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Chapter 1

Introduction

1.1 Motivation

A major fraction of the time taken to develop scientific applications is spent in parallelization
and performance tuning. This fraction is even larger if the application is required to run on
several platforms. because specific architectural characteristics may require different optimization
techniques for best performance.

In order to reduce development time we have seen. in recent vears. a continuous effort to improve
compilers to handle automatic parallelization and optimization. However. providing the compiler
with a list of optimizations and applying these optimizations blindly is not enough. The optimized
program may run slower than its unoptimized version. For example. consider the loop interchange

optimization for the following loop nest:

do j=1, n
doi=1,n
a(j) = a(j) + b(j,i) * <c(j)
enddo

enddo

Assuming that the matrix b is stored in column major order. if we do not interchange. we can

expect to have a cache miss every iteration. because b is not accessed with stride one. If we do
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apply the interchange transformation. all the accesses are stride one. therefore there will be one
cache miss every several iterations. depending on the size of the cache line. However. in the non-
interchanged version. the array elements a and ¢ can be stored in registers for all the iterations of
loop i. therefore in the innermost statement. there will be only one load and two floating point
operations. an add and a multiply. If we interchange. we need two extra loads and one store for
each iteration of the inner loop. Thus. depending on the cache miss penalty. combined with the
number of functional units in the processor. in this case floating point units and load/store units.
the loop interchange optimization may actually hurt the performance. even though it reduces the
number of cache misses in the loop.

The work presented in this dissertation is directed towards helping compilers do a better job
in optimizations. By constructing a performance prediction model inside the compiler. we provide
compiler writers with a non-empiric tool that will allow them to select the order in which the
compiler applies optimizations to maximize performance.

The same performance model is used in the Delphi system [57] to statically predict performance.
In the Delphi project. the goal is to create an integrated environment in which a user can develop.
compile and tune the performance of applications in an efficient and transparent manner. Delphi
integrates compilers with performance tuning and performance visualization tools. The static
predictions presented in this thesis have been used as part of this project.

We propose to include the performance prediction model inside the compiler. The performance
model consists of symbolic expressions with terms that account for the program constructs. the
data set and the architecture. In the ideal case. in which all the loop bounds and branch frequencies
in the program are known at compile time. the compiler can generate these expressions without
using profiling information or user interventions. However. if profiling information is necessary.
we have provided the necessary hooks so that the profiling information can be collected and used
by the performance models. The advantages of using a symbolic performance prediction model
are detailed in Chapter 3. Here we enumerate just a few. First. not all information is available
statically. at compile time. Whenever the compiler encounters an unknown value. it can use its
symbolic representation to continue building the model. If, in the end the value is still not resolved.

the compiler could either use profiling data. or simply provide the performance information using

[}
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the symbolic expression. The symbolic expression can be used either for run-time decisions or
for scalability analysis. Also. by using symbolic expression the compiler avoids magnifving the
prediction error of compounding estimates (the usual method employed in most of the prediction
systems). since no approximations are made at any intermediate step. Of course one must pay for
all these benefits. The costs are the need of a more complex compiler that includes an accurate
symbolic expression manipulator as well as a slight increase in compilation time due to the symbolic
manipulation. The symbolic expression mannipulator must perform simplification and comparison
of algebraic expressions.

Figure 1.1. shows the architecture of an integrated compilation and performance tuning system
built around a static performance prediction model. In this environment. the compiler analyzes
the source code and synthesizes symbolic expressions representing performance data. There are
several paths that can be taken to obtain an optimized program. The first path. representing the
the ideal case. is shown with a thicker line. In this case the compiler is able to completely analyze
the program. there are no unknown parameters in the performance expressions. and based on these.
the compiler can decide which optimizations to apply.

Of course. the ideal case does not occur very frequently in practice. therefore a second path.
using profiling information (shown with a dashed line) is provided. In this scenario. the performance
prediction module uses available profiling information. such as true and false branch frequencies.
or the number of iterations of a loop. Branch frequencies could be estimated at compile time [4].
however. in this work we have chosen to use profiling information because it is more accurate. The
third path represents the case when profiling data is not available. and the system can be set up
to collect such information and use it. In this scenario. the compiler analyzes the code. and it also
places instrumentation code to extract the needed values. The instrumented code can be run with
different data sets to extract the profiling data used as parameters for the performance expressions.

All the paths described in Figure 1.1 have been implemented as part of the Polaris compiler [8].
and the system has been used to generate the results presented in Chapter 6. as well as part of the
Delphi system. In the current implementation we can access performance data inside the compiler.
and if profiling information is needed. Polaris can generate code to collect the information. and use

it in evaluating the symbolic expressions that represent performance prediction data.
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Figure 1.1: Compiler-based prediction environment

The right hand side of Figure 1.1 shows how the performance expressions can be visualized using
a performance visualization tool. such as SvPablo [21]. In this scenario. the performance svmbolic
expressions are evaluated for a specific machine and the numbers obtained from the evaluation are
displayed in a graphical user interface. This scenario is useful in comparative system evaluation.
because different machine parameters can be substituted in the expressions and the user can study
how machine characteristics affect application performance. System evaluation can be used by
computer architects in the process of designing new machines. and by users to select the best
platform suited for their application needs. Similarly. scalability analysis can be conducted using
the symbolic performance expressions. Since the expressions contain variables for the data size.
one can study how varying the size of the problem affects the performance of the application on a
particular machine.

Besides the what-if games. performance analysis tools can benefit from compiler generated
models because they can generate results faster than by executing the code. Along with execution

time figures. the compiler can provide the performance analysis tool with a wealth of information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that will enable the tool to better relate the dynamic behavior of the application to the high level
language code.

In recent years we have seen a new trend in processor and system design. a much closer integra-
tion between the architecture design and the compiler design. Modern processors rely heavily on
the compiler to organize the code so that it takes advantage of the hardware features. For example.
the [A-64 architecture proposed by Intel and Hewlett-Packard. relies on the compiler to create
bundles of VLIW instructions that also contain specifications of which instructions can be executed
in parallel. as opposed to current superscalar processors that try to discover the instruction level
parallelism in hardware.

More recently. a new type of architecture has emerged. the intelligent memory architectures [49.
33.37]. In these architectures the DRAM memory contains also processor logic. enabling low latency
and high bandwidth between the processor-in-memory (PIM) and the memory. The PIMs act as
co-processors that execute code when signaled by the host processor. In this architecture it is very
important to decide what portions of code execute on each processor. as the host processor is more
powerful and backed up by a deep cache hierarchy. but has higher memory latency. The PIMs are
typically less powertul. have very low memory latency and no cache. The static prediction models
presented in this dissertation have been used in recent work [64] to automatically map the code to
the host or to the PIM based on performance prediction results.

In the remaining sections of this chapter we first discuss the problem domain on which we focus
our modeling. Next we present a quick overview of data dependence information since data depen-
dences provide the main foundation for our work. and we conclude by discussing the contributions

of this thesis.

1.2 Problem Domain
The problem that this work proposes to solve can be formulated as follows:

Model the performance of scientific applications on a computer system. inside a com-

piler, by looking at high level source code only.
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The approach taken is mostly architecture independent. However. because of the complexity of the
interactions between different parts of the system. as well as the optimizations done by the native
compiler. some limitations apply.

On the architectural side. we decompose the computer system into parts that can be mod-
eled relatively independent. Thus. we assume that the CPU. the memory hierarchy. and the [/O
subsystem. can each be modeled separately. and their effects on the application performance are
additive.

The CPU is assumed to be a superscalar processor with multiple functional units. The processor
can issue several instructions per cycle. Each instruction can have a different latency. In Chapter 6
we present results for two different processors. the MIPS R10000 (56] and the UltraSparc IL: [66].
The R10000 is an out-of-order processor while the UltraSparc is an in-order processor. Both can
issue several instructions per cycle. Also. in [64] it has been shown that. by using our approach.
it is possible to model statically the behavior of two types of processors with quite different char-
acteristics. Even when the prediction was not very accurate (average prediction error of 30%).
the static predictor based on our methods correctly predicted the relative execution time for these
processors. In the IRAM case. this was sufficient to decide where to execute the code.

The memory hierarchy consists of several levels of cache and the main memory. The caches
can have different cache line sizes and associativities. We model the data caches only. although
the models could be extended for instruction caches. We chose to ignore the instruction cache
misses since their impact on the performance of scientific codes is negligible (on average 0.17% of
execution time for L1 and L2 instruction caches on the R10000 for the SPECfp95 benchmarks).
For a breakdown on all the programs. see Table 1.1. Both the R10000 and the UltraSparc have two
levels of cache. with the first level having separate instructions and data caches. and the second
level consisting of a unified cache. The line sizes and the associativities differ between the two
processors.

The application domain consists of scientific Fortran programs. such as codes in the SPEC{p95
benchmark suite. There are two main reasons for focusing on Fortran. First. many of the codes
performing computations for scientists are written in Fortran. This is illustrated by the fact that

10 out of 14 (71%) codes in the new SPECfp2000 benchmark suite are written in Fortran. Second.
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Benchmark Code size L1 I-cache misses L2 I-cache misses |
lines cycles # | % exec # | % exec
APPLU 2474 51247966388 1465086 0.05 15579 1 0.12
APSI 4238 2046974010 263773 0.23 50557 | 0.21
HYDRO2D 1667 66288394854 1353887 0.04 497572 7 0.06
MGRID 382 51019153876 1474727 0.05 637206 ! 0.10
SU2COR 1444 31218347345 1075432 0.06 176323 E 0.13
SWIM 282 36220627134 316612 0.02 169086 |  0.04
TOMCATV 109 43131557047 63808 0.03 288793 | 0.06 |
TURB3D 1287 6443904684 129263 0.04 12511 ‘ 0.06
| WAVES 6314 | 32019987230 | 1872195 | 0.11 | 197038 | 0.13 '
| Average | 2022.89 | 35515212507.56 | 954339.89 |  0.0T | 374962.78 | 0.10 |

Table L.1: Instruction cache misses in the SPECfp95 benchmarks

although the techniques described in this work are not restricted to Fortran. the infrastructure
tools that we used handle mainly Fortran.

We have selected scientific codes because of their relatively simpler control How structure. In
scientific codes most of the computation happens in loops accessing arrays. The prediction models
focus on high level source code and since we don’t know what low-level optimizations are performed
by the native compiler. such as instruction scheduling and register allocation. we approximate the
potential optimizations using heuristics. The heuristics presented in Chapter 3 are targeterd towards

scientific codes.

1.3 Data Dependences

Data dependences (5. 76] are used in the compiler to represent variable references that potentially
access the same memory location. Most optimizing compilers use three types of data dependences:
flow. anti and output dependences. Since we focus on memory behavior. we are also interested in

input dependences. More formally. these types of dependences are defined as follows.

Definition 1.1 Consider two statements S and T that both reference the same variable A (read or

write). and T is erecuted after S. We say that:
1. T is flow-dependent on S if S writes A and T reads A:

2. T is anti-dependent on S if S reads A and T writes A;

-
{
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3.

g —|

Figure 1.2: Example of data dependence graph.
3. T is output-dependent on S if both S and T write to A:
4. T is input-dependent on S if both S and T read A.

S is called the source of the dependence and T is called the target of the dependence.

For cache behavior it is more important to know which locations are accessed successively than

the type of the access. read or write. Consider the following sample program:

(S1) A=0
(Sa) B=A+1
(S3) C=A+D
(S4) A=2

The data dependences for this program are shown in the data dependence graph in Figure 1.2.
Each dependence is marked by its type. There is a flow dependence between statement S; and
statement So (marked F) because statement 5| writes to variable 4 and statement S» reads A.
There is an input dependence between S» and S3 (marked I) because both statements read the
variable 4. There is an output dependence between S; and S; (marked O) because both statements
write to 4. And there is an anti-dependence between S3 and Sy (marked A) because statement S3

has to read the variable A before it is written by statement S;.
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1.3.1 Data Dependences in Loops

In loop bodies. statements are executed multiple times. Data dependence relations can exist from
any instance of execution of a statement to any other statement. including itself. Since the compiler
cannot represent all the instances of a statement (the number of iterations may be unknown at
compile time). the data dependence graph is abstracted to represent in one node multiple instances
of the same statement. Dependence edges are then annotated to identify the relative iterations in
whiclt thie dependence relations vecur. Based on the iterations of the source and target of the data

dependence we can classify the dependences as:

o loop independent dependence - if both the source and the target of the dependence are in the

same iteration of the loop:

e loop carred dependence - if the source and the target of the dependence are in different

iterations ot the loop

Another important concept is the iteration space associated with a loop nest. The iteration
space is a polytope that contains one point for each iteration of the loop. For any loop carried
dependence. there will be an edge from the source iteration to the target iteration in the iteration
space dependence graph. Since compiler cannot always determine the number of iterations in the
loop. the iteration space is expressed symbolically.

[n order to identify the points in the iteration space we assign an iteration vector to each
iteration. There are two kinds of iteration vectors described in literature. one based on loop index
variables. inder variable iteration vectors and one that enumerates the iterations. the normalized
iteration vectors. In the index variable iteration vectors (Figure 1.3a). each element [; represents
the value of the loop index variable for the kt? nested loop at that iteration. In the normalized
iteration vectors (Figure 1.3b) the iterations of each loop are enumerated starting either at 0 or at
1. and these are the values used in the iteration vector. The advantage of using normalized iteration
vectors is that later iterations have lexicographically larger valued vectors than earlier iterations.

making it easier to order the iterations.
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(a) Index variable iteration vector. (b) Normalized iteration vector.

Figure 1.3: Iteration vectors

The dependence distance vector is the vector difference between the iteration vectors of the

target and source iteration. Thus. the dependence distance vector can be expressed as:

J=7_F
where /T is the target iteration vector. and i° is the source iteration vector. We will represent the
dependence distance vectors on the dependence graphs as a comma separated list of the elements
of the distance vector. e.g. (0.1.0).

Since the dependence graph for loops represent in one node multiple instances of the same state-
ment. the compilers cannot always compute an exact value for the dependence distance vectors.
because the instances of the source statement can be at different distances of the corresponding
instances of the target statement. In this case. the dependence distance vectors need to be sum-
marized by using dependence direction vectors. An element of the dependence direction vector
takes values in the set {<.=.>.x}. with = representing an unknown direction. If the compiler can

compute the distance vectors it can derive the direction vectors by taking the sign of the distance

vector.

1.3.2 Uniformly Generated Dependences

Uniformly generated dependences [28] are data dependences for which the distance vectors are
known and contain only constant values. If two references have a known distance vector between
them. then the compiler has determined that the two references will touch the same memory
location. In order to compute if the memory accesses reuse data in the cache. all that needs to

be done is to compute the distance, in terms of memory references. between the two references.
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and check if the distance is less than the cache size (for fully associative caches). Most of the
dependences that cause reuse are uniformly generated [28. 52. 74]. Many of the other dependences.
such as those with symbolic subscripts or index arrays. will rarely access the same location. For
those dependences even coarser approximations of the reuse. such as [74. 14]. usually yvield good

results.

1.4 Contributions

This work has originally started as a study of data locality metrics. In many cases optimizations
for improving data locality are applied and the only measure of the “improved™ performance is the
execution time. We wanted to have a metric that quantifies precisely both temporal and spatial
locality. as a function of the program only. that is. independent of the architecture on which the
application will run. Up to this work most of the methods either need the cache parameters of
the architecture. such as cache size. associativity. etc.. or are not able to apply the same metric
to either a loop nest. a subroutine. or an entire program. Therefore we started looking at stack
algorithms.

Stack algorithms have been used previously to characterize paging behavior [43]. They have
the inclusion property (the stack for a smaller cache is included in the stack for a larger cache)
allowing estimations independent of the cache size. In addition. techniques have been developed to
deal with set-associativity and different cache line sizes in one pass through the trace. The result
of the stack algorithm is a histogram that counts the number of references at each distance from
the top of the stack. The work presented in this thesis is based on the stack distances and the
stack algorithms. We present a new algorithm to compute the stack histogram. faster than the
best known algorithm. The development of this algorithm stemmed from the need for a faster
stack processing method due to the length of the traces when the entries in the trace are memory
references and not pages. We also present how the stack distances can be used to quantify locality.
both temporal and spatial. at any program granularity.

When we started working on the Delphi project (an integrated system for performance mea-
surement and tuning) and the need arose for a compile-time method to estimate cache behavior. we

again turned to stack distances. Once more. the most attractive feature of the stack algorithm is its
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architectural independence. One can predict the number of cache misses for any cache size once the
stack histogram is computed. Thus the main contribution of this thesis was defined: a compile-time
algorithm that computes the stack histogram based on data dependence distance vectors. Although
the compile-time algorithm estimates the number of cache misses for fully-associative caches. the
experimental results presented in Chapter 6 show that the estimations are quite accurate for 2-way
set-associative caches. Moreover. the intended use for this method is to help drive compiler opti-
mizations. in which case the relative performance of different code variants is more important than
100% accuracy.

The main contributions of this work are summarized as follows:

Compile-time model for estimating the number of cache misses. We present a new me-
thod for estimating the number of cache misses in a loop using the stack histogram. The
stack processing algorithm and its result. the stack histogram. have been historically used to
evaluate caches. In this work we describe a method that computes the stack histogram at
compile time. based on the data dependence distance vectors. Besides being accurate. the
method presented is also fast since it relies on data already available in the compiler (data
dependences are calculated for other compiler optimizations). and applicable to more than
75% of the loops present in the SPEC{p95 benchmark suite. Detailed results are presented

in Chapter 6.

A new algorithm for stack processing. During our work with the stack processing algorithm
we have come up with a new method to process a memory trace. that it is faster than the

best current algorithm [6]. The new algorithm is presented in Section 4.2.

A new metric for locality, the stack histogram. The stack histogram provides a better met-
ric for quantifying the locality in programs than previous work. This is based on the fact
that the stack distance computes exactly how many distinct memory locations are accessed
between accesses to the same location. as opposed to other methods that average over the

number of memory locations accessed. This is discussed further in Section 4.1.

Integrating the performance modeling with the compiler. We present a new compiler

framework in which performance data is available at compile time as a symbolic expres-
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sion. independent of the architecture. A compiler writer can use this information to drive
optimizations. We also show how we integrated performance modeling at compile-time with

a performance visualization tool in Chapter 5.

1.5 Thesis Organization

This thesis is organized as follows: in Chapter 2 we present related work for each of the areas that
we touch upon: performance prediction environments. compile-time estimation of cache misses.
locality metrics and iterative compilation. In Chapter 3 we present the compile-time performance
prediction model. We describe the entire model. and then we detail the CPU and memory hierarchy
models. Chapter 4 has two parts. In the first part we present a new metric for program data locality
based on the stack distances. The second part describes our experience with stack processing
algorithms and a new algorithm for efficiently computing stack distances. In Chapter 5 we present
the performance prediction framework implemented in Polaris. as well as the interaction between
the framework and the SvPablo performance visualization system. Chapter 6 presents experimental

results and we conclude in Chapter 7.

13
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Chapter 2

Related Work

[n this chapter we describe previous work that has been done in several areas related to this disser-
tation. We begin by presenting solutions for performance prediction environments that integrate
compilers and runtime systems to aid compiler optimizations. These environments have similar
goals to our Delphi project (57]. Next we focus on compile-time prediction of cache behavior. Sev-
eral approaches are presented. some of them integrated in a performance prediction environment.
others used for driving optimizations.

Then. we look at existing metrics for locality. We claim that the stack histogram proposed in
this thesis is a more accurate metric than the cost models available in the literature. We conclude
by presenting work that uses estimates of execution time inside a compiler to improve performance.
We discuss these efforts to underline the need for and the applicability of an accurate static cache

model.

2.1 Performance Prediction Environments

Fahringer [24. 22] describes P3T. a performance estimation tool. He uses the Vienna Fortran
Compilation System as an interactive parallelizing compiler. and the WeightFinder and P3T tools
to feedback performance information to both the compiler and the programmer. Our work differs
from his in both the estimation of computation time and the estimation of the number of cache
misses. First. to estimate computation time. we use compile-time analysis and micro-benchmarking
as opposed to his pattern matching benchmarking against a library of kernels. The combination of

compile-time analysis and micro-benchmarking is better suited to hide the underlying architecture
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than pattern matching. especially if dependence analysis is used to detect overlapping operations.

The authors classify the benchmarking kernels into four categories: primitive operations. which
contain basic operations such as +. *. etc. and elementary array access kernels: primitive statements
such as DO loop headers. conditional statements. etc.: intrinsic functions and code patterns which
include standard code patterns amenable to recognition such as elementary operations of linear
algebra (matrix multiplication. matrix inversion. determinant calculation. etc.) and commonly
used stencils such as Jacobi relaxation. LU decomposition. etc. Each kernel is subsequentlv ran for
different data sizes. on the machine for which the performance estimation is desired. to measure its
execution time. The performance estimator parses the program and detects existing library kernels.
For each kernel. the premeasured execution time is accumulated to obtain an overall execution time.
The authors underline the difficulties they encountered while developing the kernel library for two
machines. the Intel i860 and MasPar MP-1. and they recognize the fact that it is very difficult to
obtain complete. portable kernels. A second difference is in the cache modeling. We present their
cache model in detail in Section 2.2.

Saavedra et al. [60. 39. 58] has done extensive work in the area of performance prediction for
uniprocessors. In [60]. the authors present the micro-benchmarking concept to measure architec-
tural parameters. Micro-benchmarking consists of a set of kernels. each kernel targeted at one
particular feature of the machine. The kernels are written in such a way that they try to isolate
one feature and measure its characteristics by minimizing the effect of other features. We use their
micro-benchmarking approach to measure operation costs and cache latencies. In [59]. the authors
present an abstract machine model that characterizes the architecture and the compiler. Their early
model does not consider memory hierarchy effects. They counsider such effects in [58] by combining
the measurements of cache and TLB timings obtained through micro-benchmarking with cache and
TLB miss ratios obtained through simulation by Gee et al. [29]. The results are used to evaluate
how the execution time prediction improve when memory delays are incorporated and how much
impact the cache and TLB configurations have on the overall performance of the machine. The
main difference between our work and theirs is that we predict both the CPU time and the cache
misses at compile-time. while their method predicts the CPU time and uses previously published

miss ratio data.
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Wang [69] develops a performance prediction framework for superscalar-based computers. His
framework. as ours. is designed to be used inside an optimizing compiler. to guide program trans-
formations. The following requirements are listed as critical for a good performance prediction

tool:
e precise - the prediction must be accurate for the compiler to make correct decisions.

o efficient - the compiler will make repeated calls to the prediction module. therefore the

prediction pass should be very efficient.

o robust - the framework should be able to handle programs with unknowns in control structures

and unknown branch probabilities.

The key idea to satisfy all these requirements is to use symbolic expressions to represent per-
formance data. The symbolic expressions will minimize the effects of compounded estimations for
multiple basic block by delaying the evaluation of unknowns. therefore increasing the accuracy of
the prediction. In addition. they will be more efficient to evaluate for different data sizes. and will
allow for the presence of unknowns. The model decomposes the total performance cost into CPU
cost and memory hierarchy cost. To estimate memory access times the author uses the cache cost
model developed by Ferrante et al. [27]. discussed in the next section.

For the processor cost. the framework contains an instruction translation module. which has four
tables that are used to translate high level language constructs into costs on a specific machine in two
translation steps. In the first step. called operation specialization mapping. a high level operation
table is used to map language dependent constructs into language independent operations. stored
in a basic operations table. In the second step. the atomic operation mapping. translates the basic
operations into costs for the processor based on two other tables. the atomic operation table and the
atomic operation cost table. which contain the low level operations and their costs. respectively. The
framework relies on information passed by the compiler to estimate the optimizations performed by
the compiler back-end. such as instruction scheduling and register allocation. While this can give
accurate results for a particular compiler. it also makes the system less portable. since the module
needs to be re-implemented for each supported compiler.

Adve et al. [1] presents an integrated environment for predicting performance on multipro-
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cessors. They integrate compile-time information with dynamic instrumentation to predict the
execution time for entire programs. However. their compiler stores only information about depen-
dences and decisions made in applying transformations. so that their performance visualizer can
relate the measurements back to the source code but it does not actually predict the performance

at compile-time.

2.2 Compile-time Estimation of Cache Misses

There are many etforts targeted towards estimating the cache behavior of programs within a com-
piler framework. However. many factors. such as limited compiler information. algorithms complex-
ity and hardware unpredictability. have made the problem so challenging that none of the proposed
solutions is a complete solution.

Porterfield [52] presents one of the first static models of memory performance based on data
dependences. He defines the Querflow [teration. O(i). for a particular loop. as the maximum number
of iterations of that loop that can have all the data accessed maintained in the cache at the same
time without encountering any cache misses. The overflow iteration can help determine when a
reference will be a miss during program execution. because it provides a measure of how much data
is accessed between the end points of a dependence. Any dependence that requires more iterations
of the loop than the overflow iteration will access more distinct blocks than available and will result
in a series of misses during execution. Once the overflow iteration is known. every reference can
have its hit ratio computed based on the dependence edges. Unfortunately. for overflow iterations
to be effectively generated. precise interprocedural information should be available. and at the
time. PFC did not contain that information. This has not permitted Porterfield to implement his
algorithm. and besides a manual coded example for matrix multiplication. his thesis provides only
speculative results. Later. Ferrante et al. [27], used Porterfield’s overflow iteration to estimate the
number of cache misses at compile-time.

In [27]. Ferrante. Sarkar and Thrash consider automatic analysis of a program’s cache usage
to achieve greater cache effectiveness when used to guide program transformations. such as loop
interchange. To determine the number of cache misses for a given loop nest. an upper bound on

the number of distinct cache lines (DL) accessed in the innermost loop is determined. The method
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works towards the outermost loop. computing DL at each loop level. The innermost loop that
causes the cache to overflow is called the overflow loop. An upper bound for the total number
of misses is obtained by multiplying the DL value for all the loops contained within the overflow
loop. by the product of the number of iterations of the overflow loop and all its enclosing loops.
For set associative caches the bound might need further adjustments to take into consideration set
conflicts.

There are several assumptions made about the program and the architecture that can be handled
using this method. The authors assume a set of normalized. perfectly nested loops. The array
references considered in the analysis must have subscripts that are linear functions of the loop
indices. otherwise each access is considered a miss. Execution profiling can be used if conditionals
are present. however the paper does not provide a discussion on how the profiling data can be
integrated with the analysis technique.

The algorithm bounds the number of distinct array elements for each array reference and uses
these to compute an upper bound on the number of cache lines accessed by each array reference. It
then combines the bounds for several references to compute DL for rthe loop. The paper presents
exact formulae for the number of distinct array elements accessed when the subscript of the array
reference is a function of one or two loop variables. and provides an upper bound for a more general
subscript function. This approach is less costly than Porterfield’s [52]. since the authors use the
GCD test and Banerjee's inequalities instead of data dependence distance vectors. However. if
data dependence distance vectors are already computed for other compiler passes. then. as we show
later in this work. most of the overhead in using data dependences in analyzing cache behavior
is already paid. We can not readily compare the accuracy of our algorithm versus theirs because
the experimental results presented in their paper is restricted to matrix multiplication. which both
algorithms predict correctly. They present results for matrix multiplication only because they use
simulation to collect the actual number of misses. and thus are constrained by time.

Fahringer [25] presents an algorithm that estimates the number of cache misses for sequential
and data parallel Fortran programs. The algorithm is based on the analysis of all array references
in loop nests. classifying them with respect to data reuse and computing a cost function for the

array classes that describes the cache behavior of the program. The author shows how to extend
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the cost function to procedures and entire programs. although no experimental results for entire
programs are presented.

The cache misses estimation takes into consideration cache line size. cache sizes and data types
in computing the number of cache misses. Two array references in the same array class with respect
to a loop nest if they access some common memory location in the same array dimensions and reuse
occurs across loop iterations. The method used is very similar to the one employed by Ferrante et
al. [27]. in the sense that it uses the overflow loop to determine an upper-bound on the number of
cache lines accessed by a loop. The algorithm iterates through the loops in a loop nest. starting
from the innermost loop. and at each loop computes the array classes and the number of cache
lines accessed. The algorithm ends when there are more cache lines accessed than available in the
system. There are two differences that make our algorithm more practical. First. it is not easy
to see how Fahringer's algorithm can be extended to estimate inter-nest misses. And second. his
algorithm needs the cache size as a parameter. while ours can estimate the number of cache misses
for all the cache sizes based on the stack histogram. Again. it is very hard to see how effective
is his algorithm compared to ours. because the only experiment presented in the paper is Jacobi
relaxation. for which both algorithms are very accurate.

McKinley[44. 43] uses a very simple cache model to drive optimizations for data locality and par-
allelism. In this model. the references with group-spatial and group-temporal locality are grouped
in equivalence classes using simple heuristics. Two references exhibit group-temporal locality if
the references are dependent. and the dependence is either loop independent or loop carried with
a very small distance (< 2). Two references are group-spatial dependent if access the same array
and their subscripts differ by a constant smaller than the cache line size in the dimension along the
cache line.

The cost of a loop is given in terms of cache lines accessed by placing the loop as the innermost
loop in the nest. For each reference class a representative array reference is considered and the
cost is computed as follows: if the reference is loop invariant. there is one cache line accessed in
the whole loop: if the reference has spatial locality it accesses one cache line every cache line size
iterations: all other references are considered accessing one cache line per iteration. Although the

model is very approximative. it works quite well in practice. and it is accurate for double nested
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loops. because it always finds the correct relative ordering of the loops in the nest.

Ghosh. Martonosi and Malik [30] have introduced the Cache Miss Equations (CMEs) as a
mathematical framework that precisely represents cache misses in a loop nest. They count the cache
misses in a code segment by analyzing the number of solutions of a system of linear Diophantine
equations extracted from reuse vectors. where each solution corresponds to a potential cache miss.
For each reuse vector. two kinds of equations are generated: compulsory equations. that represent
cold misses. and replacement equations. which represent the interferences with other references. The
number of cache misses is computed by traversing the iteration space and solving the system of
equations at each iteration point. Although solving these linear systems is an NP-hard problem. the
authors claim that mathematical techniques for manipulating the equations allow them to relatively
easily compute and/or reduce the number of possible solutions without solving the equations. Our
algorithm differs from theirs because in one single pass we can compute the stack histogram which
can be subsequently used to estimate the number of cache misses for any cache size. thus avoiding
the repeated execution of the expensive part, of the algorithm.

Vera et al. [68] propose a solution based on sampling techniques to speed-up solving CMEs.
Statistical sampling allows them to approximate the absolute miss ratio for each reference by
analyzing only a small subset of the iteration space. Results are given with a confidence interval.
parameterizable by the user.

Gannon. Jalby and Gallivan [28] propose program transformations to improve cache and local
memory behavior assuming software control over the cache management. They use data depen-
clences to compute what memory locations have to be kept in the cache for best performance.

The general method is to define a reference window for each dependence. which contains the
current set of elements that must be in the cache. i.e. those that will be used again. To compute
the reference window size. they study several cases of data dependences. and classify dependences

as:

o uniformly generated dependence - the data dependence distance vector can be computed

exactly and all its elements are constants:

o uniquely generated dependence - a restricted case of uniformly generated dependence. in which

there is only one dependence distance vector with constant elements:
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o cyclic self-dependences — characterize input and output self dependences in loops. such as
reductions. where the same array element is accessed in each iteration. These dependences

are very important for cache management.

The reference window size is a good measure of how many elements have to fit in the cache
for best performance. However. if the number of array elements exceeds the cache size. they
have to decide which reference windows to keep in the cache and which to evict (remember the
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kept. the compiler can determine the hit ratios. They use this mechanism to study the etfect of

loop interchange and tiling on locality.

2.3 Locality Metrics

Lilja et al. [42]. in a discussion about the memory referencing behavior of multiprocessors. introduce
the inter-reference distance. the number of memory references that occur between two references
to the same memory location. They use the inter-reference distance to measure temporal locality.
By averaging the inter-reference distances for all the variables in the program. they obtain a single
number. that can be used as a metric to characterize locality as follows: as the temporal locality in
the program increases. the value of the metric decreases. We shall see in Chapter 4 that this metric
does not work in all the cases. and we shall propose the stack distances as a more precise metric
to characterize locality. However. the inter-reference distance can be useful in predicting program
referencing behavior and improving replacement algorithms [51]. The inter-reference distance was
also used by Pyo et al. [55] to guide loop transformations in several routines in the Perfect Club
benchmarks [7].

Wolf and Lam {73. 72| studied data locality and how data locality can be used to guide unimod-
ular compiler transformations. In [73| they present a mathematical formulation of data locality
based on the concept of reuse vector space. They define four types of reuse: self-temporal - a
static reference accesses the same memory location. self-spatial — a static reference accesses mem-
ory locations in the same cache line. group-temporal — several distinct static references access the

same location. and group-spatial — several distinct static references access memory locations in the

same cache line. The metric used to quantify locality is the number of memory accesses (i.e.. cache
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misses) in one iteration of the innermost loop (the loops considered in the paper are perfectly nested
loops). For each type of reuse they compute an estimate of the actual number of memory accesses
generated by each reference. The reuse vector space is compared against the localized iteration
space (the iteration space of a loop that exploits reuse) to see if the reuse actually happens. Data
locality for a program improves when as many as possible of the reuse vectors are included in the
localized iteration space. without violating any dependences.

Most of the exploited reuse is temporal reuse and spatial reuse between uniformly generated
references. To quantify the spatial reuse. especially group-spatial reuse. the references that operate
on the same array and are uniformly generated are partitioned in equivalence classes. called uni-
formly generated sets. The number of memory accesses is computed for each uniformly generated
set and the sum over all sets gives the metric for data locality. While this metric works well for
guiding loop transformations. it is not clear how the metric can be extended to quantify inter-loop
reuse or reuse across entire programs.

McKinley and Temam [46. 17] did an extensive study of locality for programs in the SPEC'95
and Perfect Club benchmarks. Thev employ a reuse classification similar to the one developed
by Wolf and Lam [73]. but they quantify. through simulation. the locality for different program
granularities: intra-nest. inter-nest and entire program. They also discuss the impact of their
results on some popular assertions about program behavior with respect to caches. Both studies
are mostly quantitative. in the sense that they do not propose any optimizations or algorithms.
but they present a very detailed description of where and what types of misses happen in these
benchmark suites. They conclude that both types of reuse. spatial and temporal. happen mostly
intra-nest. while inter-nest reuse is mostly temporal reuse. They also observe that both capacity
and conflict misses happen. although. not very often for the Perfect Benchmarks due to their
small working-set size. Also conflict misses happen mostly intra-nest. while capacity misses happen
mostly inter-nest.

Another conclusion is that many memory references within numerical codes are uniformly gen-
erated and most spatial locality is exploited with stride one. This observation is in concordance
with our own observations. and we present in Table 6.1 a summary of the loops in the SPEC{p95

benchmarks. From these results we conclude that for about 75% of the loops in the suite. the com-
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piler can compute dependence distance vectors. and most distances have value 1. This behavior
was also observed by Petersen [50]. The results are somewhat in contrast with those reported in
[62. 41] mainly because our data dependence test based on the Omega library can handle symbolic

subscripts. and thus. it reduces considerably the number of “unknown” variables.

2.4 Compilation Using Performance Hints

The work presented in this section is not directly related to ours. but it underlines the need for
compile-time models for performance prediction to drive compiler optimizations.

Haghighat and Polychronopoulos [32. 31| present one of the first approaches to use symbolic
analysis inside the compiler to predict loop execution time. They show how by using performace
data the compiler can generate better schedules for parallel loops. The new scheduling scheme.
balanced chunk scheduling uses the compile time estimation of the execution time of an iteration
to balance the work executed by each processor. Since each processor executes consecutive itera-
tions (chunks) it benefits from increased locality. The scheme is shown to outperform other loop
scheduling techniques because it both balances the work and exploits locality.

Wolf. Maydan and Chen [74] present the design and implementation (inside the MIPSpro com-
piler) of a compiler algorithm that applies loop permutation. outer unrolling. tiling. fission and
fusion taking into account cache behavior. instruction scheduling and register allocation. They
enumerate the search space of all possible transformations. selecting the set of transformations
that are estimated to give the best possible overall performance. Their transformation algorithm
depends upon having an evaluation function that can estimate how many cycles a given (possibly
transformed) loop nest will take to run on the target machine. The estimation function combines
estimates from two models. one for the processor and the other for the cache.

The processor model estimates three types of constraints: computational resources. latencies
and registers. To estimate the computational resource needs they count the number of operations
at high level, by walking the abstract syntax tree. and ignore operation dependences and common
subexpressions. The processor model also allows for multiple functional units. To model latencies.
an operation dependence graph is constructed, and algorithms for software pipelining are used to

estimate the number of cycles.
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The cache model has two tasks. to select a good tile size and to compute the loop overhead
introduced by tiling. The model computes a formula for the loop cost. in cycles per iteration. of
the tiling transformation. as a function of the unknown tile sizes. It then attempts to minimize this
function. The model sorts the references into uniformly generated sets. and computes a footprint
(the number of bytes in the cache used by the reference or set of references) for all the sets. It
aggregates the footprints for the sets into footprints for each loop nest.

The goal of iterative compilation. Kisuki et. al [38]. is to construct a search space consisting
of permutations of different optimizations and trying to find a minimum in this optimizations
space. The search space can grow very large since it includes as separate optimizations variations
of the same optimization with different parameters. for example. tiling with ditferent tile sizes. The
process of finding the minimum consists of a grid-based search algorithm (in order to reduce the
number of points that need to be checked) that applies the set of optimizations at a search point.
runs the program. collects the results. and decides which points to search next. While promising.
this solution has two major drawbacks: first. it is very time consuming. The larger the number of
optimizations. the larger the search space. and the number of points for which the program needs
to be executed. The second drawback is that one can optimize codes only for the specific machine
on which this compiler/optimizer runs. since different architectures have different characteristics
that can impact the performance.

ATLAS [71] presents another approach. In this system. a set of linear algebra routines is
optimized at installation time. by selecting the best parameters for the machine on which the code
will run. ATLAS constructs a search space for tiling parameters based on cache parameters hints.
or alternatively. if no hints are available. a covering range. It then compiles the code and runs
it. measuring its performance. The best performing tiling parameters are then integrated in the
library installed on the system. While the installation process can take hours or days. the code
is highly tuned to that specific machine. and thus. any software that uses routines in the package
will benefit from the performance of the building blocks. This method could be appropriate for

building optimized libraries. but not necessarily for optimizing general purpose code.
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Chapter 3

Compile-time Performance Prediction

The problem of predicting program performance at compile-time is inherently difficult. There are
many factors that make this problem hard. First. critical information needed by the compiler often
depends on the input data of the program. Second. modern architectures are implemented so that
the hardware optimizes execution using different techniques. such as exploiting instruction level
parallelism (ILP). out-of-order execution. instructions and data caching. etc. A performance pre-
diction model needs to consider all these techniques for an accurate estimate of actual performance.
Multiprocessor systems add another dimension because of data distribution and communication be-
tween processors. Third. there is the issue of the low-level optimizations performed by the compiler.
Typical optimizations are code scheduling to exploit ILP and register allocation. A compile-time
performance predictor is usually invoked much earlier than the code generation phase. therefore it
needs to either implement or estimate the low-level optimizations. Next. there is the problem of
prediction accuracy. If the predictor approximates a piece of code. and uses that value to predict
a larger chunk of code. compounding the estimates may magnify the error significantly. Another
problem is cross-machine prediction: we envision our system being used to compare different sys-
tems. It is not always possible to have access to all the machines for which one wants the evaluation
because some of the machines may not exist. Therefore. it is desirable for the prediction system
to allow for machine independent prediction with the possibility to customize it for architectural
parameters.

Many different strategies have been tried to address all these problems. such as: using heuris-
tics [4]. profiling [77. 61]. run-time measurements [22. 3|, analytical models [23. 69. 12] and combi-

nations of these. The results have been mixed. showing that much work is still needed.
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In this chapter we present our approach. which represents performance data symbolically in
the form of expressions containing variables for machine parameters. operation counts and input
data values. The compiler synthesizes performance expressions and instruments the code to extract
values unknown at compile-time. Qur symbolic expressions decompaose the overall performance into

four parts: CPU. memory. communication and [/O. The total execution time is represented as:

Tiotat = Tepu + Tatey + Tcovnt + 11 0 (3.1)

where Tepr- is the computation time spent by the processor itself. Ty gy is the time spent accessing
the memory hierarchy. Teparyy is the interprocess/thread communication time. and T; () is the time
spent doing [/O. In this work we shall model the first two terms only.

Each term in Equation (3.1) consists of a symbolic expression. i.e.. a mathematical formula
expressed in terms of program input values and perhaps some profiling information. such as branch
frequencies. The expression involves parameters representing characteristics of the target machine
and thus. is a function of the source code. the input data and the target machine.

To estimate the execution time of a program. we start by estimating the execution time of
each basic block. The symbolic expressions obtained are aggregated into expressions for compound
statements.

The problems mentioned above are addressed as follows:

e missing information at compile-time - the prediction system models unknown values as sym-
bolic variables. The performance can be expressed either symbolically. or if the execution
time is desired as a precise value. the variables can be substituted with values obtained by

profiling.

o portability across machines - hardware parameters are represented as variables in the symbolic
expressions. There are some assumptions made about the organization of the target machine.
such as the number and type of the functional units. the size and number of levels of caches.
but the actual details are represented symbolically and evaluated on demand. based on a

machine description file.

o compiler low-level optimizations — to address this problem we use heuristics. explained later
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in this chapter.

[n the following sections we detail the prediction models for the processor and the memory

hierarchy.

3.1 CPU Prediction

In this section we describe the compile-time model of the processor. Tepr- in Equation (3.1)
estimates the time spent by the processor doing computation. We assume a superscalar processor
that is capable of issuing and executing several operations per cvcle. We also assume that all the
memory load and store operations are cache hits. The time to access the memory hierarchy is
estimated separately. and we shall detail the modeling of cache accesses in Section 3.2.

The compiler counts the number of operations in the high level language code. These operations
include: integer arithmetic and logical operations. floating point operations. and load and store
operations assuming no cache misses. In addition. it considers as basic operations Fortran intrinsic
functions. such as square root (many current processors have functional units that execute square
root operations. and can be estimated using micro-benchmarking otherwise) and trigonometric
functions. We also consider as basic operations function calls and loop overheads. thus taking into
account the cost of branching operations and bookkeeping operations such as parameter passing
and loop index testing.

The prediction is expressed as a symbolic expression of the form:

#=groups

Tcpy = CycleTime x Z (count; x cost;). {3.2)

=1

where count; are symbolic expressions representing the number of operations in group i (we
explain the groups of operations shortly). and cost; represents the hardware cost for the operations
in group :. The hardware costs. cost;. can be obtained either from the processor’'s manual. design
specifications. or by using microbenchmarking [60]. The latter is usually the most convenient way
to get the values associated with intrinsic functions and loop overheads if the machine is available.
For the experimental results presented in Chapter 6 we actually use both the processor manuals

and micro-benchmarking.

(3]
-~
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No | Group Name Operations cost; (cycles) i
R10000 Ultra IT: |
1 Integer Add Integer addition and subtraction 0.5 1 &
2 Integer Mult Integer multiplication 6 18
3 Integer Div Integer Division 35 37
4 FL. Add Single precision addition. subtraction and 1 X |
multiplication ;
5) Fl. Div Single precision division 14 12 ]
6 Dbl. Add Double precision addition. subtraction and 1 3
multiplication !
7 Dbl Div Double precision division | 21 22 :
8 Sqrt Square root 27 25 |
9 | Trig Trigonometric operations 60 30 :
10 | Intrinsic Minumum. maximum. absolute value. etc. 1.5 i 9
11 | Fun. Call Function calls l ' 5
12 | Loop ovhd Includes increment and branch and com- 41 18 :
pare f
i 13 | Scalar load . Integer and single precision load 1 : 1 i
14 | Scalar store ! Integer and single precision store I 1 1
15 | Dbl load ! Double precision load ) L i 1 :
! 16 | Dbl. store Double precision store 1 | l :
5 17 | Arrayv load One dimensional array load (includes index ! 5 ! 3 '
| | computation) ’ | :
| 138 1 Array store - One dimensional array store (includes index | 3 5 |
! computation) 1 : ?
19 | N dim array load | Multidimensional array load i 10 ; 10 |
20 | N dim array store | Multidimensional array store : 10 | 10 !

Table 3.1: Operation groupings

To reduce the number of independent variables in the symbolic expressions. operations are
grouped into sets based on the operation type and the data size on which they operate. For
example. for the machines considered in this work. we group together single precision addition
and multiplication since. on most current architectures. these instructions have similar latencies
being executed in the same or identical functional units. We distinguish between multiplication
and division since the division operation usually has longer latency than multiplication. For other
processors. the groupings could be adapted. but we consider the groups presented in Table 3.1 as a
reasonable base-line for current processors. We have used this grouping in a prototype that models
the MIPS R10000 and the UltraSparc IIi processors. The table enumerates the groups and for each
group presents the latencies that we used in our predictions for the two processors.

Using simple symbolic arithmetic. the expressions for basic blocks are combined to generate the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cost of operations for each statement or block of statements. For example. consider a loop of the

form:
D0i=1,m
D0 j=1,n
S1
S2
ENDDO
ENDDO

After we estimate the cost for S1 and S2. Cs; and Cg». we estimate the cost for loop j as follows:

Cpo.j = n x (Loop ovhd + Cs1 +Csn)

The cost for loop 1 is:

Cpo. = m x (Loop ovhd + Cpo )

Consider another example. an IF statement of the form:

IF cond THEN
S1

ELSE
S2

ENDIF

the cost is:
Crr = Branch ovhd + Ceong + Cs1 % freq(S1) + Csa x freq(S2)

If the branch frequencies freq(S1) and freq(S2) are known at compile time (through profiling

information or user annotations). the values can be substituted. Otherwise the symbolic values are

carried in the prediction expressions.

Using this method. the cost expressions for different levels of granularity in the program (blocks
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of statements. loops. procedures) are combined until a unique expression could be generated for
the entire program.

Although this is a very simple strategy. it has proven reasonably accurate when no compiler
optimizations are applied. as can be seen in the experimental results presented in Chapter 6.

In order to accurately predict the performance for optimized codes we have to apply. or at least
approximate in our model. the low-level optimizations performed by the native compiler. We have
chosen to approximate these optimizations by using heuristics applied at high level source code.
We found that the following heuristics approximate best the optimizations performed on the set of

benchmarks that we studied:

o Eliminate loop invariants. This is a simple optimization applied by all optimizing compilers

and it can be done at high level.

o Consider only the floating point operations. Based on the observation that. in scientific codes.
the useful computation is done in floating point and in optimized code integer operations are
used mostly for control flow and index computation. we assume that superscalar processors
can overlap the cost of index computation with the floating point operations. We take into

account the control flow operations (branching) in the form of loop overheads.

o [gnore all memory accesses that are not array references. The reason for this heuristic is
that scalar references occur infrequently in scientific codes and. if they do. modern processors

often have enough registers to buffer them.

o QOverlap operations. For multiple issue architectures with multiple functional units. we must
allow operations in different categories to overlap execution. For example. on the MIPS
R10000 processor. there can be 4 instructions issued in one cycle chosen among: 2 integer

operations. 2 floating point operations. | memory operation or 1 branch.

Note however that these optimizations are mostly suited for scientific codes. in which. most
of the computation is done in loops accessing arrays and executing floating point operations. To
accurately model optimizations done for integer codes more research is needed.

Using these approximations we obtain a lower bound on the processor’s execution time. We

tend to underestimate the execution time in the processor since we consider all the operations inde-
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pendent. and therefore we “exploit” more instruction level parallelism that may actually be present
in the code. However. we do not consider other low-level optimizations. such as loop unrolling and
register allocation. nor we consider hardware reordering of the operations. These optimizations
usually reduce the number of operations and/or increase the potential for ILP. However it is both
very difficult and too machine and compiler specific. to consider these optimizations at high level
language code.

The model could be improved by using an operations dependence graph. that takes into consid-
eration dependences between operations to compute the overlapping. However. such a model will
have increased complexity. up to a point where the predictor duplicates the code scheduler from
the compiler. We have compromised some accuracy for the simplicity of the model.

Two main characteristics set this model apart from other related work: the machine indepen-
dence and the compiler independence. The machine independence is realized by using symbolic
expressions to represent hardware costs for groups of operations. This is opposed to the method
used by Balasundaram et al. [3] and Fahringer (22| of measuring kernels. and trying to match the
code to the kernels. The compiler independence is achieved by using heuristics to approximate the
low-level optimizations that could be applied by the compiler. This is in contrast to the approach
used by Saavedra and Smith [59] in which they tried to account for the compiler low-level opti-
mizations in the hardware costs of the operations. It is also different from Wang's approach [69]. in
which the predictor must have access to the compiler’s low-level optimizations. Both these methods
need to be reimplemented when the undelying compiler changes. however in some cases they can

be more precise than ours.

3.2 Memory Hierarchy Prediction

The term Tyrgys in Equation (3.1) estimates the time spent accessing memory locations in the
memory hierarchy. As we mentioned before. when estimating the execution time of basic operations
we assume all memory references are cache hits in the first level cache. However. many accesses
are not served from the first level cache. in part because applications have data sets much larger

than the cache.
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Tyreyr can be expressed as follows:

Zlevels

Tyviey = CycleTime x Z (M; x Cy). (3.3)

where \M; represents the number of accesses that miss in the it? level of the memory hierarchy. and
C; represents the penalty (in machine cycles) for a miss in the i*# level of the memory hierarchy. C,
is computed using micro-benchmarking. as in [58]. We briefly discuss the cache micro-benchmarking
here.

The micro-benchmarks (narrow spectrum of benchmarks) are a set of experiments used to
measure memory hierarchy characteristics and performance. In particular. they measure primary
and secondary cache characteristics and the TLB for a uniprocessor. Each experiment measures the
average time per iteration required to read. modify. and write a subset of elements belonging to an
array of known size. The number of misses will be a function of the size of the array and the stride
between the array element accessed. From the number of references and the number of misses.
as the stride and the size of the array are varied. we can compute the relevant memory hierarchy
parameters. including the cache size. the cache line size. the time needed to satisfv a cache miss.
and the associativity. For example. assume a machine that has a cache with a C {-byte words size.
a cache line size of b words. and an associativity a. Furthermore. consider a one-dimensional array
of size .V J-byte elements. A subset of the array elements is accessed in a loop that contains a
simple floating-point operation. Each subset is generated by traversing the array with a certain
stride. Therefore. each experiment is characterized by N (the array size) and by s (the stride).
After plotting all the experiments on a graph. we can determine different regimes. from which the
unknown parameters of the cache are derived.

Once the cache parameters are defined and the number of cache misses for a loop is estimated.
we can translate the number of misses in execution time. In the remainder of this chapter we
propose two models for estimating the number of cache misses at compile-time. Depending on the
amount of compile-time information we estimate the number of cache misses using an accurate
model. the Stack Distances Model (Section 3.3). or, if not enough data dependence information is

available. we estimate using the Indirect Access Model (Section 3.4).
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Figure 3.1: Stack update when the currently referenced location has been previously accessecd

3.3 The Stack Distances Algorithm

The Stack Distances Model (SDM) is based on the stack processing algorithm. The classical
stack processing algorithm [13]. generates a stack histogram for a program by analyzing a trace of
the memory references. The trace can be analyzed either off-line. after the program has tinished
executing. or on-the-fly - during the program execution. Or. when enough information is known
at compile time. such as all the data dependence distance vectors. affine array subscripts. etc.. we

propose to generate the stack histogram at compile time.

3.3.1 Introduction

The stack processing algorithm takes a trace of memory references. cache line references or virtual
page references in a program. and builds a stack as follows: if a memory location has been previously
referenced (stack hit). we record the distance. A. from the top of the stack to the position at which
the reference is found. and move the reference on the top of the stack. all the references between
the top and position A being pushed down one position. The references below the current reference
position are not affected. as shown in Figure 3.1. If the reference is the first access to that memory
location. we let the stack distance A = > and push the reference on the stack. using a normal
push operation.

The result of the stack processing algorithm is a histogram that counts the number of accesses

for all stack distances. Figure 3.2 shows a histogram computed in this way.
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This histogram can be used to calculate the number of out-of-core page references. or equiva-
lently. the number of cache misses. for any memory or cache size. For a physical memory of size
C. all the accesses at stack distances of less than C are in-core (Equation (3.4)). and all the others
accesses are out-of-core (Equation (3.3)). Splitting the stack depth histogram at C. the area under
the histogram curve at the left of C is the number of in-core references. whereas the area to the

right of C represents the out-of-core accesses.

al

H/(C) = Z 3(8) (3.4)
5=0

M(CY= ) s(d) (3.5)
.5=C+[

where J is the stack distance. and s(J) is the number of references at stack distance J.

In the same way. the stack histogram can be used to predict the number of cache hits and cache
misses that occur in a loop nest. In order to generate the stack histogram at compile-time. we must
compute two things: the stack distances at which references occur. (all the points on the r axis of
the stack histogram). and the number of references that occur for each stack distance (the points
on the y axis of the stack histogram).

Before going into details. we discuss the design choices and the limitations of the current im-
plementation of the algorithm.

As we mentioned before. we focus on scientific programs. therefore we consider for inclusion in
the stack histogram only references to array elements. Again. the motivation is that. in scientific
codes. scalar variables are mostly used for indexing and thus reside in registers. We consider only
array references with affine subscripts for two reasons: first. the Omega test (the data dependence
test that we use) works only on affine subscripts. for all other subscritps it assumes that the depen-
dence exists: and second. our algorithm for computing array sections (presented in Section 3.3.3)
can handle only affine subscripts. However. as shown in [50] for the Perfect Club benchmarks
and from our own study of the SPECfp95 benchmarks. affine subscripts constitute more than 80%
of the subscripts in these suites. The other most common form is subscripts of subscripts. i.e..
the subscript expression is another array element reference. which occur mostly in sparse matrix

operations. We handle this type of subscripts using the Indirect Accesses Model (see Section 3.4).
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Although the stack histogram can be used to predict the number of cache misses at different
granularities in a program. i.e. loop nests. routines. etc.. the compile-time algorithm presented in
this work generates stack histograms for loop nests only. We consider only nests for which the data
dependences are uniformly generated [28]. that is. the distance vectors are defined and constant.
We could apply the algorithm for dependences where the distance vectors have a lower bound. by
considering the minimum distance in our calculations. however. the estimation will no longer be
totally accurate. Depending on the use of the estimation. this loss of accuracy can he tolerated.
and the algorithm applied with success. Further research needs to be done to enable the estimation
on multiple loop nests.

The compile-time stack algorithm can estimate the number of misses for fully associative caches
with the LRU replacement policy. The replacement policy constraint is actually a constraint im-
posed by the stack processing method. in order to satisfy the inclusion property (the stacks for
memories of size C or lower are included in the stack for memory of size C' + 1). We also consider
each loop nest to start with a cold cache. i.e.. none of the array elements accessed in the loop are
present in the cache when the loop starts.

In explaining the algorithm we will consider cache lines of one array element in order to keep the
algorithms ~simple”. We remove this restriction in Section 3.3.8. Also. in presenting the algorithms
we assume that the loops are normalized. i.e.. they have the step equal to 1. This restriction is just

to keep the equations simpler. and the implementation supports loop increments different from 1.

3.3.2 Algorithm Overview

The stack distance is. by definition. equal to the number of distinct memory locations accessed
between two references to the same memory location. or > if there is no previous reference to
the memory location. Inside the compiler. the fact that two references access the same memory
location is represented by a data dependence (including input dependences). Therefore. we want
to compute for each dependence the number of distinct array elements accessed between the source
and the target of the dependence (we call this the number of distinct array elements spanned by
the dependence). However. a dependence can span different numbers of distincat array elements

depending of the iteration point in which the target is accessed. This follows from the fact that a
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static array reference may access a distinct array element or not. depending on the other incoming
dependences on the array reference for the particular iteration point in which the dependence is
considered.

The compile-time algorithm for computing stack distances has the following major steps:

e iteration space partitioning - the iteration space is partitioned according to which dependences
are legal at each iteration point (Section 3.3.3). Within a partition all the references will have

tire satne set of valid dependences.

o dependence span computation - for each incoming dependence. in each partition. we com-
pute the iteration points are executed between the source and the target of the dependence

(Section 3.3.4)

o array sections computation - we compute for each dependence and for each array reference.
the number of distinct elements in the array. accessed between the source and the target of
the dependence. We also compute the sum over of distinct elements over all array references

and use the sum to label the Jependence (Section 3.3.5)

o stack histogram computation - the stack histogram is computed using previously determined

information (Section 3.3.6)

Note that iteration space partitions. dependence spans and array sections are all sets of integral
elements. we call them regions. [t is desirable to use a common representation for all these regions.
so that we can optimize the algorithms that operate on them. The following operations need to
be defined on the regions: union. intersection. difference and projection. Union. intersection and
difference are the usual set operations. Projection is the operation that maps an iteration vector to
the array element accessed in the iteration. The mapping is subject to the array indexing function.

We had several options available to represent the regions. Below we discuss some of the advan-
tages and disadvantages of each notation. and our chosen method based on the triplet notation.

There is a substantial amount of work that has been done for representing array sections. Four
major directions have evolved for representing subsets of array elements: linear constraint based
polytopes [53. 54. 19. 20, 16]. reference lists [10, 40], triplets [11, 34] and linear memory access

descriptors (LMADs) [36].
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The linear constraint-based techniques are very powerful. general. and the most accurate nota-
tion. However. by using Fourier-Motzkin elimination to solve the linear inequalities system. there
are several drawbacks: first. the theoretical complexity of the problem is exponential. and second.
it requires that the linear inequalities form a convex hull. forcing a loss of accuracy when some
regions must be widened to make them convex. The method also reports all the solutions. not only
the integer ones. We are studying the posibility of using Ehrhart polynomials [15]. which generates
the set of integer solutions for a linear system. as a more accurate and faster technique to replace
our current implementation.

The reference list techniques rely on linearizing the arrays and making a list to represent each
individual array reference in a code section. This method was not designed to summarize array
access information. and therefore. is very cumbersome to use for our purpose.

The triplet notation is a simple representation for a set of integer values for each dimension.
which start at a lower bound and proceed to the upper bound via a stride. Each dimension is
represented by a triplet. [[ : s : u]. where [. s and u represent the lower bound. stride. and upper
bound of the array section. Triplets representation of array sections is very popular. although
there are instances. such as array accesses in triangular loops. or some coupled subscripts in which
the array sections lose some accuracy. We have implemented our representation based on triplet
notation because of its simplicity. We extended the notation to cover for some of the drawbacks.
such as allowing the loop index in the stride expression. However. there are cases in which this
notation in not totally accurate. and we will discuss some of these cases in Section 3.3.5.

Linear Memory Access Descriptors (LMADs) combine a generalized triplet notation with con-
straints. At the time of this work the LMADs were not fully developed. and more research needs
to be done to use them in this work.

We present now the steps of the stack distances algorithm in more detail.

3.3.3 [Iteration Space Partitioning

In this section we present the iteration space partitioning algorithm. The iteration space is par-
titioned into regions for which the dependence spans are the same for each dependence at all the

iteration points in the partition. This allows us to reduce the number of points at which dependence
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Input:
The bounded iteration space for a loop nest of depth k& IS =[] [L,. U
where L; and U; are the lower and upper bounds of the it* nested loop. respectively
The data dependence graph with distance vectors computed
Output:
The partitioned iteration space Part[S. such that in each partition. ?
all incoming dependences are the same. !
Method: |
set PartlS = {IS} i
foreach dependence 0 compute the valid space V'S(d) as follows: i
if 0 15> loup independent then '
VS =1S
if ¢ is loop carried with distance vector d = (d,.d>. . . .. d;) then E
vse) = 1%, {[L, #di U] B> 0
[L,‘.L/g - (li] itd; <0 !
temp =0
foreach r € PartlS
temp =tempuU {r—(zNVSW)}u{rnVS)}
end foreach
PartIS = temp |
end foreach

Figure 3.3: [teration space partitioning algorithm

spans are computed. because we compute one span per partition for each dependence. as opposed
to computing one span per iteration point. In general. we do not know how many iterations are in a
loop. except symbolically. Therefore. we partition the iteration space. such that for all the iteration
points in one partition. all the array references have exactly the same incoming dependences. For
example. if there is a loop carried dependence on an array reference with a positive distance d. the
array elements accessed in the first d iterations of the loop will not have that incoming dependence.
therefore the iterations in which these elements are accessed will be in a separate partition from
the rest of the iterations in the loop. After partitioning the iteration space. we compute one array
section for each array reference and each dependence that spans the reference in each partition.
The partitioning algorithm is presented in Figure 3.3.

The input to the algorithm consists of the iteration space IS. which is a polytope that contains
one point for each iteration of the nest. We express the iteration space as the cartesian product

of the integer intervals [L;.U;] (also called domains in literature), where L; and U; are the lower
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Figure 3.4: Partitioned iteration space for matrix multiplication.

and upper bounds of the i*" nested loop respectively. Another input to the partitioning algorithm
is the data dependence graph. with all the distance vectors computed. Assumming a loop carried
dependence with distance d. that is carried by only one loop. the algorithm splits the iteration space
into two partitions. one that contains all the iterations from L to L + d. and one that contains the
other iterations. from L +d to U7. [f the distance d is negative. the partitions are from " — d to
U and from L to U’ — d. The second partition in both examples is called the valid space of the
dependence. because only the array elements referenced in the iterations contained in this partition
have this incoming dependence. If there are multiple loops that carry a dependence. the same
operation of splitting the iteration space is performed for each loop. There will be two partitions
for each dependence. only the partitions will no longer be rectangular.

In general. the number of partitions is less than 2V. where ¥ is the number of loop-carried
dependences in the loop nest. because some dependences may generate the same partitions. In
Figure 3.4 we show the partitions for the matrix multiplication code. There are 6 loop carried
dependences in this loop nest. but only three of them generate distinct partitions. and thus there
are 3 partitions.

Note that all the loop bounds and iteration space partitions are expressed symbolically. How-
ever. we require that the dependences are uniformly generated, i.e.. all the elements of the distance

vectors to be constant. We'll show later. that, even when the dependence distance vectors are
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not constant but a lower bound can be computed, we can use the lower bound to approximate
the distance and usually obtain a reasonable estimation for the number of distinct array elements
accessed.

Next we need to compute the iteration points spanned by each dependence in each partition.
and thus. the number of array elements spanned by each dependence. In the following discusion
we’ll present our examples on the whole iteration space. since considering the partitions will just
complicate the figures. However. the reader should keep in mind that we do these computations

for every partition in the iteration space.

3.3.4 Dependence Spans

For each dependence we need to compute the number of distinct array elements that are accessed
between the source and the target of the dependence. We can do this by determining which
iterations are executed between the source and the target of the dependence. and taking the union
of all array elements accessed in those iterations.

We define the dependence span as being the set of iteration points between the source iteration
and the target iteration of the dependence. Geometrically. the dependence span is a shape in the
iteration space that encloses all these iteration points. For example. the shaded region in Figure 3.5
represents the dependence span defined by the input dependence on reference B(k, j) (shown in
Figure 3.11). This dependence is carried by the outermost loop of a three-nested loop with distance
1. The iteration points spanned by this dependence are: the remaining iterations of loop k in the
same iteration of i and j. i.e. [i.j.A : n]. the remaining iterations of loop j in the same iteration
of loop i. which includes all the iteration of loop k. [i.j + 1 : n.1l : n]. the iterations previous to
iteration j in the iteration i+1. [i + 1.1 :j — 1.1 : n]. and the iterations previous to iteration k.
i+ 1.j.1:k]

Dependence spans are computed using the algorithm presented in Figure 3.6.

The algorithm takes a dependence ¢ that has the source iteration ([j..... I,) and the target
iteration ([; +dj...-. I, + d,). where d; are elements of the distance vector D(d) = (di..... dn).
It computes the set of iterations spanned by the dependence in three steps. First. it completes all

remaining iterations for the loops enclosed by the outermost loop carrying the dependence. Next.
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Figure 3.5: Iteration space for matrix multiplication. The shaded shape represents the iterations
spanned by loop-carried dependence with distance 1 in dimension i.

1 Input: i
I A loop nest L of depth n and its iteration space ]
An incoming dependence 0 with source iteration ([;..... I,) and 3
dependence distance vector D(J) = (dy.da. . ... dy) |
Output: !
The dependence span DS(J) for the dependence i
Method:
DS(d) =0

let [ be the outermost loop carrying the dependence in L
/* collect the all iterations up to the next iteration of [ */
foreach loop i starting from the innermost loop to [
DS(d) = DS(9) U (. Ia..... L Loy :Uisr Liwa : Ujsa. ... Ln,:Up)
end foreach

/* collect all the iterations up the the target iteration */
foreach loop i starting from [ to the innermost
if [ +d;—1<I;+1 then

DS(8) = DS(8)U (Iy. fou .. Limy Ly + di Livy = Tioy +diwy. Lica - Uicae oo Ly = Up)
else
DS(@)=DSO)U( . Is,... i1 ;i +1: i +di—1.Liwy : Uiy - ... L,:Uy)u
(I Ioo... Licy I+ di Livy - iy +dic Livo - Uign. o L,:Uy)
end if

end foreach

Figure 3.6: Dependence span computation algorithm
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it collects all the iterations in the loop carrying the dependence. up to the target iteration. And
last. it collects the iterations of the loops enclosed by the dependence carrying loop up to their
respective target iterations. Note that the second step is performed only if the dependence distance
of the carrying loop is greater than the step of the loop. In the algorithm. the last two steps are
merged.

In the next section we show how to use the dependence spans to compute the number of distinct
array elements accessed in each iteration contained in the dependence span. and then. the total

number of distinct array elements spanned by a dependence.

3.3.5 Array Sections Computation

Once the dependence spans are computed. they can be used to compute the array sections covered
by the dependences. An array section is. by definition. the set of array elements that are accessed
by all the iterations in a dependence span.

Intuitively. if we can identify every array element accessed in each iteration point contained in
a dependence span. we can compute how many distinct array elements were accessed between the
source iteration and the target iteration of the dependence. For each iteration we may have several
memory accesses. one for each array reference in the body of the loop. By computing exactly which
array element is accessed in each iteration. we can compute the array sections.

This intuition is illustrated in Figure 3.7. The outisde rectangles represent the arrays accessed
in the matrix multiply loop nest (4. B. and C). The cube represents the iteration space. with the
shaded region denoting the dependence span of the loop-carried input dependence on reference B.
The shaded regions in each array region represent the array sections spanned by this dependence.
Thus. from iteration (i. j. k) to iteration (i+1. j. k) the following array regions are accessed:
A(i:i+1.1:n).B(l:n.1:n). and C(i.7: n)UC(i+1.1:).

The array section. AR(J). spanned by a dependence is computed by substituting in the array
index functions the ranges of the induction variables taken from the dependence span. In geometri-
cal terms. the dependence span is projected onto the array space. as illustrated in Figure 3.7. The
algorithm in Figure 3.8 computes array sections.

We start the algorithm by considering that the entire array space is accessed. Then. for each
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B

Figure 3.7: A dependence span projected onto array sections. For each array. the shaded areas
show which elements contribute to the number of distinct accesses between two iterations of loop i.
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Input:
A dependence ¢ with the dependence span DS(d) = [I1 : uy... . lm : Um)|
1 an m-ievel nested loop
An n-dimensional array reference a(f1(7)..... fn(D))
Output:
The array section spanned by the dependence AR(a.d)
Method:
AR(a.8) =Ly : U7.....L, : Uy] /* entire array space */
foreach j = L.n /* for each array dimension */
/¥ compute the extent in that dimension */
r =0

foreach I € f;(i) /* for each loop index */
let y = r’lngeosm([k) = [lp : ur]
1‘=.L'Uf_, (l !I;g:y)
end foreach
AR(a.d) = AR(a.)N[Ly : Uy, .... Ly U Ljoy Uy L,:0,]
end foreach

The @ operation is defined as follows (expr is a constant or a loop invariant variable):
l.expr+{l:s:u]l=[erpr+1:s:erpr+ u

2. erprx(l:s:u] =[expr«l:expr=s:erpr*ul.

(ly + 15 : ged(sy.s2) : up + ua ifsp|saVsals
. hisirw]+[lasaiug)= [l + 12 ged(sios2) 2 ur + w2 if sy | “’_" 52| 51
{ly + 12 : ged(s).s2) : up + ua. M} otherwise.

where {{:s:u.m} denotes a non-contigous interval. !

Figure 3.8: Array section computation algorithm
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array dimension. we compute the range of the index in that dimension (the extent of the array in the
dimension). by substituting the ranges of the loop index variables into the subscript expression. The
ranges of the loop index variables are taken from the dependence span. because we are interested
in those iterations that are spanned by the dependence. Interval arithmetic is used to compute
the extents. The operation & in Figure 3.8 presents the operations supported when combining
intervals. We also discuss these operations next.

The operations supported for computing the extents are as follows: interval addition and mul-
tiplication with a constant or a loop invariant variable. and addition of two intervals.

Rule I handles the interval addition with a constant or a loop independent variable. i.e.. the
subscript expression has the form i + erpr. where { is a loop index variable and erpr is either a
constant or a loop invariant variable. Examples of such subscript functions are: i+ 1. i-3 or: +c.
In this case the extent is the same as the range of variable i shifted by exrpr. Assuming the range
of the loop index variable ¢ is [4 : .V]. the ranges of the above subscript functions are: [5: .V + 1].
(1:N=3].and {4 +¢: .V + ¢ respectively.

The second rule treats the multiplication of an interval with a constant. The subscript has the
form erpr = i. where { is a loop index variable and erpr is either a constant or a loop invariant
variable. Examples of such subscripts are 2i or ¢ « i. In this case the computed extent is an
expansion of the original range. an interval that has boths bounds and the step multiplied with
the expression. Thus. assuming the range of the loop index variable ¢ is [2 : V]. the range for the
subscript functions 2i and ¢ =i are [4: 2: 2 « N] and [2*c:c:c*N] respectively.

Both addition and multiplication with a constant or loop invariant variable preserve the accuracy
of the range.

The last rule handles the case of coupled subscripts. i.e.. subscripts in which two or more loop
index variables occur in the same subscript expression. In general. coupled subscripts occur in less
than 20% of the subscripts. as shown by Shen et al. [50] who studied a large number of benchmarks
and kernels from scientific codes. Moreover. subscripts containing multiplications of loop index
variables are even less frequent. and we have not encountered it in the SPECfp95 benchmarks. We
treat only the case in which the loop index variables are added in the subscript expressions.

Rule 3 handles the case when two loop index variable expressions are added together. such as
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2i + 3j + 10. Note that the extent of this subscript expression can be computed by successive
applications of the three rules. as follows: rule 2 to obtain the extent for the sub-expression 2. rule
2 for 3j. rule 3 for 2/ + 3j and rule 1 for (2¢ + 3j) + 10.

When adding two intervals there are two cases: (i) one of the strides is divisible with each the
other and (ii) the strides are not divisible. When the strides are divisible the resulting extent is an
interval with the bounds computed as the sum of the bounds of the two terms. and the stride is
equal to the greatest common divisor of the strides. There are some cases in which the extent might
have a different number of elements than it should. for example. when the upper bound of the inner
loop is less than the upper bound of the outer loop. This is one of the limitations of the triplet
notation. We hope to eliminate this inaccuracy by using a linear constraint-base representation for
the regions.

The second case. when the strides are not divisible can produce even more inaccurate represen-
tations. To address this problem where we extended the triplet notation to handle “non-contiguous
intervals™. A non-contiguous interval (shown in Figure 3.9) is a set of integers that has a lower
bound. an upper bound and a stride to traverse the elements. just like in triplet notation. Addi-
tionaly. there are elements at the two ends of the intervals that even if theyv are specified by the
stride. they are not traversed. For these elements. we introduce a "missing” factor. that specifies
how many elements are not actually traversed over a “spread” region at both ends of the interval.
Note that a non-contiguous interval might not represent exactly which elements are accessed in
the spread region. but since we are interested only in the number of elements that are accessed.
the accuracy of a non-contiguous interval is sufficient for our purpose. To compute the missing
elements and the spread. we have observed that if the strides are factored. the access pattern for
the resulting interval is given by the access pattern of the greatest prime factors from each stride.
Therefore the subroutine in Figure 3.9 enumerates the elements that are accessed for the prime
factors. and uses that information to compute “missing” and “spread”.

Whenever there are inaccuracies in computing the array sections. we mark the sections accord-
ingly. The measure of accuracy propagates further in the cost model. such that. when the prediction
expressions are evaluated. together with the performace figure we also provide a “confidence”™ mea-

sure for the prediction.
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missing stride missing

contiguous interval

lower bound upper bound

void computeNonContig(int icoef, int jcoef, int &missing, int &spread)
{

int n = (icoef+jcoef)*(icoef+jcoef);

int *a;

a = (int *)calloc(n+(icoef+jcoef), sizeof(int));

for(int i = 1; i <= icoef+jcoef; i++)
for(int j = 1; j <= icoef+jcoef; j++)
ali*icoef + jxjcoef] = 1;

int distElems = 0;
for(int i = n; i >=0; i--)
distElems += a[il;

missing = ((n - (icoef+jcoef) + 1 - distElems)/2);
int i = icoef+jcoef;
while(missing > 0)

if(afi++] == 0) { missing--; }

int firstContig = i;

missing = ((n - (icoef+jcoef) + 1 - distElems)/2);
spread = firstContig -(icoef+jcoef);

free(a);

Figure 3.9: Non-contiguous intervals: representation and calculation
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One dependence might span more than one reference to the same array. In this case. the array
section spanned by the dependence is the union of the array sections for each reference. Therefore
two more operations are defined on intervals. union and intersection. These operations are well
defined for the triplet notation. The number of distinct array elements spanned by a dependence is
then computed by summing the size of arrayv sections for all arrays referenced between the source

and the target of the dependence.

AS@) = >

distinct arrays r

U AR

all refs to r

Note that we must keep both the array sections for distinct arrays and for individual array
references. The sections for the arrays are used to compute the stack distances, while the array
sections for each reference are used to compute the number of dynamic references to a particular

location. This computation is described in the next section.

3.3.6 Stack Histogram

Once the array sections are computed for each dependence span in each partition. the data required
to compute the stack histogram is available. The stack histogram is composed of two sets of values.
the stack distances and the number of accesses at that particular stack distance. Both these sets of
-alues are computed symbolically. based on the array sections calculated in the previous section.

Each array reference contribution to a stack distance determined by its incoming dependences.
or is x if there are no incoming dependences. The number of accesses contributed by each array
reference is determined by the number of dynamic executions of the reference. The algorithm to
compute the stack histogram is shown in Figure 3.10.

For each partition of the iteration space we consider all the incoming dependences that are
valid in the partition. We compute. for each array reference in the loop body. the minimum on
the distinct number of array elements spanned by the incoming dependences. A. and we take
this minimum as the stack distance. If there is no incoming dependence. all the accesses for that
reference are “cold misses™. i.e.. happen at distance ~. To compute the number of accesses at each

distance. we compute how many times the statement that contains the reference is executed by
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Input:
A loop nest with the data dependence graph augmented with dependence spans
and with array sections computed for each dependence
The partitioned iteration space PartlS for the loop
Output:
The symbolic stack histogram S
Method:
foreach partition p € PartIS
foreach static array reference r in the loop body

_ Iming(.—lS(O')) if 30 s.t. target(d) = r and J is valid in p

L x otherwise.

let A

where AS(J) represents the number of distinct array elements in
the dependence span
S(A)+ = |p|- Since each array reference is accessed in each iteration point.
the size of the partition (the number of iteration points considered)
gives us the number of dynamic accesses to r.
end foreach
end foreach

Figure 3.10: Stack histogram computation algorithm

taking the product of the ranges of the loops enclosing the statement. where the loop index ranges
are given by the partition under consideration.

Once the stack histogram is computed symbolically. there are several approaches that can be
taken to evaluate the expressions and estimate the number of cache misses. These approaches are

described in Section 5.1.

3.3.7 Example - Matrix Multiplication

In this section we work through an example of using dependence spans and array sections (their
projections) to compute the stack distances exactly. Figure 3.11 presents the Fortran code for our
example. as well as the data dependences labeled with the types and dependence distances for each
loop. and numbered in the order in which they are be presented in Table 3.2.

Table 3.2 shows for each dependence the dependence span. the array sections spanned by the

dependence. and finally the stack distance that is computed for the dependence.
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Sl: doi=1.n

S2: doj=1.n

S3: C(i.j) =0

S dok=1.n

S5: C(i.j) = C(i.j) + A(i.k) * B(k.)
S6: end do

ST: end do

S8: end do

(a) Fortran code

a
#1 #8
0(0.0.1) [(0.0.D) [(0.1.0) [(1.0.0)

(b) Data dependences

Figure 3.11: Matrix multiplication example.
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To show how the algorithm works. consider dependence #7. the input dependence on reference
A(i k) carried by loop j. In the first two columns in Table 3.2. the dependence span is shown
both graphically and geometrically. Because the dependence is carried by loop j with distance 1.
the dependence span consists of the remainder of the iterations in loop A in iteration j and the
iterations up to iteration A in iteration j + 1. The array elements accessed in these iterations are
shown in the next three columns. For A. these elements are an entire row of the matrix. elements
from k to n on row ! for iteration j and elements from 1 to A on row i for iteration j + 1. The total
number of distinct elements accessed in array A is n. Considering the array B. again there are a
total of n distinct array elements accessed. distributed on two columns of the matrix. j and j + 1.
And finally. there are only two elements accessed in array C. C(i.j) and C(i.j + 1). Thus. the
number of distinct array elements spanned by this dependence is 2n + 2. The number of distinct
array elements spanned by the other dependences is computed similarly.

When the stack histograin is computed. since this dependence is the only incoming dependence
on array reference A(i.k). there will n? references at distance x. which occur in the first iteration
of loop j in each iteration of loop i. The other n3 — n? references to A(i. k) will happen at distance

2n <2

-

3.3.8 Spatial Locality

[n the previous discussion we considered the cache lines to be of only one array element. In order to
compute the stack histogram for real cache line sizes. we need to determine the number of distinct
cache lines that are spanned by a dependence. Since we already computed the number of distinct
array elements spanned by a dependence. we just have to translate that number into cache lines.
In other words. we need to determine the cache lines layout for the array sections.

Figure 3.12 shows an example. Assuming a two dimensional array . with MM AX x NV AX
elements. we show the potential mapping of cache lines in column major order (such as Fortran).
Also. assume that some dependence spans the M x NV array section shown as a shaded region in
the figure.

MMAX

We compute LDA = [_LS—_] . the number of cache lines that cover one column of the

matrix, where LS is the size of the cache line expressed in number of array elements. The number
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MMAX

NMAX

A
\

Figure 3.12: Cache lines mapping on an array section

of cache lines covering an array section with dimensions M and .V is given by the equation:

v
: » A% M 4 set
DL:Z[(L < LDA)Y%LS + [*offse} (3.6)

LS

1=1

where of fset = 0 if the first element of the array maps at the beginning of a cache line.

The stack histogram is computed using the same algorithm presented in Section 3.3.6. except
that instead of computing the number of distinct array elements accessed. we compute the number
of distinct cache lines accessed. That is. the array section area AS is returned in terms of cache
lines. Of course. the expressions denoting both stack distances and array references will contain
a symbolic variable for the cache line size. This symbolic variable is treated like all the other

hardware parameters that are used in the performance expressions.

3.3.9 Associativity

It has been previously shown [63. 35] that set-associative miss ratios can be closely estimated from
the fully-associative miss-ratio. The compile-time stack distances algorithm estimates the number
of misses for fully-associative LRU caches. Therefore, in order to estimate the number of misses for
a real machine. the number of misses for a set associative cache are deduced. using a probabilistic

argument, from the number of misses for fully associative cache. For details. see {35] Section V.B.
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3.4 Indirect Accesses Model

When not enough compile-time information is available to compute the data dependence distance
vectors. other methods are required to estimate the number of cache misses since the stack distance
algorithm cannot be applied. The most common case in which the compiler fails to compute data
dependences is when indirect array accesses are present (the subscript of the array is a reference to
another array). Therefore. we call the model that is used in the presence of indirect array accesses.
the indirect uccesses model. This model can be applied to any array references in a loop nest.
however. it usually overestimates the number of array elements accessed.

The main idea behind this model is to estimate the number of array elements accessed by
computing the number of iterations that access the array. i.e.. the total number of references to
the array. similar to the work of Porterfield [52] and Ferrante et al. {27]. We limit this number
by the size of the array. since it is obvious that there can not be more distinct array elements
accessed than there are elements in the array. One can contrive examples in which this estimation
will approximate very badly the actual behavior. but in most cases encountered in practice. the
method approximates quite well the measured data. We know of no other method that estimates
the number of cache misses at compile-time in the presence of indirect accesses.

Using this method. the number of cache misses for level ¢ in the memory hierarchy. 3/, in

Equation 3.3. is computed as follows:

min(refs,.sizey) x elemSizey
M, = : - .
f Z BlockSize;

(3.7)
distinct A
where. refs. represents the number of references to array A. sizey represents the number of
elements in array A (since we use Fortran 77. the size of the arrays is known at compile-time). and
elemSize, is the size. in bytes. of one element of the array A. The element size dependes on the
declared data type of array A. BlockSize; is the size of the cache line for level i of the memory
hierarchy.
For example. consider the code in Figure 3.13. It implements a sparse matrix-vector multipli-
cation operation. and it is taken from the Splib package [9]. a library of sparse functions developed

at Indiana University. The loop multiplies the matrix A, stored in compressed sparse row storage.

Uy
(31
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L1 doi=1.m

S1 Y(i) = 0.0d0
L2 do k = ia(i). ia(i+1)-1
S2 Y(i) = Y(i) + A(k) * X(ja(k))
end do
end do

Figure 3.13: Sparse matrix vector multiplication

with the dense vector .X. and stores the result in the vector Y. The vectors ia and ja store the row
and column indices in the matrix 4. respectively. Since ia and ja depend on the input data set
(matrix). inany of the accesses to array .Y in statement S2 can map to the same element. depending
on the value of the array element ja(k). The best we can do at compile time is to approximate the
number of references to .X by the minimum between the number of iterations of the loop and the
size of the vector .X. which is known to be equal to the column size of A.

Obviously. in this case. not even the number of iterations is known at compile time. However.
by using profiling information we can estimate it. In fact. the follwing code shows how Polaris

generates instrumentation to collect the profiling information needed.

REAL*8 a(*), x(n), y(m)
INTEGER ia(x), ja(*)

_delphi_cm = 0
-delphi_count_x = 0
D0i=1,m 1

y(i) = 0.0DO

DO k = ia(i), ia(i+1)-1, 1

y(i) = y(@i)+a(k)*x(ja(k))

ENDDQ

_delphi_count_x = _delphi_count_x+(ia(1+i)+(-ia(i)))

—delphi_cm = _delphi_cm+(8+(-12)*ia(i)+12*ia(1+i))
ENDDO
_delphi_cm = _delphi_cm+MIN(_delphi_count_x, n)*8
_delphi_cm = _delphi_cm+8+*m
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3.5 Summary

In this chapter we have presented compile-time models to estimate the performance of scientific
codes. An overall performance prediction model for a computing system is decomposed into parts
that model the CPU. the memory hierarchy. the [/O system and inter-processor communication.
The common representation of the performance data as symbolic expressions. with variables for
program constructs. input data set. and architecture. allows for machine independent performance
estimation at different program granuiarities.

A model for processor execution time estimation was presented. [t counts operations in the high
level language code and applies compile-time heuristics to model low-level compiler optimizations.
The processor architecture is abstracted by providing variables for groups of basic operations.

The bulk of the chapter discusses the modeling of the memory hierarchy. A precise model of
cache behavior based on stack distances is developed. and a compile-time algorithmn to compute
the stack distances is given. The stack distances compile-time algorithm depends on the ability of
the compiler’s data dependence test to extract distance vectors information. In Polaris we use the
Omega test [33] for this purpose. The Omega test is able to extract the data dependence distance
information for more than 753% of the loops in SPECtp953.

For the cases where dependence information is not available. such as sparse computations with
indirect array accesses. a simpler model is presented. This model estimates the number of cache
lines accessed in the loop using very simple heuristics. Experimental results with both models are

presented in Chapter 6.

w
~]
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Chapter 4

Stack Distance and Stack Algorithms

In this chapter we present our experience with the stack processing algorithm to quantify program
locality. We start by presenting a new metric for data locality. the stack histogram. We then
discuss several ways to improve the performance of the LRU stack processing algorithms. when

used to process memory traces.

4.1 The Stack Distance as a Metric for Locality

“There are three most important factors in writing programs. either sequential or par-

allel: locality. locality. locality.” [Michael Wolfe. personal communication]

Programs with good data locality take better advantage of the caches. have low communication
costs and low interconnection network traffic. There are many companies that will hire highly
skilled programmers just to have them tune their most important codes to run well on a specific
architecture. But. in today’s rapidly changing landscape. machines become obsolete very soon. and
the programmers keep changing applications to suit the new evolving architectures.

There is one most important characteristic we are looking for in a model for data locality -
architecture independence. We would like to specify what is the locality of a program on existing
machines as well as on future architectures. We consider that a good theoretical model should be
abstract. to hide the details that would make it too complex). and general. to be applicable to a
large variety of programs and systems.

The model we propose is based on the “stack processing” method developed by Mattson et

al. [43] to evaluate the cost-performance of page replacement algorithms in virtual memory sys-
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Variable || Program 1 | Program 2
a 2 2
b 2 2
c 9 15
Average 4.33 6.33

Table 1.1: Inter-reference distances and averages for memory references in Programs 1 and 2

tems. Their technique. for a particular page replacement algorithm (such as Least Recently Used).
comiputes a success function. based on the frequencies of accesses at different stack distances. in a
single pass through the memory trace. The stack distances are computed by maintaining a list of
pages in an LRU stack. and measuring a distance on this stack for every page reference.

Our model for data locality also maintains an LRU stack. but the resolution is either at memory
location level for temporal locality. or at cache line level for spatial locality. The model can be
easily extended to handle multiprocessor codes by maintaining a separate stack for each processor.

Lilja et al. [42] propose the inter-reference distance as a model for locality. They define the
inter-reference distance as the number of memory references that occur between two references to
the same memory location. They claim that the inter-reference distance can be used as a measure
for the temporal locality of the variable. and that the average of all the inter-reference distances
for all the variables in the program can be used as a measure of temporal locality that exist within
a program.

Consider the following example of memory traces generated by two different programs:

Program 1: cababababc
Program 2: cabababababababc

Inter-reference distances and their averages are shown in Table 4.1. We note that the inter-
reference distance averages differ for the two programs. leading us to believe that the first program
has better temporal locality than the first one.

This is actually not true. since both programs have the same working set. and in fact there
is more reuse in the second program, as proven by the stack distances algorithm (see Table 4.2)..
which gives the same distances for both programs. but more references to distance 2.

Although one can reason about locality using the stack histogram. if a single number that

defines the locality of the program is desired. we can compute the average locality based on the
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Program 1 Program 2

Stack Distances | # References || Stack Distances | # References
x 3 x | 3
2 6 2 ' 12
3 1 3 | 1 '

Table 4.2: Stack distances and number of references in Programs 1 and 2

histogram as follows:

AvgLoc =

where s(0) is the number of accesses at stack distance J. and § are the stack distances for which
s(d) > 0. The lower the value of ArgLoc. the better the locality of the program.

As an example. consider matrix multiplication. It is well known that tiling improves locality in
matrix multiplication [75. 17]. In Figure 1.2 we present the stack histograms for a 100x100 matrix
multiplication. and two versions of tiled matrix multiplication loops: the one in Figure 1.2(b) has
the two outermost loops tiled with tile size 23. and the one in Figure 4.2(c) has all three loops tiled.
tile size being also 25. The codes for these loops are shown in Figures 4.1(a-c).

In Table 4.3. we show how the two metrics for locality. the inter-reference distance and the stack
distance compare for matrix multiplication and its tiled versions. For each metric. we consider the
three versions of the matrix multiplication loop. the classical ijk loop. the outermost (ij) loops
tiled (2-tiled) and all three loops tiled (3-tiled). We consider both temporal and spatial locality.
For spatial locality. two values are given. for cache line sizes (CLS) of 32 bytes and 128 bytes.
These correspond to 4 and 16 array elements per cache line and are among the most commonly
used values for the cache lines in L1 and L2 caches. respectively.

We note that. for temporal locality. there is no difference between the 2-tiled loops and the
classical loop when using the inter-reference distance metric. Another anomaly of the inter-reference
distance metric can be observed for spatial locality between the 2-tiled and 3-tiled loops. The
locality metric increases when the locality improves. These anomalies are a consequence of the fact
that the inter-reference distance metric considers all the references between two accesses to the

same memory location. not just references to new memory locations. Moreover. when averaged
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c(i, j) = c(i, j) + a(i, k) * b(k, j)

(a) Matrix multiplication

do ii = 1, n, TILE
do jj =1, n, TILE
do i = ii, MIN(ii+TILE-1, n)
do j = jj, MIN(jj+TILE-1, n)
dok=1,n
c(i, j) = c(i, j) + a(i, k) * b(k, j)
enddo
enddo
enddo
enddo
enddo

(b) 2-tiled matrix multiplication

do ii = 1, n, TILE
do kk = 1, n, TILE
do jj 1, n, TILE
do j = jj, MIN(jj+TILE~-1, n)
o k = kk, min(kk+TILE-1, n)
do i = ii, MIN(ii+TILE-1, n), 1
c(i, j) =c(i, j) + a(di, k) * b(k, j)
enddo
enddo
enddo
enddo
enddo
enddo

n

o .

(c) 3-tiled matrix multiplication

Figure 4.1: Fortran code for tiled matrix multiplication
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Metric Locality Classical MM 2-tiled 3-tiled
Inter-reference Tem?oral 101.005 ;| 101.005 ‘91.~f6‘2
Distance Spatial (CLS = 32) 2650.007 | 2650.007 | 2668.749

Spatial (CLS = 128) 886.009 | 859.009 | 8€8.798
Stack Temporal 2619.890 | 886.451 | 367.794
Distances Spatial (CLS = 32) 221.146 93.087 30.219
Spatial (CLS = 128) 16.971 36.014 6.026

Table 4.3: Temporal locality for matrix multiplication

over all variables. the variables with bad locality. even if accessed only a few times. contribute the
same weight as good locality variables.

On the other hand. the stack distances metric does not suffer from these anomalies. The stack
processing algorithm makes sure that only accesses to new memory locations or in a position below
a memory location in the stack modify the stack distance of that location. Thus. the stack distance
metric behaves as expected - when program locality increases. the value of the average locality

decreases.

4.2 LRU Stack Processing Algorithms

This section describes our experience using the stack processing algorithm [43] for estimating the
number of cache misses in scientific programs. By using a new data structure. and various optimiza-
tion techniques. we obtain instrumented run-times within 50 to 100 times the original optimized
run-times of our benchmarks.

The stack algorithm [43] was originally designed for modeling virtual paging. i.e. to operate on
a program trace consisting of virtual page references. but in the recent past has been used mainly
to model cache behavior. by tracing cache line references [65. 67. 35. 70].

The main advantage of the stack algorithm in simulating cache behavior is that it allows the
estimation of the number of misses for caches of any size in a single pass through the trace. Variants
of the algorithm have been used to simulate caches of multiple line sizes.

The stack algorithm is however very expensive to run. especially if the stack becomes large
enough. [t was soon recognized that more efficient data structures were needed to do the job of

the stack search. Bennett and Kruskal [6] presented an algorithm which replaces the stack with
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a preallocated hierarchy of partial sums. Hill and Smith {35] used a forest of trees to simulate
multiple cache associativities: Sugumar and Abraham [65] used a generalized binomial tree for the
same purpose.

Seeking to further improve the performance of the stack algorithm. we introduce two new data
structures and corresponding algorithms. each of which is more suitable for a particular kind of
application. The interval tree approach works well for programs with long traces but relatively good
locality. whereas the preallocated tree approach is more suited to shorter traces with bad locality.

Figure 1.3 gives a formal three-step description of the LRU stack algorithm. as first described
by Mattson in [43]. We use this description as the basis for the algorithms we present.

[t is assumed henceforth that the algorithm is operating on a memory trace of length .V that
contains M distinct memory references (obviously M < V). For the notations used in this chapter

refer to Section 1.2.9.

iRepeat the following steps for each memory reference r.. 0 < r < .V:

|
! e search: find the location in the stack of the most recent reference to the current location.
|

. e count: compute dist(7). the stack distance for the current location. by finding the previous
| reference to the current location and counting the number of elements on the stack above
it. If the most recent reference is not found. dist(7) is defined as x.

e update: bring the most recent reference to the top of the stack.

Figure 4.3: Stack algorithm

4.2.1 Naive Implementation

This implementation directly follows the algorithm presented above. The stack is represented as a
doubly linked list. For each reference in the trace. the first two operations (search and count) are
executed simultaneously by traversing the stack top to bottom. If the element exists in the stack.
its distance from the top of the stack is recorded. Finally the element is moved from its current
position to the top of the stack - the update stage. If the element is not found. > is recorded as

its stack distance and the element is pushed on top of the stack.

Analysis For each reference in the trace the work done is. in the worst case. M (due to the

traversal of the linked list). The total complexity is thus O(VM).
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The worst case doesn't happen very often. In fact. many programs exhibit excellent locality.
causing many references to lie close to the top of the stack. Unfortunately the few references that

are near the bottom of the stack cause huge slow-downs. resulting in overall bad performance.

4.2.2 Markers Algorithm

The major cause of slowness in the naive algorithm is the linear traversal of the linked list that
makes up the stack. The markers algorithm attempts to replace linear search wherever possible.

The search phase of the markers algorithm is done using a hash table that associates a cache
line/memory/page reference with its current place in the linked list. Given enough hash buckets.
hashtable access and update are O(1) operations. The number of necessarv hash buckets can be
approximated with M. the number of distinct references in the trace.

Unfortunately finding an element in the middle of the stack by using the hashtable is not enough.
The stack depth of the element needs to be counted. To avoid traversing the stack from top to
Lottom. a set of markers are interspersed in the linear list implementing the stack. one about every
D elements. The markers form another doubly linked list. and each marker records its distance
from the top. To find out the depth of a memory reference in the stack. one needs to find the
nearest marker by traversing the stack (a marker would be at most D steps away) and then look
up the marker’s distance from the top.

When an element is removed from the stack and inserted at the top. the markers between the

top and the element need to be updated. This involves at most M/D steps.

Analysis The cost per memory reference of this algorithm is at most D + M/D (the cost of
finding a marker. plus the cost of updating all markers up to the beginning of the stack). D can
be varied at runtime by adding or removing markers. in order to minimize the cost: assuming D

= [V/M]. the cost evaluates to O(v/M) per element. or O(N * VM) total.

4.2.3 Alternative Data Structures

The major stumbling block in implementing more efficient versions of the LRU stack algorithm is
the implementation of the stack as a linear list. We will present a formulation of the LRU stack

algorithm that does not use a stack. We will closely follow Bennett and Kruskal's [6] notation.
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Definition 1. We formalize the concept of the hashtable P. which we already used informally in
the markers algorithm. Let us define J as the set of indices of references to = that occurred before

an index 7 in the trace:

J-={il0<i<TAIL ==z}

Using J we define the hashtable P as follows:

mar{ijie J} if T #0
P-(z) = (4.1)
unde fined otherwise

P-(z) is undefined when a cold miss occurs. i.e. when there is no previous reference to :.

Definition 2. Next we define B. a mapping from the trace indices 0....V - | to {0.1}. Like P.

B changes with time and therefore is subscripted with . B-(i) is defined as follows:

Il ifP-(r;)=1¢
B‘(l) = (-1.2)

0 otherwise

B-(i) is I if at time 7 there is no reference to r; in the program trace at any index larger than

Definition 3. Given P and B we can define dist(r). the stack distance of the element r- in the

program trace: it is the number of 1's in B between the last reference to r, and r.

|H| if P-(z-) is defined
dist(t) = (4.3)
x  otherwise

where H is the set of trace indices after P-(z;) whose B values are 1:

H={i|P(z;) <i<TAB(i) =1}
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Repeat for each reference z,. 0 < 7 < N
¢ search: compute P-(r;):
¢ count: evaluate dist(7). If P-(r) is undefined then dist(r) is defined as x:

¢ update: change B and P as follows:

fi=r
ifi =P-(z;)

1
B.(:) otherwise

~

if : = :
P-.(z) = . i
P.(z) otherwise I

Figure 4.-4: Modified stack algorithm

We can now reformulate the stack algorithm by using P and B instead of the stack.

4.2.4 Bennett and Kruskal’s Algorithm

We present Bennett and Kruskal's algorithm [6] first because it introduces ideas we need later.
The algorithm represents P and B explicitly. The first step of the algorithm. evaluating P(.r-).
is a hash table lookup.
The count step of the algorithm counts the number of true values in B between the indices
P(r-) and 7. To make the counting step efficient. Bennett and Kruskal use a hierarchy of partial
sums B.B2...BL. where L = [log(N)]. Renaming B to B". the partial sum hierarchy is set up

such that for some chosen interval m. at any time 7.

i=(j+1)m-1
B.(j)= Y. B ')
i=jm

This formula describes an m-ary tree of nodes having the value of each node being equal to the
sum of the values of its children.

Calculating the number of 1's between the indices P(z-) and 7 is now a matter of traversing
the partial sum hierarchy. as shown in Figure 1.5. The figure presents the first 31 elements of a
trace. We trace the 31% access. and 31 last occurred in position 4.

The third step. updating B, also becomes a matter of tree traversal. since all partial sums on
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dist=0+4+5=9

B5
B4
B3
B2
Bl
BO

t=31
dist=0+4+5=9

Figure 1.5: A partial sum hierarchy

the path from the root of the hierarchy to the leaf node are affected.

The algorithm needs two traversals of the tree. The first traversal. from the root to index P(r-).
deletes P(r-) as the last reference to r by setting B(P(r-)) value to 0 and adjusting all partial
sums along the path. The second traversal is from the root to index r and sets B(7) to l. again
adjusting partial sums on the path. For reasons of brevity we are not going to fully explain the
algorithm. except to mention that our major improvement. to be presented in the next sections.

replaces the two traversals with a single traversal of the tree.

Analysis Since the tree traversal is an O(log(/NV)) operation and the location finder works in
constant time (hashtable lookup is O(1)). the total execution time is O(NVlog(.N)). The memory
requirements of the algorithms are very large because B and its partial sums are represented

explicitly in memory.

4.2.5 Hole-based Algorithms

We define a hole as a memory reference in the program trace that is not the latest reference to a

particular location at time 7. Holes are thus elements in B, that have been set to 0.
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Whereas values of 1 in B (and corresponding latest references) are newly created and then
destroyed all the time. holes have the property of being created and never destroyed.

Using the concept of holes. the stack distance at index 7 can be expressed as
dist(t) = v —P.(r;) — holes-(P-(r;))

where holes; (i) is the number of holes in the program trace between indices { and . Here we are
in effect counting the 0's in B instead of counting the 1's. and adjusting Equation (4.3) to reflect
this.

Holes can be represented more efficiently than latest references. We will present two kinds of
algorithms based on holes. a variant in which holes are held by an interval tree and another which

is a faster version of Bennett and Kruskal's algorithm.

4.2.6 Interval Tree of Holes

An interval tree is used to efficiently represent an ordered set of mutually disjunct intervals [ =
{line. o). [ior. d20]. . .. [in1-in2]}. In our case the intervals in [ are all bounded by natural numbers
(indices in the program trace). The intervals represent contiguous sets of indices that are holes in
the trace.

Interval trees (Figure 4.6) are represented as a quasi-balanced binary trees BT (such as red-
black trees [18] or AVL trees [39]) in which each node n represents the closed interval [k} (n). ka(n)].
The tree ordering corresponds to the order of the intervals in I: thus &;(n) > k2(left(n)) and

ka(n) < ky(right(n)). where left(n) and right(n) are respectively the left and right children of n.

The Partial Sum Hierarchy

We use the interval tree to evaluate the number of holes between P(z:) and 7. There are no holes
beyond the current index 7 (a logical impossibility considering the definition of a hole). Thus we
are left with counting the number of holes at indices larger than P(z:). To do this. we follow
Bennett and Kruskal's method and associate a value sum(n) with each interval node n. to hold
the sum of holes contained in the children of n. Our hole tree now becomes equivalent to Bennett

and Kruskal's partial sum hierarchy.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151-153

120-121 192-2010
8-20 140—145 180-188 2020-2300)
3-6 25-100 125-130 | | 160-178 | | 190-190 | | 2012-2014| | 2302-2303

Figure 1.6: An interval tree
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change to 25-101

Figure 4.7: Updating the tree of holes

A slight optimization is to make sum(n) hold the sum of holes in the right subtree of n instead
of n itself. I[n Figure 4.7 the shaded boxes contain partial sums of the right subtree of their
nodes. as indicated by the dashed arrows. This optimization reduces the number of right subtree
dereferentiations when the next target of the tree traversal is the left subtree (in Figure 4.7 the
nodes marked with (*) will not need to be dereferenced).

The counting algorithm works like this: we traverse the interval tree from the root towards the
leaf node closest to index : = P(z-). We carry a partial sum along the path. and add to it the sum

of holes in all subtrees encountered to the right of the path (i.e. having indices larger than i).

Updating the Interval Tree

We now extend the counting algorithm to include the third component of the LRU stack algorithm:
update. We need to update the tree structure as well as the partial sum hierarchy residing in it.

With regard to inserting a new hole p into the interval tree, there are several cases to consider:

¢ p may be adjacent to a single existing interval [k1, ko] in the tree.i.e. p=k; —1lorp =ka+1.
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In this case the interval is adjusted to include p.

e p may be adjacent to two intervals [k;.p — 1] and [p + 1. k3]. In this case the intervals are
fused into a single interval [k. k3] prompting the deletion of one of the nodes and the potential

re-balancing of the whole tree.

e p may not be adjacent to any intervals in BT. In this case a new node is created. to hold the

interval [p. p|. Again. the tree may need to be rebalanced.

The partial sum hierarchy is updated by changing the sum values of the nodes on the patch from
the root to the affected interval. Figure 4.7 illustrates the operation of counting holes and inserting
a new hole at location 101 in an example tree. Figure 1.8 lists the algorithm that performs this

operation.

Analysis The algorithm presented in Figure 1.7 is based on a quasi-balanced binary tree.
list(p.n) is a variant of the insertion operation for quasi-balanced binary trees. which makes it an
O(log( M) operation (the number of disjunct hole intervals. and thus nodes in the tree. is always

less than M+1). Thus the total execution time of the Binary Tree Hole Algorithm is O(.Nlog(.M)).

4.2.7 Preallocated Tree of Holes

A tree of holes can also be implemented as a preallocated fixed tree {B%. B!....B/°2(N1} like the
one of Bennett and Kruskal. Unfortunately the memory requirements for the whole tree get quickly
out of hand: for a program trace of length 23! (a realistic number for todays programs) we need to
allocate 1 +2 + 22+ ... + 230 = 231 _ | jocations.

The silver lining is that not all locations need to be of the same size. Elements of Byg. for
instance. need to hold only one bit: elements of B; need to be two bits each. and so on: the total
memory requirement is % x (230 +£2x 229 4 3 x 22 4| +31 x2%) = 536.87MB. which fits into the
virtual memory of most modern workstations. Also. the algorithm does not use all of this memory
at once. but rather progresses slowly through it as the trace is analyzed. This allows for huge

portions of the preallocated tree to reside in virtual storage.
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begin

end

function dist (n. p)

if (p i keyr(n) = 1) /* continue search left */
if (left(n) # nil)
return sum(n)+dist(left(n))
else /* can’t continue left - no nodes left */
left(n) := new interval (p.p)
sum(left(n)) := 0
return sum(n)
end if
else if (p > keya(n) + 1) /* continue search right */
if (right(n) # nil)
sum(n) := sum(n) + 1
return dist(right(n))
else /® can’t continue right - no nodes left */
right(n) := new interval (p.p)
sum(right(n)) := 0
return 0
end if
else if (p = key(n) — L AND p = keya(left(n)) + 1) /* merge left node */
keyi(n) := keyi(left(n))
remove_node(left(n))

rebalance(n)
return keys(n) — p + sum(n)

else if (p = key(n) - 1) /* add to node */
keyi(n) :==p

return Aeys(n) — p + sum(n)
else if (p = keya(n) + 1 AND p = key(right(n)) — 1) /* merge right node */
keya(n) := keya(right(n))
remove_node(le ft(n))
rebalance(n)
return sum(n)
else if (p = keya(n) + 1) /* add to node */
keya(n) :=p
return sum(n)
end if

Figure 4.8: Interval tree update
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Analysis Since the tree is preallocated. and has NV leaf nodes. tree traversal is now an O(log(NV))
operation rather than O(log(M)). which would seem to make this algorithm impractical. Also. the
tree needs to be allocated before the program is run. which means that the user has to guess .V.
However. once :V is calibrated. the algorithm becomes the fastest we tried so far. outperforming
Bennett and Kruskal's by a factor of up to 2:1. The reason for this is that only one tree traversal

is needed per element. as opposed to two for Bennett and Kruskal's algorithm.

4.2.8 Experimental Evaluation

We selected the Perfect Benchmarks [7] as our experimental base and instrumented them with a
source-to-source translator to generate a program trace. Rather than storing the program trace we
hooked up the analyzer to the instrumented benchmark directly. and generated the trace and the
histogram on the fly.

At first we used the naive implementation of the LRU stack algorithm. and experienced a drastic
slowdown. In an etfort to find better implementations of the LRU algorithm we experimented with

all algorithms described in this chapter.
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We ran our experiments on a 270MHz Ultrasparc Solaris machine. Table 4.4 summarizes the
results we obtained. Benchmarks are listed by name: the total number of references and the
maximum stack depth are included.

The algorithms we measured are the following:

orig is the runtime of the original non-instrumented benchmark.

¢ nul measures the trace generation overhead. but the stack processing part is not implemented.
We measured "nul” to find out how much the benchmarks are affected by just generating the

trace.

e B&K and pre are preallocated implementations of Bennett and Kruskal's. and the preallocated

tree hole based algorithm’s. respectively.
e avl and rb are interval tree implementations using AVL and red-black trees respectively.

e mrk is the markers algorithm. Many of the numbers are missing because we had to abort runs

that were taking too long.

We also show (Figure 4.9) the increase in execution time for all these benchmarks with respect
to the optimized execution time of the program. The three bars for each benchmark in Figure 4.9
depict. from left to right. the increase in execution time by adding instrumentation to collect the
program trace on the fly. the increase in execution time of our preallocated tree algorithm. and the
increase in execution time of our implementation of Bennett and Kruskal's algorithm.

We measured the relative overhead of the stack computation. Figure 4.10 breaks down the
total runtime of each benchmark into the time spent in the original benchmark. instrumentation
overhead (i.e. time spent generating the program trace). hash table lookup overhead and stack
computation overhead.

The interval tree based algorithms have better theoretical bounds than the preallocated tree
algorithms. O(Nlog(M)) versus O(Nlog(N)). There are several reasons why the preallocated

algorithms tend to yield better execution times in practice:

e The interval tree implementation severely stresses the memory bandwidth of the host pro-

cessor. For each element in the program trace the interval tree algorithm generates about
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3-log(Al) additional references while traversing the interval tree: in each tree node at least
one node key is accessed: in addition the node’s partial sum is accessed and one of the leaves

is dereferenced.

The value of M can be approximated with the measured maximum stack depth. which for
most of our algorithms vields an AVL tree height of around 20 to 23. resulting in up to 75
extra memory accesses per element in the memory trace. In the case of red-black trees the
uuutber of referetices is even highcr.

By comparison the preallocated tree implementation generates only log(.V) (or 2-log(.V). in
the case of Kruskal's algorithm) references. In practice we limited N to 23!, which means 31
memory references for each tree. In addition the preallocated tree is built such that adjacent
nodes at lower levels tend to be clustered into the same cache line. resulting in good spatial

locality.

o The interval tree implementation relies on dynamic memory allocation as the interval tree
shrinks and expands in the course of the process. We were able to gain up to 33% in execution

speed by writing our own memory allocators (this gain is included in the performance figures).

The better speed of the preallocated strategy comes. however. at the cost of extremely high
memory usage (about 600 MBytes of virtual memory for the preallocated tree) and a hard limit of
231 references in the memory trace. For a few of the benchmarks this limit is exceeded.

The interval tree implementation. if slower. has no inherent limitation with respect to the trace
size and delivers reasonable performance. We see it as a more useful tool on the whole. The AVL
tree is preferable to the red-black tree. since the higher reordering cost is clearly amortized by the
lower average tree height.

In conclusion. the preallocated implementation works better for programs with short traces. bad
locality and large cores (that is. large M and relatively small .V values). whereas the interval tree

implementation works better on long traces with good locality and small cores (larger .V. smaller

M values).
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4.2.9 Notations

This section enumerates and explains some of the symbols we used throughout this chapter.

e N: number of references in the program trace under consideration.

e A: number of distinct memory references in the program trace. In effect M is equal to the

size of the memory used by the program we are analyzing.

e 7 used as the current inder in the trace. As such. 0 < r < V. The stack algorithm
processes the program trace sequentially: 7 always denotes the current position processed by

the algorithm.
e r.: denotes the memory reference at index 7 in the program trace.

e P: a mapping from memory references to trace indices. Since P changes in time. it is normally

indexed with 7. the current index in the program trace.

e B: a mapping from trace indices to booleans. B-({) is set if at moment 7 the location

referenced at position i in the trace is the latest reference to its location.

e dist(r): the stack distance corresponding to the location referenced in position 7 in the trace.

This is the number we compute for each element in the trace.

e holes-(i): the number of holes in the program trace between indices { and 7 at moment r.

i < 7 by definition.

4.3 Summary

In this chapter we have presented a new metric for data locality based on the stack distances. We
have shown that the stack distance metric captures locality more precisely than the inter-reference
distance metric [42]. It is also applicable to any program granularity. as opposed to other metrics
proposed. such as the number of accesses in the inner-most loop [73. 72].

The second part of the chapter discussed a new algorithm for stack processing. The new

algorithm. using preallocated trees, improves over the best known stack algorithm [6] (which also
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uses preallocated data structures) by more than 30%. If the size of the trace is not know before
running the algorithm. the preallocated data structures are not the best choice. Therefore we
propose another scheme. based on the same algorithm. that uses AVL trees. The performance of
this scheme is only marginally worse than the previously best known algorithm using preallocated
trees. while using less memory for short traces. and giving the possibility to grow the data structures

as needed for long traces.
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Chapter 5

Polaris Performance Prediction
Framework

In this chapter we present the details of our implementation of the performance prediction frame-
work inside the Polaris source-to-source restructurer (Section 5.1). We also provide a description
of the interface between the performance prediction framework in Polaris and the SvPablo perfor-

mance visualization tool (Section 5.2).

5.1 The Polaris Framework

The Polaris performance prediction framework consists of a collection of classes that allow easy
implementation of models for loop based compile-time performance prediction. Its main use is
as a compiler pass that can be called whenever the need for performance prediction data occurs.
[t also provides support for profiling information collection and performance data reporting and
visualization.

The main design goals for the performance prediction framework are:

¢ modularity — we want to provide a basis for developing performance estimation modules.
A module can focus on a specific part of a computer system. such as CPU. memory. or [/O
system. and model that part at the desired level of detail. In previous chapters we have
presented algorithms that are implemented as three such modules: the CPU model. and two

memory models. the stack distances and the indirect accesses models.

e consistency — the framework contains abstract base classes for performance estimators. thus

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



guaranteeing that whenever a new module is developed it provides the necessary basic func-
tionality. consistent with the rest of the system. Since our prediction model for a computing
system consists of several models that estimate the behavior of different subsystems symboli-
cally. the symbolic expressions that represent the performance must be compatible with each

other. The base classes ensure this property.

e ease of use and maintenance - we designed the framework in such a way that one can
“unplug” a performance estimator module and “plug™ another one in place very easily. while

maintaining the code readability.

In the following discussion we assume that the reader is familiar with the Polaris internal represen-
tation [26]. Polaris is a source-to-source restructurer that parses Fortran 77 and outputs Fortran
with parallel directives for a large set of platforms. For more details on Polaris. see {8].

In Figure 3.1 we present the UML diagram of the classes contained in the framework. and Ta-
ble 5.1 details the functionality implemented by the methods. The PerformanceEstimator object
is the interface to the performance prediction module. This object can be instantiated either for a
Fortran program unit (subroutine or function). or for a particular statement in the program. and
to access it. we have added the get_perf_estimator method to both ProgramUnit and Statement
Polaris objects. A PerformanceEstimator object contains a collection of CostEstimator objects.
that is called to estimate the performance of a block of code. Each CostEstimator implements
a particular performance prediction model. as discussed in Chapter 3. The user registers the cost
estimators corresponding to the performance data desired before calling the estimateCost member
function on the PerformanceEstimator object.

For example. if performance data for the CPU execution time is needed for a loop. the following

code estimates it:

PerformanceEstimator *pe = loop->get_perf_estimator();
pe->registerCostEstimator(new OpsCostEstimator(loop, pgm));

pe->estimateCost();
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PerformanceEstimator CostEstimator

initialize() | estimateCost()
reset() | instrument()
finalize() getCounterExpr()
estimateCost() name()
getPredictionExpr() ‘re%t().

instrument() initialize()
genSymbolicCode() ﬁr?ahze()
registerCostEstimator() print()
unregisterCostEstimator() genSymbolicCode()

<>————»4¢ loop_pre_instrument()
loop_post_instrument()
routine_pre_instrument()

CostEstimatorsMap _costEstimators

Statement .' ~Stmt routine_post_instrument()
ProgramUnit * _pgm addToCost()
| |
K4
| |
: |
L
i I
OpsCostEstimator StackMemEstimator ! IndirectAccessesEstimator !
|
. |
computeProjections() getVisitedBytes() !
partitionlterationSpace() getIndirCounters() ]
computeHistogram() getAccessedBytes() |
DDgraph * _ddgraph
. StackHistogram _stack o
Expression * _costExprs{] IterationSpace itSpace EEmap _visitedRefs
DependenceSpaceList _deps ESmap _indirectAccesses

Figure 5.1: Polaris performance prediction framework
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Object Method Comment .

initialize initializes the data structures for the Per- |

formanceEstimator and its cost estimators

reset resets all the cost estimators ;

finalize frees all the allocated data structures in |

PerformanceEstimator the PerformanceEstimator and its cost es- |
timators

estimateCost estimates the cost by calling the estimate- '

Cost method on every registered cost esti- '

mator

getPredictionExpr returns the symbolic expressions denoting |

i the prediction ‘,
E instrument places instrumentation in the Fortran code {
; to evaluate the prediction expressions f
genSymbolicCode generates C++ code to evaluate the sym- :

bolic expressions as described in Sec-
tion 5.2

un/registerCostEstimator

registers and unregisters a cost estimator
with this PerformanceEstimator object

CostEstimator

initialize initializes the data structures for this
CostEstimartor ;

reset | resets the cost estimator :

finalize frees all the allocated data structures

name returns a unique name for the cost estima- |
tor |

estimateCost traverses the AST and generates cost ex-
pressions denoting performance

instrument places instrumentation in the Fortran code
to evaluate the prediction expressions

getCounterExpr returns the symbolic expressions for per-
formance

genSymbolicCode generates C++ code to evaluate the sym-

bolic expressions

loop_*_instrument

used by the instrument method to place in-
strumentation before and after estimated
loops

routine_*_instrument

used by the instrument method to place in-
strumentation before and after estimated
routines

addToCost

adds the cost expressions of the argument
to this estimator. Used to aggregate costs
for block statements

Table 5.1: Method functionality in the Polaris performance prediction framework
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Object Method Comment
partitionlterationSpace | partitions the iteration space of the loop as

StackMemEstimator described in Section 3.3.3
computeProjections computes the dependence spans and array |
sections (see Sections 3.3.4 and 3.3.3)
computeHistogram computes the stack histogram. as described
in Section 3.3.6 5
getVisitedBytes returns an expression denoting the number |
of bytes accessed by array references
IndirMemEstimator getIndirCounters returns the list of symbols that correspond to

indirect arrav accocgog
Indirect array accesses

getAccessedBytes returns the sum of all the bytes accessed by
arrays in a loop

Table 3.2: Method functionality for memory cost estimators

After the cost estimation is performed. the user can perform several tasks. depending where

and in what format the performance data is needed:

s inside the compiler - if performance data is needed to guide optimizations (or for any other
task at compile-time). the user can retrieve the performance symbolic expressions using the
getPredictionExpr() method on the PerformanceEstimator object. This method will

aggregate the cost expressions of all its registered cost estimators into one expression.

o run-time estimation and profiling information collection - the user can call the instrument ()
method to obtained an instrumented version of the code. The instrumentation consists of
statements to evaluate all the cost expressions in each cost estimator plus statements to collect
the performance data. The performance data is collected using calls to functions implemented

as a separate library [13].

¢ performance visualization and/or scalability analysis — in case the user wants to store the sym-
bolic expressions and evaluate them at a later time using different data sets. the
genSymbolicCode() method can be used. The method will generate C++ code that con-
tains the symbolic expressions. An example of how this code can be used for performance

visualization is presented in Section 5.2.

As we mentioned before. the PerformanceEstimator object can be created for a ProgramUnit

(an object that represents a function or a subroutine in Polaris) or for a statement. including block

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



statements. such as loop nests or if statements. The PerformanceEstimator object takes care of
aggregating the cost expressions for all the statements contained in the block.

Three cost estimators are provided. that implement the performance prediction models discussed
in Chapter 3. The OpsCostEstimator implements the processor model. The StackMemEstimator
implements the Stack Distances model. and the IndirectMemEstimator implements the Indirect

Accesses Model.

5.2 Integration with SvPablo

SvPablo [21] is a language independent performance analysis and visualization system. We have
used the SvPablo system together with Polaris as an example of the integration between perfor-
mance visualization tools and compilers. SvPablo is capable of instrumenting code. either interac-
tively or automatically. compile. run. collect and summarize performance data for the instrumented
statements. as well as displaying the correlation between performance data and the source code
in an easy and intuitive user interface. On the other hand. the Polaris performance prediction
framework can analyze and extract performance information at compile-time and represent this
information using symbolic expressions.

The “marriage™ between these two systems provides a very powerful integrated system for per-
formance tuning. One of the major drawbacks of running instrumented code to collect performance
information is that the instrumentation code perturbs compiler optimizations and cache behavior.
Having the performance information computed at compile-time and stored as symbolic expressions
makes the instrumentation code no longer necessary. therefore. there will be no perturbations.
Also. the performance data is no longer collected for a unique data set. and thus. we enable other
analyses. such as scalability analysis and “what if” questions and answers. to be performed on the
code.

The key ideas that enable the integration are:

1. the architectural independence of the performance prediction model implemented in Polaris

(3]

. the symbolic representation of the performance data

3. the language independence and extensibility of SvPablo due to its SDDF meta-format [2]
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representation of performance information

Currently there are two modes in which Polaris and SvPablo interact. In the first mode. Polaris
analyzes the code and generates an instrumented program. such that. by running the instrumented
program the symbolic expressions that represent performance data are evaluated. The performance
data is summarized in an SDDF file. and SvPablo uses this file to relate the performance data to
the source code of the program.

The second mode ot integration 1s more invoived. In this scenario. Poiaris generates code.
separate from the analyzed program. to store the symbolic expressions representing performance
prediction data. The code can be compiled in a separate library for later use. We have chosen
C++ as the language in which to store the expressions. SvPablo will implement the user interface
part that makes calls to the library in order to estimate the performance for different machine
parameters and/or input data sets.

The class diagram shown in UML notation in Figure 5.2 is the interface to the symbolic expres-
sions library. Because of the separation of program data and machine parameters. there are two
class hierarchies in the diagram.

The first hierarchy. based on the class DelphiMachineDescription encapsulates architectural
specifications. For each processor/system configuration. an SDDF file with the machine specifica-
tion is provided. This file describes details such as processor clock frequency. number of functional
units. repeat rates and latencies of operations. issue width. etc. It also specifies the memory hi-
erarchy: how many levels of cache. the parameters for each cache level. such as: latency of a hit
and a miss. associativity. line size and total size. Being written in SDDF. it is extensible. to allow
for adding [/O specifications and interprocessor communication. A customized parser extracts the
specifications from the SDDF file and generates the machine description classes.

Two of the methods in the machine description class are getOpsCosts() and getCacheCosts().
An example of their usage is presented below. The method getOpsCosts() takes the estimated
number of operations. and combines the operations with their latencies and repeat rates to give
an estimated execution time. getCacheCosts() takes the number of estimated cache misses for
each level in the memory hierarchy, and returns the estimated time spent accessing the memory

hierarchy. Both these methods are used by the second class hierarchy to extract information about
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DelphiMachineDescription DelphiMDR10k

getOpsCosts()

getCacheCosts()
getNCacheLevels()

getCacheLineSize() <
e o o

getCacheSize()

getCacheAssoc()
getNIntegerUnits() DelphiMDUltra2i

getNFloatingUnits()

getNMemoryUnits
getIPC()

DelphiEvalAPPLU

DelphiEvalProgram

evalLoop()

getParams() —<

getLoopList() o o 0

DelphiEvalSWIM

Figure 5.2: Polaris performance prediction interface to SvPablo
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the machines.

double eval_CALC1_do100(DelphiParamlList &params, DelphiMachineDescription &md,
DelphiEvalProgram &evalPgm)
{
double result = 0.0;
DelphiParamList::const_iterator plter;
plter = params.find("N"); double n = (*plter).second;
plter = params.find("M"); double m = (*plter).second;

double opCosts[29];
for(int 1 = 0; i < 29; i++)
opCosts[i] = 0.0;

opCosts([1] = 1i+n;
opCosts[2] = 22#m#n;
opCosts[7] = 23*m=n;

opCosts (8] = m*n;
opCosts[18] = 14*m*n;
result += md.getOpsCosts(opCosts);

int nlabels = 27;
double =*labels = new double[nlabels];
double *refs = new double[nlabels];
double cacheMisses [MAX_CACHE_LEVELS];
for(int i = 0; i < md.getNCacheLevels(); i++) {
cacheMisses([i] = 0.0;
int _delphi_cls = md.getCacheLineSize(i);
labels[0] = 2; refs[0] = n/(_delphi_cls/8);
labels[i] = 0; refs[i] = 8+m+m/(_delphi_cls/8)+6/(_delphi_cls/8)+9*n+
n/(_delphi_cls/8)+7*n*m/(_delphi_cls/8);
labels({2] = 1; refs([2] = -2-4*n-3/(_delphi_cls/8)+m/(_delphi_cls/8)+
m-4*n*m/(_delphi_cls/8)-n/(_delphi_cls/8)+4*m*n;
labels(3] = 3; refs(3] = 1/(_delphi_cls/8);
labels[4] = 5; refs{4] = -1+m-n-1/(_delphi_cls/8)+m/(_delphi_cls/8)+m=*n
-n*m/(_delphi_cls/8);

labels[5] = 1+1/(_delphi_cls/8); refs[5] = 4*m#n;
labels[6] = 7; refs(6] = m*n-(n+n*m/(_delphi_cls/8));
labels[7] = 4+4/(_delphi_cls/8); refs[7] = 1;
labels[8] = 6; refs[8] = m*n-(n+n*m/(_delphi_cls/8));
labels[9] = 5+5/(_delphi_cls/8); refs[9] = 1;
labels([10] = 9+9/(_delphi_cls/8); refs[10] = m+2*m+*n;
labels(11] = 3+3/(_delphi_cls/8); refs[11] = n;
labels[12] = 6+6/(_delphi_cls/8); refs[12] = 1+m#*n;

labels[13] = 11+11/(_delphi_cls/8); refs([13] = -1+m;
labels[14] = 8+8/(_delphi_cls/8); refs[14] = m;
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labels[15] = 13+13/(_delphi_cls/8); refs[15]
labels[16] = 15+15/(_delphi_cls/8); refs[16] = -n+m*n;

labels[17] = 16+16/(_delphi_cls/8); refs[17] = -1-n-1/(_delphi_cls/8)+m=*n;
labels[18] = 18+2/(_delphi_cls/8)+17/(_delphi_cls/8); refs[18] = -1+m;
labels[19] = 35+4*m+m/(_delphi_cls/8); refs[19] = -1+n;

labels[20] = 17+17/(_delphi_cls/8); refs[20] = -1+m-n+m*n;

labels{21] = 26+4*m+m/(_delphi_cls/8); refs[21] = -m+m*n;

labels[22] = 25+m/(_delphi_cls/8)+4*m; refs[22] = m*n-1;

labels (23] = 28+4*m+m/(_delphi_cls/8); refs[23] = -m+m#*n;

labels([24] = 25+4*m+m/(_delphi_cls/8); refs[24] = -m+m*n;

labels (D8] = 24+m/(_delphi_zcls/Q)+5*m; refs{DE] = -2wm+demsn;
labels[26] = 25+4+*m+m/(_delphi_cls/8); refs{26] = -2*m-1+3*m*n;
for(int j = 0; j < nlabels; j++) {

if (labels[j] > md.getCacheSize(i) || labels(j]

cacheMisses([i] += refs([j];

-1l+m-n+m*n;

n
n
o
~

}
}
delete [] labels; delete [] refs;

result += md.getCacheCosts(cacheMisses);
return result;

The other class hierarchy. based on class DelphiEvalProgram represents performance data on
the program side. Polaris is used to generate a class for each analyzed program. For each loop nest
in the program. Polaris computes the symbolic expressions denoting the predicted performance.
and generates a function that can be used to compute the predicted execution time. provided the
symbolic parameters are given actual values.

Two methods stand out in the DelphiEvalProgram object. getParams takes a loop name and
returns the list of symbolic parameters that make up the prediction expressions. These parameters
have to receive values in order evaluate the expressions in a performance figure. The other method
is evalLoop. which. given a loop name. a list of parameters with the values filled in. and a machine
description. returns the predicted execution time of the loop with the specified parameters on a

given machine.
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5.3 Summary

In this chapter we have presented the Polaris performance prediction framework. The framework
enables access to compile-time performance prediction from inside the compiler. It also allows the
generation of instrumentation for collecting profiling information. We have also discussed how the
framework helps the integration between the compile-time data prediction module with the SvPablo

performance visualization tool.
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Chapter 6

Experimental Results

6.1 Experimental Setup

To evaluate the accuracy of the performance prediction models described in Chapter 3. we imple-
mented these models within the Polaris performance prediction framework. Since Polaris did not
have profiling information support. we have also implemented instrumentation passes to collect
profiling data. such as branch frequencies and loop bounds.

To conduct the experiments. two other instrumentation passes were added to Polaris. One is
used to collect values for the hardware counters. The other is used to measure execution time.
Both these passes can instrument a selected set of loop nests. procedures or entire programs. If a
procedure is selected. all the loop nests in the procedure are instrumented. The results are reported
for the selected program constructs.

To validate the compile-time estimation of the number of cache misses using the stack dis-
tances model. a run-time version of the stack distances algorithm was implemented. Currently. the
compile-time version of the algorithm works only intra nest. Therefore. when results are reported
for entire procedures. the run-time version of the stack distances algorithm was used.

Two systems. based on two different processors. were used to carry-out the experiments. The
first system. an Origin 200. consists of 4 MIPS R10000 processors running at 195 MHz. Each of
the processors is a superscalar processor capable of issuing 6 instructions per cycle and executing
4 of those. Instructions are issued out-of-order and retired in-order. Each processor has a 32KB
2-way set-associative L1 data cache. with a 32 bytes cache block. The L2 cache is 1 MB. 2-way

set-associative with a 128 bytes cache block. The L2 cache is unified, i.e., contains both instructions
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and data. The compiler used on this system is the MIPSpro 7.30 Fortran compiler. This system
was also used to collect hardware counters measurements.

The second system is a Sun Enterprise server. It has 4 UltraSparc [Ii processors running at
250 MHz. The UltraSparc processor is an in-order superscalar. capable of issuing and executing up
to 4 instructions per cycle. The caches on this processor are as follows: the L1 cache is a 16 KB
direct mapped data cache. with 32 bytes block size. The L2 cache is a 1 MB direct mapped unified
cache with 61 bytes block size. The compiler used on this system is the Sparc\Works 4.0 Fortran
compiler.

In the following sections. performance prediction of cache misses and execution time are pre-
sented. We derived the symbolic expressions representing performance data measured on the Ul-
traSparc. and we substituted the machine parameters for both the R10000 and the Ultrasparc to
obtain the performance numbers in these expressions. The machine parameters were taken from
the processors” manual {56. 66] and. when not available. determined using micro-benchmarks.

Two types of comparisons are made. First. for each memory hierarchy model. the cache miss
estimations are compared against hardware counters values on the R10000 processor. Then. the
memory model is combined with the CPU model to predict the execution time for both the R10000

and the UltraSparc.

6.2 Results

6.2.1 Cache Miss Prediction with the Indirect Accesses Model

To quantify the accuracy of the prediction model using the Indirect Accesses model we have chosen
SpLib [9]. a public domain implementation of several iterative methods for solving sparse linear
systems of equations. From this package. we have selected the loops nests that take the most time
when solving a sparse linear system using the stabilized bi-conjugate gradient algorithm with an
incomplete LU factorization preconditioner. It happens that these loops also satisfy the requirement

of having no I/O calls. The routines in which the nests are located are:

e BMUX - multiplies a sparse matrix with a vector using the dot product form. The sparse

matrix is stored in compressed sparse row (CSR) format;
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Figure 6.1: SpLib — L1 cache miss prediction for the small data set
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e SCALA - scales a sparse matrix stored in CSR to have certain properties. such as scaling each

column so that the diagonal entry is 1.0:
e UNSCALA - unscales a CSR matrix to reverse effects of SCALA:
¢ UNSCALX - unscales the solution vector at end of computations

e LUSOLT - performs a forward then backward solve for a modified sparse row (MSR) matrix

both stored in a single MSR data structure. The first loop nest (do1) performs the forward

solve. and the second loop nest (do2) performs the backward solve.

We ran the benchmark using two data sets:
e a small data set - a 1128 x 1128 sparse matrix with 13360 non-zero elements
e a large data set - a 20284 x 20284 sparse matrix with 152752 non-zero elements

Figures 6.1 and 6.2 show the predicted number of cache misses. using the indirect accesses
model. compared to measured cache misses for the L1 cache on the MIPS R10000 processor. The
actual number of misses is obtained using the hardware counters on this processor. Figure 6.1
shows the results for the small data set. while Figure 6.2 shows the results for the large data set.
We observe very little variation with the increase in the data set size. which shows that the model
handles quite well even large variations in the input data set.

The average prediction error for the cache miss estimation on the L1 cache is 10.60% (standard
deviation 11.62%) on the small data set. and 9.41% (standard deviation 11.25%) on the large data
set. which is quite good considering that we model a fully associative cache. and the caches for
the R10000 processor are two way set-associative. The L2 cache miss estimations are shown in
Figure 6.3. For the L2 cache we show only the large data set because the entire small data set of
the application fits in the 1 MB cache of the processor. Again. we see a good correlation between
the measured and predicted data. The average prediction error for the L2 cache is 12.65%. with

an 18.46% standard deviation.
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6.2.2 Execution Time Prediction with the Indirect Accesses Model

The next set of figures presents the execution time prediction for the same loops in the SpLib
package. The figures compare the measured execution time for each loop with the predicted execu-
tion time obtained by combining the CPU model with the Indirect Accesses memory model. Each
bar for the predicted execution time shows the breakdown into CPU predicted time and memory
predicted time. The memory predicted time includes prediction for both levels of cache.

[ : - $ | A
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wo sets of results are presented for t gures
6.4b show the predicted execution time compared to the measured execution time for unoptimized
codes on the MIPS R10000 and UltraSparc Ili processors. respectively. The compilers used are the
F77 MIPSpro 7.30 and SparcWorks 4.0. respectively. with the default levels of optimizations (i.e..
no -0 flag was used). We do not apply any of the optimization heuristics described in Section 3.1
in our prediction. The data set is the large data set described above.

We notice that the prediction is less accurate on the UltraSparc processor than on the R10000
(the average prediction error is 8.10% for the R10000 and 28.04% for the UltraSparc). There
are two reasons for underestimating the performance: first. the caches on the UltraSparc are direct
mapped. while our model predicts misses for fully associative caches. The second reason. is that the
SparcWorks compiler. without optimizations enabled. generates a large amount of redundant code
(register spills and redundant conversions from single to double precision) that is not taken into
account by our high level language model. The prediction accuracy improves when optimizations
are turned on. .

Figures 6.5a and 6.5b show the predicted execution time relative to the measured execution time
for optimized codes. The same compilers are used. this time with optimizations enabled by the

-02 flag. The prediction model also applies all the optimization heuristics discussed in Section 3.1.

The average prediction error is 16.32% for the R10000 and 17.81% for the UltraSparc.
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6.2.3 Cache Miss Prediction with the Stack Distances Model

In this section we present prediction results using the stack distances models. We compare the cache
misses obtained using the stack distances model to the number of actual cache misses obtained using
hardware counters on the MIPS R10000 processor.

In Figure 6.6 we look at the predicted versus measured number of cache misses for a Jacobi

relaxation code. shown below:

do j =2, n-1
do i =2, n-t
a(i,j) = (a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+*1))/4.0
enddo

enddo

Oun the r-axis is the problem size. increasing from 128 x 128 to 2048 x 2048. The prediction is
quite accurate. on both levels of cache. except for the largest size. where there are many conflict
misses in the L1 cache. The miss-prediction comes from the fact that we model a fully associative
caches. and the cache is only 2-way set-associative. On the bigger L2 cache the effect does not
occur until the matrix is much larger.

In the remainder of this section we look at loops from the SPECfp95 benchmark suite.

In Table 6.1 we present a summary of the number of loops analyzed and estimated by Polaris
for the SPEC{p95 benchmarks. For each benchmark. the first two columns are the total number
of loops present in the program and the number of loops that are “predictable”. i.e. do not
contain I/O operations. In parenthesis we show the percentage of the total execution time taken
by the measured loops in the column. The next columns show the distribution of the estimated
loops based on the amount of compile-time information available. “Full” means that Polaris was
able to compute the data dependence distance vectors for all array references in the loop. and
all the distances are constant. i.e.. these are loops containing uniformly generated dependences.

“Partial”. represents those loops for which all the dependence distances were computed. but some
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dependences have non-constant distances. For both these cases we can apply the stack distances
model to predict the number of cache misses. In the second case we assume that accesses take place
at the minimum distance. “Not available™ represents the case in which Polaris could not compute
the dependence distances for all the array references due to limitations of the Omega test. such as
subscripts of subscripts or non-affine subscripts. “Need profiling™ is the case in which the compiler

needs run-time data due to unknown branch frequencies.
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There are two important conclusions that can be drawn by looking at the data in Table 6.1.
First. most of the loops in this benchmark suite are analyzable by the compiler (86.59%). This
percentage includes both cases in which the stack distances algorithm can be applied. These loops
make-up. on average. about 74% of the total execution time of the benchmarks. This shows that our
method has quite a wide range of applicability. Second. most of the remaining loops. need profiling
information due to the presence of if statements within the loop body. The indirect accesses model
presented in this work can handle these loops.

One other observation is related to the dependence distances computed by Polaris. It turns out
that most accesses happen at very small distances. i.e.. one or two iterations of the loop carryving
the dependence. That means that our estimations will not be affected very much when the input
data size increases.

In Figures 6.7 and 6.8 we show the predicted cache misses for loops in the SWIM and TOMCATV
benchmarks. Each figure presents the predicted misses and the measured misses. again. using
hardware counters. Once more. we note that the prediction is very accurate for the L2 cache
(average prediction error 3.11% for SWIM and 3.18% for TOMCATV). but not so accurate for
the L1 cache (average prediction error 13.73% for SWIM and 18.62% for TOMCATYV). This is due
to the fact that we model a fully associative cache. and the relatively small L1 cache sees many
contlict misses on the bigger loops. such as CALC1 dol100 and CALC2 do200 in SWIM. and do60
and dol100 in TOMCATYV. Confirming this observation is the fact that the model predicts correctly
the number of misses in the bigger L2 cache.

Since the other benchmarks considered have a large number of loops. we summarize the cache
prediction for these benchmarks in Figure 6.9. The bar for each benchmark is obtained as follows:
for each loop considered. we estimate the number of cache misses for each cache level. and we
measure the actual number of cache misses using hardware counters. The misses for each loop
are multiplied by the number of executions of the loop in the program. and then added to obtain
the total number of predicted misses and the total number of actual misses. Then. the predicted
number of misses is divided by the actuai number of misses to obtain the prediction accuracy. Thus.
a value of 100% represents a perfect prediction.

For the benchmarks in Figure 6.9 the average prediction error is 27.41% for the L1 cache. with
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a standard deviation of 19.62%. The L2 cache prediction has an average error of 17.10%. with a
standard deviation of 29.49%. If we eliminate the APSI benchmark. for which the majority of the
loops have a very small number of misses (few hundreds). therefore the prediction error is relatively
large. the numbers become. 27.33% average prediction error for the L1 cache. with a standard
deviation of 21.50%. and 6.13% average prediction error with 5.86% standard deviation for the L2
cache. Again. the main reason behind the relatively high prediction error for the L1 cache is that
our model is for fully associative caches. and this cache is a small two-wav set associative. therefore

there are conflict misses that are not predicted by our model.
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6.2.4 Execution Time Prediction with the Stack Distances Model

In this section we present execution time prediction using a combination of the Stack Distances
Model and the CPU model. Since the Stack Distances Model currently handles loop nests only.
to obtain the results presented in Figure 6.10 we have used the following procedure: for each loop
nest we estimate the number of cache misses for both levels of cache using the Stack Distances
Model. Also. for each nest we estimate the CPU execution time using the model presented in
Section 3.1, The sywbolic prediction expressions are then evaiuated using the processor model for
both the MIPS R10000 and the UltraSparc IIi. thus obtaining a predicted execution time for each
nest. We multiply the predicted execution time with the number of times that the loop is executed
in the benchmark to obtain a predicted execution time for the benchmark. The right bar in each
group in Figure 6.10 represents this estimation for each of the SPEC{p95 benchmarks. The lower
part of the bar (gray) is the CPU estmation and the upper part (white) represents the memory
estimation. The left bar in each group is the measured time. Again. to obtain the execution time
for the benchmark. we measured each loop nest independently and multiplied its execution time
by the number of executions.

For most of the benchmarks the prediction is quite accurate. Exception makes HYDRO2D.
which has a 47% prediction error for the R10000 and 67% prediction error for the UltraSparc. We
suspected that the error comes from the fact that we predict the cache behavior for cold caches.
and in this benchmark there might be inter-nest reuse. Therefore. we measured the performance
using the run-time stack algorithm for the entire program. The prediction error dropped to 14%
for the R10000 and to 55% for the UltraSparc. We are currently studying the cause of the highe
prediction error on the UltraSparc.

Including HYDRO2D. the average compile-time prediction error is 34.67% (standard deviation

33.49%) for the MIPS R10000. and 18.83% (standard deviation 17.64%) for UltraSparc.
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6.3 Summary

In this chapter we have presented experimental results to validate our processor and memory
hierarchy models. We have looked at scientific Fortran codes from the SPEC{p95 benchmarks and
SpLib. a sparse linear algebra package. The Indirect Accesses model for the memory hierarchy
works quite well on the SpLib codes. with an average prediction error of less than 15%. When
combined with the processor model. the average prediction error over the most significant loops in
the program was beiow 20%. We consider these errors to be very reasonabile tor a static. architecture
independent performance predictor.

The Stack Distances model of the memory hierarchy is even more precise. The average predic-
tion error is about 17% for the small 2-way set-associative L1 cache of the R10000. and around 7%
for the larger L2 cache. When combined with the processor model. the average prediction error for

the SPECfp95 benchmarks is within 35% for the R10000 and within 20% for the UltraSparc.
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Chapter 7

Conclusions and Future Work

We started the work presented in this thesis because we thought we do not have enough knowledge
about the cache behavior of programs. nor precise enough methods to measure this behavior. much
less to predict it. Predicting program performance is a difficult task. Predicting performance
at compile-time is inherently more difficult because of all the unknowns. such as loop bounds.
branch frequencies. etc.. that have to be taken into consideration. In concluding this work. we
will not pretend to have completely solved this problem. However. this work can provide the
necessary foundation for performance tuning. from helping a compiler to select the best sequence
of optimizations. to helping the user visualize performance data and relate it back to the source code.
from enabling system evaluation of not yet available hardware. to comparative system evaluation
and scalability analysis.

Of course. the algorithms and tools presented in this thesis are not perfect and there is much
space for improvement. The bulk of the work is the compile-time prediction model. We have shown
that it is possible to predict performance. in an architecturally independent way. with reasonable
accuracy. In fact. when we started this project. we wanted to predict performance within 50% of
the actual execution time. It turns out that we do much better for a large fraction of the benchmark
programs. including the ones that contain sparse algebra routines. Still it will be interesting to see
how well the methods presented here do when they are employed to drive compiler optimization.
A flavor of this potential has been already shown when our method was used to automatically map
code for intelligent memory architectures [64]. We would like to see how the method can improve
compiler optimizations.

Apart from its uses. there are several areas in which the prediction model can be improved.
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especially if we want to use the same model for predicting parallel program performance. A better
superscalar processor model that takes into consideration operations dependences can be devel-
oped to improve the estimation of small loops. One could even consider using register allocation
and instruction scheduling hints. although that would restrict the generality of the model and its
compiler and machine independence.

Many other improvements can be performed on the cache model. Currently. the Stack Distances
model is applied to a loop if all the data dependences in the loop have known data dependence
distance vectors. We could relax this restriction and use a combination of the Indirect Accesses
model and the Stack Distances model. by estimating the foot-print using the Indirect Accesses model
for the references that do not have distance vectors computed. and substituting this estimation for
the accessed array section in the Stack Distances model. We will lose some of the accuracy given
by the Stack Distances model. but we will be able to analyze more loops. The combined model
will become even more important if we want to apply the Stack Distances model to estimate the
number of cache misses across loop nests. As McKinley and Temam have shown in [46. 47]. inter-
loop misses constitute an important fraction of the total cache misses in the SPEC and Perfect
Benchmarks. Another limitation of the Stack Distances model is due to the fact that it estimates
fully-associative caches. Since there are no fully-associative caches implemented in real hardware.
it would be interesting to explore the possibility of adapting the algorithm to model set-associative
caches. The stack algorithm has already been used to model set-associative caches. therefore is just
a matter of finding an appropriate representation for the set-associativity inside the compiler.

Other extensions to be considered are multiprocessor extensions. In fact. if the distribution of
the array onto processors is known at compile time. the compile-time algorithm presented in this
thesis can be easily extended to multiprocessors by intersecting the array section spanned by a
dependence with the array section mapped to the local memory of the processor. All the accesses
inside the array section mapped to the processor are local accesses. while the array elements accessed
outside the intersection are remote accesses. Using the array sections one can also compute the
false sharing. which is considered to be one of the factors making the caches in multiprocessors less
effective than in uniprocessors.

Another direction in which the Stack Distances model could be extended is integer codes and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



object-oriented programs. In this type of codes the bulk of the computation is no longer spent in
loops accessing arrays. so a different paradigm has to be used. However. the Stack Distances model
is not restricted to arrays.

To conclude. we have shown that the stack processing algorithms are a very powerful technique.
We used stack distances to quantify locality and we have designed and implemented a compile-time
algorithm that computes the stack histogram at compile-time. We have used the stack histogram
to predict program performance statically with very good accuracy. The most interesting feature
of our stack algorithm is that once the histogram is computed. the number of cache misses can
be estimated for any cache size. We do not know of any other method that does not require the
complete set of cache parameters to estimate misses. We have also presented a new algorithm for

stack processing. that is 30% faster than the best know algorithm on the suite of programs traced.
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