gaussian matrix X0 satisfies that
1
n
< θ < 1

4
and N > Cn log n for a sufficiently large constant C, then the

probability that there exists a vector v ∈ Cn with more than one nonzero

entries such that ‖v∗X0‖0 ≤
11
9
θN is at most exp(−c1θN), for some absolute

constant c1. Therefore, with probability at least 1− exp(−c1θN),

∥∥(PX0)(k,:)
∥∥

0
>

11

9
θN (3.19)

for every index k such that P (k,:) has more than one nonzero entries.

By Lemma 18 in [21], the probability that any row of the matrix X0 has

more than 10
9
θN nonzero entries is at most n exp(−θN/243). Since N >

Cn log n for a sufficiently large constant C, the probability n exp(−θN/243) ≤
exp(−c2θN) for some absolute constant c2. Therefore, with probability at

least 1− exp(−c2θN), ∥∥∥X(jk,:)
0

∥∥∥
0
≤ 10

9
θN (3.20)

for every k.

Combining (3.19) and (3.20),
∥∥(PX0)(k,:)

∥∥
0
>
∥∥∥X(jk,:)

0

∥∥∥
0

for every index

k such that P (k,:) has more than one nonzero entries, with probability at

least 1− exp(−cθN) for some absolute constant c. Therefore, with the same

probability,

‖PX0‖0 =
n∑
k=1

∥∥(PX0)(k,:)
∥∥

0
>

n∑
k=1

∥∥∥X(jk,:)
0

∥∥∥
0

= ‖X0‖0 .

Equivalently, Condition 2 in Theorem 3.5.1 is satisfied with probability at

least 1− exp(−cθN).
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CHAPTER 4

IDENTIFIABILITY IN BLIND
DECONVOLUTION

4.1 Notations

We state the notations that will be used throughout the chapter. We use

lower-case letters x, y, z to denote vectors, and upper-case letters D and E

to denote matrices. We use In to denote the identity matrix and Fn to denote

the normalized discrete Fourier transform (DFT) matrix. The DFT of the

vector x ∈ Cn is denoted by x̃ = Fnx. We use 1m,n to denote a matrix whose

entries are all ones and 0m,n to denote a matrix whose entries are all zeros.

The subscripts stand for the dimensions of these matrices. We say that a

vector is non-vanishing if all its entries are nonzero. Unless otherwise stated,

all vectors are column vectors. The dimensions of all vectors and matrices

are made clear in the context.

The projection operator onto a subspace V is denoted by PV . The nullspace

and the range space of a linear operator are denoted by N (·) and R(·),
respectively. We use ΩX ,ΩY to denote constraint sets. The Cartesian product

of two sets are denoted by ΩX × ΩY . The pair (x, y) ∈ ΩX × ΩY represents

an element of the Cartesian product. We use ./ and � to denote entrywise

division and entrywise product, respectively. Circular convolution is denoted

by ~. Kronecker product is denoted by ⊗. The direct sum of two subspaces

is denoted by ⊕.

We use j, k to denote indices, and J,K to denote index sets. If the uni-

versal index set is {1, 2, · · · , n}, then J,K are subsets. We use |J | to denote

the cardinality of J . We use J c to denote the complement of J . We use

superscript letters to denote subvectors or submatrices. For example, x(J)

represents the subvector of x consisting of the entries indexed by J . The

scalar x(j) represents the jth entry of x. The submatrix D(J,K) has size

|J | × |K| and consists of the entries indexed by J × K. The vector D(:,k)
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represents the kth column of the matrix D. The colon notation is borrowed

from MATLAB.

We say a property holds for almost all signals (generic signals) if the prop-

erty holds for all signals but a set of measure zero.

4.2 Problem Statement

4.2.1 Blind Deconvolution

In this chapter, we study the blind deconvolution problem with the circular

convolution model. It is the joint recovery of two vectors u0 ∈ Cn and

v0 ∈ Cn, namely the signal and the filter,1 given their circular convolution

z = u0 ~ v0, subject to subspace or sparsity constraints. The constraint sets

ΩU and ΩV are subsets of Cn.

find (u, v),

s.t. u~ v = z,

u ∈ ΩU , v ∈ ΩV .

We consider the following scenarios:

1. (Subspace Constraints) The signal u and the filter v reside in lower-

dimensional subspaces spanned by the columns of D ∈ Cn×m1 and

E ∈ Cn×m2 , respectively. The matrices D and E have full column

ranks. Therefore,

ΩU = {u ∈ Cn : u = Dx for some x ∈ Cm1} ,

ΩV = {v ∈ Cn : v = Ey for some y ∈ Cm2} .

2. (Sparsity Constraints) The signal u and the filter v are sparse over given

dictionaries formed by the columns of D ∈ Cn×m1 and E ∈ Cn×m2 , with

sparsity level s1 and s2, respectively. The matrices D and E are bases

or frames that satisfy the spark condition [41]: the spark, namely the

smallest number of columns that are linearly dependent, of D (resp.

1Due to symmetry, the name “signal” and “filter” can be used interchangeably.
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E) is greater than 2s1 (resp. 2s2). Therefore,

ΩU = {u ∈ Cn : u = Dx for some x ∈ Cm1 s.t. ‖x‖0 ≤ s1} ,

ΩV = {v ∈ Cn : v = Ey for some y ∈ Cm2 s.t. ‖y‖0 ≤ s2} .

3. (Mixed Constraints) The signal u is sparse over a given dictionary

D ∈ Cn×m1 , and the filter v resides in a lower-dimensional subspace

spanned by the columns of E ∈ Cn×m2 . The matrix D satisfies the

spark condition, and E has full column rank. Therefore,

ΩU = {u ∈ Cn : u = Dx for some x ∈ Cm1 s.t. ‖x‖0 ≤ s1} ,

ΩV = {v ∈ Cn : v = Ey for some y ∈ Cm2} .

In all three scenarios, the vectors x, y, and z reside in Euclidean spaces

Cm1 , Cm2 and Cn. With the representations u = Dx and v = Ey, it is easy

to verify that z = u ~ v = (Dx) ~ (Ey) is a bilinear function of x and y.

Given the measurement z = (Dx0)~ (Ey0), the blind deconvolution problem

can be rewritten in the following form:

(BD) find (x, y),

s.t. (Dx) ~ (Ey) = z,

x ∈ ΩX , y ∈ ΩY .

If D and E satisfy the full column rank condition or spark condition, then the

uniqueness of (u, v) is equivalent to the uniqueness of (x, y). For simplicity,

we will discuss problem (BD) from now on. The constraint sets ΩX and

ΩY depend on the constraints on the signal and the filter. For subspace

constraints, ΩX = Cm1 , ΩY = Cm2 . For sparsity constraints, ΩX = {x ∈
Cm1 : ‖x‖0 ≤ s1}, ΩY = {y ∈ Cm2 : ‖y‖0 ≤ s2}.

4.2.2 Identifiability up to Scaling

An important question concerning the blind deconvolution problem is to

determine when it admits a unique solution. The BD problem suffers from

scaling ambiguity. For any nonzero scalar σ ∈ C such that σx0 ∈ ΩX and
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1
σ
y0 ∈ ΩY , (D(σx0)) ~ (E( 1

σ
y0)) = (Dx0) ~ (Ey0) = z. Therefore, BD does

not yield a unique solution if ΩX ,ΩY contain such scaled versions of x0, y0.

Any valid definition of unique recovery in BD must address this issue. If

every solution (x, y) is a scaled version of (x0, y0), then we must say (x0, y0)

can be uniquely identified up to scaling. We define identifiability as follows.

Definition 4.2.1. For the constrained BD problem, the solution (x0, y0), in

which x0 6= 0 and y0 6= 0, is said to be identifiable up to scaling, if every

solution (x, y) ∈ ΩX × ΩY satisfies x = σx0 and y = 1
σ
y0.

For blind deconvolution, there exists a linear operator GDE : Cm1×m2 →
Cn such that GDE(xyT ) = (Dx) ~ (Ey). Given the measurement z =

GDE(x0y
T
0 ) = (Dx0)~ (Ey0), one can recast the BD problem as the recovery

of the rank-1 matrix M0 = x0y
T
0 ∈ ΩM = {xyT : x ∈ ΩX , y ∈ ΩY}. The

uniqueness of M0 is equivalent to the identifiability of (x0, y0) up to scaling.

This procedure is called “lifting”.

(Lifted BD) find M,

s.t. GDE(M) = z,

M ∈ ΩM.

It was shown [6] that the lifted BD has a unique solution for every M0 ∈ ΩM if

the nullspace of GDE does not contain the difference of two different matrices

in ΩM.

Proposition 4.2.2. The pair (x0, y0) ∈ ΩX × ΩY (x0 6= 0, y0 6= 0) is iden-

tifiable up to scaling in (BD), or equivalently, the solution M0 = x0y
T
0 ∈ ΩM

is unique in (Lifted BD), if and only if

N (GDE)
⋂
{M0 −M : M ∈ ΩM} = {0}.

Proposition 4.2.2 is difficult to apply because it is not clear how to find

the nullspace of the structured linear operator GDE. To overcome this limita-

tion, in Chapter 2 (see Theorem 2.3.2), we derived a necessary and sufficient

condition for the identifiability in a bilinear inverse problem up to a trans-

formation group. As a special case, we have the following necessary and

sufficient condition for the identifiability in BD up to scaling, which holds

for any ΩX and ΩY .

52



Proposition 4.2.3. The pair (x0, y0) ∈ ΩX × ΩY (x0 6= 0, y0 6= 0) is iden-

tifiable up to scaling in (BD) if and only if the following two conditions are

met:

1. If there exists (x, y) ∈ ΩX×ΩY such that (Dx)~(Ey) = (Dx0)~(Ey0),

then x = σx0 for some nonzero σ ∈ C.

2. If there exists y ∈ ΩY such that (Dx0) ~ (Ey) = (Dx0) ~ (Ey0), then

y = y0.

Propositions 4.2.2 and 4.2.3 are two equivalent conditions for the identifia-

bility in blind deconvolution. Proposition 4.2.2 shows how the identifiability

of (x, y) is connected to that of the lifted variable xyT . Proposition 4.2.3

shows how the identifiability of (x, y) can be divided into the identifiability

of x and y individually. In this chapter, we derive more readily interpretable

conditions for the uniqueness of solution to BD with subspace or sparsity

constraints. We first derive a sufficient condition for the case where the

bases or frames are generic, using the lifting framework. We also apply 4.2.3

and derive a sufficient condition for the case where one of the bases has a

sub-band structure.

4.3 Blind Deconvolution with Generic Bases or Frames

Subspace membership and sparsity have been used as priors in blind decon-

volution for a long time. Previous works either use these priors without the-

oretical justification [33, 34, 36, 35, 37], or impose probabilistic models and

show successful recovery with high probability [16, 38, 39]. In this section,

we derive sufficient conditions for the identifiability of blind deconvolution

under subspace or sparsity constraints. These conditions are fully determin-

istic and provide uniform upper bounds for the sample complexities of blind

deconvolution with almost all bases or frames.

The identifiability of (x0, y0) up to scaling in (BD) is equivalent to the

uniqueness of M0 = x0y
T
0 in (Lifted BD). The linear operator GDE can also be

represented by a matrix GDE ∈ Cn×m1m2 such that GDE(M0) = GDE vec(M0),

where vec(M0) stacks the columns of M0 ∈ Cm1×m2 on top of one another and

forms a vector in Cm1m2 . The columns of GDE have the form D(:,j) ~E(:,k) =
√
nF ∗n(D̃(:,j) � Ẽ(:,k)), where D̃ = FnD and Ẽ = FnE. Clearly, the matrix
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GDE is a function of the matrices D and E. It has the following properties

(see Appendix C.1 for the proofs).

Lemma 4.3.1. If n ≥ m1m2, then for almost all D ∈ Cn×m1 and E ∈ Cn×m2,

the matrix GDE has full column rank.

Lemma 4.3.2. If n ≥ 2s1m2, then for any 0 ≤ t1 ≤ s1, for almost all

D0 ∈ Cn×t1, D1 ∈ Cn×(s1−t1), D2 ∈ Cn×(s1−t1), and E ∈ Cn×m2, the columns

of GD0E, GD1E, GD2E together form a linearly independent set.

Lemma 4.3.3. If n ≥ 2s1s2, then for any 0 ≤ t1 ≤ s1, 0 ≤ t2 ≤ s2,

for almost all D0 ∈ Cn×t1, D1 ∈ Cn×(s1−t1), D2 ∈ Cn×(s1−t1), E0 ∈ Cn×t2,

E1 ∈ Cn×(s2−t2), and E2 ∈ Cn×(s2−t2), the columns of GD0E0, GD1E0, GD2E0,

GD0E1, GD1E1, GD0E2, GD2E2 together form a linearly independent set.

Next, we state and prove sufficient conditions for identifiability of blind

deconvolution with generic bases or frames.

Theorem 4.3.4 (Subspace Constraints). In (BD) with subspace constraints,

(x0, y0) ∈ Cm1×Cm2 (x0 6= 0, y0 6= 0) is identifiable up to scaling, for almost

all D ∈ Cn×m1 and E ∈ Cn×m2, if n ≥ m1m2.

Proof. By Lemma 4.3.1, if n ≥ m1m2, for almost all D ∈ Cn×m1 and E ∈
Cn×m2 , the matrix GDE has full column rank. Therefore, N (GDE) = {0}, and

the lifted problem has a unique solution. It follows that every pair (x0, y0) is

identifiable up to scaling.

Theorem 4.3.5 (Mixed Constraints). In (BD) with mixed constraints, (x0, y0) ∈
Cm1 × Cm2 (‖x0‖0 ≤ s1, x0 6= 0, y0 6= 0) is identifiable up to scaling, for al-

most all D ∈ Cn×m1 and E ∈ Cn×m2, if n ≥ 2s1m2.

Proof. Fix index sets J0, J ⊂ {1, 2, · · · ,m1}, for which |J0| = |J | = s1 and

|J0

⋂
J | = t1. Let

D0 = D(:,J0
⋂
J) ∈ Cn×t1 , D1 = D(:,J0\J) ∈ Cn×(s1−t1), D2 = D(:,J\J0) ∈ Cn×(s1−t1).

By Lemma 4.3.2, if n ≥ 2s1m2, then for almost all D and E, the columns

of GD0E, GD1E, GD2E together form a linearly independent set. For every

(x0, y0) and (x, y) such that the s1-sparse x0 and x are supported on J0 and

J respectively, if GDE(x0y
T
0 ) = GDE(xyT ), then

GD0Ev0 +GD1Ev1 +GD2Ev2 = GDEv = GDE(x0y
T
0 )− GDE(xyT ) = 0,
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where v = vec(x0y
T
0 −xyT ), v0 = vec(x

(J0
⋂
J)

0 yT0 −x(J0
⋂
J)yT ), v1 = vec(x

(J0\J)
0 yT0 )

and v2 = vec(−x(J\J0)yT ). By linear independence, the vectors v0, v1, v2 are

all zero vectors, and so is v. Hence for almost all D and E, and all pairs

(x0, y0) and (x, y) such that x0 and x are supported on J0 and J respectively,

if GDE(x0y
T
0 ) = GDE(xyT ), then x0y

T
0 = xyT . Note that J0 and J are ar-

bitrary, and there is only a finite number (
(
m1

s1

)2
) of combinations of J0, J .

Therefore, for almost all D and E, every pair (x0, y0) (‖x0‖0 ≤ s1, x0 6= 0,

y0 6= 0) is identifiable up to scaling.

Theorem 4.3.6 (Sparsity Constraints). In (BD) with sparsity constraints,

(x0, y0) ∈ Cm1 × Cm2 (‖x0‖0 ≤ s1, ‖y0‖0 ≤ s2, x0 6= 0, y0 6= 0) is identifiable

up to scaling, for almost all D ∈ Cn×m1 and E ∈ Cn×m2, if n ≥ 2s1s2.

Proof. Fix index sets J0, J ⊂ {1, 2, · · · ,m1}, for which |J0| = |J | = s1 and

|J0

⋂
J | = t1, and index sets K0, K ⊂ {1, 2, · · · ,m2}, for which |K0| = |K| =

s2 and |K0

⋂
K| = t2. Let

D0 = D(:,J0
⋂
J) ∈ Cn×t1 , D1 = D(:,J0\J) ∈ Cn×(s1−t1),

D2 = D(:,J\J0) ∈ Cn×(s1−t1), E0 = E(:,K0
⋂
K) ∈ Cn×t2 ,

E1 = E(:,K0\K) ∈ Cn×(s2−t2), E2 = E(:,K\K0) ∈ Cn×(s2−t2).

By Lemma 4.3.3, if n ≥ 2s1s2, then for almost all D and E, the columns of

GD0E0 , GD1E0 , GD2E0 , GD0E1 , GD1E1 , GD0E2 , GD2E2 together form a linearly

independent set. For every (x0, y0) and (x, y) such that the s1-sparse x0 and

x are and supported on J0 and J respectively, and the s2-sparse y0 and y are

supported on K0 and K respectively, if GDE(x0y
T
0 ) = GDE(xyT ), then

GD0E0v00 +GD1E0v10 +GD2E0v20 +GD0E1v01

+GD1E1v11 +GD0E2v02 +GD2E2v22

=GDEv = GDE(x0y
T
0 )− GDE(xyT ) = 0,

where

v = vec(x0y
T
0 − xyT ), v00 = vec(x

(J0
⋂
J)

0 y
(K0

⋂
K)T

0 − x(J0
⋂
J)y(K0

⋂
K)T ),

v10 = vec(x
(J0\J)
0 y

(K0
⋂
K)T

0 ), v20 = vec(−x(J\J0)y(K0
⋂
K)T ),

v01 = vec(x
(J0

⋂
J)

0 y
(K0\K)T
0 ), v11 = vec(x

(J0\J)
0 y

(K0\K)T
0 ),

v02 = vec(−x(J0
⋂
J)y(K\K0)T ), v22 = vec(−x(J\J0)y(K\K0)T ).
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By linear independence, the vectors v00, v10, v20, v01, v11, v02, v22 are all zero

vectors, and so is v. Hence for almost all D and E, and all pairs (x0, y0) and

(x, y) such that x0 and x are supported on J0 and J respectively, and y0 and

y are supported on K0 and K respectively, if GDE(x0y
T
0 ) = GDE(xyT ), then

x0y
T
0 = xyT . Note that the supports J0, J,K0, K are arbitrary, and there is

only a finite number (
(
m1

s1

)2(m2

s2

)2
) of combinations of supports. Therefore,

for almost all D and E, every pair (x0, y0) (‖x0‖0 ≤ s1, ‖y0‖0 ≤ s2, x0 6= 0,

y0 6= 0) is identifiable up to scaling.

Due to symmetry, we can derive another sufficient condition for the sce-

nario where u = Dx resides in a m1-dimensional subspace spanned by the

columns of D, and v = Ey is s2-sparse over E.

For generic bases or frames, the above sample complexities n ≥ m1m2,

n ≥ 2s1m2 or n ≥ 2s1s2 are sufficient. These sampling complexities are not

optimal, since they are in terms of the number of nonzero entries in x0y
T
0 ,

instead of the number of degrees of freedom in x0 and y0. For example, in

the scenario with subspace constraints, Theorem 4.3.4 requires n ≥ m1m2

samples, versus the number of degrees of freedom, which is m1 + m2 − 1.

However, these results hold with essentially no assumptions on D or E. They

are the first algebraic sample complexities for blind deconvolution.

4.4 Blind Deconvolution with a Sub-band Structured

Basis

In this section, we consider the BD problem where the filter resides in a

subspace spanned by a sub-band structured basis. For this setup, using the

general framework for bilinear inverse problems we introduced in Chapter

2, and Proposition 4.2.3 above, we derive much stronger, essentially optimal

sample complexity results.

Definition 4.4.1. Let Ẽ = FnE, E ∈ Cn×m2, and let Jk denote the support

of Ẽ(:,k) (1 ≤ k ≤ m2). If

Ĵk = Jk \

(⋃
k′ 6=k

Jk′

)
6= ∅ for 1 ≤ k ≤ m2,
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then we say E forms a sub-band structured basis. The nonempty index set

Ĵk and its cardinality `k := |Ĵk| are called the passband and the bandwidth of

E(:,k), respectively.

Like filters in a filter bank, the basis vectors of a sub-band structured

basis are supported on different sub-bands in the Fourier domain (Figure

4.1(a)). By Definition 4.4.1, the sub-bands may overlap partially. For each

sub-band, its passband consists of the frequency components (which need not

be contiguous) that are not present in any other sub-band. For example, in

acoustic signal processing or communications, an equalizer that adjusts the

relative gains y(k) of different frequency components can be considered as a

filter v = Ey that resides in a subspace with a sub-band structured basis.

See Figure 4.1(b) for the DFTs of three different equalizers, and Figure 4.2

for the filter bank implementation of an equalizer.

(a) (b)

Figure 4.1: A sub-band structured basis. (a) DFTs of basis vectors. (b)
Examples of frequency responses of filters in the span of the sub-band
structured basis.

Figure 4.2: Filter bank implementation of an equalizer.

Next, we address the identifiability of the blind deconvolution problem

where the filter resides in a subspace with a sub-band structured basis, and

the signal resides in another subspace, or is sparse over some given dictio-

nary. For example, consider the following blind deconvolution problem in
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channel encoding. An unknown source string x is encoded by a given tall-

and-skinny matrix D and then transmitted through a channel whose gains

in different sub-bands are unknown. Then the encoded string Dx resides

in a subspace spanned by D, and the channel resides in a subspace with a

sub-band structured basis. Simultaneous recovery of the channel and the en-

coded string from measurements of the channel output corresponds to blind

deconvolution with a sub-band structured basis. Another example is the

channel identification problem where the acoustic channel can be modeled

as the serial concatenation of an equalizer and a multipath channel. The

equalizer has known sub-bands but unknown gains. The multipath chan-

nel can be modeled as a sparse filter. Then the simultaneous recovery of

the sparse multipath channel and the equalizer from the given input and

measured output of the channel corresponds to blind deconvolution with a

sub-band structured basis.

We consider first the case of subspace constraints, with one of the bases

having a sub-band structure.

Theorem 4.4.2. In (BD) with subspace constraints, suppose E forms a sub-

band structured basis, x0 ∈ Cm1 is nonzero and y0 ∈ Cm2 is non-vanishing.

If the sum of all the bandwidths
∑m2

k=1 `k ≥ m1 +m2 − 1, then for almost all

D ∈ Cn×m1, the pair (x0, y0) ∈ ΩX × ΩY is identifiable up to scaling.

Proof. Let D̃ = FnD, Ẽ = FnE. By the sub-band structure assumption, Ẽ

has full column rank. For nonzero x0 and for almost all D, all the entries of

D̃x0 are nonzero and the matrix diag(D̃x0)Ẽ has full column rank. If there

exists y ∈ ΩY such that (Dx0) ~ (Ey) = (Dx0) ~ (Ey0), then

diag(D̃x0)Ẽy = (D̃x0)� (Ẽy) = (D̃x0)� (Ẽy0) = diag(D̃x0)Ẽy0.

It follows that y = y0. By Proposition 4.2.3, to complete the proof, we only

need to show that if there exists (x, y) ∈ ΩX ×ΩY such that (Dx) ~ (Ey) =

(Dx0) ~ (Ey0) then x = σx0 for some nonzero σ.

If there exists (x, y) ∈ ΩX × ΩY such that (Dx) ~ (Ey) = (Dx0) ~ (Ey0),

we have

diag(Ẽy)D̃x = diag(Ẽy0)D̃x0.
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Considering the passband Ĵk, we have

diag(Ẽ(Ĵk,:)y)D̃(Ĵk,:)x = diag(Ẽ(Ĵk,:)y0)D̃(Ĵk,:)x0,

or equivalently

diag(Ẽ(Ĵk,k))D̃(Ĵk,:)xy(k) = diag(Ẽ(Ĵk,k))D̃(Ĵk,:)x0y
(k)
0 ,

D̃(Ĵk,:)xy(k) = D̃(Ĵk,:)x0y
(k)
0 .

By assumption, y
(k)
0 6= 0. For almost all D, D̃(Ĵk,:)x0 6= 0. Hence y(k) 6= 0,

x 6= 0. It follows that

D̃(Ĵk,:)(x− y
(k)
0

y(k)
x0) = 0.

Hence

x ∈ N (D̃(Ĵk,:)) + span(x0). (4.1)

Let x⊥0 denote the orthogonal complement of span(x0). Then

Px⊥0 x ∈ x
⊥
0 ,

Px⊥0 x = x− Pspan(x0)x ∈ N (D̃(Ĵk,:)) + span(x0).

Hence

Px⊥0 x ∈ x
⊥
0

⋂(
N (D̃(Ĵk,:)) + span(x0)

)
= x⊥0

⋂(
R(D̃(Ĵk,:)∗)

⋂
x⊥0

)⊥
,

∀k ∈ {1, 2, · · · ,m2}, (4.2)

where (·)∗ denotes the conjugate transpose. The equation holds due to the

fact that, for linear vector spaces V1 and V2, V1 + V2 = (V⊥1
⋂
V⊥2 )⊥.

Now, for almost all D, R(D̃(Ĵk,:)∗) is a generic `k-dimensional subspace of

Cm1 , and R(D̃(Ĵk,:)∗) 6⊂ x⊥0 . Hence there exists a generic (`k−1)-dimensional

subspace Vk ⊂ x⊥0 such that

R(D̃(Ĵk,:)∗) = Vk ⊕ span(PR(D̃(Ĵk,:)∗)
x0),

R(D̃(Ĵk,:)∗)
⋂

x⊥0 = Vk.
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Therefore, (4.2) is equivalent to

Px⊥0 x ∈ x
⊥
0

⋂
V⊥1
⋂
V⊥2
⋂
· · ·
⋂
V⊥m2

= (span(x0) +

m2∑
k=1

Vk)⊥,

where V1,V2, · · · ,Vm2 are generic subspaces of x⊥0 , the dimensions of which

are `1 − 1, `2 − 1, · · · , `m2 − 1. For any such generic subspaces of x⊥0 , if∑m2

k=1 `k ≥ m1 +m2 − 1, i.e.,
∑m2

k=1(`k − 1) ≥ m1 − 1, then

m2∑
k=1

Vk = x⊥0 .

Hence

span(x0) +

m2∑
k=1

Vk = Cm1 ,

Px⊥0 x ∈ (span(x0) +

m2∑
k=1

Vk)⊥ = {0}.

Therefore, Px⊥0 x = 0, or x ∈ span(x0). We have shown that x 6= 0, hence

there exists a nonzero σ ∈ C such that x = σx0. The proof is complete.

We turn next to the case of blind deconvolution with mixed constraints,

where the signal lives in a subspace spanned by a sub-band structured basis,

and the filter is sparse.

Theorem 4.4.3. In (BD) with mixed constraints, suppose E forms a sub-

band structured basis, x0 ∈ Cm1 satisfies that ‖x0‖0 ≤ s1 and x0 6= 0, and

y0 ∈ Cm2 is non-vanishing. If the sum of all the bandwidths
∑m2

k=1 `k ≥
2s1 +m2 − 1, then for almost all D ∈ Cn×m1, the pair (x0, y0) ∈ ΩX ×ΩY is

identifiable up to scaling.

Proof. The proof is very similar to that of Theorem 4.4.2. For nonzero x0 and

almost all D, if there exists y ∈ ΩY such that (Dx0)~ (Ey) = (Dx0)~ (Ey0),

then y = y0. By Proposition 4.2.3, to complete the proof, we only need

to show that if there exists (x, y) ∈ ΩX × ΩY such that ‖x‖0 ≤ s1 and

(Dx) ~ (Ey) = (Dx0) ~ (Ey0), then x = σx0 for some nonzero σ.

Denote the support of x0 by K0, |K0| = s1. If there exists (x, y) ∈ ΩX×ΩY

such that x is supported on K, |K| = s1, and (Dx)~ (Ey) = (Dx0)~ (Ey0),
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then

diag(Ẽy)D̃(:,K0
⋃
K)x(K0

⋃
K) = diag(Ẽy0)D̃(:,K0

⋃
K)x

(K0
⋃
K)

0 .

In this case, (4.1) and (4.2) in the proof of Theorem 4.4.2 become

x(K0
⋃
K) ∈ N (D̃(Ĵk,K0

⋃
K)) + span(x

(K0
⋃
K)

0 ),

P
x
(K0

⋃
K)⊥

0
x(K0

⋃
K) ∈ x(K0

⋃
K)⊥

0

⋂(
R(D̃(Ĵk,K0

⋃
K)∗)

⋂
x

(K0
⋃
K)⊥

0

)⊥
,

∀k ∈ {1, 2, · · · ,m2}.

Since |K0| = |K| = s1, we have |K0

⋃
K| ≤ 2s1. If

∑m2

k=1 `k ≥ 2s1 +m2 − 1,

then by an argument analogous to that in the proof of Theorem 4.4.2, we

have that for almost all D, P
x
(K0

⋃
K)⊥

0
x(K0

⋃
K) must be 0. Therefore, there

exists a nonzero σ ∈ C such that x = σx0.

We complete the proof by enumerating all supports K of cardinality s1.

Since there is only a finite number (
(
m1

s1

)
) of such supports, for almost all D, if

there exists (x, y) such that x is s1-sparse and (Dx)~ (Ey) = (Dx0)~ (Ey0),

then x = σx0 for some nonzero σ.

How do the sufficient conditions of Theorems 4.4.2 and 4.4.3 compare to

the minimal required sample complexities? We address this question for the

following scenario. Suppose that the supports Jk (1 ≤ k ≤ m2) form a

partition of the frequency range, i.e.,

Jk1
⋂

Jk2 = ∅ for all k1 and k2 such that k1 6= k2,⋃
1≤k≤m2

Jk = {1, 2, · · · , n}.

In this case the passbands are Ĵk = Jk and n =
∑m2

k=1 `k. For example, this

scenario applies when the filter bank is an array of ideal bandpass filters

whose passbands partition the DFT frequency range (see Figure 4.3). Con-

sider first (BD) with subspace constraints. Under the above scenario, the

sufficient condition in Theorem 4.4.2 implies n ≥ m1 + m2 − 1. Next, we

show that this sample complexity is also necessary.

Proposition 4.4.4. In (BD) with subspace constraints, suppose E forms a

sub-band structured basis, for which the supports Jk (1 ≤ k ≤ m2) are disjoint
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(a) (b)

Figure 4.3: A sub-band structured basis with supports Jk that partition the
DFT frequency range. (a) DFTs of basis vectors. (b) Examples of
frequency responses of filters in the span of the basis.

and cover all the frequency components. If (x0, y0) (y0 is non-vanishing) is

identifiable up to scaling, then n ≥ m1 +m2 − 1.

We turn next to (BD) with mixed constraints. Under the assumption that

the passbands partition the DFT frequency range, the sufficient condition in

Theorem 4.4.3 implies n ≥ 2s1 + m2 − 1. Next, we show that this is almost

necessary.

Corollary 4.4.5. In (BD) with mixed constraints, suppose E forms a sub-

band structured basis, for which the supports Jk (1 ≤ k ≤ m2) are disjoint

and cover all the frequency components. If (x0, y0) (x0 is s1-sparse, y0 is

non-vanishing) is identifiable up to scaling, then n ≥ s1 +m2 − 1.

The sample complexities in the sufficient conditions match (exactly for

(BD) with subspace constraints and almost for (BD) with mixed constraints)

those in the necessary conditions, hence they are optimal. The sample com-

plexities are also optimal in the sense that the number of degrees of freedom

is roughly equal to the number of measurements. We give the proofs of

Proposition 4.4.4 and Corollary 4.4.5 in Appendix C.2.
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CHAPTER 5

CONCLUSION

Previous results on the identifiability in bilinear inverse problems (BIPs) are

limited. In this thesis, we defined identifiability of a BIP up to transformation

groups. A general framework for proving identifiability was proposed, and

was later applied to blind gain and phase calibration (BGPC) and blind

deconvolution (BD).

In Chapter 3, we showed sufficient conditions for the unique recovery up

to transformation groups in BGPC under three scenarios, with a subspace

constraint, with a joint sparsity constraint, and with a sparsity constraint,

respectively. We also provided necessary conditions for the scenarios with

a subspace constraint or a joint sparsity constraint. We developed a proce-

dure to determine the ambiguity transformation groups for BGPC with joint

sparsity or with sparsity constraints. We also designed algorithms that can

check the identifiability for BGPC with subspace or with joint sparsity con-

straints, and demonstrated the tightness of our sample complexity bounds

by numerical experiments.

The analysis in Chapter 3 is not always optimal. In certain cases, there

exist gaps between the sufficient conditions and the necessary conditions. For

example, in the scenario with DFT matrix and a joint sparsity constraint,

the gap between the sample complexities in the sufficient and the necessary

conditions is N ≥ s versus N ≥ n−1
n−s . However, we believe that it would

be possible to bridge these gaps by introducing more stringent assumptions

(e.g., generic vectors and matrices).

In Chapter 4, we studied the identifiability of blind deconvolution problems

with subspace or sparsity constraints. We derived two algebraic conditions

on blind deconvolution with subspace constraints. We first showed using the

lifting framework that blind deconvolution from n observations with generic

bases of dimensions m1 and m2 is identifiable up to scaling given that n ≥
m1m2. Then we applied the general framework in Chapter 2 to show that
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blind deconvolution with a sub-band structured basis is identifiable up to

scaling given that n ≥ m1 + m2 − 1. The second result was shown to be

tight. These results are also generalized to blind deconvolution with sparsity

constraints or mixed constraints, with sparsity level(s) replacing the subspace

dimension(s). The extra cost for the unknown support in the case of sparsity

constraints is an extra factor of 2 in the sample complexity.

We acknowledge that the results in Section 4.3 for generic bases may not

be optimal. But they provide the first algebraic conditions for feasibility of

blind deconvolution with subspace or sparsity priors. Furthermore, taking

advantage of the interesting sub-band structure of some bases (such as filters

in a filter bank implementation of equalizers), we achieved sample complex-

ities that are essentially optimal. Our results are derived with generic bases

or frames, which means they are violated on a set of Lebesgue measure zero.

One goal of this thesis is to motivate more research into the identifiability

of bilinear inverse problems. For BGPC, additional identifiability results can

be obtained for different bases A and different constraint sets ΩΛ,ΩX . For

example, exploiting the extra information regarding λ (positivity in inverse

rendering, unit-modulus entries in SAR autofocus), is expected to provide

less demanding conditions for identifiability. For BD, an interesting question

is, without the sub-band structure, whether or not it is possible to provide an

algebraic analysis of blind deconvolution that achieves optimal sample com-

plexities. Furthermore, identifiability analysis of blind deconvolution with

specific bases or frames that arise in applications is still an open problem.

The merit of the framework in Chapter 2 for identifiability in bilinear inverse

problems is not restricted to the demonstrated exemplary applications. It

will be useful for analyzing a wider class of practical applications, includ-

ing blind deconvolution with the linear convolution model, phase retrieval,

dictionary learning, etc.
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APPENDIX A

EXAMPLES FOR CHAPTERS 2 AND 3

A.1 Example of a Non-trivial Annihilator

Most bilinear mappings that arise in applications do not have non-trivial left

or right annihilators, however this is not universally true. Here is an exam-

ple in which the bilinear mapping does have a non-trivial right annihilator.

Assume that z = x0y
(1)
0 ∈ C2 in the following BIP:

find (x, y),

s.t. xy(1) = z,

x ∈ C2, y ∈ C2.

Then (x0, y0) is identifiable up to the following transformation group:

T =

{
T : T (x, y) =

(
1

σ
x, [σy(1), y(2) + τ ]T

)
for some σ 6= 0 and τ ∈ C

}
.

Let T = (TX , TY), where TX (x) = 1
σ
x, TY(y) = [σy(1), y(2) +τ ]T. Note that TY

is not a linear transformation if τ 6= 0. In addition, Condition 2 in Corollary

2.3.3 is not necessary. Given F(x0, y0) = F(x0, y), i.e., x0y
(1)
0 = x0y

(1), it is

not necessary that y = y0. The reason is that the bilinear mapping F has a

non-trivial right annihilator y = [0, 1]T.

A.2 Examples of Ambiguity Transformation Groups

In the BGPC problem with a joint sparsity constraint, the ambiguity trans-

formation groups for A can be figured out with the method in Section 3.4.1.

The ambiguity transformation groups associated with A = F and A = FD−1
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are shown in Section 3.4.1 and Section 3.4.3 respectively. We give more ex-

amples here.

The matrix A introduces some “mixing” to the rows of X. If A = I,

there is no mixing. The structured matrix I−1 diag(γ)I = diag(γ) is a di-

agonal matrix. It is a generalized permutation matrix provided that γ is

non-vanishing. The set of γ which produces a generalized permutation ma-

trix is Γ(I) = {γ ∈ Cn : γ is non-vanishing}. The ambiguity transformation

group is

T = {T : T (λ,X) = (λ./γ, diag(γ)X) for some non-vanishing γ}.

In this case, any non-vanishing λ is considered equivalent to λ0. The iden-

tifiability of (λ0, X0) with this transformation group is not an interesting

problem.

For some A, the structured matrix A−1 diag(γ)A is already studied in the

literature. For example, if A is a DFT matrix, A−1 diag(γ)A is a circulant

matrix. If A is the discrete cosine transform (DCT) matrix, A−1 diag(γ)A

is the sum of a symmetric Toeplitz matrix and a Hankel matrix [42]. For

other matrices, the structure of A−1 diag(γ)A can be figured out by symbolic

computation. The matrix A = FD−1 in Section 3.4.3 is an example. Another

example is the Haar matrix Hn, corresponding to a wavelet transform. The

matrix H4 and the structured matrix H−1
4 diag(γ)H4 are

H4 =


1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1

 ,

H−1
4 diag(γ)H4 =

1

4


γIII γII γI γI

γII γIII γI γI

γI γI γV γIV

γI γI γIV γV

 ,
where γI = γ(1) − γ(2), γII = γ(1) + γ(2) − 2γ(3), γIII = γ(1) + γ(2) + 2γ(3),

γIV = γ(1) + γ(2) − 2γ(4), and γV = γ(1) + γ(2) + 2γ(4). The structured

matrix H−1
4 diag(γ)H4 is a generalized permutation matrix if and only if

γ(2) = γ(1), γ(3) = ±γ(1) and γ(4) = ±γ(1). The set Γ(H4) and the ambiguity
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transformation group T are

Γ(H4) = {γ : γ(1) = γ(2) = σ, γ(3) = ±σ, γ(4) = ±σ, for some nonzero σ ∈ C},

T = {T : T (λ,X) = (λ./γ,H−1
4 diag(γ)H4X) for some γ ∈ Γ(H4)}.

A.3 Insufficiency of the Condition in Proposition 3.4.8

The necessary condition in Proposition 3.4.8 is not sufficient, even when the

locations of the zero rows are known a priori. For example, when n = 7,

s = 4, λ0 ∈ C7 is non-vanishing and

X0 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0


,

the pair (λ0, X0) is not identifiable, even if we know that the last three rows

of X0 are zeros. There exists a circulant matrix P whose first column is

[1, 2, 0, 0, 0, 0, 0]T such that

X1 = PX0 =



1 0 0

2 1 0

0 2 1

0 0 2

0 0 0

0 0 0

0 0 0


,

and λ1 = λ0./γ, where γ =
√
nF [1, 2, 0, 0, 0, 0, 0]T is non-vanishing.

The above example is a degenerate case where the actual joint sparsity of

X0 is less than s = 4. A non-degenerate X0 may also not be identifiable, if
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there is no extra knowledge of the locations of the zero rows. For example,

X0 =



1 3 2

2 1 3

3 2 1

−29 −28.5 −17.5

0 0 0

0 0 0

0 0 0


.

There exists a circulant matrix P whose first column is [2, 16, 1, 8, 0.5, 4, 32]T,

such that

X1 = PX0 =



63.5 31.75 95.25

0 0 0

−889 −889 −508

0 0 0

−444.5 −444.5 −254

0 0 0

−190.5 −127 −63.5


,

and λ1 = λ0./γ, where γ =
√
nF [2, 16, 1, 8, 0.5, 4, 32]T is non-vanishing.

The above pathological examples reside in a set of measure zero. Next, we

show that when rank(X0) = s but the joint support of the columns of X0 is

periodic, the pair (λ0, X0) is not identifiable. This set of unidentifiable X0

has nonzero measure. Recall the proof of Theorem 3.4.3. Assume that the

joint support of the columns of X0 is periodic with period `. There exists a

circulant matrix P with two nonzero entries in the first column, indexed by k1

and k2, such that k2−k1 = ` and γ =
√
nFP (:,1) is non-vanishing. Hence there

exists X1 = PX0 and λ1 = λ0./γ such that diag(λ0)FX0 = diag(λ1)FX1 and

λ1 /∈ [λ0]LT . Therefore, (λ0, X0) is not identifiable.
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Lemma 3.3.2

1. If A ∈ Cn×m has full row rank, then the rows of A form a basis for

R(A) whose dimension is n. For every non-empty proper subset J and

its complement J c, R(A(J,:)) and R(A(Jc,:)) are two subspaces whose

dimensions are |J | and |J c| respectively. Therefore,

R(A) = R(A(J,:)) +R(A(Jc,:)),

dim(R(A)) = n = |J |+ |J c| = dim(R(A(J,:))) + dim(R(A(Jc,:))).

Therefore, the sum of two subspaces is a direct sum, and the row space

of A is decomposable.

2. If the row space of A is not decomposable, then A does not have full

row rank. If the matrix A has full column rank, then n ≥ m.

Next, we prove n > m by contradiction. Suppose that n = m. Since

square matrix A has full column rank, it must have full row rank, which

causes a contradiction. Therefore, the assumption is false, and n has

to be greater than m.

3. The row space of A is not decomposable, if and only if the sum R(A) =

R(A(J,:)) + R(A(Jc,:)) is not a direct sum for any non-empty proper

subset J ⊂ {1, 2, · · · , n}, or equivalently,

dim(R(A)) < dim(R(A(J,:))) + dim(R(A(Jc,:))),

for all non-empty proper subsets J ⊂ {1, 2, · · · , n}.

69



B.2 Proofs of the Propositions Regarding

“Friendliness”

Proof of Proposition 3.4.16. We prove by contraposition, i.e., if n ≥ 4 and

|J | ≤ 2, then J is not friendly. First, if J = ∅ or |J | = 1, then the circularly

shifted index sets J1, J2, · · · , Jn−s are not connected.

Next, we show that if n ≥ 4 and |J | = 2, then J1, J2, · · · , Jn−s are not

connected. Since all the circularly shifted index sets are equivalent, without

loss of generality, we may assume that J = {1, r}, where 2 ≤ r ≤ n
2

+ 1.

Then all the sets {r1, r2} such that r1 − r2 = r − 1 (modulo n) or r2 − r1 =

r − 1 (modulo n) are circularly shifted versions of J . There are a total of n

circularly shifted index sets.

If r = n
2

+ 1, then J is periodic. The sets like {r1, r1 + n
2
} (1 ≤ r1 ≤ n

2
)

are counted twice because n
2

= −n
2

(modulo n). And these index sets are not

connected.

If n ≥ 4 and r < n
2

+ 1, the n index sets are {1, r}, {2, r+ 1}, · · · , {n− r+

1, n}, {n−r+2, 1}, · · · , {n, r−1}. By removing {r, 2r−1} and {n−r+2, 1},
there are n− 2 ≥ 2 index sets left. These circularly shifted versions of J are

not connected because J = {1, r} is not connected to the rest.

Proof of Proposition 3.4.17. First, if J is contiguous and |J | = s, then n− s
shifted contiguous index sets cover at least s + (n − s − 1) = n − 1 indices.

Therefore, |
⋃n−s
t=1 Jt| ≥ n− 1.

Next, we prove that the shifted index sets J1, J2, · · · , Jn−s are connected

by showing that they form a cycle or a path in the graph. To this end, we

show that between the n− s pairs (J1, J2), (J2, J3), · · · , (Jn−s, J1), there are

at least n − s − 1 edges. Suppose the opposite, that there are fewer edges,

for example two edges are missing in the above cycle. Then n − s shifted

contiguous index sets cover at least s+ s+ (n− s− 2) = n+ s− 2 ≥ n+ 1

indices, a contradiction.

Proof of Proposition 3.4.18. We first show that if J is not periodic, then

|
⋃n−s
t=1 Jt| ≥ n − 1, or equivalently |

⋂n−s
t=1 J

c
t | ≤ 1. We prove the contraposi-

tive, if there are two distinct indices k′, k′′ ∈
⋂n−s
t=1 J

c
t then J is periodic. Note

that J c1 , J
c
2 , · · · , J cn−s are all circularly shifted versions of the same index set
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J c = {jc1, jc2, · · · , jcn−s}. Therefore,

J c = {jc1, jc2, · · · , jcn−s} = {k′ − k1, k
′ − k2, · · · , k′ − kn−s}

= {k′′ − k1, k
′′ − k2, · · · , k′′ − kn−s} (modulo n),

Hence J c is periodic with period ` = |k′′ − k′|, so is J .

Next we show that the shifted index sets are connected. If |J | > n
2
, then

Jt1
⋂
Jt2 6= ∅ for any t1, t2. There is an edge between every pair of nodes,

hence the graph is a complete graph, which is connected.

Proof of Corollary 3.4.19. The sufficiency is shown in the proof of Proposi-

tion 3.4.18.

Next we prove necessity. If J is periodic with period ` and |J | = s < n,

then for any k′, k′′ such that k′′−k′ = `, we can always apply the proper shifts

k1 = k′ − jc1, k2 = k′ − jc2, · · · , kn−s = k′ − jcn−s such that k′, k′′ ∈
⋂n−s
t=1 J

c
t .

Hence we can pick n− s shifted index sets such that |
⋃n−s
t=1 Jt| ≤ n− 2.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Proofs of Lemma 4.3.1, 4.3.2 and 4.3.3

Proof of Lemma 4.3.1. The entries of GDE are multivariate polynomials in

the entries of D and E, or to be more specific, quadratic forms in the entries

of D and E. By Lemma 1 from [43], the matrix GDE has full column rank

for almost all D and E if it has full column rank for at least one choice of D

and E.

We complete the proof by showing that GDE has full column rank for the

following choice of D and E. Let D = F−1
n D̃, with D̃ ∈ Cn×m1 chosen

such that all its submatrices have full rank. (For example, this will hold with

probability 1 for a random matrix with iid Gaussian entries.) Let E = F−1
n Ẽ,

with Ẽ ∈ Cn×m2 chosen such that the first m1m2 rows are the kronecker

product:

Ẽ(1:m1m2,:) = Im2 ⊗ 1m1,1.

Let G̃DE = FnGDE, then the submatrix containing the first m1m2 rows of

G̃DE/
√
n is

1√
n
G̃

(1:m1m2,:)
DE =


D̃(1:m1,:)

D̃(m1+1:2m1,:)

. . .

D̃(m1m2−m1+1:m1m2,:)

 .

By the assumption that all submatrices of D̃ have full rank, it follows that

G̃
(1:m1m2,:)
DE /

√
n has full column rank m1m2. Therefore, GDE has full column

rank.

Proof of Lemma 4.3.2. Let D = [D0, D1, D2], then GDE is a permutation of

the columns of [GD0E, GD1E, GD2E]. It is sufficient to prove that GDE has full
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column rank, which follows from Lemma 4.3.1 because the number of columns

in D is m1 = t1 + 2× (s1− t1) = 2s1− t1 ≤ 2s1 and n ≥ 2s1m2 ≥ m1m2.

Proof of Lemma 4.3.3. Let D = [D0, D1, D2], D′ = [D0, D1] and D′′ =

[D0, D2], then [GDE0 , GD′E1 , GD′′E2 ] is a permutation of all the columns of

GD0E0 , GD1E0 , GD2E0 , GD0E1 , GD1E1 , GD0E2 , GD2E2 . By Lemma 1 from [43],

it is sufficient to show that [GDE0 , GD′E1 , GD′′E2 ] has full column rank for at

least one choice of D0, D1, D2, E0, E1, E2.

We complete the proof by showing that [GDE0 , GD′E1 , GD′′E2 ] has full col-

umn rank for the following choice. Let D0, D1, D2 be chosen such that all

submatrices of D̃0, D̃1, D̃2 have full rank. Let E0, E1, E2 be chosen such that

the first 2s1s2 rows of Ẽ0, Ẽ1, Ẽ2 are

Ẽ
(1:2s1s2,:)
0 =

It2 ⊗ 12s1,1

0s1(s2−t2),t2

0s1(s2−t2),t2

 , Ẽ
(1:2s1s2,:)
1 =

 02s1t2,s2−t2

Is2−t2 ⊗ 1s1,1

0s1(s2−t2),s2−t2

 ,

Ẽ
(1:2s1s2,:)
2 =

 02s1t2,s2−t2

0s1(s2−t2),s2−t2

Is2−t2 ⊗ 1s1,1

 .
By the proofs of Lemmas 4.3.1 and 4.3.2, G̃

(1:2s1s2,:)
DE0

, G̃
(1:2s1s2,:)
D′E1

and G̃
(1:2s1s2,:)
D′′E2

all have full column rank, and their nonzero entries are located in three

disjoint row blocks. Hence [G̃DE0 , G̃D′E1 , G̃D′′E2 ]
(1:2s1s2,:) has full column rank.

Therefore, [GDE0 , GD′E1 , GD′′E2 ] has full column rank.

C.2 Proofs of the Necessary Conditions

Proof of Proposition 4.4.4. We show that if n < m1 + m2 − 1, then (x0, y0)

is not identifiable up to scaling. Let D̃⊥ ∈ Cn×(n−m1) denote a matrix whose

columns form a basis for the orthogonal complement of the column space of

D̃. Then D̃∗⊥ is an annihilator of the column space of D̃, i.e., D̃∗⊥D̃ = 0. Let

Ẽinv ∈ Cn×m2 denote the entrywise inverse of Ẽ:

Ẽ
(j,k)
inv =

 1

Ẽ(i,j)
if Ẽ(i,j) 6= 0,

0 if Ẽ(i,j) = 0.
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Consider the linear operator G : Cm2 → Cn−m1 defined by

G(w) = D̃∗⊥ diag(Ẽinvw) diag(Ẽy0)D̃x0

for w ∈ Cm2 . We claim that every non-vanishing null vector of G produces

a solution to the BD problem. Indeed, if w1 ∈ N (G) is non-vanishing, then

diag(Ẽinvw1) diag(Ẽy0)D̃x0 is annihilated by D̃∗⊥ and therefore must reside

in the column space of D̃. Hence, there exists x1 ∈ Cm1 such that

diag(Ẽinvw1) diag(Ẽy0)D̃x0 = D̃x1. (C.1)

Now, let y1 denote the entrywise inverse of w1. Recall that the supports of

the columns of Ẽ are disjoint, hence Ẽy1 is the entrywise inverse of Ẽinvw1.

By Equation (C.1),

diag(Ẽy0)D̃x0 = diag(Ẽy1)D̃x1,

(Dx0) ~ (Ey0) = (Dx1) ~ (Ey1).

Hence (x1, y1) is a solution to the BD problem where z = (Dx0) ~ (Ey0).

This establishes the claim.

It remains to show that G does have a non-vanishing null vector, and that

the solution it produces does not coincide, up to scaling, with (x0, y0). Let

w0 denote the entrywise inverse of y0, then w0 ∈ N (G). There are (n−m1)

equations in G(w) = 0. If n < m1 + m2 − 1, then n−m1 ≤ m2 − 2 and the

dimension of N (G) is at least 2. Hence, there exists a vector w1 ∈ N (G) such

that w0, w1 are linearly independent. Let α be a complex number such that

0 < |α| < 1
‖y0‖∞‖w1‖∞ . Then w0 + αw1 ∈ N (G) is non-vanishing, because the

entries of w0 + αw1 satisfy that

∣∣w(j)
0 +αw

(j)
1

∣∣ ≥ ∣∣w(j)
0

∣∣−|α|∣∣w(j)
1

∣∣ ≥ 1

‖y0‖∞
−|α|‖w1‖∞ > 0, for j = 1, 2, · · · ,m2.

Since α 6= 0, the null vector w0 + αw1 is not a scaled version of w0. It

produces a solution (x2, y2) in which y2 is the entrywise inverse of w0 + αw1

and is not a scaled version of y0. Therefore, (x0, y0) is not identifiable up to

scaling.

Proof of Corollary 4.4.5. The vector x0 is s1-sparse. If we know the support
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of s1, then the signal u = Dx resides in a subspace spanned by s1 columns of

D and the problem reduces to BD with subspace constraints. By Proposition

4.4.4, if n < s1+m2−1, then (x0, y0) cannot be identified up to scaling even if

the support of x0 is given. Hence (x0, y0) is not identifiable without knowing

the support. Therefore, it is necessary that n ≥ s1 +m2 − 1.
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