
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

COMPILE-TIME PERFORMANCE PREDICTION OF SCIENTIFIC PROGRAMS

BY

GHEORGHE CALIN CA$CAVAL

Dipl.. In s titu tu l Politehnic. C lu j-N apoca. 1991
M.S.. W est V irg in ia University. 1995

TH ESIS

S u b m itted in p a r tia l fulfillment o f th e requirem ents
for th e degree of D oc to r o f Philosophy in C om pute r Science

in th e G ra d u a te College o f th e
U niversity o f Illinois a t U rbana-C ham paign . 2000

U rb an a . Illinois

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number. 9989955

•8

UMI
UMI Microform9989955

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by Gheorghe Calin Crujcaval. 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

JUNE 2 0 0 0
(date)

W E HEREBY RECOMMEND THAT T H E THESIS BY

GHEORGHE CALIN CASCAVAL

ENTITLED. COMPILE-TIME PERFORMANCE PREDICTION

OF SC IE N T IF IC PROGRAMS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REOL'I REM ENTS FOR

DOCTOR OF PHILOSOPHYTHE DEGREE OF.

D ire c to r /O f /Thesi* R e se a rc h

— \ +-f f- t i ' .

H e a d o f D e p a r tm e n t

Commift^e on F inaFE xam inationf

C hairperson

t R e q u ire d fo r d o c to r’s d e g re e b u t n o t fo r m a s te r ’s.

0 -5 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to th an k Professor David P ad u a for being th e ideal advisor. His ab ility to tu rn my

confused ideas in to sim ple s ta tem en ts continues to am aze me. and I can only hope th a t some of his

w isdom has been transfered to me th ro u g h o u t ou r co llaboration .

I would also like to thank professors Sam uel K am in and C onstan tine Polychronopoulos and

D aniel R eed for serving in my thesis com m ittee ancl com m itting th e ir tim e to consider my work.

M y th an k s go to the m em bers of th e Polaris group, past and p resent, for creating such a

p roduc tive environm ent. Also I want to th an k my office m ates. Jose and th e o th e r "arch itectu re

guys", for bearing w ith my questions, an d c rea tin g a w onderful a tm osphere w ith endless discussions

and jokes.

Special th an k s to my best friend George. From our days a t the university in Cluj when we were

w riting low-level drivers for DOS. to the d a tab a se gatew ays, ho t-cup m odels an d the Visual Basic

experience in W est Virginia, from stack a lgorithm s to changing transm issions, from M at m arks to

M indsto rm s and baking play-dough cars, i t 's been a lot o f fun. I can ju s t hope th a t the fun will

continue.

None o f th is work would have been possible w ithou t su p p o rt from m y family. My two year old

son. D an. who ju s t said th a t he’s no t u p se t w ith dad d y gone to th e office th e whole day. My wife.

A nca. w ho has shown me th a t it is possible to work, go to school and raise a child. W ithou t her

su p p o rt th is whole thesis would no t have been possible. I also want to th a n k m y parents for th e

way th ey ra ised us and for all th e encouragem ent th a t we have g o tten from th e m th rough the years.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

C h a p te r 1 I n t r o d u c t i o n .. 1

1.1 M otivation .. I
1.2 Problem D o m a i n ... 5
1.3 D ata D e p e n d e n c e s .. 7

1.3.1 D a ta D ependences in L o o p s ... 9
1.3.2 U niform ly G enerated D e p e n d e n c e s ... 1 0

1.4 C o n tr ib u tio n s .. 1 1

1.5 Thesis O r g a n i z a t i o n .. 13

C h a p t e r 2 R e l a t e d W o r k .. 14
2.1 Perform ance P red ic tion E n v iro n m e n ts .. 14
2.2 C om pile-tim e E stim a tio n of Cache M i s s e s ... 17
2.3 Locality M etrics ... 21
2.4 C om pilation Using Perform ance H i n t s .. 23

C h a p te r 3 C o m p i le - t im e P e r f o r m a n c e P r e d i c t i o n ... 25
3.1 C PU P re d ic t io n ... 27
3.2 M em ory H ierarchy P r e d ic t io n .. 31
3.3 The S tack D istances A lg o r i th m ... 33

3.3.1 In tro d u c tio n .. 33
3.3.2 A lgorithm O v e rv ie w .. 36
3.3.3 I te ra tio n Space P a r t i t io n in g ... 38
3.3.4 D ependence S p a n s ... 41
3.3.5 A rray Sections C om puta tion .. 43
3.3.6 S tack H i s t o g r a m ... 49
3.3.7 E xam ple - M atrix M u lt ip l ic a t io n ... 50
3.3.8 S p a tia l L o c a li ty .. 53
3.3.9 A s s o c ia t iv i ty .. 54

3.4 Indirect Accesses M o d e l ... 55
3.5 S u m m a r y .. 57

C h a p t e r 4 S ta c k D is ta n c e a n d S ta c k A l g o r i t h m s ... 58
4.1 T he S tack D istance as a M etric for L o c a l i t y .. 58
4.2 LRU S tack P rocessing A lgorithm s .. 63

4.2.1 N aive Im p le m e n ta t io n .. 64
4.2.2 M arkers A lg o r i th m ... 65
4.2.3 A lte rn a tiv e D a ta S tr u c tu r e s .. 65

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 B en n e tt an d K ruskal's A lg o r i th m ..67
4.2.5 H ole-based A lg o rith m s..6 8

4.2.6 In terval Tree of Holes ... 69
4.2.7 P rea llo ca ted Tree of H o le s .. 72
4.2.S E x p erim en ta l Evaluation .. 74
4.2.9 N o t a t i o n s .. 80

4.3 S u m m a r y ... 80

C h a p t e r 5 P o la r i s P e r f o r m a n c e P r e d i c t i o n F r a m e w o r k ... 82
5.1 T h e Polaris Fram ew ork ... 82
5.2 In teg ra tio n w ith SvPablo ... 87
5.3 S u m m a r y ... 92

C h a p t e r 6 E x p e r im e n ta l R e s u l t s ... 93
6.1 E xp erim en ta l S etup .. 93
6.2 R e s u l ts ... 94

6.2.1 C ache Miss Prediction w ith th e Indirect Accesses M o d e l .. 94
6.2.2 E xecu tion Tim e P rediction w ith th e Indirect Accesses M o d e l99
6.2.3 C ache Miss P rediction w ith th e S tack D istances M o d e l ... 102
6.2.4 E xecu tion Tim e P red iction w ith th e Stack D istances M o d e l 110

6.3 S u m m a r y .. 112

C h a p t e r 7 C o n c lu s io n s a n d F u tu r e W o r k ..113

R e f e r e n c e s ...116

C u r r i c u l u m V i t a e ... 124

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 Instruction m rhp m issps in rhp SPFCfr>95 benchm arks

3.1 O peration g r o u p i n g s ... 28
3.2 Stack d istances co m p u ta tio n for m atrix m u l t ip l i c a t io n ... 52

4 . 1 Inter-reference d is tan ces and averages for m em ory references in P rogram s 1 and 2 . . 59
4.2 Stack d istances a n d num ber of references in P rog ram s 1 an d 2 ... (30
4.3 Tem poral locality for m atrix m u l t ip l i c a t io n ... (33
4.4 Perfect-C lub B enchm arks run tim es (s e c o n d s) ... 75

5.1 M ethod fu n c tio n a lity in the Polaris perform ance p red ic tion f r a m e w o rkS5
5.2 M ethod fu n c tio n a lity for memory cost e s t im a to r s .. 8 6

6 . 1 C om pile-tim e s ta c k distances a c c u r a c y ...104

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1 . 1 C om piler-based p red ic tio n environm ent .. 4
1.2 Exam ple of d a ta dep en d en ce g rap h .. S
1.3 Ite ra tio n vectors ... 10

3.1 S tack update when th e cu rren tly referenced location has been previously accessed . . 33
3.2 S tack histogram for Q C D ... 35
3.3 Ite ra tio n space p a r titio n in g algorithm .. 39
3.4 P artitioned ite ra tion space for m atrix m u ltip lica tio n ... 40
3.5 Ite ra tio n space for m a tr ix m ultip lication. T h e sh ad ed sh ap e represents the ite ra tio n s

spanned by loop-carried dependence w ith d is tan ce 1 in dim ension i...................................... 42
3.6 Dependence span co m p u ta tio n a lg o r ith m .. 42
3.7 A dependence span p ro jec ted onto a rray s e c t i o n s .. 44
3.8 A rray section co m p u ta tio n a lg o r i th m .. 45
3.9 Non-contiguous in tervals: rep resen ta tion an d c a lc u la t io n ... 48
3.10 S tack histogram co m p u ta tio n a l g o r i t h m .. 50
3.11 M atrix m ultip lication ex am p le ... 51
3.12 C ache lines m apping on an array s e c t io n .. 54
3.13 Sparse m atrix vector m u ltip lic a tio n ... 56

4.1 F ortran code for tiled m a trix m u l t ip l ic a t io n ..61
4.2 S tack histogram s for m a tr ix m ultip lication an d tiled m a trix m u ltip lic a tio n62
4.3 S tack a lg o r i th m ... 64
4.4 M odified stack a lg o r i th m ... 67
4.5 A p artia l sum h i e r a r c h y ... 6 8

4.6 An interval t r e e ... 70
4.7 U pdating the tree o f h o l e s ... 71
4.8 In terval tree u p d a te .. 73
4.9 Increase in execution tim e w ith respect to th e op tim ized program of in stru m en ted

code, preallocated hole tre e algorithm an d B en n e tt an d K ruskal's a lg o r i t h m 77
4.10 E xecution tim e b reakdow n for the p rea llo ca ted hole tree a lg o r i th m78

5.1 P olaris perform ance p red ic tio n f r a m e w o rk ... 84
5.2 Polaris perform ance p red ic tio n in terface to S v P a b lo ...89

6.1 SpLib - LI cache m iss pred ic tion for th e sm all d a ta set .. 95
6.2 SpLib - LI cache m iss pred ic tion for th e large d a ta s e t .. 97
6.3 SpLib - L2 cache m iss pred ic tion for th e large d a ta s e t .. 98
6.4 SpLib - unoptim ized execu tion tim e p red ic tio n a c c u r a c y ..100

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 SpLib - op tim ized execution tim e pred ic tion a c c u r a c y .. 101
6 . 6 Jaco b i - cache miss p red ic tion on th e R10000 .. 103
6.7 SW IM - cache miss p red ic tio n on th e R10000 .. 107
6 . 8 T O M C A T V - cache miss p red ic tio n on th e R10000 ... 10S
6.9 SPE C fp95 - cache miss p red ic tio n accuracy on th e R10000 ... 109
6.10 SPE C fp95 - execution tim e p red ic tion for selected loops in each benchm ark using

t h e - 0 2 op tim iza tion flag ... I l l

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otivation

A m ajo r fraction of th e time taken to develop scientific app lica tions is sp en t in parabolization

an d perform ance tun ing . This fraction is even larger if th e app lica tion is required to run on

several p la tfo rm s, because specific a rch itec tu ra l charac teris tics m ay require different op tim iza tion

techniques for best perform ance.

In o rd er to reduce developm ent tim e we have seen, in recent years, a con tinuous effort to im prove

com pilers to hand le au tom atic para lle lization an d op tim iza tion . However, providing the com piler

w ith a list of op tim iza tions and applying th ese op tim iza tions blindly is no t enough. T he optim ized

p rogram m ay run slower than its unop tim ized version. For exam ple, consider th e loop in terchange

o p tim iza tio n for th e following loop nest:

do j = 1, n

do i = 1, n

a(j) = a(j) + b (j , i) * c (j)

enddo

enddo

A ssum ing th a t th e m atrix b is sto red in co lum n m ajo r o rder, if we do n o t interchange, we can

expect to have a cache miss every ite ra tio n , because b is no t accessed w ith s tr id e one. If we do

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

app ly the in terchange transfo rm ation , all th e accesses a re stride one. therefore th e re will be one

cache miss every several iterations, depending on th e size of the cache line. However, in th e non­

interchanged version, th e array elem ents a an d c can be sto red in registers for all th e ite ra tio n s of

loop i . therefore in th e innerm ost s ta tem en t, th e re will be only one load an d two floating point

operations, an ad d a n d a m ultiply. If we in terchange, we need two e x tra loads and one s to re for

each itera tion of th e inner loop. T hus, depend ing on th e cache miss penalty , com bined w ith the

num ber of functional u n its in the processor, in th is case floating point un its and lo ad /s to re units,

th e loop interchange op tim iza tion m ay ac tua lly h u rt th e perform ance, even though it reduces the

num ber of cache m isses in the loop.

T he work p resen ted in this d issertation is d irec ted tow ards helping com pilers do a b e tte r job

in optim izations. By construc ting a perform ance p red ic tio n model inside th e com piler, we provide

com piler w riters w ith a non-em piric tool th a t will allow them to select th e o rd er in which the

com piler applies o p tim iza tio n s to m axim ize perfo rm ance.

T he same perfo rm ance model is used in th e D elphi system [57] to s ta tica lly predict perform ance.

In the Delphi p ro jec t, th e goal is to create an in teg ra te d environm ent in which a user can develop,

com pile and tu n e th e perform ance of app lica tions in an efficient and tran sp a ren t m anner. Delphi

in tegrates com pilers w ith perform ance tu n in g an d perform ance visualization tools. T h e s ta tic

predictions presen ted in th is thesis have been used as p a r t of this project.

We propose to include the perform ance p red ic tio n m odel inside the com piler. T he perform ance

m odel consists o f sym bolic expressions w ith te rm s th a t account for the p rogram co n stru c ts , the

d a ta set and the a rch itec tu re . In the ideal case, in w hich all the loop boim ds an d branch frequencies

in the program are know n a t compile tim e, th e com p iler can generate these expressions w ithou t

using profiling in fo rm atio n or user in terventions. However, if profiling in fo rm ation is necessary,

we have provided th e necessary hooks so th a t th e profiling inform ation can be collected an d used

by th e perform ance m odels. The advantages of u sing a sym bolic perform ance p red ic tion m odel

a re detailed in C h a p te r 3. Here we enum erate ju s t a few. F irst, not all in fo rm ation is available

statically , a t com pile tim e. W henever th e com piler encoun ters an unknow n value, it can use its

sym bolic rep resen ta tio n to continue build ing th e m odel. If, in the end th e value is still no t resolved,

th e com piler could e ith e r use profiling d a ta , o r s im p ly provide the perform ance in fo rm ation using

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e sym bolic expression. The sym bolic expression can be used e ith e r for run-tim e decisions or

for sca lab ility analysis. Also, by using sym bolic expression th e com piler avoids m agnifying the

p red ic tion e rro r o f com pounding estim ates (th e usual m eth o d em ployed in m ost of th e prediction

system s), since no approxim ations are m ade a t any in term ed ia te s tep . O f course one m ust pay for

all these benefits. T h e costs are the need o f a m ore com plex com piler th a t includes an accu ra te

sym bolic expression m anipulator as well as a slight increase in com pila tion tim e due to th e sym bolic

m an ipu lation . T h e sym bolic expression m a n ip u la to r m ust perform sim plification and com parison

of algebraic expressions.

Figure 1 . 1 . shows th e architecture of an in teg ra ted com pilation an d perform ance tu n in g system

bu ilt around a s ta tic perform ance p red ic tion m odel. In th is env ironm en t, the com piler analyzes

th e source code an d synthesizes sym bolic expressions represen ting perform ance d a ta . T here are

several p a th s th a t can be taken to o b ta in an optim ized program . T h e first p a th , represen ting the

th e ideal case, is show n w ith a thicker line. In th is case the com piler is ab le to com pletely analyze

th e program , th e re are no unknown p aram ete rs in th e perform ance expressions, and based on these,

th e com piler can decide which op tim iza tions to apply.

O f course, th e ideal case does not occu r very frequently in p ractice, therefore a second path ,

using profiling in fo rm ation (shown w ith a dash ed line) is provided. In th is scenario, th e perform ance

pred ic tion m odule uses available profiling in form ation, such its tru e and false branch frequencies,

or th e n um ber o f ite ra tio n s of a loop. B ranch frequencies could be es tim ated a t com pile tim e [4].

however, in th is w ork we have chosen to use profiling inform ation because it is m ore accu ra te . The

th ird p a th represen ts th e case when profiling d a ta is not available, an d th e system can be set up

to collect such in fo rm ation and use it. In th is scenario, th e com piler analyzes the code, an d it also

places in s tru m en ta tio n code to ex trac t th e needed values. T h e in s tru m en ted code can be run w ith

different d a ta se ts to ex tra c t the profiling d a ta used as p aram ete rs for th e perform ance expressions.

All th e p a th s described in Figure 1 . 1 have been im plem ented as p a r t o f the P olaris com piler [8].

an d th e system h as been used to generate th e resu lts p resen ted in C h a p te r 6 . as well as p a r t o f the

Delphi system . In th e curren t im plem entation we can access p erfo rm ance d a ta inside th e com piler,

an d if profiling in fo rm ation is needed. P o laris can generate code to collect th e inform ation , an d use

it in evalua ting th e sym bolic expressions th a t represent perform ance pred ic tion d a ta .

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| FORTRAN |
| Source !_̂______ I_____)

T T
Com piler

performance
prediction
module

1

Instrumented

T
Native Com piler |

T

Executable

d
Profiling

Information

Run

C
Optimized Input j

s program ^ __ data se ts___

d

Analysis and perform ance prediction

ideal

using profiling information
collecting and using profiling information

I Evaluated
Isym bolic expressions

d
Machine

Parameters

Performance !
Prediction Visualization i

Tool

Performance visualization

F ig u re L.1 : C om piler-based p red ic tion environm ent

T h e right hand side of F ig u re L.1 shows how th e perfo rm ance expressions can be visualized using

a perform ance v isualiza tion too l, such as S vPablo [21]. In th is scenario, the perfo rm ance sym bolic

expressions are eva lua ted for a specific m achine and th e num bers o b ta in ed from th e eva lua tion are

d isp layed in a graphical u se r interface. T his scenario is useful in com parative sy stem evaluation ,

because different m achine p a ram ete rs can be su b s titu te d in th e expressions and th e user can study

how m achine ch a rac te ris tic s affect applica tion perform ance. System evaluation can be used by

co m p u te r architects in th e process of designing new m achines, an d by users to select th e best

p la tfo rm suited for th e ir ap p lica tio n needs. Sim ilarly, sca lab ility analysis can be co n d u c ted using

th e sym bolic perform ance expressions. Since th e expressions con ta in variables for th e d a ta size,

one can stu d y how vary ing th e size of the problem affects th e perform ance of th e ap p lica tio n on a

p a r tic u la r machine.

Besides the w hat-if g am es, perform ance analysis too ls can benefit from com piler generated

m odels because th ey can g e n e ra te results faster th a n by execu ting th e code. A long w ith execution

tim e figures, the com piler c a n provide the perform ance analysis too l w ith a w ealth o f inform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th a t will enable th e tool to b e t te r re la te the dynam ic behav io r of th e app lica tion to th e h igh level

language code.

In recent years we have seen a new tren d in processor an d sy stem design, a much closer in teg ra ­

tion betw een th e a rch itec tu re design an d the com piler design. M odern processors rely heavily on

th e com piler to organize th e code so th a t it takes advan tage o f th e h ardw are features. For exam ple ,

th e IA-64 a rch itec tu re proposed by In tel and H ew lett-Packard , relies on th e com piler to c rea te

bundles o f V L IW in stru c tio n s th a t also contain specifications of wliich instructions can be ex ecu ted

in parallel, as opposed to cu rren t superscalar processors th a t try to discover the in stru c tio n level

parallelism in hardw are .

M ore recently, a new ty p e o f a rch itec tu re has em erged, th e intelligent m em ory a rch itec tu res [49.

33. 37], In these a rch itec tu res th e DRAM memory contains also processor logic, enabling low la ten cy

an d high b an d w id th betw een th e processor-in-m em ory (P IM) an d th e m emory. T he PIM s ac t as

co-processors th a t execute code w hen signaled by the host processor. In th is arch itectu re it is very

im p o rtan t to decide w hat p o rtio n s of code execute on each processor, as th e host processor is m ore

powerful and backed up by a deep cache hierarchy, bu t has h igher m em ory latency. T he P IM s a re

typ ically less powerful, have very low m em ory latency an d no cache. T h e s ta tic prediction m odels

p resen ted in th is d isse rta tio n have been used in recent w ork [64] to au to m atica lly m ap th e code to

th e host o r to th e PIM based on perform ance prediction resu lts.

In th e rem ain ing sections o f th is ch ap te r we first discuss th e problem dom ain on which we focus

ou r m odeling. N ext we p resen t a quick overview of d a ta dependence in fo rm ation since d a ta d ep en ­

dences provide th e m ain fou n d a tio n for our work, and we conclude by discussing the co n trib u tio n s

of th is thesis.

1.2 Problem Dom ain

T h e problem th a t th is w ork proposes to solve can be fo rm ulated as follows:

M odel th e perform ance o f scientific applications on a co m p u te r system , inside a com ­

piler. by looking a t h igh level source code only.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e approach taken is m ostly arch itectu re independen t. However, because of th e com plexity of the

in te rac tions betw een different parts of th e system , as well as th e o p tim iza tio n s done by the native

com piler, som e lim ita tions apply.

O n th e a rch itec tu ra l side, we decom pose th e com puter system in to p arts th a t can be m od­

eled re la tively independen t. Thus, we assum e th a t the C PU . th e m em ory hierarchy, and the I/O

subsystem , can each be modeled separately, an d their effects on th e app lica tion perform ance are

add itive .

T h e C PU is assum ed to be a superscalar processor w ith m ultip le functional units. T he processor

can issue several in structions per cycle. Each in stru c tio n can have a different latency. In C hap ter 6

we present resu lts for two different processors, th e M IPS R10000 [56] an d the U ltraSparc Hi [6 6].

T h e R10000 is an out-of-order processor while th e U ltraSparc is an in -order processor. Both can

issue several in struc tions per cycle. Also, in [64] it has been show n th a t, by using our approach,

it is possible to m odel s ta tica lly the behavior o f two types of processors w ith qu ite different char­

ac te ris tics . Even when the prediction was no t very accurate (average prediction error of .'309c).

th e s ta tic p red ic to r based on our m ethods co rrec tly predicted th e re la tive execution tim e for these

processors. In the IRAM case, this was sufficient to decide w here to execute the code.

T h e m em ory h ierarchy consists of several levels of cache an d th e m ain memory. The caches

can have different cache line sizes and associa tiv ities. We m odel th e d a ta caches only, although

th e m odels could be ex tended for in stru c tio n caches. We chose to ignore the instruction cache

misses since th e ir im pact on the perform ance o f scientific codes is negligible (on average 0.17% of

execu tion tim e for L l an d L2 instruction caches on the R10000 for th e SPEC fp95 benchm arks).

For a breakdow n on all th e program s, see T ab le 1.1. B oth the R10000 and th e U ltraSparc have two

levels of cache, w ith th e first level having sep a ra te instructions an d d a ta caches, and the second

level consisting of a unified cache. T h e line sizes and the asso c ia tiv ities differ betw een the two

processors.

T h e app lica tion dom ain consists of scientific F o rtran program s, such as codes in the SPECfp95

ben ch m ark su ite . T h ere are two m ain reasons for focusing on F o rtran . F irs t, m any of the codes

perform ing co m p u ta tio n s for scientists are w ritte n in F ortran . T h is is illu s tra ted by the fact th a t

10 o u t o f 14 (71%) codes in the new SPEC fp2000 benchm ark su ite a re w ritten in F o rtran . Second.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchm ark C ode size L l I-cache misses L2 I-cache misses
lines cycles M.rr % exec # % exec

APPLU 2474 51247966388 1465086 0.05 715579 0 . 1 2

APSI 4238 2046974010 263773 0.23 50557 0 . 2 1

H Y D R02D 1667 66288394854 1353887 0.04 497572 0.06
M GRID 382 51019153876 1474727 0.05 637206 0 . 1 0

SU2COR 1444 31218347345 1075432 0.06 476323 0.13
SWIM 2 S2 36220627134 316612 0 . 0 2 169086 0.04
TOM CATV 109 43131557047 638084 0.03 288793 0.06
TURB3D 1287 6443904684 129263 0.04 42511 0.06
WAVES 6314 32019987230 1872195 0 . 1 1 497038 0.13
Average 2022.89 35515212507.56 954339.89 0.07 374962.78 0 . 1 0

T ab le 1 . 1 : Instruction cache m isses in th e SPEC fp95 benchm arks

although the techn iques described in th is w ork are no t restric ted to F o rtran , the in frastructu re

tools th a t we used h an d le m ainly Fortran .

We have selected scientific codes because o f th e ir relatively sim pler control How s tru c tu re . In

scientific codes m ost o f th e com pu tation h appens in loops accessing arrays. T he p red ic tion models

focus on high level source code and since we d o n 't know w hat low-level op tim iza tions are perform ed

by the native com piler, such as instruction schedu ling an d register a lloca tion , we app rox im ate the

po ten tial o p tim iza tio n s using heuristics. T he h eu ristics presented in C h ap te r 3 are ta rg e ted towards

scientific codes.

1.3 D ata Dependences

D ata dependences (5. 76] a re used in th e com piler to represen t variable references th a t po ten tially

access the sam e m em ory location. M ost op tim izing com pilers use th ree types of d a ta dependences:

flow, anti and o u tp u t dependences. Since we focus on m em ory behavior, we are also in terested in

input dependences. M ore formally, these types o f dependences are defined as follows.

D e f in it io n 1 . 1 C o n sid er two sta tem ents S and T tha t both reference the sam e variable .1 (read or

write), and T is executed a fter S. We say that:

1. T is flow -dependen t on S i f S writes A and T reads .4;

2. T is an ti-dependen t on S i f S reads A and T w rites A ;

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: Exam ple of d a ta dependence graph .

■i. T is output-dependent on S i f both S and T unite to A:

4- T is input-dependent on S if both S and T read A.

S is called the source o f the dependence and T is called the target o f the dependence.

For cache behavior it is m ore im p o rtan t to know which locations a re accessed successively th an

th e ty p e of the access, read or w rite . C onsider th e following sam ple program :

(SO A = 0
(So) B = A + 1
(S3) C = A + D
(SO A = 2

T h e d a ta dependences for th is program are show n in th e d a ta dependence g raph in F igure 1.2.

Each dependence is m arked by its type. T here is a flow dependence between s ta tem en t S i and

s ta tem en t So (m arked F) b ecause s ta tem en t S i w rites to variab le A and s ta tem en t So reads A.

T h ere is an input dependence betw een So an d S 3 (m arked I) because b o th s ta tem en ts read the

variable A. There is an o u tp u t dependence betw een S i and S 4 (m arked 0) because b o th s ta tem en ts

w rite to A. A nd there is an an ti-d ep en d en ce betw een S 3 an d S 4 (m arked A) because s ta te m e n t S 3

has to read the variable A before it is w ritten by s ta tem en t S 4 .

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.1 Data Dependences in Loops

In loop bodies, s ta te m e n ts are execu ted m ultip le tim es. D a ta dependence re la tio n s can exist from

any instance of execu tion of a s ta tem en t to any o th e r s ta tem en t, including itself. Since the com piler

cannot represent all th e instances of a s ta tem en t (th e num ber of ite ra tio n s m ay be unknown at

compile tim e), the d a ta dependence g rap h is ab s tra c te d to represent in one n ode m ultip le instances

of the sam e s ta tem en t. D ependence edges are th en an n o ta te d to identify th e re la tive itera tions in

w hich ihcr d ep en d e n c e le lcu iu n s uc'cUi'. B aaed on th e ite iu tlu n a u f th e so u rce a n d target u f th e d a ta

dependence we can classify th e dependences its:

• loop independent dependence - if b o th th e source an d the ta rg e t o f th e dependence are in the

same ite ra tio n o f th e loop:

• loop curried dependence - if th e source and th e ta rg e t of the dependence are in different

iterations of th e loop

A nother im p o rtan t concept is the iteration space associa ted w ith a loop nest. T he itera tion

space is a po ly tope th a t con ta ins one point for each ite ra tion of the loop. For any loop carried

dependence, there will be an edge from th e source ite ra tio n to th e ta rg e t ite ra tio n in the itera tion

space dependence g rap h . Since com piler cannot always determ ine th e n um ber of itera tions in the

loop, the ite ra tion space is expressed sym bolically.

In order to identify th e po in ts in th e ite ra tio n space we assign an itera tion vector to each

iteration. T here are tw o kinds of ite ra tio n vectors described in lite ra tu re , one based on loop index

variables, index variable iteration vectors and one th a t enum erates th e ite ra tio n s , the normalized

iteration vectors. In th e index variab le ite ra tio n vectors (F igure 1.3a). each elem ent Ik represents

the value of the loop index variab le for the fcth nested loop a t th a t ite ra tio n . In the norm alized

itera tion vectors (F igu re 1.3b) th e ite ra tio n s of each loop are enum erated s ta r t in g either a t 0 or a t

1 . and these are th e values used in th e ite ra tio n vector. T h e advan tage o f using norm alized itera tion

vectors is th a t la te r ite ra tio n s have lexicographically larger valued vectors th a n earlier iterations,

m aking it easier to o rd e r th e itera tions.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Index v a r ia b le i te ra t io n vec to r. (b) N o rm a lize d i te ra tio n v ec to r.

F igure 1.3: Itera tion vectors

T h e dependence distance vector is th e vector difference betw een the ite ra tio n vectors of the

ta rg e t and source ite ra tio n . Thus, the dependence distance vec to r can be expressed as:

w here J7" is the ta rg e t ite ra tio n vector, an d Is is the source ite ra tio n vector. We will represent the

dependence d istance vectors on the dependence graphs as a com m a separated list of the elem ents

o f th e distance vector, e.g. (0 . 1 . 0).

S ince the dependence g raph for loops rep resen t in one node m ultip le instances o f the sam e s ta te ­

m ent. the com pilers can n o t always co m p u te an exact value for th e dependence d istance vectors,

because the instances of the source s ta te m e n t can be at different d istances of th e corresponding

instances of the ta rg e t s ta tem en t. In th is case, the dependence d istance vectors need to be sum ­

m arized by using dependence direction vectors. An elem ent o f th e dependence d irection vector

takes values in the set { < . = . > . *}. w ith * represen ting an unknow n direction. If th e com piler can

co m p u te the d istance vectors it can derive th e direction vectors by tak ing th e sign of the d istance

vector.

1.3.2 Uniformly Generated Dependences

U niform ly generated dependences [28] a re d a ta dependences for which the d is tan ce vectors are

know n and contain only constan t values. If two references have a known d is tan ce vector betw een

th em , then the com piler has determ ined th a t the two references will touch th e sam e m em ory

location . In order to com pu te if th e m em ory accesses reuse d a ta in the cache, all th a t needs to

be done is to com pute th e d istance, in te rm s o f m em ory references, betw een th e tw o references.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an d check if th e d istance is less th a n th e cache size (for fully associative caches). M ost of the

dependences th a t cause reuse are un iform ly g en era ted [28. 52. 74]. M any of th e o th e r dependences,

such as those w ith sym bolic su b scrip ts or index a rray s , will rarely access the sam e location . For

those dependences even coarser app rox im ations o f th e reuse, such as [74. 14], usually yield good

results.

1.4 Contributions

T his work has orig inally s ta rted as a s tu d y of d a ta locality m etrics. In m any cases op tim iza tions

for im proving d a ta locality are app lied and the on ly m easure of th e "im proved" perfo rm ance is the

execution tim e. We w anted to have a m etric th a t quan tities precisely b o th tem p o ra l an d spatial

locality, as a function of the p rogram only, th a t is. independent of the a rch itec tu re on which the

application will run . Up to th is w ork m ost of th e m ethods e ither need the cache p aram eters of

th e arch itecture , such as cache size, associativ ity , e tc .. or a re not able to app ly th e sam e m etric

to either a loop nest, a subrou tine , o r an en tire p rogram . T herefore we s ta r te d looking a t stack

algorithm s.

Stack a lgorithm s have been used previously to charac terize paging behavior [43]. T hey have

th e inclusion p ro p e rty (the stack for a sm aller cache is included in th e stack for a larger cache)

allowing estim atio n s independent o f th e cache size. In add ition , techniques have been developed to

deal w ith se t-associa tiv ity and different cache line sizes in one pass th rough th e trace . T h e result

o f the stack a lg o rith m is a h istog ram th a t counts th e num ber of references a t each d is tan ce from

th e top of th e s tack . T he work p resen ted in th is thesis is based on th e stack d istan ces and the

stack algorithm s. We present a new algorithm to co m p u te the stack h istogram , fa ste r th an the

best known a lgo rithm . The developm ent of th is a lg o rith m stem m ed from th e need for a faster

stack processing m eth o d due to th e len g th of th e traces when the en tries in th e trace are m em ory

references and n o t pages. We also p resen t how th e s tack distances can be used to q u an tify locality,

b o th tem poral an d sp a tia l, a t any p ro g ram granu larity .

W hen we s ta r te d working on th e D elphi p ro jec t (an in teg ra ted system for p erfo rm ance m ea­

surem ent and tim ing) and th e need arose for a com pile-tim e m ethod to es tim ate cache behavior, we

again tu rned to s tack distances. O nce m ore, th e m ost a ttra c tiv e featu re o f th e s tack a lg o rith m is its

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arch itec tu ra l independence. O ne can predict th e num ber of cache misses for any cache size once the

s tack h istogram is com pu ted . T hus th e m ain co n trib u tio n o f th is thesis was defined: a com pile-tim e

algorithm th a t com putes th e s tack histogram based on d a ta dependence d istance vectors. A lthough

th e com pile-tim e a lg o rith m estim ates th e num ber of cache m isses for fully-associative caches, the

experim ental resu lts p resen ted in C h ap te r 6 show th a t the e s tim a tio n s are qu ite a c cu ra te for 2-way

set-associative caches. M oreover, th e in tended use for th is m eth o d is to help drive com piler op ti­

m izations. in which case th e re la tive perform ance of different code varian ts is m ore im p o rtan t than

1 0 0 % accuracy.

T he m ain co n trib u tio n s of th is work are sum m arized as follows:

C o m p ile - t im e m o d e l fo r e s t im a t in g th e n u m b e r o f c a c h e m is s e s . We present a new me­

thod for e s tim atin g th e num ber of cache misses in a loop using th e stack h istogram . The

stack processing a lg o rith m an d its resu lt, th e stack h istog ram , have been h isto rically used to

evaluate caches. In th is work we describe a m ethod th a t com putes the s tack h istogram a t

com pile tim e, based on th e d a ta dependence d istance vectors. Besides being accu ra te , the

m ethod p resen ted is also fast since it relies on d a ta a lread y available in th e com piler (d a ta

dependences are ca lcu la ted for o th er com piler o p tim iza tio n s), an d applicab le to m ore than

75% of th e loops presen t in the S PE C fp95 benchm ark su ite . D etailed resu lts a re presented

in C h ap te r 6 .

A n e w a lg o r i t h m fo r s t a c k p ro c e s s in g . D uring our w ork w ith th e stack processing algorithm

we have com e up w ith a new m ethod to process a m em ory trace , th a t it is fa s te r th an the

best cu rren t a lgo rithm [6]. T h e new a lg o rith m is p resen ted in Section 4.2.

A n e w m e t r i c fo r lo c a l i ty , t h e s t a c k h i s to g r a m . T h e s tack h istog ram provides a b e tte r m et­

ric for q u an tify ing th e locality in program s th an previous work. T h is is based on the fact

th a t th e s tack d is tan ce com putes exac tly how m any d istin c t m em ory locations a re accessed

betw een accesses to th e sam e location, as opposed to o th e r m ethods th a t average over the

num ber of m em ory locations accessed. T h is is d iscussed fu r th e r in Section 4.1.

I n t e g r a t i n g t h e p e r f o r m a n c e m o d e l in g w i t h t h e c o m p i le r . W e present a new com piler

fram ework in w hich perform ance d a ta is available a t com pile tim e as a sym bolic expres-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sion. independen t of th e a rch itec tu re . A com piler w riter can use th is in fo rm ation to drive

op tim iza tions. We also show how we in teg ra ted perform ance m odeling a t com pile-tim e w ith

a perform ance v isualization tool in C h ap te r 5.

1.5 Thesis Organization

T his thesis is organized as follows: in C h ap te r 2 we present re la ted work for each of th e areas th a t

we touch upon: perform ance p red ic tion environm ents, com pile-tim e estim ation of cache misses,

locality m etrics an d ite ra tive com pilation . In C h ap te r 3 we present th e com pile-tim e perform ance

p red ic tion m odel. We describe th e en tire m odel, an d then we de ta il th e C PU and m em ory hierarchy

m odels. C h ap te r 4 has two p arts . In th e first p a r t we present a new m etric for p rogram d a ta locality

based on the s tack d istances. T h e second p a rt describes our experience w ith s tack processing

a lgorithm s and a new a lgo rithm for efficiently com puting stack d istances. In C h ap te r 5 we present

th e perform ance p red ic tion fram ew ork im plem ented in Polaris, as well as th e in te rac tio n between

th e fram ew ork an d th e S vPablo perform ance v isualization system . C h a p te r 6 p resents experim ental

resu lts and we conclude in C h ap te r 7.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated Work

In th is ch ap te r we describe previous work th a t has been done in several a reas re la ted to this disser­

ta tio n . We begin by presenting so lu tions for perform ance prediction env ironm en ts th a t in teg ra te

com pilers an d ru n tim e system s to aid com piler op tim izations. T hese env ironm ents have sim ilar

goals to our D elphi p ro jec t [57]. N ext we focus on com pile-tim e pred ic tion o f cache behavior. Sev­

eral approaches are presented, some o f th em in tegrated in a perform ance p red ic tion environm ent,

o thers used for d riv ing optim izations.

T hen , we look a t existing m etrics for locality. We claim th a t the s tack h istogram proposed in

th is thesis is a m ore accura te m etric th a n th e cost m odels available in th e lite ra tu re . We conclude

by presen ting w ork th a t uses estim ates of execution tim e inside a com piler to im prove perform ance.

We discuss th ese efforts to underline th e need for an d th e applicab ility o f an accu ra te s ta tic cache

model.

2.1 Performance Prediction Environments

Fahringer [24. 22] describes P 3T . a perform ance estim ation tool. He uses th e V ienna F ortran

C om pilation S y stem as an in teractive paralleliz ing com piler, and th e W eigh tF inder and P 3T tools

to feedback p erfo rm ance inform ation to b o th the com piler an d th e p rog ram m er. O ur work differs

from his in b o th th e estim ation of co m p u ta tio n tim e an d th e estim atio n o f th e num ber of cache

misses. F irs t, to e s tim a te com pu tation tim e, we use com pile-tim e analysis an d m icro-benchm arking

as opposed to h is p a tte rn m atching benchm ark ing aga inst a lib rary of kernels. T h e com bination o f

com pile-tim e an a ly sis an d m icro-benchm arking is b e tte r su ited to hide th e underly ing arch itec tu re

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th a n p a tte rn m atch in g , especially if dependence analysis is used to d e tec t overlapp ing operations.

T h e au thors classify th e benchm arking kernels in to four categories: primitive operations, which

con tain basic o p e ra tio n s such as -K *. e tc . an d e lem en tary a rray access kernels: pr im it iv e statements

such as DO loop headers, conditional s ta tem en ts , etc .: in trinsic functions and code patterns which

include s tan d a rd code p a tte rn s am enable to recognition such as elem entary o p e ra tio n s of linear

algebra (m atrix m u ltip lica tion , m atrix inversion, d e te rm in an t calcu lation , e tc .) an d com m only

used stencils such as .Jacobi re laxation . LU decom position , etc. Each kernel is subsequen tly ran for

different d a ta sizes, on th e m achine for w hich th e perform ance estim ation is desired , to m easure its

execution tim e. T h e perform ance e s tim a to r parses th e program and d e tec ts ex istin g lib rary kernels.

For each kernel, th e p rem easured execution tim e is accum ula ted to o b ta in an overall execution time.

T he au thors underline th e difficulties th ey encoun te red while developing th e kernel lib rary for two

m achines, the In tel i860 and M asPar M P-1. an d they recognize th e fact th a t it is very difficult to

ob ta in com plete, p o rta b le kernels. A second difference is in th e cache m odeling. W e present their

cache model in d e ta il in Section 2.2.

Saavedra et al. [GO. 59. 58] has done ex tensive work in th e a rea of perform ance prediction for

uniprocessors. In [60]. th e au th o rs present th e m icro-benchm arking concept to m easure architec­

tu ra l param eters. M icro-benchm arking consists of a set of kernels, each kernel ta rg e ted a t one

particu la r feature of th e m achine. T he kernels are w ritten in such a way th a t th ey try to isolate

one feature and m easu re its charac teristics by m inim izing the effect of o th er featu res. We use their

m icro-benchm arking approach to m easure o p e ra tio n costs an d cache latencies. In [59]. the au tho rs

present an ab s tra c t m achine m odel th a t ch arac terizes th e a rch itec tu re and th e com piler. T heir early-

m odel does not consider m em ory h ierarchy effects. T h ey consider such effects in [58] by com bining

th e m easurem ents o f cache and T L B tim ings o b ta in ed th ro u g h m icro-benchm arking w ith cache and

T L B miss ra tios o b ta in ed th rough s im u la tio n by Gee et al. [29]. T h e results a re used to evaluate

how the execution tim e pred ic tion im prove w hen m em ory delays are in co rp o ra ted an d how much

im pact the cache an d T L B configurations have on th e overall perform ance of th e m achine. T he

m ain difference betw een our work an d th e irs is th a t we p red ic t b o th th e C PU tim e an d the cache

misses a t com pile-tim e, while th e ir m eth o d p red ic ts th e C P U tim e an d uses prev iously published

miss ra tio d a ta .

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W ang [69] develops a perform ance p red ic tio n framework for supersca lar-b ased com puters. His

fram ew ork, as ours, is designed to be used inside an optim izing com piler, to guide p rogram tran s­

form ations. T he following requ irem ents a re listed as critical for a good perform ance prediction

tool:

• precise - the pred ic tion m ust be a c c u ra te for the com piler to m ake correct decisions.

• efficient - the com piler will m ake re p ea ted calls to th e p red ic tion m odule, therefore the

p rediction pass should be very efficient.

• robust - the fram ew ork should be ab le to hand le program s w ith unknow ns in con tro l structu res

an d unknown branch probabilities.

T h e key idea to satisfy all these req u irem en ts is to use sym bolic expressions to represent per­

form ance data . T he sym bolic expressions will m inim ize the effects o f com pounded estim ations for

m ultip le basic block by delaying the ev a lu a tio n of unknowns, th ere fo re increasing th e accuracy of

th e pred iction . In add ition , they will be m ore efficient to eva lua te for different d a ta sizes, and will

allow for the presence of unknow ns. T h e m odel decomposes th e to ta l perform ance cost into C PU

cost an d m em ory hierarchy cost. To e s tim a te m em ory access tim es th e au th o r uses th e cache cost

m odel developed by F erran te e t al. [27]. d iscussed in the next sec tion .

For th e processor cost, th e fram ew ork co n ta in s an instruction tran s la tio n m odule, which has four

tab les th a t are used to tra n s la te high level language constructs in to costs on a specific m achine in two

tran s la tio n steps. In th e first s tep , called operation specialization mapping, a high level operation

tab le is used to m ap language dependen t co n s tru c ts into language independent o p era tio n s, stored

in a basic operations tab le . In th e second s te p , th e atomic operation mapping, tran s la te s the basic

o p era tio n s into costs for th e processor based o n two o ther tab les, th e a tom ic o p era tio n tab le and the

a to m ic operation cost tab le , which co n ta in th e low level operations an d th e ir costs, respectively. T he

fram ew ork relies on in fo rm ation passed by th e com piler to e s tim a te th e op tim iza tions perform ed by

th e com piler back-end. such as in s tru c tio n schedu ling and reg is te r a llocation . W hile th is can give

ac cu ra te results for a p a r tic u la r com piler, it also m akes th e sy stem less po rtab le , since th e m odule

needs to be re-im plem ented for each s u p p o r te d com piler.

Adve et al. [1] p resen ts an in teg ra ted environm ent for p red ic tin g perform ance on m ultipro-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cessors. T hey in teg ra te com pile-tim e in fo rm atio n w ith dynam ic in s tru m en ta tio n to p red ic t the

execution tim e for en tire program s. However, th e ir com piler stores only in fo rm ation ab o u t depen­

dences and decisions m ade in apply ing tran sfo rm atio n s , so th a t th e ir perfo rm ance visualizer can

re la te the m easu rem en ts back to th e source code b u t it does not ac tu a lly p red ic t the perform ance

a t com pile-tim e.

2.2 Com pile-tim e Estim ation of Cache Misses

T here are m any efforts targeted tow ards es tim a tin g th e cache behavior of p rogram s w ith in a com ­

piler framework. H owever, many factors, such as lim ited com piler in fo rm ation , algorithm s com plex­

ity and hardw are unpred ic tab ility , have m ade th e problem so challenging th a t none of the proposed

solutions is a co m p le te solution.

Porterfield [52] p resen ts one of th e first s ta t ic m odels of m em ory perform ance based on d a ta

dependences. He defines the Overflow Iteration. O (i) . for a particu la r loop, as th e m axim um num ber

o f iterations of th a t loop th a t can have all th e d a ta accessed m ain tained in the cache a t th e sam e

tim e w ithout encoun te ring any cache misses. T h e overflow itera tion can help determ ine when a

reference will be a m iss during program execu tion , because it provides a m easure of how m uch d a ta

is accessed betw een th e end points of a dependence . Any dependence th a t requires more ite ra tions

o f the loop th an th e overflow itera tion will access m ore d istinc t blocks th a n available and will result

in a series of m isses d u rin g execution. O nce th e overflow itera tion is know n, every reference can

have its hit ra tio co m p u ted based on th e dependence edges. U nfortunately , for overflow ite ra tions

to be effectively g en e ra ted , precise in te rp ro ced u ra l inform ation should be available, an d a t the

tim e. PFC did not co n ta in th a t in form ation . T h is has not perm itted P orterfie ld to im plem ent his

algorithm , and besides a m anual coded exam ple for m a trix m ultip lication , his thesis provides only

speculative resu lts. L a te r. Ferrante e t al. [27], used P orterfie ld ’s overflow ite ra tio n to es tim ate the

num ber of cache m isses a t com pile-tim e.

In [27]. F erran te . S arkar and T h ra sh consider au to m atic analysis o f a p ro g ram ’s cache usage

to achieve g rea te r cache effectiveness w hen used to guide program tran sfo rm atio n s, such as loop

interchange. To d e te rm in e the num ber o f cache m isses for a given loop nest, an upper bou n d on

th e num ber of d is tin c t cache lines (D L) accessed in th e innerm ost loop is determ ined . T h e m ethod

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

works tow ards the outerm ost loop, com puting D L a t each loop level. T h e innerm ost loop th a t

causes th e cache to overflow is ca lled the overflow loop. An u p p er bound for the to ta l num ber

of misses is ob ta ined by m ultip ly ing th e D L value for all the loops con tained w ith in th e overflow

loop, by th e product of th e n um ber o f itera tions o f th e overflow loop an d till its enclosing loops.

For set associa tive caches the bou n d m ight need fu rth e r ad ju stm en ts to take into co nsidera tion set

conflicts.

T here a re several assum ptions m ade about the p rog ram and th e a rch itec tu re th a t can be handled

using th is m ethod . The au th o rs assum e a set o f norm alized, perfectly nested loops. T h e array

references considered in th e ana lysis m ust have su b scrip ts th a t are linear functions o f th e loop

indices, o therw ise each access is considered a miss. E xecution profiling can be used if conditionals

are p resent, however the paper does not provide a discussion on how the profiling d a ta can be

in teg ra ted w ith the analysis technique.

T h e a lg o rith m bounds the n u m b er of d istinct a rray elem ents for each array reference an d uses

these to co m p u te an upper bound on the num ber o f cache lines accessed by each array reference. It

th en com bines the bounds for several references to com pu te D L for th e loop. T h e p a p e r presents

exact form ulae for the num ber o f d is tin c t array e lem ents accessed w hen the subscrip t of th e array

reference is a function of one or tw o loop variables, an d provides an u p p er bound for a m ore general

subscrip t function . This ap p ro ach is less costly th a n P orterfie ld 's [52]. since the au th o rs use the

G CD tes t an d B anerjee's inequalities instead o f d a ta dependence d istance vectors. However, if

d a ta dependence distance vectors are already com puted for o th er com piler passes, th en , as we show

la te r in th is work, most o f the overhead in using d a ta dependences in analyzing cache behavior

is a lready paid . We can not read ily com pare th e accu racy of our a lgo rithm versus th e irs because

th e ex p erim en ta l results p resen ted in their paper is re s tr ic ted to m a trix m ultip lication , w hich both

algorithm s pred ic t correctly. T h ey present results for m a trix m ultip lication only because th ey use

s im ula tion to collect the ac tu a l n u m b er of misses, an d th u s are constra ined by tim e.

F ahringer [25] presents an a lg o rith m th a t e s tim a tes th e num ber o f cache misses for sequential

and d a ta paralle l Fortran p rogram s. T h e a lgorithm is based on th e analysis of all a rray references

in loop nests , classifying th em w ith respect to d a ta reuse an d co m p u tin g a cost fu n c tio n for the

a rray classes th a t describes th e cache behavior o f th e program . T h e au th o r shows how to ex tend

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the cost fu n c tio n to procedures an d en tire p rogram s, although no ex p e rim en ta l results for en tire

program s a re p resen ted .

The cache m isses estim ation takes in to co nsidera tion cache line size, cache sizes and d a ta ty p es

in com puting th e num ber of cache m isses. T w o a rray references in th e sam e a rray class w ith respect

to a loop nest if th ey access some com m on m em ory location in th e sam e a rra y dim ensions and reuse

occurs across loop itera tions. T h e m eth o d used is very sim ilar to th e one em ployed by F erran te e t

al. [27]. in th e sense th a t it uses th e overflow loop to determ ine an u p p er-b o u n d on the num ber of

cache lines accessed by a loop. T h e a lg o rith m ite ra te s th rough th e loops in a loop nest, s ta r t in g

from the in n erm o st loop, and a t each loop com putes the array classes an d th e num ber of cache

lines accessed. T h e algorithm ends w hen th e re are m ore cache lines accessed th a n available in th e

system . T h ere a re two differences th a t m ake our a lgorithm m ore p rac tica l. F irs t, it is not easy

to see how F ah rin g er 's algorithm can be ex ten d ed to es tim ate in ter-nest m isses. And second, his

algorithm needs th e cache size as a p a ram e te r, while ours can estim ate th e n u m b er of cache m isses

for all the cache sizes based on th e s tack h istogram . Again, it is very h a rd to see how effective

is his a lgo rithm com pared to ours, because th e only experim ent p resen ted in th e paper is Jaco b i

relaxation, for w hich bo th algorithm s are very accu ra te .

M cKinley[44. 45] uses a very sim ple cache m odel to drive op tim iza tions for d a ta locality and p a r­

allelism. In th is m odel, the references w ith g ro u p -sp a tia l and g ro u p -tem p o ra l locality are g rouped

in equivalence classes using sim ple heu ristics . Two references exh ib it g ro u p -tem p o ra l locality if

the references a re dependen t, and th e d ependence is e ith e r loop in d ep en d en t o r loop carried w ith

a very sm all d is tan ce (< 2). Two references are g roup-spatia l dep en d en t if access the sam e a rray

and their su b sc rip ts differ by a co n stan t sm alle r th an th e cache line size in th e dim ension along th e

cache line.

T he cost o f a loop is given in te rm s o f cache lines accessed by p lacing th e loop as the innerm ost

loop in the n e s t. For each reference class a rep resen ta tive a rray reference is considered and th e

cost is co m p u ted as follows: if th e reference is loop in v arian t. th ere is one cache line accessed in

the whole loop: if th e reference has sp a tia l locality it accesses one cache line every cache line size

iterations: cill o th e r references are considered accessing one cache line p e r ite ra tio n . A lthough th e

m odel is very app rox im ative , it works q u ite well in p ractice, an d it is a c c u ra te for double n ested

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loops, because it always finds th e correct re la tive o rdering of the loops in th e nest.

Ghosh. M arto n o si and M alik [30] have in tro d u ced th e Cache Miss Equations (C M E s) as a

m athem atica l fram ew ork th a t precisely represen ts cache misses in a loop n est. T h ey coun t th e cache

misses in a code segm ent by ana lyz ing the n um ber of so lutions of a sy stem o f lin ear D iophan tine

equations e x tra c te d from reuse vectors, w here each so lu tion corresponds to a p o ten tia l cache miss.

For each reuse vector, two k inds o f equations are generated : compulsory equations, th a t represent

cold misses, a n d replacement equations, which rep resen t th e interferences w ith o th e r references. The

num ber of cache misses is co m p u ted by traversing th e itera tion space an d solving th e system of

equations a t each ite ra tio n p o in t. A lthough solving these linear system s is an N P -h a rd problem , the

au tho rs claim th a t m ath em atica l techniques for m an ip u la tin g the equations allow th em to relatively

easily com pu te a n d /o r reduce th e num ber of possible so lu tions w ithou t solving th e eq u a tio n s. O ur

algorithm differs from theirs because in one single pass we can com pute th e stack h istog ram which

can be subsequen tly used to e s tim a te the num ber o f cache misses for any cache size, th u s avoiding

the repeated execu tion of th e expensive p art of th e algorithm .

Vera et al. [6 8] propose a so lu tion based on sam pling techniques to speed-up solving CM Es.

S ta tistica l sam p lin g allows th em to app rox im ate th e abso lu te miss ra tio for each reference by

analyzing only a sm all subset o f th e ite ra tion space. R esults are given w ith a confidence interval,

param eterizab le by the user.

G annon. Ja lb v and G allivan [28] propose p rogram transform ations to im prove cache an d local

m em ory behav io r assum ing softw are control over th e cache m anagem ent. T h ey use d a ta depen­

dences to co m p u te w hat m em ory locations have to be kept in the cache for best perform ance.

T he general m ethod is to define a reference window for each dependence, which con ta ins the

current set o f elem ents th a t m u st be in the cache, i.e. those th a t will be used again . To com pute

the reference w indow size, th ey s tu d y several cases o f d a ta dependences, an d classify dependences

as:

• uniformly generated dependence - th e d a ta dependence d istance vec to r can be com puted

exactly an d all its e lem ents are constan ts:

• uniquely generated dependence - a re s tr ic ted case o f uniform ly g en e ra ted dependence , in which

there is on ly one dependence distance vec to r w ith constan t elem ents;

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• cyclic self-dependences - charac terize inpu t and o u tp u t self dependences in loops, such as

red u c tio n s, where the sam e array elem ent is accessed in each itera tion . T hese dependences

are very im p o rtan t for cache m anagem ent.

T he reference window size is a good m easure of how m any elem ents have to fit in th e cache

for best perfo rm ance. However, if th e num ber of a rray elem ents exceeds the cache size, they

have to dec ide which reference windows to keep in th e cache an d which to evict (rem em ber the

proposed nI^o\vc ci?c^io ri>Lir'HfTt?r>icrir bv ^iic corripi^n r ̂ on n’mrinn'c *>»*n

kept, th e com p iler can determ ine the hit ratios. T hey use th is m echanism to s tu d y th e effect of

loop in terchange and tiling on locality.

2.3 Locality M etrics

Lilja et al. [42]. in a discussion ab o u t th e m em ory referencing behavior of m ultiprocessors, in troduce

the inter-reference distance, th e num ber of m em ory references th a t occur betw een two references

to the sam e m em ory location. T h ey use th e inter-reference d is tan ce to m easure tem p o ra l locality.

By averaging th e inter-reference d istances for all the variables in th e program , they o b ta in a single

num ber, th a t can be used as a m etric to characterize locality as follows: as the tem p o ra l locality in

the program increases, the value o f th e m etric decreases. We shall see in C h ap te r 4 th a t th is m etric

does not w ork in all the cases, an d we shall propose th e stack d istances as a m ore precise m etric

to charac te rize locality. However, the inter-reference d istan ce can be useful in p red ic tin g p rogram

referencing b ehav io r and im proving replacem ent algorithm s [51]. T h e inter-reference d is tan ce was

also used by P yo et al. [55] to guide loop transfo rm ations in several rou tines in th e Perfect C lub

benchm arks [7].

W olf a n d L am [73. 72] s tu d ied d a ta locality and how d a ta locality can be used to guide unim od-

u lar com piler transfo rm ations. In [73] they present a m a th em atica l form ulation o f d a ta locality

based on th e concept of reuse vec to r space. T hey define four types of reuse: self-temporal - a

s ta tic reference accesses th e sam e m em ory location, self-spatial - a s ta tic reference accesses m em ­

ory locations in th e sam e cache line, group-temporal - several d is tin c t s ta tic references access th e

sam e location , an d group-spatial - several d is tin c t s ta tic references access m em ory locations in th e

sam e cache line. T h e m etric used to quan tify locality is th e n u m b er of m em ory accesses (i.e.. cache

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misses) in one i te ra tio n of the innerm ost loop (the loops considered in th e p a p e r a re perfectly nested

loops). For each ty p e o f reuse they com pu te an e s tim ate o f the ac tua l n u m b er o f m em ory accesses

generated by each reference. T he reuse vector space is com pared aga inst th e localized ite ra tio n

space (the i te ra tio n space of a loop th a t exploits reuse) to see if the reuse ac tu a lly happens. D a ta

locality for a p ro g ram improves when as m any as possible of the reuse vectors a re included in the

localized i te ra tio n space, w ithout v io lating any dependences.

Most of th e ex p lo ited reuse is tem p o ra l reuse an d sp a tia l reuse betw een uniform ly g enerated

references. To q u a n tify the spatia l reuse, especially g roup-spa tia l reuse, th e references th a t o p e ra te

on the sam e a r ra y an d are uniform ly generated are p a rtitio n ed in equivalence classes, called u n i­

formly g en e ra ted se ts . T he num ber of m em ory accesses is com puted for each uniform ly generated

set and th e su m over all sets gives th e m etric for d a ta locality. W hile th is m etric works well for

guiding loop tran sfo rm a tio n s , it is not clear how the m etric can be ex tended to quantify in ter-loop

reuse or reuse ac ro ss en tire program s.

M cKinley a n d T em am [46. 47] did an extensive s tu d y of locality for p ro g ram s in th e S PE C '95

and Perfect C lu b benchm arks. T hey em ploy a reuse classification sim ilar to th e one developed

by Wolf an d L am [73]. bu t they quantify , th rough sim ula tion , the locality for different program

granularities: in tra -n e s t, in ter-nest an d en tire program . T hey also d iscuss th e im pact of th e ir

results on som e p o p u la r assertions ab o u t program behav io r w ith respect to caches. B oth stud ies

are m ostly q u a n ti ta t iv e , in the sense th a t they do no t propose any o p tim iza tio n s or algorithm s,

bu t they p resen t a very detailed descrip tion of w here an d w hat types o f m isses happen in these

benchm ark su ite s . T h ey conclude th a t b o th types o f reuse, spatia l and tem p o ra l, happen m ostly

in tra-nest, w hile in te r-n est reuse is m ostly tem poral reuse. T hey also observe th a t b o th capacity

and conflict m isses happen , although, not very o ften for the Perfect B enchm arks due to th e ir

sm all w orking-set size. Also conflict m isses happen m ostly in tra-nest, w hile ca p ac ity misses happen

m ostly in te r-n est.

A nother conclusion is th a t m any m em ory references w ith in num erical codes a re uniform ly gen­

era ted and m o st sp a tia l locality is exp lo ited w ith s trid e one. T his o b serv a tio n is in concordance

w ith our ow n observ atio n s, and we present in Table 6.1 a sum m ary o f th e loops in the SPE C fp95

benchm arks. F ro m these results we conclude th a t for a b o u t 75% of th e loops in th e suite, the com -

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

piler can com pu te dependence d istance vectors, and m ost d is tan ces have value 1. T h is behavior

was also observed by P etersen [50]. T h e re su lts are som ew hat in co n tra s t w ith those rep o rted in

[62. 41] m ain ly because our d a ta dependence test based on th e O m ega lib rary can handle sym bolic

sub scrip ts , an d thus, it reduces considerably th e num ber of "unknow n” variables.

2.4 Com pilation Using Performance Hints

T h e w ork p resen ted in th is section is not d irec tly re la ted to ou rs, b u t it underlines th e need for

com pile-tim e m odels for perform ance p red ic tio n to drive com piler op tim izations.

H aghighat and Polychronopoulos [32. 31] present one o f th e first approaches to use sym bolic

analysis inside th e com piler to predict loop execution tim e. T h ey show how by using perform ace

d a ta th e com piler can generate b e tte r schedules for parallel loops. T h e new scheduling schem e.

balanced chunk scheduling uses the com pile tim e estim ation o f th e execution tim e of an ite ra tio n

to balance th e work executed by each processor. Since each p rocessor executes consecutive ite ra ­

tions (chunks) it benefits from increased locality. T he schem e is show n to ou tperfo rm o th e r loop

scheduling techniques because it b o th balances the work an d ex p lo its locality.

Wolf. M aydan an d C hen [74] present th e design and im p lem en ta tio n (inside the M IP S pro com ­

piler) of a com piler a lgorithm th a t app lies loop p erm u ta tio n , o u te r unrolling, tiling, fission and

fusion tak in g into account cache behavior, instruction schedu ling an d register a llocation . T hey

en u m era te th e search space of all possible transfo rm ations, se lec ting the set of tran sfo rm atio n s

th a t a re es tim a ted to give the best possib le overall perform ance. T h e ir transfo rm ation a lgorithm

d epends u pon having an evaluation function th a t can e s tim a te how m any cycles a given (possibly

transfo rm ed) loop nest will take to ru n on th e targe t m achine. T h e es tim atio n function com bines

es tim ates from two m odels, one for th e processor and th e o th e r for th e cache.

T h e processor m odel estim ates th ree ty p es of constra in ts: co m p u ta tio n a l resources, latencies

an d reg isters. To e s tim a te th e co m p u ta tio n al resource needs th ey coun t th e num ber of o perations

a t h igh level, by w alking th e ab strac t sy n tax tree, and ignore o p e ra tio n dependences an d com m on

subexpressions. T h e processor m odel also allows for m ultip le func tiona l un its. To m odel la tencies,

an o p e ra tio n dependence g raph is co n stru c ted , and algo rithm s for softw are p ipelin ing are used to

e s tim a te th e n u m b er of cycles.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he cache m odel has two tasks, to select a good tile size and to co m p u te the loop overhead

in troduced by tiling . T h e m odel com putes a fo rm ula for th e loop cost, in cycles per ite ra tio n , of

th e tiling tran sfo rm atio n , as a function of the unknow n tile sizes. It th e n a tte m p ts to m inim ize this

function. T he m odel so rts th e references into un iform ly generated se ts , an d com putes a footprin t

(th e num ber of by tes in the cache used by th e reference or set of references) for ail th e sets. It

aggregates the fo o tp rin ts for th e sets into foo tp rin ts for each loop nest.

The goal of ite ra tiv e com pilation . Kisuki e t. a l [38]. is to co n stru c t a search space consisting

of perm utations of different op tim iza tions an d try in g to find a m in im um in th is op tim izations

space. The search space can grow very large since it includes as se p a ra te op tim iza tions variations

of the sam e o p tim iza tio n w ith different p aram eters , for exam ple, tiling w ith different tile sizes. The

process of finding th e m inim um consists of a g rid -based search a lg o rith m (in order to reduce the

num ber of poin ts th a t need to be checked) th a t applies the set of o p tim iza tio n s a t a search point,

runs the program , collects the resu lts, and decides which points to sea rch next. W hile prom ising,

th is solution 1ms two m ajo r draw backs: first, it is very tim e consum ing. T h e larger th e num ber of

optim izations, th e larger the search space, and th e num ber of po in ts for which the program needs

to be executed. T h e second draw back is th a t one can optim ize codes on ly for the specific machine

on which th is co m p ile r/o p tim izer runs, since different a rch itec tu res have different charac teristics

th a t can im pact th e perform ance.

ATLAS [71] p resen ts an o th er approach. In th is system , a set o f linear algebra routines is

optim ized a t in s ta lla tio n tim e, by selecting th e best param eters for th e m achine on which th e code

will run. ATLAS co n s tru c ts a search space for tiling param eters based on cache p aram eters hints,

o r alternatively, if no h in ts are available, a covering range. It th en com piles the code and runs

it. m easuring its perform ance. T h e best perform ing tiling param eters a re then in teg ra ted in the

lib rary installed on th e system . W hile the in s ta lla tio n process can tak e hours or days, th e code

is highly tim ed to th a t specific m achine, and th u s, any software th a t uses rou tines in th e package

will benefit from th e perfo rm ance of the bu ild ing blocks. T h is m e th o d could be ap p ro p ria te for

building optim ized lib raries, b u t no t necessarily for op tim izing general p u rpose code.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Com pile-tim e Performance Prediction

T h e problem of pred ic ting program perform ance a t com pile-tim e is inherently difficult. T here are

m any factors th a t m ake this problem hard . F irst, c ritica l in form ation needed by th e com piler often

depends on th e in p u t d a ta of th e p rogram . Second, m odern arch itec tu res are im plem ented so th a t

th e hardw are op tim izes execution using different techniques, such as exploiting in struc tion level

parallelism (IL P). out-of-order execution , instructions an d d a ta caching, etc. A perform ance pre­

d iction model needs to consider all th ese techniques for an accu ra te es tim ate of ac tu a l perform ance.

M ultiprocessor system s add an o th e r dim ension because o f d a ta d is trib u tio n and com m unication be­

tween processors. T h ird , there is th e issue of the low-level op tim iza tio n s perform ed by th e com piler.

Typical op tim iza tions are code scheduling to exploit ILP and reg ister a llocation. A com pile-tim e

perform ance p red ic to r is usually invoked much earlier th a n th e code generation phase, therefore it

needs to e ith er im plem ent o r e s tim a te the low-level o p tim iza tio n s. N ext, there is the problem of

prediction accuracy. If the p red ic to r approx im ates a piece o f code, an d uses th a t value to predict

a larger chunk o f code, com pounding the estim ates m ay m agnify th e e rro r significantly. A nother

problem is cross-m achine predic tion : we envision ou r system being used to com pare different sys­

tem s. It is not always possible to have access to all th e m achines for which one w ants the evaluation

because some o f th e m achines m ay n o t exist. T herefore, it is desirab le for the p red ic tion system

to allow for m achine independent p red ic tion w ith th e possib ility to custom ize it for a rch itec tu ra l

param eters.

Many different stra teg ies have b een tried to address a ll these problem s, such as: using heuris­

tics [4]. profiling [77. 61]. run -tim e m easurem ents [22. 3], an a ly tica l m odels [23. 69. 12] an d combi­

nations of these. T h e results have b een m ixed, show ing th a t m uch w ork is still needed.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this ch a p te r we present our app roach , which represen ts perform ance d a ta sym bolically in

the form of expressions contain ing variab les for m achine p aram eters , o p e ra tio n counts and in p u t

d a ta values. T h e com piler synthesizes perform ance expressions and in s tru m en ts th e code to ex trac t

values unknown a t com pile-tim e. O u r sym bolic expressions decom pose th e overall perform ance into

four parts: C P U . m em ory, com m unication an d I/O . T h e to ta l execution tim e is represented as:

Ttotal = T c p u +■ T \ i e . \ I + T c O M M -r T [o (3 . 1)

where Tc p c is th e co m p u ta tio n tim e sp en t by the processor itself. T \ i e \ i is th e tim e spent accessing

the memory hierarchy. Tq o m m >s th e in te rp ro c ess /th rea d com m unication tim e , an d T; q is the tim e

spent doing I /O . In th is work we shall m odel the first two term s only.

Each term in E quation (3.1) consists o f a sym bolic expression, i.e.. a m ath em atica l form ula

expressed in te rm s of program input values an d perhaps som e profiling in fo rm ation , such as branch

frequencies. T h e expression involves p aram ete rs represen ting ch arac te ris tic s o f th e targe t m achine

and thus, is a function of the source code, the inpu t d a ta and th e ta rg e t m achine.

To estim ate th e execution tim e o f a program , we s ta r t by es tim atin g th e execution tim e of

each basic block. T h e sym bolic expressions o b ta in ed are aggregated into expressions for com pound

statem ents.

The problem s m entioned above are addressed as follows:

• missing in form ation at compile-time - th e p red ic tion system m odels unknow n values as sym ­

bolic variables. T h e perform ance can be expressed e ith e r sym bolically, o r if the execution

tim e is desired as a precise value, th e variables can be su b s titu ted w ith values ob tained by

profiling.

• portability across machines - hardw are param ete rs a re represen ted as variab les in the sym bolic

expressions. T h ere are some assum ptions m ade ab o u t th e o rg an iza tio n o f th e ta rg e t m achine,

such as th e num ber and type of th e functional u n its , th e size and n u m b er of levels of caches,

bu t the a c tu a l details are rep resen ted sym bolically an d evaluated on dem and , based on a

m achine d esc rip tio n file.

• compiler low-level optimizations - to address th is p roblem we use h eu ris tics , explained la te r

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in this chap ter.

In the following sections we de ta il the pred ic tion m odels for th e processor an d th e m em ory

hierarchy.

3.1 CPU Prediction

In this section we describe th e com pile-tiine m odel of th e processor. Tc p v in E quation (3.1)

estim ates the tim e sp en t by th e processor doing co m p u ta tio n . We assum e a su p ersca la r processor

th a t is capable of issuing an d executing several opera tions per cycle. We also assum e th a t all the

m em ory load and s to re o p era tio n s are cache hits. T h e tim e to access th e m em ory hierarchy is

estim ated separately , an d we shall d e ta il the m odeling of cache accesses in Section 3.2.

The com piler counts th e num ber o f operations in th e high level language code. T hese operations

include: integer a rith m e tic an d logical operations, floating point operations, an d load and store

operations assum ing no cache misses. In add ition , it considers as basic opera tions F o rtran intrinsic

functions, such as square ro o t (m any curren t processors have functional un its th a t execute square

root operations, and can be estim ated using m icro-benchm arking otherw ise) and trigonom etric

functions. We also consider as basic operations function calls an d loop overheads, th u s tak in g into

account the cost o f b ranch ing o p era tio n s and bookkeeping op era tio n s such as p a ram ete r passing

an d loop index testing .

The prediction is expressed as a sym bolic expression of the form:

^ g r o n p s

Tc p u — C tjc leT im e x ^ (counti x co st,). (3.2)
t = i

where counti are sym bolic expressions representing th e num ber of o p era tio n s in group i (we

explain the groups of o p e ra tio n s sh o rtly), and cost, rep resen ts th e hardw are cost for th e operations

in group i. T h e hardw are costs, cost,-, can be o b ta in ed e ith e r from th e p rocessor's m anual, design

specifications, or by using m icrobenchm ark ing [60]. T h e la tte r is usually th e m ost convenient way

to get the values associa ted w ith in trin sic functions an d loop overheads if th e m achine is available.

For the experim ental re su lts p resen ted in C h ap te r 6 we ac tu a lly use b o th th e p rocessor m anuals

an d m icro-benchm arking.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No G roup Nam e O perations costi (cycles)
R10000 U ltra II z

1 Integer A dd Integer ad d itio n and su b trac tio n 0.5 1

2 Integer M ult Integer m u ltip lica tio n 6 18
3 Integer Div Integer D ivision 35 37
4 FI. Add Single precision add ition , su b trac tio n and

m ultip lica tion
1 3

5 FI. Div Single precision division 14 1 2

6 Dbl. Add Double precision addition , su b trac tio n and
m ultip lication

1 3

7 Dbl. Div OnuKIa r>ror*icion rlivwion — ---- - 2 1 oo

s Sqrt Square ro o t 27 25
9 Trig T rigonom etric operations 60 80
1 0 Intrinsic M inum um . m axim um , abso lu te value, etc. 1.5 9
1 1 Fun. Call Function calls 1 5
1 2 Loop ovhd Includes increm ent and b ranch and com ­

pare
41 18

13 Scalar load Integer an d single precision load I I
14 Scalar sto re Integer an d single precision s to re 1 I
15 Dbl. load Double precision load 1 I
16 Dbl. store Double precision store 1 1

17 Array load One d im ensional array load (includes index
com puta tion)

5 5

18 Array store One d im ensional array sto re (includes index
com puta tion)

5 5

19 N dim array load M ultid im ensional array load 1 0 1 0

2 0 N dim array s to re M ultid im ensional array sto re 1 0 1 0

T able 3.1: O peration groupings

To reduce th e n u m b er of independen t variables in th e sym bolic expressions, operations are

g rouped into sets based on the o p e ra tio n type and th e d a ta size on w hich th ey operate. For

exam ple, for the m achines considered in th is work, we g roup to g eth er single precision add ition

an d m ultip lication since, on m ost c u rre n t arch itectu res, these in stru c tio n s have sim ilar latencies

being executed in th e sam e or iden tica l functional un its . We d istingu ish betw een m ultip lication

an d division since th e d ivision o p era tio n usually has longer la tency th a n m ultip lica tion . For o th er

processors, the groupings could be a d a p te d , b u t we consider th e groups p resen ted in Table 3.1 as a

reasonable base-line for cu rren t processors. W e have used th is g rouping in a p ro to ty p e th a t m odels

th e M IPS R10000 and th e U ltraS parc I l f processors. T h e tab le enum erates th e groups and for each

g roup presents th e latenc ies th a t we used in o u r pred ic tions for th e tw o processors.

U sing sim ple sym bolic a rith m etic , th e expressions for basic blocks are com bined to generate th e

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost of operations for each s ta tem en t or block of s ta tem en ts . For exam ple, consider a loop of the

form:

DO i = 1, m
DO j = 1 , n

51
52

ENDDO
ENDDO

A fter we estim ate th e cost for S i an d S2. C ^ i and CS2 ■ we estim ate th e cost for loop j as follows:

O d o .j = n x (Loop ovhd 4 C's 1 4 C 5 2)

T h e cost for loop i is:

C dO-i = rn x {Loop ovhd + C q o .j)

Consider ano ther exam ple. an IF s ta tem en t of th e form:

IF cond THEN
SI

ELSE
S2

END IF

th e cost is:

C i f = B r a n c h ovhd 4- C cond -I- C s i x f r e q (S l) 4- C52 x f r e q (S 2)

If the branch frequencies f r e q (S l) and f r e q (S 2) are known a t com pile tim e (th ro u g h profiling

inform ation or user an n o ta tio n s), th e values can be su b s titu ted . O therw ise th e sym bolic values are

carried in the pred ic tion expressions.

Using th is m ethod , th e cost expressions for different levels of g ran u la rity in th e program (blocks

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of s ta tem en ts , loops, procedures) are com bined u n til a unique expression could be genera ted for

th e en tire program .

A lthough th is is a very sim ple stra tegy , it has p roven reasonably a c cu ra te when no com piler

op tim iza tio n s a re applied, as can be seen in the ex perim en tal results p resen ted in C h ap te r 6 .

In o rder to accura te ly predict th e perform ance for op tim ized codes we have to apply, or a t least

ap p ro x im a te in our model, the low-level op tim iza tions perform ed by th e n a tiv e com piler. We have

chosen to app rox im ate these o p tim iza tio n s by using heuristics applied a t high level source code.

We found th a t th e following heuristics app rox im ate b est the op tim iza tions perform ed on th e set of

benchm arks th a t we studied:

• Elim inate loop invariants. T h is is a sim ple o p tim iza tio n applied by all optim izing com pilers

and it can be done at high level.

• Consider only the floating point operations. B ased on the observation th a t , in scientific codes,

th e useful com putation is done in floating point an d in optim ized code integer operations are

used m ostly for control flow an d index co m p u ta tio n , we assum e th a t superscalar processors

can overlap the cost of index co m p u ta tio n w ith th e floating po in t operations. We take into

account th e control flow o p era tio n s (branching) in the form of loop overheads.

• Ignore all m em ory accesses that are not array references. T h e reason for this heuristic is

th a t sca la r references occur in frequen tly in scientific codes and . if th ey do. m odern processors

o ften have enough registers to buffer them .

• Overlap operations. For m ultip le issue a rch itec tu res w ith m ultip le functional units, we m ust

allow opera tions in different categories to overlap execution. For exam ple, on th e M IPS

R 1 0 0 0 0 processor, there can be 4 in structions issued in one cycle chosen among: 2 in teger

op era tio n s. 2 floating point o p era tio n s. 1 m em ory operation o r 1 b ranch .

N ote however th a t these o p tim iza tio n s are m ostly su ited for scientific codes, in which, m ost

o f th e co m p u ta tio n is done in loops accessing arrays an d executing floa ting poin t operations. To

accu ra te ly m odel optim izations done for in teger codes m ore research is needed.

Using these approxim ations we o b ta in a lower b o u n d on the p ro cesso r’s execution tim e. We

ten d to u n d erestim a te the execution tim e in th e p rocessor since we consider a ll th e operations inde-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

penden t, an d therefo re we "exploit" more in struc tion level parallelism th a t m ay ac tu a lly be present

in th e code. However, we do not consider o th er low-level op tim iza tions, such as loop unrolling and

reg ister a lloca tion , nor we consider hardw are reordering of the operations. T hese op tim iza tions

usually reduce th e num ber o f operations a n d /o r increase th e po ten tia l for ILP. However it is b o th

very difficult an d too m achine and com piler specific, to consider these op tim iza tions a t high level

language code.

T h e m odel could be im proved by using an o p era tio n s dependence g raph , th a t takes in to consid­

era tio n dependences betw een operations to com pute th e overlapping. However, such a m odel will

have increased com plexity, up to a point where th e p red ic to r duplicates th e code scheduler from

th e com piler. We have com prom ised some accuracy for th e sim plicity of th e m odel.

Tw o m ain ch a rac te ris tic s set th is model ap a rt from o th e r related work: the m achine indepen­

dence and the com piler independence. The m achine independence is realized by using sym bolic

expressions to represen t hardw are costs for groups o f op era tio n s. T his is opposed to the m ethod

used by B alasundaram e t al. [3] and Fahringer [22] o f m easuring kernels, an d try ing to m atch the

code to th e kernels. T h e com piler independence is achieved by using heuristics to ap p ro x im a te the

tow-level o p tim iza tio n s th a t could be applied by th e com piler. T his is in co n tra st to the approach

used by Saavedra and S m ith [59] in which they tried to account for th e com piler low-level o p ti­

m izations in th e hardw are costs o f the operations. It is also different from W ang's app roach [69]. in

which the p red ic to r m ust have access to the com piler's low-level op tim izations. B o th these m ethods

need to be re im plem ented w hen th e undelying com piler changes, however in som e cases th ey can

be m ore precise th a n ours.

3.2 M em ory Hierarchy Prediction

T h e te rm T \ i e \ i in E q u a tio n (3.1) estim ates th e tim e sp en t accessing m em ory locations in the

m em ory hierarchy. As we m entioned before, w hen e s tim a tin g th e execution tim e of basic opera tions

we assum e all m em ory references tire cache h its in th e first level cache. However, m any accesses

are no t served from th e first level cache, in p a rt because applications have d a ta se ts m uch larger

th a n th e cache.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T \ ; e m can be expressed as follows:

■xlevels

T s i e u — C y c le T im e x ^ (M t x C ,). (3.3)
i

w here A/j represents th e n u m b er of accesses th a t miss in th e i th level of th e m em ory hierarchy, and

Ci represen ts the p en a lty (in m achine cycles) for a miss in th e ith level of th e m em ory hierarchy. C,

is com pu ted using m icro-benchm arking , as in [58]. We briefly discuss the cache m icro-benchm arking

here.

T h e m icro-benchm arks (narrow sp ec tru m of benchm arks) are a set of experim ents used to

m easure memory hierarchy charac te ristic s and perform ance. In p articu la r, they m easure p rim ary

an d secondary cache ch a rac te ris tic s and th e TLB for a uniprocessor. Each experim ent m easures the

average tim e per ite ra tio n required to read , modify, an d w rite a subset of elem ents belonging to an

a rray of known size. T h e n um ber of m isses will be a function o f the size of th e a rray and th e strid e

betw een the array elem ent accessed. From the num ber o f references an d th e num ber of misses,

as th e strid e and the size o f th e a rray are varied, we can com pu te the relevant m em ory h ierarchy

p aram eters , including th e cache size, th e cache line size, th e tim e needed to satisfy a cache miss,

an d th e associativity. For exam ple, assum e a m achine th a t has a cache w ith a C -l-byte w ords size,

a cache line size of b w ords, an d an associa tiv ity a. F u rth erm o re , consider a one-dim ensional a rray

o f size N 4-byte elem ents. A subset o f th e array elem ents is accessed in a loop th a t con ta ins a

sim ple floating-point o p e ra tio n . Each subset is generated by traversing th e a rray w ith a ce rta in

s trid e . Therefore, each experim ent is characterized by ;V (th e array size) an d by .s (th e s trid e).

A fter p lo tting all the ex p erim en ts on a g raph , we can d e te rm in e different regim es, from w hich the

unknow n param eters o f th e cache are derived.

O nce the cache p a ram e te rs are defined and the n u m b er o f cache misses for a loop is e s tim a ted ,

we can tran sla te the n u m b er of misses in execution tim e . In the rem ainder of this ch a p te r we

propose two models for e s tim a tin g th e num ber of cache m isses a t com pile-tim e. D epending on th e

am o u n t of com pile-tim e in fo rm ation we es tim ate the n u m b er of cache m isses using an accu ra te

m odel, th e Stack D istances M odel (Section 3.3). or. if n o t enough d a ta dependence in form ation is

available , we estim ate using th e Ind irect Access M odel (S ection 3.4).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S t - i(l) St(1)•

S t - i(2) St(2)
. . .

x r ,

S U (A - l)
s .

S t (A - l)
$ - i (A) • S t(A)

Sf-t(A 4- 1) St{A -f 1)

F igure 3.1: S tack u p d a te when the cu rren tly referenced location has been previously accessed

3.3 The Stack Distances Algorithm

T h e S tack Distances M odel (SDM) is based on the stack processing a lgorithm . T he classical

s tack processing a lgorithm [43]. generates a stack h istogram for a program by analyzing a trace of

th e m em ory references. T h e trace can be analyzed e ither off-line, a fte r th e program has finished

executing , or on-the-fly - d u ring the p rog ram execution. O r. when enough inform ation is known

a t com pile tim e, such as all th e d a ta dependence d istance vectors, affine a rray subscrip ts, e tc .. we

propose to generate the stack h istogram a t com pile time.

3.3.1 Introduction

T h e stack processing a lgorithm takes a trace o f m em ory references, cache line references or v irtu a l

page references in a program , an d builds a s tack as follows: if a m em ory location has been previously

referenced (stack h it), we record th e d is tan ce . A . from th e top o f th e stack to th e position a t which

th e reference is found, an d move th e reference on the top o f th e stack , all th e references betw een

th e top and position A being pushed dow n one position. T h e references below th e curren t reference

p osition are not affected, as show n in F igu re 3.1. If the reference is th e first access to th a t m em ory

location , we let the stack d istance A = oc and push the reference on th e stack , using a norm al

push operation .

T h e result of th e stack processing a lg o rith m is a h istogram th a t counts th e num ber o f accesses

for all s tack distances. F igure 3.2 shows a h istogram com puted in th is way.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h is h istog ram can be used to ca lcu la te th e n um ber of out-of-core page references, or equiva­

lently. th e num ber of cache misses, for any m em ory o r cache size. For a physical m em ory of size

C. all th e accesses at stack d istances of less th a n C are in-core (E q u a tio n (3.4)). and all the o thers

accesses are out-of-core (E qua tion (3 .5)). S p littin g th e stack d ep th h istog ram a t C. th e area under

th e h is to g ram curve a t the left of C is th e n um ber of in-core references, w hereas th e a rea to the

right of C represen ts the out-of-core accesses.

r

H t(C) = J 2 ^ 6) <3.4)
<5 = 0

x
Mi (C) = Yi (3.5)

o = C ^ l

w here S is th e stack d istance, and s (J) is the n um ber of references a t stack d istance <5.

In th e sam e way. the stack h istogram can be used to predict th e n um ber of cache hits and cache

m isses th a t occur in a loop nest. In o rder to g en e ra te th e stack h istog ram a t com pile-tim e, we m ust

co m p u te two things: the stack d istances a t which references occur, (all th e po in ts on th e r axis of

th e s tack h istogram), and the num ber o f references th a t occur for each stack d istance (the points

on th e y axis of the stack h istogram).

Before going into details, we discuss th e design choices and th e lim ita tio n s of th e curren t im­

p lem en ta tio n of the algorithm .

As we m entioned before, we focus on scientific program s, therefore we consider for inclusion in

th e s tack h istogram only references to a rray elem ents. Again, th e m o tiva tion is th a t , in scientific

codes, sca la r variables are m ostly used for indexing and thus reside in reg isters. VVe consider only

array references w ith affine su b scrip ts for two reasons: first, the O m ega te s t (th e d a ta dependence

te s t th a t we use) works only on affine su b scrip ts , for all o ther su b scritp s it assum es th a t the depen­

dence exists: an d second, o u r a lg o rith m for co m p u tin g array sections (p resen ted in Section 3.3.5)

can hand le only affine subscrip ts. However, as show n in [50] for th e P erfect C lub benchm arks

an d from o u r own s tu d y of th e S PE C fp95 benchm arks, affine su b scrip ts c o n s titu te m ore th an 80%

o f th e su b scrip ts in these su ites. T h e o th e r m ost com m on form is su b scrip ts o f subscrip ts, i.e..

th e su b scrip t expression is an o th e r a rray elem ent reference, which occu r m ostly in sparse m atrix

o pera tio n s. W e handle th is ty p e of su b scrip ts using th e Indirect A ccesses M odel (see Section 3.4).

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
um

be
r

ol
A

cc
es

se
s

b

5000 10000 15000
Stack Distances

20000 25000 Infinity

Figure 3.2: S tack h istogram for QCD

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lthough th e s tack histogram can be used to pred ic t th e num ber of cache misses a t different

g ran u la ritie s in a program , i.e. loop n ests , routines, etc .. th e com pile-tim e a lgorithm p resen ted in

th is w ork genera tes s tack histogram s for loop nests only. W e consider only nests for which th e d a ta

dependences are uniform ly generated [28], th a t is. th e d is tan ce vectors are defined and co n stan t.

W e could app ly th e algorithm for dependences where th e d is tan ce vectors have a lower bo im d. by

considering th e m in im um distance in o u r calculations, however, th e es tim atio n will no longer be

to ta lly accu ra te . D epending on the use o f th e estim ation , th is loss of accuracy can bp to le ra ted ,

and th e a lg o rith m applied with success. F u rth e r research needs to be done to enable the es tim atio n

on m ultip le loop nests.

T h e com pile-tim e stack algorithm can es tim ate th e n um ber of misses for fully associative caches

w ith th e LRU replacem ent policy. T h e replacem ent policy co n stra in t is ac tu a lly a co n stra in t im­

posed by th e s tack processing m ethod , in order to sa tisfy th e inclusion p roperty (the stack s for

m em ories of size C o r lower are included in the stack for m em ory of size C 4- 1). We also consider

each loop nest to s ta r t w ith a cold cache, i.e.. none of th e a rray elem ents accessed in the loop are

present in th e cache when the loop s ta r ts .

In exp lain ing th e algorithm we will consider cache lines of one a rray elem ent in order to keep the

algorithm s "sim ple". We remove th is re s tr ic tio n in Section 3.3.8. Also, in presenting the algo rithm s

we assum e th a t th e loops are norm alized, i.e.. they have th e s tep equal to 1. T h is restric tion is ju s t

to keep th e eq u a tio n s simpler, and th e im plem entation su p p o rts loop increm ents different from 1 .

3.3.2 Algorithm Overview

T h e s tack d is tan ce is. by definition, equal to the num ber o f d is tin c t m em ory locations accessed

betw een two references to the sam e m em ory location, o r oc if th e re is no previous reference to

th e m em ory location . Inside the com piler, th e fact th a t two references access the sam e m em ory

location is rep resen ted by a d a ta dependence (including in p u t dependences). T herefore, we w ant

to co m p u te for each dependence the n u m b er of d istinct a r ra y elem ents accessed betw een th e source

an d th e ta rg e t o f th e dependence (we ca ll th is the n um ber o f d is tin c t a rray elem ents sp an n ed by

th e dependence). However, a dependence can span different num bers o f d is tin ca t a rray elem ents

d epend ing o f th e ite ra tio n point in w hich th e ta rg e t is accessed. T h is follows from th e fact th a t a

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s ta tic array reference m ay access a d istinc t a rray elem ent or no t. depending on th e o th e r incom ing

dependences on th e a rray reference for th e p a r tic u la r ite ra tio n point in which th e dependence is

considered.

The com pile-tim e algorithm for com puting s tack d istances has the following m a jo r steps:

• iteration space partitioning - the ite ra tio n space is p a rtitio n ed according to which dependences

are legal a t each ite ra tion point (Section 3.3.3). W ith in a p artition all th e references will have

cue sam e set o f valid dependences.

• dependence span computation - for each incom ing dependence, in each p a rtitio n , we com­

pute th e ite ra tio n points are executed betw een th e source and the ta rg e t of the dependence

(Section 3.3.4)

• array sections computation - we com pute for each dependence and for each array reference,

the num ber o f d is tin c t elem ents in the array , accessed betw een the source and th e ta rg e t of

the dependence. We also com pute the sum over o f d is tin c t elem ents over all a rray references

and use th e su m to label the dependence (S ection 3.3.5)

• stack histogram computation - the stack h is to g ram is com puted using prev iously determ ined

inform ation (S ection 3.3.6)

Note th a t ite ra tio n space partitions, dependence sp an s an d array sections a re all sets of integral

elem ents, we call th em regions. It is desirable to use a com m on represen ta tion for all these regions,

so th a t we can o p tim ize the algorithm s th a t o p e ra te on them . T he following o p era tio n s need to

be defined on th e regions: union, intersection, difference an d projection. U nion, in tersec tion and

difference are th e usual set operations. P ro jection is th e o p era tio n th a t m aps an ite ra tio n vector to

th e array elem ent accessed in the itera tion . T h e m ap p in g is su b jec t to th e a rray indexing function.

We had several o p tions available to represen t th e regions. Below we discuss som e of th e advan­

tages and d isad v an tag es of each no ta tion , an d ou r chosen m ethod based on th e tr ip le t no ta tion .

There is a su b s ta n tia l am ount of work th a t has b een done for representing a rray sections. Four

m ajo r directions have evolved for representing su b se ts o f a r ray elem ents: lin ear co n stra in t based

polytopes [53. 54. 19. 20. 16]. reference lists [10. 40], tr ip le ts [11, 34] and linear m em ory access

descriptors (LM A D s) [36].

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e linear co n stra in t-b ased techniques a re very powerful, general, and the m ost accu ra te n o ta ­

tion . However, by using Fourier-M otzkin e lim ination to solve th e linear inequalities system , there

a re several drawbacks: first, th e theo re tica l com plexity of th e p rob lem is exponen tia l, and second,

it requ ires th a t the linear inequalities form a convex hull, fo rcing a loss of accu racy w hen some

regions m ust be w idened to m ake them convex. T he m ethod also rep o rts all th e so lu tions, not only

th e in teger ones. We are s tu d y in g the posib ility of using E h rh a rt polynom ials [15]. w hich generates

th e se t o f integer so lu tions for a linear system , as a m ore a c c u ra te and faster technique to replace

o u r cu rren t im plem entation .

T h e reference list techn iques rely on lineariz ing the a rray s a n d m aking a list to represen t each

ind iv id u a l array reference in a code section . T his m ethod w as no t designed to sum m arize array

access inform ation, an d therefore , is very cum bersom e to use for o u r purpose.

T h e trip le t n o ta tio n is a sim ple rep resen ta tio n for a set o f in teger values for each dim ension,

w hich s ta r t a t a lower bou n d and proceed to the upper b o u n d v ia a s tride. Each dim ension is

rep resen ted by a trip le t. [/ : s : «]. where /. s an d u represent th e lower bound, s trid e , and upper

b o u n d o f the array section . T rip lets rep resen ta tio n of a rray sections is very popu lar, a lthough

th ere a re instances, such as a rray accesses in trian g u la r loops, o r som e coupled su b scrip ts in which

th e a rray sections lose som e accuracy. We have im plem ented o u r represen ta tion based on trip le t

n o ta tio n because of its sim plicity . We ex ten d ed the n o ta tio n to cover for som e of th e draw backs,

such as allowing the loop index in th e s tr id e expression. H owever, there are cases in which this

n o ta tio n in not to ta lly accu ra te , and we will discuss some o f th ese cases in Section 3.3.5.

L inear M emory Access D escrip tors (LM A D s) combine a generalized trip le t n o ta tio n w ith con­

s tra in ts . At the tim e of th is work the LM A D s were not fully developed , and m ore research needs

to be done to use them in th is work.

W e presen t now th e step s of the stack d istances a lg o rith m in m ore detail.

3.3.3 Iteration Space Partitioning

In th is section we p resen t th e ite ra tio n space p artitio n in g a lg o rith m . T h e ite ra tio n space is p a r­

titio n e d in to regions for w hich th e dependence spans Eire th e sam e for each dependence a t all the

ite ra tio n poin ts in th e p a r titio n . T h is allows us to reduce th e n u m b e r of po in ts a t w hich dependence

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input:
T h e bounded ite ra tio n space for a loop nest of d ep th k I S = n f = i [^ i - L'i\-
where Li and (7, are th e lower an d u p p er bounds of th e itfl nested loop, respectively
T h e d a ta dependence g rap h w ith d is tan ce vectors co m p u ted

Output:
T h e partitioned ite ra tio n space P a r t i S . such th a t in each partition ,
all incoming dependences are th e sam e.

M ethod:
set P a r t l S = { /5 }
foreach dependence 6 com pute th e valid space V'S(<5) as follows:

if 6 is luup in d e p e n d en t t h e n
V S (6) = I S

if 6 is loop ca rried w ith d is tan ce vector cl = (d p dodfc) then

V S (6) = Y l l l { [L , + d , - U,] i f (/ ‘ > 0
LLl- l \ [L i . U i - d i] i f d j C O

tem p — o
foreach x € P a r t I S

tem p = ternpLS {x — (x D V'5(<5)} U { x fl V '5(J)}
end foreach
P a r t l S = tem p

end foreach

F igure 3.3: Ite ra tio n space partition ing a lg o rith m

spans are com puted, because we com pute one sp an per p a rtitio n for each dependence, as opposed

to com pu ting one span per ite ra tio n point. In general, we do not know how many ite ra tio n s a re in a

loop, except symbolically. T herefore, we p a r ti t io n th e itera tion space, such th a t for all th e ite ra tio n

p o in ts in one partition , all th e array references have exactly th e sam e incoming dependences. For

exam ple , if there is a loop ca rried dependence on an array reference w ith a positive d istance d. the

a rray elem ents accessed in th e first d ite ra tio n s of th e loop will n o t have th a t incom ing dependence,

therefo re the itera tions in which these elem ents are accessed will b e in a separate p a r titio n from

th e rest o f th e itera tions in th e loop. A fter p a rtitio n in g the i te ra tio n space, we com pute one a rray

section for each array reference an d each dependence th a t sp an s th e reference in each p a rtitio n .

T h e p a rtitio n in g a lgorithm is p resen ted in F ig u re 3.3.

T h e in p u t to the a lgorithm consists of th e ite ra tio n space I S . w hich is a polytope th a t con ta ins

one po in t for each ite ra tio n o f th e nest. W e express the ite ra tio n space as the ca rtesian p ro d u c t

o f th e in teger intervals [Li.Ui\ (also called dom ains in lite ra tu re), w here Li and Ut a re th e lower

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I__

F igure 3.4: P a rtitio n ed ite ra tio n space for m atrix m ultip lication .

an d upper b o u n d s o f th e ith nested loop respectively. A nother input to th e partition ing a lg o rith m

is the d a ta d ep en d en ce graph, w ith all th e d istance vectors com puted. A ssum m ing a loop carried

dependence w ith d istance d. th a t is carried by only one loop, the a lgo rithm sp lits the ite ra tio n space

in to two p a rtitio n s , one th a t contains all the ite ra tio n s from L to L ~ d . an d one th a t con ta ins the

o th e r itera tions, from L 4 - d to U . If th e d istance d is negative, the p a r titio n s are from L’ - d to

U and from L to U — d. The second p a rtitio n in b o th exam ples is ca lled the valid space o f the

dependence, b ecau se only the a rray elem ents referenced in the itera tions con tained in th is p a r titio n

have this incom ing dependence. If th ere are m ultip le loops th a t ca rry a dependence, th e sam e

operation of s p li tt in g the ite ra tion space is perform ed for each loop. T h e re will be two p a rtitio n s

for each dependence , only the p a rtitio n s will no longer be rectangular.

In general, th e num ber of p a rtitio n s is less th a n 2*v . where N is th e num ber of loop-carried

dependences in th e loop nest, because som e dependences may g enerate th e sam e p artitio n s. In

F igure 3.4 we show the partitions for th e m atrix m ultip lication code. T h ere are 6 loop carried

dependences in th is loop nest, b u t on ly th ree o f th em generate d is tin c t p a r titio n s , and th u s there

a re 8 p artitio n s.

Note th a t a ll th e loop bounds an d ite ra tio n space p artitio n s are exp ressed sym bolically. How­

ever. we requ ire th a t th e dependences a re uniform ly gen era ted , i.e.. all th e elem ents of th e d is tan ce

vectors to be c o n s ta n t. W e'll show la ter, th a t , even w hen th e dependence d istance vec to rs are

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not constan t b u t a lower bound can be co m p u ted , we can use the lower bou n d to app rox im ate

th e d istance and u su ally ob tain a reasonable es tim a tio n for th e num ber o f d is tin c t array elem ents

accessed.

Next we need to com pute the ite ra tio n p o in ts spanned by each dependence in each p artitio n ,

and thus, the n u m b er o f array elem ents sp an n ed by each dependence. In th e following discusion

we’ll present ou r exam ples on the whole ite ra tio n space, since considering th e p artitio n s will ju s t

com plicate the figures. However, the read er shou ld keep in m ind th a t we do these com pu tations

for every p a rtitio n in th e itera tion space.

3.3.4 Dependence Spans

For each dependence we need to com pute th e num ber of d istinc t a rray e lem ents th a t are accessed

between th e source an d the target of th e dependence. We can do th is by determ in ing which

itera tions are execu ted between the source an d th e ta rg e t of th e dependence, an d tak ing th e union

of all array elem ents accessed in those ite ra tio n s.

We define th e dependence span as being th e set o f ite ra tio n points betw een th e source ite ra tio n

and the targe t ite ra tio n of the dependence. G eom etrically , th e dependence sp an is a shape in the

ite ra tio n space th a t encloses all these ite ra tio n poin ts. For exam ple, the sh ad ed region in Figure 3.5

represents the dependence span defined by th e in p u t dependence on reference B (k , j) (shown in

F igure 3.11). T h is dependence is carried by th e o u term o st loop of a th ree -n ested loop w ith d istance

1. T he itera tion p o in ts spanned by th is dependence are: th e rem aining ite ra tio n s of loop k in the

sam e itera tion o f i an d j . i.e. [i . j . k : n]. th e rem ain ing itera tions of loop j in th e sam e ite ra tio n

of loop i . which includes all the ite ra tio n o f loop k. [i . j 4- 1 : n . 1 : n], th e ite ra tio n s previous to

ite ra tio n j in th e ite ra tio n i+ 1 . [i -f 1 . 1 : j — 1 . 1 : n], an d th e ite ra tio n s previous to ite ra tio n k.

[i 4- l . j . 1 : A.'].

D ependence sp an s are com puted using th e a lgo rithm presented in F igu re 3.6.

T h e algorithm tak es a dependence 6 th a t h as th e source ite ra tion (/ i I n) an d the ta rg e t

ite ra tio n (I i -f- d \ I n 4- dn). where d, a re elem ents o f th e d istance v ec to r D (5) = (d i dn).

It com putes the se t o f itera tions spanned by th e dependence in th ree s tep s . F irs t, it com pletes all

rem ain ing ite ra tio n s for th e loops enclosed by th e o u term o st loop ca rry ing th e dependence. N ext.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k

U

Figure 3.5: Ite ra tio n space for m atrix m u ltip lication . T he shaded shape represents th e itera tions
spanned by loop-carried dependence w ith d is tan ce I in dim ension i.

I I n p u t :
I A loop nest L of d ep th n an d its ite ra tio n space
J An incom ing dependence 5 w ith source ite ra tio n (/1 In) and

dependence d istance vec to r D(6) = {d^.dn d n)
O u tp u t :

T he dependence span DS{ 6) for the dependence
M e th o d :

DS(S) = o
let I be th e ou term ost loop carrying the dependence in L
/* collect th e all ite ra tio n s up to the nex t ite ra tio n of I */
fo re a c h loop i s ta rtin g from the innerm ost loop to I

D S{6) = D S(6) U {h . I -2 / i . / ,> i : C /i+ i .I i+ 2 : Ui+2 U : Un)
e n d fo r e a c h

[* collect all the ite ra tio n s up the th e ta rg e t ite ra tio n */
foreach loop i s ta r tin g from I to the innerm ost

if It -I- di — 1 < Ii + L then
D S (6) = DS(S) U (I \ . I o Ii—l . Ii + di. Li+i : /j j- i -I- di+.i . Li—2 : IJi—i L n : L n)

else
D S (d) = DS(6)LS(Ii . Io. I i - l . Ii + 1 : Ii + di — 1. Li+\ : Ti^-i Ln : Vn) U

{ I l - Tjr • • • ■ I i—1 • Ii "b d i . Tjo-i . + d i—i . Z<i4-2 : fri+2......... I*n '• L'n)
end if

end foreach

Figure 3.6: D ependence sp an co m p u ta tio n a lgorithm

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it collects all th e iterations in th e loop ca rry in g th e dependence, up to th e ta rg e t ite ra tio n . A nd

las t, it co llects th e itera tions o f the loops enclosed by the dependence carry ing loop up to th e ir

respective ta rg e t iterations. N ote th a t th e second s tep is perform ed only if th e dependence d istance

o f th e ca rry in g loop is g reater th a n th e s tep o f th e loop. In the a lgorithm , th e last two step s are

m erged.

In th e n ex t section we show how to use th e dependence spans to com pu te th e num ber of d is tin c t

a rray e lem ents accessed in each ite ra tio n con tained in the dependence span , an d then , th e to ta l

num ber of d is tin c t array elem ents spanned by a dependence.

3.3.5 Array Sections Computation

O nce th e dependence spans are com puted , th ey can be used to com pute th e a rray sections covered

by the dependences. An array section is. by defin ition , the set o f a rray elem ents th a t are accessed

by all th e ite ra tio n s in a dependence span.

Intu itively , if we can identify every a rray elem ent accessed in each ite ra tio n point contained in

a dependence span , we can com pute how m any d is tin c t array elem ents were accessed betw een the

source ite ra tio n and the ta rg e t ite ra tio n of th e dependence. For each ite ra tio n we m ay have several

m em ory accesses, one for each a rray reference in th e body of the loop. By co m puting exactly which

a rray elem ent is accessed in each ite ra tio n , we can com pute the a rray sections.

T his in tu itio n is illustra ted in F igure 3.7. T h e outisde rectangles rep resen t th e arrays accessed

in th e m a trix m ultip ly loop nest (.4. B . and C). T h e cube represen ts th e ite ra tio n space, w ith the

shaded region denoting the dependence sp an o f th e loop-carried in p u t dependence on reference B.

T h e shaded regions in each a rray region rep resen t th e array sections sp an n ed by th is dependence.

T hus, from ite ra tio n (i. j . k) to ite ra tio n (i-F l. j . k) the following a rray regions are accessed:

A (i : i + 1.1 : n). B (l : n. 1 : n). and C { i . j : n) U C{i -I- 1.1 : j) .

T h e a rray section. A R(6) . spanned by a dependence is com pu ted by su b s titu tin g in th e a rray

index functions th e ranges of th e induction variables taken from th e dependence span . In geom etri­

ca l te rm s, th e dependence sp an is p ro jec ted o n to th e array space, as illu s tra te d in F igure 3.7. T he

a lg o rith m in F igure 3.8 com putes a rray sections.

We s ta r t th e algorithm by considering th a t th e en tire a rray space is accessed. T hen , for each

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

B

Figure 3.7: A dependence span p ro jec ted onto a rray sections. For each array , the shaded areas
show which e lem en ts co n trib u te to th e num ber of d is tin c t accesses betw een two ite ra tions o f loop i.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input:
A dependence 6 w ith the dependence span D S{6) = [ly : u i lm : umj

in ail m-levei nested loop
An n-dim ensional array reference a (f i (i)/„ (())

Output:
T he array section spanned by th e dependence A R (a . S)

M e th o d :
AR (a .S) = [L\ : i ' i L ri : Un] /* en tire a rray space
fo re a c h j = 1 . n /'* fo reach a rray dim ension * /

/* com pute th e ex ten t in th a t dim ension */
x — o
fo re a c h /*.. € f j (i) /* for each loop index * /

let ;j = rn n g eDS{S) (h) = [ffc : «fc]

x = x u / j (< \ =u)
e n d fo re a c h
A R (a .S) = A R (a . S) f! [Li : U \ L j - i : U j - i . x . i : i ' j ~ i L n :

e n d fo re a c h

T h e W operation is defined as follows (e xpr is a co n stan t or a loop invariant variable):
1 . ex p r ~ [/ : s : u] = [expr + I : .s : ex p r + u]

2 . exp r * [1 : s : u\ = [expr * I : expr * s : e x p r * «].

f [/[+ 1-2 : g c d (s t . s o) : u i -i- uo] if *'t I *'2 V so | s t
.3. [i i : a' i : ttil -|- jo : so : no = <

\ { l i + /o : g cd (s i. so) : u i + uo. M } otherw ise.

w here { I : s : u. m } deno tes a non-contigous interval.

F igure 3.8: A rray section co m p u ta tio n a lg o rith m

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

array d im ension , we com pute th e ran g e o f th e index in th a t dim ension (th e ex ten t of the a rray in the

dim ension), by su b s titu tin g the ranges o f th e loop index variables in to th e subscrip t expression. T he

ranges of th e loop index variables a re taken from th e dependence sp an , because we are in terested

in those ite ra tio n s th a t are sp an n ed by th e dependence. Interval a r ith m e tic is used to com pu te

the ex ten ts. T h e operation W in F igu re 3.8 p resen ts th e operations su p p o rted when com bining

intervals. W e also discuss these o p e ra tio n s next.

The o p e ra tio n s su pported for co m p u tin g the ex ten ts are as follows: in terval addition an d m ul­

tip lication w ith a constan t or a loop invarian t variable, an d ad d itio n o f two intervals.

Rule 1 h an d les the interval a d d itio n w ith a co n stan t or a loop in dependen t variable, i.e.. the

subscrip t expression has the form i 4- expr . where i is a loop index variab le and ex pr is e ith e r a

constan t o r a loop invariant variable. Exam ples of such subscrip t functions are: i + L. i - 3 o r i 4- r.

In this case th e ex ten t is the sam e as th e range o f variable i sh ifted by ex pr . Assum ing th e range

of the loop index variable i is [4 : .V], th e ranges of the above su b scrip t functions are: [5 : .V 4 - l],

1 1 : .V — 3], an d [4 -f c : .V 4 - ej respectively.

The second rule trea ts the m u ltip lica tio n of an in terval w ith a co n s tan t. T he subscrip t has the

form expr * i. w here i is a loop index variable an d ex p r is e ith er a co n stan t or a loop invariant

variable. E xam ples of such su b sc rip ts are 2i or c * i. In th is case th e com puted ex ten t is an

expansion o f th e original range, an in terval th a t has b o th s bounds a n d th e step m ultip lied w ith

the expression. T hus, assum ing th e range of the loop index variable i is [2 : ;V]. the range for the

subscrip t func tions 2 i and c * i a re [4 : 2 : 2 * .V] an d [2*c:c:c*N] respectively.

B oth ad d itio n and m ultip lication w ith a co n stan t o r loop invariant variab le preserve th e accuracy

of the range.

T he last ru le handles the case o f coupled subscrip ts , i.e.. su b scrip ts in which two or m ore loop

index variab les occu r in the sam e su b sc rip t expression. In general, coup led subscrip ts occu r in less

th an 20% of th e subscrip ts, as show n by Shen et al. [50] who stu d ied a large num ber of benchm arks

and kernels from scientific codes. M oreover, su b scrip ts con tain ing m ultip lications of loop index

variables a re even less frequent, an d we have not encoun tered it in th e S PE C fp95 benchm arks. We

trea t only th e case in which th e loop index variables are added in th e su b scrip t expressions.

Rule 3 h an d les th e case w hen tw o loop index variab le expressions a re added together, such as

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 i -f- 3j + 10. N ote th a t the ex ten t of th is su b sc rip t expression can be co m p u ted by successive

applica tions o f th e th ree rules, as follows: rule 2 to o b ta in th e ex ten t for th e sub-expression 2 i. rule

2 for 3j . rule 3 for 2 i 4 -3 j and rule 1 for (2/ -i- 3j) -+- 10.

W hen ad d in g two intervals th ere are two cases: (i) one of th e strides is d iv isib le w ith each the

o th er and (ii) th e s trides are not divisible. W hen th e strides are divisible th e resu lting ex ten t is an

interval w ith th e bounds com puted as th e sum o f th e bounds of the two term s, an d th e stride is

equal to the g re a te s t com m on divisor of th e strid es. T h ere are som e cases in which th e ex ten t might

have a different num ber of elem ents th a n it shou ld , for exam ple, when the u p p er bound o f the inner

loop is less th a n th e upper bound of th e o u te r loop. T his is one of th e lim ita tions o f th e trip let

n o ta tion . We hope to elim inate th is inaccuracy by using a linear co n stra in t-b ase rep resen ta tion for

th e regions.

T he second case, when the strides are no t d iv isib le can produce even m ore inaccu ra te represen­

tations. To ad d ress th is problem where we ex ten d ed th e trip le t n o ta tio n to hand le "non-contiguous

intervals". A non-contiguous interval (show n in F igure 3.9) is a set of integers th a t has a lower

bound, an u p p e r bound and a stride to traverse th e elem ents, ju s t like in trip le t n o ta tio n . Addi-

tionaly. th ere a re elem ents a t the two ends of th e in tervals th a t even if they are specified by the

stride, they are no t traversed. For these elem ents, we in troduce a "missing" factor, th a t specifies

how m any e lem en ts are not ac tu a lly traversed over a "spread" region a t b o th ends of th e interval.

Note th a t a non-contiguous interval m ight not rep resen t exactly which elem ents are accessed in

th e spread region, bu t since we are in terested on ly in th e num ber o f elem ents th a t are accessed,

th e accuracy o f a non-contiguous in terval is sufficient for ou r purpose. To com pute th e missing

elem ents an d th e sp read , we have observed th a t if th e strides are factored, th e access p a tte rn for

th e resulting in terva l is given by the access p a t te rn o f th e g rea test prim e factors from each stride.

Therefore th e su b ro u tin e in F igure 3.9 en u m era tes th e elem ents th a t are accessed for th e prim e

factors, and uses th a t inform ation to com pu te "m issing" an d "spread".

W henever th e re are inaccuracies in co m p u tin g th e a rray sections, we m ark th e sections accord­

ingly. T he m easu re of accuracy p ropagates fu r th e r in th e cost m odel, such th a t , w hen th e prediction

expressions a re evaluated , toge ther w ith th e perfo rm ace figure we also provide a "confidence" m ea­

sure for th e p red ic tion .

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

missing missingstride

spread spreadcontiguous interval

lower bound upper bound

void computeNonContig(int i c o e f , in t j c o e f , in t fcmissing, in t fcspread)
{

in t n = (ico e f+ jco e f) * (ic o e f+ jc o e f);
int *a;

a = (in t *)ca llo c (n + (ic o e f+ jc o e f) , s i z e o f (i n t));

for (in t i = 1; i <= ico e f+ jco e f; i++)
fo r (in t j = 1; j <= icoe f+ jcoe f; j++)

a [i* ic o e f + j» jcoef] = 1;

int distElems = 0;
fo r (in t i = n; i >=0; i —)

distElems += a [i] ;

missing = ((n - (icoe f+ jcoe f) + 1 - d is tE le m s) /2) ;
in t i = icoef+jcoef;
while(missing > 0)

if (a [i+ +] == 0) { m issing— ; }

in t f ir s tC o n tig = i;
missing = ((n - (icoe f+ jcoe f) + 1 - d is tE le m s) /2) ;
spread = f irstC on tig - (ic o e f+ jc o e f) ;
f r e e (a) ;

F igure 3.9: N on-contiguous intervals: rep resen ta tion an d calcu lation

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O ne dependence might sp an m ore th a n one reference to the sam e array. In th is case, th e a rray

sec tion sp an n ed by the dependence is th e union of th e a rray sections for each reference. T herefore

two m ore operations are defined on in tervals, un ion an d in tersection. T hese operations a re well

defined for th e trip le t notation . T h e num ber of d is tin c t a rray elem ents spanned by a dependence is

th en com pu ted by sum m ing th e size o f a rray sections for all a rrays referenced betw een th e source

an d th e ta rg e t of the dependence.

I I

.45(0') = E I U A R (r . S) I
distinct arrays r all refs to r

N ote th a t we must keep b o th th e a rray sections for d istinc t a rray s and for individual array

references. T h e sections for th e a rrays are used to com pu te th e s tack d istances, while th e array

sections for each reference are used to com pute th e num ber of dynam ic references to a p a rticu la r

location . T h is com putation is described in th e nex t section.

3.3.6 Stack Histogram

O nce th e a rray sections are co m p u ted for each dependence span in each p a rtitio n , th e d a ta required

to com pu te th e stack histogram is available. T h e s tack h istogram is com posed of two sets of values,

th e s tack d istances and the n um ber o f accesses a t th a t p articu la r s tack d istance . B o th these sets of

ra lues a re com puted sym bolically, based on th e a rray sections ca lcu la ted in the previous section.

Each a rray reference co n trib u tio n to a stack d istance determ ined by its incom ing dependences,

or is oc if th ere are no incom ing dependences. T h e num ber of accesses co n trib u ted by each array

reference is determ ined by th e n um ber of dynam ic executions of th e reference. T he a lgo rithm to

com pu te th e stack histogram is show n in F igure 3.10.

For each p artitio n of the ite ra tio n space we consider all th e incom ing dependences th a t are

valid in th e p artitio n . We co m p u te , for each a rray reference in th e loop body, th e m in im um on

th e d is tin c t num ber of a rray e lem en ts sp an n ed by th e incom ing dependences. A . an d we take

th is m i n i m u m as the stack d istan ce . If th e re is no incom ing dependence, all th e accesses for th a t

reference a re "cold misses", i.e .. h ap p en a t d istance oo. To com pute th e num ber of accesses a t each

d istan ce , we com pute how m any tim es th e s ta te m e n t th a t contains th e reference is execu ted by

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I n p u t :
A loop n es t w ith the d a ta dependence g raph augm en ted w ith dependence spans
and w ith a r ra y sections co m p u ted for each dependence
T he p a r tit io n e d ite ra tion space P a r t l S for th e loop

O u tp u t :
T he sym bolic s tack h istog ram 5

M e th o d :
fo re a c h p a r ti t io n p 6 P a r t l S

fo r e a c h s ta tic array reference r in the loop body
j m i n j i A S i S)) if 3 J s.t. target (S) = r and J is valid in p

let A = <
[otherw ise.

w here .4S(J) represen ts the num ber o f d is tin c t array elem ents in
th e dependence sp an

S(A)-i- = |p |. Since each a rray reference is accessed in each ite ra tio n point.
th e size of the p a r tit io n (the num ber o f ite ra tion points considered)
gives us the num ber o f dynam ic accesses to r.

e n d fo r e a c h
e n d fo r e a c h

F igure 3.10: S tack histogram co m p u ta tio n algorithm

tak in g the product o f th e ranges of th e loops enclosing th e s ta tem en t, where th e loop index ranges

are given by the p a r titio n under consideration .

O nce the stack h is to g ram is com pu ted sym bolically, th e re are several approaches th a t can be

taken to evaluate th e expressions and e s tim a te th e n u m b er o f cache misses. T hese approaches are

described in Section 5.1.

3.3.7 Example - M atrix Multiplication

In th is section we w ork th ro u g h an exam ple of using dependence spans an d a rray sections (th e ir

projections) to com pu te th e stack d istances exactly. F igu re 3.11 presents the F o rtran code for our

exam ple, as well as th e d a ta dependences labeled w ith th e ty p es and dependence d istances for each

loop, and num bered in th e order in w hich th ey are be p resen ted in Table 3.2.

Table 3.2 shows for each dependence th e dependence sp an , the array sections spanned by th e

dependence, and finally th e stack d is tan ce th a t is co m p u ted for th e dependence.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51
52
53
54
55
56
57
SS

do i = I. n
do j = 1 . n

C (i . j) = 0

do k = 1 . n
C (i . j) = C (i . j)

end do
end do

end do

(a) F o r t r a n code

A(i.k) * B(k.j)

F (0,0)

O (0.0) F (0.0,0)

A (0 ,0 , 1)

O (0 .0 . 1) I (0.0.1) 1 (0 . 1.0)

(b) D a t a d e p en d e n ce s

Figure 3.11: M atrix m u ltip lication exam ple.

I (1.0.0)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

00

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta
bl

e
ib

'2;

Sl
ac

k
di

st
an

ce
s

co
,

at
ion

fu

r
m

at
 r

ix
m

ul
l

ip
lic

at
 i

on

46

To show how th e a lgorithm works, consider dependence # 7 . th e input dependence on reference

A (i . k) carried by loop j . In the first two co lum ns in Table 3.2. the dependence sp an is shown

bo th g raph ically an d geom etrically. Because th e dependence is carried by loop j w ith d istance L.

the dependence sp an consists of th e rem a in d er o f th e ite ra tio n s in loop k in ite ra tio n j and the

itera tions up to ite ra tio n k in ite ra tio n j + I . T h e a rray elem ents accessed in th ese ite ra tions are

shown in th e n ex t th ree colum ns. For A. these elem ents are an en tire row o f th e m atrix , elem ents

from k to n on row i for ite ra tion j and e lem ents from 1 to k on row i for ite ra tio n j -+-1. T h e to ta l

num ber of d is tin c t elem ents accessed in a rray .4 is n. C onsidering the a rray B. aga in th ere are a

to ta l of n d is tin c t a rray elem ents accessed, d is tr ib u te d on two colum ns of th e m atrix , j and j -f I.

And finally, th e re a re only two elem ents accessed in a rray C. C { i . j) and C [i . j 4- 1). T hus, the

num ber of d is tin c t a rray elem ents spanned by th is dependence is 2n 4- 2. T h e num ber of d istinc t

array elem ents sp an n ed by th e o th er dependences is com pu ted similarly.

W hen th e s ta ck histogram is com puted , since th is dependence is the only incom ing dependence

on array reference .4(i.Ar). there will r r references a t d is tan ce ^c. which occu r in th e first itera tion

of loop j in each ite ra tio n of loop i. T h e o th e r n 3 — n 2 references to A(i . k) will h ap p en a t d istance

2 n t 2 .

3.3.8 Spatial Locality

In the previous d iscussion we considered th e cache lines to be of only one a rray elem ent. In o rder to

com pute the s ta c k h istogram for real cache line sizes, we need to determ ine th e num ber of d istinct

cache lines th a t a re spanned by a dependence. S ince we a lready com puted th e num ber of d istinc t

array elem ents sp an n ed by a dependence, we ju s t have to tran s la te th a t n u m b er in to cache lines.

In o ther w ords, we need to determ ine th e cache lines layout for th e array sections.

Figure 3.12 show s an exam ple. A ssum ing a two d im ensional a rray .4. w ith M M A X x X M A X

elem ents, we show th e po ten tia l m apping o f cache lines in co lum n m ajor o rd e r (such as F ortran).

Also, assum e th a t som e dependence sp an s th e M x X a rray section shown as a shaded region in

the figure.

We co m p u te L D A =
M M A X

. th e n u m b er o f cache lines th a t cover one colum n of the
L S

m atrix , w here L S is the size o f th e cache line expressed in n u m b er of a rray e lem ents. T he num ber

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N

M

X
<
2
2

NM AX

F igure 3.12: C ache lines m ap p in g on an a rray section

of cache lines covering an a rray section w ith d im ensions A/ and .V is given by the equation :

where o f f set = 0 if th e first elem ent of th e a rray m aps a t the beginning of a cache line.

T h e stack h istogram is com pu ted using th e sam e algorithm p resen ted in Section 3.3.6. except

th a t instead of com puting th e num ber of d is tin c t a r ra y elem ents accessed, we com pute th e num ber

of d is tin c t cache lines accessed. T h a t is. th e a rra y section area .45 is re tu rn ed in te rm s of cache

lines. O f course, th e expressions deno ting b o th s ta ck d istances an d a rra y references will contain

a sym bolic variable for th e cache line size. T h is sym bolic variable is trea ted like all th e o ther

hardw are param eters th a t a re used in th e p erfo rm ance expressions.

3.3.9 Associativity

It has been previously show n [63. 35] th a t se t-assoc ia tive miss ra tios can be closely e s tim a ted from

th e fully-associative m iss-ratio . T he com pile-tim e s tack d istances a lg o rith m estim ates th e num ber

o f misses for fully-associative LRU caches. T h erefo re , in order to e s tim a te the num ber o f misses for

a real m achine, the n u m b er o f misses for a set assoc ia tive cache are deduced , using a p robab ilistic

a rg u m en t, from the n u m b er o f misses for fully assoc ia tive cache. For de ta ils , see [35] Section V.B.

(i x L D A) % L S + \ [+ o f f s e t
(3.(3)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Indirect Accesses M odel

W hen no t enough com pile-tim e in fo rm atio n is available to com pu te the d a ta dependence d istance

vectors, o th e r m ethods are requ ired to es tim ate th e num ber of cache misses since the stack d istance

a lg o rith m canno t be applied. T h e m ost com m on case in which th e com piler fails to com pute d a ta

dependences is when indirect a r ra y accesses are present (the subscrip t of th e array is a reference to

a n o th e r a rray). Therefore, we call th e m odel th a t is used in th e presence of indirect array accesses,

th e indirect accesses model. T h is m odel can be applied to any array references in a loop nest,

however, it usually overestim ates th e num ber of a rray elem ents accessed.

T h e m ain idea behind th is m odel is to estim ate the num ber of array elem ents accessed by

co m pu ting th e number of ite ra tio n s th a t access the array, i.e.. th e to ta l num ber of references to

th e array , sim ilar to the work o f P orterfie ld [52] and F erran te e t al. [27]. We lim it th is num ber

by th e size of the array, since it is obvious th a t there can not be m ore d istinc t array elem ents

accessed th a n there are elem ents in th e array. O ne can contrive exam ples in which th is es tim atio n

will ap p ro x im ate very badly th e a c tu a l behavior, bu t in m ost cases encountered in practice, the

m ethod approxim ates qu ite well th e m easured d a ta . We know o f no o th er m ethod th a t es tim ates

th e num ber of cache misses a t com pile-tim e in th e presence of ind irect accesses.

Using th is m ethod, the n u m b er o f cache misses for level i in the m em ory hierarchy. M, in

E q u atio n 3.3. is com puted as follows:

w here. r e f s . \ represents the n u m b er o f references to a rray A. s ize , \ represents the num ber of

e lem ents in a rray A (since we use F o rtran 77. the size of th e arrays is known a t com pile-tim e), and

e l e m S i z e .4 is the size, in by tes, o f one elem ent of th e a rray A. T h e elem ent size dependes on the

For exam ple, consider the code in F igure 3.13. It im plem ents a sparse m atrix -vecto r m ultip li-

a t In d ian a University. T he loop m ultip lies th e m a trix A , sto red in com pressed sparse row sto rage .

m in(re/s..v . s i ze a) x e l e m S i z e \
B l o c k S ize

distinct .4
(3.7)

dec lared d a ta type of a rray A. B l o c k S i z e t is the size o f th e cache line for level i of the m em ory

hierarchy.

ca tio n o p era tio n , and it is tak en from th e Splib package [9]. a lib ra ry of sparse functions developed

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L I do i = 1. m
51 Y (i) = O.OdO
L2 do k = ia(i). ia (i+ l)-L
52 Y (i) = Y(i) + A(k) * X (ja(k))

end do
end do

Figure 3.13: Sparse m a tr ix vector m ultip lication

w ith th e dense vector X . and stores the resu lt in th e vector Y . The vectors ia an d ia sto re th e row

and colum n indices in th e m atrix .4. respectively. Since ia and j a d ep en d on the input d a ta set

(m a trix), m any o f th e accesses to array X in s ta te m e n t S2 can m ap to the sam e elem ent, depend ing

on th e value o f th e a rray element j a (k) . T h e b est we can do a t compile tim e is to approx im ate the

num ber of references to A' by the m inim um betw een the num ber of ite ra tio n s of the loop and the

size of the %-ector X . which is known to be equal to th e colum n size of .4.

Obviously, in th is case, not even the n um ber o f ite ra tio n s is known a t com pile time. However,

by using profiling inform ation we can e s tim a te it. In fact, the follwing code shows how Polaris

generates in s tru m en ta tio n to collect the profiling in fo rm ation needed.

REAL*8 a (*) , x (n) , y(m)
INTEGER iaC*), ja(*)

_delphi_cm = 0
_delphi_count_x = 0
DO i = 1, m, 1

y (i) = O.ODO
DO k = i a (i) , i a (i + l) - l , 1

y (i) = y (i)+ a(k)*x(ja (k))
ENDDO
_delphi_count_x = _ d e lp h i_ co u n t_ x + (ia (l+ i)+ (- ia (i)))
_delphi_cm = _delphi_cm +(8+(-12)*ia(i)+12*ia(l+ i))

ENDDO
_delphi_cm = _delphi_cm+MIN(_delphi_count_x, n)*8
_delphi_cm = _delphi_cm+8*m

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Sum mary

In th is ch ap te r we have p resen ted com pile-tim e m odels to e s tim a te th e perform ance of scientific

codes. An overall perfo rm ance p red ic tio n m odel for a co m p u tin g system is decom posed in to p a rts

th a t m odel th e C P U . th e m em ory hierarchy, the I /O system an d in ter-processor com m unication .

T h e com m on rep resen ta tio n o f th e perform ance d a ta as sym bolic expressions, w ith variables for

p rogram co n stru c ts , in p u t d a ta se t. an d arch itec tu re , allows for m achine independent perform ance

estim atio n a t different p rog ram granu ia ritie s .

A m odel for p rocessor execu tion tim e estim atio n was p resen ted . It counts operations in th e high

level language code an d app lies com pile-tim e heuristics to m odel low-level com piler o p tim iza tions.

T he processor a rch itec tu re is ab s tra c te d by providing variables for g roups of basic operations.

T he bulk of th e ch a p te r discusses th e m odeling of th e m em ory hierarchy. A precise m odel of

cache behavior based on s tack d istances is developed, an d a com pile-tim e algorithm to co m p u te

the stack d istances is given. T h e s tack d istances com pile-tim e a lg o rith m depends on th e ab ility of

th e com piler's d a ta dependence te s t to e x tra c t d istance vectors inform ation . In Polaris we use the

O m ega tes t [53] for th is purpose . T he O m ega tes t is ab le to ex tra c t th e d a ta dependence d is tan ce

inform ation for m ore th a n 75% of th e loops in SPEC'fp95.

For th e cases w here dependence in form ation is not a%-ailable. such as sparse co m p u ta tio n s w ith

indirect a rray accesses, a sim pler m odel is p resented. T h is m odel es tim ates the num ber of cache

lines accessed in th e loop using very' sim ple heuristics. E x p erim en ta l results w ith b o th m odels are

presented in C h ap te r 6 .

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Stack Distance and Stack Algorithm s

In th is ch ap te r we p resen t ou r experience w ith th e stack processing a lgorithm to quantify program

locality. We s ta r t by presenting a new m etric for d a ta locality, the stack h istogram . We th en

discuss several ways to im prove the perfo rm ance of the LRU stack processing algorithm s, when

used to process m em ory traces.

4.1 The Stack Distance as a M etric for Locality

"T here a re th ree m ost im portant factors in w riting program s, e ith er sequen tia l or par­

allel: locality, locality, locality." [M ichael Wolfe, personal com m unication]

P rogram s w ith good d a ta locality take b e t te r advantage of th e caches, have low com m unication

costs an d low in terconnection network traffic. T here are m any com panies th a t will hire highly

skilled program m ers ju s t to have them tu n e th e ir most im p o rtan t codes to ru n well on a specific

arch itec tu re . B u t. in to d a y 's rapidly changing landscape, m achines becom e obsolete very soon, and

the program m ers keep changing applications to su it the new evolving arch itec tu res.

T here is one m ost im p o rtan t ch arac te ristic we are looking for in a m odel for d a ta locality -

architecture independence. We would like to specify w hat is th e locality of a p rogram on ex isting

m achines as well as on fu tu re architectures. W e consider th a t a good th eo re tica l m odel should be

abstract, to h ide th e d e ta ils th a t would m ake it too com plex), an d general, to be applicable to a

large variety of p rog ram s an d system s.

T he m odel we p ropose is based on th e "stack processing" m eth o d developed by M attson et

al. [43] to ev a lu a te th e cost-perform ance o f p age replacem ent a lgorithm s in v ir tu a l m em ory sys-

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Variable P ro g ram 1 Program 2 |
a 2 2 1

b 2 2

c 9 15 |
Average 4.33 6.33]

Table 4.1: In ter-reference d istances an d averages for m em ory references in P ro g ram s 1 and 2

tem s. T heir tech n iq u e , for a particu la r page rep lacem ent algorithm (such as Least R ecently Used),

com putes a success funct ion, based on the frequencies of accesses a t different s tack distances, in a

single pass th ro u g h th e m em ory trace. T h e s tack distances are com pu ted by m ain ta in ing a list of

pages in an LRU s tack , and m easuring a d is tan ce on th is stack for every page reference.

Our m odel for d a ta locality also m ain ta in s an LRU stack, but the reso lu tion is e ith e r a t m em ory

location level for tem p o ra l locality, or a t cache line level for spatia l locality. T h e m odel can be

easily extended to h and le m ultiprocessor codes by m ain tain ing a sep a ra te s tack for each processor.

Lilja et al. [42] propose the in ter-reference d istance as a model for locality. T hey define the

inter-reference d is ta n c e as the num ber of m em ory references th a t occur betw een two references to

th e same m em ory location . T hey claim th a t th e inter-reference d istance can be used as a m easure

for the tem pora l locality of the variable, an d th a t the average of all th e in ter-reference distances

for all the variab les in the program can be used as a m easure of tem pora l locality th a t exist w ithin

a program .

Consider th e following exam ple of m em ory traces generated by two different program s:

Program 1: c a b a b a b a b c

Program 2: c a b a b a b a b a b a b a b c

Inter-reference d istances and th e ir averages are shown in Table 4.1. We no te th a t the inter-

reference d is tan ce averages differ for the two program s, leading us to believe th a t th e first program

has b e tte r tem p o ra l locality th an th e first one.

This is ac tu a lly n o t true, since b o th p rog ram s have the sam e w orking se t. an d in fact there

is more reuse in th e second program , as p roven by th e stack d istances a lg o rith m (see Table 4 .2)..

which gives th e sam e d istances for b o th p rog ram s, b u t m ore references to d is tan ce 2 .

A lthough one c a n reason ab o u t locality using the stack histogram , if a single num ber th a t

defines the locality o f the program is desired , we can com pute th e average locality based on the

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P rogram 1 Program 2

S tack D istances # References S tack Distances # References
DC 3 DC 3
o 6 2 1 2

3 1 3 1

T able 4.2: S tack d istances and n u m b er o f references in P rogram s 1 an d 2

histogram as follows:

E ('>* x *'('>))

d

w here ,s(J) is th e n u m b er of accesses a t stack d is ta n c e 6. and 6 are th e stack d istances for which

s(S) > 0. The lower th e value of AugLoc. the b e t te r th e locality of th e program .

As an exam ple, consider m a trix m ultip lication . It is well known th a t tiling im proves locality in

m atrix m ultip lication [75. 17]. In Figure 4.2 we p resen t the stack h istogram s for a LOOxlOO m atrix

m ultiplication, an d tw o versions of tiled m atrix m u ltip lica tio n loops: th e one in F igure 4 .2(b) has

th e two outerm ost loops tiled w ith tile size 25. an d th e one in Figure 4.2(c) has all th ree loops tiled,

tile size being also 25. T h e codes for these loops a re show n in Figures 4 .1(a-c).

In Table 4.3. we show how th e two m etrics for locality , the inter-reference d is tan ce and th e stack

d istance com pare for m a trix m ultip lication and its tiled versions. For each m etric , we consider the

th ree versions of th e m a trix m ultip lication loop, th e classical i j k loop, th e o u term o st (i j) loops

tiled (2-tiled) an d all th ree loops tiled (3-tiled). W e consider bo th tem p o ra l and sp a tia l locality.

For spatial locality, two values are given, for cache line sizes (C’LS) of 32 bytes an d I2S bytes.

T hese correspond to 4 an d 16 a rray elem ents p er cache line and are am ong th e m ost com m only

used values for th e cache lines in L l and L2 caches, respectively.

We note th a t , for tem pora l locality, there is no difference betw een th e 2-tiled loops an d the

classical loop w hen using th e inter-reference d is tan ce m etric . A nother anom aly o f th e in ter-reference

d istance m etric can b e observed for spatia l lo ca lity betw een the 2-tiled an d 3-tiled loops. The

locality m etric increases w hen th e locality im proves. T hese anom alies a re a consequence o f th e fact

th a t the in ter-reference d is tan ce m etric considers all th e references betw een two accesses to the

sam e m em ory location , no t ju s t references to new m em ory locations. M oreover, w hen averaged

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do i = 1, n
do j = 1 , n

do k = 1, n
c (i , j) = c (i , j) + a (i , k) * b (k , j)

enddo
enddo

enddo

(a) M a t r ix m u lt ip l i c a t io n

do i i = 1, n , TILE
do j j = 1 , n , TILE

do i = i i , M IN Cii+TILE-1, n)
do j = j j , M IN C jj+TILE-1, n)

do k = 1, n
c (i , j) = c (i , j) + a (i , k) * b (k , j)

enddo
enddo

enddo
enddo

enddo

(b) 2 - t i led m a t r ix m u lt ip l i c a t io n

do i i = 1, n , TILE
do kk = 1, n , TILE

do j j = 1 , n , TILE
do j = j j , M INCjj+TILE-1, n)

do k = k k , m in (k k + T IL E -l, n)
do i = i i , M IN (ii+ T IL E -l, n) , 1

c (i , j) = c (i , j) + a (i , k) * b (k , j)
enddo

enddo
enddo

enddo
enddo

enddo

(c) 3 - t i led m a t r ix m u l t ip l i c a t io n

F igure 4.1: F o rtran code for tiled m a tr ix m ultip lication

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) M a t r ix m u lt ip l ica t ion 100x100

• o

*
*3
j ,Qjf

tO*i-

: 3 ; :

i i ’4 :

tO,r

tQ r ©

0 2000 4000 6000 3000 '0000 >2000 TJCoS T0OOO ’9000
Stac* OHtanca

1
* oi

n o o 4000 9000 3000 ’0000 ’2000 ’4000 ^ 6 0 0 0
Stac* Otstanca

(b) M a t r ix m u l t ip l i c a t io n 100x100 - 2 t i le d 25x25 (c) M a t r ix m u l t ip l i c a t io n 100x100 - 3 t iled 25x25

Figure 4.2: S tack histogram s for m a trix m u ltip lica tio n and tiled m a tr ix m ultip lication

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M etric Locality C lassical MM 2 -tiled 3-tiled

Inter-reference
D istance

T em pora l
S p a tia l (CLS = 32)
S p a tia l (CLS = 128)

101.005
2650.007

886.009

101.005
2650.007

859.009

91.462
2668.749

868.798

Stack
D istances

T em pora l
S p a tia l (CLS = 32)
S p a tia l (CLS = 128)

2619.890
221.146

46.971

886.451
93.087
36.014

367.794
30.219

6.026

Table 4.3: T em poral locality for m a tr ix m ultip lication

over all variables, the variables w ith bad locality, even if accessed only a few tim es, co n trib u te the

sam e weight as good locality variables.

O n th e o th e r hand , th e s tack d istances m etric does no t suffer from these anom alies. T h e stack

processing a lgorithm m akes su re th a t only accesses to new m em ory locations or in a position below

a m em ory location in th e s tack m odify the stack d istance o f th a t location. Thus, the s tack d istance

m etric behaves as expected - w hen program locality increases, the value of the average locality

decreases.

4.2 LRU Stack Processing Algorithms

T his section describes o u r experience using the stack processing algorithm [43] for es tim a tin g the

num ber of cache misses in scientific program s. By using a new d a ta s tru c tu re , and various op tim iza­

tion techniques, we o b ta in in stru m en ted run-tim es w ith in 50 to LOO times the orig inal op tim ized

run -tim es of our benchm arks.

T h e stack a lgorithm [43] was originally designed for m odeling v irtual paging, i.e. to o p era te on

a p rogram trace consisting o f v ir tu a l page references, b u t in th e recent past has been used m ainly

to m odel cache behavior, by trac in g cache line references [65. 67. 35. 70].

T h e m ain advan tage of th e s tack algorithm in s im u la tin g cache behavior is th a t it allows the

e s tim atio n o f the num ber o f m isses for caches of any size in a single pass th rough the trace . V ariants

of th e a lgo rithm have been used to sim ulate caches of m u ltip le line sizes.

T h e s tack a lgo rithm is how ever very expensive to n m . especially if the stack becom es large

enough. It was soon recognized th a t more efficient d a ta s tru c tu re s were needed to do th e job of

th e s tack search. B en n e tt a n d K ruskal [6] presented an a lg o rith m which replaces th e s tack w ith

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a preallocatecl h ierarchy of partia l sum s. H ill and Sm ith [35] used a forest of trees to sim ulate

m ultip le cache associa tiv ities: Sugum ar an d A b rah am [65] used a generalized b inom ial tree for th e

sam e purpose.

Seeking to fu rth e r im prove the p erfo rm ance of the stack a lgo rithm , we in tro d u ce two new d a ta

s tru c tu re s an d correspond ing algorithm s, each of which is m ore su itab le for a p a rticu la r kind of

app lica tion . T h e interval tree approach w orks well for program s w ith long traces b u t relatively good

locality, w hereas th e preallocated tree ap p ro ach is more suited to sh o rte r traces w ith bad locality.

Figure 4.3 gives a form al three-step d esc rip tio n of the LRU stack algo rithm , as first described

by M attso n in [43]. We use this descrip tion as th e basis for th e a lgorithm s we presen t.

It is assum ed henceforth th a t the a lg o rith m is operating on a m em ory trace o f length .V th a t

contains M d is tin c t m em ory references (obviously M < .V). For th e no ta tio n s used in this chap ter

refer to Section 4.2.9.

| Repeat th e following steps for each m em ory reference x r . 0 < r < .V: j
] I

' • s e a rc h : find th e location in the s tack o f the most recent reference to th e cu rren t location, j
| :

• count: co m p u te d i s t (~). the s tack d is tan ce for the curren t location , by finding the previous |
I reference to th e curren t location an d coun ting the num ber of elem ents on th e stack above I
i it. If th e m ost recent reference is n o t found, d is t (r) is defined as rc. j
! j
J • update: bring th e m ost recent reference to the top of th e stack . I

F igure 4.3: S tack algorithm

4.2.1 Naive Implementation

T his im p lem en ta tio n d irec tly follows th e a lg o rith m presented above. T he stack is represented as a

doubly linked list. For each reference in th e tra c e , the first two op era tio n s (search an d count) are

execu ted sim u ltaneously by traversing th e s ta c k top to bo ttom . If th e elem ent ex ists in the stack,

its d istance from th e to p of the stack is recorded . F inally the elem ent is m oved from its curren t

position to th e to p of th e stack - the update stage. If the elem ent is not found, oc is recorded as

its stack d is tan ce an d th e elem ent is p ushed o n top of the stack .

Analysis For each reference in th e tra c e th e work done is. in th e w orst case, M (due to th e

trav ersa l o f th e linked list). The toted co m p lex ity is thus O (N M) .

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he worst case d o e sn 't happen very often . In fact, m any program s exh ib it excellent locality,

causing m any references to lie close to th e to p o f th e stack . U nfortunately th e few references th a t

are near the b o tto m o f th e stack cause huge slow -dow ns, resu lting in overall bad perform ance.

4.2.2 Markers Algorithm

T he m ajor cause o f slow ness in the naive a lg o rith m is the linear traversal o f th e linked list th a t

makes up the stack . T h e markers a lg o rith m a t te m p ts to replace linear search w herever possible.

T he s e a rc h phase o f the m arkers a lg o rith m is done using a hash tab le th a t assoc ia tes a cache

lin e /m em o ry /p ag e reference w ith its cu rren t p lace in th e linked list. G iven enough hash buckets,

hashtable access an d u p d a te are 0 (1) o p era tio n s. T h e num ber of necessary h ash buckets can be

approx im ated w ith M . th e num ber of d is tin c t references in th e trace.

U nfortunately find ing an elem ent in th e m idd le o f th e stack by using th e h ash tab le is no t enough.

T he stack d ep th o f th e elem ent needs to be co u n ted . To avoid traversing th e s tack from top to

bo ttom , a set of markers are in terspersed in th e linear list im plem enting th e s tack , one ab o u t every

D elem ents. T he m arkers form an o th e r doub ly linked list, and each m arker records its d istance

from the top. To find o u t the d ep th o f a m em ory reference in the stack , one needs to find the

nearest m arker by trav ers in g th e s tack (a m ark e r would be a t m ost D s teps aw ay) an d then look

up the m arker's d is ta n c e from the top .

W hen an elem ent is removed from th e s tack an d inserted a t the top . th e m arkers betw een the

top and the elem ent need to be u p d a ted . T h is involves a t m ost A/ / D steps.

A n a ly s is T h e cost p e r m em ory reference o f th is a lgorithm is a t m ost D -r M / D (th e cost of

finding a m arker, p lus th e cost of u p d a tin g all m arkers up to the beginning o f th e stack). D can

be varied a t ru n tim e by adding or rem oving m arkers, in o rder to m inim ize th e cost: assum ing D

= \ y /M } . th e cost eva lua tes to 0 (\ / T f) p e r e lem en t, or 0 { N * s /TI) to ta l.

4.2.3 Alternative Data Structures

T h e m ajor s tu m b lin g block in im plem enting m o re efficient versions of th e LR U s tack a lgorithm is

th e im plem entation o f th e stack as a linear lis t. W e will present a fo rm ulation o f th e LRU stack

algorithm th a t does n o t use a stack. W e will closely follow B ennett an d K ru sk a l's [6] n o ta tio n .

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D e f in i t io n 1 . We form alize th e concept o f th e hash tab le P . which we already used inform ally in

th e m arkers algorithm . Let us define J as th e set of indices o f references to r th a t occu rred before

an index t in the trace:

J r = {(|0 < i < T A Xi = c}

Using J we define th e h ash tab le P - as follows:

m a x { i ji € J \ if J # 0
P r(~ ') = <((4.1)

u n d e f i n e d o therw ise

P r (:) is undefined w hen a cold miss occurs, i.e. when th e re is no previous reference to c.

D e f in i t io n 2. N ext we define B . a m apping from th e tra c e indices 0V — I to {0. L}. Like P .

B changes w ith tim e an d therefore is subscrip ted w ith r . B r (i) is defined its follows:

B r (i) =
1 if P - (£;) = i

(4.2)
0 o therw ise

B r (i) is 1 if a t tim e r th e re is no reference to x, in th e p ro g ram trace a t any index larger than

i.

D e f in i t io n 3. G iven P an d B we can define dis t {r) . th e s ta ck d istance of th e elem ent .rr in the

p rog ram trace: it is th e n u m b er of l 's in B betw een th e last reference to x r an d t .

d i s t (r) = <
\H\ if P r (xr) is defined

(4.3)
cc otherw ise

w here W. is the set o f tra c e indices a fte r P r (x;) whose B values are 1:

y . = {i | P r (zv) < i < t A B r (i) = 1}

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p e a t for each reference x T. 0 < r < iV:

• s e a rc h : co m p u te P r (x-):

• c o u n t : eva lua te d is t (r) . If P r (x) is undefined th en d i s t (r) is defined as x :

• u p d a t e : change B and P as follows:

f 1 if i = r

B r = < 0 if i = P - (x r)

[B r (0 otherw ise

„ I r i f ; = x -
P ^ ! (:) = <

I P - (-) o therw ise

F igure 4.4: Modified stack algorithm

We can now refo rm ulate the s tack a lgo rithm by using P an d B in stead of the stack.

4 .2 .4 B e n n e t t a n d K r u s k a P s A l g o r i t h m

We present B en n e tt and K ruskal's a lg o rith m [6] first because it in troduces ideas we need la ter.

The a lg o rith m represents P and B explicitly. T he first s tep of th e algorithm , evaluating P (x -) .

is a hash tab le lookup.

The c o u n t s te p of the a lgo rithm counts the num ber o f tru e values in B between th e indices

P (x -) and t . To m ake the coun ting s tep efficient. B ennett and K ruskal use a hierarchy of p a rtia l

sums B P B " . . . B ^ . where L = \ l o g (N)] . Renam ing B to B ° . the p a r tia l sum hierarchy is set up

such th a t for som e chosen in terval m . a t any tim e r .

B \ { j) = Y . B ‘ ~ 1^
i=j-m

This form ula describes an m -ary tree o f nodes having th e value o f each node being equal to the

sum of th e values o f its children.

C alcu la ting th e num ber of l 's betw een the indices P (x -) and r is now a m a tte r of traversing

the partia l su m hierarchy, as show n in F igure 4.5. T h e figure p resen ts th e first 31 elem ents of a

trace. We tra c e th e 3 1 ^ access, an d X3 I last occurred in position 4.

T he th ird s tep , u p d atin g B . also becom es a m a tte r o f tree traversal, since all p a rtia l sum s on

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B5

B4

B3

B2

B1

BO

dist = 0 + 4 + 5 = 9

/ \ x \ ! - ' 'X

l O O l O O O O O O 1 0 0
/ x a a a

1 1 1
t X X 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1

t= 31

dist = 0 + 4 + 5 = 9

Figure 4.5: A p a rtia l sum hierarchy

the pa th from the roo t o f th e hierarchy to th e leaf node are affected.

The a lgo rithm needs tw o traversals of th e tree . T h e first traversa l, from the ro o t to index P (r -) .

deletes P (r r) as th e last reference to x by se ttin g £?(P(xr)) value to 0 and a d ju s tin g all partia l

sum s along th e p a th . T h e second traversal is from th e root to index r an d se ts B (r) to I. again

ad justing p a rtia l sum s on th e path . For reasons of b rev ity we are not going to fully explain the

algorithm , except to m en tio n th a t our m ajo r im provem ent, to be presented in th e next sections,

replaces th e two trav ersa ls w ith a single trav ersa l o f the tree .

A n a ly s is S ince th e tre e traversal is an 0 { l o g (N)) o p era tio n an d th e location finder works in

constan t tim e (h ash tab le lookup is 0 (1)) . th e to ta l execution tim e is 0 (N l o g (N)) . T he m em ory

requirem ents of th e a lg o rith m s are very large because B an d its p a rtia l sum s are represented

explicitly in m em ory.

4.2.5 Hole-based Algorithms

We define a hole as a m em ory reference in th e p rogram trace th a t is not th e la te s t reference to a

particu la r location a t tim e r . Holes are th u s elem ents in B r th a t have been se t to 0.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W hereas values o f 1 in B (and corresponding la te s t references) a re newly c rea ted and th en

destroyed all th e tim e , holes have th e p roperty of being c rea ted a n d never destroyed.

Using th e concep t o f holes, th e s tack d istance a t index r can be expressed as

clist{r) = r — P r(x T) — h o le s - (P ~ (x ~))

where holesr (i) is th e num ber of holes in th e program trace betw een indices i an d r . Here we are

in effect coun ting th e 0 's in B in stead of counting th e l 's . an d ad ju s tin g E quation (4.3) to reflect

this.

Holes can be rep resen ted m ore efficiently th an la tes t references. We will p resent two kinds of

algorithm s based on holes, a varian t in which holes a re held by an interval tree an d an o th er which

is a faster version o f B en n ett and K ruskal's algorithm .

4.2.6 Interval Tree of Holes

An interval tree is used to efficiently represent an o rdered se t o f m utually d isjunct intervals / =

{[*u- *r’i- [* 2 1 • *2 2].........[*ni• rn2]}• In o u r case the intervals in I a re all bounded by n a tu ra l num bers

(indices in th e p ro g ram trace). T he intervals represent con tiguous sets of indices th a t are holes in

th e trace.

Interval trees (F ig u re 4.6) a re represented as a q u asi-b a lan ced binary trees B T (such as red-

black trees [IS] or AVL trees [39]) in which each node n rep resen ts th e closed in terval [Aq(n). A.-i(n)].

T h e tree o rdering corresponds to th e order of the in terva ls in I: thus Aq(n) > A.'o(/e/t(n)) and

Ara(n) < k i (r i g h t (n)) . w here l e f t (n) an d r ight{n) are respectively th e left and righ t children o f n .

T h e P a r t i a l S u m H ie r a r c h y

We use the in terva l tre e to evaluate th e num ber of holes betw een P { x r) and r . T h e re a re no holes

beyond the cu rren t index r (a logical im possibility considering th e definition o f a hole). T h u s we

are left w ith co u n tin g th e num ber o f holes a t indices la rg e r th a n P (x T). To do th is , we follow

B ennett and K ru sk a l’s m ethod and associa te a value s u m (n) w ith each in terval no d e n . to hold

th e sum of holes co n ta in ed in th e children of n . O ur hole tre e now becom es equivalen t to B en n e tt

an d K ruskal's p a r tia l su m hierarchy.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2020—230o|140-145

160-1783 -6 2302-2303

180-188

2012-2014190-190

1 2 0 - 1 2 1

125-13025-100

151-153

8-20

19 2 -2 0 1 0

Figure 4.6: A n in terval tree

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h o les(lO l) = 3 + 1934 + 2 + 1 2 = 1951

add to holes

add to holes
15 1-153

1934

add to holes

add to holes

120-121 192-2010

12 86

8 -2 0 140-145
*

180-188 2020-2300

76 s 1 0 1 2

2 5 -1 0 0 125-130 160-178 9 0 -1 9 0 2012-2014
X.

2302-2303

change to 25-101

Figure 4.7: U pdating the tree o f holes

A slight o p tim iza tion is to m ake su m (n) hold the sum of holes in th e right subtree of n instead

of n itself. In F igure 4.7 th e shaded boxes contain p a r tia l sum s of th e right su b tree of their

nodes, as ind icated by the dash ed arrows. T h is o p tim iza tion reduces the num ber o f right subtree

dereferen tiations w hen the nex t ta rg e t of the tree traversal is the left su b tree (in F igure 4.7 the

nodes m arked w ith (*) will no t need to be dereferenced).

T he counting a lgo rithm works like this: we traverse th e in terval tree from the roo t tow ards the

leaf node closest to index i = P (x~) . We carry a p artia l su m along th e p a th , and ad d to it th e sum

o f holes in all su b trees encoun te red to the right of th e p a th (i.e. having indices larger th a n i).

U p d a t in g t h e I n t e r v a l T re e

We now ex tend th e coun ting a lg o rith m to include the th ird com ponen t of th e LRU s tack algorithm :

u p d a te . We need to u p d a te th e tree s tru c tu re as well as th e p a r tia l s tun hierarchy resid ing in it.

W ith regard to in serting a new hole p in to the in terval tree , th e re are several cases to consider:

• p m ay be ad jacen t to a sing le existing interval [fci, Aro] in th e tree . i.e. p = k i — 1 o r p = -I-1 .

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In th is case the in terva l is ad ju sted to include p.

• p m ay be ad jacent to tw o intervals [Aq.p — 1] and [p 1 . A^j. In this case th e in tervals are

fused in to a single in te rv a l [k\. £3] p ro m p tin g th e deletion o f one of th e nodes an d th e po ten tia l

re -balanc ing of the w hole tree.

• p m ay no t be ad jacen t to any intervals in B T . In th is case a new node is c rea ted , to hold the

in terval [p.pj. A gain, th e tree m ay need to be rebalanced.

T he p artia l sum hierarchy is u p d a ted by changing the s u m values of the nodes on th e p a th from

th e root to th e affected in terval. F igure 4.7 illu s tra te s the o p e ra tio n of counting holes an d inserting

a new hole a t location 101 in an exam ple tree . F igure 4.8 lists th e algorithm th a t perfo rm s this

operation .

Analysis T h e algorithm p resen ted in F igure 4.7 is based on a quasi-balanced b in ary tree.

dist{p. n) is a variant of th e insertion o pera tion for quasi-ba lanced b inary trees, which m akes it an

O(lotj(. \[)) o p era tio n (th e n u m b er o f d isjunct hole intervals, an d th u s nodes in the tree , is always

less th an M -f l) . T hus th e to ta l execution tim e o f the B inary T ree Hole A lgorithm is 0(. \ ' l og (. \ [)) .

4.2.7 Preallocated Tree of Holes

A tree of holes can also be im plem ented as a preallocated fixed tree {B °. B l . like the

one of B ennett and Kruskal. U nfo rtu n ate ly th e m em ory requ irem en ts for the whole tre e get quickly

o u t of hand: for a program tra c e of length 2 3 1 (a realistic n u m b er for todays program s) we need to

allocate 1 4- 2 4- 22 -I- ... 4- 23 0 = 23 1 — 1 locations.

T he silver lining is th a t no t all locations need to be o f th e sam e size. E lem ents of B o. for

instance, need to hold on ly one b it: elem ents o f B i need to be tw o b its each, and so on: the to ta l

m em ory requirem ent is | x (23 0 -I- 2 x 22 9 + 3 x 22 3 + . . . + 31 x 2°) = 536.87MB. w hich fits into the

v irtu a l m em ory of m ost m o d ern w orksta tions. Also, th e a lg o rith m does not use all o f th is m em ory

a t once, b u t ra th e r progresses slowly th ro u g h it as the tra c e is analyzed . T his allow s for huge

portions o f th e p reallocated tree to reside in v ir tu a l storage.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function dist (n. p) j
begin j

if (p j k t y t(n) - 1) /* con tinue search left * j \
if (/e/f(n) ni l) !

return s iim (n)-K lis t(/e /£ (n)) |
else /* c a n 't continue left - no nodes left * / j

left(n) := new in terval Cp.p) '
sum (left(n)) := 0

return sum(n)
end if j

else if (p > key-2 (n) ■+■ 1) / * con tinue search right */ j

if (r ight (n) 7= nil) j
.stunt n) := s u m (n) + I |
return dist(rt« 7/i£(n)) |

else / * c a n 't continue right - no nodes left * / ;
righ t(n) := new interval (p.p)
su m (rig h t(n)) := 0 ;
return 0

end if
e ls e if (p = k e y i (n) — 1 AND p = key-2 (l t f t (n)) + 1) /* m erge left node * / |

Are 1/1 (n) := k e y i (l e f t (n)) \
rem ove_node(/e/£(n)) j
rebalance(n) I
r e t u r n k e y ^ i n) — p + s u m (n) \

e ls e if (p = A-eyi(n) — 1) j * ad d to node * j I
A-eyi(n) := p
r e t u r n A-e(/o(n) — p + sum(n)

e ls e if (p = keyo(n) + 1 AND p = keyi{right (n)) — 1) / * m erge right node * / i
keij2 {n) := keij2 (right(n))
rem oveu iode(fe /£ (n))
rebalance(n)
r e t u r n sum(n)

e l s e if (p = keyoin) + 1) / * ad d to node */
key-2 {n) := p
r e t u r n sum (n)

e n d if
e n d

F igure 4.8: In terval tree u p d a te

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A n a ly s is S ince th e tre e is p reallocated , an d has N leaf nodes, tree traversal is now an 0 { l o g (N))

operation ra th e r th a n 0 (l o g (M)) . which w ould seem to m ake th is algorithm im practical. Also, th e

tree needs to b e a llo ca ted before the p rog ram is run . which m eans th a t th e u ser has to guess :V.

However, once N is ca lib ra ted , th e a lg o rith m becom es th e fastest we tried so far. ou tperfo rm ing

B ennett and K ru sk a l's by a factor of up to 2:1. T h e reason for th is is th a t on ly one tree traversal

is needed per e lem en t, as opposed to two for B ennett and K ruskal's algorithm .

4.2.8 Experimental Evaluation

We selected th e Perfect B enchm arks [7] as our experim ental base and in stru m en ted them w ith a

source-to-source tra n s la to r to generate a p rogram trace. R a th e r th an storing th e program trace we

hooked up th e an a ly zer to th e in stru m en ted benchm ark directly , and g enerated the trace and th e

h istogram on th e fly.

At first we used th e naive im p lem en tation of the LRU stack algorithm , an d experienced a d rastic

slowdown. In an effort to find b e tte r im p lem entations of the LRU algorithm we experim ented w ith

all algorithm s described in th is chap ter.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X X
AoX

x ' r ?
M X N

X Cl
X Cl

— X c- ci
x

X
X

o Is-
— X

Cl X

tc

uC C— X O uO O
N lC LC C5 N !C
O X O O CM ^
C N 15 C5 C5 O

CM -5p CM

ire x
X C- C« l»C Cl

r r Cl O -T X Cl X 0 0 X 0 lc x rr
Cl

Cl

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We ra n our experim ents on a 270M Hz U ltrasp arc Solaris m achine. Table 4.4 sum m arizes the

resu lts we obtained . B enchm arks are listed by nam e: th e to ta l num ber of references and the

m axim um stack dep th are included .

T h e algo rithm s we m easured are th e following:

• o r i g is the runtim e of th e orig inal non-instrum en ted benchm ark .

• n u l m easures the trace g en e ra tio n overhead, bu t the s tack processing part is no t im plem ented.

We m easured "nul" to find ou t how m uch th e benchm arks a re affected by ju s t generating the

trace.

• B&K an d p re are p reallocated im p lem entations of B en n ett an d K ruskal’s. and th e preallocated

tree hole based a lg o rith m ’s, respectively.

• a v l an d r b are interval tre e im p lem entations using AV'L an d red-black trees respectively.

• mrk is th e m arkers a lgo rithm . M any of th e num bers are m issing because we had to ab o rt runs

th a t were taking too long.

We also show (Figure 4.9) th e increase in execution tim e for all these benchm arks w ith respect

to th e op tim ized execution tim e o f th e p rogram . T he th ree b ars for each benchm ark in Figure 4.9

dep ic t, from left to right, th e increase in execu tion tim e by ad d in g in stru m en ta tio n to collect the

program trace on the fly. the increase in execu tion tim e of ou r p reallocated tree a lgorithm , and the

increase in execution tim e of o u r im p lem en ta tion of B ennett an d K ruskal’s algorithm .

We m easured the relative overhead of th e s tack co m p u ta tio n . F igure 4.10 breaks down the

to ta l ru n tim e o f each benchm ark in to the tim e sp en t in th e o rig in a l benchm ark, in s tru m en ta tio n

overhead (i.e. tim e spent g en e ra tin g the p rog ram trace), hash ta b le lookup overhead and stack

co m p u ta tio n overhead.

T h e in terval tree based a lg o rith m s have b e t te r theo re tical b o u n d s th an th e p reallocated tree

a lgo rithm s. 0 (N l o g (M)) versus 0 { N l o g (N)) . T here are several reasons why th e preallocated

a lg o rith m s ten d to yield b e tte r execu tion tim es in practice:

• T h e in terval tree im p lem en ta tio n severely stresses th e m em o ry bandw id th o f th e host pro­

cessor. For each elem ent in th e p ro g ram trace th e in terv a l tre e a lgorithm generates abou t

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In
cr

ea
se

in

Ex
ec

ut
io

n
T

im
e

adm arc2d bdna dyfesm flo52 mdg ocean qcd spec77 spice track trfd Avg

Figure 4.9: Increase in execu tion tim e w ith respect to th e op tim ized p rogram of in stru m en ted code,
preallocated hole tree a lg o rith m and B en n e tt an d K ruskal's a lgorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ex
ec

ut
io

n
Ti

me

B
re

ak
do

w
n

100

90

80

70

60

50

40

30

20

10

0
adm arc2d bdna dyfesm flo52 mdg mg3d o cean qcd sp e c 7 7 spice track trfd

F ig u re 4.10: E xecution tim e breakdown for th e p reallocated hole tree algorithm

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in stru m en ta tio n
h a s h ta b le
h o les

3 • lo g (M) add itional references while traversing the in terval tree : in each tree node a t least

one node key is accessed: in ad d itio n th e node's p a rtia l sum is accessed an d one of the leaves

is dereferenced.

T h e value o f M can be app rox im ated w ith the m easured m ax im um s tack dep th , which for

m ost of o u r algorithm s yields an AVL tree height of a ro u n d 20 to 25. resu lting in up to 75

e x tra m em ory accesses p er elem ent in th e m em ory trace . In th e case of red-black trees the

uUln'uci' uf re fe re n c e s is eVcU h ig h e r .

By com parison the p reallocated tree im plem entation genera tes on ly lo g (N) (or 2 • log{ .V). in

th e case o f K ruskal’s algorithm) references. In practice we lim ited N to 231. which m eans 31

m em ory references for each tree. In ad d itio n the p reallocated tree is bu ilt such th a t ad jacent

nodes a t lower levels tend to be c lu stered into the sam e cache line, resu lting in good sp a tia l

locality.

• T h e in te rva l tree im plem entation relies on dynam ic m em ory a llo ca tio n as th e interval tree

sh rinks an d expands in th e course of th e process. We were ab le to g a in up to 33% in execution

speed by w riting o u r own m em ory a llo ca to rs (this gain is included in th e perform ance figures).

T he b e tte r speed of the preallocated s tra te g y comes, however, a t th e cost of extrem ely high

m em ory usage (ab o u t 600 M Bytes of v irtu a l m em ory for th e p rea llo ca ted tree) and a hard lim it of

23 1 references in th e m em ory trace. For a few of the benchm arks th is lim it is exceeded.

T he in terval tree im plem entation , if slower, has no inherent lim ita tio n w ith respect to th e trace

size and delivers reasonable perform ance. We see it as a m ore useful too l on th e whole. T he AVL

tree is p referab le to the red-black tree, since th e higher reordering cost is clearly am ortized by the

lower average tree height.

In conclusion, th e preallocated im p lem en tation works b e tte r for p rog ram s w ith sh o rt traces, bad

locality an d large cores (th a t is. large M an d relatively sm all N values), w hereas th e interval tree

im plem entation works b e tte r on long traces w ith good locality an d sm all cores (larger .V. sm aller

A/ values).

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.9 Notations

T his section enum era tes an d explains som e of th e sym bo ls we used th ro u g h o u t this ch ap te r.

• N: num ber o f references in th e program trace u n d e r consideration.

• M : num ber o f d is tin c t m em ory references in th e p ro g ram trace. In effect M is equal to the

size of the m em ory used by th e program we are analyzing .

• t : used as th e current index in the trace. As such. 0 < r < .V. T h e stack a lgorithm

processes th e p rogram trace sequentially : r alw ays deno tes the cu rren t position processed by

the algorithm .

• x -: denotes th e m em ory reference a t index r in th e program trace.

• P : a m apping from m em ory references to trace indices. Since P changes in tim e, it is norm ally

indexed w ith r . th e curren t index in the p rog ram trace .

• B : a m apping from trace indices to booleans. B T(i) is set if a t m om ent r th e location

referenced a t position i in th e trace is the la tes t reference to its loca tion .

• dist (r): th e s tack d istance corresponding to th e location referenced in position r in th e trace.

T his is the n um ber we co m p u te for each elem ent in th e trace.

• holes~(i): th e num ber o f holes in th e program tra c e between indices i and r a t m om ent r .

i < r by definition.

4.3 Summary

In th is chapter we have p resen ted a new m etric for d a ta locality based on th e stack d istances. We

have shown th a t th e s tack d istance m etric cap tu res lo ca lity m ore precisely th a n the in ter-reference

d istance m etric [42]. It is also app licab le to any p ro g ram granularity , as opposed to o th e r m etrics

proposed, such as th e n um ber o f accesses in th e in n er-m o st loop [73. 72].

T h e second p a r t o f th e ch ap te r discussed a new a lg o rith m for s tack processing. T h e new

algorithm , using p rea llo ca ted trees, im proves over th e b e s t known s tack a lg o rith m [6] (w hich also

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uses p rea llo ca ted d a ta s tru c tu res) by m ore th a n 30%. If th e size o f th e trace is not know before

running th e a lgorithm , the p rea llo ca ted d a ta s tru c tu re s are no t th e best choice. T herefore we

propose a n o th e r scheme, based o n th e sam e algorithm , th a t uses AVL trees. T h e perform ance of

this schem e is on ly m arginally w orse th a n th e previously best know n algo rithm using preallocated

trees, while using less m em ory for sh o rt traces, and giving th e possib ility to grow the d a ta s tru c tu re s

its needed for long traces.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Polaris Performance Prediction
Framework

In this chap ter we p resen t the details of o u r im p lem entation o f the perform ance predic tion frame­

work inside the Polaris source-to-source re s tru c tu re r (S ection 5.1). We also p rov ide a description

of the interface betw een th e perform ance pred ic tion fram ew ork in Polaris an d th e SvPablo perfor­

m ance visualization to o l (Section 5.2).

5.1 The Polaris Framework

T h e Polaris p erfo rm ance prediction fram ew ork consists of a collection of classes th a t allow easy

im plem entation of m odels for loop based com pile-tim e perform ance pred ic tion . Its m ain use is

as a compiler pass th a t can be called w henever the need for perform ance p red ic tio n d a ta occurs.

It also provides s u p p o rt for profiling in fo rm ation co llection an d perform ance d a ta reporting and

visualization.

T he m ain design goals for the perform ance p red ic tion fram ew ork are:

• m o d u la r i ty - we w ant to provide a basis for developing perform ance e s tim a tio n modules.

A m odule can focus on a specific p a r t of a co m p u ter system , such as C P U . m emory, or I/O

system , and m o d el th a t part a t th e desired level of deta il. In previous ch ap te rs we have

presented a lg o rith m s th a t are im plem ented as th ree su ch modules: the C P U m odel, and two

memory m odels, th e stack d istances an d th e ind irec t accesses models.

• c o n s is te n c y - th e fram ework co n ta in s ab s trac t b ase classes for perform ance estim ators, thus

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g u aran teeing th a t w henever a new m odule is developed it provides the necessary basic func­

tionality . consisten t w ith th e rest of th e system . Since o u r p red ic tion m odel for a co m pu ting

system consists of several m odels th a t estim ate the behavior o f different subsystem s sym boli­

cally. th e sym bolic expressions th a t represent the perform ance m ust be com patib le w ith each

o th er. T h e base classes ensure th is property.

• e a s e o f u s e a n d m a in t e n a n c e - we designed the fram ew ork in such a way th a t one can

'‘unplug" a perform ance e s tim a to r m odule and "plug” a n o th e r one in place very easily, w hile

m ain ta in ing the code readability .

In the following discussion we assum e th a t th e reader is fam iliar w ith the Polaris in ternal represen­

ta tio n [26]. Polaris is a source-to-source re stru c tu re r th a t parses F o rtran 77 an d o u tp u ts F o rtran

w ith parallel directives for a large set o f p latform s. For m ore d e ta ils on Polaris, see [8].

In F igure 5.1 we presen t th e UML d iagram of the classes con tained in th e fram ework, an d T a­

ble 5.1 deta ils th e functionality im plem ented by the m ethods. T h e P e r fo rm a n c e E s tim a to r o b jec t

is th e in terface to the perfo rm ance p red ic tion module. T his ob ject can be in s tan tia ted e ith er for a

F o rtran p rogram un it (su b ro u tin e or function), or for a p a rticu la r s ta tem en t in the program , an d

to access it. we have added th e g e t . p e r f . e s t i m a t o r m ethod to b o th P rog ram U nit and S ta te m e n t

P olaris ob jects. A P e r fo rm a n c e E s tim a to r ob ject contains a collection of C o s tE s tim a to r o b jec ts ,

th a t is called to es tim ate th e perfo rm ance o f a block of code. E ach C o s tE s t im a to r im plem ents

a p a rticu la r perform ance p red ic tion m odel, as discussed in C h ap te r 3. T h e user registers the cost

estim ato rs corresponding to th e perform ance d a ta desired before calling th e e s t im a te C o s t m em ber

function on th e P e r fo rm a n c e E s tim a to r ob ject.

For exam ple, if perform ance d a ta for th e C PU execution tim e is needed for a loop, th e following

code estim ates it:

PerformanceEstimator *pe = loop->get_perf_estim ator();

pe->registerCostEstimator(new OpsCostEstimator(loop, pgm));

pe->estim ateC ost();

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PerformanceEstimator

initializeO
reset()
finalizeO
estimateCostu
getPrcdictionExpr()
instrument()
genSymboIicCode()
registerCostEstimatorO
unregisterCostEstimatorO

o
CostEstimatorsMap _costEstimators
Statement * _stmt
ProgramUnit * _pgm

CostEstimator

estimateCostO
instrumentO
getCounterExprt)
**““ **•■ v /

reset()
initializeO
finalizeO
printO
genSymbolicCodeO
loop_pre_instrument()
loop_post_instrument()
routine_pre_instrument()
routine_post_instrument()
addToCost()

OpsCostEstimator S tackM em Estim ator

computeProjectionsO
parti tionlterationSpaceO
computeHistogramO

Expression *_costExprs[]

DDgraph * _ddgraph
StackHistogram _stack
IterationSpace _itSpace
Dependences pace List _deps

IndirectAccesses Estimator

getVisitedBytes()
getlndirCountersO
getAccessedBytesQ

EEmap _visitedRefs
ESmap _indirectAccesses

F ig u re 5.1: Polaris p e rfo rm an ce prediction fram ew ork

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O bject M ethod Com m ent

Perfo rm anceE stim ato r

in itialize initializes th e d a ta s tru c tu re s for th e Per­
fo rm anceE stim ato r an d its cost e s tim ato rs

reset resets all th e cost estim ato rs
finalize frees all th e allocated d a ta s tru c tu re s in

th e P erfo rm anceE stim ato r an d its cost es­
tim a to rs

estim ateC o st estim ates th e cost by calling th e estim ate ­
Cost m ethod on every reg istered cost esti­
m ato r

g e tP red ic tio n E x p r re tu rn s th e sym bolic expressions deno ting
th e p red ic tion

in s tru m en t places in stru m en ta tio n in th e F o rtran code
to eva lua te the prediction expressions

genSym bolicC ode generates C-F-f- code to ev a lu a te th e sym ­
bolic expressions as described in Sec­
tion 5.2

u n /reg is te rC o s tE s tim a to r reg isters and unregisters a cost e s tim a to r
w ith th is P erfo rm anceE stim ato r ob jec t

C o stE stim ato r

in itialize initializes th e d a ta s tru c tu re s for this
C o stE stim ato r

reset resets th e cost estim ato r
finalize frees all th e allocated d a ta s tru c tu re s
nam e re tu rn s a unique nam e for th e cost estim a­

to r
estim ateC o st traverses th e AST and genera tes cost ex­

pressions denoting perform ance
in s tru m en t places in stru m en ta tio n in th e F o rtran code

to eva lua te the prediction expressions
g e tC o u n te rE x p r re tu rn s th e sym bolic expressions for per­

form ance
genSym bolicC ode generates C+-F code to ev a lu a te th e sym ­

bolic expressions
loop_*Jnstrum en t used by th e instrum ent m eth o d to p lace in­

s tru m en ta tio n before and a f te r es tim ated
loops

ro u tin e .* -in strum en t used by th e instrum ent m eth o d to p lace in­
s tru m en ta tio n before and a f te r es tim ated
rou tines

addT oC ost adds th e cost expressions o f th e a rgum en t
to th is estim ato r. Used to ag g reg a te costs
for block sta tem en ts

Table 5.1: M ethod fu n c tio n a lity in th e P o laris perfo rm ance prediction fram ew ork

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O b jec t M ethod C om m ent

S tackM em E stim ato r
p a rtitio n lte ra tio n S p ace p artitio n s the ite ra tio n space of th e loop as

described in Section 3.3.3
com puteP ro jec tions com putes the dependence spans an d array

sections (see Sections 3.3.4 and 3.3.5)
com puteH istogram com putes th e s tack histogram , as described

in Section 3.3.6

Ind irM em E stim ato r

getV isiteclBytes re tu rn s an expression denoting th e num ber
of bytes accessed by a rray references

getlnclirC ounters re tu rn s the list of sym bols th a t co rrespond to
Inrlirorf orrov nrroccp's• --- ---

get AccessedBy t es re tu rn s the sum o f all the bytes accessed by
arrays in a loop

T able 5.2: M ethod func tiona lity for m em ory cost es tim ato rs

After th e cost estim ation is perform ed, the user can perform several tasks, depending where

an d in w hat fo rm at th e perform ance d a ta is needed:

• inside the compi ler - if perform ance d a ta is needed to guide op tim iza tio n s (or for an y o th er

task a t com pile-tim e), the user can retrieve th e perform ance sym bolic expressions using the

g e tP r e d ic t io n E x p r O m ethod on th e P e r fo rm a n c e E s tim a to r o b jec t. This m eth o d will

aggregate th e cost expressions o f all its reg istered cost es tim ato rs in to one expression.

• run-t ime es t imat ion and profiling in format ion collection - the user can call the in s t ru m e n t ()

m ethod to o b ta in ed an in stru m en ted version o f th e code. T h e in stru m en ta tio n consists of

s ta tem en ts to evaluate all th e cost expressions in each cost e s tim a to r plus sta tem en ts to collect

the perfo rm ance da ta . T he perform ance d a ta is collected using calls to functions im plem ented

as a sep a ra te lib rary [13].

• performance visualization a n d / o r scalability analysis - in case th e u se r w ants to sto re th e sym ­

bolic expressions and evaluate th em a t a la te r tim e using different d a ta se ts , the

genSym bolicC ode 0 m ethod can b e used. T h e m ethod will g en e ra te C + + code th a t con­

tains th e sym bolic expressions. A n exam ple of how th is code can be used for perform ance

visualization is presented in Section 5.2.

As we m en tioned before, the P e r fo rm a n c e E s tim a to r ob ject can b e c rea ted for a P ro g ram U n it

(an object th a t rep resen ts a function o r a su b ro u tin e in Polaris) or for a s ta tem en t, includ ing block

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sta tem en ts , such as loop nests or if s ta tem en ts . T h e P e r fo rm a n c e E s tim a to r o b jec t takes care of

aggregating th e cost expressions for all the s ta te m e n ts contained in th e block.

T hree cost es tim a to rs are provided, th a t im plem ent th e perform ance p red ic tion m odels discussed

in C hap ter 3. T h e OpsCostEstimator im plem ents th e processor m odel. T h e StackMemEstimator

im plem ents th e S tack D istances m odel, and the IndirectMemEstimator im plem ents th e Indirect

Accesses Model.

5.2 Integration with SvPablo

S vPablo [21] is a language independent perfo rm ance analysis and v isualization system . We have

used the SvPablo sy stem together w ith Polaris as an exam ple of th e in teg ra tio n betw een perfor­

m ance visualization too ls and com pilers. S vPab lo is capable of in stru m en tin g code, e ither in terac­

tively or au tom atically , com pile, run. collect and sum m arize perform ance d a ta for th e instrum ented

sta tem en ts, as well as displaying the correlation betw een perform ance d a ta an d th e source code

in an easy and in tu itiv e user interface. O n th e o th e r hand, the Polaris perfo rm ance prediction

fram ework can ana lyze an d ex trac t perform ance in form ation a t com pile-tim e and represent this

inform ation using sym bolic expressions.

T he "m arriage" betw een these two system s provides a very powerful in teg ra ted system for per­

form ance tun ing . O ne of th e m ajor draw backs of ru n n in g in stru m en ted code to collect perform ance

inform ation is th a t th e in stru m en ta tio n code p e r tu rb s com piler o p tim iza tio n s an d cache behavior.

Having the perfo rm ance inform ation com puted a t com pile-tim e an d sto red as sym bolic expressions

m akes the in s tru m en ta tio n code no longer necessary, therefore, th e re will be no p ertu rb a tio n s.

Also, the perform ance d a ta is no longer collected for a unique d a ta se t. and th u s, we enable o ther

analyses, such as sca lab ility analysis an d "w hat i p questions and answ ers, to be perform ed on the

code.

T he key ideas th a t enable th e in teg ra tion are:

1. the a rch itec tu ra l independence o f th e perfo rm an ce pred ic tion m odel im plem ented in Polaris

2 . the sym bolic rep resen ta tio n o f th e perfo rm ance d a ta

3. the language independence and ex tensib ility o f SvPablo d u e to its S D D F m eta-fo rm at [2]

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represen ta tion o f perform ance inform ation

C u rren tly there are two m odes in which Polaris an d SvPablo in teract. In th e first m ode. P o laris

analyzes th e code an d generates an in stru m en ted p rogram , such th a t, by runn ing th e in s tru m en ted

p rog ram th e sym bolic expressions th a t represent perfo rm ance d a ta are evaluated . T h e perfo rm ance

d a ta is sum m arized in an SD D F file, an d SvPablo uses th is file to re la te the perfo rm ance d a ta to

th e source code of th e program .

T h e second m ode of in teg ra tion is m ore involved. In th is scenario. Polaris generates code,

sep a ra te from the analyzed p rogram , to sto re th e sym bolic expressions represen ting perfo rm ance

p red ic tion data . T h e code can be com piled in a sep a ra te lib rary for la te r use. W e have chosen

C + 4- as the language in which to s to re the expressions. SvPablo will im plem ent th e user in terface

p a rt th a t makes calls to th e lib rary in order to e s tim a te th e perform ance for different m achine

p aram ete rs a n d /o r in p u t d a ta sets.

T h e class d iagram show n in UML n o ta tio n in F igure 5.2 is th e in terface to the sym bolic expres­

sions library. Because of the sep a ra tio n of program d a ta an d m achine param eters , th e re are two

class hierarchies in th e d iagram .

T h e first hierarchy, based on th e class D e lp h iM a c h in e D e s c r ip tio n encapsu la tes a rch itec tu ra l

specifications. For each p rocesso r/system configuration, an SD D F file w ith th e m achine specifica­

tion is provided. T his file describes deta ils such as processor clock frequency, num ber of functional

un its , repeat ra tes an d latencies o f operations, issue w id th , etc. It also specifies th e m em ory hi­

erarchy: how m any levels of cache, th e param eters for each cache level, such as: la tency o f a h it

and a miss, associativ ity , line size an d to ta l size. B eing w ritten in SD D F. it is ex tensib le , to allow

for ad d in g I/O specifications an d in terprocessor com m unication . A custom ized parser e x tra c ts th e

specifications from th e SD D F file an d generates th e m achine descrip tion classes.

Tw o o f the m ethods in th e m achine descrip tion class are g e tO p sC o s ts () and g e tC a c h e C o s ts () .

An exam ple of th e ir usage is p resen ted below. T h e m e th o d g e tO p sC o s ts () takes th e e s tim a ted

n u m b er o f operations, and com bines th e operations w ith th e ir latencies and rep ea t ra te s to give

an es tim a ted execution tim e. g e tC a c h e C o s ts () takes th e num ber o f es tim ated cache m isses for

each level in the m em ory hierarchy, an d re tu rn s th e es tim a ted tim e spen t accessing th e m em ory

hierarchy. Both these m ethods axe used by th e second class h ierarchy to e x tra c t in fo rm atio n a b o u t

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D elp h iM ach in eD escrip tio r

getO psC osts()
getC acheC ostsO
getN C acheL evels()
getC acheL ineS ize()
getC acheSize()
getC acheA ssoc()
getN IntegerU nits()

getN FloatingU nitsO
getN M em oryU nits
getlPC O

<

D e l p h i M D R l O k

• • •

D e l p h i M D U l t r a 2 i

•

D e l p h i E v a l P r o g r a m

evalL oopO
getParam s()
getL oopL ist()

D e l p h i E v a l A P P L U

• • •

D e l p h i E v a l S W I M

F ig u re 5.2: Polaris perform ance p red ic tio n in terface to S vPablo

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e m achines.

double eval_CALCl_dolOO(DelphiParamList fcparams, DelphiMachineDescription tond,
DelphiEvalProgram feevalPgm)

{
double resu lt = 0 .0 ;
DelphiParamList: :const_ iterator p lter ;
p lte r = params. find("N "); double n = (* p l t e r) . second;
p lte r = params.findC'M"); double m = (* p l t e r) . second;

double opCosts[29] ;
forCint i = 0; i < 29; i++)

opCosts[i] = 0 .0;

opCosts[1] = 1+n;
opCosts[2] = 22*m*n;
opCosts[7] = 23*m*n;
opCosts [8] = m*n;
opCosts [18] = 14*m*n;
resu lt += md.getOpsCosts (opCosts);

in t nlabels = 27;
double *labels = new double[nlabels]
double *refs = new double[nlabels]
double cacheMisses[MAX_CACHE_LEVELS]
forCint 1 = 0 ; i < md.getNCacheLevels() ; i++) {

cacheMisses[i] = 0 .0 ;
in t _delphi_cls = md.getCacheLineSize(i);
la b e l s [0] = 2; r e f s [0] = n /(_ d e lp h i_ c ls /8) ;
la b e l s [1] = 0; r e f s [l] = 8+m+m/(_delphi_cls/8)+6/(_delphi_cls/8)+9*n+

n /(_delp h i_c ls /8)+7*n*m /(_delp h i_c ls /8);
la b e l s [2] = 1; r e f s [2] = -2 -4*n-3 /(_delph i_c ls /8)+m /(_de lph i_cls /8)+

m-4*n*m/(_delphi_cls/8)-n/(_delphi_cls/8)+4*m*n;
la b e l s [3] = 3; r e f s [3] = l / (_ d e lp h i_ c l s /8) ;
la b e l s [4] = 5; r e f s [4] = -l+m -n-l/(_delphi_cls/8)+m /(_delphi_cls/8)+m *n

-n *m /(_d elp h i_c ls /8);
la b e l s [5] = l+ l / (_ d e lp h i_ c l s /8) ; r e f s [5] = 4*m*n;
l a b e l s [6] = 7 ; r e f s [6] = m*n-(n+n*m/(_delphi_cls/8));
l a b e l s [7] = 4 + 4 /(_ d e lp h i_ c ls /8) ; r e f s [7] = 1;
l a b e l s [8] = 6; r e f s [8] = m*n-(n+n*m/(_delphi_cls/8));
la b e l s [9] = 5 + 5 /(_ d e lp h i_ c ls /8) ; r e f s [9] = 1;
la b e l s [10] = 9 + 9 /(_ d e lp h i_ c ls /8) ; r e f s [10] = m+2*m*n;
la b e l s [l l] = 3 + 3 /(_ d e lp h i_ c ls /8) ; r e f s [l l] = n;
la b e l s [12] = 6 + 6 /(_ d e lp h i_ c ls /8) ; r e f s [12] = l+m*n;
la b e l s [13] = l l + l l / (_ d e l p h i _ c l s / 8) ; r e f s [13] = -1+m;
la b e l s [14] = 8 + 8 /(_ d e lp h i_ c ls /8) ; r e f s [14] = m;

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l a b e l s [15]
l a b e l s [16]
l a b e l s [17]
l a b e l s [18]
l a b e l s [19]
l a b e l s [20]
l a b e l s [21]
l a b e l s [22]
l a b e l s [23]
l a b e l s [24]
u K o i c n K i =

13+13/(_ d e lp h i_ c l s /8) ; refs[15] = -l+m-n+m*n.;
15+15/(_ d e lp h i_ c l s /8) ; refs[16] = -n+m*n;
16+16/(_ d e lp h i_ c l s /8) ; r e f s [17] = - l-n - l/(_d e lp h i_c ls /8)+ m *n ;
1 8 + 2 /(_d e lp h i_c ls /8)+ 17 /(_d e lp h i_c ls /8); r e f s [18] = -1+m;
35+4*m+m/(_delphi_cls/8) ; r e f s [19] = -1+n;
17+17/(_ d e lp h i_ c l s /8) ; refs[20] = -l+m-n+m*n;
26+4*m+m/(_delphi_cls/8); refs[21] = -m+m*n;

re fs [22] = m*n-l;
r e fs [23] = -m+m*n;
r e f s [24] = -m+m*n;

25+m/(_delphi_cls/8)+4*m
28+4*m+m/(_delphi_cls/8)
25+4*m+m/(_delphi_cls/8)

PORI s — •

r e f s [26] = -2*m-l+3*m*n;l a b e l s [26] = 25+4*m+m/(_delphi_cls/8)
forCint j = 0; j < n labels; j++) {

i f (l a b e l s [j] > md.getCacheSize(i) II la b e ls [j] == 0)
cacheMisses[i] += r e f s [j] ;

>
>

d e le te [] la b e ls ; delete [] r e f s ;

r e su lt += md.getCacheCosts(cacheMisses);
return r e s u lt ;

T h e o th e r class hierarchy, based on class D e lp h iE v a lP ro g ram represents perform ance d a ta on

th e p rogram side. Polaris is used to gen e ra te a class for each analyzed p rogram . For each loop nest

in th e p rogram . Polaris com putes th e sym bolic expressions deno ting th e pred ic ted perform ance,

an d generates a function th a t can be used to com pute th e p red ic ted execution tim e, provided th e

sym bolic p a ram e te rs are given ac tu a l values.

Tw o m eth o d s s tan d out in th e D e lp h iE v a lP ro g ram ob jec t. g e tP a ra m s takes a loop nam e an d

re tu rn s th e list o f sym bolic p aram ete rs th a t make up th e p red ic tion expressions. T hese p aram eters

have to receive values in order ev a lu a te th e expressions in a perform ance figure. T he o th er m eth o d

is ev a lL o o p . w hich, given a loop nam e, a list of p aram eters w ith the values filled in. and a m achine

d escrip tion , re tu rn s the predicted execu tion tim e of th e loop w ith th e specified p aram eters on a

given m achine.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Summary

In th is ch a p te r we have presented the Polaris perform ance p red ic tion fram ew ork. T he fram ework

enables access to com pile-tim e perform ance prediction from inside the com piler. It also allows th e

g enera tion of in stru m en ta tio n for collecting profiling in fo rm ation . We have also discussed how th e

fram ew ork helps th e in tegration betw een th e com pile-tim e d a ta prediction m odule w ith the SvPablo

perform ance v isualization tool.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experim ental R esults

6.1 Experim ental Setup

To evaluate th e accu racy of th e perform ance p red ic tion m odels described in C h ap te r 3. we imple­

m ented these m odels w ith in th e Polaris perform ance prediction fram ework. Since Polaris did not

have profiling in fo rm atio n su p p o rt, we have also im plem ented in stru m en ta tio n passes to collect

profiling d a ta , such as branch frequencies an d loop bounds.

To conduct th e experim ents, two o th er in s tru m en ta tio n passes were added to Polaris. One is

used to collect values for the hardw are counters. T h e o th er is used to m easure execution time.

B oth these passes can instrum ent a selected set o f loop nests, procedures or en tire program s. If a

procedure is se lec ted , all th e loop nests in th e p rocedure are instrum ented . T he resu lts are reported

for the selected p ro g ram constructs.

To validate th e com pile-tim e estim ation o f th e num ber of cache misses using the stack dis­

tances model, a ru n -tim e version of the stack d istances algorithm was im plem ented. C urrently , the

com pile-tim e version o f the algorithm works on ly in tra nest. Therefore, w hen resu lts are repo rted

for entire procedures, th e run-tim e version o f th e s tack d istances a lgorithm was used.

Two system s, b ased on two different processors, were used to carry -ou t th e experim ents. T he

first system , an O rig in 200. consists of 4 M IPS R10000 processors running a t 195 MHz. Each of

th e processors is a su p ersca la r processor capab le o f issuing 6 in structions per cycle and executing

4 of those. In s tru c tio n s are issued out-of-order an d re tired in-order. Each processor has a 32 KB

2-way set-associative L I d a ta cache, w ith a 32 bytes cache block. T h e L2 cache is 1M B . 2-way

set-associative w ith a 128 bytes cache block. T h e L2 cache is unified, i.e.. contains b o th in structions

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an d d a ta . T he com piler used on th is system is the M IP S p ro 7.30 F ortran com piler. This sy stem

was also used to collect hardw are coun ters m easurem ents.

T h e second system is a Sun E n te rp rise server. It h as 4 U ltraSparc I I i processors ru n n in g a t

250 M Hz. The U ltraS parc processor is an in-order su p ersca la r , capable o f issuing and execu ting up

to 4 instructions per cycle. T he caches on this processor a re as follows: th e L l cache is a 16 KB

d irec t m apped d a ta cache, w ith 32 by tes block size. T h e L2 cache is a 1 MB d irec t m apped unified

cache w ith 64 bytes block size. T h e com piler used on th is system is th e SparcW orks 4.0 F o rtran

com piler.

In th e following sections, perfo rm ance prediction o f cache misses and execution tim e are pre­

sen ted . We derived th e sym bolic expressions representing perform ance d a ta m easured on th e Ul­

traS p arc . and we su b s titu te d th e m achine param eters for b o th the R10000 an d the U ltrasparc to

o b ta in the perform ance num bers in these expressions. T h e m achine p aram ete rs were taken from

th e processors' m anual [56. 6 6] an d . w hen not available, determ in ed using m icro-benchm arks.

Tw o types of com parisons are m ade. F irst, for each m em ory hierarchy m odel, the cache m iss

estim ations are com pared against h ardw are counters values on the R10000 processor. T hen , th e

m em ory model is com bined w ith th e C P U m odel to p red ic t th e execution tim e for bo th the R10000

an d th e U ltraSparc.

6.2 Results

6.2.1 Cache Miss Prediction with the Indirect Accesses Model

To quan tify the accuracy of the p red ic tion m odel using th e Ind irect Accesses m odel we have chosen

SpLib [9]. a public dom ain im p lem en tation of several ite ra tiv e m ethods for solving sparse lin ear

system s of equations. From th is package, we have selected th e loops nests th a t take the m ost tim e

when solving a sparse linear system using th e stab ilized b i-conjugate g rad ien t algorithm w ith an

incom plete LU facto rization p recond itioner. It happens th a t these loops also sa tisfy the requ irem ent

of hav ing no I/O calls. T h e rou tines in which the nests a re located are:

• BMUX - m ultip lies a sparse m a tr ix w ith a vector u sing th e do t p ro d u c t form. T h e sp arse

m atrix is s to red in com pressed sp arse row (CSR) fo rm a t:

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
um

be
r

of
M

is
se

s

6000

5000 -

4000-

3000 -

2000 -

1 0 0 0 -

M easured
ictedlI I Predicted

do100

BMUX

do1 do2

LUSOLT

do1 do3

SCALA

do1 do2

UNSCALA UNSCALX

F igure 6.1: SpLib - L I cache miss p red ic tion for th e sm all d a ta set

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• SCALA - scales a sp a rse m a trix stored in C SR to have ce rta in properties, such as scaling each

colum n so th a t th e d iag o n a l en try is 1 .0 :

• UNSCALA - unscales a C S R m atrix to reverse effects of SCALA:

• UNSCALX - unscales th e so lu tion vector a t end o f co m p u ta tio n s

• LUSOLT - perform s a forw ard then backw ard solve for a m odified sparse row (M SR) m atrix

contain ing a un it Imvpr trian g u la r and an u p p pr rr ian g u la r m atrix w ith inverted diagonal,

bo th stored in a single M SR d a ta s tru c tu re . T h e first loop nest (do l) perfo rm s the forward

solve, and the second loop nest (do2) perform s th e backw ard solve.

We ran the benchm ark using two d a ta sets:

• a sm all data set - a 1128 x 1128 sparse m atrix w ith 13360 non-zero elem ents

• a large d a ta set - a 20284 x 20284 sparse m atrix w ith 452752 non-zero elem ents

Figures 6.1 and 6.2 show th e predicted num ber of cache m isses, using th e ind irect accesses

m odel, com pared to m easu red cache misses for the LI cache on th e M IPS R10000 processor. T he

ac tu a l num ber of misses is o b ta in ed using th e h ardw are co u n ters on this processor. Figure 6.1

shows th e results for th e sm all d a ta set. while F igure 6 . 2 shows th e results for th e large d a ta set.

We observe very little v a ria tio n w ith the increase in th e d a ta set size, which shows th a t th e m odel

handles qu ite well even large varia tions in the in p u t d a ta set.

T h e average predic tion e r ro r for the cache miss es tim a tio n on th e L I cache is 10.60% (stan d a rd

d ev ia tion 11.62%) on th e sm all d a ta set. and 9.41% (s ta n d a rd dev ia tion 11.25%) on th e large d a ta

se t. w hich is quite good considering th a t we m odel a fully associative cache, a n d th e caches for

th e R10000 processor are tw o way set-associative. T h e L2 cache miss estim ations are shown in

F igure 6.3. For the L2 cache we show only th e large d a ta se t because the en tire sm all d a ta set of

th e app lica tion fits in th e 1 M B cache of th e processor. A gain, we see a good co rre la tio n between

th e m easured and p red ic ted d a ta . T he average p red ic tion e rro r for the L2 cache is 12.65%. w ith

an 18.46% stan d ard d ev ia tio n .

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
um

be
r

of
M

is
se

s

x 10

0.8

0.6

0.4

0.2

dolOO do2do! dol do3 do1 do2

BMUX LUSOLT SCALA UNSCALA UNSCALX

F igure 6.2: SpLib - L I cache miss pred ic tion for th e large d a ta set

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
um

be
r

of
M

is
se

s

x 10

4.5

3.5

2.5

0.5

do100 do1 do1 do3do2 do1 do2

BMUX LUSOLT SCALA UNSCALA UNSCALX

F igure 6.3: SpLib - L2 cache m iss pred ic tion for th e large d a ta set

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.2 Execution Time Prediction with the Indirect Accesses Model

T h e next set o f figures presen ts th e execution tim e p red ic tio n for th e sam e loops in th e SpLib

package. T he figures com pare th e m easured execution tim e for each loop w ith the p red ic ted execu­

tion tim e o b ta in ed by com bining th e C PU m odel w ith th e Ind irect Accesses m em ory m odel. Each

b ar for the p red ic ted execu tion tim e shows the b reakdow n in to C PU pred ic ted tim e an d m em ory

p red ic ted tim e. T h e m em ory p red ic ted tim e includes p red ic tio n for b o th levels of cache.

'T**.- - c u , ,_________ - i r - - t ? : ______ - c «- - ~ i
• L v v u a c t a u i i c a t n c a c u e ^ t c a c i i i c u i u i l w u p i u L c a a u t - L u i u ^ u c r e u l u o u i c u i e u a . i i g t u c a o . - t c i a n u

6.4b show the p red ic ted execution tim e com pared to th e m easured execution tim e for unop tim ized

codes on the M IPS RIOOOO an d U ltraS parc H i processors, respectively. T h e com pilers used are the

F77 M IPSpro 7.30 an d S parc W orks 4.0. respectively, w ith th e defau lt levels of o p tim iza tio n s (i.e..

no -O flag was used). We do not app ly any of the o p tim iza tio n heuristics described in Section 3.1

in our pred iction . T h e d a ta set is th e large d a ta set desc rib ed above.

We notice th a t th e pred ic tion is less accura te on th e U ltraS p arc processor th an on the RIOOOO

(th e average p red ic tion e rro r is 8.10% for the RIOOOO an d 28.04% for th e U ltraS parc). T here

a re two reasons for u n d erestim a tin g th e perform ance: first, the caches on th e U ltraS parc are d irect

m apped , while ou r m odel p red ic ts misses for fully assoc ia tive caches. T h e second reason, is th a t the

SparcW orks com piler, w ithou t op tim iza tions enabled, gen era tes a large am o u n t of red u n d an t code

(reg ister spills an d red u n d an t conversions from single to double precision) th a t is no t taken into

account by our high level language m odel. T he p red ic tio n accuracy im proves when op tim iza tions

a re tu rned on.

Figures 6 .5a an d 6.5b show th e pred ic ted execution tim e re la tive to the m easured execution tim e

for optim ized codes. T he sam e com pilers are used, th is tim e w ith o p tim iza tio n s enabled by the

-0 2 flag. T he p red ic tio n m odel also applies all the o p tim iza tio n heuristics discussed in Section 3.1.

T h e average p red ic tio n e rro r is 16.32% for th e RIOOOO a n d 17.81% for th e U ltraS parc.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do 100

BMUX

dol do2

LUSOLT

do2

UNSCALA

do3

SCALA

dol

UNSCALX

(a) RIOOOO

Measured
Predicled CPU.
Predicted MerTu

E 80

do 100 dol do2

LUSOLTBMUX UNSCALA UNSCALX

(b) UltraSparc Ili

Figure 6.4: SpLib - unop tim ized execution t im e p red ic tion accuracy

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do 100 dol do2 do2 do3 dol

BMUX LUSOLT UNSCALA SCALA UNSCALX

(a) RIOOOO

B 11 1 ["
B Predicted CPU I

 P r e d i c t e d M e r t i

do 100

LUSOLTBMUX UNSCALA SCALA UNSCALX

(b) U ltraSparc Ili

F igure 6.5: SpLib - op tim ized execu tion tim e predic tion accuracy

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.3 Cache M iss Prediction with the Stack Distances Model

In this section we p resen t prediction results using the stack d istan ces models. We co m p are the cache

misses obtained using th e stack d istances m odel to the num ber o f ac tua l cache m isses o b ta in ed using

hardw are counters o n th e M IPS RIOOOO processor.

In Figure 6 . 6 we look a t the pred ic ted versus m easured num ber of cache m isses for a Jacobi

re laxation code, show n below:

do j = 2 , n-1

do i = 2, n-1

a (i , j) = (a (i - l , j) + a (i + l , j) + a (i , j - l) + a (i , j+1)) / 4 . 0

enddo

enddo

O n the r-a x is is th e problem size, increasing from 12S x 12S to 2048 x 2048. T h e prediction is

q u ite accurate , on b o th levels of cache, excep t for the largest size, where th e re a re m any conflict

m isses in the L I cache. T h e m iss-prediction com es from th e fact th a t we m odel a fully associative

caches, and the cache is only 2 -way set-associative. On th e bigger L2 cache th e effect does not

occur until the m a tr ix is m uch larger.

In the rem ainder o f th is section we look a t loops from th e SPEC fp95 ben ch m ark suite.

In Table 6.1 we p resen t a sum m ary of th e num ber of loops analyzed and e s tim a ted by Polaris

for th e SPEC fp95 benchm arks. For each benchm ark , th e first two colum ns are th e to ta l num ber

of loops present in th e program and th e num ber of loops th a t are “p red ic tab le" , i.e. do not

con tain I/O o p era tio n s. In parenthesis we show th e percen tage o f the to ta l ex ecu tio n tim e taken

by the m easured loops in the colum n. T h e nex t colum ns show th e d is trib u tio n o f th e estim ated

loops based on th e am o u n t of com pile-tim e inform ation availab le . "Full" m eans th a t Polaris was

able to com pute th e d a ta dependence d is tan ce vectors for all a rray references in th e loop, and

all the d istances a re co n s tan t, i.e.. these are loops con tain ing uniform ly g en e ra ted dependences.

"P a rtia l" , rep resen ts th o se loops for w hich all th e dependence d istances were co m p u ted , bu t some

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-x - l i measured-
-©- L1 predicted!
— L2 m easu red
..~±r_L2 predictedl ,•

1024256 512 2048128
Problem size

F ig u re 6 .6 : Jacobi - cache miss p red ic tio n on the RIOOOO

dependences have n o n -co n stan t d istances. For bo th these cases we can app ly the stack d is tan ces

m odel to predict the n u m b er of cache m isses. In the second case we assum e th a t accesses tak e place

a t th e m inim um d is tan ce . "N ot available" represents th e case in which Polaris could not co m p u te

th e dependence d is tan ces for all the a r ra y references d u e to lim ita tio n s of th e O m ega te s t, such as

su b scrip ts of subscrip ts o r non-affine sub scrip ts . “Need profiling" is the case in which th e com piler

needs run-tim e d a ta d u e to unknow n b ran ch frequencies.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X t*-

X
a x x £> Ci ^ o cs LT2Ci

X X

Xo X c^
X

9 Q Xc ^ 5 ^ ca a
Q ^ r ^ c i ? :

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

There are two im p o rta n t conclusions th a t can be d raw n by looking a t th e d a ta in Table 6 . 1 .

F irst, m ost of th e loops in this benchm ark su ite a re ana lyzab le by the com piler (86.599c). This

percentage includes b o th cases in which th e stack d istan ces algorithm can be app lied . T hese loops

make-up. on average, a b o u t 74% of the to ta l execution tim e of th e benchm arks. T h is shows th a t our

m ethod has qu ite a w ide range of applicability . Second, m ost of the rem aining loops, need profiling

inform ation due to th e presence of if s ta tem en ts w ith in th e loop body. T he ind irec t accesses m odel

presented in th is w ork can handle these loops.

One o ther o b servation is related to the dependence d istances com puted by Polaris. It tu rn s out

th a t most accesses h ap p e n a t very sm all d istances, i.e.. one o r two itera tions of the loop carry ing

the dependence. T h a t m eans th a t our estim ations will no t be affected very m uch when th e input

d a ta size increases.

In Figures 6.7 an d 6 . 8 we show the p red ic ted cache m isses for loops in th e SW IM and TO M C A TY

benchm arks. Each figure presents the pred ic ted m isses an d the m easured m isses, again , using

hardw are counters. O nce more, we note th a t th e p red ic tio n is very accu ra te for the L2 cache

(average p redic tion e rro r 3.11% for SW IM and 3.18% for TO M C A TV). bu t no t so accu ra te for

the LI cache (average predic tion erro r 13.73% for SW IM and 18.62% for T O M C A T V). T h is is due

to the fact th a t we m odel a fully associative cache, an d the relatively sm all L l cache sees m any

conflict misses on th e bigger loops, such as C A L C l dolOO an d CALC2 do200 in SW IM , an d do60

and dolOO in T O M C A T V . Confirm ing th is observation is th e fact that the m odel pred ic ts correctly

the num ber o f m isses in th e bigger L2 cache.

Since the o th e r benchm arks considered have a large num ber of loops, we sum m arize th e cache

prediction for these benchm arks in F igure 6.9. T h e b a r for each benchm ark is o b ta in ed as follows:

for each loop considered , we estim ate th e num ber o f cache misses for each cache level, and we

m easure the a c tu a l n u m b er of cache misses using hard w are counters. T h e m isses for each loop

are m ultiplied by th e n um ber of executions o f th e loop in th e program , an d th en added to ob ta in

th e to ta l num ber o f p red ic ted misses an d th e to ta l n um ber of actual misses. T hen , the pred ic ted

num ber of m isses is d iv id ed by the ac tu a l num ber of m isses to o b ta in the p red ic tio n accuracy. T hus,

a value of 1 0 0 % rep resen ts a perfect p red iction .

For the b enchm arks in F igure 6.9 th e average p red ic tio n erro r is 27.41% for th e L l cache, w ith

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a s ta n d a rd dev ia tion of 19.62%. T h e L2 cache p red ic tion has an average erro r of 17.10%. w ith a

s tan d a rd d ev ia tio n of 29.49%. If we e lim inate th e A PSI benchm ark , for which the m a jo rity o f the

loops have a very sm all n um ber o f misses (few hundreds), therefo re th e p red ic tion error is re la tively

large, th e num bers becom e. 27.33% average p red ic tion e rro r for th e L l cache, w ith a s ta n d a rd

d ev iation o f 21.50%. and 6.13% average p red ic tion e rro r w ith 5.86% s ta n d a rd deviation for th e L2

cache. A gain, th e m ain reason behind th e relatively h igh p red ic tio n erro r for the L l cache is th a t

our m odel is for fullv associa tive caches, and this cache is a sm all two-wav set associative, therefo re

there are conflict misses th a t a re not pred ic ted by our m odel.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nu
m

be
r

ot
ca

ch
e

m
iss

es

Nu
m

be
r

ol
ca

ch
e

m
is

se
s

x 10

I Actual
? Precicti3 |

12 r
i

6 r

ic J L
dolOO do200 do400 do300 do50 do60 do86

CALCl CALC2 CALC3Z CALC4 INITAL

(a) L l cache

«10

I 6 r

1 4 1 -

12b

10b

8b

6 r

J U
do 100

CALC1

do200

CALCS

do400 do300

CALC3Z CALC4

I Actual
Predicte

do5Q do60 do8€

INITAL

(b) L2 cache

F igure 6.7: SW IM - cache m iss p red ic tio n o n th e RIOOOO

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do YOO do 120 do 130 do60 do80

i to

(a) L l cache

! § ■ Actual
! cz Predicted I;

tOh

i

5 8r

£
2
z

do 100 do 120 do 130 do60 do80

(b) L2 cache

F igure 6 .8 : T O M C A T V - cache miss p red ic tio n on the RIOOOO

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 L
APPLU APSI HYDR02D MGRID SU2C0R SWIM TOMCATVTURB3D WAVE5

(a) L l cache

APPLU APSI HYDR02Q MGRID SU2COR SWIM TOMCATVTURB3D WAVES

(b) L2 cache

F igure 6.9: SPE C fp95 - cache m iss prediction accu racy on th e RIOOOO

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.4 Execution Time Prediction with the Stack Distances Model

In this section we p resen t execution tim e prediction using a com bination of th e S tack D istances

M odel and the C P U m odel. Since th e S tack D istances M odel cu rren tly hand les loop nests only,

to ob ta in the resu lts p resen ted in F igure 6.10 we have used th e following procedure: for each loop

nest we estim ate th e num ber of cache misses for b o th levels of cache using th e S tack D istances

Model. Also, for each nest we e s tim a te the C PU execu tion tim e using th e m odel p resen ted in

S ec tio n 3.1. T h e sy m b u lic p ie d ic t iu n ex p ressio n s are th e n ev a lu a ted u sing th e p ru cessor m u d ei for

bo th the M IPS RIOOOO and the U ltraS p arc Ili. thus o b ta in in g a predicted execu tion tim e for each

nest. We m ultiply th e p red ic ted execu tion tim e w ith th e num ber of tim es th a t th e loop is executed

in the benchm ark to o b ta in a p red ic ted execution tim e for th e benchm ark. T h e right b a r in each

group in Figure 6.10 represents th is es tim atio n for each of th e SPEC fp95 benchm arks. T h e lower

p a rt of the bar (gray) is th e C PU es tm a tio n and th e u p p er part (w hite) represen ts th e m em ory

estim ation. T he left b a r in each group is the m easured tim e. Again, to o b ta in th e execution tim e

for the benchm ark, we m easured each loop nest ind ep en d en tly and m ultip lied its execution tim e

by the num ber of executions.

For most of th e benchm arks th e prediction is q u ite accu ra te . E xception m akes H Y D R 02D .

which has a 47% p red ic tio n error for th e RIOOOO an d 67% prediction error for th e U ltraS parc. We

suspected th a t th e e rro r comes from th e fact th a t we p red ic t the cache behav io r for cold caches,

an d in this benchm ark th ere m ight be in ter-nest reuse. Therefore, we m easured th e perform ance

using the run-tim e s tack algorithm for th e entire p ro g ram . T he predic tion e rro r d ropped to 14%

for the RIOOOO an d to 55% for th e U ltraS parc . We a re cu rren tly study ing th e cause of th e highe

prediction erro r on th e U ltraS parc.

Including H Y D R 0 2 D . th e average com pile-tim e p red ic tio n erro r is 34.67% (s tan d a rd deviation

33.49%) for th e M IPS RIOOOO. an d 18.83% (s tan d a rd d ev ia tio n 17.64%) for U ltraS parc.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Measured

Predicted Mem

- 3 0 0

o 250

in 200

APPLU APSI HYDR02D MGRID SWIM TOMCATV TURB3D WAVES

(a) MIPS RIOOOO

i B B I1 l i i m i l l

i E 3 Predicted CPlil
■ I 1 PrpdirtPd Mem

a eoo

= 500

APPLU APSI HYDR02D MGRID SWIM TOMCATV TURB3D WAVE5

(b) U ltraSparc I li

Figure 6.10: SPE C fp95 - ex ecu tio n tim e pred ic tion for se lec ted loops in each benchm ark using th e
- 0 2 op tim iza tion flag

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Summary

In this ch a p te r we have p resen ted experim ental resu lts to v alidate ou r processor and m em ory

hierarchy m odels. We have looked a t scientific F o rtran codes from th e SPECfp95 benchm arks an d

SpLib. a sp arse linear algebra package. T he Indirect Accesses m odel for the m em ory h iera rchy

works qu ite well on the SpLib codes, w ith an average prediction e rro r of less th an 15%. W hen

com bined w ith th e processor m odel, th e average p red ic tion erro r over th e most significant loops in

the program w as below 2u%. We consider these errors to be very reasonab le for a s ta tic , a rch itec tu re

independent perform ance p red ic to r.

The S tack D istances m odel o f th e m em ory hierarchy is even m ore precise. The average p red ic­

tion error is a b o u t 17% for th e sm all 2-wav set-associative LI cache o f th e RIOOOO. an d a ro u n d 7%

for the larger L2 cache. W hen com bined w ith the processor m odel, th e average prediction e rro r for

the SPEC fp95 benchm arks is w ith in 35% for the RIOOOO and w ith in 20% for the U ltraS parc .

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

We sta rted th e w ork presented in th is thesis because we though t we do not have enough knowledge

abou t the cache b ehav io r of program s, nor precise enough m ethods to m easure th is behavior, much

less to predict it. P red ic ting program perform ance is a difficult task . P red ic ting perform ance

a t com pile-tim e is inherently m ore difficult because of all th e unknow ns, such as loop bounds,

branch frequencies, e tc .. th a t have to be taken into consideration. In concluding th is work, we

will not p re ten d to have com pletely solved this problem . However, th is work can provide the

necessary fo u n d a tio n for perform ance tun ing , from helping a com piler to select th e best sequence

of op tim izations, to helping the user visualize perform ance d a ta and re la te it back to the source code,

from enabling sy s tem evaluation of no t yet available hardw are, to com parative system evaluation

and scalability analysis.

Of course, th e algorithm s an d tools p resen ted in th is thesis are not perfect an d there is m uch

space for im provem ent. T he bulk of th e w ork is the com pile-tim e pred ic tion m odel. We have shown

th a t it is possib le to pred ic t perform ance, in an arch itectu ra lly independent way. w ith reasonable

accuracy. In fac t, w hen we s ta r te d th is p ro jec t, we w anted to p red ic t perform ance w ithin o0% of

the actual execu tion tim e. It tu rn s ou t th a t we do m uch b e tte r for a large fraction of the benchm ark

program s, includ ing th e ones th a t con ta in sparse a lgebra rou tines. S till it will be in teresting to see

how well the m e th o d s presented here do w hen they are em ployed to drive com piler op tim iza tion .

A flavor of th is p o ten tia l has been a lread y show n w hen our m eth o d was used to au to m atica lly m ap

code for in telligent m em ory arch itec tu res [64]. We would like to see how th e m ethod can im prove

com piler o p tim iza tio n s .

A part from its uses, there a re severed areas in which th e p red ic tion m odel can be im proved.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

especially if we w ant to use th e sam e model for p red ic tin g parallel p rogram perform ance. A b e tte r

superscalar processor m odel th a t takes into consideration o p era tio n s dependences can be devel­

oped to im prove th e e s tim a tio n of sm all loops. O ne could even consider using reg iste r allocation

and instruction schedu ling h in ts, although th a t would restric t th e generality of th e m odel and its

com piler and m achine independence.

M any o th er im provem ents can be perform ed on th e cache m odel. C urrently , the S tack D istances

m odel is applied to a loop if all the d a ta dependences in the loop have known d a ta dependence

d istance vectors. W e could relax this restric tion an d use a com bination of the Ind irec t Accesses

m odel and the S tack D istances m odel, by estim atin g th e foo t-prin t using the Indirect Accesses model

for the references th a t do no t have d istance vectors com puted , an d su b stitu tin g th is es tim atio n for

the accessed a rray sec tion in th e Stack D istances m odel. We will lose some of th e accu racy given

by the Stack D istances m odel, bu t we will be ab le to analyze m ore loops. T he com bined model

will become even m ore im p o rtan t if we w ant to ap p ly the S tack D istances m odel to es tim ate the

num ber of cache m isses across loop nests. As M cK inley and T em am have shown in [4(5. 47]. in ter­

loop misses c o n s titu te an im p o rtan t fraction o f th e to ta l cache m isses in the S P E C an d Perfect

Benchm arks. A n o th er lim ita tio n of the S tack D istances m odel is d u e to the fact th a t it estim ates

fully-associative caches. Since there are no fully-associative caches im plem ented in real hardw are,

it would be in te re stin g to explore the possibility o f ad ap tin g the a lg o rith m to m odel set-associative

caches. The stack a lg o rith m has already been used to m odel se t-associative caches, th ere fo re is ju s t

a m atte r of finding an a p p ro p ria te represen ta tion for th e se t-asso c ia tiv ity inside th e com piler.

O ther ex tensions to be considered are m ultip rocessor ex tensions. In fact, if th e d is trib u tio n of

th e array onto p rocessors is known a t com pile tim e, th e com pile-tim e algorithm p resen ted in this

thesis can be easily ex ten d ed to m ultiprocessors by in tersec ting th e array section sp an n ed by a

dependence w ith th e a rray section m apped to th e local m em ory o f th e processor. All th e accesses

inside the array sec tion m ap p ed to the processor are local accesses, w hile the array e lem en ts accessed

outside the in tersec tion are rem ote accesses. U sing th e array sec tions one can also com pu te the

false sharing, w hich is considered to be one of th e factors m aking th e caches in m ultip rocessors less

effective th an in un iprocessors.

A nother d irec tio n in w hich the Stack D istances m odel could be ex tended is in teger codes and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object-o rien ted program s. In th is type of codes th e bulk o f th e co m p u ta tio n is no longer sp en t in

loops accessing arrays, so a different parad igm has to be used. However, th e S tack D istances m odel

is no t restric ted to arrays.

To conclude, we have show n th a t th e s tack processing a lg o rith m s are a very powerful technique.

W e used stack d istances to q u an tify locality an d we have designed an d im plem ented a com pile-tim e

a lgo rithm th a t com putes th e s tack h istogram a t com pile-tim e. W e have used th e stack histogram

to pred ic t program perform ance s ta tica lly w ith very good accuracy . T he m ost in teresting feature

o f ou r stack a lgorithm is th a t once th e h istogram is co m p u ted , th e num ber of cache misses can

be estim ated for any cache size. We do not know of any o th e r m ethod th a t does not require the

com plete set of cache p aram e te rs to e s tim a te misses. We have also presented a new algorithm for

s tack processing, th a t is 30% faste r th a n th e best know a lg o rith m on the su ite o f program s traced .

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[ij V. 5. Acive. J . M eiior-C rum m ey. M. A nderson . J .-C . W ang. D. A. Reed, and K. K ennedy. An

in tegrated co m p ila tio n and perform ance analysis environm ent for d a ta parallel p rogram s. In

Proceedings o f the 1995 conference on Supercom puting. San-D iego. CA. Decem ber 1995.

[2] R. A. A ydt. The Pablo Self-D efining D ata Format.. 1992. ftp ://v ib es.cs .u iu c .ed u -

/p u b /P ab lo .R e lease .5 /S D D F /D o cu m en ta tio n /S D D F .p s .g z .

[3] V*. B alasu n d aram . G . Fox. K. Kennedy, and U. K rem er. A s ta t ic perform ance e s tim a to r to

guide d a ta p a r titio n in g decisions. In Proceedings o f the Third A C M S IG P L A N Sym posium

on Principles a n d Practice o f Parallel Program m ing, pages 213-223. W illiam sburg. VA. April

L991.

[4] T. Ball and J . R . Larus. B ranch p red ic tion for free. In Proceedings o f the A C M S IG P L A N

Conference on Program m ing Languages Design and Im p lem en ta tion (P L D I '93). pages 300-

313. 1993.

[5] U. Banerjee. Dependence analysis. K luwer A cadem ic Publishers. 1997.

[6] B. T . B ennett a n d V. J . K ruskal. LRU stack processing. IB M Journal fo r Research and

Development, pages 353-357. Ju ly 1975.

[7] M. B erry et a l. T h e Perfect C lub B enchm arks: Effective P erfo rm ance Evaluation of Super­

com puters. In tern a tio n a l Journal o f Supercom puter Applications. 3 (3):5-40 . 1989.

[8] W. Blume. R . D oallo . R. E igenm ann. J . G ro u t. J . Hoeflinger. T . Law rence. J. Lee. D. P adua.

Y. Paek. W . P o tte n g e r. L. R auchw erger. an d P. T u . Paralle l P ro g ram m in g w ith Polaris. IE E E

Computer. D ecem ber 1996.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://vibes.cs.uiuc.edu-

[9] R. B ram ley an d X. W ang. SPLIB: A lib rary of ite ra tiv e m ethods for sparse linear system s.

Technical R eport T R 454. In d ian a University. F eb ruary L996.

[10] M. Burke and R. C y tro n . In terp rocedural dependence analysis and parallelization . In Pro­

ceedings o f the S IG P L A N Sym posium on C om piler C onstruction, pages 162-175. Ju ly 1986.

[11] D. C allahan and K. Kennedy. Analysis of in te rp ro ced u ra l side effects in a parallel program m ing

environm ent. Parallel and D istributed C om puting. 5:517-550. 1988.

[12] H. Casanova. M. G . T hom ason , and J . J . D ongarra. S tochastic perform ance pred ic tion for ite r­

ative algorithm s in d is tr ib u te d environm ents. Journal o f Parallel and D istributed Computing.

58:68-91. 1999.

[13] C. Cascaval. E stim a ting E xecution T im e and Cache M isses using Delphi. D ep t, of C om puter

Science. Univ. of Illinois. 2000.

[14] C. Cascaval. L. D eRose. D. A. P adua, and D. A. Reed. C om pile-tim e based perform ance

prediction. In J . F erran te an d L. C arte r, ed ito rs. Lecture N otes in C om puter Science. Springer

Verlag, 1999.

[15] P. Clauss. T he volum e of a la ttice polyhedron to enum era te processors and parallelism . Tech­

nical R eport 95-11. IC PS. 1995. h ttp ://ic p s .u -s tra sb g .f r /p u b -9 5 /p u b -9 5 - ll .p s .g z .

[16] P. Clauss. C ounting so lu tions to linear and non linear co n stra in ts th rough E h rh a rt polynom ials:

A pplications to analyze an d transform scientific p rogram s. In Proceedings o f the 10th A C M

International Conference on Supercom puting (IC S '96). M ay 1996. Also available as ICPS

Technical R eport 96-03.

[17] S. Colem an and K . S. M cKinley. T ile Size Selection U sing C ache O rgan ization and D ata

Layout. In Proceedings o f the A C M S IG P L A N C onference on Programm ing Languages Design

and Im plem enta tion (P L D I '95). La Jo lla . CA. Ju n e 1995. S IG PL A N .

[18] T . H. C orm en. C. E. Leiserson. and R. L. R ivest. In troduction to A lgorithm s. M IT Press.

1990.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://icps.u-strasbg.fr/pub-95/pub-95-ll.ps.gz

[19] B. C reusille t and F. Irigoin. In terp rocedural a rray region analyses. In Proceedings o f the Sth

In terna tiona l Workshop on Languages and C om pilers fo r Parallel Computing, pages 46-60.

1995.

[20] B. C reusille t and F. Irigoin . E xact versus ap p ro x im a te a rray reg ion analyses. In Proceedings

o f the 9th In terna tiona l W orkshop on Languages and C om pilers fo r Parallel C om puting, pages

86-100. 1996.

[21] L. DeRose. Y. Zhang, an d D. A. Reed. SvPablo: A m ulti-language perform ance ana lysis sys­

tem . In 10th In terna tiona l C onference on C om pu ter P erform ance Evaluation - M odelling Tech­

niques and Tools - P erform ance Tools'98. pages 352-355. P a lm a d e M allorca. Spain. S eptem ber

1998.

[22] T . Fahringer. Evaluation o f benchm ark perform ance estiim ition for parallel F o rtra n program s

on m assively parallel SIM D an d MIMD com puters. In IE E E Proceedings o f the 2nd Euromic.ro

W orkshop on Parallel and D istributed Processing. M alaga. S pain . Jan u a ry 1994.

[23] T . F ahringer. E stim ating an d optim izing perform ance for parallel program s. IE E E Com puter.

2S(11):47—56. November 1995.

[24] T . Fahringer. A u to m a tic P erform ance Prediction o f Parallel Programs. K luwer Academ ic

Press. 1996.

[25] T . Fahringer. E stim ating cache perform ance for sequen tia l an d d a ta parallel p rogram s. Techni­

cal R ep o rt T R 97-9. In s t i tu te for Software Technology an d P ara lle l System s. Univ. o f V ienna.

V ienna. A u stria . O c tober 1997.

[26] K. A. Faigin . J . P. H oeflinger. D. A. P adua. P. M. P e tersen , an d S. A. W eatherford . The

Polaris in te rn a l rep resen ta tio n . In ternational Journa l o f Parallel Programming. 22(5):553-

586. O c to b e r 1994. Also ava ilab le as CSRD Technical R ep o rt 1317.

[27] J . F erran te . V. Sarkar. an d W . T hrash . O n E s tim a tin g an d E n h an c in g Cache Effectiveness.

In 4.th In tern a tio n a l W orkshop on Languages and C om pilers fo r Parallel C om puting. A ugust

1991.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] D. G annon . W . Jalby. and K. G aliivan . S trateg ies for C ache an d Local M em ory M anagem ent

by G lobal P ro g ram T ran sfo rm atio n . Journal o f Parallel and D istributed Com puting. 5 (5):587-

616. O c to b e r 1988.

[29] J . D. G ee. M. D. Hill, and A. J . S m ith . Cache perfo rm ance of th e SPE C 92 benchm ark su ite .

In Proceedings o f the IE E E M icro, pages 17-27. A ugust 1993.

[30] S. G hosh. M . M artonosi. an d S. M alik. Precise M iss A nalysis for P rog ram T ransfo rm ations

w ith C aches o f A rb itra ry A ssociativ ity . In Proceedings o f the In terna tiona l C onference on

A rchitectural Support fo r P rogram m ing Languages and Operating System s (A SP L O S VIII).

San Jose. CA . O ctober 1998.

[31] M. R. H agh igha t. Symbolic A n a lysis fo r Parallelizing C ompilers. P hD thesis. U niversity of

Illinois a t U rbana-C ham paign . 1994.

[32] M. R. H agh igha t and C. D. Polvchronopoulos. Sym bolic analysis for parallelizing com pilers.

A C M T ransactions on Program m ing Languages and System s. 18(4):477-518. 1996.

[33] M. Hall e t al. M apping irregu la r applications to DIVA and a P IM -based data-in tensive a r­

ch itec tu re. In Proceedings o f In tern a tio n a l Conference on High Perform ance C om puting and

C om m unica tion (SC '99). P o rtla n d . Oregon. N ovem ber 1999.

[34] P. Havlak. Interprocedural Sym bolic Analysis. PhD thesis. Rice U niversity. M ay 1994.

[35] M. D. Hill an d A. J . Sm ith. E v a lu a tin g associa tiv ity in C P U caches. IE E E Transactions on

Com puters. 38(12): 1612—1630. D ecem ber 1989.

[36] J . P. Hoeflinger. Interprocedural Parallelization Using M em ory C lassification Analysis. P hD

thesis. U n iversity of Illinois a t U rbana-C ham paign . A ugust 1998.

[37] Y. Kang. M . H uang. S.-M. Yoo. Z. Ge. D. K een. V'. Lam . P. P a ttn a ik . and J . T orrellas.

FlexRA M : T ow ard an advanced in telligent m em ory system . In In terna tiona l Conference on

C om puter D esign (ICC D), O c to b e r 1999.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[38] T. K isuki. P. K nijnenburg . M. O ’Boyle. an d H. W ijshoff. Ite ra tive com pila tion in program

op tim iza tion . In Sth I n t ’l Workshop on C om pilers fo r Parallel C om puters (C P C), pages 35-44.

2000 .

[39] D. E. K n u th . The A r t o f C om puter Program m ing, volum e 3 (Sorting and S earching). Addison

Wesley L ongm an . 2nd edition . 1998.

[40] Z. Li and P .-C . Yew. Efficient in terp ro ced u ra l analysis for p rogram paralle liza tion and restruc­

turing. In Proceedings o f the S IG P L A N Sym posium on Parallel Programming: Experience with

Applications. Languages and System s. Ju ly 1988.

[41] Z. Li. P .-C . Yew. an d C.-Q. Zhu. D a ta dependence analysis on m ultii-d im ensional array

references. In Proceedings o f the third in terna tiona l conference on Supercom puting, pages 215-

224. C rete . G reece. 1989.

[42] D. Lilja. D. M arcovitz . and P. C. Yew. M em ory Referencing B ehavior and C ache Perform ance

in a S hared M em ory M ultiprocessor. T echnical R eport 836. CSRD. 1988.

[43] R. L. M attso n . J . Gecsei. D. Slutz. an d I. T raiger. Evaluation techniques for s to rag e hierarchies.

IB M S ys tem s Journal. 9(2). 1970.

[44] K. S. M cKinley. A u to m a tic and In teractive Parallelization. P hD thesis. Rice University. M arch

1994.

[45] K. S. M cKinley. A com piler op tim iza tion a lgorithm for shared-m em ory m ultiprocessors. IE E E

Transactions on Parallel and D istributed System s. 9(8):769-787. A ugust 1998.

[46] K. S. M cK inley an d O. Tem am . A Q u a n tita tiv e Analysis o f Loop Nest Locality. In Proceedings

o f the In te rn a tio n a l Conference on A rchitectura l Support fo r Program m ing Languages and

Operating S y s tem s (A S P L O S VII). 1996.

[47] K. S. M cK inley an d O . Tem am . Q uan tify ing loop nest locality using S P E C '9 5 an d the Perfect

benchm arks. A C M Transactions on C o m p u ter System s. To ap p ear.

[48] C. L. M endes. P erform ance Scalability P rediction on M ulticom puters. P h D thesis. University

of Illinois a t U rbana-C ham paign . M ay 1997.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[49] M. Oskin. F . C hong, and T . Sherw ood. Active Pages: A co m p u ta tio n m odel for in telligent

memory. In Proceedings o f the 25th A nnual In terna tiona l Sym posium on C om puter A rchitecture

(ISC A '9S). pages 192-203. Ju n e 1998.

[50] P. M. Petersen an d D. A. P ad u a . E xperim ental eva lua tion o f some d a ta dependence tests .

Technical R eport 1080. C SR D . 1991.

[51] V. Phalke and B. G op inath . An inter-reference gap m odel for tem poral locality in p rogram

behavior. In Proceedings o f the 1995 A C M S IG M E T R IC S Jo in t In ternational Conference on

M easurem ent and Modeling o f C om puter System s, pages 291-300. M ay 1995.

[52] A. K. Porterfield . Software M ethods fo r Im provem ent o f Cache Perform ance on Supercom puter

Applications. P hD thesis. Rice U niversity. May 1989.

[53] W. Pugh. A p rac tica l a lgorithm for exact array dependence analysis. In C om m unica tions o f

the ACM . volum e 35. pages 102-114. A ugust 1992.

[54] \V. Pugh. C oun ting solutions to P resburger formulas: How an d why. In Proceedings o f the

A C M S IG P L A N Conference on Program ming Languages Design and Im p lem enta tion (P L D I

’94). volume 29. pages 121-134. .June 1994.

[55] C. Pyo. G. Lee. K .-W . Lee. an d H .-K . Han. Reference d is tan ce as a m etric for d a ta . In Pro­

ceedings o f the C onference on High Perform ance C om puting on the In form ation Superhighway.

H PC Asia, pages 151-156. 1997.

[56] M IP S R10000 M icroprocessor U ser's M anual. 2.0 ed ition . Ja n u a ry 1997.

[57] D. A. Reed. D. A. P adua . I. T . F oster. D . B. G annon, an d B. P. Miller. Delphi: A n in teg ra ted ,

language-directed perform ance p red ic tion , m easurem ent, and analysis environm ent. In Fron­

tiers 99: The 9th Sym posium on the Frontiers o f M assively Parallel C om putation. A nnapolis.

MD. February 1999.

[58] R. Saavedra an d A. Sm ith . M easuring cache and T L B perfo rm ance and th e ir effect on bench­

m ark run tim es. IE E E Transactions on Computers. 44(10):1223-1235. O c to b er 1995.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[59] R. H. S aav ed ra -B arre ra and A. J . Sm ith. A nalysis of benchm ark ch arac te ris tic s and bench­

m ark p erfo rm an ce prediction. Technical R ep o rt CSD 92-715. C o m p u te r Science Division. UC

Berkeley. 1992.

[60] R. H. S aav ed ra-B arrera . A. J . S m ith , and E. M iya. M achine ch a rac te riza tio n based on an

ab s trac t h igh-level language m achine. IE E E Transactions on C om puters. 38(12): 1659—1679.

D ecem ber 1989.

[61] V. Sarkar. D e term in ing average program execu tion times and th e ir variance. In Proceedings

o f the A C M S IG P L A N Conference on Program m ing Languages D esign and Im plem enta tion

(P L D I '89). pages 298-312. P o rtlan d . Oregon. Ju ly 1989.

[62] Z. Shen. Z. Li. an d P.-C. Yew. An em pirical s tu d y of F o rtran p rog ram s for parallelizing

com pilers. T echn ical R eport 983. CSRD. 1990.

[63] A. J . S m ith . A com parative s tu d y of set associa tive m em ory m ap p in g a lgorithm s and th e ir use

for cache a n d m ain memory'. IE E E Transactions on Software Engineering. SE—1(2): 121—130.

M arch 1978.

[64] Y. Solihin. J . Lee. and J . T orrellas. A u tom atically m apping code in an intelligent m em ory

arch itec tu re . S u b m itted for publication .

[65] R. A. S u g u m ar an d S. G. A brah am . S et-associative cache s im ula tion using generalized binom ial

trees. A C M Trans. Comp. Sys.. 13(1). 1995.

[6 6] Sun M icrosystem s. UltraSpare-IR User's M anual. 1997.

[67] J. G. T h o m p so n and A. J . S m ith . Efficient s ta ck algorithm s for ana lysis o f w rite-back and

sector m em ories. A C M Trans. Comp. Sys.. 7(1):78—117. F eb ruary 1989.

[6 8] X. Vera. J . L losa. A. G onzales, and C. C iu ran e ta . A fast im p lem en ta tio n of C ache Miss

E quations. In 8th In terna tiona l Workshop on C om pilers fo r Parallel C om puters (C P C 2000).

pages 319-325 . Aussois, F rance. Jan u a ry 2000.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[69] K.-Y. W ang. P recise com pile-tim e perform ance pred ic tion for supersca lar-based com puters.

In Proceedings o f the A C M S IG P L A N C onference on Program m ing Languages Design and

Im plem enta tion (P L D I ’94). pages 73-84. 1994.

[70] W .-H. W ang an d J.-L . B aer. Efficient trace-d riven sim ulation m ethods for cache perform ance

analysis. A C M Transactions on C om puter System s. 9(3). 1991.

[71] R. C. W haley an d J . J . D ongarra. A utom atically tu n ed linear a lgeb ra softw are. In Supercom­

puting '98. 1998.

[72] M. E. Wolf. Im proving locality arid parallelism in nested loops. PhD thesis. S tanford University.

August 1992.

[73] M. E. W olf an d M. S. Lam . A d a ta locality op tim iz ing algorithm . In Proceedings o f the A C M

S IG P L A N Conference on Programming Languages Design and Im p lem en ta tion (P L D I '91).

June 1991.

[74] M. E. Wolf. D. E. M aydan. an d D.-K. C hen. C om bining loop tran sfo rm atio n s considering

caches an d scheduling. In Proceedings o f the 29th annual IE E E /A C M in terna tiona l sym posium

on M icroarchitecture, pages 274-286. Paris. F rance. D ecem ber 1996.

[75] M. Wolfe. M ore I te ra tio n Space Tiling. In Proceedings o f Supercom puting '89. pages 655-664.

Reno. NV. N ovem ber 1989. ACM .

[76] \ I . Wolfe. High P erform ance Com pilers fo r Parallel Com puting. A ddison-W esslev. 1996.

[77] Z. Xu. J . R. L arus. and B. P. M iller. Shared-m em ory perform ance profiling. In Proceedings o f

the 6th A C M S IG P L A N Sym posium on P rincip les and Practice o f Parallel Program ming. Las

Vegas. NV. J u n e 1997.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Curriculum V itae

Gheorghe C aiin Ca^cavai was b o rn in C iuj-N apoca. R om ania. A fter g rad u a tin g from th e Tech­

nical U niversity in his hom etow n w ith a M aster of Science degree in C om puter Engineering, he

worked for two years for the In s titu d e for Design in A u to m atio n , p artic ip a tin g in the softw are

design and im p lem en tation of d ig ita l c ircu it testers. In 1993 he was accep ted as a s tuden t a t W est

Virginia U niversity. M organtow n. W V . where he com pleted a M aster of Science degree in C om ­

p u te r Science. Following his em ployem ent a t C yberM arche Inc.. where he designed softw are for

project m anagem ent and eng ineering knowledge bases, he s ta r te d his P hD a t University of Illinois

a t U rbana-C ham paign in 1996. u n d e r th e guidance of Prof. David P adua.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

