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Abstract

We consider questions regarding the existence of graphs and hypergraphs with certain coloring properties

and other structural properties.

In Chapter 2 we consider color-critical graphs that are nearly bipartite and have few edges. We prove

a conjecture of Chen, Erdős, Gyárfás, and Schelp concerning the minimum number of edges in a “nearly

bipartite” 4-critical graph.

In Chapter 3 we consider coloring and list-coloring graphs and hypergraphs with few edges and no small

cycles. We prove two main results. If a bipartite graph has maximum average degree at most 2(k− 1), then

it is colorable from lists of size k; we prove that this is sharp, even with an additional girth requirement.

Using the same approach, we also provide a simple construction of graphs with arbitrarily large girth and

chromatic number (first proved to exist by Erdős).

In Chapter 4 we consider list-coloring the family of kth power graphs. Kostochka and Woodall conjectured

that graph squares are chromatic-choosable, as a strengthening of the Total List Coloring Conjecture. Kim

and Park disproved this stronger conjecture, and Zhu asked whether graph kth powers are chromatic-

choosable for any k. We show that this is not true: we construct families of graphs based on affine planes

whose choice number exceeds their chromatic number by a logarithmic factor.

In Chapter 5 we consider the existence of uniform hypergraphs with prescribed degrees and codegrees.

In Section 5.2, we show that a generalization of the graphic 2-switch is insufficient to connect realizations

of a given degree sequence. In Section 5.3, we consider an operation on 3-graphs related to the octahedron

that preserves codegrees; this leads to an inductive definition for 2-colorable triangulations of the sphere.

In Section 5.4, we discuss the notion of fractional realizations of degree sequences, in particular noting the

equivalence of the existence of a realization and the existence of a fractional realization in the graph and

multihypergraph cases.

In Chapter 6 we consider a question concerning poset dimension. Dorais asked for the maximum guaran-

teed size of a subposet with dimension at most d of an n-element poset. A lower bound of
√
dn was observed

by Goodwillie. We provide a sublinear upper bound.
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Chapter 1

Introduction

1.1 Sparse nearly-bipartite 4-critical graphs

A (hyper)graph is k-critical if it has chromatic number k but every proper subgraph is (k − 1)-colorable.

The complete graph Kk is k-critical; for k ≤ 2 these are the only k-critical graphs. The 3-critical graphs are

precisely the odd cycles. For k ≥ 4, the family of k-critical graphs is more interesting.

Deleting one edge from any k-critical graph makes it (k − 1)-colorable. How many edges need to be

deleted to make it (k − 2)-colorable? 2-colorable?

Question 1.1.1. How many edges must be deleted from a k-critical graph in order to make it bipartite?

What is the minimum among all k-critical n-vertex graphs?

Erdős conjectured that the answer to Question 1.1.1 should tend to infinity with n. Rödl and Tuza [58]

disproved this conjecture: they proved that, for large enough n, the answer to the latter part of Question 1.1.1

is
(
k−1
2

)
. For k = 4, they proved that every 4-critical graph except for K4 requires the deletion of at least 3

edges to become bipartite, and they constructed infinitely many graphs requiring the deletion of only 3 edges

(using a modification of Mycielski’s construction). We call graphs for which three edges may be deleted to

become bipartite B + E3 graphs.

Another important question about k-critical graphs concerns the number of edges.

Question 1.1.2. How few edges may a k-critical n-vertex graph have?

Question 1.1.2 has been studied at length, with a sequence of improvements by Dirac, Gallai, Ore,

Krivelevich, Kostochka and Steibitz, and Kostochka and Yancey. For k = 4, Kostochka and Yancey [49]

showed that every 4-critical n-vertex graph has at least 5n−2
3 edges.

Chen, Erdős, Gyárfás, and Schelp [16] considered (for k = 4) the restriction of Question 1.1.2 to the

class of nearly bipartite graphs (in the sense of Question 1.1.1). They considered the slightly more restricted

family of graphs for which a matching of size three may be deleted to become bipartite, which we call

(B + M3)-graphs. They found an infinite family of examples of 4-critical n-vertex (B + M3)-graphs with
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2n− 3 edges (one less edge than Rödl and Tuza’s examples of generic 4-critical graphs). They conjectured

that such graphs should have many more than 5n/3 edges, and suggested that perhaps they should have at

least 2n edges asymptotically.

We prove the conjecture of Chen et al. In fact, we confirm their suggestion, and even give an exact lower

bound, stated below. Our results also work for (B + E3)-graphs rather than just (B +M3)-graphs. This is

joint work with Kostochka and appears in [45].

Theorem 1.1.3. Every n-vertex 4-critical (B + E3)-graph has at least 2n− 3 edges.

Our proof uses two main techniques. The first is the potential function method, also used by Kostochka

and Yancey [48] to prove that any 4-critical n-vertex graph has at least (5n − 2)/3 edges. The second is a

connection between orientations and colorings of graphs.

1.2 Sparse (hyper)graphs with large girth and (list-)chromatic

number

In Chapter 3, we construct several extremal examples for graphs and hypergraphs with large chromatic

number or choice number, large girth, and few edges. All these examples are based on the construction of

augmented trees: complete d-ary trees with additional edges joining each leaf to some ancestors.

Theorem 1.2.1. For every d, r, g ∈ N, there is an augmented d-ary tree with girth at least g having r edges

from each leaf to its ancestors.

If the maximum average degree of a graph is less than k, then it has a vertex with degree less than k, and

inductively it is k-choosable. If the graph is also bipartite, then Alon and Tarsi [4] proved that maximum

average degree at most 2(k − 1) is sufficient for k-choosability. Our main application is that this is sharp,

even when we require large girth.

Theorem 1.2.2. For g, k ∈ N, there is a bipartite graph G with girth at least g that is not k-choosable even

though every proper subgraph has average degree at most 2(k − 1) and G itself has just one too many edges

for average degree 2(k − 1).

In fact, we also show that such graphs exist that fail to be L-colorable even when special restrictions

are placed on the list assignment L. When the lists at adjacent vertices are disjoint, every coloring chosen

from the lists is proper; we show that our graphs of Theorem 1.2.2 admit a k-list assignment in which any

two adjacent lists have exactly one common color and yet no proper coloring can be chosen. For bipartite
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graphs, a proper coloring can be chosen from any k-lists whose union has size at most 2k− 2; we prove that

this is sharp (for any girth) by constructing a bipartite graph with k-lists whose union has size 2k − 1 from

which no proper coloring can be chosen.

We also provide a simple construction of t-uniform hypergraphs with arbitrarily large girth and chromatic

number (Section 3.4.1). Mycielski’s construction produces k-critical triangle-free graphs, but is fraught with

4-cycles. Erdős proved that there are graphs with arbitrarily large chromatic number and girth, but his

proof was probabilistic. Subsequently, several explicit constructions were given for such graphs, but many

of these constructions require hypergraphs with enormous uniformity, and are also often inductive. Our

construction based on augmented trees does not use hypergraphs at all as input and is noninductive (though

our construction of the augmented trees themselves is inductive).

1.3 Coloring graph powers from lists

A graph G is chromatic-choosable if χ(G) = ch(G). The kth power of a graph G, denoted by Gk, is the

graph on the same vertex set as G such that uv is an edge if and only if the distance from u to v in G is at

most k. To subdivide an edge uv of a graph is to replace uv by a u, v-path whose internal vertices do not

appear in the original graph.

An edge-coloring of a graph G is a function f : E(G)→ X for some set X. An edge-coloring is proper if

any two incident edges receive distinct colors. The line graph of G is the graph L(G) with vertex set E(G)

and with e, e′ ∈ E(G) adjacent in L(G) if and only if e, e′ are incident in G. A proper edge-coloring of G

is equivalent to a proper vertex coloring of L(G). Several authors in the 1970s and 80s conjectured that for

every graph G, L(G) is chromatic-choosable.

A total coloring of a graph G is a function f : V (G) ∪ E(G) → X for some set X. A total coloring is

proper if every adjacent pair of vertices receive different colors, every adjacent pair of edges receive different

colors, and every vertex receives a different color from its incident edges. The total graph of G is the graph

T (G) obtained from G by subdividing every edge into a path of length two then squaring the result. A proper

total coloring of G is equivalent to a proper vertex coloring of T (G). Borodin, Kostochka, and Woodall [13]

conjectured that for every G, T (G) is chromatic-choosable.

Kostochka and Woodall [47] conjectured that G2 is chromatic-choosable for every graph G; this conjecture

would imply the total coloring conjecture of the previous paragraph. Kim and Park [40] disproved this

stronger conjecture, finding a family of graphs G with χ(G2)→∞ and ch(G2) ≥ cχ(G2) logχ(G2) for some

positive absolute constant c. Zhu asked whether there is any k such that Gk is chromatic-choosable for every

3



G. We answer this question in the negative, and in fact match Kim and Park’s separation between choice

number and chromatic number.

Theorem 1.3.1. There is a positive constant c such that for every k ∈ N, there is an infinite family of

graphs G with χ(Gk) unbounded such that ch(Gk) ≥ cχ(Gk) logχ(Gk).

On the other hand, upper bounds are known for the choice number of line graphs and total graphs in

terms of their chromatic numbers; specifically, ch(L(G)) ≤ 2χ(L(G))− 1 and ch(T (G)) ≤ 2χ(T (G))− 1. We

provide an upper bound for the choice number of kth power graphs in terms of their chromatic number.

Theorem 1.3.2. For every graph G and every k > 1, ch(Gk) < χ(Gk)3. When k is even, ch(Gk) < χ(Gk)2.

These two results are joint with Kosar, Petrickova, and Yeager and appear in [43].

1.4 Hypergraph degree sequences and codegree functions

The degree sequence of a graph is the list of its vertex degrees, usually written in nonincreasing order. A

sequence of nonnegative integers is called k-graphic if it is the degree sequence of some simple k-uniform

hypergraph. (If k = 2, we shorten the term to graphic.) The question of when a given sequence is the degree

sequence of some (simple) graph is well understood. The same question for k-uniform hypergraphs for k ≥ 3

is less well understood. Dewdney provided a characterization, but it does not provide an efficient algorithm.

Theorem 1.4.1 (Dewdney [19]). Let π be a nonincreasing sequence of nonnegative integers, say (d1, . . . , dn).

π is k-graphic if and only if there exists a nonincreasing sequence π′ of n − 1 nonnegative integers, say

(d′2, . . . , d
′
n), such that

• π′ is (k − 1)-graphic,

• ∑n
i=2 d

′
i = (k − 1)d1, and

• π′′ = (d2 − d′2, . . . , dn − d′n) is k-graphic.

Havel and Hakimi provided one efficient characterization of graphic sequences.

Theorem 1.4.2 (Havel [37], Hakimi [35]). The nonincreasing sequence d1, . . . , dn is graphic if and only if

the sequence d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn is graphic.

The proof of Theorem 1.4.2 hinges on the notion of degree-preserving operations on graphs. In particular,

a 2-switch is an operation that deletes two edges from a graph and adds two new edges in such a way that

vertex degrees are preserved. (The requirement that the added edges be new ensures that we deal only with
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simple graphs.) Fulkerson, Hoffman, and McAndrew [29] proved that the space of realizations of a graphic

sequence is connected via 2-switches.

A 2-exchange is an operation on multihypergraphs that deletes two edges and adds two edges in such

a way that vertex degrees are preserved. For a 2-exchange, we do not place the restriction on the added

edges that prevents multiple edges. In [8], it is proved that the space of multihypergraph realizations of a

k-graphic sequence is connected via 2-exchanges. In Section 5.2, we prove that simple realizations are not

always connected in this way.

Theorem 1.4.3. For k ≥ 3, there is a k-graphic sequence π with (at least) two simple realizations, neither

of which admits a 2-switch (to a simple k-graph).

The codegree function of a k-uniform hypergraph is the function that assigns to each (k−1)-set its degree.

(Here we speak of the degree of any set of vertices, and use the word codegree specifically for the degree of

a (k − 1)-set. In the literature, some authors use the term codegree for any set of more than one vertex,

reserving the term degree for single vertices.) In Section 5.3, we consider edge exchanges that preserve the

codegree function of a uniform hypergraph.

For 3-uniform hypergraphs, every possible such edge exchange can be represented by a triangulation

of a surface whose dual is bipartite (say the faces are colored red/blue): the vertices of the surface are

labelled by vertices in a hypergraph, and the edge exchange deletes edges corresponding to red triangles in

the triangulation and adds edges corresponding to blue triangles in the triangulation. The smallest such

exchange corresponds to the octahedron. By taking the connected sum of several octahedra we can produce

larger exchanges, each corresponding to a triangulation of the sphere with bipartite dual. We prove that

every triangulation of the sphere whose dual is bipartite arises in this fashion. This result is related to

earlier similar results of Pachner [55] and others, as well as to Barnette’s Conjecture on the Hamiltonicity

of bipartite cubic polyhedral graphs.

Given two realizations G and H, taking the connected sum of an octahedron with a surface corresponding

to G4H acts as a local operation on G and H that yields G′ and H ′ such that the codegree function of G′

is the same as that of H ′ (but possibly not the same as that of G). Our result in this context says that a

sequence of these operations can be applied such that the final graphs G′′ and H ′′ are the same.

In Section 5.4, we interpret the question of graphicality of a sequence as an integer program and make

some observations about the linear relaxation of that program. In particular, for graphicality questions for

which TONCAS (“The Obvious Necessary Conditions are Also Sufficient”) theorems are known, we show

that the fractional relaxation has a feasible solution if and only if the integer program does. Since the

fractional relaxation is a linear program, there are polynomial-time algorithms to check whether feasible
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solutions exist.

1.5 Large subposets with small dimension

The intersection of a family of posets (X,Ri) for i ∈ I is the poset (X,
⋂
i∈I Ri). The dimension of a poset

P is the minimum number of linear extensions whose intersection is P . In many ways, the dimension of

posets is analogous to the chromatic number of graphs. The standard example Sn has dimension n, and Sn

is the only n-dimensional poset with at most 2n elements. The standard examples seem to relate to poset

dimension as complete graphs do to graph coloring (c.f. [10, 11]).

F. Dorais [21] asked how large a subposet of dimension at most d must every n-element poset contain.

That is, what is min
|P |=n

max{|Q| : Q ⊆ P, dimQ ≤ d}? We denote this quantity by ex∗(n,Dd+1). The case

d = 1 is trivial: a 1-dimensional poset is just a chain, so for fixed P the maximum size is just the height of

P , and minimizing over P gives just 1 with P an antichain; so we will always consider d ≥ 2.

Goodwillie [32] proved that the answer is at least
√
dn by considering the width of P . For each d,

we provide a sublinear upper bound on ex∗(n,Dd+1) by considering the lexicographic order on powers of

standard examples. In particular, for d = 2, we prove that ex∗(n,D3) ≤ n0.8295 (for sufficiently large n).

1.6 Definitions and background

For a set X and a nonnegative integer k, we write
(
X
k

)
for the family of all k-element subsets of X. We write

[k] for the set {1, . . . , k}.

A multihypergraph G is a pair (V (G), E(G)), where V (G) is an arbitrary set of elements called the

vertices of G and E(G) is a multiset of subsets of V (G) called the edges of G. If E(G) is a set, then the

multihypergraph is called a hypergraph, or simple hypergraph for emphasis. For a nonnegative integer k, a

k-uniform (multi)hypergraph is a (multi)hypergraph in which every edge consists of exactly k vertices. A

2-uniform multihypergraph is a multigraph. A 2-uniform hypergraph is a graph, or simple graph for emphasis.

A uniform hypergraph is a k-uniform hypergraph for some k.

In a graph, two vertices are adjacent if they form an edge, and two edges are incident if they share an

endpoint. A vertex is incident to each edge containing it. In a graph G, the neighborhood of a vertex v,

denoted NG(v) or just N(v) when G is clear from context, is the set of vertices adjacent to v. A matching

in a hypergraph is a set of edges that are pairwise non-incident.

In a hypergraph G, the degree of a set of vertices A is the number of edges of G containing A and is

denoted dG(A) or just d(A) when the hypergraph is clear from context. Most commonly we will discuss the
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degrees of single vertices, and we shorten the notation d({v}) to just d(v). In Chapter 5 we will sometimes

use deg(v) rather than d(v) for clarity.

In a graph, a vertex with degree 1 is a leaf, and a vertex that is adjacent to every other vertex is a

dominating vertex.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of G

is proper if E(H) ( E(G). For X ⊆ V (G), the subgraph of G induced by X, denoted G[X], is the subgraph

of G with vertex set X and edge set E(G) ∩
(
X
2

)
.

A coloring of a hypergraph H is a function φ : V (H)→ X for some set X whose elements are called colors.

A k-coloring of H is a coloring with |X| = k. A coloring of H is proper if no edge of H is monochromatic.

We say that H is k-colorable if it admits a proper k-coloring. The chromatic number of H, denoted χ(H),

is the minimum k such that H is k-colorable.

A list assignment for a hypergraph H is an assignment of a list L(v) of available colors to each vertex

v. Given such a list assignment, an L-coloring is a proper coloring φ of H such that φ(v) ∈ L(v) for every

vertex v. We say that H is L-colorable if there is an L-coloring of H. If H is L-colorable for every list

assignment such that |L(v)| ≥ k for every v, then we say that H is k-choosable. The least k such that H is

k-choosable is the choice number or list-chromatic number of H, denoted ch(H).

A cycle in a hypergraph is an alternating list of distinct vertices and edges v1, e1, v2, e2, . . . , v`, e` such

that for every i, vi ∈ ei−1 ∩ ei (treating indices modulo `). The number ` is the length of the cycle. The

girth of a hypergraph H is the minimum length of a cycle in H.

For u, v ∈ V (G), a u, v-walk in G is an alternating list of vertices and edges v0, e1, v1, e2, . . . , v`−1, e`, v`

such that v0 = u, v` = v, and vi−1, vi ∈ ei for i ∈ [`]. The number ` is the length of the walk. The distance

between u and v is the minimum length of a u, v-walk (or∞ if there is no u, v-walk) and is denoted dist(u, v).

A graph is connected if, for every two vertices u and v, there is a u, v-walk. When u 6= v, a u, v-path in G is

a u, v-walk with no repeated vertex.

A graph is a forest if it contains no cycles. A tree is a connected forest.

A graph is bipartite if it has chromatic number at most 2. Equivalently, a graph is bipartite if and only

if it has no odd cycles. A graph is k-partite if its chromatic number is at most k. A complete k-partite graph

is a graph with vertex set partitioned into k independent sets (called the partite sets or just parts) and an

edge {u, v} whenever u and v are in different partite sets.

A directed graph D (digraph for short) is a pair (V (D), E(D)), where V (D) is an arbitrary set of elements

called the vertices of D and E(D) is a set of ordered pairs of V (D) called the edges of D. For an edge (u, v)

in D we often write just uv, and we say that the edge is from u to v. The outdegree of a vertex u of D is
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the number of edges from u to other vertices and is denoted d+D(u) or just d+(u). A cycle in a digraph is

an alternating list of distinct vertices and edges v1, e1, v2, e2, . . . , v`, e` such that for every i, ei = (vi, vi+1)

(treating indices modulo `). The number ` is the length of the cycle. A path in a digraph is an alternating list

of distinct vertices and edges v0, e1, v1, e2, . . . , v`−1, e`, v` such that for every i, ei = (vi−1, vi). The number

` is the length of the path.

A partially ordered set, or poset for short, is a pair (X,R) where X is a set called the ground set and

R is a reflexive, antisymmetric, transitive relation on X. When (x, y) ∈ R, we often write x ≤R y or just

x ≤ y when the context is clear. We write x <R y if x ≤R y and x 6= y. If x <R y and there is no z with

x <R z <R y, we say y covers x and write xl y. We say distinct elements x, y ∈ X are comparable if x ≤ y

or y ≤ x, and say they are incomparable otherwise.

Given a poset (X,R), a subposet is a poset (Y, S) with Y ⊆ X and S = R ∩ (Y 2). A subrelation is a

poset (Y, S) with Y ⊆ X and S ⊆ R. (In some texts, what we call a subposet is referred to as an induced

subposet, and what we call a subrelation is called a subposet.) An ideal I in a poset is a downward-closed

subposet; that is, whenever y ∈ I and x ≤ y, also we have x ∈ I.

A chain is a poset in which any two elements are comparable. The height of a poset is the maximum

size of a subposet that is a chain. A linear extension of a poset (X,R) is a chain (X,S) with R ⊆ S. An

antichain is a poset in which no two elements are comparable. The width of a poset P , denoted w(P ), is

the maximum size of a subposet of P that is an antichain. Dilworth’s Theorem states that the elements of

every poset P can be covered by w(P ) chains in P .

The Boolean lattice of order n, denoted Bn, is the subset order on the set of all subsets of [n]. For n ≥ 3,

the standard example with 2n elements, denoted Sn, is the subposet of Bn consisting of the singleton sets

and their complements.

The lexicographic order on k-tuples of elements of a poset P puts (x1, . . . , xk) < (y1, . . . , yk) when xi < yi

for i = min{j : xj 6= yj}.

The cover graph of a poset (X,R) is the graph with vertex set X and an edge xy whenver xly. A Hasse

diagram of the poset is a drawing of the cover graph in the plane such that the vertical coordinate of x is

less than the vertical coordinate of y when x <R y.
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Chapter 2

Sparse nearly-bipartite 4-critical
graphs

The results of this chapter are joint with Alexandr Kostochka and appear in [45].

2.1 Introduction

A graph G is said to be (k+ 1)-critical if it is (k+ 1)-chromatic but every proper subgraph G is k-colorable.

We consider (k + 1)-critical graphs that are “nearly bipartite” in the following sense. For an integer `,

we say that a graph is a (B + E`)-graph if it is obtained from a bipartite graph by adding ` edges. We say

that a graph is a (B + M`)-graph if it is obtained from a bipartite graph by adding a matching of size `.

(In [16], a (B +M`)-graph is denoted by B + `.)

Rödl and Tuza [58] disproved a conjecture by Erdős by finding infinitely many (k+1)-critical (B+E(k
2)

)-

graphs. They also showed that this is best possible: when n is large enough, there are no n-vertex (k + 1)-

critical (B + E`)-graphs with ` <
(
k
2

)
.

Chen, Erdős, Gyárfás, and Schelp [16] strengthened Rödl and Tuza’s result for k = 3: they showed that

for all sufficiently large n, there are 4-critical n-vertex (B+M3)-graphs. An example is shown in Figure 2.1.

Figure 2.1: A 4-critical (B +M3)-graph.

We focus on the case k = 3 and ask how few edges such a graph may have. Chen et al. [16] provided

such a graph with 2n−3 edges when n ≥ 7. They “suspect[ed]” that any 4-critical n-vertex (B+M3)-graph

has at least 2n edges asymptotically, and “dare[d] to conjecture only that they have significantly more than
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5n/3 edges.” (At the time it was conjectured, and it has now been proven in [48], that every 4-critical

n-vertex graph has at least (5n − 2)/3 edges.) Gyárfás renewed interest to the problem in [33]. We prove

that, indeed, every such graph has at least 2n − 3 edges. Furthermore, we prove the same result for any

4-critical (B + E3)-graph.

Theorem 2.1.1. If G is a 4-critical (B + E3)-graph, then |E(G)| ≥ 2|V (G)| − 3.

We use techniques from [48] and [49].

For A ⊆ V (G), we let G[A] denote the subgraph of G induced by A. When A ∩ B = ∅, we let G[A,B]

denote the bipartite subgraph with parts A and B consisting of all edges of G having endpoints in both A

and B.

2.2 Proof

For A ⊆ V (G), define the potential, ρG(A), to be 2|A| − |E(G[A])|.

Theorem 2.1.1 is equivalent to the statement

ρG(V (G)) ≤ 3 for every 4-critical (B + E3)-graph G.

We will frequently use the fact that, for A,B ⊆ V (G),

ρG(A ∪B) + ρG(A ∩B) = ρG(A) + ρG(B)− |E(G[A−B,B −A])|.

Lemma 2.2.1. Suppose G 6= K4 is a 4-critical graph such that E(G) = E(B) ∪ E(S) where B is bipartite

and |E(S)| = 3. Let V1, V2 be the bipartition of V (B), indexed so that |V1 ∩ V (S)| ≥ |V2 ∩ V (S)|. Either

1. G[V1 ∩ V (S)] = K3, and ρG(V (S)) = 3; or

2. G[V1 ∩ V (S)] = P3, G[V2 ∩ V (S)] = K2, and ρG(V (S)) ≤ 3; or

3. G[V1 ∩ V (S)] = 2K2, G[V2 ∩ V (S)] = K2, and ρG(V (S)) ≤ 5.

Proof. Observation: If there is an independent set I that intersects each edge of S, then G− I is bipartite

and so G is 3-colorable.

Chen et al. [16] showed that the only B+E2 graph that is 4-critical is K4. So each edge of S lies within

one of V1, V2. If all three edges of S are in V1, then G[V (S)] = K3 by the observation. Otherwise two edges

of S, say ab and cd, lie in V1 and one edge, say xy, lies in V2. Now G[V1 ∩ V (S)] is either 2K2 (a, b, c, d
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are distinct) or P3 (say b = c). By the observation, x must be adjacent to both of a, b or both of c, d; by

symmetry assume xa, xb ∈ E(G). Similarly, y must be adjacent to both a, b or to both c, d; since G does

not contain a K4, we have yc, yd ∈ E(G). These four edges together with E(S) imply the given inequalities

on potential.

Suppose the theorem fails. For a counterexample G, let S, V1, V2 be as in Lemma 2.2.1 and let

P (G) = min
V (S)⊆A⊆V (G)

ρG(A).

Among all counterexamples, choose G to have the maximum P (G), and subject to this, to have the minimum

number of vertices. (Note that for any counterexample H, P (H) ≤ ρH(V (S)) ≤ 5, so the maximum exists.)

Let a, b, c, d, x, y be vertices not in V (G), and let M be the matching with edges ab, cd, and xy.

Claim 2.2.2. If V (S) ⊆ R ⊆ V (G), then ρG(R) ≥ 4. If also 8 < |R| < |V (G)|, then ρG(R) ≥ 5.

Proof. If R = V (G), then the claim follows from G being a counterexample. So we henceforth consider

R ( V (G). If the first statement of the claim fails, then there is an R such that (i) ρG(R) = P (G) ≤ 3.

If the first statement of the claim holds but the second statement fails, then there is an R such that

(ii) 8 < |R| < |V (G)| and ρG(R) = 4. Fix such an R in either case.

Take any 3-coloring φ of G[R], and construct the graph G′ as follows. Let R′ = V (M) ∪ {z2, z3}, where

z2, z3 are new vertices. Let V (G′) = (V (G)−R) ∪R′.

Let E(G′[V (G)−R]) = E(G[V (G)−R]), and

E(G′[R′]) = {ab, ax, bx, by, xy, cd, cy, dy, z2a, z2c, z3a, z3d}.

See Figure 2.2 for G′[R′]. For each i ∈ [3], let

Ci = {v ∈ V (G)−R : v is adjacent to some vertex of color i},

and let E(G′[R′, V (G′)−R′]) be such that

NG′(a)−R′ = V2 ∩ C1, NG′(d)−R′ = V2 ∩ C2, NG′(c)−R′ = V2 ∩ C3,

NG′(y)−R′ = V1 ∩ C1, NG′(z2)−R′ = V1 ∩ C2, NG′(z3)−R′ = V1 ∩ C3,

NG′(b) ⊆ R′, NG′(x) ⊆ R′.
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a b c d

z2 x y z3

Figure 2.2: The graph G′[R′].

We claim that G′ is not 3-colorable. If G′ has a proper 3-coloring ψ, then by renaming colors as necessary,

we may assume that ψ(a) = ψ(y) = 1, ψ(c) = ψ(z3) = 3, and ψ(d) = ψ(z2) = 2. Now coloring G by φ on R

and ψ on V (G)−R is a proper coloring, a contradiction. Hence there exists a 4-critical subgraph G′′ ⊆ G′;

note that E(G′′) ⊃ E(M).

For any A such that V (M) ⊆ A ⊆ V (G′), we have

|E(G′[A−R′, A ∩R′])| ≤ |E(G′[A−R′, R′])| ≤ |E(G[A−R′, R])|.

Also, any subset of R′ containing V (M) has potential equal to 4. Hence for any A ⊆ V (G′′) containing

V (M),

ρG′′(A) ≥ ρG′(A)

= ρG′(A−R′) + ρG′(A ∩R′)− |E(G′[A−R′, A ∩R′])|

≥ ρG(A−R′) + 4− |E(G[A−R′, R])|

= (4− ρG(R)) + (ρG(A−R′) + ρG(R)− |E(G[A−R′, R])|)

= (4− ρG(R)) + ρG((A−R′) ∪R).

Since ρ(R) ≤ 4, we have P (G′′) ≥ P (G). If ρ(R) < 4, then P (G′′) > P (G); if ρ(R) = 4 and |R| > 8, then

|V (G′′)| < |V (G)|. In either case, by the extremality of G, we have ρG′′(V (G′′)) ≤ 3. Taking A = V (G′′)

above, we have

ρG((V (G′′)−R′) ∪R) ≤ ρG′′(V (G′′))− 4 + ρG(R) ≤ ρG(R)− 1.

If R satisfies (i), then the set (V (G′′)−R′)∪R contradicts the minimality of ρG(R). Hence the first statement

of the claim holds. If R satisfies (ii), then the set (V (G′′)− R′) ∪ R has potential at most 3, contradicting

the first statement. Hence the second statement of the claim holds as well.

Claim 2.2.2 and Lemma 2.2.1 imply that S is a matching, and we will henceforth assume it is M , with

V1 ∩ V (M) = {a, b, c, d} and V2 ∩ V (M) = {x, y}. Furthermore we obtain that ρG(V (M)) ∈ {4, 5}, i.e.
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|E(G[V (M)])| ∈ {7, 8}. From the proof of Lemma 2.2.1 we see that

E(G[V (M)]) ⊇ {ab, ax, bx, xy, cd, cy, dy},

with equality or, up to symmetry, with the extra edge by (see Figure 2.3). We will need to consider these

two cases separately. First we introduce a few lemmas that the arguments will have in common.

a b c d

x y

a b c d

x y

Figure 2.3: The two cases for G[V (M)].

The following lemma is an old result by Hakimi [36]. A simpler version of it was used by Alon and Tarsi

in [4]. For completeness, we provide a short proof using Hall’s Theorem.

Lemma 2.2.3 (Theorem 4 in [36]). Given a multigraph H and a function f : V (H) → N, one of the

following holds.

(1) There is a subset A ⊆ V (H) such that |E(H[A])| >∑v∈A f(v).

(2) There is an orientation of H such that for every v ∈ V (H), d+(v) ≤ f(v).

Proof. Let V be the multiset consisting of f(v) copies of v for each v ∈ V (H), and let E = E(H). Consider

the (V,E)-bigraph B with ve ∈ E(B) if and only if v ∈ e. A matching in B covering E yields an orientation

of H satisfying (2): each edge is oriented away from its mate in the matching. So, by Hall’s Theorem, if

Conclusion (2) does not hold, then there is an F ⊆ E with |NB(F )| < |F |. But |NB(F )| =
∑
v∈V (F ) f(v),

and |F | ≤ |E(H[V (F )])|, so taking A = V (F ) satisfies Conclusion (1).

A kernel in a digraph is an independent set S such that for every v ∈ V (D) − S, there is some s ∈ S

such that vs ∈ E(D). A digraph is called kernel-perfect if every induced subdigraph has a kernel.

Lemma 2.2.4 (Lemma 10 in [49]). Let A be an independent set in a graph H and B = V (H)−A. Let D be

the digraph obtained from H by replacing each edge in H[B] by a 2-cycle and giving an arbitrary orientation

to H[A,B]. Then D is kernel-perfect.

Lemma 2.2.5 (Bondy, Boppana, and Siegel, see [4]). If D is a kernel-perfect digraph and L is a list

assignment such that for every v ∈ V (D), |L(v)| ≥ 1 + d+(v), then D is L-colorable.
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Now we are ready to consider the two cases.

Case 1: ρ(V (M)) = 4.

Let G′ be obtained from G by doubling the two edges ab and cd of M . Define f : V (G′ − x) → N by

f |N(x) ≡ 1, f |V (G′)−N [x] ≡ 2, and apply Lemma 2.2.3 to G′ − x, f .

1 1 2 2

1

Figure 2.4: G′[V (M)] with f .

If Conclusion (2) of Lemma 2.2.3 holds, then the orientation of G′ − x must have 2-cycles on {a, b} and

on {c, d}. Indeed, the edges ab must form a 2-cycle in order to have the outdegrees of a and b at most 1,

then yb must be oriented from y, hence cy and dy must both be oriented toward y, and thus the edges cd

must form a 2-cycle (see Figure 2.4). By Lemma 2.2.4, the orientation is kernel-perfect. We extend this

orientation to an orientation of G′ by making x a sink; the result is still kernel-perfect, and now d+(v) ≤ 2

for every v ∈ V (G). By Lemma 2.2.5, G′ and also G are 3-choosable, a contradiction.

So Conclusion (1) of Lemma 2.2.3 holds. That is, there exists an A ⊆ V (G′) with ρG′(A) ≤ −1 + |A ∩

N(x)|. This implies that

ρG(A) ≤ −1 + |A ∩N(x)|+ |E(M) ∩ E(G[A])|.

With ε1 =


1 if A ⊇ {a, b},

0 otherwise

and ε2 =


1 if A ⊇ {c, d},

0 otherwise,

this yields

ρG(A+ x) ≤ ρG(A) + 2− |A ∩N(x)|+ |E(M) ∩ E(G[A])| ≤ 1 + ε1 + ε2

ρG(A+ x+ y) ≤ 1 + (2− 1) + ε1 + ε2 = 2 + ε1 + ε2

ρG(A+ V (M)) ≤ 2 + 2(4− 3)− 1 = 3.

This contradicts Claim 2.2.2.

Case 2: ρ(V (M)) = 5.

Let G′x = G− x− cd+ ab, and define f : V (G′x)→ N by f |N(x)∪{c,d} ≡ 1, f |V (G′x)−(N [x]∪{c,d}) ≡ 2, and

apply Lemma 2.2.3 to G′x, f . (See Figure 2.5.)

If Conclusion (2) of Lemma 2.2.3 holds, then the orientation must havea 2-cycle on {a, b}. Extend the
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1 1 1 1

1

Figure 2.5: G′x[V (M)] with f .

orientation of G′x to an orientation of G − x + ab + cd by orienting the double edges cd as a 2-cycle; then

Lemma 2.2.4 implies the orientation is kernel-perfect. Extend to an orientation of G+ ab+ cd by making x

a sink; the result is still kernel-perfect, and now d+(v) ≤ 2 for every v. By Lemma 2.2.5, G + ab + cd and

also G are 3-choosable, a contradiction.

Thus Conclusion (1) of Lemma 2.2.3 holds. That is, there exists an A ⊆ V (G′x) with ρG′x(A) ≤ −1 +

|A ∩ (N(x) ∪ {c, d})|. This implies that

ρG(A+ x) ≤ 1 + ε1 + ε2, (2.1)

where ε1 =


1 if A ∩ {c, d} 6= ∅,

0 if A ∩ {c, d} = ∅
and ε2 =


1 if A ⊇ {a, b},

0 otherwise.

Adding to A in turn {y}, {c, d}, and {a, b} each adds at most 1 to the potential. If A already intersects

{y}, {c, d}, or {a, b}, then instead no potential is gained. Hence A ∩ V (M) = ∅ or A ∩ V (M) = {a, b};

otherwise ρ(A+ V (M)) ≤ 3, contradicting Claim 2.2.2.

Similarly, we construct the graph G′y, and find a set B such that ρG(B + y) ≤ 1 + ε3, where

ε3 =


1 if B ⊇ {c, d},

0 else.

We have x /∈ A ∪B, y /∈ A ∪B, and B ∩ V (M) = ∅ or B ∩ V (M) = {c, d}. So

ρ(A+ x+B + y) + ρ(A ∩B) ≤ 2 + ε2 + ε3 − |E(G[A+ x−B,B + y −A])|. (2.2)

Let C = A ∩B, so C ∩ V (M) = ∅. If |C| ≤ 2, then ρ(C) ≥ 0. If |C| > 2, then by Claim 2.2.2 we have

5 ≤ ρ(C + V (M)) ≤ ρ(C) + ρ(V (M))− ρ(C ∩ V (M)) = ρ(C) + 5,

so still ρ(C) ≥ 0. Furthermore, xy contributes to the last term of (2.2), and so by (2.2),

ρ(A+ x+B + y) ≤ 1 + ε2 + ε3.
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v

v
x y

Figure 2.6: Three 5-critical (B + E6)-graphs with few edges.

This implies that ρ(A+B + V (M)) ≤ 3, which contradicts Claim 2.2.2.

The contradictions in each of these two cases imply that our counterexample G cannot exist, which

completes the proof of Theorem 2.1.1.

2.3 Other k

Recall that Rödl and Tuza [58] showed that, for sufficiently large n, there are no n-vertex (k+1)-critical B+E`

graphs with ` <
(
k
2

)
. They also provided, for infinitely many n, an n-vertex (k+ 1)-critical (B+E(k

2)
)-graph

with only (k−1)n−
(
k
2

)
+1 edges. For large n, how few edges may an n-vertex (k+1)-critical (B+E(k

2)
)-graph

have?

For k = 3, Chen et al. improved over Rödl and Tuza’s examples by one edge, finding infinitely many

(B + E3)-graphs with 2n − 3 edges; our main result is that this is in fact the correct minimum number of

edges.

For k = 4, the examples of Rödl and Tuza have 3n− 5 edges. We know of only a few graphs with fewer

edges. Three such examples are shown in Figure 2.6; the removal of the bolded edges makes each graph

bipartite. The leftmost graph is obtained by gluing a copy of K4 to each edge of a K3 then adding a vertex v

adjacent to all the resulting vertices of degree 3; it has 3n− 6 edges. The middle graph is obtained from the

Moser Spindle by adding a dominating vertex v. It was kindly shown to us by a referee. It also has 3n− 6

edges. The rightmost graph is obtained from the union of K5 − xy and K4 by adding edges joining two

vertices of the K4 to x and the other two vertices of the K4 to y. It has only 3n− 8 edges. It is interesting

whether for infinitely many n there exist 5-critical n-vertex (B + E6)-graphs with fewer than 3n− 5 edges.
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Chapter 3

Sparse (hyper)graphs with large girth
and (list-)chromatic number

The results of this chapter are joint with Noga Alon, Alexandr Kostochka, Douglas West, and Xuding Zhu

and are based on [3].

3.1 Introduction

As discussed in Chapter 2 (specifically Lemmas 2.2.3 and 2.2.5), any bipartite graph with average degree at

most 4 in every subgraph is 3-choosable. The proofs in Chapter 2 would be shorter if this statement could

be strengthened by weakening the average degree condition.

If every subgraph of a graph has average degree less than k, then it has a vertex with degree less than k,

and inductively it is k-choosable.

For bipartite graphs, one can guarantee k-choosability with average degree up to 2(k − 1). Using (an

early version of) the Combinatorial Nullstellensatz [2], Alon and Tarsi [4] proved Theorem 3.1.1 below, which

implied the conjecture of [27] that planar bipartite graphs are 3-choosable. As mentioned in [4], another

route to the result was subsequently noted by Bondy, Boppana, and Siegel, as follows. A kernel of a digraph

is an independent set S containing a successor of every vertex outside S. If a graph G has an orientation

D with maximum outdegree less than k, and every induced subdigraph of D has a kernel, then inductively

G is k-choosable. Richardson [57] proved that every digraph with no odd cycle has a kernel. Hakimi [36]

proved that G has an orientation with maximum outdegree at most k − 1 when all induced subgraphs have

average degree at most 2(k − 1).

Theorem 3.1.1 ([4]). If G is a bipartite graph such that every subgraph has average degree at most 2(k−1),

then G is k-choosable.

We show that Theorem 3.1.1 is sharp in a strong sense: we construct non-k-choosable bipartite graphs

G such that after deleting any edge from G, all subgraphs of the remaining graph have average degree at

most 2(k − 1). Thus our graphs are (k + 1)-choice-critical (i.e., the graph fails to be k-choosable, but every

17



proper subgraph is k-choosable). Furthermore, such examples exist with arbitrarily large girth. We prove

the following theorem.

Theorem 3.1.2. For g, k ∈ N, there is a bipartite graph G with girth at least g that is not k-choosable even

though every proper subgraph has average degree at most 2(k − 1).

To prove this, we consider a new problem. Let an r-augmented tree be a graph consisting of a rooted

tree (called the underlying tree) plus edges from each leaf to r of its ancestors (called augmenting edges).

A complete d-ary tree of height m is a rooted tree whose internal vertices have d children and whose leaves

have distance m from the root. For d, r, g ∈ N, let a (d, r, g)-graph be a bipartite r-augmented complete

d-ary tree with girth at least g.

Theorem 3.1.3. For d, r, g ∈ N, there exists a (d, r, g)-graph.

In Section 3.2 we give a warmup, proving a version of Theorem 3.1.2 without the girth restriction. In

Section 3.3 we prove Theorem 3.1.3, and in Section 3.4 we give several applications.

In Section 3.4.1 we present a simple construction of t-uniform hypergraphs with arbitrarily large girth

and chromatic number, for all t. For t = 2, Erdős [23] used the probabilistic method to prove existence;

see also [26, 44] for subsequent work. Explicit constructions followed in [51, 53, 41]. These are inductive

and, except for the last one, use hypergraphs with large edges. Using (d, r, g)-graphs (built inductively),

our construction is non-inductive and does not involve hypergraphs with larger edges. Moreover, the same

method provides explicit high girth hypergraphs of any uniformity based on (d, r, g)-graphs, without using

hypergraphs (besides those constructed) in the process.

We prove Theorem 3.1.2 in Section 3.4.2. Stronger versions involving restricted list assignments are

proved in Section 3.4.3. For example, when the lists at adjacent vertices are disjoint, every coloring chosen

from the lists is proper. We extend the analysis of the graph constructed for Theorem 3.1.2 by constructing

a k-list assignment in which any two adjacent lists have exactly one common color and yet no proper coloring

can be chosen.

One can also restrict list assignments by bounding the size of the union of the lists. For bipartite graphs,

a proper coloring can be chosen from any k-lists whose union has size at most 2k− 2. We prove that this is

sharp (for any girth) by constructing a bipartite graph with k-lists whose union has size 2k − 1 from which

no proper coloring can be chosen.

Finally, in Section 3.5 we discuss the height of the trees used in Theorem 3.1.3. For fixed d ≥ 2 and

r ≥ 1, we show that the height must grow extremely rapidly in terms of the girth.
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3.2 Warmup

To help motivate the proof of Theorem 3.1.2, we begin with the version without the girth restriction.

Theorem 3.2.1. For k ∈ N, there is a bipartite graph G that is not k-choosable even though every proper

subgraph has average degree at most 2(k − 1).

Proof. We proceed by induction on k. For k = 1, K2 suffices. So suppose k ≥ 2 and Gk−1 has the desired

properties. Let (A,B) be the bipartition of Gk−1, and let L′ be a list assignment with |L′(x)| = k − 1 for

each x ∈ V (Gk−1) such that Gk−1 is not L′-colorable (and none of the lists intersects [k]).

Construct Gk as follows. Consider a star K1,k with center v and leaves w1, . . . , wk. For each leaf wi,

introduce k−1 copies of Gk−1, denoted Gi,jk−1 for j ∈ [k]−{i}. Let xi,j denote the copy of vertex x ∈ V (Gk−1)

in Gi,jk−1. For each copy xi,j of x ∈ A, add an edge joining xi,j to wi. For each copy yi,j of y ∈ B, add an

edge joining y to v. Clearly Gk is bipartite.

Consider the list assignment L defined as follows. First let L(v) = [k] and L(wi) = [k]. For a copy xi,j

of x ∈ A, let L(xi,j) = L′(x) ∪ {i}, and for a copy yi,j of y ∈ B, let L(yi,j) = L′(y) ∪ {j}. If there is an

L-coloring f of Gk, then let i = f(v) and j = f(wi); note that i 6= j. In Gi,jk−1, one color has been forbidden

from each list; specifically, the remaining available list at each vertex is precisely that of L′. So Gk is not

L-colorable and hence is not k-choosable.

v

w1 w2
wk

G1,2
k−1 G1,k

k−1 G2,1
k−1 G2,k

k−1 Gk,1k−1 Gk,k−1k−1

Figure 3.1: The graph Gk of Theorem 3.2.1.

To prove the claim about average degree of subgraphs, we give an orientation to Gk such that every

vertex has outdegree k− 1 except for a designated root vertex with outdegree k, and such that every vertex

is reachable from the root. (In any proper subgraph, either the root has outdegree at most k − 1 and the

average degree is at most 2(k − 1), or some other vertex has outdegree at most k − 2 and again the average
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degree is at most 2(k − 1).) The desired orientation of K2 is obvious. Given such an orientation of Gk−1,

use that orientation on each copy of Gk−1 in Gk. Orient the edges of the star away from the center, orient

the edges from leaves toward the roots of each copy of Gk−1, and orient the remaining edges from the copies

of Gk−1 toward the star. The center of the star is the root of Gk.

This construction has many 4-cycles. Using taller k-ary trees instead of stars in this construction, and

adding the edges from copies of Gk−1 to varying heights on the tree, we may fairly easily get such a graph

with girth 6; this motivates our definition of augmented trees.

3.3 Augmented trees

Recall that a (d, r, g)-graph is a bipartite r-augmented complete d-ary tree with girth at least g.

If there is a (d, r, g)-graph, then let m(d, r, g) denote the least height of the underlying tree in such a graph

(otherwise, let m(d, r, g) =∞). Theorem 3.1.3 is the statement that m(d, r, g) is finite for all d, r, g ∈ N. We

prove this by double induction, using the following three lemmas.

Lemma 3.3.1. For d, r ∈ N, we have m(d, r, 4) = 2r + 1.

Lemma 3.3.2. For g, d ∈ N with g at least 4 and even, m(d, 1, g + 2) ≤ g +m(d, dg, g).

Lemma 3.3.3. With d, r, g as above, m(d, r + 1, g) ≤ m1 + g − 1 + m2, where m1 = 2
⌊
m(d,r,g)

2

⌋
+ 1 and

m2 = m(dm1+g, 1, g).

These three lemmas imply the finiteness of m(d, r, g) for all d, r, g ∈ N with g even and at least 4. Letting

P (r, g) denote the claim that m(d, r, g) is finite for all d, we prove P (r, g) by induction on g. As the base step,

P (r, 4) holds for all r by Lemma 3.3.1. If P (r, g) holds for all r, then we prove P (r, g+ 2) by induction on r:

first P (1, g + 2) holds by Lemma 3.3.2 (using the truth of P (r, g) for all r), and then P (r+ 1, g + 2) follows

from P (r, g + 2) by Lemma 3.3.3 (since P (1, g + 2) also holds). This completes the proof of Theorem 3.1.3.

It remains to prove the three lemmas. Lemma 3.3.1 is trivial: just make each leaf adjacent to its r

non-parent ancestors at odd distance from it in the tree.

Proof of Lemma 3.3.2. Let G′ with underlying tree T ′ be a (d, d2, g)-graph with height m(d, d2, g). Replace

each leaf v of T ′ with a complete d-ary tree Tv of height 2 rooted at v. Replace the augmenting edges

from v to its ancestors by letting the d2 lower endpoints be the leaves of Tv instead of v. This produces a

1-augmented complete d-ary tree G of height 2 +m(d, d2, g). Since each augmenting edge has had its lower

endpoint moved two levels down, G is bipartite.
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If G has a cycle C of length at most g, then C must contain an augmenting edge, say xy, with y being

a leaf in the underlying tree T of G. Let v be the leaf in T ′ such that y is in Tv. Since dG(y) = 2, the

cycle C contains the edge yy′ of Tv incident with y. Contracting the added subtrees of height 2 into leaves

of T ′ contracts C to a closed walk C ′ in G′ of length less than g. Since C ′ traverses edge vx only once, the

remaining walk from x to v along C ′ contains a path that with vx completes a cycle of G′ having length less

than g, a contradiction. Thus G has no cycles of length less than g + 2.

Proof of Lemma 3.3.3. Fix r. Assuming for all d and g that m(d, r, g) and m(d, 1, g) are finite, let m1 =

2 bm(d, 1, g)/2c+ 1 and m2 = m(dm1 , r, g). Note that m1 is the least odd integer that is at least m(d, 1, g).

We construct the desired graph G from two graphs G1 and G2.

For G1 we use a (d, 1, g)-graph having height m1. If m(d, 1, g) is odd, then m1 = m(d, 1, g) and we use

a shortest (d, 1, g)-graph. If m(d, 1, g) is even, then m1 = m(d, 1, g) + 1, and we form G1 from d copies of a

shortest (d, 1, g)-graph by adding a new root having the roots of those graphs as children.

For G2, let d′ = dm1 , and consider a (d′, r, g)-graph H having height m2. Let G2 be an induced subgraph

of H formed by starting from the root of the underlying tree of H and keeping only d children of each

included vertex, except that all d′ children are kept at the last level. Thus G2 has an underlying tree T ′ of

height m2, and deleting the dm2−1d′ leaves of T ′ yields a complete d-ary tree of height m2− 1. All ancestors

in H of a leaf of T ′ appear in T ′, so each leaf of T ′ has r ancestors as neighbors in G2.

Now we construct G from G1 and G2. In G2, let S(u) be the star consisting of a vertex u at level m2− 1

and its d′ leaf children. Replace each S(u) with a copy G1(u) of the graph G1, so that the d′ leaves in G1

each become one of the leaves in S(u), inheriting the r augmenting edges that were incident to that leaf in

G2. We call the augmenting edges obtained from G2 in this way long edges; the augmenting edges in G1(u)

are short edges.

The underlying tree in our construction thus has two parts. The top part is the tree T ′ for G2 without its

bottom level; it has height m2− 1. The bottom part, with height m1, consists of copies of G1. Each leaf has

one incident short edge from G1 and r incident long edges inherited from G2. Thus G is an (r+1)-augmented

complete d-ary tree of height m1 + m2 − 1. When replacing one of the r augmenting edges from a leaf of

G2 by a long edge, the difference in the heights of the endpoints increases by m1 − 1. Since m1 is odd, this

change is even, so G is bipartite.

A cycle C in G that contains no long edges is a cycle in a copy of G1 and hence has length at least g.

When C contains a long edge, contracting a subtree G1(u) into a star S(u) contracts C to a closed walk C ′

in G2 using an augmenting edge e. Since leaves of G1(u) correspond bijectively to leaves of S(u), the edge

e is not repeated in C ′. Hence the other walk in C ′ joining its endpoints contains a path that completes a
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cycle with e. Since this is a cycle in G2 and has length at least g, also C has length at least g.

This completes the proof of Lemma 3.3.3 and Theorem 3.1.3.

3.4 Applications

In a complete k-ary tree, a full path is a path from the root to a leaf. A [k]-coloring is a k-coloring using

the colors in [k].

Definition 3.4.1. Given an ordering of the children at each internal vertex, the vertices of a complete k-ary

tree with height m correspond naturally to the strings of length at most m from the alphabet [k]. Define an

edge-coloring φ by letting the color of each edge from parent x to child y be the index of y in the ordering

of the children of x (note that φ is not a proper coloring). For a [k]-coloring f of the vertices of T , a full

path P is an f -path if the color of each non-leaf vertex on P equals the color of the edge to its child on P .

Whenever f is a [k]-coloring of a complete k-ary tree, there is a unique f -path: just start from the root

and repeatedly follow the descending edge whose color matches the color of the current vertex. Similarly,

every full path is an f -path for some [k]-coloring f .

3.4.1 Large chromatic number and girth

As mentioned in the introduction, there exist t-uniform hypergraphs with large chromatic number and girth.

Our (d, r, g)-graphs provide a remarkably simple such construction. It has the benefits of being non-recursive

(once (d, r, g)-graphs are constructed), and not involving hypergraphs as inputs to the construction. Thus

unlike the earlier constructions which use hypergraphs to provide high girth graphs, the method described

here constructs high girth graphs and hypergraphs using only graphs.

Theorem 3.4.2 ([23, 26, 51, 53, 41, 44]). For k, g, t ∈ N, there is a t-uniform hypergraph with girth at least

g and chromatic number larger than k.

Proof. Let G be a (k, (t− 1)k + 1, 2g)-graph with underlying tree T having leaf set L. Let V ′ = V (T )− L.

For v ∈ L, consider the full path P ending at v. Among the (t−1)k+1 neighbors of v via augmenting edges,

the pigeonhole principle yields a set of t neighbors of v whose descending edges along P have the same color;

let ev be such a set of vertices in V ′. Let H be the t-uniform hypergraph with vertex set V ′ and edge set

{ev : v ∈ L}.

Any [k]-coloring f of V ′ yields a unique f -path in T , ending at some leaf v. As a coloring of H, this

makes the edge ev monochromatic. Hence H has no proper k-coloring.
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Let C be a shortest cycle in H, with edges e1, . . . , el in order and vertex xi chosen from ei−1∩ei (subscripts

modulo l). Since C is a shortest cycle, x1, . . . , xl are distinct. Each edge of H consists of neighbors of a

single leaf of T via augmenting edges; let vi be the common leaf neighbor of the vertices in ei. Form C ′ in G

by replacing each edge ei of C by the copy of P3 in G having endpoints xi−1 and xi and midpoint vi. Since

for each leaf of T we formed exactly one edge in H, the leaves v1, . . . , vl are distinct. Hence C ′ is a cycle,

and its length is twice that of C. By the choice of G as a (d, k, 2g)-graph, H has girth at least g.

The hypergraph H in Theorem 3.4.2 satisfies |E(H)| = |L| = kh and |V (H)| = |V ′| = kh−1
k−1 , where

h = m(k, (t − 1)k + 1, 2g). Hence |E(H)| = (k − 1)|V (H)| + 1. However, H may have (and actually does

have) dense subgraphs. For t = 2, we provide a different construction, inductive, of sparse graphs with large

girth and chromatic number. A graph G is sparse when it has a small value of the maximum average degree,

defined to be maxH⊆G

∑
v∈V (H) dH(v)

|V (H)| . Our construction has asymptotically lowest average degree even in

the broader class of triangle-free graphs. This follows from the lower bound by Kostochka and Stiebitz [46]:

every k-chromatic triangle-free graph has maximum average degree at least 2k − o(k).

Definition 3.4.3. Let G be a (d, r, g)-graph with a specified ordering of the d children at each non-leaf

vertex of the underlying tree T . The corresponding reduced (d, r, g)-graph H is obtained from G as follows:

given the coloring φ of E(G) from Definition 3.4.1, form H from G by deleting at each non-root internal

vertex v of T the subtree under the descending edge whose color under φ is the same as the color of the

edge to the parent of v. Each non-leaf vertex of H ∩ T has degree d in T , and φ is a proper edge-coloring of

H ∩ T .

The reduced (d, r, g)-graph with underlying tree T associated with the edge-coloring φ as in Defini-

tion 3.4.3 still has a unique f -path for any proper [d]-coloring f of T .

Theorem 3.4.4. For k, g ∈ N, there is a graph with girth at least g that is not k-colorable and has maximum

average degree at most 2(k − 1).

Proof. For fixed g, we construct such a graph Jk by induction on k. For the basis step, let J2 be an odd

cycle of length at least g. Given Jk−1, let r = |V (Jk−1)|.

Let H be a reduced (k, (r− 1)k + 1, g)-graph, with underlying tree T and edge-coloring φ. For each leaf

v of T , consider the full path P ending at v. By the pigeonhole principle, some r neighbors of v in H (via

augmenting edges) have the same color on their descending edges along P . Keep the augmenting edges from

v to one such set and delete the other augmenting edges. The resulting graph H ′ is a reduced (k, r, g)-graph.

Next replace each leaf v of H ′ with a copy of Jk−1; each vertex in the copy for v inherits exactly one

augmenting edge of H ′ from v. This is the graph Jk. The edge to v in T disappears; vertices at the level
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just before the leaves no longer have edges to children.

Any proper [k]-coloring f of V (T ) yields a unique f -path; it ends at some leaf v. Because it is an f -path,

the colors on the vertices match the colors on the descending edges. Let Q be the copy of Jk−1 corresponding

to v in Jk. By the construction of Jk, there is a fixed color c that appears on the neighbor in V (T ) of each

vertex in Q. Since Jk−1 is not (k − 1)-colorable, we cannot complete a proper k-coloring of Jk.

A cycle in one copy of Jk−1 has length at least g. For any other cycle C in Jk, contracting each copy

of Jk−1 to a single vertex yields a closed walk C ′ in H ′ using some augmenting edge. Since each vertex in

a copy of Jk−1 inherits only one augmenting edge, each augmenting edge is used only once in C ′. Hence as

in the proof of Lemma 3.3.3, C ′ contains a cycle in H ′. This cycle has length at least g, so C has length at

least g.

For the maximum average degree, consider a subgraph F , and let F ′ = F − V (T ). Being contained in

copies of Jk−1, the graph F ′ has average degree at most 2(k − 2). Augmenting edges add at most 1 to the

degree of each vertex of F ′ and hence at most 2 to the degree-sum in F for each vertex in F ′. Working

upward in T , each added vertex in F adds at most k−1 downward edges, which contributes at most 2(k−1)

to the degree-sum. The root may add k downward edges, but the lowest vertex added from T adds fewer

than k − 1. Thus the degree-sum is at most 2(k − 1) per vertex of F .

3.4.2 Choosability

A modification of the construction in Theorem 3.4.4 yields non-k-choosable bipartite graphs that are as

sparse as can be. As noted in Theorem 3.1.1, every bipartite graph with maximum average degree at most

2(k − 1) is k-choosable. Hence the graphs we construct in Theorem 3.1.2 with just one extra edge are

(k + 1)-choice-critical.

It is well known (since [27]) that a bipartite graph consisting of two even cycles sharing one vertex is not

2-choosable; indeed, it is 3-choice-critical.

Theorem 3.1.2. For k ≥ 2 and g ≥ 4, there is a bipartite graph Gk with girth at least g that is not

k-choosable even though every proper subgraph has average degree at most 2(k − 1).

Proof. We proceed by induction on k for even g. To count edges in subgraphs, we will orient Gk and count

edges by their tails. The orientation gives each vertex outdegree k−1 except a designated root vertex, which

has outdegree k, and every vertex will be reachable from the root. Thus Gk will have (k − 1) |V (Gk)| + 1

edges, and every proper subgraph will have smaller outdegree at some vertex and thus have average degree

at most 2(k − 1).
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LetG2 be the graph consisting of two g-cycles sharing one vertex, which is the root. OrientG2 consistently

along each of the two cycles. The desired properties hold.

For k ≥ 3, suppose that Gk−1 has all the desired properties. Let r = |V (Gk−1)| − 1, and let H ′ be a

reduced (k, r, 2g)-graph, with underlying tree T . We modify the bipartite graph H ′ slightly to guarantee that

Gk will be bipartite. Let (A,B) be the bipartition of Gk−1, with A containing the root, and let a = |A| − 1

and b = |B|. Each leaf v in T has a+ b incident augmenting edges. Let A(v) denote some set of a of these

edges. For the remaining b augmenting edges incident to v, move their endpoints in the tree one step closer

to v along the full path to v. Let B(v) denote this new set of b augmenting edges at v. Let H be the

resulting graph; H is a reduced (k, r, g)-graph except for not being bipartite.

Form Gk from H by adding a copy of Gk−1 for each leaf v of T , merging v with the root of Gk−1, with

each vertex of A in the copy of Gk−1 (other than the root) inheriting one edge of A(v) and each vertex of B

in the copy of Gk−1 inheriting one edge of B(v). Since the vertices of B have odd distance from v in Gk−1,

this guarantees that Gk is bipartite.

Designate the root of T as the root of Gk. Orient the edges of T away from the root, keep the orientation

guaranteed by the induction hypothesis on the copies of Gk−1, and orient the augmenting edges away from

the copies of Gk−1. Because H ′ is a reduced (k, r, 2g)-graph, every vertex has outdegree k − 1 except that

the root has outdegree k.

A cycle in a copy of Gk−1 has length at least g. Let C be a cycle in Gk that is not in Gk−1. Contracting

each copy of Gk−1 in G to a single vertex turns C into a closed walk C ′ in H. Since each vertex in a copy

of Gk−1 has only one augmenting edge, C ′ contains a cycle in H. This cycle has length at least g, so C has

length at least g.

Let L′ be an assignment of lists of size k − 1 to Gk−1 such that Gk−1 is not L′-colorable and none of

these lists intersects [k]. Form a list assignment L for Gk as follows. Put L(x) = [k] for each non-leaf vertex

x in V (T ). For each leaf v ∈ V (T ) and each vertex w of V (Gk−1), let wv denote the copy of w in the copy

of Gk−1 at v. Let P be the full path in T ending at v. Let L(wv) = L′(w)∪ {c}, where c is the color on the

edge of P descending from the neighbor of wv in V (P ). In particular, when w is the root, the added color

is the color on the edge of T reaching v.

Let f be a coloring of Gk with f(u) ∈ L(u) for u ∈ V (Gk). If f is proper on T , then since f(x) ∈ [k] for

x ∈ V (T ), there is a unique f -path P in T . In the copy of Gk−1 for the leaf v at the end of P , the color c

that was added to each list is now forbidden in a proper coloring, leaving the list L′(w) at wv. By the choice

of L′, a proper coloring cannot be completed from these lists.
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3.4.3 Restricted list colorings

As described in the introduction, we now strengthen Theorem 3.1.2 by proving non-choosability results for

restricted list assignments. We consider both restrictions on the intersections of adjacent lists and restrictions

on the size of the union of the lists.

Every graph is L-colorable (by choosing arbitrarily) when adjacent vertices have disjoint lists, but L-

colorability may fail when adjacent lists are almost disjoint. List coloring with intersection constraints

on adjacent lists has been studied by Kratochv́ıl, Tuza, and Voigt [50] and by Füredi, Kostochka, and

Kumbhat [30]. We next strengthen Theorem 3.1.2 by showing that our graph Gk fails to be L-colorable for

a particular k-list assignment L such that |L(u) ∩ L(v)| = 1 for every edge uv.

Theorem 3.4.5. Fix g ∈ N with g ≡ 4 (mod 6). For k ≥ 2, the bipartite graph Gk with girth at least g

constructed in Theorem 3.1.2 admits a k-list assignment L such that Gk is not L-colorable despite satisfying

|L(u) ∩ L(v)| = 1 for all uv ∈ E(Gk).

Proof. For k = 2, let u be the common vertex of the two cycles in G2. Set L(u) = {1, 2}. On each of the

two cycles, the number of remaining vertices is a multiple of 3. Along one cycle, rotate through the lists

{1, 3}, {3, 4}, {4, 1}. This forces color 1 onto a neighbor of u. On the other cycle substitute 2 for 1, forcing

color 2 onto a neighbor of u. Now u cannot be colored. Adjacent lists share one color.

For k ≥ 3, let T be the underlying tree in Gk. Color the edges of T by distinct colors. For a non-leaf

vertex x in T , let L(x) be the set of colors on the edges incident to x; thus lists adjacent via edges of T have

one common color.

By the induction hypothesis, there is a (k − 1)-list assignment L′ on Gk−1 such that Gk−1 is not L′-

colorable. For each leaf v ∈ V (T ), let L′v be a copy of this assignment indexing the colors by v, so that the

colors used for the copy G′ of Gk−1 at v will not be used anywhere else. For each vertex w of V (Gk−1)

other than the root, let wv denote the copy of w in G′. Let P be the full path in T ending at v. Let x

be the neighbor of wv in V (P ), and let cx be the color of the edge in P descending from x along P . Let

L(wv) = L′v(w) ∪ {cx}. Let L(v) = L′v(v) ∪ {cv}, where cv is the color of the edge incident to v in T .

For any proper coloring f of T chosen from these lists, there is a unique full path Q such that the color of

each non-leaf vertex is the color of the edge to its child on Q, constructed from the root: that is, an f -path.

Let v be the leaf reached by Q. The parent of v has been given color cv, so that color cannot be used at

v. Similarly, for each other vertex in the copy of Gk−1 at v, the added color in its list has been used on its

neighbor in T . Finding an L-coloring of Gk thus requires finding an L′-coloring of Gk−1, which does not

exist.
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Perhaps surprisingly, for bipartite graphs larger intersections than in Theorem 3.4.5 also guarantee L-

colorability, giving the sharpness of Theorem 3.4.5 in another way.

Proposition 3.4.6. If G is a bipartite graph, and L is a list assignment such that any two adjacent lists

have at least two common elements (the lists may have any sizes at least 2), then G is L-colorable.

Proof. Let X and Y be the parts of G, and index the colors in
⋃
v∈V (G) L(v) as c1, . . . , ct. Color each vertex

of X with the highest-indexed color in its list and each vertex of Y with the lowest-indexed color in its list. If

two adjacent vertices receive the same color, then it is the only common color in their lists, a contradiction.

Hence the coloring is proper.

When G is j-colorable but not k-choosable, one may ask how large the union U of the lists must be in a

k-list assignment L such that G is not L-colorable. Trivially |U | > j is needed. In fact, one needs somewhat

more, which reduces to 2k − 1 when j = 2.

Proposition 3.4.7. Let G be a j-colorable graph, with j ≤ k. If L is a k-list assignment on G such that

|⋃v∈V (G) L(v)| ≤ j(k−1)
j−1 , then G is L-colorable. Furthermore, the bound is sharp.

Proof. Let f be a proper j-coloring of G. Let U =
⋃
v∈V (G) L(v). Split U into disjoint sets U1, . . . , Uj , with

the smallest having size b|U |/jc. Since |U | ≤ j(k−1)
j−1 , the largest j − 1 of the sets together have size at most

k− 1. (Note that
⌊
j(k−1)
j−1

⌋
−
⌊
k−1
j−1

⌋
= k− 1, and when |U | <

⌊
j(k−1)
j−1

⌋
the conclusion becomes easier.) Thus

each k-list L(v) intersects each Ui. Hence each vertex v can choose a color from L(v)∩Uf(v). Such a coloring

is proper.

For sharpness, consider a universe U of colors, and let G be a complete j-partite graph with
(|U |
k

)
vertices

in each part. Assign lists by letting L give each k-subset of U as a list to one vertex in each part. In an

L-coloring, each color can be chosen in only one part. Since a color must be chosen from every vertex, on

each part at least |U | − (k − 1) colors must be chosen. Hence j(|U | − k + 1) colors must be chosen. Thus

L-colorability requires j(|U | − k + 1) ≤ |U |, which is precisely the inequality |U | ≤ j(k−1)
j−1 .

The sharpness examples in Proposition 3.4.7 are very dense and have small cycles. The special case j = 2

states that a bipartite graph is L-colorable when L is a k-list assignment with |⋃v∈V (G) L(v)| ≤ 2k − 2.

This condition forces any two lists to have at least two common elements, so Proposition 3.4.6 is stronger

than Proposition 3.4.7 for the case j = 2. Nevertheless, we show next that Proposition 3.4.7 remains sharp

when j = 2 even for sparse graphs with large girth having just one extra edge beyond where Theorem 3.1.1

applies.
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Theorem 3.4.8. Fix k, g ∈ N with g even and k ≥ 2. There is a bipartite graph Hk and a k-list assignment

L on Hk such that Hk is not L-colorable, even though |⋃v∈V (Hk)
L(v)| = 2k− 1 and Hk has girth at least g

with each proper subgraph having average degree at most 2(k − 1).

Proof. We use induction on k. For k = 2, let H2 be G2, the graph consisting of two g-cycles sharing one

vertex u. Set L(u) = {1, 2}. On one cycle, use lists {1, 3} and {1, 2} on the neighbors of u and {2, 3} on

the rest of the cycle. Since the number of copies of {2, 3} is odd, color 1 must be chosen on a neighbor of

u. Interchanging 1 and 2 yields the lists on the other cycle, forcing a neighbor of u to have color 2. Now u

cannot be colored. The union of the lists has three colors.

For k ≥ 3, let r = |V (Hk−1)| − 1, and let a + 1 be the number of vertices of Hk−1 in the partite set

containing the root; note that a < r. We construct Hk with a list assignment L. Consider a reduced

(k, (r − 1)k, 2g)-graph with underlying tree T and corresponding proper [k]-edge-coloring of T . The root of

T will be the root of Hk.

For each leaf v of T , proceed as follows. Let P be the full path to v in T . Since v has more than (a− 1)k

augmenting edges, by the pigeonhole principle there are a such edges for which the edge along P descending

from the neighbor of v has the same color; call it c. Move the other endpoints of all (r − 1)k − a other

augmenting edges at v one step closer to v along P , as in the proof of Theorem 3.1.2. Since (r − 1)k − a >

(r − a− 1)k, by the pigeonhole principle there are r − a of these remaining edges for which the edge along

P descending from the neighbor of v has the same color; call it c′. Discard all augmenting edges not chosen

in these two steps. After doing this for each leaf v of T , the result is a reduced (k, r, g)-graph except for not

being bipartite.

For each leaf v of T , add a copy H ′v of Hk−1, merging its root with v and letting each non-root vertex

inherit one of the augmenting edges at v, with the vertices in the part opposite v inheriting the r − a edges

whose other endpoints were moved closer to v. Let Hk be the resulting graph; it is bipartite, and the density

bound for its subgraphs is computed as for Gk in Theorem 3.1.2. Arguing as for Gk also shows that Hk has

girth at least g.

Next we produce the list assignment L. Assign list [k] to each non-leaf vertex of T . By the induction

hypothesis, for each leaf v of T there is a (k − 1)-list assignment L′v on H ′ whose lists are contained in a

(2k − 3)-set. For this (2k − 3)-set use [2k − 1] − {c, c′}, discarding any additional color if c′ = c. Also, let

cv be the color of the edge reaching v in T . Since 2k − 3 > k − 1 when k > 2, we may permute the colors

within L′v to ensure that L′ does not assign color cv to v.

To define lists, form L(v) by adding cv to the list given by L′v to the root. For w ∈ V (Hk−1) other than

the root, let wv be the copy of w in H ′v. Set L(wv) = L′v(w) ∪ {c} if w is in the same partite set as the root
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of Hk−1, and otherwise set L(wv) = L′v(w) ∪ {c′}.

It remains to show that Hk is not L-colorable. Let f be a proper coloring chosen from L. Since the

list on each non-leaf vertex of T is [k] and the coloring is proper, there is a unique f -path Q leading to a

particular leaf v. Since the color of each non-leaf vertex on Q agrees with the color on the edge descending

from it along Q, the color added to the list of each vertex wv in the copy of Hk−1 at v has been used on its

neighbor in T and is now forbidden from use on wv. Finding an L-coloring of Hk thus requires finding an

L′-coloring of Hk−1, which does not exist.

3.5 The height of the trees in Theorem 3.1.3

The underlying trees in our construction of (d, r, g)-graphs are astoundingly tall; their height in terms of g

is a version of the Ackermann function. Here we show that even for r = 1 and d = 2, they must be very tall.

In the discussion below all logarithms are in base 2.

Theorem 3.5.1. If G is a (2, 1, g)-graph with height m, then g ≤ (4 + o(1)) log(log∗m).

Proof. For simplicity, we omit floor and ceiling signs; they are not crucial.

For g ∈ N, let q = 2g/4−2. Let k−1 = −1, k0 = g − 1, and for 0 ≤ i < r set

ki+1 = 2(ki−g/2+4)/2 + ki.

This yields g ≈ 4 log(log∗ kq). Let G be a 1-augmented binary tree of height m, and let g be the least integer

such that kq ≥ m. We will find in G a cycle of length at most g.

Define integer intervals I0, . . . , Iq by Ij = [m− kj ,m− kj−1− 1] (deleting any negative elements). These

intervals group the levels in T . The number of levels in Ij is at most kj −kj−1, the value of which is roughly

a tower of height j. However, since we only choose g so that kq ≥ m, the least j with kj ≥ m may be less

than q, so the intervals toward the end of the list may be empty.

Let the mate of a leaf of T be the other endpoint of its augmenting edge in G. Let the type of the leaf be

j if the level of its mate lies in Ij . We may assume that no leaf has type 0, since otherwise G has a cycle of

length at most g. With each leaf having type in the integer interval [1, q], some type is assigned to at least

1/q of the leaves of G. Fix such a type t.

By averaging, for some vertex u at level m−kt−1−1 at least 1/q of the leaves under u have type t. Let C

denote the set of all leaves of type t under u. Let v be the ancestor of u at level m−kt (or level 0 if m < kt).

For each leaf x ∈ C, the mate of x is on the u, v-path P in T . Note that |V (P )| ≤ kt−kt−1 = 2(kt−1−g/2+4)/2.
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The vertex u has 2kt−1−g/4+2 descendants at level m− (g/4− 1); call this set D. The subtree rooted at

any y ∈ D has 2q leaves. Call y full if at least two leaves of T under y belong to C. Let β|D| be the number

of full vertices in D. The number of leaves under u is 2q|D|. Allowing all leaves under full vertices of D and

at most one leaf under non-full vertices, the number of leaves in C under u is at most (2qβ + 1)|D|. The

fraction of leaves under u in C is thus at most β+ 1
2q , but by the choice of u it is at least 1/q. Thus β ≥ 1

2q .

Hence at least 2kt−1−g/2+3 vertices of D are full. Under each full vertex of D some two leaves v and v′ have

mates in P . If v and v′ have the same mate x, then x completes a cycle of length at most 2 + 2(g/4− 1) < g

with the path joining v and v′ in T . Otherwise, each full vertex of D has two leaves under it whose mates

are distinct vertices of P . Since the number of full vertices of D exceeds
(|V (P )|

2

)
, by the pigeonhole principle

some two vertices y, y′ ∈ D yield the same pair x, x′ ∈ V (P ) of mates of two leaves under them. The paths

joining those leaves in the subtrees under y and y′ and the edges from those leaves to x and x′ form a cycle

of length at most 2(g/4− 1) + 2(g/4− 1) + 4, which equals g.
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Chapter 4

Coloring graph powers from lists

The results of this chapter are joint with Nicholas Kosar, Sarka Petrickova, and Elyse Yeager and appear

in [43].

4.1 Introduction

A graph is chromatic-choosable if ch(G) = χ(G). The kth power of a graph G, denoted by Gk, is the graph

on the same vertex set as G such that uv is an edge if and only if the distance from u to v in G is at most

k. To subdivide an edge uv of a graph is to replace uv by a u, v-path whose internal vertices do not appear

in the original graph.

Perhaps the most important open question in list-coloring is the List (Edge) Coloring Conjecture. It first

appeared in print in a 1985 paper of Bollobás and Harris [12], but it seems (see [38] and [34]) to have been

formulated also by Albertson, Collins, and Gupta (motivated by Erdős, Rubin, and Taylor [27]), as well as

by Vizing as early as 1975.

Conjecture 4.1.1 (List Edge-Coloring Conjecture (LECC)). L(G) is chromatic-choosable for every graph

G.

A total coloring of a graph G (with colors from a set X) is a function f : V (G) ∪ E(G) → X; a total

coloring is proper if every adjacent pair of vertices receive different colors, every adjacent pair of edges receive

different colors, and every pair of a vertex and incident edge receive different colors. The total graph of G,

denoted T (G), is the square of the graph obtained by subdividing each edge of G into a path of length two.

A proper total coloring of G is equivalent to a proper coloring of T (G).

Conjecture 4.1.2 (List Total Coloring Conjecture (LTCC) [13]). T (G) is chromatic-choosable for every

graph G.

Since T (G) is the square of a graph, a stronger conjecture is that the square of any graph is chromatic-

choosable.
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Conjecture 4.1.3 (List Square Coloring Conjecture (LSCC) [47]). G2 is chromatic-choosable for every

graph G.

However, the LSCC was disproved by Kim and Park [40], who constructed a family of graphs G with

χ(G2) unbounded and ch(G2) ≥ cχ(G2) logχ(G2). Xuding Zhu asked whether there is any k such that all

kth powers are chromatic-choosable. We give a negative answer to Zhu’s question, with a bound on ch(Gk)

that matches that of Kim and Park for k = 2.

Theorem 4.3.4. There is a positive constant c such that for every k ∈ N, there is an infinite family of

graphs G with χ(Gk) unbounded and

ch(Gk) ≥ cχ(Gk) logχ(Gk).

Kim, Kwon, and Park arrived at a similar result in [39]. They found, for each k, an infinite family of

graphs G whose kth powers satisfy ch(Gk) ≥ 10
9 χ(Gk)− 1.

Letting fk(m) = max{ch(Gk) : χ(Gk) = m}, Theorem 4.3.4 says that fk(m) ≥ cm logm.

For upper bounds, it is not hard to see that ch(L(G)) ≤ 2χ(L(G))− 1 and ch(T (G)) ≤ 2χ(T (G))− 1 for

every graph G. Kwon (see [54]) observed that ch(G2) ≤ χ(G2)2 for any G; that is, f2(m) < m2. We extend

this observation to larger powers in Section 4.4.

Theorem 4.4.1. Let k > 1. If k is even, then fk(m) < m2. If k is odd, then fk(m) < m3.

Question 4.1.4. What is the correct order of magnitude of fk(m)? Does it depend on k?

4.2 Construction

The example of Kim and Park [40] for k = 2 is based on complete sets of mutually orthogonal latin squares.

We will use this structure to find examples for all k, but we find the language of affine planes to be more

convenient. An affine plane is a finite geometry; it consists of a set of points P and a set of lines L, and is

subject to a set of axioms. In particular, we have the following properties (see [18] for instance) for some

integer n (called the order of the affine plane):

• Each line is a set of n points.

• For each pair of points, there is a unique line containing them.

• The set of lines admits a partition L0, L1, . . . , Ln, where each Li is called a parallel class of lines, such

that
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– Two lines in the same parallel class do not intersect.

– Two lines in different parallel classes intersect in exactly one point.

• Such a plane exists whenever n is a (positive) power of a prime. (Figure 4.1 shows the four parallel

classes of lines in the affine plane of order 3.)

L0 L1 L2
L3

Figure 4.1: The four parallel classes of lines in the affine plane of order 3.

Fix a prime power n and an affine plane (P,L) of order n.

Form the bipartite graph H with parts P and B = L − L0, with p` ∈ E(H) for p ∈ P and ` ∈ B if

and only if p ∈ `. Let a1, . . . , an denote the lines of L0. Consider the refinement V ′ of the bipartition of H

obtained by partitioning P into a1, . . . , an and B into L1, . . . , Ln. Note that H[ai, Lj ] is a matching for each

i and j. In Figure 4.2, the graph H is shown with n = 3. Edges are drawn differently according to which

parallel class their line-endpoint belongs to, and the parts of V ′ are indicated. Note that by removing the

lines of L0, we have point-line duality as in a projective plane.

p11 p12 p13 p21 p22 p23 p31 p32 p33

l11 l12 l13 l21 l22 l23 l31 l32 l33

L1 L2 L3

Figure 4.2: The graph H, here with n = 3.

The graph H (or rather, the family of graphs obtained by varying n over prime powers) proves the case

k = 3 of Theorem 4.3.4. In fact, H3 is complete multipartite with parts V ′, which we show now as a warmup

to the main proof of the theorem. Consider two points from different lines of L0; they lie on a common

line that is not in L0, and this line is a common neighbor in H of the two points. Consider two lines from

different parallel classes; they intersect in some point, and this point is a common neighbor in H of the two
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lines. Consider a point p and a line `. Possibly p is on ` and they are adjacent already in H. Otherwise,

consider any line a of L0 that does not contain p, and let q be the unique point of a ∩ `. Note that p and q

are on some common line b not in L0. The path pbqa in H shows that a` is an edge of H3. Consider two

lines in the same parallel class (but not L0). They do not share a common point, and hence they have no

common neighbor in H; since H is bipartite, the distance between them is at least 4. Consider two points

on the same line of L0; they do not have a common neighbor in H, and again since H is bipartite they are

not adjacent in H3.

The graph obtained by subdividing every edge of H into a path of length m proves Theorem 4.3.4 for

k = 4m − 1, and so whenever k ≡ 3 (mod 4) we are done. To prove the theorem for other k, we need to

modify the graph a bit more.

Let k ≥ 2. Subdivide the edges of H into paths: edges incident to L1 are subdivided into paths of

length k, while edges not incident to L1 are subdivided into paths of length k + 1. For an edge p` ∈ E(H),

denote the vertices along the subdivision path as p = (p`)0, (p`)1, (p`)2, . . . . If ` ∈ L1, then (p`)k = `, and

if ` /∈ L1, then (p`)k+1 = `. For a vertex (p`)i, say its level is i, its point is p, and its line is ` (levels are

well-defined, and points and lines of vertices of degree 2 are well-defined). Form the graph G by, for each

` ∈ ⋃2≤i≤n Li, adding edges to make the neighborhood of ` a clique and then deleting `. For each i, j ∈ [n]

and m ∈ {0, . . . , k}, let Vi,j,m = {(p`)m : p` ∈ E(H), p ∈ ai, ` ∈ Lj}; then {Vi,j,m : i, j ∈ [n],m ∈ {0, . . . , k}}

is a partition of V (G) into sets of size n, which we call V. In Figure 4.3, the graph G is shown. Again we

use n = 3, and here the parts of V are indicated.

p11 p12 p13 p21 p22 p23 p31 p32 p33

l11 l12 l13

L1

...
...

...

0

1

k − 1

k

2

level

Figure 4.3: The graph G when n = 3.
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4.3 Proof of Theorem 4.3.4

Lemma 4.3.1. G4k is multipartite with partition V.

Proof. For each pair of vertices in the same part of V, we will show that any path joining those vertices has

length at least 4k + 1.

Let p and q be two points in some ai. Any p, q-path leaves p and first reaches a branch vertex of the

form (p`)k. If ` ∈ L1, then the path must continue from (p`)k to p′ for some p′ not on ai; in this case, the

part of the path so far described has length 2k. If ` /∈ L1, then the path must continue from (p`)k to (p′`)k

for some p′ not on ai before again leaving level k, then reaches p′; in this case, the part of the path so far

described has length 2k + 1. Since p′ is not on ai, p
′ and q are on a common line `′ ∈ ⋃ni=1 Li. If `′ ∈ L1,

then the shortest path from p′ to q passes through `′ and has length 2k. If `′ ∈ ⋃ni=2 Li, then the shortest

path from p′ to q passes through (p′`′)k and (q`′)k, and has length 2k + 1. Now, it cannot be that both

`, `′ ∈ L1, because p′ is in both ` and `′. So our path has length at least 4k + 1.

Let `1, `2 ∈ L1. Any `1, `2-path leaves `1 and first reaches a branch vertex p, and it last leaves a branch

vertex q before reaching `2. If p and q are in some ai, then since dist(p, q) ≥ 4k + 1 the path from `1 to `2

would have length at least 4k + 1. Otherwise, p and q are on a common line not in L0 or L1, say `. The

shortest path between p and q contains (p`)k and (q`)k and has length 2k + 1. Hence any `1, `2-path has

length at least 4k + 1.

Let (p`1)k, (q`2)k be two vertices in the same part other than L1; that is, p and q are distinct points on

some ai, and `1 and `2 are distinct lines in the same parallel line class. Consider a path joining these two

vertices. The neighbors of the endpoints on this path are either in level k or k − 1. If both neighbors are

in level k − 1, then consider the branch vertices u, v in the interior of the path that appear closest to the

endpoints of the path. (That is, the part of the path between (p`1)k and u consists entirely of vertices of

degree 2, and the part of the path between v and (q`2)k consists entirely of vertices of degree 2.) If u and

v are both in level 0, then they are at distance at least 4k + 1 and so the path has length 4k + 1. So we

may assume, up to symmetry, that the neighbor of (p`1)k on the path is in level k. The path from (p`1)k

eventually leaves level k; let (p′`1)k be the last vertex before the path leaves level k. Since p, q ∈ ai and

p, p′ ∈ `1, we have p′ 6= q. Hence the shortest path from (p′`1)k to (q`2)k has length at least 4k, and thus

the path from (p`1)k to (q`2)k has length at least 4k + 1.

Finally, consider two vertices of degree 2 in the same part, say x and y, and consider an x, y-path. Let u

and v be the branch vertices closest to x and y (respectively) along the path. If u and v are both in level 0

or both in level k, then the part of the path joining u and v already has length at least 4k + 1. Otherwise,
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one of u and v is in level 0 and the other in level k. Let x = (p`1)m and y = (q`2)m; we may assume up to

symmetry that u = p and v = (q`2)k. Since x and y are in the same part of V, we have that p and q are

distinct points in some ai and that `1 and `2 are distinct lines in some Lj . The path must continue from

x through p to some vertex in level k, say (p`3)k. At most one of `2 and `3 is in L1, so the distance from

(p`3)k to (q`2)k is at least 2k + 1; hence the length of the path is at least 4k + 1.

Lemma 4.3.2. The subgraph of G4k induced by the vertices in levels 0 through k−1 is complete multipartite

with partition V restricted to those levels.

Proof. It remains to show that for every pair of vertices in different parts of V (and in levels 0 through k−1)

are joined by a path of length at most 4k.

Consider points p and q on different lines in L0. They are on a common line ` ∈ ⋃ni=1 Li. If ` ∈ L1, then

there is a p, q-path through ` of length 2k. If ` /∈ L1, then there is a p, q-path through (p`)k and (q`)k of

length 2k + 1.

Consider two vertices x and y in different parts at level i, where 1 ≤ i ≤ k − 1. Let x = (p`1)i and

y = (q`2)i. Either p and q are on different lines in L0, or `1 and `2 are from different parallel classes. If p

and q are from different lines in L0, then let ` be the line containing both p and q. There is an x, y-path

through p, (p`)k, (q`)k, and q with length at most 2i+2k+1 ≤ 4k−1. If `1 and `2 are from different parallel

classes, then let p′ be their intersection point. There is an x, y-path through (p`1)k, (p′`1)k, p′, (p′`2)k, and

(q`2)k with length at most 2(k − i) + 2 + 2k = 4k − 2i+ 2 ≤ 4k.

Finally, consider two vertices x and y in levels i and j (respectively), where 0 ≤ i < j < k. Say x = (p`1)i

and y = (q`2)j . If `2 ∈ L1, then let p′ be a point in `2 such that p and p′ are not on the same line of L0,

and let `′ be the line containing p and p′. There is an x, y-path through p, (p`′)k, (p′`′)k, p′, and `2 with

length at most i+ k + 1 + k + k + j ≤ 4k. If `2 /∈ L1, then let `′ be a line in L1 containing p, and let p′ be

the intersection point of `′ and `2. There is an x, y-path through p, `′, p′, (p′`2)k, and (q`2)k with length at

most i+ k + k + k + 1 + j ≤ 4k.

We will use the following result of Alon.

Lemma 4.3.3 ([1]). Let Kr∗s denote the complete r-partite graph with each part of size s. There are two

constants, d1 and d2, such that

d1r log s ≤ ch(Kr∗s) ≤ d2r log s.

Everything is now in place to complete the proof.
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Theorem 4.3.4. There is a positive constant c such that for every k ∈ N, there is an infinite family of

graphs G with χ(Gk) unbounded and

ch(Gk) ≥ cχ(Gk) logχ(Gk).

Proof. Since G4k is multipartite on kn2 + 1 parts, χ(G4k) ≤ kn2 + 1, and hence n ≥
√

(χ(G4k)− 1)/k.

Since G4k contains a complete multipartite subgraph with (k − 1)n2 parts of size n, we have from

Lemma 4.3.3 that

ch(G4k) ≥ d1(k − 1)n2 log n

≥ d1
k − 1

k

(
χ(G4k)− 1

)
log

√
χ(G4k)− 1

k

=
d1
2

k − 1

k

(
χ(G4k)− 1

) (
log(χ(G4k)− 1)− log k

)
≥ d1

4

(
χ(G4k)− 1

) (
log(χ(G4k)− 1)− log k

)
.

Taking n large enough makes χ(G4k) as large as we like, and so by taking a constant c just smaller than

d1/4 and taking n sufficiently large we obtain

ch(G4k) ≥ cχ(G4k) logχ(G4k).

The family {G4} is an infinite family of graphs whose kth powers have the desired properties.

4.4 Upper bound

We now provide an upper bound on ch(Gk) in terms of χ(Gk). Recall that

fk(m) = max{ch(Gk) : χ(Gk) = m}.

Theorem 4.4.1. Let k > 1. If k is even, then fk(m) < m2. If k is odd, then fk(m) < m3.

When k is even, this follows from Kwon’s observation (see [54]) that it holds for k = 2: Kwon proved that

f2(m) < m2, i.e. ch(G2) < χ(G2)2 for every graph G. Since G2k = (Gk)2, we have that ch(G2k) < χ(G2k)2,

and so f2k(m) < m2.

When k is odd, we generalize Kwon’s argument and prove the following.
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Theorem 4.4.2. If k ≥ 3 and k is odd, then ch(Gk) ≤ ∆(G)χ(Gk)2 for every graph G.

Theorem 4.4.1 follows by noting that ∆(G) < ω(Gk) ≤ χ(Gk) when k > 1.

Proof of Theorem 4.4.2. Let x be a vertex with maximum degree in Gk. Let A be the set of vertices

at distance dk/2e from x in G. Let B(v, r) denote the ball of radius r centered at v in G. Note that

∆(Gk) = max{|B(v, k)| − 1: v ∈ V (G)} and ω(Gk) ≥ max{|B(v, bk/2c)| : v ∈ V (G)}.

x

0

1

. . .

. . . ⌊
k
2

⌋

S

⌈
k
2

⌉

A

. . .

. . .

k

Figure 4.4: Covering a ball of radius k by balls of radius bk/2c.

Since k is odd (and bigger than 1), we have

B(x, k) \B(x, bk/2c) ⊆
⋃
y∈A

B(y, bk/2c). (4.1)

See Figure 4.4. Let S be the set of vertices at distance bk/2c from x in G. The set S is a clique in Gk, so

|S| ≤ ω(Gk). Also, A is contained in the neighborhood of S, and each vertex in S has at least one neighbor

outside of A (closer to x). Hence |A| ≤ (∆(G)− 1)|S| ≤ (∆(G)− 1)ω(Gk). Putting everything together, we
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have

ch(Gk) ≤ 1 + ∆(Gk) (degeneracy)

= |B(x, k)|

≤ |B(x, bk/2c)|+
∑
y∈A
|B(y, bk/2c)| (equation (4.1))

≤ (1 + |A|) max
v∈V (G)

|B(v, bk/2c)| (bounding terms in sum)

≤
(
1 + (∆(G)− 1)ω(Gk)

)
ω(Gk)

≤ ∆(G)ω(Gk)2

≤ ∆(G)χ(Gk)2.

4.5 Remark

Using constructions similar to that of Section 4.2, we found infinite families of graphs G whose kth powers

are complete multipartite graphs with roughly kn2/4 parts each of size n, but only when k 6≡ 0 mod 4. The

construction presented here is messier and does not yield complete multipartite powers, but it proves the

theorem for all values of k simultaneously.
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Chapter 5

Hypergraph degree sequences and
codegree functions

5.1 Introduction

The degree sequence of a (hyper)graph is the list of its vertex degrees, usually taken in nonincreasing order.

A sequence of integers is called k-graphic if it is the degree sequence of some k-uniform hypergraph, and

we call such a hypergraph a realization of the sequence. The question of when a given sequence is the

degree sequence of some (simple) graph is well-understood. The same question for k-uniform hypergraphs

for k ≥ 3 is less well understood. Dewdney [19] provided a characterization, but it does not provide an

efficient algorithm.

Theorem 5.1.1 (Dewdney [19]). Let π be a nonincreasing sequence of nonnegative integers, say (d1, . . . , dn).

π is k-graphic if and only if there exists a nonincreasing sequence π′ of n − 1 nonnegative integers, say

(d′2, . . . , d
′
n), such that

• π′ is (k − 1)-graphic,

•
n∑
i=2

d′i = (k − 1)d1, and

• π′′ = (d2 − d′2, . . . , dn − d′n) is k-graphic.

Havel and Hakimi provided one efficient characterization of graphic sequences.

Theorem 5.1.2 (Havel [37], Hakimi [35]). The nonincreasing sequence d0, d1, . . . , dn is graphic if and only

if the sequence d1 − 1, . . . , dd0 − 1, dd0+1, . . . , dn is graphic.

The proof hinges on the notion of degree-preserving operations on graphs. In particular, a 2-switch is an

operation that deletes two edges from a graph and adds two new edges in such a way that vertex degrees

are preserved. Fulkerson, Hoffman, and McAndrew [29] proved that the space of realizations of a graphic

sequence is connected via 2-switches.

In Section 5.2 we discuss analogues of the 2-switch for hypergraph degree sequences; in particular, we

show that certain small families of switches are insufficient to connect realizations of a given graphic sequence.
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In Section 5.3, we consider analogues of the 2-switch for hypergraph codegree functions: the codegree

function of a k-uniform hypergraph is the function that assigns to each (k − 1)-set its degree. The results

there lead us to results in combinatorial topology.

A triangulation of a surface is an embedding of a multigraph in the surface such that each face is bounded

by a triangle. A strict triangulation is a triangulation by a simple graph. (This terminology is not universal

in the literature: often a strict triangulation is just called a triangulation, and other terms are used for

multigraph embeddings.)

Let Σ1 and Σ2 be triangulations of surfaces. Suppose there is some triangulation of a disk S that appears

in both Σ1 and Σ2; formally, let S1 ⊆ Σ1 and S2 ⊆ Σ2 with isomorphisms of triangulations f : S → S1 and

g : S → S2. We define the connected sum of Σ1 and Σ2 along S1, S2 to be the triangulation (of a possibly

new surface) obtained by deleting the interior of Si from Σi for i ∈ {1, 2} and gluing the resulting boundaries

together according to g ◦ f−1.

Let ∆b(S
2) denote the family of triangulations of the sphere that are bipartite. Any connected sum of

two triangulations with bipartite duals is again a triangulation with bipartite dual: choose 2-colorings of Σ1

and Σ2 so that the colorings on S1 and S2 disagree; the resulting coloring of the connected sum is proper.

If the two original triangulations were sphere triangulations, then so is their connected sum: deleting the

interior of Si from Σi results in a disk, and gluing them along their boundary circles forms a sphere. Let O

denote the family of triangulations of the sphere defined inductively as follows: the octahedron is in O, and

if Σ is in O, then so is any connected sum of Σ with the octahedron. We have that O ⊆ ∆b(S
2). We prove

that in fact O = ∆b(S
2).

Theorem 5.1.3. Every triangulation of the sphere with bipartite dual can be obtained from the octahedron

by connected sums with octahedra. A similar result holds for strict triangulations.

In Section 5.4, we interpret graphicality as an integer program and explore the fractional relaxation of

that program. In particular, when TONCAS (“The Obvious Necessary Conditions are Also Sufficient”)

theorems like the Erdős-Gallai Theorem exist, we show that the feasibility of the fractional relaxation is

equivalent to feasibility of the integer program.

Theorem 5.1.4 (Erdős, Gallai [25]). Let π : d1 ≥ · · · ≥ dn be such that
∑n
i=1 di is even. Then π is graphic

if and only if, for every t,
t∑
i=1

di ≤ 2

(
t

2

)
+

n∑
i=t+1

di.
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5.2 Edge exchanges for degree sequences

The results of this section are joint with Sarah Behrens, Catherine Erbes, Michael Ferrara, Stephen Hartke,

Hannah Spinoza, and Charles Tomlinson and appear in [8].

An edge exchange is any operation that deletes a set of edges in a k-realization of π and replaces them

with another set of edges, while preserving the original vertex degrees; we allow multiple edges to arise in

this operation. When i edges are removed, to preserve degrees we must add i edges, and we call this an

i-exchange. When we require that the resulting hypergraph have no multiple edges, we call the operation an

i-switch. The 2-switch operation has been used to prove many results about graphic sequences; for examples

see [6, 15, 17, 28].

Define Mk(π) to be the set of k-uniform multihypergraphs that realize a sequence π, and let Sk(π) ⊆

Mk(π) be the set of simple k-realizations of π. Let F ⊆Mk(π), and let Q be a collection of edge exchanges

that is closed under reversing exchanges. Let G(F ,Q) be the graph whose vertices are the elements of F ,

with an edge between vertices H1 and H2 if and only if H1 can be obtained from H2 by an edge exchange

in Q. (The symmetry condition imposed on Q permits us to define G(F ,Q) as an undirected graph.)

For a positive integer i, let Ei be the set consisting of all j-exchanges for all j with j ≤ i. (The uniformity

of the hypergraphs under consideration are left implicit.) Fulkerson, Hoffman, and McAndrew [29] showed

that given any pair of realizations of a graphic sequence, one can be obtained from the other by a sequence of

2-switches. This result simply says that G(S2(π), E2) is connected. Kocay and Li [42] proved a similar result

for 3-uniform hypergraphs, namely that any pair of 3-uniform hypergraphs with the same degree sequence

can be transformed into each other using 2-exchanges. Their proof implies that G(M3(π), E3) is connected,

but says nothing of G(S3(π), E3) since they do not restrict to 2-switches.

In [8], we extended the result of Kocay and Li to arbitrary k ≥ 3: If π is any sequence of nonnegative

integers with a k-uniform multihypergraph realization, then G(Mk(π), Ek) is connected.

Gabelman [31] gave an example of a 3-graphic sequence π with two simple realizations that cannot be

transformed into each other using only 2-switches. That is, G(S3(π), E2) is not connected. We extend his

example to k ≥ 3, which shows we cannot replace Mk with Sk in the result of the previous paragraph.

Theorem 5.2.1. For each k ≥ 3 there is a k-graphic sequence π such that G(Sk(π), Ek−1) is not connected.

Specifically, there exist two realizations of π, neither of which admits a 2-switch (to a simple k-uniform

hypergraph); i.e., these realizations are isolated vertices in G(Sk(π), Ek−1).
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Proof. Consider the following matrix A of real numbers:

A =



x1,1 x1,2 . . . x1,k−1 −y1
x2,1 x2,2 . . . x2,k−1 −y2

...
...

. . .
...

...

xk−1,1 xk−1,2 . . . xk−1,k−1 −yk−1
−z1 −z2 . . . −zk−1 w


where

yj =

k−1∑
i=1

xj,i, zj =

k−1∑
i=1

xi,j , and w =
∑
i,j

xi,j .

We choose the terms xi,j so that if a set of k entries of the matrix sums to zero, then those entries must be

from a single row or column. This can be done by choosing {xi,j : i, j ∈ [k − 1]} to be linearly independent

over Q, or by choosing them to be distinct powers of some sufficiently small positive constant ε.

We form a hypergraph H on a set V of k2 vertices as follows. Weight each vertex with a different entry

of the matrix. (Let wt(v) denote the weight on the vertex v.) The edges of H are (1) the k-sets whose total

weight is positive and (2) the k-sets corresponding to the rows of A. By construction of the matrix A, the

only k-sets that have zero weight correspond to rows and columns. Thus the k-sets that are non-edges are

precisely those with negative weight and those that correspond to columns.

The degree sequence of H is not uniquely realizable, as the k-switch that adds the k-sets corresponding

to columns of A to the edge set while removing the edges corresponding to rows gives another realization.

However, we next show that we cannot apply an i-switch to H for any i smaller than k. (Thus H is an

isolated vertex in G(Sk(π), Ek−1).)

Note that in any edge exchange that replaces a set F1 of edges with a set F2 of nonedges,

∑
e∈F1

∑
v∈e

wt(v) =
∑
v∈V

(degF1
(v)) wt(v) =

∑
v∈V

(degF2
(v)) wt(v) =

∑
e∈F2

∑
v∈e

wt(v).

Since edges of F1 have nonnegative weight, the leftmost quantity is nonnegative; and since nonedges of F2

have nonpositive weight, the rightmost quantity is nonpositive. Thus each quantity is zero. Therefore the

edges of F1 must each have zero weight and thus correspond to rows of A, and the nonedges of F2 must each

have zero weight and correspond to columns of A. But no proper subset of edges corresponding to rows can

be swapped for a proper subset of nonedges corresponding to columns, because this does not maintain the

degree of every vertex. Hence |F1| ≥ k.
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This result immediately suggests the following question:

Question 5.2.2. What is the smallest cardinality of a collection Q such that G(Sk(π),Q) is connected for

every k-graphic sequence π?

Results for graphs suggest several different possible approaches. Is there a finite collection Q that works?

Would it be sufficient to add all possible k-switches? (I.e., is Ek sufficient?)

5.3 Edge exchanges for codegree functions

The results of this section are joint with Sarah Behrens and are based on [9].

5.3.1 Introduction

Recall that the codegree function of a k-uniform hypergraph is the function f :
(
V
k−1
)
→ N that assigns

to each (k − 1)-set its degree. (Again, this definition varies by author; see Section 1.4 for details.) The

codegree function of hypergraphs is another possible generalization of the degree sequence of graphs. Given

the codegree function, one can recover the degree of any set of at most k − 1 vertices, and in particular the

vertex degree sequence.

As discussed before, the 2-switch for ordinary graphs is an important concept. Here we seek an analogous

switch (or a set of switches) for the codegree function. We consider 3-uniform hypergraphs for now.

First, a few more topological definitions. A surface is a compact 2-dimensional manifold. (We will not

require that a surface is connected, so a disjoint union of surfaces will again be a surface.) A pseudosurface

is obtained from a surface by identifying finitely many points of a surface together into new points. A

triangulation of a (pseudo)surface is an embedding of a multigraph in the (pseudo)surface such that every

face is bounded by a triangle of the multigraph. A strict triangulation is a triangulation whose embedded

multigraph is a simple graph.

Suppose that two 3-uniform hypergraphs G and H have the same vertex set V , and that for every pair

of vertices u, v ∈ V , dG(u, v) = dH(u, v). (That is, G and H have the same codegree function.) Consider

the hypergraph G	H with vertex set V , edge set E(G)4E(H), and with edges from G labeled by +1 and

edges of H labeled with −1. We now show that G	H can be represented by a 2-colored triangulation Σ of

some surface. These triangulations may be embeddings of multigraphs. We will call vertices and edges in the

triangulation nodes and arcs (respectively) to distinguish them from vertices and edges of the hypergraph.

For each pair u, v ∈ V , since dG(u, v) = dH(u, v), we have that {u, v} appears in the same number of

+1 edges as −1 edges in G 	H. We will first construct a pseudosurface Σ′ from G 	H. The nodes of Σ′
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are the vertices of G (and H). For each pair of vertices u, v and each +1 edge e of G	H containing both

u and v, put an arc joining the nodes u and v, labeled by e. Then construct Σ′ by adding a disk for each

edge e of G 	 H, gluing along the three arcs of Σ′ that are labelled by e. In this way we have a surface

except that perhaps some nodes of Σ′ may be singular points. Let Σ be obtained from Σ′ by splitting these

neighorhoods and adding additional nodes as necessary.

Hence the set of all “2-colorable-triangulation switches” are sufficient to get from any realization of a

codegree function to any other. We will prove in Theorem 5.3.2 that the set of “sphere switches” can be

reduced to just those using an octahedron in the following sense. The octahedral operation acts locally on

G and H simultaneously and produces a pair of 3-uniform hypergraphs G′, H ′ that share the same codegree

function; however, G and G′ need not have the same codegree function. Theorem 5.3.2 says that if G and

H have the same codegree function and G 	H can be represented by a sphere (as above), then there is a

sequence of these octahedral operations that ends with G′ = H ′.

5.3.2 Other connections

Wagner [59] proved that any two triangulations of the sphere with the same number of vertices can be

transformed into one another by a sequence of diagonal flips (also called diagonal transformations, bistellar

flips, or Pachner moves depending on the context). See Figure 5.1. This has been extended to any surface

with several more specific results (c.f. [52]), and to arbitrary dimension [55].

Figure 5.1: The diagonal flip.

Triangulations of the sphere with bipartite duals (aside from that with just two faces) are precisely the

duals of the Barnette graphs, where the Barnette graphs are defined to be the bipartite cubic polyhedral

graphs. Barnette conjectured that these graphs are Hamiltonian [5]; there is some hope that a sufficiently

nice inductive definition of these graphs would yield an inductive proof of Barnette’s Conjecture. However,

the inductive construction we present seems to be insufficient for this cause.

Let Σ1 and Σ2 be triangulations of surfaces. Suppose there is some triangulation of a disk S that appears

in both Σ1 and Σ2; formally, let S1 ⊆ Σ1 and S2 ⊆ Σ2 with isomorphisms of triangulations f : S → S1 and

g : S → S2. We define the connected sum of Σ1 and Σ2 along S1, S2 to be the triangulation (of a possibly

new surface) obtained by deleting the interior of Si from Σi for i ∈ {1, 2} and gluing the resulting boundaries
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together according to g ◦ f−1.

The diagonal flip of Wagner is one kind of connected sum with a tetrahedron. The Pachner moves are

connected sums with the boundaries of k-dimensional simplices (appropriately defined for higher-dimensional

manifolds). For brevity, we say an embedding of a graph in a surface is 2-colorable if the dual graph is 2-

colorable. That is, the faces of the embedding can be 2-colored so that two faces that share an edge have

different colors.

Proposition 5.3.1. The connected sum of 2-colorable surfaces is also 2-colorable.

Proof. Take [2]-colorings of the faces of Σ1 and Σ2 such that the colorings disagree on S1 and S2. The

resulting coloring of the sum along S1, S2 is proper.

In particular, taking repeated connected sums with an octahedron preserves 2-colorability. Our main

theorems state that this generates all 2-colorable triangulations of the sphere.

To state our results precisely, let T (respectively ST ) be the graph whose nodes are the 2-colorable

triangulations (respectively strict triangulations) of the sphere, with two triangulations connected by an

edge if they can be obtained from one another by a connected sum with an octahedron.

Theorem 5.3.2. T is connected. Equivalently, every 2-colorable triangulation of the sphere can be obtained

from the empty complex by a sequence of connected sums with octahedra.

Theorem 5.3.3. ST is connected. Equivalently, every 2-colorable strict triangulation of the sphere can be

obtained from the empty complex by a sequence of connected sums with octahedra in such a way that after

each sum, the result is still a 2-colorable strict triangulation of the sphere.

In Section 5.3.4 we prove Theorem 5.3.2; in Section 5.3.5 we extend this proof to strict triangulations

to prove Theorem 5.3.3. We discuss some possible extensions (to other surfaces and higher dimension) in

Section 5.3.7.

Inductive definitions of planar triangulations, and of subcollections such as those that are 2-colorable,

were previously investigated by Batagelj [7], by Brinkmann and McKay [14], and by Drápal and Lisoněk [22].

Their constructions use slightly smaller generating gadgets, but do not act as a connected sum. In particular,

in the hypergraph language of Section 5.3.1, their switches would glue different vertices together; our switches

here preserve the vertex set of the hypergraphs.

5.3.3 Preliminaries

A near-triangulation of the plane is a graph embedded in the plane such that each bounded face is a triangle.

46



We start with the following simple lemma.

Lemma 5.3.4 (Parity Lemma). Consider a red/blue-colored triangulation (strict or not) of a surface. Given

a disk D with boundary cycle C, let r(D) and b(D) be the number of red and blue (respectively) faces inside

D that are incident to the edges of C. Then r(D) ≡ b(D) mod 3.

Proof. Let H be the subgraph of G on D. This is a near-triangulation of the plane whose unbounded face

has boundary cycle C. Consider the dual of H, but split the vertex corresponding to the unbounded face

into two: one adjacent to the blue faces incident to C and one to the red faces incident to C. This is a

bipartite graph, and all vertices except the outer two have degree 3. Since the degree-sum in each part must

be equal, we must have r(D) ≡ b(D) mod 3.

There are seven operations and their inverses arising as the result of taking a connected sum with an

octahedron:

(a) swapping one face for seven faces

(b) swapping two adjacent faces for six faces

(c) swapping a path of three faces for five faces

(d) swapping a star of four faces for a new star of four faces

(e) swapping a path of four faces for a new path of four faces

(f) a trivial swap of four faces around a vertex for the same configuration

These are pictured in Figure 5.2.

5.3.4 Proof of Theorem 5.3.2

Let Σ be a 2-colorable triangulation of the sphere. Then its 1-skeleton is an Eulerian planar multigraph

G. (We consider a face that self-abuts along an edge incident to a vertex of degree 1 to be self-adjacent,

so vertices of degree 1 are also disallowed by our 2-colorability condition.) First, note that G has no loops.

Indeed, if it did, then this 1-cycle would contradict the Parity Lemma.

Suppose Σ is a counterexample to the theorem with fewest faces. Σ is not the complex consisting of two

triangular faces glued along their boundary, as this complex can be written as the sum of two octahedra

along the subcomplex consisting of 7 faces (see Figure 5.2a).

We will first show that Σ has no vertices of degree 2. Suppose vertex v has degree 2, with neighbors u1

and u2. Since Σ is not the triangulation with exactly two faces, there are two faces A and B with vertices
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(a) The 7 → 1 octahedral switch. (b) The 6 → 2 octahedral switch.

(c) The 5 → 3 octahedral switch. (d) The 4 → 4 “star” octahedral switch.

(e) The 4 → 4 “path” octahedral switch.

Figure 5.2: The five nontrivial connected sums with an octahedron.

u1, u2, v. Let C be the face sharing the edge u1u2 with A, and let u3 be the last vertex of C. In Figure 5.3,

we perform a sequence of six octahedral switches that reduces the number of faces by two. First, apply the

1→ 7 switch to faces A and B of Figure 5.3a, resulting in Figure 5.3b. Next, apply the 5→ 3 switch to the

shaded region of Figure 5.3b to obtain Figure 5.3c. Apply the 5→ 3 switch to the lightly shaded region and

6→ 2 switch to the dark shaded region of Figure 5.3c to obtain Figure 5.3d. Finally, apply the 7→ 1 switch

to the region bounded by u1u2u3 to obtain a single face, as in Figure 5.3e. This contradicts the minimality

of Σ.

A BC

(a) (b)

(c) (d) (e)

Figure 5.3: Removing vertices of degree 2.

So we may assume we have a 2-colorable triangulation of the sphere whose 1-skeleton G has minimum
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degree at least 4 (since it is Eulerian). But since G is a planar multigraph, the average degree is less than

6, so there must be some vertex of degree exactly 4.

Claim 5.3.5. There is a vertex of degree 4 with four distinct neighbors.

Proof. Suppose that v has degree four and that two consecutive edges incident to v have the same endpoints.

Then these parallel edges form a bigon with the same color required on each side, contradicting the Parity

Lemma. See the left image of Figure 5.4.

v
H

u

v

Figure 5.4: Degree-four vertices with parallel edges.

So, if the claim fails, then there is some v of degree 4 such that two nonconsecutive edges incident to

v have the same other endpoint, say u. Let C be the bigon formed by the parallel edges uv. Consider the

subgraph H of G induced by the vertices on and inside C. See the right image of Figure 5.4. Then H is a

near-triangulation, and every vertex has even degree in H except for v and possibly u. So we have

|E(H)| = 3|V (H)| − 5∑
x∈V (H)

dH(x) = 6|V (H)| − 10

∑
x∈V (H)−{u,v}

dH(x) = 6|V (H)| − 13− dH(u).

This implies that the average degree of vertices strictly inside C is

6|V (H)| − 13− d(u)

|V (H)| − 2
=

6(|V (H)| − 2)− 1− d(u)

|V (H)| − 2
< 6.

Vertices strictly inside C have the same degree in H as in G, so none are degree 2; hence there is some

vertex strictly inside C of degree 4. Since H is strictly smaller than G (we have deleted a neighbor of v at

least), we may repeat this process; since G is finite, eventually we find a vertex of degree 4 with distinct

neighbors.

So let v be a vertex of degree 4 with distinct neighbors u,w, a, b in cyclic order. Since G is a triangulation,

there is a quadrilateral uwab whose interior contains only v. There is some other face containing the edge
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ub; let c be the last vertex on this face. We perform a 5 → 3 octahedral switch on the disk bounded by

uwabc and containing v; this reduces the number of faces by two, contradicting the minimality of Σ.

5.3.5 Proof of Theorem 5.3.3

Now we prove the result for strict triangulations. Suppose Σ is a face-minimal counterexample, with under-

lying graph G. Note that G cannot have vertices of degree 2 (unless the triangulation is the one with exactly

two faces), nor can a 4-vertex have incident edges with another common endpoint, so we save some work in

this case. We have a vertex v of degree 4 in G with distinct neighbors u,w, a, b in cyclic order. Since G is a

triangulation, uwab is a quadrilateral. The edge aw is in a face with some vertex c other than v. If neither

ac nor wc are edges of G, then we can perform the 5→ 3 switch on the disk bounded by uwcab containing

v, reducing the number of faces, a contradiction to the minimality of Σ. So we may assume that at least

one of ac and wc is an edge.

Suppose ac is an edge of G. If b has degree at least 6, then inside the disk bounded by the 3-cycle abc

there is some triangular face abd. But now by planarity, ud and wd are not edges in G. Hence we may

perform the 5→ 3 switch on the disk bounded by uwadb containing v, again a contradiction.

Similarly, if wc is an edge of G and u has degree at least 6, then we obtain a contradiction.

So suppose ac is an edge of G, but b has degree 4. Then abc is a face. If wc is not an edge, then we

perform an octahedral connected sum along the disk bounded by ucaw containing b and v, and we get a

contradiction. If wc is an edge and u has degree 4, then we perform an octahedral connected sum along the

disk bounded by awc containing v, b, u, another contradiction.

5.3.6 Dual statement

The corresponding swaps in the dual graph are shown in Figure 5.5. Hence we have the following.

Theorem 5.3.6. Every Barnette graph can be built from the cube graph by a sequence of operations shown

in Figure 5.5.

5.3.7 Possible extensions

In the definition of connected sum, if we relax the condition that S1 is a disk to the condition that S1 is

any disjoint union of disks, then we call the resulting operation a sum of Σ1 and Σ2 along S1, S2. We can

introduce handles as well as nonorientability by summing with an octahedron along two disjoint faces, as
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(a) The 1 → 7 switch. (b) The 2 → 6 switch.

(c) The 3 → 5 switch. (d) The 4 → 4 “star” switch.

(e) The 4 → 4 “path” switch.

Figure 5.5: The nontrivial octahedral switches, framed in the dual graph.

shown in Figure 5.6. Is it the case that any 2-colorable triangulation of any surface can be obtained as the

sum of octahedra?

Figure 5.6: A sum with an octahedron that introduces a handle.

The definitions of 2-colorable triangulations of higher dimensional manifolds are analogous to those given

here for surfaces. The smallest such triangulation of the n-sphere appears to be the cross-polytope. Can

every triangulation of the n-sphere be obtained by a sequence of connected sums with the cross-polytope?

It is easy to see that this holds for the 1-sphere.
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5.4 Graphicality as an integer program

The question of when a given sequence is the degree sequence of some k-uniform hypergraph can be recognized

as the question of whether a given integer program has a feasible solution. Let the sequence be d1, . . . , dn.

For each A ∈
(
[n]
k

)
introduce a variable xA. The constraints of the desired program are

∑
A∈([n]

k ):
i∈A

xA = di for each i ∈ [n],

xA ∈ {0, 1} for each A ∈
(

[n]

k

)
.

We may relax this integer program to obtain a fractional version:

∑
A∈([n]

k ):
i∈A

xA = di for each i ∈ [n],

xA ∈ [0, 1] for each A ∈
(

[n]

k

)
.

We say that a sequence is fractionally k-graphic if this linear program is feasible.

For certain variations of this problem, the feasibility of the integer program turns out to be equivalent

to the feasibility of the fractional program. (We will only consider sequences of natural numbers.) We start

by showing that this is true in the classic graph case.

Proposition 5.4.1. A sequence with even sum is graphic if and only if it is fractionally graphic.

Proof. Integral graphicality trivially implies fractional graphicality; fractional graphicality implies that the

Erdős-Gallai conditions hold, as these conditions are obvious necessary conditions that do not depend on

integrality; and the Erdős-Gallai conditions imply integral graphicality (which is the content of the proof of

the Erdős-Gallai theorem).

The question of when a sequence is the degree sequence of some multigraph is even easier. Even for

k-uniform multigraphs, we may easily construct an integer program:

∑
A∈([n]

k ):
i∈A

xA = di for each i ∈ [n],

xA ∈ Z≥0 for each A ∈
(

[n]

k

)
.
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and its fractional relaxation:

∑
A∈([n]

k ):
i∈A

xA = di for each i ∈ [n],

xA ∈ [0,∞) for each A ∈
(

[n]

k

)
.

We need to introduce the dominance order on the set of sequences with a fixed sum. For sequences

written in nonincreasing order a : a1, . . . , an and b : b1, . . . , bn with
∑n
i=1 ai =

∑n
i=1 bi, say that b dominates

a if for every t,
t∑
i=1

ai ≤
t∑
i=1

bi.

Lemma 5.4.2. The set of sequences with a fixed sum that have k-uniform multigraph realization form an

ideal under the dominance order.

Proof. It suffices to show that if b covers a in the dominance order and b has a realization, then so does a.

Then there are some i, j with i < j such that bi = ai + 1 and bj = ai − 1, and bk = ak for all k /∈ {i, j}. In

the realization of b, there is some edge e that contains vertex i but not vertex j (since bi > bj); modify the

multigraph by replacing e by e− i+ j. This is a realization of a.

For a sequence π, let
∑
π denote the sum of the entries of π.

Proposition 5.4.3. For a sequence π with maximum entry ∆ and with even sum, the following are equiv-

alent.

1. π has a k-uniform multigraph realization.

2. π has a fractional k-uniform multigraph realization.

3. ∆ ≤ 1
k

∑
π.

Proof. (1)⇒(2) is trivial.

(2)⇒(3): ∆ is the total weight of edges that contain a vertex of maximum degree in any realization, and

1
k

∑
π is the total weight of all edges in any realization.

(3)⇒(1): Consider the dominance order on sequences. The k-term sequence 1
k

∑
π, . . . , 1k

∑
π dominates π

and clearly has a k-uniform multigraph realization, hence π has such a realization as well.

For k-uniform simple hypergraphs, no TONCAS theorem is known. If the feasibility of the integer

program is equivalent to the feasibility of the fractional relaxation, then there is an efficient algorithm to
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decide whether a sequence has a k-uniform realization. If they are not equivalent, then in any TONCAS

theorem the obvious necessary conditions would have to fail to be necessary for a fractional realization,

which seems to be a strange requirement (and may suggest that no such theorem should exist).
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Chapter 6

Large subposets with small dimension

The results of this chapter are joint with Elyse Yeager and are based on [56].

6.1 Introduction

A realizer of a poset P is a set of linear extensions whose intersection is P . The dimension of a poset P is

the minimum number of linear extensions in a realizer. Equivalently, it is the smallest n such that P is a

subposet of Rn (under the product order, in which a vector x is less than a vector y if every coordinate of x

is at most than the corresponding coordinate of y).

For n ≥ 3, the standard example on 2n points, denoted Sn, is the subposet of Bn consisting of all singleton

sets and their complements. The dimension of Sn is n, and Sn is the only n-dimensional poset with at most

2n elements.

Given a family of posets F , let ex∗(P,F) denote the size of the largest subposet of P that does not

contain any member of F as a subposet. Similarly, ex(P,F) is the size of the largest subposet of P that

does not contain a member of F as a subrelation. We write ex∗(P, {Q}) as simply ex∗(P,Q). Let ex∗(n,F)

denote the minimum of ex∗(P,F) over all n-element posets P . In other words, ex∗(n,F) is the maximum k

such that every n-element poset P has an F-free subposet of size at least k. Let Bn be the boolean lattice

of dimension n and An an antichain on n points.

Then ex∗(P,B1) is just the width of P and ex∗(P,A2) is the height of P . The function ex(Bn, B2) is

heavily studied as the maximum size of a “diamond-free” family of sets. In the literature, ex(Bn, P ) is

denoted La(n, P ), and ex∗(Bn, P ) is denoted La](n, P ) or La∗(n, P ).

In this note we are concerned with finding large subposets of small dimension. Hence we let Dd denote

the family of posets of dimension at least d, and ask

Question 6.1.1. What is ex∗(n,Dd+1)?

In other words, what is the largest size of a subposet with dimension at most d we are guaranteed to find

in an n-element poset? (Note that when d = 1, An shows that ex∗(n,Dd+1) = 1. We henceforth assume
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d > 1.) This question was originally posed by F. Dorais [20], whose aim was to eventually understand the

question for infinite posets [21]. Goodwillie [32] proved that ex∗(n,Dd+1) ≥
√
dn by considering the width

of P : if w(P ) ≥
√
dn, then a maximum antichain is a large subposet of dimension 2; if w(P ) ≤

√
dn, then

by Dilworth’s theorem the union of some d chains has ≥
√
dn elements, and this has dimension at most d

(roughly speaking, one can build a linear extension that preferentially puts elements of one chain lower than

the rest; doing this for each chain in the Dilworth decomposition gives a realizer).

The lexicographic order on k-tuples of elements of a poset P puts (x1, . . . , xk) < (y1, . . . , yk) when xi < yi

for i = min{j : xj 6= yj}.

We provide a sublinear upper bound on ex∗(n,Dd+1) by considering the lexicographic order on powers of

standard examples. Theorem 6.2.1 finds the extremal number for lexicographic powers, and Corollary 6.2.2

applies this to ex∗(n,D3). For other d, Table 6.1 provides upper bounds on ex∗(n,Dd+1).

6.2 Main theorem

Given a poset P and positive integer k, let P k denote the lexicographic order on k-tuples of elements of P .

Theorem 6.2.1. Let P be a poset, F a family of posets, k a positive integer, and let n = |P |k = |P k|. Then

ex∗(|P |k,F) ≤ ex∗(P k,F) ≤ nlog|P |(ex∗(P,F)).

Proof. Let S be a maximum F-free subposet of P k (so |S| = ex∗(P k,F)). For i ≤ k+ 1 and each i-tuple α,

let

Sα = {s ∈ S : α is an initial segment of s},

Q(α) = {p ∈ P : (α, p) is an initial segment of some s ∈ S}.

Each Q(α) is a subposet of S, under any of the maps that assign to p ∈ P an element s ∈ S with initial

segment (α, p). Since S is F-free, so is Q(α), hence |Q(α)| ≤ ex∗(P,F).

We have

|Sα| =
∑

p∈Q(α)

∣∣S(α,p)

∣∣ ≤ |Q(α)| · max
p∈Q(α)

∣∣S(α,p)

∣∣ ≤ ex∗(P,F) · max
p∈Q(α)

∣∣S(α,p)

∣∣ .
When ω is a k-tuple, Sω is either {ω} or ∅. Hence we have, for an i-tuple α,

|Sα| ≤ (ex∗(P,F))k−i.
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In particular, when α is the 0-tuple,

|S| ≤ (ex∗(P,F))
k

= |P |log|P |(ex∗(P,F)k) = nlog|P |(ex
∗(P,F)).

Corollary 6.2.2. For all sufficiently large n, ex∗(n,D3) ≤ n0.8295.

Proof. Take P = Sm, the standard example on 2m points, in the preceding theorem. It is easy to see

that ex∗(Sm,D3) = m + 2. Hence the exponent on the family of posets obtained is log2m(m + 2), which is

minimized at m = 10 with value approximately 0.82948. This completes the proof when n is a power of 20.

Otherwise, write n =
∑k
i=0 αi(20)i, each αi ∈ {0, . . . , 19}. Then let Q be the poset that is the disjoint

union of αi copies of Si10 for each i. A maximum dimension 2 subposet of Q is precisely the union of

maximum dimension 2 subposets of each Si10. So

ex∗(n,D3) ≤ ex∗(Q,D3)

=

k∑
i=0

αi ex∗(Si10,D3)

≤
k∑
i=0

αi(20)0.82949i

≤
(

k∑
i=0

αi

)(∑k
i=0 αi(20)i∑k
i=0 αi

)0.82949

(Jensen’s inequality)

=

(
k∑
i=0

αi

)1−0.82949

n0.82949

≤ (19(blog20 nc+ 1))0.17051n0.82949

< n0.8295

for sufficiently large n.

Essentially the same proof works for any d. We have for any m and any ε > 0 that for sufficiently large

n, ex∗(n,Dd+1) ≤ nlog2m(m+d)+ε. Table 6.1 shows some values of d with the minimizing m and the minimum

value of the exponent (rounded to the 5th decimal place).
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d m log2m(m+ d)
2 10 0.82948
3 17 0.84953
4 25 0.86076

10 78 0.88663
100 1169 0.92122

Table 6.1: Values of m that minimize log2m(m+ d) for given d.

6.3 Remarks

There is still a rather large gap between the known lower and upper bounds for ex∗(n,Dd+1). Any improve-

ment to either the lower or the upper bound would be interesting.

Given the interest in ex(Bn, B2), one may be interested in ex∗(Bn,Dd+1) instead of ex∗(n,Dd+1).

Question 6.3.1. What is ex∗(Bn,Dd+1)?

Lu and Milans (personal communication) have shown that ex∗(Bn, Sd) ≤ (4d+ C
√
d+ ε)

(
n
bn/2c

)
. Hence

also ex∗(Bn,Dd) = Θ(
(

n
bn/2c

)
). For small cases, we have computed that ex∗(Bn,D3) = 1, 4, 7, 12, 20 for

n = 1, 2, 3, 4, 5.

In 1974, Erdős [24] posed and partially answered the following question: given an r-uniform hypergraph

Gr(n) on n vertices such that every m-vertex subgraph has chromatic number at most k, how large can

the chromatic number of Gr(n) be? Using probabilistic methods, Erdős found a lower bound for ordinary

graphs when k = 3; that is, when every m-vertex subgraph has chromatic number at most 3. Thinking of

poset dimension as analogous to graph chromatic number, we ask:

Question 6.3.2. Given a poset P with n elements such that every m-element subposet has dimension at

most d, how large can the dimension of P be?
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