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Chapter 1

Introduction

1.1 M otivation

A m ajo r fraction  of th e  time taken to  develop  scientific app lica tions is sp en t in parabolization 

an d  perform ance tun ing . This fraction  is even larger if th e  app lica tion  is required to run  on 

several p la tfo rm s, because specific a rch itec tu ra l charac teris tics  m ay require different op tim iza tion  

techniques for best perform ance.

In o rd er to  reduce developm ent tim e we have seen, in recent years, a  con tinuous effort to im prove 

com pilers to  hand le  au tom atic  para lle lization  an d  op tim iza tion . However, providing the  com piler 

w ith  a  list of op tim iza tions and applying th ese  op tim iza tions blindly is no t enough. T he optim ized 

p rogram  m ay run  slower than  its unop tim ized  version. For exam ple, consider th e  loop in terchange 

o p tim iza tio n  for th e  following loop nest:

do j = 1, n 

do i  = 1, n

a( j )  = a(j)  + b ( j , i )  * c ( j )  

enddo 

enddo

A ssum ing th a t  th e  m atrix  b is sto red  in  co lum n m ajo r o rder, if we do n o t interchange, we can  

expect to  have a  cache miss every ite ra tio n , because b is no t accessed w ith  s tr id e  one. If we do

1
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app ly  the in terchange transfo rm ation , all th e  accesses a re  stride  one. therefore th e re  will be one 

cache miss every several iterations, depending  on th e  size of the cache line. However, in th e  non

interchanged version, th e  array  elem ents a an d  c can  be sto red  in registers for all th e  ite ra tio n s  of 

loop i .  therefore in th e  innerm ost s ta tem en t, th e re  will be only one load an d  two floating point 

operations, an  ad d  a n d  a m ultiply. If we in terchange, we need two e x tra  loads and  one s to re  for 

each itera tion  of th e  inner loop. T hus, depend ing  on  th e  cache miss penalty , com bined w ith  the 

num ber of functional u n its  in the processor, in th is  case floating point un its  and  lo ad /s to re  units, 

th e  loop interchange op tim iza tion  m ay ac tua lly  h u rt th e  perform ance, even though  it reduces the 

num ber of cache m isses in the  loop.

T he work p resen ted  in this d issertation  is d irec ted  tow ards helping com pilers do a  b e tte r  job  

in optim izations. By construc ting  a  perform ance p red ic tio n  model inside th e  com piler, we provide 

com piler w riters w ith  a  non-em piric tool th a t  will allow  them  to select th e  o rd er in which the 

com piler applies o p tim iza tio n s to  m axim ize perfo rm ance.

T he same perfo rm ance model is used in th e  D elphi system  [57] to s ta tica lly  predict perform ance. 

In the  Delphi p ro jec t, th e  goal is to  create  an in teg ra te d  environm ent in which a user can develop, 

com pile and tu n e  th e  perform ance of app lica tions in  an  efficient and tran sp a ren t m anner. Delphi 

in tegrates com pilers w ith  perform ance tu n in g  an d  perform ance visualization  tools. T h e  s ta tic  

predictions presen ted  in th is thesis have been used as p a r t  of this project.

We propose to  include the  perform ance p red ic tio n  m odel inside the  com piler. T he perform ance 

m odel consists o f sym bolic expressions w ith  te rm s th a t  account for the  p rogram  co n stru c ts , the 

d a ta  set and the  a rch itec tu re . In the ideal case, in w hich all the  loop boim ds an d  branch  frequencies 

in the  program  are  know n a t compile tim e, th e  com p iler can generate these expressions w ithou t 

using profiling in fo rm atio n  or user in terventions. However, if profiling in fo rm ation  is necessary, 

we have provided th e  necessary hooks so th a t  th e  profiling  inform ation can  be collected an d  used 

by th e  perform ance m odels. The advantages of u sing  a  sym bolic perform ance p red ic tion  m odel 

a re  detailed in C h a p te r  3. Here we enum erate  ju s t  a  few. F irst, not all in fo rm ation  is available 

statically , a t com pile tim e. W henever th e  com piler encoun ters  an  unknow n value, it can  use its 

sym bolic rep resen ta tio n  to  continue build ing th e  m odel. If, in the end th e  value is still no t resolved, 

th e  com piler could e ith e r  use profiling d a ta , o r s im p ly  provide the perform ance in fo rm ation  using

2
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th e  sym bolic expression. The sym bolic expression can be used e ith e r for run-tim e decisions or 

for sca lab ility  analysis. Also, by using sym bolic expression th e  com piler avoids m agnifying the  

p red ic tion  e rro r o f com pounding estim ates  (th e  usual m eth o d  em ployed in m ost of th e  prediction 

system s), since no approxim ations are m ade a t any  in term ed ia te  s tep . O f course one m ust pay for 

all these benefits. T h e  costs are the  need o f a  m ore com plex com piler th a t  includes an  accu ra te  

sym bolic expression m anipulator as well as a  slight increase in com pila tion  tim e due to  th e  sym bolic 

m an ipu lation . T h e  sym bolic expression m a n ip u la to r  m ust perform  sim plification and  com parison 

of algebraic expressions.

Figure 1 . 1 . shows th e  architecture of an  in teg ra ted  com pilation  an d  perform ance tu n in g  system  

bu ilt around  a  s ta tic  perform ance p red ic tion  m odel. In th is  env ironm en t, the com piler analyzes 

th e  source code an d  synthesizes sym bolic expressions represen ting  perform ance d a ta . T here are 

several p a th s  th a t  can  be taken to  o b ta in  an  optim ized program . T h e  first p a th , represen ting  the 

th e  ideal case, is show n w ith a thicker line. In  th is case the com piler is ab le  to com pletely analyze 

th e  program , th e re  are no unknown p aram ete rs  in th e  perform ance expressions, and  based on these, 

th e  com piler can  decide which op tim iza tions to  apply.

O f course, th e  ideal case does not occu r very frequently in p ractice, therefore a second path , 

using profiling in fo rm ation  (shown w ith a  dash ed  line) is provided. In th is scenario, th e  perform ance 

pred ic tion  m odule uses available profiling in form ation, such its tru e  and  false branch frequencies, 

or th e  n um ber o f ite ra tio n s  of a loop. B ranch  frequencies could be es tim ated  a t com pile tim e [4]. 

however, in th is w ork we have chosen to  use profiling inform ation  because it is m ore accu ra te . The 

th ird  p a th  represen ts th e  case when profiling d a ta  is not available, an d  th e  system  can  be set up 

to  collect such in fo rm ation  and use it. In th is  scenario, th e  com piler analyzes the  code, an d  it also 

places in s tru m en ta tio n  code to ex trac t th e  needed values. T h e  in s tru m en ted  code can be run  w ith 

different d a ta  se ts  to  ex tra c t the profiling d a ta  used as p aram ete rs  for th e  perform ance expressions.

All th e  p a th s  described  in Figure 1 . 1  have been im plem ented as p a r t o f the P olaris com piler [8 ]. 

an d  th e  system  h as been used to generate  th e  resu lts  p resen ted  in C h a p te r  6 . as well as p a r t o f the 

Delphi system . In  th e  curren t im plem entation  we can  access p erfo rm ance d a ta  inside th e  com piler, 

an d  if profiling in fo rm ation  is needed. P o laris  can  generate  code to  collect th e  inform ation , an d  use 

it in  evalua ting  th e  sym bolic expressions th a t  represent perform ance pred ic tion  d a ta .

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



| FORTRAN |
| Source !_̂______ I_____ )

T T
Com piler

performance
prediction
module

1

Instrumented

T
Native Com piler |

T

Executable

d
Profiling

Information

Run

C
Optimized Input j

s program ^ __ data se ts___

d

Analysis and perform ance prediction

ideal

using profiling information 
collecting and using profiling information

I Evaluated 
Isym bolic  expressions

d
Machine

Parameters

Performance ! 
Prediction Visualization i 

Tool

Performance visualization

F ig u re  L.1 : C om piler-based p red ic tion  environm ent

T h e  right hand side of F ig u re  L.1 shows how th e  perfo rm ance expressions can be visualized using 

a  perform ance v isualiza tion  too l, such as S vPablo  [21]. In th is  scenario, the  perfo rm ance sym bolic 

expressions are eva lua ted  for a  specific m achine and  th e  num bers o b ta in ed  from th e  eva lua tion  are 

d isp layed  in a graphical u se r interface. T his scenario  is useful in com parative sy stem  evaluation , 

because different m achine p a ram ete rs  can be su b s titu te d  in th e  expressions and  th e  user can  study  

how m achine ch a rac te ris tic s  affect applica tion  perform ance. System  evaluation  can  be used by 

co m p u te r architects in th e  process of designing new m achines, an d  by users to  select th e  best 

p la tfo rm  suited for th e ir ap p lica tio n  needs. Sim ilarly, sca lab ility  analysis can  be co n d u c ted  using 

th e  sym bolic perform ance expressions. Since th e  expressions con ta in  variables for th e  d a ta  size, 

one can  stu d y  how vary ing  th e  size of the problem  affects th e  perform ance of th e  ap p lica tio n  on a 

p a r tic u la r  machine.

Besides the w hat-if g am es, perform ance analysis too ls can  benefit from  com piler generated  

m odels because th ey  can  g e n e ra te  results faster th a n  by execu ting  th e  code. A long w ith  execution 

tim e figures, the com piler c a n  provide the perform ance analysis too l w ith  a  w ealth  o f inform ation
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th a t  will enable th e  tool to  b e t te r  re la te  the  dynam ic behav io r of th e  app lica tion  to  th e  h igh  level 

language code.

In recent years we have seen a  new tren d  in processor an d  sy stem  design, a  much closer in teg ra 

tion  betw een th e  a rch itec tu re  design an d  the  com piler design. M odern  processors rely heavily  on 

th e  com piler to  organize th e  code so th a t it takes advan tage o f th e  h ardw are  features. For exam ple , 

th e  IA-64 a rch itec tu re  proposed  by In tel and  H ew lett-Packard , relies on  th e  com piler to  c rea te  

bundles o f V L IW  in stru c tio n s  th a t  also contain  specifications of wliich instructions can  be ex ecu ted  

in parallel, as opposed  to  cu rren t superscalar processors th a t  try  to  discover the in stru c tio n  level 

parallelism  in hardw are .

M ore recently, a  new ty p e  o f a rch itec tu re  has em erged, th e  intelligent m em ory a rch itec tu res  [49. 

33. 37], In these a rch itec tu res  th e  DRAM  memory contains also  processor logic, enabling low la ten cy  

an d  high b an d w id th  betw een th e  processor-in-m em ory (P IM ) an d  th e  m emory. T he PIM s ac t as 

co-processors th a t  execute code w hen signaled by the host processor. In th is  arch itectu re  it is very 

im p o rtan t to  decide w hat p o rtio n s of code execute on each processor, as th e  host processor is m ore 

powerful and  backed up by a  deep  cache hierarchy, bu t has h igher m em ory  latency. T he P IM s a re  

typ ically  less powerful, have very  low m em ory latency an d  no cache. T h e  s ta tic  prediction m odels 

p resen ted  in th is d isse rta tio n  have been used in recent w ork [64] to  au to m atica lly  m ap th e  code to  

th e  host o r to  th e  PIM  based on  perform ance prediction resu lts.

In th e  rem ain ing  sections o f  th is ch ap te r we first discuss th e  problem  dom ain  on which we focus 

ou r m odeling. N ext we p resen t a  quick overview of d a ta  dependence in fo rm ation  since d a ta  d ep en 

dences provide th e  m ain  fou n d a tio n  for our work, and  we conclude by discussing the  co n trib u tio n s 

of th is  thesis.

1.2 Problem  Dom ain

T h e  problem  th a t  th is  w ork proposes to  solve can be fo rm ulated  as follows:

M odel th e  perform ance o f scientific applications on  a  co m p u te r system , inside a  com 

piler. by  looking a t  h igh level source code only.

5
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T h e  approach  taken  is m ostly  arch itectu re independen t. However, because  of th e  com plexity of the 

in te rac tions betw een different parts of th e  system , as well as th e  o p tim iza tio n s done by the native 

com piler, som e lim ita tions apply.

O n th e  a rch itec tu ra l side, we decom pose th e  com puter system  in to  p arts  th a t  can be m od

eled re la tively  independen t. Thus, we assum e th a t  the  C PU . th e  m em ory hierarchy, and  the I/O  

subsystem , can  each be modeled separately, an d  their effects on  th e  app lica tion  perform ance are 

add itive .

T h e  C PU  is assum ed to  be a superscalar processor w ith m ultip le functional units. T he processor 

can  issue several in structions per cycle. Each in stru c tio n  can have a  different latency. In C hap ter 6  

we present resu lts for two different processors, th e  M IPS R10000 [56] an d  the  U ltraSparc Hi [6 6 ]. 

T h e  R10000 is an  out-of-order processor while th e  U ltraSparc is an  in -order processor. Both can 

issue several in struc tions per cycle. Also, in [64] it has been show n th a t, by using our approach, 

it is possible to  m odel s ta tica lly  the behavior o f two types of processors w ith  qu ite  different char

ac te ris tics . Even when the  prediction was no t very accurate  (average prediction error of .'309c). 

th e  s ta tic  p red ic to r based on our m ethods co rrec tly  predicted th e  re la tive  execution tim e for these 

processors. In the  IRAM  case, this was sufficient to  decide w here to  execute the  code.

T h e  m em ory h ierarchy consists of several levels of cache an d  th e  m ain  memory. The caches 

can  have different cache line sizes and associa tiv ities. We m odel th e  d a ta  caches only, although 

th e  m odels could be ex tended  for in stru c tio n  caches. We chose to  ignore the  instruction  cache 

misses since th e ir  im pact on the perform ance o f scientific codes is negligible (on average 0.17% of 

execu tion  tim e for L l an d  L2 instruction  caches on the R10000 for th e  SPEC fp95 benchm arks). 

For a  breakdow n on all th e  program s, see T ab le 1.1. B oth the R10000 and  th e  U ltraSparc have two 

levels of cache, w ith  th e  first level having sep a ra te  instructions an d  d a ta  caches, and  the second 

level consisting  of a  unified cache. T h e  line sizes and  the asso c ia tiv ities  differ betw een the two 

processors.

T h e  app lica tion  dom ain  consists of scientific F o rtran  program s, such  as codes in the  SPECfp95 

ben ch m ark  su ite . T h ere  are  two m ain reasons for focusing on  F o rtran . F irs t, m any of the codes 

perform ing  co m p u ta tio n s for scientists are  w ritte n  in F ortran . T h is  is illu s tra ted  by the  fact th a t 

10 o u t o f 14 (71%) codes in the  new SPEC fp2000 benchm ark su ite  a re  w ritten  in  F o rtran . Second.

6
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Benchm ark C ode size L l  I-cache misses L2 I-cache misses
lines cycles M.rr % exec # % exec

APPLU 2474 51247966388 1465086 0.05 715579 0 . 1 2

APSI 4238 2046974010 263773 0.23 50557 0 . 2 1

H Y D R02D 1667 66288394854 1353887 0.04 497572 0.06
M GRID 382 51019153876 1474727 0.05 637206 0 . 1 0

SU2COR 1444 31218347345 1075432 0.06 476323 0.13
SWIM 2 S2 36220627134 316612 0 . 0 2 169086 0.04
TOM CATV 109 43131557047 638084 0.03 288793 0.06
TURB3D 1287 6443904684 129263 0.04 42511 0.06
WAVES 6314 32019987230 1872195 0 . 1 1 497038 0.13
Average 2022.89 35515212507.56 954339.89 0.07 374962.78 0 . 1 0

T ab le  1 . 1 : Instruction  cache m isses in  th e  SPEC fp95 benchm arks

although the  techn iques described in th is w ork are  no t restric ted  to  F o rtran , the  in frastructu re  

tools th a t we used h an d le  m ainly Fortran .

We have selected  scientific codes because o f th e ir  relatively  sim pler control How s tru c tu re . In 

scientific codes m ost o f th e  com pu tation  h appens in loops accessing arrays. T he p red ic tion  models 

focus on high level source  code and since we d o n 't  know w hat low-level op tim iza tions are  perform ed 

by the native com piler, such  as instruction  schedu ling  an d  register a lloca tion , we app rox im ate  the 

po ten tial o p tim iza tio n s  using heuristics. T he h eu ristics  presented in C h ap te r 3 are ta rg e ted  towards 

scientific codes.

1.3 D ata Dependences

D ata dependences (5. 76] a re  used in th e  com piler to  represen t variable references th a t  po ten tially  

access the sam e m em ory  location. M ost op tim izing  com pilers use th ree  types of d a ta  dependences:

flow, anti and  o u tp u t dependences. Since we focus on  m em ory behavior, we are also in terested  in

input dependences. M ore formally, these types o f dependences are defined as follows.

D e f in it io n  1 . 1  C o n sid er  two sta tem ents S  and T  tha t both reference the sam e variable .1 ( read or 

write), and T  is executed a fter S. We say that:

1. T  is flow -dependen t on S  i f  S  writes A  and  T  reads .4;

2. T  is an ti-dependen t on S  i f  S  reads A  and  T  w rites  A ;

I
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Figure 1.2: Exam ple of d a ta  dependence graph .

■i. T  is output-dependent on S  i f  both S  and T  unite to A:

4- T  is input-dependent on S  if  both S  and T  read A.

S is called the source o f  the dependence and T  is called the target o f  the dependence.

For cache behavior it is m ore im p o rtan t to  know which locations a re  accessed successively th an  

th e  ty p e  of the access, read or w rite . C onsider th e  following sam ple  program :

(SO  A =  0
(So) B =  A +  1
(S3) C =  A +  D
(SO  A =  2

T h e  d a ta  dependences for th is  program  are show n in th e  d a ta  dependence g raph  in F igure 1.2. 

Each dependence is m arked  by its  type. T here is a  flow dependence between s ta tem en t S i and  

s ta tem en t So (m arked F) b ecause s ta tem en t S i w rites to  variab le  A and  s ta tem en t So reads A. 

T h ere  is an  input dependence betw een So an d  S 3  (m arked  I) because b o th  s ta tem en ts  read  the  

variable A. There is an  o u tp u t dependence betw een S i and  S 4  (m arked  0 )  because b o th  s ta tem en ts  

w rite  to  A. A nd there  is an  an ti-d ep en d en ce  betw een S 3  an d  S 4  (m arked  A) because s ta te m e n t S 3 

has to  read  the  variable A before it is w ritten  by s ta tem en t S 4 .

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3.1 Data Dependences in Loops

In loop bodies, s ta te m e n ts  are  execu ted  m ultip le  tim es. D a ta  dependence re la tio n s  can exist from 

any instance of execu tion  of a s ta tem en t to  any o th e r  s ta tem en t, including itself. Since the com piler 

cannot represent all th e  instances of a  s ta tem en t (th e  num ber of ite ra tio n s  m ay be unknown at 

compile tim e), the  d a ta  dependence g rap h  is ab s tra c te d  to  represent in one n ode  m ultip le instances 

of the sam e s ta tem en t. D ependence edges are th en  an n o ta te d  to  identify  th e  re la tive itera tions in 

w hich ihcr d ep en d e n c e  le lcu iu n s uc'cUi'. B aaed  on  th e  ite iu tlu n a  u f th e  so u rce  a n d  target u f th e d a ta  

dependence we can  classify th e  dependences its:

•  loop independent dependence -  if b o th  th e  source an d  the  ta rg e t o f th e  dependence are in the 

same ite ra tio n  o f th e  loop:

•  loop curried dependence -  if th e  source and  th e  ta rg e t of the  dependence are in different 

iterations of th e  loop

A nother im p o rtan t concept is the  iteration space associa ted  w ith a loop nest. T he itera tion  

space is a  po ly tope th a t  con ta ins one point for each ite ra tion  of the  loop. For any loop carried 

dependence, there will be an edge from th e  source ite ra tio n  to  th e  ta rg e t ite ra tio n  in the itera tion  

space dependence g rap h . Since com piler cannot always determ ine th e  n um ber of itera tions in the 

loop, the ite ra tion  space is expressed sym bolically.

In order to  identify  th e  po in ts in th e  ite ra tio n  space we assign an itera tion  vector to each 

iteration. T here are  tw o kinds of ite ra tio n  vectors described in lite ra tu re , one based  on loop index 

variables, index variable iteration vectors and  one th a t  enum erates th e  ite ra tio n s , the  normalized  

iteration vectors. In th e  index variab le ite ra tio n  vectors (F igure 1.3a). each elem ent Ik represents 

the  value of the  loop index  variab le for the  fcth nested  loop a t  th a t ite ra tio n . In  the  norm alized 

itera tion  vectors (F igu re  1.3b) th e  ite ra tio n s of each loop are  enum erated  s ta r t in g  either a t 0 or a t 

1 . and  these are th e  values used in th e  ite ra tio n  vector. T h e  advan tage o f using  norm alized itera tion  

vectors is th a t  la te r ite ra tio n s  have lexicographically  larger valued vectors th a n  earlier iterations, 

m aking it easier to  o rd e r th e  itera tions.

9
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(a) Index v a r ia b le  i te ra t io n  vec to r. (b) N o rm a lize d  i te ra tio n  v ec to r.

F igure 1.3: Itera tion  vectors

T h e  dependence distance vector is th e  vector difference betw een the  ite ra tio n  vectors of the  

ta rg e t and source ite ra tio n . Thus, the  dependence distance vec to r can be expressed as:

w here J7" is the ta rg e t ite ra tio n  vector, an d  Is  is the source ite ra tio n  vector. We will represent the  

dependence d istance vectors on the dependence graphs as a  com m a separated  list of the elem ents 

o f th e  distance vector, e.g. (0 . 1 . 0 ).

S ince the dependence g raph  for loops rep resen t in one node m ultip le  instances o f the  sam e s ta te 

m ent. the  com pilers can n o t always co m p u te  an  exact value for th e  dependence d istance vectors, 

because the instances of the  source s ta te m e n t can be at different d istances of th e  corresponding 

instances of the ta rg e t s ta tem en t. In th is  case, the dependence d istance  vectors need to  be sum 

m arized  by using dependence direction vectors. An elem ent o f th e  dependence d irection  vector 

takes values in the  set { < . = . > . *}. w ith  * represen ting  an  unknow n direction. If th e  com piler can 

co m p u te  the d istance vectors it can derive th e  direction vectors by tak ing  th e  sign of the d istance 

vector.

1.3.2 Uniformly Generated Dependences

U niform ly generated  dependences [28] a re  d a ta  dependences for which the  d is tan ce  vectors are 

know n and contain  only  constan t values. If  two references have a  known d is tan ce  vector betw een 

th em , then the com piler has determ ined  th a t  the  two references will touch  th e  sam e m em ory 

location . In order to  com pu te  if th e  m em ory  accesses reuse d a ta  in the  cache, all th a t  needs to  

be  done is to  com pute  th e  d istance, in  te rm s o f m em ory references, betw een th e  tw o references.
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an d  check if th e  d istance  is less th a n  th e  cache size (for fully associative caches). M ost of the 

dependences th a t  cause reuse are  un iform ly  g en era ted  [28. 52. 74]. M any of th e  o th e r  dependences, 

such as those w ith  sym bolic su b scrip ts  or index a rray s , will rarely access the  sam e location . For 

those dependences even coarser app rox im ations o f  th e  reuse, such as [74. 14], usually  yield good 

results.

1.4 Contributions

T his work has orig inally  s ta rted  as a  s tu d y  of d a ta  locality  m etrics. In m any cases op tim iza tions 

for im proving d a ta  locality  are app lied  and  the  on ly  m easure of th e  "im proved" perfo rm ance is the 

execution tim e. We w anted to  have a  m etric th a t  quan tities  precisely b o th  tem p o ra l an d  spatial 

locality, as a  function  of the p rogram  only, th a t  is. independent of the a rch itec tu re  on which the 

application will run . Up to th is w ork m ost of th e  m ethods e ither need the  cache p aram eters  of 

th e  arch itecture , such as cache size, associativ ity , e tc .. or a re  not able to  app ly  th e  sam e m etric 

to  either a  loop nest, a  subrou tine , o r an  en tire  p rogram . T herefore we s ta r te d  looking a t stack 

algorithm s.

Stack a lgorithm s have been used previously to  charac terize paging behavior [43]. T hey  have 

th e  inclusion p ro p e rty  (the stack  for a  sm aller cache is included in th e  stack  for a  larger cache) 

allowing estim atio n s independent o f th e  cache size. In add ition , techniques have been developed to  

deal w ith se t-associa tiv ity  and  different cache line sizes in one pass th rough  th e  trace . T h e  result 

o f the stack a lg o rith m  is a  h istog ram  th a t  counts th e  num ber of references a t each d is tan ce  from 

th e  top of th e  s tack . T he work p resen ted  in th is  thesis is based on th e  stack  d istan ces and  the 

stack  algorithm s. We present a  new  algorithm  to  co m p u te  the stack  h istogram , fa ste r th an  the 

best known a lgo rithm . The developm ent of th is  a lg o rith m  stem m ed from th e  need for a  faster 

stack  processing m eth o d  due to  th e  len g th  of th e  traces  when the  en tries in th e  trace  are  m em ory 

references and  n o t pages. We also p resen t how th e  s tack  distances can  be used to  q u an tify  locality, 

b o th  tem poral an d  sp a tia l, a t any p ro g ram  granu larity .

W hen we s ta r te d  working on th e  D elphi p ro jec t (an  in teg ra ted  system  for p erfo rm ance m ea

surem ent and  tim ing) and  th e  need arose for a  com pile-tim e m ethod  to  es tim ate  cache behavior, we 

again  tu rned  to  s tack  distances. O nce m ore, th e  m ost a ttra c tiv e  featu re  o f th e  s tack  a lg o rith m  is its
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arch itec tu ra l independence. O ne can predict th e  num ber of cache misses for any cache size once the 

s tack  h istogram  is com pu ted . T hus th e  m ain co n trib u tio n  o f th is  thesis was defined: a  com pile-tim e 

algorithm  th a t com putes th e  s tack  histogram  based  on d a ta  dependence d istance vectors. A lthough 

th e  com pile-tim e a lg o rith m  estim ates  th e  num ber of cache m isses for fully-associative caches, the 

experim ental resu lts  p resen ted  in C h ap te r 6  show  th a t the  e s tim a tio n s  are  qu ite  a c cu ra te  for 2-way 

set-associative caches. M oreover, th e  in tended  use for th is m eth o d  is to  help drive com piler op ti

m izations. in which case th e  re la tive perform ance of different code varian ts  is m ore im p o rtan t than  

1 0 0 % accuracy.

T he m ain co n trib u tio n s  of th is work are sum m arized  as follows:

C o m p ile - t im e  m o d e l  fo r  e s t im a t in g  th e  n u m b e r  o f  c a c h e  m is s e s .  We present a  new me

thod  for e s tim atin g  th e  num ber of cache misses in a  loop using th e  stack  h istogram . The 

stack processing a lg o rith m  an d  its resu lt, th e  stack  h istog ram , have been h isto rically  used to  

evaluate caches. In th is work we describe a  m ethod th a t  com putes the  s tack  h istogram  a t 

com pile tim e, based on th e  d a ta  dependence d istance vectors. Besides being accu ra te , the 

m ethod p resen ted  is also fast since it relies on d a ta  a lread y  available in th e  com piler (d a ta  

dependences are ca lcu la ted  for o th er com piler o p tim iza tio n s), an d  applicab le  to  m ore than  

75% of th e  loops presen t in the  S PE C fp95 benchm ark  su ite . D etailed  resu lts  a re  presented 

in C h ap te r 6 .

A  n e w  a lg o r i t h m  fo r  s t a c k  p ro c e s s in g .  D uring  our w ork w ith  th e  stack  processing algorithm  

we have com e up w ith  a new m ethod  to  process a  m em ory  trace , th a t it is fa s te r th an  the 

best cu rren t a lgo rithm  [6 ]. T h e  new a lg o rith m  is p resen ted  in Section 4.2.

A  n e w  m e t r i c  fo r  lo c a l i ty ,  t h e  s t a c k  h i s to g r a m .  T h e  s tack  h istog ram  provides a  b e tte r  m et

ric for q u an tify ing  th e  locality  in program s th an  previous work. T h is is based  on  the  fact 

th a t th e  s tack  d is tan ce  com putes exac tly  how m any d istin c t m em ory locations a re  accessed 

betw een accesses to  th e  sam e location, as opposed to  o th e r  m ethods th a t average over the 

num ber of m em ory  locations accessed. T h is is d iscussed fu r th e r  in Section 4.1.

I n t e g r a t i n g  t h e  p e r f o r m a n c e  m o d e l in g  w i t h  t h e  c o m p i le r .  W e present a  new  com piler 

fram ework in  w hich perform ance d a ta  is available a t  com pile tim e as a  sym bolic expres-
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sion. independen t of th e  a rch itec tu re . A com piler w riter can  use th is in fo rm ation  to  drive 

op tim iza tions. We also show how we in teg ra ted  perform ance m odeling a t com pile-tim e w ith 

a  perform ance v isualization  tool in C h ap te r 5.

1.5 Thesis Organization

T his thesis is organized  as follows: in C h ap te r  2 we present re la ted  work for each of th e  areas th a t 

we touch  upon: perform ance p red ic tion  environm ents, com pile-tim e estim ation  of cache misses, 

locality  m etrics an d  ite ra tive  com pilation . In C h ap te r 3 we present th e  com pile-tim e perform ance 

p red ic tion  m odel. We describe th e  en tire  m odel, an d  then  we de ta il th e  C PU  and  m em ory hierarchy 

m odels. C h ap te r 4 has two p arts . In th e  first p a r t we present a  new m etric  for p rogram  d a ta  locality 

based on the  s tack  d istances. T h e  second p a rt describes our experience w ith s tack  processing 

a lgorithm s and  a  new a lgo rithm  for efficiently com puting  stack d istances. In C h ap te r  5 we present 

th e  perform ance p red ic tion  fram ew ork im plem ented in Polaris, as well as th e  in te rac tio n  between 

th e  fram ew ork an d  th e  S vPablo  perform ance v isualization  system . C h a p te r  6  p resents experim ental 

resu lts and  we conclude in C h ap te r  7.
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Chapter 2

R elated Work

In th is ch ap te r we describe previous work th a t  has been done in several a reas  re la ted  to  this disser

ta tio n . We begin  by presenting so lu tions for perform ance prediction env ironm en ts th a t in teg ra te  

com pilers an d  ru n tim e  system s to  aid  com piler op tim izations. T hese env ironm ents have sim ilar 

goals to  our D elphi p ro jec t [57]. N ext we focus on com pile-tim e pred ic tion  o f cache behavior. Sev

eral approaches are  presented, some o f th em  in tegrated  in a  perform ance p red ic tion  environm ent, 

o thers used for d riv ing  optim izations.

T hen , we look a t  existing m etrics for locality. We claim  th a t the  s tack  h istogram  proposed in 

th is thesis is a  m ore accura te  m etric th a n  th e  cost m odels available in th e  lite ra tu re . We conclude 

by presen ting  w ork th a t  uses estim ates of execution tim e inside a com piler to  im prove perform ance. 

We discuss th ese  efforts to  underline th e  need for an d  th e  applicab ility  o f an  accu ra te  s ta tic  cache 

model.

2.1 Performance Prediction Environments

Fahringer [24. 22] describes P 3T .  a  perform ance estim ation  tool. He uses th e  V ienna F ortran  

C om pilation S y stem  as an  in teractive paralleliz ing com piler, and  th e  W eigh tF inder  and P 3T  tools 

to  feedback p erfo rm ance  inform ation to  b o th  the  com piler an d  th e  p rog ram m er. O ur work differs 

from  his in b o th  th e  estim ation  of co m p u ta tio n  tim e an d  th e  estim atio n  o f th e  num ber of cache 

misses. F irs t, to  e s tim a te  com pu tation  tim e, we use com pile-tim e analysis an d  m icro-benchm arking 

as opposed to  h is p a tte rn  m atching benchm ark ing  aga inst a  lib rary  of kernels. T h e  com bination o f 

com pile-tim e an a ly sis  an d  m icro-benchm arking  is b e tte r  su ited  to  hide th e  underly ing  arch itec tu re
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th a n  p a tte rn  m atch in g , especially if dependence  analysis is used to  d e tec t overlapp ing  operations.

T h e  au thors classify  th e  benchm arking  kernels in to  four categories: primitive operations, which 

con tain  basic o p e ra tio n s  such as -K *. e tc . an d  e lem en tary  a rray  access kernels: pr im it iv e  statements  

such as DO loop headers, conditional s ta tem en ts , etc .: in trinsic functions  and  code patterns  which 

include s tan d a rd  code p a tte rn s  am enable to  recognition such as elem entary  o p e ra tio n s  of linear 

algebra (m atrix  m u ltip lica tion , m atrix  inversion, d e te rm in an t calcu lation , e tc .) an d  com m only 

used stencils such as .Jacobi re laxation . LU decom position , etc. Each kernel is subsequen tly  ran  for 

different d a ta  sizes, on  th e  m achine for w hich th e  perform ance estim ation  is desired , to  m easure its 

execution tim e. T h e  perform ance e s tim a to r parses th e  program  and  d e tec ts  ex istin g  lib rary  kernels. 

For each kernel, th e  p rem easured  execution  tim e is accum ula ted  to  o b ta in  an  overall execution time. 

T he au thors underline  th e  difficulties th ey  encoun te red  while developing th e  kernel lib rary  for two 

m achines, the  In tel i860 and  M asPar M P-1. an d  they recognize th e  fact th a t it is very difficult to 

ob ta in  com plete, p o rta b le  kernels. A second difference is in th e  cache m odeling. W e present their 

cache model in d e ta il in Section 2.2.

Saavedra et al. [GO. 59. 58] has done ex tensive work in th e  a rea  of perform ance prediction for 

uniprocessors. In [60]. th e  au th o rs present th e  m icro-benchm arking  concept to  m easure architec

tu ra l param eters. M icro-benchm arking consists of a  set of kernels, each kernel ta rg e ted  a t one 

particu la r feature of th e  m achine. T he kernels are w ritten  in such a  way th a t th ey  try  to  isolate 

one feature and  m easu re  its charac teristics by m inim izing the  effect of o th er featu res. We use their 

m icro-benchm arking approach  to  m easure o p e ra tio n  costs an d  cache latencies. In [59]. the  au tho rs 

present an  ab s tra c t m achine m odel th a t ch arac terizes th e  a rch itec tu re  and  th e  com piler. T heir early- 

m odel does not consider m em ory h ierarchy effects. T h ey  consider such effects in [58] by com bining 

th e  m easurem ents o f cache and  T L B  tim ings o b ta in ed  th ro u g h  m icro-benchm arking  w ith  cache and 

T L B  miss ra tios o b ta in ed  th rough  s im u la tio n  by Gee et al. [29]. T h e  results a re  used to evaluate 

how the  execution tim e pred ic tion  im prove w hen m em ory  delays are  in co rp o ra ted  an d  how much 

im pact the cache an d  T L B  configurations have on th e  overall perform ance of th e  m achine. T he 

m ain  difference betw een  our work an d  th e irs  is th a t  we p red ic t b o th  th e  C PU  tim e  an d  the  cache 

misses a t com pile-tim e, while th e ir m eth o d  p red ic ts  th e  C P U  tim e an d  uses prev iously  published 

miss ra tio  d a ta .
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W ang [69] develops a perform ance p red ic tio n  framework for supersca lar-b ased  com puters. His 

fram ew ork, as ours, is designed to  be used inside an optim izing com piler, to  guide p rogram  tran s

form ations. T he following requ irem ents a re  listed  as critical for a  good perform ance prediction 

tool:

• precise -  the  pred ic tion  m ust be a c c u ra te  for the com piler to  m ake correct decisions.

•  efficient - the  com piler will m ake re p ea ted  calls to  th e  p red ic tion  m odule, therefore the 

p rediction pass should  be very efficient.

•  robust -  the fram ew ork should  be ab le  to  hand le program s w ith  unknow ns in con tro l structu res 

an d  unknown branch  probabilities.

T h e  key idea to satisfy  all these req u irem en ts  is to use sym bolic expressions to  represent per

form ance data . T he sym bolic expressions will m inim ize the effects o f com pounded estim ations for 

m ultip le  basic block by delaying the ev a lu a tio n  of unknowns, th ere fo re  increasing th e  accuracy of 

th e  pred iction . In add ition , they  will be m ore efficient to eva lua te  for different d a ta  sizes, and will 

allow for the  presence of unknow ns. T h e  m odel decomposes th e  to ta l  perform ance cost into C PU  

cost an d  m em ory hierarchy cost. To e s tim a te  m em ory access tim es th e  au th o r uses th e  cache cost 

m odel developed by F erran te  e t al. [27]. d iscussed  in the next sec tion .

For th e  processor cost, th e  fram ew ork co n ta in s  an instruction  tran s la tio n  m odule, which has four 

tab les th a t  are used to  tra n s la te  high level language constructs in to  costs on a specific m achine in two 

tran s la tio n  steps. In th e  first s tep , called operation specialization mapping, a  high level operation  

tab le  is used to  m ap language dependen t co n s tru c ts  into language independent o p era tio n s, stored 

in  a  basic operations tab le . In th e  second s te p , th e  atomic operation mapping, tran s la te s  the basic 

o p era tio n s  into costs for th e  processor based  o n  two o ther tab les, th e  a tom ic o p era tio n  tab le  and  the 

a to m ic  operation  cost tab le , which co n ta in  th e  low level operations an d  th e ir costs, respectively. T he 

fram ew ork relies on in fo rm ation  passed by th e  com piler to  e s tim a te  th e  op tim iza tions perform ed by 

th e  com piler back-end. such  as in s tru c tio n  schedu ling  and reg is te r a llocation . W hile th is  can give 

ac cu ra te  results for a  p a r tic u la r  com piler, it also  m akes th e  sy stem  less po rtab le , since th e  m odule 

needs to  be re-im plem ented for each s u p p o r te d  com piler.

Adve et al. [1 ] p resen ts an  in teg ra ted  environm ent for p red ic tin g  perform ance on m ultipro-
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cessors. T hey  in teg ra te  com pile-tim e in fo rm atio n  w ith  dynam ic in s tru m en ta tio n  to  p red ic t the  

execution tim e for en tire  program s. However, th e ir  com piler stores only in fo rm ation  ab o u t depen

dences and decisions m ade in apply ing  tran sfo rm atio n s , so th a t th e ir perfo rm ance visualizer can 

re la te  the  m easu rem en ts back to th e  source code b u t it does not ac tu a lly  p red ic t the perform ance 

a t  com pile-tim e.

2.2 Com pile-tim e Estim ation of Cache Misses

T here are m any efforts targeted  tow ards es tim a tin g  th e  cache behavior of p rogram s w ith in  a  com 

piler framework. H owever, many factors, such as lim ited  com piler in fo rm ation , algorithm s com plex

ity  and  hardw are unpred ic tab ility , have m ade th e  problem  so challenging th a t  none of the proposed 

solutions is a  co m p le te  solution.

Porterfield [52] p resen ts  one of th e  first s ta t ic  m odels of m em ory perform ance based on d a ta  

dependences. He defines the Overflow Iteration. O (i) .  for a  particu la r loop, as th e  m axim um  num ber 

o f iterations of th a t  loop th a t can have all th e  d a ta  accessed m ain tained  in the  cache a t th e  sam e 

tim e w ithout encoun te ring  any cache misses. T h e  overflow itera tion  can  help determ ine when a 

reference will be a  m iss during program  execu tion , because it provides a  m easure of how m uch d a ta  

is accessed betw een th e  end points of a  dependence . Any dependence th a t  requires more ite ra tions 

o f the  loop th an  th e  overflow itera tion  will access m ore d istinc t blocks th a n  available and will result 

in a  series of m isses d u rin g  execution. O nce th e  overflow itera tion  is know n, every reference can 

have its hit ra tio  co m p u ted  based on th e  dependence  edges. U nfortunately , for overflow ite ra tions 

to  be effectively g en e ra ted , precise in te rp ro ced u ra l inform ation should  be available, an d  a t the  

tim e. PFC  did not co n ta in  th a t in form ation . T h is  has not perm itted  P orterfie ld  to  im plem ent his 

algorithm , and  besides a  m anual coded exam ple  for m a trix  m ultip lication , his thesis provides only 

speculative resu lts. L a te r. Ferrante e t al. [27], used P orterfie ld ’s overflow ite ra tio n  to  es tim ate  the  

num ber of cache m isses a t  com pile-tim e.

In [27]. F erran te . S arkar and T h ra sh  consider au to m atic  analysis o f  a  p ro g ram ’s cache usage 

to  achieve g rea te r cache effectiveness w hen  used to  guide program  tran sfo rm atio n s, such as loop 

interchange. To d e te rm in e  the  num ber o f cache m isses for a  given loop nest, an  upper bou n d  on 

th e  num ber of d is tin c t cache lines (D L ) accessed in  th e  innerm ost loop is determ ined . T h e  m ethod
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works tow ards the  outerm ost loop, com puting D L  a t  each loop level. T h e  innerm ost loop th a t 

causes th e  cache to  overflow is ca lled  the overflow loop. An u p p er bound  for the  to ta l  num ber 

of misses is ob ta ined  by m ultip ly ing  th e  D L  value for all the  loops con tained  w ith in  th e  overflow 

loop, by th e  product of th e  n um ber o f itera tions o f th e  overflow loop an d  till its enclosing loops. 

For set associa tive caches the  bou n d  m ight need fu rth e r ad ju stm en ts  to  take into co nsidera tion  set 

conflicts.

T here  a re  several assum ptions m ade about the  p rog ram  and  th e  a rch itec tu re  th a t can  be handled 

using th is m ethod . The au th o rs  assum e a set o f norm alized, perfectly  nested loops. T h e  array  

references considered in th e  ana lysis m ust have su b scrip ts  th a t are  linear functions o f th e  loop 

indices, o therw ise each access is considered a  miss. E xecution  profiling can  be used if conditionals 

are p resent, however the paper does not provide a  discussion on how the  profiling d a ta  can be 

in teg ra ted  w ith  the analysis technique.

T h e  a lg o rith m  bounds the n u m b er of d istinct a rray  elem ents for each array  reference an d  uses 

these to  co m p u te  an upper bound  on the  num ber o f cache lines accessed by each array  reference. It 

th en  com bines the bounds for several references to  com pu te  D L  for th e  loop. T h e  p a p e r  presents 

exact form ulae for the num ber o f d is tin c t array  e lem ents accessed w hen the subscrip t of th e  array 

reference is a  function of one or tw o loop variables, an d  provides an  u p p er bound for a  m ore general 

subscrip t function . This ap p ro ach  is less costly th a n  P orterfie ld 's  [52]. since the au th o rs  use the 

G CD  tes t an d  B anerjee's inequalities instead o f d a ta  dependence d istance  vectors. However, if 

d a ta  dependence distance vectors are  already com puted  for o th er com piler passes, th en , as  we show 

la te r in th is  work, most o f the  overhead in using d a ta  dependences in analyzing cache behavior 

is a lready  paid . We can not read ily  com pare th e  accu racy  of our a lgo rithm  versus th e irs  because 

th e  ex p erim en ta l results p resen ted  in their paper is re s tr ic ted  to  m a trix  m ultip lication , w hich both  

algorithm s pred ic t correctly. T h ey  present results for m a trix  m ultip lication  only because th ey  use 

s im ula tion  to  collect the ac tu a l n u m b er of misses, an d  th u s are constra ined  by tim e.

F ahringer [25] presents an  a lg o rith m  th a t e s tim a tes  th e  num ber o f cache misses for sequential 

and  d a ta  paralle l Fortran  p rogram s. T h e  a lgorithm  is based on th e  analysis of all a rray  references 

in loop nests , classifying th em  w ith  respect to  d a ta  reuse an d  co m p u tin g  a  cost fu n c tio n  for the 

a rray  classes th a t  describes th e  cache behavior o f th e  program . T h e  au th o r shows how  to  ex tend
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the  cost fu n c tio n  to  procedures an d  en tire  p rogram s, although  no ex p e rim en ta l results for en tire  

program s a re  p resen ted .

The cache m isses estim ation  takes in to  co nsidera tion  cache line size, cache sizes and  d a ta  ty p es 

in com puting  th e  num ber of cache m isses. T w o a rray  references in th e  sam e a rray  class w ith respect 

to  a loop nest if th ey  access some com m on m em ory  location  in th e  sam e a rra y  dim ensions and  reuse 

occurs across loop  itera tions. T h e  m eth o d  used is very sim ilar to  th e  one em ployed by F erran te  e t 

al. [27]. in th e  sense  th a t it uses th e  overflow loop to  determ ine an  u p p er-b o u n d  on the num ber of 

cache lines accessed  by a  loop. T h e  a lg o rith m  ite ra te s  th rough  th e  loops in a  loop nest, s ta r t in g  

from the  in n erm o st loop, and  a t each loop com putes the array  classes an d  th e  num ber of cache 

lines accessed. T h e  algorithm  ends w hen th e re  are  m ore cache lines accessed th a n  available in th e  

system . T h ere  a re  two differences th a t  m ake our a lgorithm  m ore p rac tica l. F irs t, it is not easy  

to  see how F ah rin g er 's  algorithm  can  be ex ten d ed  to  es tim ate  in ter-nest m isses. And second, his 

algorithm  needs th e  cache size as a  p a ram e te r, while ours can estim ate  th e  n u m b er of cache m isses 

for all the cache sizes based on th e  s tack  h istogram . Again, it is very h a rd  to  see how effective 

is his a lgo rithm  com pared  to  ours, because  th e  only experim ent p resen ted  in th e  paper is Jaco b i 

relaxation, for w hich bo th  algorithm s are  very  accu ra te .

M cKinley[44. 45] uses a  very sim ple cache m odel to  drive op tim iza tions for d a ta  locality and  p a r

allelism. In th is  m odel, the references w ith  g ro u p -sp a tia l and  g ro u p -tem p o ra l locality  are g rouped  

in equivalence classes using sim ple heu ristics . Two references exh ib it g ro u p -tem p o ra l locality  if 

the  references a re  dependen t, and  th e  d ependence is e ith e r loop in d ep en d en t o r loop carried  w ith  

a very sm all d is tan ce  (<  2). Two references are  g roup-spatia l dep en d en t if access the sam e a rray  

and  their su b sc rip ts  differ by a co n stan t sm alle r th an  th e  cache line size in  th e  dim ension along th e  

cache line.

T he cost o f a  loop is given in te rm s o f  cache lines accessed by p lacing th e  loop as the innerm ost 

loop in the  n e s t. For each reference class a  rep resen ta tive  a rray  reference is considered and  th e  

cost is co m p u ted  as follows: if th e  reference is loop in v arian t. th ere  is one cache line accessed in  

the  whole loop: if th e  reference has sp a tia l locality  it accesses one cache line every  cache line size 

iterations: cill o th e r  references are  considered  accessing one cache line p e r  ite ra tio n . A lthough  th e  

m odel is very app rox im ative , it works q u ite  well in  p ractice, an d  it is a c c u ra te  for double n ested
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loops, because it always finds th e  correct re la tive o rdering  of the  loops in  th e  nest.

Ghosh. M arto n o si and M alik  [30] have in tro d u ced  th e  Cache Miss Equations  (C M E s) as a 

m athem atica l fram ew ork th a t  precisely  represen ts cache misses in a  loop n est. T h ey  coun t th e  cache 

misses in a  code segm ent by  ana lyz ing  the  n um ber of so lutions of a  sy stem  o f lin ear D iophan tine 

equations e x tra c te d  from reuse vectors, w here each  so lu tion  corresponds to  a  p o ten tia l cache miss. 

For each reuse vector, two k inds o f equations are  generated : compulsory equations, th a t  represent 

cold misses, a n d  replacement equations, which rep resen t th e  interferences w ith  o th e r references. The 

num ber of cache misses is co m p u ted  by traversing  th e  itera tion  space an d  solving th e  system  of 

equations a t each  ite ra tio n  p o in t. A lthough solving these  linear system s is an  N P -h a rd  problem , the 

au tho rs claim  th a t  m ath em atica l techniques for m an ip u la tin g  the  equations allow th em  to  relatively 

easily com pu te  a n d /o r  reduce th e  num ber of possible so lu tions w ithou t solving th e  eq u a tio n s. O ur 

algorithm  differs from  theirs because  in one single pass we can com pute th e  stack  h istog ram  which 

can be subsequen tly  used to  e s tim a te  the  num ber o f cache misses for any  cache size, th u s avoiding 

the repeated  execu tion  of th e  expensive p art of th e  algorithm .

Vera et al. [6 8 ] propose a so lu tion  based on sam pling  techniques to  speed-up  solving CM Es. 

S ta tistica l sam p lin g  allows th em  to app rox im ate  th e  abso lu te  miss ra tio  for each reference by 

analyzing only  a  sm all subset o f  th e  ite ra tion  space. R esults are given w ith  a  confidence interval, 

param eterizab le by the  user.

G annon. Ja lb v  and  G allivan [28] propose p rogram  transform ations to  im prove cache an d  local 

m em ory behav io r assum ing softw are control over th e  cache m anagem ent. T h ey  use d a ta  depen

dences to co m p u te  w hat m em ory  locations have to  be kept in the cache for best perform ance.

T he general m ethod  is to  define a  reference window  for each dependence, which con ta ins the 

current set o f  elem ents th a t  m u st be in the  cache, i.e. those th a t will be used again . To com pute 

the reference w indow  size, th ey  s tu d y  several cases o f d a ta  dependences, an d  classify dependences 

as:

•  uniformly generated dependence  -  th e  d a ta  dependence d istance vec to r can  be com puted  

exactly  an d  all its e lem ents are  constan ts:

•  uniquely generated dependence  -  a  re s tr ic ted  case o f uniform ly g en e ra ted  dependence , in  which 

there is on ly  one dependence  distance vec to r w ith  constan t elem ents;
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•  cyclic self-dependences -  charac terize  inpu t and  o u tp u t self dependences in loops, such  as 

red u c tio n s, where the  sam e array  elem ent is accessed in each itera tion . T hese  dependences 

are  very  im p o rtan t for cache m anagem ent.

T he reference window size is a  good m easure of how m any elem ents have to  fit in th e  cache 

for best perfo rm ance. However, if th e  num ber of a rray  elem ents exceeds the  cache size, they  

have to  dec ide  which reference windows to  keep in th e  cache an d  which to evict (rem em ber the  

proposed nI^o\vc ci?c^io ri>Lir'HfTt?r>icrir bv ^iic corripi^n r  ̂ on n’mrinn'c *>»*n

kept, th e  com p iler can determ ine the  hit ratios. T hey  use th is  m echanism  to  s tu d y  th e  effect of 

loop in terchange and  tiling on locality.

2.3 Locality M etrics

Lilja et al. [42]. in a discussion ab o u t th e  m em ory referencing behavior of m ultiprocessors, in troduce 

the inter-reference distance, th e  num ber of m em ory references th a t occur betw een two references 

to  the sam e m em ory location. T h ey  use th e  inter-reference d is tan ce  to  m easure tem p o ra l locality. 

By averaging th e  inter-reference d istances for all the  variables in th e  program , they  o b ta in  a  single 

num ber, th a t  can  be used as a  m etric  to  characterize locality  as follows: as the  tem p o ra l locality  in 

the  program  increases, the value o f th e  m etric decreases. We shall see in C h ap te r 4 th a t  th is m etric  

does not w ork in all the cases, an d  we shall propose th e  stack  d istances as a  m ore precise m etric  

to  charac te rize  locality. However, the  inter-reference d istan ce  can  be useful in p red ic tin g  p rogram  

referencing b ehav io r and  im proving replacem ent algorithm s [51]. T h e  inter-reference d is tan ce  was 

also used by P yo  et al. [55] to  guide loop transfo rm ations in several rou tines in th e  Perfect C lub 

benchm arks [7].

W olf a n d  L am  [73. 72] s tu d ied  d a ta  locality  and  how d a ta  locality  can be used to  guide unim od- 

u lar com piler transfo rm ations. In [73] they  present a  m a th em atica l form ulation o f d a ta  locality  

based on th e  concept of reuse vec to r space. T hey  define four types of reuse: self-temporal  -  a  

s ta tic  reference accesses th e  sam e m em ory location, self-spatial -  a  s ta tic  reference accesses m em 

ory  locations in  th e  sam e cache line, group-temporal -  several d is tin c t s ta tic  references access th e  

sam e location , an d  group-spatial -  several d is tin c t s ta tic  references access m em ory locations in th e  

sam e cache line. T h e  m etric used to  quan tify  locality  is th e  n u m b er of m em ory accesses (i.e.. cache
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misses) in one i te ra tio n  of the  innerm ost loop (the  loops considered in th e  p a p e r  a re  perfectly  nested  

loops). For each  ty p e  o f reuse they com pu te  an e s tim ate  o f the  ac tua l n u m b er o f m em ory accesses 

generated  by each  reference. T he reuse vector space is com pared aga inst th e  localized ite ra tio n  

space (the  i te ra tio n  space of a loop th a t  exploits reuse) to  see if the reuse ac tu a lly  happens. D a ta  

locality for a  p ro g ram  improves when as m any as possible of the reuse vectors a re  included in the  

localized i te ra tio n  space, w ithout v io lating  any dependences.

Most of th e  ex p lo ited  reuse is tem p o ra l reuse an d  sp a tia l reuse betw een  uniform ly g enerated  

references. To q u a n tify  the  spatia l reuse, especially g roup-spa tia l reuse, th e  references th a t o p e ra te  

on the sam e a r ra y  an d  are uniform ly generated  are p a rtitio n ed  in equivalence classes, called u n i

formly g en e ra ted  se ts . T he num ber of m em ory accesses is com puted  for each uniform ly generated  

set and  th e  su m  over all sets gives th e  m etric for d a ta  locality. W hile th is  m etric  works well for 

guiding loop tran sfo rm a tio n s , it is not clear how the  m etric  can be ex tended  to  quantify  in ter-loop 

reuse or reuse ac ro ss  en tire  program s.

M cKinley a n d  T em am  [46. 47] did an  extensive s tu d y  of locality for p ro g ram s in th e  S PE C '95  

and  Perfect C lu b  benchm arks. T hey  em ploy a  reuse classification sim ilar to  th e  one developed 

by Wolf an d  L am  [73]. bu t they quantify , th rough  sim ula tion , the locality  for different program  

granularities: in tra -n e s t, in ter-nest an d  en tire  program . T hey  also d iscuss th e  im pact of th e ir 

results on som e p o p u la r  assertions ab o u t program  behav io r w ith respect to  caches. B oth stud ies 

are m ostly q u a n ti ta t iv e , in the sense th a t  they  do no t propose any o p tim iza tio n s  or algorithm s, 

bu t they  p resen t a  very detailed descrip tion  of w here an d  w hat types o f m isses happen  in these 

benchm ark su ite s . T h ey  conclude th a t  b o th  types o f reuse, spatia l and  tem p o ra l, happen m ostly  

in tra-nest, w hile in te r-n est reuse is m ostly  tem poral reuse. T hey  also observe th a t  b o th  capacity  

and  conflict m isses happen , although, not very o ften  for the  Perfect B enchm arks due to  th e ir  

sm all w orking-set size. Also conflict m isses happen  m ostly  in tra-nest, w hile ca p ac ity  misses happen  

m ostly  in te r-n est.

A nother conclusion  is th a t m any m em ory references w ith in  num erical codes a re  uniform ly gen

era ted  and  m o st sp a tia l locality is exp lo ited  w ith  s trid e  one. T his o b serv a tio n  is in concordance 

w ith our ow n observ atio n s, and  we present in Table 6.1 a  sum m ary  o f th e  loops in the  SPE C fp95 

benchm arks. F ro m  these  results we conclude th a t  for a b o u t 75% of th e  loops in  th e  suite, the  com -
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piler can  com pu te  dependence d istance vectors, and  m ost d is tan ces  have value 1. T h is  behavior 

was also observed by P etersen  [50]. T h e  re su lts  are som ew hat in co n tra s t w ith  those rep o rted  in 

[62. 41] m ain ly  because our d a ta  dependence test based on th e  O m ega lib rary  can handle sym bolic 

sub scrip ts , an d  thus, it reduces considerably  th e  num ber of "unknow n” variables.

2.4 Com pilation Using Performance Hints

T h e w ork p resen ted  in th is section is not d irec tly  re la ted  to  ou rs, b u t it underlines th e  need for 

com pile-tim e m odels for perform ance p red ic tio n  to  drive com piler op tim izations.

H aghighat and  Polychronopoulos [32. 31] present one o f th e  first approaches to  use sym bolic 

analysis inside th e  com piler to  predict loop execution tim e. T h ey  show how by using perform ace 

d a ta  th e  com piler can  generate  b e tte r  schedules for parallel loops. T h e  new scheduling schem e. 

balanced chunk scheduling uses the com pile tim e estim ation  o f th e  execution tim e of an  ite ra tio n  

to  balance th e  work executed by each processor. Since each p rocessor executes consecutive ite ra 

tions (chunks) it benefits from increased locality. T he schem e is show n to  ou tperfo rm  o th e r loop 

scheduling techniques because it b o th  balances the work an d  ex p lo its  locality.

Wolf. M aydan an d  C hen [74] present th e  design and im p lem en ta tio n  (inside the  M IP S pro  com 

piler) of a  com piler a lgorithm  th a t app lies loop p erm u ta tio n , o u te r  unrolling, tiling, fission and  

fusion tak in g  into account cache behavior, instruction  schedu ling  an d  register a llocation . T hey  

en u m era te  th e  search  space of all possible transfo rm ations, se lec ting  the  set of tran sfo rm atio n s 

th a t  a re  es tim a ted  to  give the  best possib le overall perform ance. T h e ir transfo rm ation  a lgorithm  

d epends u pon  having an  evaluation function  th a t can e s tim a te  how  m any cycles a  given (possibly 

transfo rm ed) loop nest will take to ru n  on th e  targe t m achine. T h e  es tim atio n  function  com bines 

es tim ates  from  two m odels, one for th e  processor and  th e  o th e r for th e  cache.

T h e  processor m odel estim ates th ree  ty p es of constra in ts: co m p u ta tio n a l resources, latencies 

an d  reg isters. To e s tim a te  th e  co m p u ta tio n al resource needs th ey  coun t th e  num ber of o perations 

a t h igh  level, by w alking th e  ab strac t sy n tax  tree, and  ignore o p e ra tio n  dependences an d  com m on 

subexpressions. T h e  processor m odel also allows for m ultip le  func tiona l un its. To m odel la tencies, 

an  o p e ra tio n  dependence g raph  is co n stru c ted , and  algo rithm s for softw are p ipelin ing  are used to  

e s tim a te  th e  n u m b er of cycles.
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T he cache m odel has two tasks, to  select a  good  tile  size and  to  co m p u te  the  loop overhead 

in troduced by tiling . T h e  m odel com putes a  fo rm ula for th e  loop cost, in cycles per ite ra tio n , of 

th e  tiling tran sfo rm atio n , as a  function  of the  unknow n tile sizes. It th e n  a tte m p ts  to  m inim ize this 

function. T he m odel so rts  th e  references into un iform ly generated  se ts , an d  com putes a footprin t 

(th e  num ber of by tes in the  cache used by th e  reference or set of references) for ail th e  sets. It 

aggregates the  fo o tp rin ts  for th e  sets into foo tp rin ts  for each loop nest.

The goal of ite ra tiv e  com pilation . Kisuki e t. a l [38]. is to  co n stru c t a  search space consisting 

of perm utations of different op tim iza tions an d  try in g  to  find a m in im um  in th is op tim izations 

space. The search space can grow very large since it includes as se p a ra te  op tim iza tions variations 

of the sam e o p tim iza tio n  w ith  different p aram eters , for exam ple, tiling  w ith  different tile  sizes. The 

process of finding th e  m inim um  consists of a  g rid -based  search a lg o rith m  (in order to  reduce the 

num ber of poin ts th a t  need to  be checked) th a t  applies the  set of o p tim iza tio n s a t a search  point, 

runs the program , collects the  resu lts, and decides which points to  sea rch  next. W hile prom ising, 

th is  solution 1ms two m ajo r draw backs: first, it is very tim e consum ing. T h e  larger th e  num ber of 

optim izations, th e  larger the  search space, and  th e  num ber of po in ts for which the program  needs 

to  be executed. T h e  second draw back  is th a t one can  optim ize codes on ly  for the  specific machine 

on which th is co m p ile r/o p tim izer runs, since different a rch itec tu res have different charac teristics 

th a t  can im pact th e  perform ance.

ATLAS [71] p resen ts  an o th er approach. In th is  system , a  set o f linear algebra routines is 

optim ized a t in s ta lla tio n  tim e, by selecting th e  best param eters  for th e  m achine on which th e  code 

will run. ATLAS co n s tru c ts  a  search  space for tiling  param eters  based  on  cache p aram eters  hints, 

o r alternatively, if no h in ts  are available, a  covering range. It th en  com piles the  code and  runs 

it. m easuring its perform ance. T h e  best perform ing  tiling  param eters  a re  then  in teg ra ted  in the 

lib rary  installed  on th e  system . W hile the in s ta lla tio n  process can  tak e  hours or days, th e  code 

is highly tim ed to  th a t  specific m achine, and  th u s, any  software th a t  uses rou tines in  th e  package 

will benefit from th e  perfo rm ance of the  bu ild ing  blocks. T h is m e th o d  could  be ap p ro p ria te  for 

building optim ized  lib raries, b u t no t necessarily for op tim izing  general p u rpose  code.
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Chapter 3

Com pile-tim e Performance Prediction

T h e  problem  of pred ic ting  program  perform ance a t  com pile-tim e is inherently  difficult. T here are 

m any factors th a t  m ake this problem  hard . F irst, c ritica l in form ation  needed by th e  com piler often 

depends on th e  in p u t d a ta  of th e  p rogram . Second, m odern  arch itec tu res are im plem ented so th a t 

th e  hardw are op tim izes execution using different techniques, such  as exploiting  in struc tion  level 

parallelism  (IL P ). out-of-order execution , instructions an d  d a ta  caching, etc. A perform ance pre

d iction  model needs to  consider all th ese  techniques for an  accu ra te  es tim ate  of ac tu a l perform ance. 

M ultiprocessor system s add an o th e r dim ension because o f d a ta  d is trib u tio n  and  com m unication  be

tween processors. T h ird , there is th e  issue of the  low-level op tim iza tio n s perform ed by th e  com piler. 

Typical op tim iza tions are code scheduling to  exploit ILP  and  reg ister a llocation. A com pile-tim e 

perform ance p red ic to r is usually  invoked much earlier th a n  th e  code generation  phase, therefore it 

needs to e ith er im plem ent o r e s tim a te  the  low-level o p tim iza tio n s. N ext, there is the  problem  of 

prediction accuracy. If the p red ic to r approx im ates a  piece o f code, an d  uses th a t  value to  predict 

a  larger chunk o f code, com pounding  the  estim ates m ay m agnify th e  e rro r significantly. A nother 

problem  is cross-m achine predic tion : we envision ou r system  being  used to  com pare different sys

tem s. It is not always possible to  have access to  all th e  m achines for which one w ants the  evaluation  

because some o f th e  m achines m ay n o t exist. T herefore, it is desirab le  for the  p red ic tion  system  

to  allow for m achine independent p red ic tion  w ith  th e  possib ility  to  custom ize it for a rch itec tu ra l 

param eters.

Many different stra teg ies have b een  tried  to  address a ll these  problem s, such as: using heuris

tics [4]. profiling [77. 61]. run -tim e m easurem ents [22. 3], an a ly tica l m odels [23. 69. 12] an d  combi

nations of these. T h e  results have b een  m ixed, show ing th a t  m uch w ork is still needed.
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In this ch a p te r we present our app roach , which represen ts perform ance d a ta  sym bolically in 

the form of expressions contain ing variab les for m achine p aram eters , o p e ra tio n  counts and  in p u t 

d a ta  values. T h e  com piler synthesizes perform ance expressions and  in s tru m en ts  th e  code to ex trac t 

values unknown a t com pile-tim e. O u r sym bolic expressions decom pose th e  overall perform ance into 

four parts: C P U . m em ory, com m unication  an d  I/O . T h e  to ta l execution tim e  is represented as:

Ttotal =  T c p u  +■ T \ i e . \ I  + T c O M M  -r T [  o  ( 3 . 1)

where Tc p c  is th e  co m p u ta tio n  tim e sp en t by the  processor itself. T \ i e \ i is th e  tim e spent accessing 

the memory hierarchy. Tq o m m  >s th e  in te rp ro c ess /th rea d  com m unication  tim e , an d  T; q is the  tim e 

spent doing I /O . In th is work we shall m odel the  first two term s only.

Each term  in E quation  (3.1) consists o f a  sym bolic expression, i.e.. a m ath em atica l form ula 

expressed in te rm s of program  input values an d  perhaps som e profiling in fo rm ation , such as branch  

frequencies. T h e  expression involves p aram ete rs  represen ting  ch arac te ris tic s  o f th e  targe t m achine 

and  thus, is a function  of the source code, the  inpu t d a ta  and  th e  ta rg e t m achine.

To estim ate  th e  execution tim e o f a  program , we s ta r t  by es tim atin g  th e  execution tim e of 

each basic block. T h e  sym bolic expressions o b ta in ed  are  aggregated  into expressions for com pound 

statem ents.

The problem s m entioned above are  addressed  as follows:

• missing in form ation  at compile-time  -  th e  p red ic tion  system  m odels unknow n values as sym 

bolic variables. T h e  perform ance can  be expressed e ith e r sym bolically, o r if the execution 

tim e is desired  as a  precise value, th e  variables can  be su b s titu ted  w ith  values ob tained  by 

profiling.

• portability across machines -  hardw are  param ete rs  a re  represen ted  as variab les in the sym bolic 

expressions. T h ere  are some assum ptions m ade ab o u t th e  o rg an iza tio n  o f th e  ta rg e t m achine, 

such as th e  num ber and  type of th e  functional u n its , th e  size and  n u m b er of levels of caches, 

bu t the  a c tu a l details  are rep resen ted  sym bolically  an d  evaluated  on dem and , based on  a 

m achine d esc rip tio n  file.

• compiler low-level optimizations -  to  address th is  p roblem  we use h eu ris tics , explained la te r
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in this chap ter.

In the following sections we de ta il the  pred ic tion  m odels for th e  processor an d  th e  m em ory 

hierarchy.

3.1 CPU Prediction

In this section we describe  th e  com pile-tiine m odel of th e  processor. Tc p v  in E quation  (3.1) 

estim ates the tim e sp en t by th e  processor doing co m p u ta tio n . We assum e a  su p ersca la r processor 

th a t  is capable of issuing an d  executing  several opera tions per cycle. We also assum e th a t  all the 

m em ory load and  s to re  o p era tio n s  are  cache hits. T h e  tim e to  access th e  m em ory  hierarchy is 

estim ated  separately , an d  we shall d e ta il the  m odeling of cache accesses in Section 3.2.

The com piler counts th e  num ber o f operations in th e  high level language code. T hese operations 

include: integer a rith m e tic  an d  logical operations, floating  point operations, an d  load and  store 

operations assum ing no cache misses. In add ition , it considers as basic opera tions F o rtran  intrinsic 

functions, such as square  ro o t (m any curren t processors have functional un its  th a t  execute square 

root operations, and  can  be estim ated  using m icro-benchm arking  otherw ise) and  trigonom etric 

functions. We also consider as basic operations function  calls an d  loop overheads, th u s  tak in g  into 

account the cost o f b ranch ing  o p era tio n s and  bookkeeping op era tio n s  such as p a ram ete r passing 

an d  loop index testing .

The prediction is expressed  as a  sym bolic expression of the  form:

^ g r o n p s

Tc p u  — C tjc leT im e  x ^  (counti x co st,). (3.2)
t = i

where counti are sym bolic expressions representing  th e  num ber of o p era tio n s in group i (we 

explain  the groups of o p e ra tio n s  sh o rtly ), and cost, rep resen ts th e  hardw are  cost for th e  operations 

in group i. T h e  hardw are  costs, cost,-, can  be o b ta in ed  e ith e r from  th e  p rocessor's  m anual, design 

specifications, or by using m icrobenchm ark ing  [60]. T h e  la tte r  is usually  th e  m ost convenient way 

to  get the values associa ted  w ith  in trin sic  functions an d  loop overheads if th e  m achine is available. 

For the  experim ental re su lts  p resen ted  in  C h ap te r 6  we ac tu a lly  use b o th  th e  p rocessor m anuals 

an d  m icro-benchm arking.
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No G roup Nam e O perations costi (cycles)
R10000 U ltra II z

1 Integer A dd Integer ad d itio n  and  su b trac tio n 0.5 1

2 Integer M ult Integer m u ltip lica tio n 6 18
3 Integer Div Integer D ivision 35 37
4 FI. Add Single precision  add ition , su b trac tio n  and  

m ultip lica tion
1 3

5 FI. Div Single precision  division 14 1 2

6 Dbl. Add Double precision  addition , su b trac tio n  and  
m ultip lication

1 3

7 Dbl. Div OnuKIa r>ror*icion rlivwion — ---- - 2 1 oo

s Sqrt Square ro o t 27 25
9 Trig T rigonom etric  operations 60 80
1 0 Intrinsic M inum um . m axim um , abso lu te  value, etc. 1.5 9
1 1 Fun. Call Function calls 1 5
1 2 Loop ovhd Includes increm ent and b ranch  and  com 

pare
41 18

13 Scalar load Integer an d  single precision load I I
14 Scalar sto re Integer an d  single precision s to re 1 I
15 Dbl. load Double precision load 1 I
16 Dbl. store Double precision store 1 1

17 Array load One d im ensional array  load (includes index 
com puta tion )

5 5

18 Array store One d im ensional array  sto re (includes index 
com puta tion )

5 5

19 N dim  array  load M ultid im ensional array load 1 0 1 0

2 0 N dim array  s to re M ultid im ensional array  sto re 1 0 1 0

T able 3.1: O peration  groupings

To reduce th e  n u m b er of independen t variables in th e  sym bolic expressions, operations are 

g rouped  into sets based  on the o p e ra tio n  type and  th e  d a ta  size on w hich th ey  operate. For 

exam ple, for the  m achines considered in  th is work, we g roup  to g eth er single precision add ition  

an d  m ultip lication since, on m ost c u rre n t arch itectu res, these  in stru c tio n s  have sim ilar latencies 

being executed in th e  sam e or iden tica l functional un its . We d istingu ish  betw een  m ultip lication  

an d  division since th e  d ivision o p era tio n  usually  has longer la tency  th a n  m ultip lica tion . For o th er 

processors, the groupings could be a d a p te d , b u t we consider th e  groups p resen ted  in Table 3.1 as a  

reasonable base-line for cu rren t processors. W e have used th is  g rouping  in a  p ro to ty p e  th a t m odels 

th e  M IPS R10000 and  th e  U ltraS parc I l f  processors. T h e  tab le  enum erates th e  groups and  for each 

g roup  presents th e  latenc ies th a t  we used  in  o u r pred ic tions for th e  tw o processors.

U sing sim ple sym bolic a rith m etic , th e  expressions for basic  blocks are  com bined  to  generate th e
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cost of operations for each s ta tem en t or block of s ta tem en ts . For exam ple, consider a loop of the 

form:

DO i  = 1, m 
DO j  = 1 ,  n

51
52 

ENDDO
ENDDO

A fter we estim ate  th e  cost for S i an d  S2. C ^ i and  CS2 ■ we estim ate  th e  cost for loop j  as follows:

O d o .j = n x  ( Loop ovhd  4  C's 1 4  C 5 2 )

T h e  cost for loop i  is:

C dO-i = rn x  {Loop ovhd  +  C q o .j )

Consider ano ther exam ple. an  IF  s ta tem en t of th e  form:

IF cond THEN
SI

ELSE
S2

END IF

th e  cost is:

C i f  =  B r a n c h  ovhd  4- C cond -I- C s i  x f  r e q (S l )  4- C52 x  f r e q ( S 2 )

If the branch frequencies f r e q ( S l )  and  f r e q ( S 2 ) are known a t com pile tim e (th ro u g h  profiling 

inform ation or user an n o ta tio n s), th e  values can  be su b s titu ted . O therw ise th e  sym bolic values are 

carried  in the  pred ic tion  expressions.

Using th is m ethod , th e  cost expressions for different levels of g ran u la rity  in th e  program  (blocks
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of s ta tem en ts , loops, procedures) are com bined u n til a  unique expression could be genera ted  for 

th e  en tire  program .

A lthough th is  is a very sim ple stra tegy , it has p roven  reasonably a c cu ra te  when no com piler 

op tim iza tio n s a re  applied, as can be seen in the  ex perim en tal results p resen ted  in C h ap te r 6 .

In o rder to  accura te ly  predict th e  perform ance for op tim ized codes we have to  apply, or a t least 

ap p ro x im a te  in our model, the  low-level op tim iza tions perform ed by th e  n a tiv e  com piler. We have 

chosen to  app rox im ate  these o p tim iza tio n s  by using heuristics applied  a t  high level source code. 

We found th a t  th e  following heuristics app rox im ate  b est the  op tim iza tions perform ed on th e  set of 

benchm arks th a t  we studied:

•  Elim inate loop invariants. T h is  is a  sim ple o p tim iza tio n  applied  by all optim izing com pilers 

and  it can  be done at high level.

•  Consider only the floating point operations. B ased on the observation  th a t ,  in scientific codes, 

th e  useful com putation  is done in floating point an d  in optim ized code integer operations are 

used m ostly  for control flow an d  index co m p u ta tio n , we assum e th a t  superscalar processors 

can overlap the  cost of index co m p u ta tio n  w ith  th e  floating po in t operations. We take into 

account th e  control flow o p era tio n s  (branching) in the  form of loop overheads.

•  Ignore all m em ory accesses that are not array references. T h e  reason  for this heuristic  is 

th a t  sca la r references occur in frequen tly  in scientific codes and . if th ey  do. m odern processors 

o ften  have enough registers to  buffer them .

•  Overlap operations. For m ultip le  issue a rch itec tu res  w ith m ultip le functional units, we m ust 

allow opera tions in different categories to  overlap  execution. For exam ple, on th e  M IPS 

R 1 0 0 0 0  processor, there can  be 4 in structions issued in one cycle chosen among: 2  in teger 

op era tio n s. 2  floating point o p era tio n s. 1 m em ory operation  o r 1 b ranch .

N ote however th a t these o p tim iza tio n s  are m ostly  su ited  for scientific codes, in which, m ost 

o f th e  co m p u ta tio n  is done in loops accessing arrays an d  executing floa ting  poin t operations. To 

accu ra te ly  m odel optim izations done for in teger codes m ore research is needed.

Using these approxim ations we o b ta in  a  lower b o u n d  on the  p ro cesso r’s execution tim e. We 

ten d  to  u n d erestim a te  the execution tim e  in th e  p rocessor since we consider a ll th e  operations inde-
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penden t, an d  therefo re  we "exploit" more in struc tion  level parallelism  th a t  m ay ac tu a lly  be present 

in th e  code. However, we do not consider o th er low-level op tim iza tions, such as loop unrolling  and  

reg ister a lloca tion , nor we consider hardw are reordering  of the  operations. T hese op tim iza tions 

usually  reduce th e  num ber o f operations a n d /o r  increase th e  po ten tia l for ILP. However it is b o th  

very difficult an d  too  m achine and  com piler specific, to  consider these op tim iza tions a t high level 

language code.

T h e  m odel could be im proved by using an o p era tio n s  dependence g raph , th a t  takes in to  consid

era tio n  dependences betw een operations to com pute th e  overlapping. However, such  a  m odel will 

have increased com plexity, up  to  a  point where th e  p red ic to r duplicates th e  code scheduler from 

th e  com piler. We have com prom ised some accuracy for th e  sim plicity  of th e  m odel.

Tw o m ain ch a rac te ris tic s  set th is model ap a rt from  o th e r  related  work: the  m achine indepen

dence and  the  com piler independence. The m achine independence is realized by using sym bolic 

expressions to  represen t hardw are  costs for groups o f op era tio n s. T his is opposed to  the  m ethod  

used by B alasundaram  e t al. [3] and  Fahringer [22] o f m easuring  kernels, an d  try ing  to  m atch  the  

code to  th e  kernels. T h e  com piler independence is achieved by using heuristics to  ap p ro x im a te  the  

tow-level o p tim iza tio n s th a t  could be applied by th e  com piler. T his is in co n tra st to  the  approach  

used by Saavedra and  S m ith  [59] in which they  tried  to  account for th e  com piler low-level o p ti

m izations in th e  hardw are  costs o f the  operations. It is also different from W ang's app roach  [69]. in 

which the  p red ic to r m ust have access to  the com piler's low-level op tim izations. B o th  these m ethods 

need to  be re im plem ented  w hen th e  undelying com piler changes, however in som e cases th ey  can 

be m ore precise th a n  ours.

3.2 M em ory Hierarchy Prediction

T h e te rm  T \ i e \ i  in E q u a tio n  (3.1) estim ates th e  tim e  sp en t accessing m em ory locations in the 

m em ory hierarchy. As we m entioned  before, w hen e s tim a tin g  th e  execution tim e of basic opera tions 

we assum e all m em ory  references tire cache h its  in th e  first level cache. However, m any accesses 

are  no t served from  th e  first level cache, in p a rt because  applications have d a ta  se ts  m uch larger 

th a n  th e  cache.
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T \ ; e m  can be expressed  as follows:

■xlevels

T s i e u  — C y c le T im e  x ^  ( M t x C ,). (3.3)
i

w here A/j represents th e  n u m b er of accesses th a t miss in th e  i th level of th e  m em ory hierarchy, and  

Ci represen ts the p en a lty  (in  m achine cycles) for a miss in  th e  ith level of th e  m em ory hierarchy. C, 

is com pu ted  using m icro-benchm arking , as in [58]. We briefly  discuss the  cache m icro-benchm arking 

here.

T h e  m icro-benchm arks (narrow  sp ec tru m  of benchm arks) are a  set of experim ents used to  

m easure  memory hierarchy  charac te ristic s  and  perform ance. In p articu la r, they  m easure p rim ary  

an d  secondary cache ch a rac te ris tic s  and  th e  TLB for a uniprocessor. Each experim ent m easures the  

average tim e per ite ra tio n  required  to  read , modify, an d  w rite  a  subset of elem ents belonging to  an  

a rray  of known size. T h e  n um ber of m isses will be a function  o f the size of th e  a rray  and  th e  strid e  

betw een the array  elem ent accessed. From  the num ber o f references an d  th e  num ber of misses, 

as th e  strid e  and the  size o f th e  a rray  are  varied, we can  com pu te  the  relevant m em ory h ierarchy 

p aram eters , including th e  cache size, th e  cache line size, th e  tim e needed to  satisfy  a cache miss, 

an d  th e  associativity. For exam ple, assum e a  m achine th a t  has a  cache w ith  a C  -l-byte w ords size, 

a  cache line size of b w ords, an d  an  associa tiv ity  a. F u rth erm o re , consider a  one-dim ensional a rray  

o f size N  4-byte elem ents. A subset o f th e  array  elem ents is accessed in a  loop th a t con ta ins a 

sim ple floating-point o p e ra tio n . Each subset is generated  by traversing th e  a rray  w ith a  ce rta in  

s trid e . Therefore, each experim ent is characterized  by ;V (th e  array  size) an d  by .s (th e  s trid e ). 

A fter p lo tting  all the  ex p erim en ts  on a  g raph , we can d e te rm in e  different regim es, from w hich the  

unknow n param eters o f th e  cache are derived.

O nce the cache p a ram e te rs  are defined and  the n u m b er o f cache misses for a  loop is e s tim a ted , 

we can  tran sla te  the  n u m b er of misses in  execution tim e . In  the rem ainder of this ch a p te r we 

propose two models for e s tim a tin g  th e  num ber of cache m isses a t  com pile-tim e. D epending on th e  

am o u n t of com pile-tim e in fo rm ation  we es tim ate  the  n u m b er of cache m isses using an  accu ra te  

m odel, th e  Stack D istances M odel (Section 3.3). or. if n o t enough d a ta  dependence in form ation  is 

available , we estim ate  using  th e  Ind irect Access M odel (S ection  3.4).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Sf-t(A 4- 1) St{A -f 1)

F igure 3.1: S tack u p d a te  when the  cu rren tly  referenced location  has been previously accessed

3.3 The Stack Distances Algorithm

T h e S tack  Distances M odel (SDM ) is based  on the stack  processing a lgorithm . T he classical 

s tack  processing a lgorithm  [43]. generates a  stack  h istogram  for a  program  by analyzing a  trace  of 

th e  m em ory references. T h e  trace  can  be analyzed e ither off-line, a fte r th e  program  has finished 

executing , or on-the-fly -  d u ring  the  p rog ram  execution. O r. when enough inform ation  is known 

a t com pile tim e, such as all th e  d a ta  dependence d istance vectors, affine a rray  subscrip ts, e tc .. we 

propose to  generate the  stack  h istogram  a t com pile time.

3.3.1 Introduction

T h e  stack  processing a lgorithm  takes a  trace  o f m em ory references, cache line references or v irtu a l 

page references in a  program , an d  builds a  s tack  as follows: if a  m em ory location  has been previously 

referenced (stack h it), we record  th e  d is tan ce . A . from th e  top  o f th e  stack  to  th e  position a t which 

th e  reference is found, an d  move th e  reference on the  top  o f th e  stack , all th e  references betw een 

th e  top  and  position A  being pushed  dow n one position. T h e  references below th e  curren t reference 

p osition  are not affected, as show n in F igu re  3.1. If the  reference is th e  first access to  th a t m em ory 

location , we let the  stack  d istance  A  =  oc and  push the  reference on th e  stack , using a  norm al 

push  operation .

T h e  result of th e  stack  processing a lg o rith m  is a  h istogram  th a t  counts th e  num ber o f accesses 

for all s tack  distances. F igure 3.2 shows a  h istogram  com puted  in th is way.
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T h is  h istog ram  can be used to  ca lcu la te  th e  n um ber of out-of-core page references, or equiva

lently. th e  num ber of cache misses, for any  m em ory  o r cache size. For a  physical m em ory of size 

C.  all th e  accesses at stack d istances of less th a n  C  are  in-core (E q u a tio n  (3.4)). and  all the  o thers 

accesses are  out-of-core (E qua tion  (3 .5)). S p littin g  th e  stack d ep th  h istog ram  a t C.  th e  area  under 

th e  h is to g ram  curve a t the  left of C  is th e  n um ber of in-core references, w hereas th e  a rea  to  the 

right of C  represen ts the  out-of-core accesses.

r

H t(C) = J 2 ^ 6) <3.4)
<5 = 0  

x
Mi ( C)  = Yi (3.5)

o = C ^ l

w here S is th e  stack  d istance, and  s (J )  is the  n um ber of references a t stack  d istance  <5.

In th e  sam e way. the stack h istogram  can  be used to  predict th e  n um ber of cache hits and  cache 

m isses th a t  occur in a loop nest. In o rder to  g en e ra te  th e  stack h istog ram  a t com pile-tim e, we m ust 

co m p u te  two things: the  stack d istances a t  which references occur, (all th e  po in ts on th e  r  axis of 

th e  s tack  h istogram ), and the num ber o f references th a t occur for each stack  d istance  (the  points 

on th e  y  axis of the stack  h istogram ).

Before going into details, we discuss th e  design choices and th e  lim ita tio n s of th e  curren t im

p lem en ta tio n  of the algorithm .

As we m entioned before, we focus on scientific program s, therefore we consider for inclusion in 

th e  s tack  h istogram  only references to  a rray  elem ents. Again, th e  m o tiva tion  is th a t , in scientific

codes, sca la r variables are m ostly  used for indexing and  thus reside in reg isters. VVe consider only

array  references w ith affine su b scrip ts  for two reasons: first, the O m ega te s t (th e  d a ta  dependence 

te s t th a t  we use) works only on affine su b scrip ts , for all o ther su b scritp s  it assum es th a t the  depen

dence exists: an d  second, o u r a lg o rith m  for co m p u tin g  array  sections (p resen ted  in Section 3.3.5) 

can  hand le only  affine subscrip ts. However, as show n in [50] for th e  P erfect C lub benchm arks 

an d  from  o u r own s tu d y  of th e  S PE C fp95 benchm arks, affine su b scrip ts  c o n s titu te  m ore th an  80% 

o f th e  su b scrip ts  in these su ites. T h e  o th e r m ost com m on form  is su b scrip ts  o f subscrip ts, i.e.. 

th e  su b scrip t expression is an o th e r a rray  elem ent reference, which occu r m ostly  in  sparse m atrix  

o pera tio n s. W e handle th is ty p e  of su b scrip ts  using  th e  Indirect A ccesses M odel (see Section 3.4).
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Figure 3.2: S tack  h istogram  for QCD
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A lthough  th e  s tack  histogram  can  be used to  pred ic t th e  num ber of cache misses a t different 

g ran u la ritie s  in a  program , i.e. loop n ests , routines, etc .. th e  com pile-tim e a lgorithm  p resen ted  in 

th is w ork genera tes s tack  histogram s for loop nests only. W e consider only nests for which th e  d a ta  

dependences are  uniform ly generated  [28], th a t  is. th e  d is tan ce  vectors are defined and  co n stan t. 

W e could app ly  th e  algorithm  for dependences where th e  d is tan ce  vectors have a  lower bo im d. by 

considering th e  m in im um  distance in o u r calculations, however, th e  es tim atio n  will no longer be 

to ta lly  accu ra te . D epending on the  use o f th e  estim ation , th is loss of accuracy  can bp to le ra ted , 

and  th e  a lg o rith m  applied  with success. F u rth e r research needs to  be done to  enable the  es tim atio n  

on  m ultip le  loop nests.

T h e  com pile-tim e stack algorithm  can  es tim ate  th e  n um ber of misses for fully associative caches 

w ith  th e  LRU replacem ent policy. T h e  replacem ent policy co n stra in t is ac tu a lly  a  co n stra in t im

posed by th e  s tack  processing m ethod , in order to sa tisfy  th e  inclusion p roperty  (the stack s for 

m em ories of size C  o r lower are included in the  stack for m em ory of size C  4- 1). We also consider 

each loop nest to  s ta r t  w ith a cold cache, i.e.. none of th e  a rray  elem ents accessed in the  loop are 

present in th e  cache when the loop s ta r ts .

In exp lain ing  th e  algorithm  we will consider cache lines of one a rray  elem ent in order to  keep the  

algorithm s "sim ple". We remove th is re s tr ic tio n  in Section 3.3.8. Also, in presenting the  algo rithm s 

we assum e th a t  th e  loops are norm alized, i.e.. they  have th e  s tep  equal to  1. T h is  restric tion  is ju s t 

to  keep th e  eq u a tio n s simpler, and  th e  im plem entation  su p p o rts  loop increm ents different from  1 .

3.3.2 Algorithm Overview

T h e s tack  d is tan ce  is. by definition, equal to  the  num ber o f d is tin c t m em ory locations accessed 

betw een two references to the sam e m em ory  location, o r oc if th e re  is no previous reference to 

th e  m em ory  location . Inside the  com piler, th e  fact th a t  two references access the  sam e m em ory  

location  is rep resen ted  by a  d a ta  dependence (including in p u t dependences). T herefore, we w ant 

to  co m p u te  for each  dependence the  n u m b er of d istinct a r ra y  elem ents accessed betw een th e  source 

an d  th e  ta rg e t o f th e  dependence (we ca ll th is the  n um ber o f d is tin c t a rray  elem ents sp an n ed  by 

th e  dependence). However, a dependence can  span different num bers o f d is tin ca t a rray  elem ents 

d epend ing  o f th e  ite ra tio n  point in w hich th e  ta rg e t is accessed. T h is  follows from  th e  fact th a t  a
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s ta tic  array  reference m ay access a d istinc t a rray  elem ent or no t. depending on th e  o th e r incom ing 

dependences on th e  a rray  reference for th e  p a r tic u la r  ite ra tio n  point in which th e  dependence is 

considered.

The com pile-tim e algorithm  for com puting  s tack  d istances has the  following m a jo r steps:

•  iteration space partitioning  -  the ite ra tio n  space is p a rtitio n ed  according to  which dependences 

are legal a t  each  ite ra tion  point (Section 3.3.3). W ith in  a  p artition  all th e  references will have 

cue sam e set o f valid dependences.

• dependence span computation -  for each incom ing dependence, in each p a rtitio n , we com

pute th e  ite ra tio n  points are executed betw een th e  source and  the ta rg e t of the  dependence 

(Section 3.3.4)

•  array sections computation  -  we com pute for each dependence and  for each array  reference, 

the num ber o f d is tin c t elem ents in the  array , accessed betw een the  source and  th e  ta rg e t of 

the dependence. We also com pute the  sum  over o f d is tin c t elem ents over all a rray  references 

and use th e  su m  to  label the dependence (S ection  3.3.5)

• stack histogram computation  -  the stack  h is to g ram  is com puted  using prev iously  determ ined 

inform ation (S ection  3.3.6)

Note th a t ite ra tio n  space partitions, dependence sp an s  an d  array  sections a re  all sets of integral 

elem ents, we call th em  regions. It is desirable to  use a  com m on represen ta tion  for all these regions, 

so th a t we can o p tim ize  the algorithm s th a t  o p e ra te  on them . T he following o p era tio n s need to 

be defined on th e  regions: union, intersection, difference an d  projection. U nion, in tersec tion  and 

difference are th e  usual set operations. P ro jection  is th e  o p era tio n  th a t m aps an  ite ra tio n  vector to 

th e  array elem ent accessed in the  itera tion . T h e  m ap p in g  is su b jec t to  th e  a rray  indexing function.

We had several o p tions available to  represen t th e  regions. Below we discuss som e of th e  advan

tages and d isad v an tag es of each no ta tion , an d  ou r chosen m ethod  based on th e  tr ip le t no ta tion .

There is a  su b s ta n tia l am ount of work th a t has b een  done for representing a rray  sections. Four 

m ajo r directions have evolved for representing su b se ts  o f a r ray  elem ents: lin ear co n stra in t based 

polytopes [53. 54. 19. 20. 16]. reference lists [10. 40], tr ip le ts  [11, 34] and  linear m em ory access 

descriptors (LM A D s) [36].
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T h e  linear co n stra in t-b ased  techniques a re  very powerful, general, and  the  m ost accu ra te  n o ta 

tion . However, by using Fourier-M otzkin  e lim ination  to  solve th e  linear inequalities system , there  

a re  several drawbacks: first, th e  theo re tica l com plexity  of th e  p rob lem  is exponen tia l, and  second, 

it requ ires th a t the linear inequalities form  a  convex hull, fo rcing  a  loss of accu racy  w hen some 

regions m ust be w idened to  m ake them  convex. T he m ethod  also  rep o rts  all th e  so lu tions, not only 

th e  in teger ones. We are  s tu d y in g  the  posib ility  of using E h rh a rt polynom ials [15]. w hich generates 

th e  se t o f integer so lu tions for a  linear system , as a m ore a c c u ra te  and  faster technique to  replace 

o u r cu rren t im plem entation .

T h e  reference list techn iques rely on lineariz ing  the a rray s  a n d  m aking a list to  represen t each 

ind iv id u a l array  reference in a  code section . T his m ethod w as no t designed to  sum m arize  array  

access inform ation, an d  therefore , is very cum bersom e to use for o u r purpose.

T h e  trip le t n o ta tio n  is a  sim ple rep resen ta tio n  for a  set o f in teger values for each dim ension, 

w hich s ta r t  a t a  lower bou n d  and proceed to  the  upper b o u n d  v ia  a s tride. Each dim ension is 

rep resen ted  by a  trip le t. [/ : s  : «]. where /. s an d  u represent th e  lower bound, s trid e , and  upper 

b o u n d  o f the array  section . T rip lets rep resen ta tio n  of a rray  sections is very popu lar, a lthough  

th ere  a re  instances, such as a rray  accesses in  trian g u la r loops, o r som e coupled su b scrip ts  in which 

th e  a rray  sections lose som e accuracy. We have im plem ented o u r  represen ta tion  based on trip le t 

n o ta tio n  because of its sim plicity . We ex ten d ed  the n o ta tio n  to  cover for som e of th e  draw backs, 

such  as allowing the  loop index in th e  s tr id e  expression. H owever, there are cases in which this 

n o ta tio n  in not to ta lly  accu ra te , and  we will discuss some o f th ese  cases in Section 3.3.5.

L inear M emory Access D escrip tors (LM A D s) combine a  generalized  trip le t n o ta tio n  w ith con

s tra in ts . At the tim e of th is  work the  LM A D s were not fully developed , and  m ore research  needs 

to  be done to  use them  in th is  work.

W e presen t now th e  step s  of the  stack  d istances a lg o rith m  in  m ore detail.

3.3.3 Iteration Space Partitioning

In  th is  section  we p resen t th e  ite ra tio n  space p artitio n in g  a lg o rith m . T h e  ite ra tio n  space is p a r

titio n e d  in to  regions for w hich th e  dependence spans Eire th e  sam e  for each dependence a t  all the  

ite ra tio n  poin ts in th e  p a r titio n . T h is allows us to  reduce th e  n u m b e r of po in ts a t w hich dependence
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Input:
T h e bounded ite ra tio n  space for a  loop nest of d ep th  k  I S  =  n f = i [ ^ i - L'i\- 
where Li and  (7, are  th e  lower an d  u p p er bounds of th e  itfl nested  loop, respectively  
T h e  d a ta  dependence g rap h  w ith  d is tan ce  vectors co m p u ted  

Output:
T h e partitioned  ite ra tio n  space P a r t i  S .  such th a t in each  partition , 
all incoming dependences are th e  sam e.

M ethod:
set P a r t l S  =  { /5 }
foreach dependence 6 com pute th e  valid space V'S(<5) as follows: 

if  6 is luup in d e p e n d en t t h e n
V S  (6) = I S

if  6 is loop ca rried  w ith d is tan ce  vector cl =  (d p  do .........dfc) then

V S (6 )  = Y l l l { [ L , + d , - U,] i f ( / ‘ > 0  
LLl- l \ [ L i . U i - d i ]  i f d j C O

tem p  — o
foreach x  € P a r t  I S

tem p  =  ternpLS {x — (x  D V'5(<5)} U { x fl V '5(J)}  
end foreach 
P a r t l S  = tem p  

end foreach

F igure 3.3: Ite ra tio n  space partition ing  a lg o rith m

spans are  com puted, because we com pute one sp an  per p a rtitio n  for each dependence, as opposed 

to  com pu ting  one span  per ite ra tio n  point. In general, we do not know  how many ite ra tio n s a re  in a 

loop, except symbolically. T herefore, we p a r ti t io n  th e  itera tion  space, such th a t for all th e  ite ra tio n  

p o in ts  in one partition , all th e  array  references have exactly  th e  sam e incoming dependences. For 

exam ple , if there is a loop ca rried  dependence on  an  array  reference w ith  a  positive d istance  d. the  

a rray  elem ents accessed in th e  first d ite ra tio n s  of th e  loop will n o t have th a t incom ing dependence, 

therefo re the  itera tions in which these elem ents are  accessed will b e  in  a  separate  p a r titio n  from 

th e  rest o f th e  itera tions in th e  loop. A fter p a rtitio n in g  the  i te ra tio n  space, we com pute one a rray  

section  for each array  reference an d  each dependence th a t sp an s  th e  reference in each p a rtitio n . 

T h e  p a rtitio n in g  a lgorithm  is p resen ted  in F ig u re  3.3.

T h e  in p u t to  the  a lgorithm  consists of th e  ite ra tio n  space I S .  w hich  is a  polytope th a t  con ta ins 

one po in t for each ite ra tio n  o f th e  nest. W e express the ite ra tio n  space as the ca rtesian  p ro d u c t 

o f th e  in teger intervals [Li.Ui\ (also called dom ains  in lite ra tu re ), w here Li and  Ut a re  th e  lower
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I__

F igure  3.4: P a rtitio n ed  ite ra tio n  space for m atrix  m ultip lication .

an d  upper b o u n d s o f th e  ith nested  loop respectively. A nother input to  th e  partition ing  a lg o rith m  

is the d a ta  d ep en d en ce  graph, w ith  all th e  d istance vectors com puted. A ssum m ing a loop carried  

dependence w ith  d istance  d. th a t is carried  by only one loop, the a lgo rithm  sp lits  the ite ra tio n  space 

in to  two p a rtitio n s , one th a t contains all the  ite ra tio n s  from  L to L ~ d .  an d  one th a t con ta ins the 

o th e r itera tions, from  L 4 -  d to U . If th e  d istance d  is negative, the  p a r titio n s  are from L’ -  d  to 

U  and from L to  U — d. The second p a rtitio n  in b o th  exam ples is ca lled  the  valid space o f the 

dependence, b ecau se  only the a rray  elem ents referenced in the itera tions con tained  in th is p a r titio n  

have this incom ing dependence. If th ere  are m ultip le  loops th a t ca rry  a  dependence, th e  sam e 

operation  of s p li tt in g  the ite ra tion  space is perform ed for each loop. T h e re  will be two p a rtitio n s  

for each dependence , only the p a rtitio n s  will no longer be rectangular.

In general, th e  num ber of p a rtitio n s  is less th a n  2*v . where N  is th e  num ber of loop-carried  

dependences in  th e  loop nest, because som e dependences may g enerate  th e  sam e p artitio n s. In 

F igure 3.4 we show  the  partitions for th e  m atrix  m ultip lication  code. T h ere  are 6  loop carried  

dependences in  th is  loop nest, b u t on ly  th ree  o f th em  generate  d is tin c t p a r titio n s , and th u s  there  

a re  8  p artitio n s.

Note th a t  a ll th e  loop bounds an d  ite ra tio n  space p artitio n s are exp ressed  sym bolically. How

ever. we requ ire  th a t  th e  dependences a re  uniform ly gen era ted , i.e.. all th e  elem ents of th e  d is tan ce  

vectors to  be c o n s ta n t. W e'll show la ter, th a t ,  even w hen th e  dependence  d istance vec to rs are
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not constan t b u t a  lower bound can be co m p u ted , we can  use the lower bou n d  to  app rox im ate  

th e  d istance and  u su ally  ob tain  a reasonable es tim a tio n  for th e  num ber o f d is tin c t array  elem ents 

accessed.

Next we need to  com pute  the ite ra tio n  p o in ts  spanned  by each dependence in each p artitio n , 

and  thus, the n u m b er o f array  elem ents sp an n ed  by each dependence. In  th e  following discusion 

we’ll present ou r exam ples on the whole ite ra tio n  space, since considering th e  p artitio n s will ju s t 

com plicate the figures. However, the read er shou ld  keep in m ind th a t we do these com pu tations 

for every p a rtitio n  in th e  itera tion  space.

3.3.4 Dependence Spans

For each dependence we need to com pute th e  num ber of d istinc t a rray  e lem ents th a t  are accessed 

between th e  source an d  the  target of th e  dependence. We can do th is  by determ in ing  which 

itera tions are execu ted  between the source an d  th e  ta rg e t of th e  dependence, an d  tak ing  th e  union 

of all array  elem ents accessed in those ite ra tio n s.

We define th e  dependence span as being th e  set o f ite ra tio n  points betw een th e  source ite ra tio n  

and  the  targe t ite ra tio n  of the dependence. G eom etrically , th e  dependence sp an  is a  shape in the 

ite ra tio n  space th a t  encloses all these ite ra tio n  poin ts. For exam ple, the  sh ad ed  region in Figure 3.5 

represents the  dependence  span defined by th e  in p u t dependence on reference B ( k , j )  (shown in 

F igure 3.11). T h is  dependence is carried  by th e  o u term o st loop of a th ree -n ested  loop w ith d istance 

1. T he itera tion  p o in ts  spanned by th is dependence are: th e  rem aining ite ra tio n s  of loop k in the  

sam e itera tion  o f i  an d  j .  i.e. [ i . j . k  : n]. th e  rem ain ing  itera tions of loop j  in th e  sam e ite ra tio n  

of loop i .  which includes all the ite ra tio n  o f loop k. [i . j  4- 1 : n . 1 : n], th e  ite ra tio n s previous to  

ite ra tio n  j  in th e  ite ra tio n  i+ 1 . [i -f 1 . 1  : j  — 1 . 1  : n], an d  th e  ite ra tio n s previous to  ite ra tio n  k. 

[i 4- l . j .  1 : A.'].

D ependence sp an s  are  com puted using th e  a lgo rithm  presented  in F igu re  3.6.

T h e  algorithm  tak es  a  dependence 6 th a t  h as th e  source ite ra tion  ( / i  I n ) an d  the  ta rg e t

ite ra tio n  ( I i  -f- d \  I n 4- dn ). where d, a re  elem ents o f th e  d istance v ec to r D (5)  =  (d i  dn ).

It com putes the  se t o f  itera tions spanned  by  th e  dependence in  th ree  s tep s . F irs t, it com pletes all 

rem ain ing  ite ra tio n s for th e  loops enclosed by  th e  o u term o st loop ca rry ing  th e  dependence. N ext.
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k

U

Figure 3.5: Ite ra tio n  space for m atrix  m u ltip lication . T he shaded  shape represents th e  itera tions 
spanned  by loop-carried  dependence w ith d is tan ce  I in dim ension i.

I I n p u t :
I A loop nest L  of d ep th  n an d  its ite ra tio n  space
J An incom ing dependence 5 w ith source ite ra tio n  (/1  In) and

dependence d istance vec to r D(6)  =  {d^.dn  d n )
O u tp u t :

T he dependence span  DS{ 6)  for the  dependence 
M e th o d :

DS(S)  = o
let I be th e  ou term ost loop carrying the  dependence in L 
/*  collect th e  all ite ra tio n s up to  the  nex t ite ra tio n  of I */  
fo re a c h  loop i s ta rtin g  from  the  innerm ost loop to  I

D S{6 )  =  D S(6 )  U {h . I -2 ........ / i . / ,> i : C /i+ i .I i+ 2  : Ui+2 U  : Un )
e n d  fo r e a c h

[* collect all the  ite ra tio n s  up the  th e  ta rg e t ite ra tio n  */  
foreach loop i s ta r tin g  from  I to  the  innerm ost 

if It -I- di — 1 < Ii + L then
D S ( 6 ) =  DS(S)  U (I \ .  I o . . . . .  Ii—l .  Ii +  di. Li+i  : /j j- i  -I- di+.i .  Li—2 : IJi—i  L n : L n)

else
D S ( d ) =  DS(6)LS(Ii . Io. . . . .  I i - l .  Ii +  1 : Ii +  di — 1. Li+\  : Ti^-i Ln : Vn) U

{ I l - Tjr • • • ■ I i—1 • Ii "b d i . Tjo-i . +  d i—i . Z<i4-2 : fri+2......... I*n '• L'n)
end if 

end foreach

Figure 3.6: D ependence sp an  co m p u ta tio n  a lgorithm
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it collects all th e  iterations in th e  loop ca rry in g  th e  dependence, up to  th e  ta rg e t ite ra tio n . A nd 

las t, it co llects th e  itera tions o f the  loops enclosed by the dependence carry ing  loop up to  th e ir 

respective ta rg e t iterations. N ote th a t th e  second s tep  is perform ed only if th e  dependence d istance  

o f th e  ca rry in g  loop is g reater th a n  th e  s tep  o f th e  loop. In the a lgorithm , th e  last two step s  are 

m erged.

In th e  n ex t section we show how to  use th e  dependence spans to  com pu te  th e  num ber of d is tin c t 

a rray  e lem ents accessed in each ite ra tio n  con tained  in the dependence span , an d  then , th e  to ta l 

num ber of d is tin c t array  elem ents spanned  by a  dependence.

3.3.5 Array Sections Computation

O nce th e  dependence spans are  com puted , th ey  can  be used to  com pute th e  a rray  sections covered 

by the  dependences. An array section  is. by defin ition , the set o f a rray  elem ents th a t  are accessed 

by all th e  ite ra tio n s  in a dependence span.

Intu itively , if we can identify every a rray  elem ent accessed in each ite ra tio n  point contained  in 

a  dependence span , we can com pute  how m any  d is tin c t array  elem ents were accessed betw een the  

source ite ra tio n  and  the ta rg e t ite ra tio n  of th e  dependence. For each ite ra tio n  we m ay have several 

m em ory accesses, one for each a rray  reference in th e  body  of the  loop. By co m puting  exactly  which 

a rray  elem ent is accessed in each ite ra tio n , we can  com pute the  a rray  sections.

T his in tu itio n  is illustra ted  in F igure 3.7. T h e  outisde rectangles rep resen t th e  arrays accessed 

in th e  m a trix  m ultip ly  loop nest (.4. B .  and  C ).  T h e  cube represen ts th e  ite ra tio n  space, w ith  the 

shaded  region denoting  the dependence sp an  o f th e  loop-carried in p u t dependence on reference B.  

T h e  shaded  regions in each a rray  region rep resen t th e  array  sections sp an n ed  by th is dependence. 

T hus, from  ite ra tio n  (i. j . k) to  ite ra tio n  (i-F l. j . k) the following a rray  regions are accessed: 

A ( i  : i +  1.1 : n).  B ( l  : n. 1 : n ). and  C { i . j  : n) U C{i  -I- 1.1 : j ) .

T h e a rray  section. A R(6) .  spanned  by a  dependence is com pu ted  by su b s titu tin g  in th e  a rray  

index functions th e  ranges of th e  induction  variables taken  from th e  dependence span . In geom etri

ca l te rm s, th e  dependence sp an  is p ro jec ted  o n to  th e  array  space, as illu s tra te d  in  F igure 3.7. T he 

a lg o rith m  in  F igure  3.8 com putes a rray  sections.

We s ta r t  th e  algorithm  by considering th a t  th e  en tire  a rray  space is accessed. T hen , for each
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A

B

Figure 3.7: A dependence span p ro jec ted  onto a rray  sections. For each array , the  shaded  areas 
show which e lem en ts co n trib u te  to  th e  num ber of d is tin c t accesses betw een two ite ra tions o f loop i.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Input:
A dependence 6 w ith  the dependence span  D S{6 )  = [ly : u i  lm : umj

in ail m-levei nested  loop
An n-dim ensional array  reference a ( f i ( i ) ........../„ ( ( ) )

Output:
T he array  section spanned by th e  dependence A R ( a . S )

M e th o d :
AR (a .S )  =  [L\ : i ' i  L ri : Un] /*  en tire  a rray  space
fo re a c h  j  = 1 . n /'* fo reach  a rray  dim ension * /

/*  com pute th e  ex ten t in th a t  dim ension */  
x — o
fo re a c h  /*.. €  f j ( i )  /*  for each loop index * / 

let ;j = rn n g eDS{S) ( h )  =  [ffc : «fc]

x = x u / j  ( < \ =u) 
e n d  fo re a c h
A R (a .S )  = A R ( a . S )  f! [Li : U \  L j - i  : U j - i . x .  i : i ' j ~ i  L n :

e n d  fo re a c h

T h e  W operation  is defined as follows ( e xpr  is a  co n stan t or a  loop invariant variable):
1 . ex p r  ~  [/ : s  : u] =  [expr + I : .s : ex p r  +  u]

2 . exp r  * [1 : s : u\ =  [expr * I : expr  * s  : e x p r  * «].

f  [/[ +  1-2 : g c d ( s t . s o )  : u i  -i- uo] if  *'t I *'2 V so | s t
.3. [i i  : a' i : ttil -|- jo : so : no =  <

\ { l i  +  /o : g cd (s i. so) : u i +  uo. M }  otherw ise.

w here { I : s : u. m }  deno tes a  non-contigous interval.

F igure 3.8: A rray section  co m p u ta tio n  a lg o rith m
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array  d im ension , we com pute th e  ran g e  o f th e  index in th a t  dim ension ( th e  ex ten t of the  a rray  in the  

dim ension), by  su b s titu tin g  the  ranges o f th e  loop index variables in to  th e  subscrip t expression. T he 

ranges of th e  loop index variables a re  taken  from  th e  dependence sp an , because we are in terested  

in those ite ra tio n s  th a t  are sp an n ed  by th e  dependence. Interval a r ith m e tic  is used to  com pu te  

the  ex ten ts. T h e  operation  W in F igu re  3.8 p resen ts th e  operations su p p o rted  when com bining 

intervals. W e also  discuss these o p e ra tio n s  next.

The o p e ra tio n s  su pported  for co m p u tin g  the  ex ten ts  are as follows: in terval addition  an d  m ul

tip lication  w ith  a  constan t or a  loop invarian t variable, an d  ad d itio n  o f two intervals.

Rule 1 h an d les  the  interval a d d itio n  w ith a  co n stan t or a  loop in dependen t variable, i.e.. the  

subscrip t expression  has the form  i 4- expr .  where i is a  loop index variab le  and  ex pr  is e ith e r a 

constan t o r a  loop invariant variable. Exam ples of such subscrip t functions are: i + L. i -  3 o r i 4- r. 

In this case th e  ex ten t is the sam e as th e  range o f variable i sh ifted  by ex pr .  Assum ing th e  range 

of the loop index  variable i is [4 : .V], th e  ranges of the  above su b scrip t functions are: [5 : .V 4 - l],

1 1 : .V — 3], an d  [4 -f c : .V 4 - ej respectively.

The second rule trea ts  the m u ltip lica tio n  of an  in terval w ith a  co n s tan t. T he subscrip t has the 

form expr  * i. w here i is a  loop index  variable an d  ex p r  is e ith er a  co n stan t or a  loop invariant 

variable. E xam ples of such su b sc rip ts  are 2i or c * i. In th is case th e  com puted ex ten t is an 

expansion o f th e  original range, an  in terval th a t  has b o th s  bounds a n d  th e  step  m ultip lied  w ith 

the  expression. T hus, assum ing th e  range of the  loop index variable i is [2 : ;V]. the range for the 

subscrip t func tions 2 i and c * i a re  [ 4 : 2 : 2 *  .V] an d  [2*c:c:c*N] respectively.

B oth ad d itio n  and  m ultip lication  w ith  a  co n stan t o r loop invariant variab le  preserve th e  accuracy  

of the range.

T he last ru le  handles the case o f coupled  subscrip ts , i.e.. su b scrip ts  in  which two or m ore loop 

index variab les occu r in the  sam e su b sc rip t expression. In  general, coup led  subscrip ts occu r in less 

th an  20% of th e  subscrip ts, as show n by  Shen et al. [50] who stu d ied  a  large num ber of benchm arks 

and  kernels from  scientific codes. M oreover, su b scrip ts  con tain ing  m ultip lications of loop index 

variables a re  even  less frequent, an d  we have not encoun tered  it in th e  S PE C fp95 benchm arks. We 

trea t only th e  case in which th e  loop index  variables are  added  in  th e  su b scrip t expressions.

Rule 3 h an d les  th e  case w hen tw o loop index variab le  expressions a re  added  together, such  as
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2 i -f- 3j  +  10. N ote th a t the  ex ten t of th is  su b sc rip t expression can be co m p u ted  by successive 

applica tions o f th e  th ree  rules, as follows: rule 2  to  o b ta in  th e  ex ten t for th e  sub-expression  2 i. rule 

2 for 3j . rule 3 for 2 i 4 -3 j  and  rule 1 for (2/ -i- 3j )  -+- 10.

W hen ad d in g  two intervals th ere  are two cases: (i) one of th e  strides is d iv isib le w ith  each the 

o th er and (ii) th e  s trides are not divisible. W hen th e  strides are divisible th e  resu lting  ex ten t is an 

interval w ith th e  bounds com puted  as th e  sum  o f th e  bounds of the  two term s, an d  th e  stride is 

equal to  the  g re a te s t com m on divisor of th e  strid es. T h ere  are  som e cases in which th e  ex ten t might 

have a different num ber of elem ents th a n  it shou ld , for exam ple, when the  u p p er bound  o f the  inner 

loop is less th a n  th e  upper bound of th e  o u te r loop. T his is one of th e  lim ita tions o f th e  trip let 

n o ta tion . We hope to  elim inate th is inaccuracy by using a  linear co n stra in t-b ase  rep resen ta tion  for 

th e  regions.

T he second case, when the  strides are no t d iv isib le  can  produce even m ore inaccu ra te  represen

tations. To ad d ress  th is problem  where we ex ten d ed  th e  trip le t n o ta tio n  to  hand le "non-contiguous 

intervals". A non-contiguous interval (show n in F igure 3.9) is a  set of integers th a t  has a  lower 

bound, an u p p e r bound and  a stride  to  traverse  th e  elem ents, ju s t like in trip le t n o ta tio n . Addi- 

tionaly. th ere  a re  elem ents a t the  two ends of th e  in tervals th a t even if they  are  specified by the 

stride, they are  no t traversed. For these elem ents, we in troduce a  "missing" factor, th a t  specifies 

how m any e lem en ts are not ac tu a lly  traversed  over a  "spread" region a t b o th  ends of th e  interval. 

Note th a t a  non-contiguous interval m ight not rep resen t exactly  which elem ents are  accessed in 

th e  spread region, bu t since we are in terested  on ly  in th e  num ber o f elem ents th a t  are  accessed, 

th e  accuracy o f a  non-contiguous in terval is sufficient for ou r purpose. To com pute  th e  missing 

elem ents an d  th e  sp read , we have observed th a t  if th e  strides are  factored, th e  access p a tte rn  for 

th e  resulting  in terva l is given by the  access p a t te rn  o f th e  g rea test prim e factors from  each stride. 

Therefore th e  su b ro u tin e  in F igure 3.9 en u m era tes  th e  elem ents th a t  are  accessed for th e  prim e 

factors, and  uses th a t  inform ation to  com pu te  "m issing" an d  "spread".

W henever th e re  are  inaccuracies in co m p u tin g  th e  a rray  sections, we m ark  th e  sections accord

ingly. T he m easu re  of accuracy p ropagates fu r th e r  in  th e  cost m odel, such th a t ,  w hen th e  prediction  

expressions a re  evaluated , toge ther w ith  th e  perfo rm ace figure we also provide a  "confidence" m ea

sure for th e  p red ic tion .
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missing missingstride

spread spreadcontiguous interval

lower bound upper bound

void computeNonContig(int i c o e f ,  in t  j c o e f ,  in t  fcmissing, in t  fcspread) 
{

in t n = ( ico e f+ jco e f ) * ( ic o e f+ jc o e f ); 
int *a;

a =  ( in t  * )ca llo c (n + ( ic o e f+ jc o e f ) ,  s i z e o f ( i n t ) );

for ( in t  i  = 1; i  <= ico e f+ jco e f;  i++) 
fo r ( in t  j = 1; j <= icoe f+ jcoe f;  j++) 

a [ i* ic o e f  + j» jcoef]  = 1;

int distElems = 0; 
fo r ( in t  i  = n; i  >=0; i — ) 

distElems += a [i]  ;

missing = ((n  -  ( icoe f+ jcoe f)  + 1 -  d is tE le m s) /2 ) ; 
in t i  = icoef+jcoef;  
while(missing > 0)

if (a [ i+ + ]  == 0) { m issing— ; }

in t f ir s tC o n tig  = i;
missing = ((n  -  ( icoe f+ jcoe f)  + 1 -  d is tE le m s) /2 ) ; 
spread = f irstC on tig  - ( ic o e f+ jc o e f ) ;  
f r e e (a ) ;

F igure 3.9: N on-contiguous intervals: rep resen ta tion  an d  calcu lation
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O ne dependence might sp an  m ore th a n  one reference to  the  sam e array. In th is case, th e  a rray  

sec tion  sp an n ed  by the dependence is th e  union of th e  a rray  sections for each reference. T herefore 

two m ore operations are defined on in tervals, un ion an d  in tersection. T hese operations a re  well 

defined for th e  trip le t notation . T h e  num ber of d is tin c t a rray  elem ents spanned  by a  dependence is 

th en  com pu ted  by sum m ing th e  size o f a rray  sections for all a rrays referenced betw een th e  source 

an d  th e  ta rg e t of the dependence.

I I

.45(0') = E I U A R (r .  S) I
distinct arrays r all refs to r

N ote th a t we must keep b o th  th e  a rray  sections for d istinc t a rray s and  for individual array  

references. T h e  sections for th e  a rrays are  used to  com pu te  th e  s tack  d istances, while th e  array  

sections for each reference are  used to  com pute  th e  num ber of dynam ic references to  a p a rticu la r 

location . T h is com putation  is described  in th e  nex t section.

3.3.6 Stack Histogram

O nce th e  a rray  sections are co m p u ted  for each dependence span  in each p a rtitio n , th e  d a ta  required  

to  com pu te  th e  stack histogram  is available. T h e  s tack  h istogram  is com posed of two sets of values, 

th e  s tack  d istances and the n um ber o f accesses a t  th a t  p articu la r s tack  d istance . B o th  these sets of 

ra lues a re  com puted  sym bolically, based on th e  a rray  sections ca lcu la ted  in the  previous section.

Each a rray  reference co n trib u tio n  to  a  stack  d istance determ ined  by its incom ing dependences, 

or is oc if th ere  are no incom ing dependences. T h e  num ber of accesses co n trib u ted  by each array  

reference is determ ined by th e  n um ber of dynam ic executions of th e  reference. T he a lgo rithm  to 

com pu te  th e  stack  histogram  is show n in F igure 3.10.

For each  p artitio n  of the  ite ra tio n  space we consider all th e  incom ing dependences th a t  are 

valid in th e  p artitio n . We co m p u te , for each a rray  reference in th e  loop body, th e  m in im um  on 

th e  d is tin c t num ber of a rray  e lem en ts sp an n ed  by th e  incom ing dependences. A . an d  we take  

th is m i n i m u m  as the stack d istan ce . If  th e re  is no incom ing dependence, all th e  accesses for th a t  

reference a re  "cold misses", i.e .. h ap p en  a t  d istance  oo. To com pute th e  num ber of accesses a t  each 

d istan ce , we com pute how m any  tim es th e  s ta te m e n t th a t  contains th e  reference is execu ted  by
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I n p u t :
A loop n es t w ith  the d a ta  dependence g raph  augm en ted  w ith dependence spans 
and  w ith  a r ra y  sections co m p u ted  for each dependence 
T he p a r tit io n e d  ite ra tion  space P a r t l S  for th e  loop 

O u tp u t :
T he sym bolic s tack  h istog ram  5  

M e th o d :
fo re a c h  p a r ti t io n  p  6  P a r t l S

fo r e a c h  s ta tic  array  reference r in the  loop body
j m i n j i A S i S ) )  if 3 J s.t. target (S)  =  r and J  is valid in p 

let A  =  <
[ otherw ise.

w here .4S(J) represen ts the  num ber o f d is tin c t array  elem ents in
th e  dependence sp an

S(A )-i- =  |p |. Since each  a rray  reference is accessed in each ite ra tio n  point.
th e  size of the  p a r tit io n  (the num ber o f ite ra tion  points considered)
gives us the  num ber o f dynam ic accesses to  r.

e n d  fo r e a c h
e n d  fo r e a c h

F igure  3.10: S tack  histogram  co m p u ta tio n  algorithm

tak in g  the product o f th e  ranges of th e  loops enclosing th e  s ta tem en t, where th e  loop index ranges 

are  given by the p a r titio n  under consideration .

O nce the stack h is to g ram  is com pu ted  sym bolically, th e re  are several approaches th a t can be 

taken  to  evaluate th e  expressions and  e s tim a te  th e  n u m b er o f cache misses. T hese  approaches are 

described  in Section 5.1.

3.3.7 Example - M atrix Multiplication

In th is  section we w ork th ro u g h  an  exam ple  of using dependence spans an d  a rray  sections (th e ir 

projections) to com pu te  th e  stack d istances exactly. F igu re  3.11 presents the  F o rtran  code for our 

exam ple, as well as th e  d a ta  dependences labeled  w ith  th e  ty p es and  dependence d istances for each 

loop, and  num bered in  th e  order in w hich th ey  are be p resen ted  in Table 3.2.

Table 3.2 shows for each  dependence th e  dependence sp an , the  array  sections spanned  by th e  

dependence, and  finally  th e  stack  d is tan ce  th a t  is co m p u ted  for th e  dependence.
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do i =  I. n 
do j  =  1 . n

C ( i . j )  =  0

do k =  1 . n
C ( i . j )  =  C ( i . j )

end  do 
end  do 

end do

(a)  F o r t r a n  code

A(i.k) * B(k.j)

F (0,0)

O (0.0) F (0.0,0)

A (0 ,0 , 1 )

O (0 .0 . 1 ) I (0.0.1) 1 (0 . 1.0 )

(b )  D a t a  d e p en d e n ce s

Figure 3.11: M atrix  m u ltip lication  exam ple.

I (1.0.0)
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To show how  th e  a lgorithm  works, consider dependence # 7 .  th e  input dependence  on reference 

A ( i . k )  carried  by loop j .  In the  first two co lum ns in Table 3.2. the  dependence sp an  is shown 

bo th  g raph ically  an d  geom etrically. Because th e  dependence is carried  by loop j  w ith  d istance L. 

the  dependence sp an  consists of th e  rem a in d er o f th e  ite ra tio n s  in loop k  in ite ra tio n  j  and  the  

itera tions up to  ite ra tio n  k  in ite ra tio n  j  +  I . T h e  a rray  elem ents accessed in th ese  ite ra tions are 

shown in th e  n ex t th ree  colum ns. For A.  these  elem ents are an  en tire  row o f th e  m atrix , elem ents 

from k  to  n on  row  i for ite ra tion  j  and  e lem ents from  1 to  k  on row i for ite ra tio n  j  -+-1. T h e  to ta l 

num ber of d is tin c t elem ents accessed in a rray  .4 is n.  C onsidering the  a rray  B.  aga in  th ere  are a 

to ta l of n  d is tin c t a rray  elem ents accessed, d is tr ib u te d  on  two colum ns of th e  m atrix , j  and  j  -f I. 

And finally, th e re  a re  only two elem ents accessed in a rray  C. C { i . j )  and C [ i . j  4- 1). T hus, the  

num ber of d is tin c t a rray  elem ents spanned  by th is  dependence is 2n 4- 2. T h e  num ber of d istinc t 

array elem ents sp an n ed  by th e  o th er dependences is com pu ted  similarly.

W hen th e  s ta ck  histogram  is com puted , since th is  dependence is the  only incom ing dependence 

on array reference .4(i.Ar). there  will r r  references a t d is tan ce  ^c. which occu r in th e  first itera tion  

of loop j  in each  ite ra tio n  of loop i. T h e  o th e r n 3  — n 2 references to  A(i .  k)  will h ap p en  a t d istance 

2 n t  2 .

3.3.8 Spatial Locality

In the previous d iscussion we considered th e  cache lines to  be of only one a rray  elem ent. In o rder to  

com pute the  s ta c k  h istogram  for real cache line sizes, we need to  determ ine th e  num ber of d istinct 

cache lines th a t  a re  spanned  by a  dependence. S ince we a lready  com puted  th e  num ber of d istinc t 

array  elem ents sp an n ed  by a  dependence, we ju s t  have to  tran s la te  th a t n u m b er in to  cache lines. 

In o ther w ords, we need to determ ine th e  cache lines layout for th e  array  sections.

Figure 3.12 show s an exam ple. A ssum ing a  two d im ensional a rray  .4. w ith  M M  A X  x X M A X  

elem ents, we show  th e  po ten tia l m apping  o f cache lines in co lum n m ajor o rd e r (such as F ortran). 

Also, assum e th a t  som e dependence sp an s th e  M  x X  a rray  section  shown as a  shaded  region in 

the  figure.

We co m p u te  L D A  =
M M  A X

. th e  n u m b er o f cache lines th a t  cover one colum n of the
L S

m atrix , w here L S  is the  size o f th e  cache line expressed  in  n u m b er of a rray  e lem ents. T he num ber
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F igure 3.12: C ache lines m ap p in g  on an a rray  section  

of cache lines covering an  a rray  section w ith  d im ensions A/ and .V is given by the  equation :

where o f  f  set  =  0  if th e  first elem ent of th e  a rray  m aps a t the beginning  of a cache line.

T h e  stack h istogram  is com pu ted  using th e  sam e algorithm  p resen ted  in Section 3.3.6. except 

th a t instead  of com puting  th e  num ber of d is tin c t a r ra y  elem ents accessed, we com pute th e  num ber 

of d is tin c t cache lines accessed. T h a t is. th e  a rra y  section  area .45  is re tu rn ed  in te rm s of cache 

lines. O f course, th e  expressions deno ting  b o th  s ta ck  d istances an d  a rra y  references will contain 

a  sym bolic variable for th e  cache line size. T h is  sym bolic variable is trea ted  like all th e  o ther 

hardw are  param eters th a t  a re  used in th e  p erfo rm ance expressions.

3.3.9 Associativity

It has been previously show n [63. 35] th a t  se t-assoc ia tive  miss ra tios can  be closely e s tim a ted  from 

th e  fully-associative m iss-ratio . T he com pile-tim e s tack  d istances a lg o rith m  estim ates th e  num ber 

o f misses for fully-associative LRU caches. T h erefo re , in order to  e s tim a te  the  num ber o f misses for 

a  real m achine, the  n u m b er o f misses for a  set assoc ia tive  cache are  deduced , using a  p robab ilistic  

a rg u m en t, from the n u m b er o f misses for fully assoc ia tive  cache. For de ta ils , see [35] Section  V.B.

(i x L D A ) % L S  +  \ [  +  o f f s e t
(3.(3)
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3.4 Indirect Accesses M odel

W hen  no t enough com pile-tim e in fo rm atio n  is available to  com pu te  the  d a ta  dependence d istance  

vectors, o th e r m ethods are requ ired  to  es tim ate  th e  num ber of cache misses since the  stack  d istance  

a lg o rith m  canno t be applied. T h e  m ost com m on case in which th e  com piler fails to  com pute d a ta  

dependences is when indirect a r ra y  accesses are present (the subscrip t of th e  array  is a  reference to  

a n o th e r a rray ). Therefore, we call th e  m odel th a t is used in th e  presence of indirect array  accesses, 

th e  indirect accesses model. T h is  m odel can be applied  to  any  array  references in a loop nest, 

however, it usually overestim ates th e  num ber of a rray  elem ents accessed.

T h e  m ain  idea behind th is  m odel is to  estim ate  the  num ber of array  elem ents accessed by 

co m pu ting  th e  number of ite ra tio n s  th a t  access the  array, i.e.. th e  to ta l num ber of references to  

th e  array , sim ilar to the work o f P orterfie ld  [52] and  F erran te e t al. [27]. We lim it th is num ber 

by th e  size of the array, since it is obvious th a t there  can not be m ore d istinc t array  elem ents 

accessed th a n  there are elem ents in  th e  array. O ne can contrive exam ples in which th is es tim atio n  

will ap p ro x im ate  very badly th e  a c tu a l behavior, bu t in m ost cases encountered in practice, the  

m ethod  approxim ates qu ite  well th e  m easured d a ta . We know o f no o th er m ethod th a t es tim ates  

th e  num ber of cache misses a t  com pile-tim e in th e  presence of ind irect accesses.

Using th is m ethod, the  n u m b er o f cache misses for level i in the m em ory hierarchy. M,  in 

E q u atio n  3.3. is com puted as follows:

w here. r e f s . \  represents the  n u m b er o f references to  a rray  A. s ize , \  represents the  num ber of 

e lem ents in a rray  A (since we use F o rtran  77. the  size of th e  arrays is known a t com pile-tim e), and  

e l e m S i z e .4 is the  size, in by tes, o f one elem ent of th e  a rray  A. T h e  elem ent size dependes on the

For exam ple, consider the  code in  F igure 3.13. It im plem ents a  sparse m atrix -vecto r m ultip li-

a t  In d ian a  University. T he loop m ultip lies  th e  m a trix  A ,  sto red  in com pressed sparse row sto rage .

m in(re/s..v . s i ze  a ) x e l e m S i z e \
B l o c k S  ize

distinct .4
(3.7)

dec lared  d a ta  type of a rray  A. B l o c k S i z e t is the  size o f th e  cache line for level i of the  m em ory 

hierarchy.

ca tio n  o p era tio n , and it is tak en  from  th e  Splib package [9]. a  lib ra ry  of sparse functions developed
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L I do i =  1. m
51 Y (i) =  O.OdO
L2 do k =  ia(i). ia (i+ l)-L
52 Y (i) =  Y(i) +  A(k) * X (ja(k ))

end  do
end do

Figure 3.13: Sparse m a tr ix  vector m ultip lication

w ith  th e  dense vector X .  and  stores the  resu lt in th e  vector Y .  The vectors ia an d  ia sto re th e  row 

and  colum n indices in th e  m atrix  .4. respectively. Since ia and j a  d ep en d  on the input d a ta  set 

(m a trix ), m any o f th e  accesses to array  X  in s ta te m e n t S2 can m ap to  the  sam e elem ent, depend ing  

on th e  value o f th e  a rray  element j a ( k ) .  T h e  b est we can  do a t compile tim e  is to  approx im ate the  

num ber of references to  A' by the m inim um  betw een the  num ber of ite ra tio n s  of the  loop and  the  

size of the  %-ector X .  which is known to be equal to  th e  colum n size of .4.

Obviously, in th is case, not even the  n um ber o f ite ra tio n s  is known a t  com pile time. However, 

by using profiling inform ation we can e s tim a te  it. In fact, the follwing code shows how Polaris 

generates in s tru m en ta tio n  to  collect the profiling in fo rm ation  needed.

REAL*8 a ( * ) , x ( n ) , y(m)
INTEGER iaC*), ja(*)

_delphi_cm = 0 
_delphi_count_x = 0 
DO i  = 1, m, 1 

y ( i )  = O.ODO
DO k = i a ( i ) , i a ( i + l ) - l ,  1 

y ( i )  = y ( i)+ a(k )*x(ja (k ))
ENDDO
_delphi_count_x = _ d e lp h i_ co u n t_ x + (ia ( l+ i)+ (- ia ( i) ))  
_delphi_cm = _delphi_cm +(8+(-12)*ia(i)+12*ia(l+ i))  

ENDDO
_delphi_cm = _delphi_cm+MIN(_delphi_count_x, n)*8 
_delphi_cm = _delphi_cm+8*m
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3.5 Sum mary

In th is  ch ap te r we have p resen ted  com pile-tim e m odels to  e s tim a te  th e  perform ance of scientific 

codes. An overall perfo rm ance p red ic tio n  m odel for a  co m p u tin g  system  is decom posed in to  p a rts  

th a t  m odel th e  C P U . th e  m em ory  hierarchy, the  I /O  system  an d  in ter-processor com m unication . 

T h e  com m on rep resen ta tio n  o f th e  perform ance d a ta  as sym bolic expressions, w ith variables for 

p rogram  co n stru c ts , in p u t d a ta  se t. an d  arch itec tu re , allows for m achine independent perform ance 

estim atio n  a t different p rog ram  granu ia ritie s .

A m odel for p rocessor execu tion  tim e estim atio n  was p resen ted . It counts operations in th e  high 

level language code an d  app lies com pile-tim e heuristics to  m odel low-level com piler o p tim iza tions. 

T he processor a rch itec tu re  is ab s tra c te d  by providing variables for g roups of basic operations.

T he bulk of th e  ch a p te r discusses th e  m odeling of th e  m em ory  hierarchy. A precise m odel of 

cache behavior based  on s tack  d istances is developed, an d  a  com pile-tim e algorithm  to  co m p u te  

the  stack  d istances is given. T h e  s tack  d istances com pile-tim e a lg o rith m  depends on th e  ab ility  of 

th e  com piler's d a ta  dependence te s t to  e x tra c t d istance vectors inform ation . In Polaris we use the  

O m ega tes t [53] for th is purpose . T he O m ega tes t is ab le  to  ex tra c t th e  d a ta  dependence d is tan ce  

inform ation  for m ore th a n  75% of th e  loops in SPEC'fp95.

For th e  cases w here dependence in form ation  is not a%-ailable. such as sparse co m p u ta tio n s w ith  

indirect a rray  accesses, a  sim pler m odel is p resented. T h is m odel es tim ates  the num ber of cache 

lines accessed in th e  loop using very' sim ple heuristics. E x p erim en ta l results w ith b o th  m odels are 

presented  in C h ap te r 6 .
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Chapter 4

Stack Distance and Stack Algorithm s

In th is ch ap te r we p resen t ou r experience w ith  th e  stack processing a lgorithm  to  quantify  program  

locality. We s ta r t  by presenting  a  new m etric  for d a ta  locality, the  stack  h istogram . We th en  

discuss several ways to  im prove the perfo rm ance of the LRU stack  processing algorithm s, when 

used to process m em ory  traces.

4.1 The Stack Distance as a M etric for Locality

"T here a re  th ree  m ost im portant factors in w riting program s, e ith er sequen tia l or par

allel: locality, locality, locality." [M ichael Wolfe, personal com m unication]

P rogram s w ith  good  d a ta  locality take b e t te r  advantage of th e  caches, have low com m unication 

costs an d  low in terconnection  network traffic. T here  are m any com panies th a t  will hire highly 

skilled program m ers ju s t  to  have them  tu n e  th e ir  most im p o rtan t codes to  ru n  well on a specific 

arch itec tu re . B u t. in to d a y 's  rapidly changing landscape, m achines becom e obsolete very soon, and  

the  program m ers keep changing applications to  su it the  new evolving arch itec tu res.

T here  is one m ost im p o rtan t ch arac te ristic  we are looking for in a  m odel for d a ta  locality  -  

architecture independence.  We would like to  specify  w hat is th e  locality  of a  p rogram  on ex isting  

m achines as well as on  fu tu re  architectures. W e consider th a t  a  good th eo re tica l m odel should be 

abstract,  to  h ide th e  d e ta ils  th a t would m ake it too  com plex), an d  general,  to  be applicable to  a 

large variety  of p rog ram s an d  system s.

T he m odel we p ropose is based on th e  "stack  processing" m eth o d  developed by M attson  et 

al. [43] to  ev a lu a te  th e  cost-perform ance o f p age replacem ent a lgorithm s in  v ir tu a l m em ory sys-
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Variable P ro g ram  1 Program  2  |
a 2 2  1

b 2 2

c 9 15 |
Average 4.33 6.33 ]

Table 4.1: In ter-reference d istances an d  averages for m em ory references in P ro g ram s 1 and  2

tem s. T heir tech n iq u e , for a particu la r page rep lacem ent algorithm  (such as Least R ecently Used), 

com putes a  success funct ion,  based on the  frequencies of accesses a t different s tack  distances, in a  

single pass th ro u g h  th e  m em ory trace. T h e  s tack  distances are com pu ted  by m ain ta in ing  a  list of 

pages in an  LRU s tack , and m easuring a  d is tan ce  on th is stack for every page reference.

Our m odel for d a ta  locality also m ain ta in s  an  LRU stack, but the reso lu tion  is e ith e r a t m em ory 

location level for tem p o ra l locality, or a t  cache line level for spatia l locality. T h e  m odel can be 

easily extended to  h and le  m ultiprocessor codes by m ain tain ing  a sep a ra te  s tack  for each processor.

Lilja et al. [42] propose the in ter-reference d istance as a model for locality. T hey  define the  

inter-reference d is ta n c e  as the num ber of m em ory  references th a t occur betw een  two references to 

th e  same m em ory location . T hey claim  th a t th e  inter-reference d istance can  be used as a  m easure 

for the tem pora l locality  of the variable, an d  th a t  the  average of all th e  in ter-reference distances 

for all the variab les in  the  program  can be used as a  m easure of tem pora l locality  th a t exist w ithin 

a  program .

Consider th e  following exam ple of m em ory  traces generated  by two different program s: 

Program 1: c a b a b a b a b c  

Program 2: c a b a b a b a b a b a b a b c

Inter-reference d istances and th e ir averages are  shown in Table 4.1. We no te  th a t the  inter- 

reference d is tan ce  averages differ for the  two program s, leading us to  believe th a t  th e  first program  

has b e tte r tem p o ra l locality th an  th e  first one.

This is ac tu a lly  n o t true, since b o th  p rog ram s have the  sam e w orking se t. an d  in  fact there  

is more reuse in th e  second program , as p roven  by th e  stack  d istances a lg o rith m  (see Table 4 .2).. 

which gives th e  sam e  d istances for b o th  p rog ram s, b u t m ore references to  d is tan ce  2 .

A lthough one c a n  reason ab o u t locality  using  the  stack  histogram , if a  single num ber th a t  

defines the locality  o f the  program  is desired , we can  com pute th e  average locality  based on the
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P rogram  1 Program  2

S tack  D istances #  References S tack  Distances #  References
DC 3 DC 3
o 6 2 1 2

3 1 3 1

T able 4.2: S tack d istances and n u m b er o f references in P rogram s 1 an d  2

histogram  as follows:

E  ('>* x *'('>))

d

w here ,s(J) is th e  n u m b er of accesses a t stack  d is ta n c e  6. and 6 are th e  stack  d istances for which 

s(S) > 0. The lower th e  value of AugLoc.  the  b e t te r  th e  locality of th e  program .

As an exam ple, consider m a trix  m ultip lication . It is well known th a t tiling  im proves locality  in 

m atrix  m ultip lication  [75. 17]. In Figure 4.2 we p resen t the  stack h istogram s for a LOOxlOO m atrix  

m ultiplication, an d  tw o versions of tiled m atrix  m u ltip lica tio n  loops: th e  one in F igure 4 .2(b) has 

th e  two outerm ost loops tiled w ith  tile size 25. an d  th e  one in Figure 4.2(c) has all th ree  loops tiled, 

tile size being also 25. T h e  codes for these loops a re  show n in Figures 4 .1(a-c).

In Table 4.3. we show  how th e  two m etrics for locality , the  inter-reference d is tan ce  and  th e  stack 

d istance com pare for m a trix  m ultip lication  and  its tiled  versions. For each m etric , we consider the 

th ree  versions of th e  m a trix  m ultip lication  loop, th e  classical i j k  loop, th e  o u term o st ( i j )  loops 

tiled (2-tiled) an d  all th ree  loops tiled (3-tiled). W e consider bo th  tem p o ra l and  sp a tia l locality. 

For spatial locality, two values are  given, for cache line sizes (C’LS) of 32 bytes an d  I2S bytes. 

T hese correspond to  4 an d  16 a rray  elem ents p er cache line and  are am ong th e  m ost com m only  

used values for th e  cache lines in  L l and  L2 caches, respectively.

We note th a t ,  for tem pora l locality, there  is no  difference betw een th e  2-tiled  loops an d  the 

classical loop w hen using  th e  inter-reference d is tan ce  m etric . A nother anom aly  o f th e  in ter-reference 

d istance m etric can  b e  observed for spatia l lo ca lity  betw een the 2-tiled  an d  3-tiled  loops. The 

locality  m etric increases w hen th e  locality  im proves. T hese  anom alies a re  a consequence o f th e  fact 

th a t  the in ter-reference d is tan ce  m etric considers all th e  references betw een two accesses to  the 

sam e m em ory location , no t ju s t  references to  new m em ory  locations. M oreover, w hen averaged
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do i  = 1, n  
do j  = 1 ,  n 

do k = 1, n
c ( i ,  j )  = c ( i ,  j )  + a ( i ,  k) * b ( k ,  j )  

enddo 
enddo 

enddo

(a)  M a t r ix  m u lt ip l i c a t io n

do i i  = 1, n ,  TILE 
do j j  = 1 , n ,  TILE

do i  = i i ,  M IN Cii+TILE-1, n) 
do j  = j j , M IN C jj+TILE-1, n) 

do k = 1, n
c ( i ,  j )  = c ( i ,  j )  + a ( i ,  k) * b ( k ,  j )  

enddo 
enddo 

enddo 
enddo 

enddo

(b) 2 - t i led  m a t r ix  m u lt ip l i c a t io n

do i i  = 1, n , TILE
do kk = 1, n ,  TILE

do j  j  = 1 , n , TILE
do j  = j j ,  M INCjj+TILE-1, n)

do k = k k , m in (k k + T IL E -l, n)
do i  = i i ,  M IN (ii+ T IL E -l, n ) , 1

c ( i ,  j )  = c ( i ,  j )  + a ( i ,  k) * b ( k ,  j )  
enddo 

enddo 
enddo 

enddo 
enddo 

enddo

(c) 3 - t i led  m a t r ix  m u l t ip l i c a t io n

F igure 4.1: F o rtran  code for tiled  m a tr ix  m ultip lication
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(a) M a t r ix  m u lt ip l ica t ion  100x100
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(b) M a t r ix  m u l t ip l i c a t io n  100x100 - 2 t i le d  25x25  (c) M a t r ix  m u l t ip l i c a t io n  100x100 - 3 t iled 25x25

Figure 4.2: S tack  histogram s for m a trix  m u ltip lica tio n  and  tiled  m a tr ix  m ultip lication
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M etric Locality C lassical MM 2 -tiled 3-tiled

Inter-reference
D istance

T em pora l
S p a tia l (CLS =  32) 
S p a tia l (CLS =  128)

101.005
2650.007

886.009

101.005
2650.007

859.009

91.462
2668.749

868.798

Stack
D istances

T em pora l
S p a tia l (CLS =  32) 
S p a tia l (CLS =  128)

2619.890
221.146

46.971

886.451
93.087
36.014

367.794
30.219

6.026

Table 4.3: T em poral locality for m a tr ix  m ultip lication

over all variables, the  variables w ith  bad locality, even if accessed only a  few tim es, co n trib u te  the 

sam e weight as good locality  variables.

O n th e  o th e r hand , th e  s tack  d istances m etric does no t suffer from these anom alies. T h e  stack 

processing a lgorithm  m akes su re  th a t  only accesses to  new m em ory  locations or in a position  below 

a  m em ory location in th e  s tack  m odify the stack d istance o f th a t  location. Thus, the  s tack  d istance 

m etric  behaves as expected  -  w hen program  locality increases, the value of the average locality 

decreases.

4.2 LRU Stack Processing Algorithms

T his section describes o u r experience using the stack  processing  algorithm  [43] for es tim a tin g  the 

num ber of cache misses in scientific program s. By using a  new  d a ta  s tru c tu re , and various op tim iza

tion  techniques, we o b ta in  in stru m en ted  run-tim es w ith in  50 to  LOO times the orig inal op tim ized 

run -tim es of our benchm arks.

T h e  stack  a lgorithm  [43] was originally designed for m odeling  v irtual paging, i.e. to  o p era te  on 

a  p rogram  trace  consisting  o f v ir tu a l page references, b u t in  th e  recent past has been used m ainly 

to  m odel cache behavior, by  trac in g  cache line references [65. 67. 35. 70].

T h e  m ain  advan tage of th e  s tack  algorithm  in s im u la tin g  cache behavior is th a t  it allows the 

e s tim atio n  o f the  num ber o f m isses for caches of any size in  a  single pass th rough  the  trace . V ariants 

of th e  a lgo rithm  have been used to  sim ulate caches of m u ltip le  line sizes.

T h e  s tack  a lgo rithm  is how ever very expensive to  n m . especially  if the  stack becom es large 

enough. It was soon recognized th a t  more efficient d a ta  s tru c tu re s  were needed to  do  th e  job  of 

th e  s tack  search. B en n e tt a n d  K ruskal [6 ] presented  an  a lg o rith m  which replaces th e  s tack  w ith
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a  preallocatecl h ierarchy  of partia l sum s. H ill and  Sm ith [35] used a  forest of trees  to  sim ulate 

m ultip le cache associa tiv ities: Sugum ar an d  A b rah am  [65] used a  generalized b inom ial tree for th e  

sam e purpose.

Seeking to  fu rth e r im prove the p erfo rm ance  of the  stack a lgo rithm , we in tro d u ce  two new d a ta  

s tru c tu re s  an d  correspond ing  algorithm s, each  of which is m ore su itab le  for a  p a rticu la r kind of 

app lica tion . T h e  interval tree approach w orks well for program s w ith  long traces b u t relatively good 

locality, w hereas th e  preallocated tree ap p ro ach  is more suited  to  sh o rte r  traces w ith  bad locality.

Figure 4.3 gives a form al three-step  d esc rip tio n  of the LRU stack  algo rithm , as first described 

by M attso n  in [43]. We use this descrip tion  as th e  basis for th e  a lgorithm s we presen t.

It is assum ed  henceforth  th a t the a lg o rith m  is operating  on a  m em ory trace  o f  length .V th a t 

contains M  d is tin c t m em ory references (obviously  M  <  .V). For th e  no ta tio n s used in this chap ter 

refer to  Section 4.2.9.

| Repeat th e  following steps for each m em ory  reference x r . 0 <  r  <  .V: j
] I

' •  s e a rc h :  find th e  location in the  s tack  o f the  most recent reference to  th e  cu rren t location, j
| :

•  count: co m p u te  d i s t (~ ). the s tack  d is tan ce  for the curren t location , by finding the previous |
I reference to  th e  curren t location an d  coun ting  the num ber of elem ents on th e  stack above I
i it. If th e  m ost recent reference is n o t found, d is t ( r )  is defined as rc. j
!  j
J • update: bring  th e  m ost recent reference to  the  top of th e  stack . I

F igure 4.3: S tack algorithm

4.2.1 Naive Implementation

T his im p lem en ta tio n  d irec tly  follows th e  a lg o rith m  presented above. T he stack  is represented  as a 

doubly  linked list. For each reference in th e  tra c e , the  first two op era tio n s (search an d  count) are  

execu ted  sim u ltaneously  by traversing th e  s ta c k  top  to  bo ttom . If th e  elem ent ex ists  in the  stack, 

its d istance  from  th e  to p  of the stack  is recorded . F inally the  elem ent is m oved from  its curren t 

position  to  th e  to p  of th e  stack -  the  update stage. If the elem ent is not found, oc is recorded as 

its stack  d is tan ce  an d  th e  elem ent is p ushed  o n  top  of the stack .

Analysis For each  reference in th e  tra c e  th e  work done is. in  th e  w orst case, M  (due to  th e  

trav ersa l o f th e  linked list). The toted co m p lex ity  is thus O ( N M ) .
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T he worst case d o e sn 't  happen  very often . In  fact, m any program s exh ib it excellent locality, 

causing m any references to  lie close to  th e  to p  o f th e  stack . U nfortunately  th e  few references th a t 

are near the b o tto m  o f th e  stack  cause huge slow -dow ns, resu lting  in overall bad  perform ance.

4.2.2 Markers Algorithm

T he m ajor cause o f slow ness in the  naive a lg o rith m  is the  linear traversal o f th e  linked list th a t 

makes up the  stack . T h e  markers  a lg o rith m  a t te m p ts  to  replace linear search  w herever possible.

T he s e a rc h  phase  o f the  m arkers a lg o rith m  is done using a  hash tab le  th a t  assoc ia tes a  cache 

lin e /m em o ry /p ag e  reference w ith its cu rren t p lace in th e  linked list. G iven enough hash buckets, 

hashtable access an d  u p d a te  are 0 (1 )  o p era tio n s. T h e  num ber of necessary h ash  buckets can be 

approx im ated  w ith  M .  th e  num ber of d is tin c t references in th e  trace.

U nfortunately  find ing  an  elem ent in th e  m idd le  o f th e  stack  by using th e  h ash tab le  is no t enough. 

T he stack d ep th  o f th e  elem ent needs to  be co u n ted . To avoid traversing  th e  s tack  from top to 

bo ttom , a  set of markers  are in terspersed  in th e  linear list im plem enting th e  s tack , one ab o u t every 

D elem ents. T he m arkers form an o th e r doub ly  linked list, and  each m arker records its d istance 

from the top. To find o u t the  d ep th  o f a  m em ory  reference in the  stack , one needs to  find the 

nearest m arker by trav ers in g  th e  s tack  (a  m ark e r would be a t  m ost D  s teps aw ay) an d  then  look 

up the m arker's d is ta n c e  from the top .

W hen an  elem ent is removed from  th e  s tack  an d  inserted  a t the top . th e  m arkers betw een the 

top  and the elem ent need to  be u p d a ted . T h is  involves a t  m ost A/ / D  steps.

A n a ly s is  T h e  cost p e r m em ory reference o f th is  a lgorithm  is a t m ost D  -r M / D  ( th e  cost of 

finding a m arker, p lus th e  cost of u p d a tin g  all m arkers up to  the  beginning o f th e  stack ). D  can 

be varied a t ru n tim e by adding  or rem oving m arkers, in o rder to  m inim ize th e  cost: assum ing D 

= \ y /M } .  th e  cost eva lua tes to  0 ( \ / T f )  p e r e lem en t, or 0 { N  * s /TI)  to ta l.

4.2.3 Alternative Data Structures

T h e m ajor s tu m b lin g  block in im plem enting m o re  efficient versions of th e  LR U  s tack  a lgorithm  is 

th e  im plem entation  o f th e  stack  as a  linear lis t. W e will present a  fo rm ulation  o f th e  LRU stack 

algorithm  th a t does n o t use a  stack. W e will closely  follow B ennett an d  K ru sk a l's  [6 ] n o ta tio n .
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D e f in i t io n  1 . We form alize th e  concept o f th e  hash tab le  P .  which we already used inform ally in 

th e  m arkers algorithm . Let us define J  as th e  set of indices o f references to r  th a t  occu rred  before 

an  index  t  in the trace:

J r  =  {( |0 <  i < T A Xi  =  c}

Using J  we define th e  h ash tab le  P -  as follows:

m a x { i  ji € J \  if J  #  0 
P r(~ ') =  <( (4.1)

u n d e f i n e d  o therw ise  

P r ( : )  is undefined w hen a  cold miss occurs, i.e. when th e re  is no previous reference to  c.

D e f in i t io n  2. N ext we define B . a  m apping  from th e  tra c e  indices 0 . . .  .V — I to  {0. L}. Like P . 

B  changes w ith tim e an d  therefore is subscrip ted  w ith r .  B r (i) is defined its follows:

B r ( i )  =
1 if P - (£; )  =  i

(4.2)
0  o therw ise

B r (i) is 1 if a t tim e  r  th e re  is no reference to  x, in th e  p ro g ram  trace a t any  index larger than

i.

D e f in i t io n  3. G iven P  an d  B  we can  define dis t {r) .  th e  s ta ck  d istance of th e  elem ent .rr in the 

p rog ram  trace: it is th e  n u m b er of l 's  in B  betw een th e  last reference to  x r an d  t .

d i s t ( r )  = <
\H\ if P r (xr ) is defined

(4.3)
cc otherw ise

w here W. is the set o f tra c e  indices a fte r P r (x;) whose B  values are  1:

y .  =  {i | P r (zv) < i < t  A B r (i) =  1}
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R e p e a t  for each  reference x T. 0 <  r  <  iV:

• s e a rc h :  co m p u te  P r (x-):

• c o u n t :  eva lua te  d is t (r ) .  If P r (x) is undefined th en  d i s t (r )  is defined as x :

• u p d a t e :  change B  and  P  as follows:

f 1 if i = r

B r =  < 0 if i =  P - ( x r )

[ B r ( 0  otherw ise

„  I r  i f ;  =  x -
P ^ ! ( : )  =  <

I P - ( - )  o therw ise

F igure 4.4: Modified stack  algorithm

We can now refo rm ulate  the s tack  a lgo rithm  by using P  an d  B  in stead  of the stack.

4 .2 .4  B e n n e t t  a n d  K r u s k a P s  A l g o r i t h m

We present B en n e tt and  K ruskal's a lg o rith m  [6 ] first because it in troduces ideas we need la ter.

The a lg o rith m  represents P  and  B  explicitly. T he first s tep  of th e  algorithm , evaluating P ( x - ) .  

is a hash tab le  lookup.

The c o u n t  s te p  of the a lgo rithm  counts the  num ber o f tru e  values in B  between th e  indices 

P ( x - )  and  t . To m ake the coun ting  s tep  efficient. B ennett and  K ruskal use a  hierarchy of p a rtia l 

sums B P B "  . .  . B ^ .  where L =  \ l o g ( N )] . Renam ing B  to  B ° . the  p a r tia l sum  hierarchy is set up 

such th a t for som e chosen in terval m .  a t  any tim e r .

B \ { j )  =  Y .  B ‘ ~ 1^
i=j-m

This form ula describes an  m -ary  tree  o f nodes having th e  value o f each node being equal to  the  

sum  of th e  values o f its children.

C alcu la ting  th e  num ber of l 's  betw een  the indices P ( x - )  and  r  is now a  m a tte r  of traversing  

the partia l su m  hierarchy, as show n in F igure 4.5. T h e  figure p resen ts th e  first 31 elem ents of a 

trace. We tra c e  th e  3 1 ^  access, an d  X3 I last occurred  in position  4.

T he th ird  s tep , u p d atin g  B . also becom es a  m a tte r  o f tree  traversal, since all p a rtia l sum s on
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B5

B4

B3 

B2 

B1 

BO

dist = 0 + 4 + 5 = 9

/ \  x \ !  - ' 'X  

l O O l O O O O O O  1 0 0
/ x  a a a  

1 1 1 
t  X  X 0 0 0 0 1 0 1 0 1 0  0 0 0 1 0 1

t=  31

dist = 0 + 4 + 5 = 9  

Figure 4.5: A p a rtia l sum  hierarchy

the pa th  from  the  roo t o f th e  hierarchy to  th e  leaf node are  affected.

The a lgo rithm  needs tw o traversals of th e  tree . T h e  first traversa l, from the  ro o t to  index P ( r - ) .  

deletes P ( r r ) as th e  last reference to x  by se ttin g  £?(P(xr )) value to  0 and  a d ju s tin g  all partia l 

sum s along th e  p a th . T h e  second traversal is from  th e  root to  index r  an d  se ts  B ( r )  to I. again 

ad justing  p a rtia l sum s on  th e  path . For reasons of b rev ity  we are  not going to  fully explain the  

algorithm , except to  m en tio n  th a t our m ajo r im provem ent, to  be presented in th e  next sections, 

replaces th e  two trav ersa ls  w ith  a  single trav ersa l o f the  tree .

A n a ly s is  S ince th e  tre e  traversal is an  0 { l o g ( N ) )  o p era tio n  an d  th e  location  finder works in 

constan t tim e (h ash tab le  lookup is 0 (1 ) ) .  th e  to ta l execution  tim e is 0 ( N l o g ( N ) ) .  T he m em ory 

requirem ents of th e  a lg o rith m s are very large because B  an d  its  p a rtia l sum s are  represented 

explicitly in m em ory.

4.2.5 Hole-based Algorithms

We define a  hole as a  m em ory  reference in  th e  p rogram  trace  th a t  is not  th e  la te s t  reference to  a  

particu la r location  a t  tim e  r .  Holes are th u s  elem ents in  B r  th a t  have been se t to  0.
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W hereas values o f 1 in B  (and  corresponding la te s t references) a re  newly c rea ted  and  th en  

destroyed all th e  tim e , holes have th e  p roperty  of being c rea ted  a n d  never destroyed.

Using th e  concep t o f holes, th e  s tack  d istance a t index  r  can  be expressed as

clist{r) =  r  — P r( x T) — h o le s - ( P ~ (x ~ ) )

where holesr (i) is th e  num ber of holes in th e  program  trace  betw een  indices i an d  r .  Here we are 

in effect coun ting  th e  0 's  in B  in stead  of counting th e  l 's .  an d  ad ju s tin g  E quation  (4.3) to  reflect 

this.

Holes can  be rep resen ted  m ore efficiently th an  la tes t references. We will p resent two kinds of 

algorithm s based on  holes, a varian t in which holes a re  held  by an  interval tree  an d  an o th er which 

is a faster version o f B en n ett and  K ruskal's algorithm .

4.2.6 Interval Tree of Holes

An interval tree  is used to  efficiently represent an  o rdered  se t o f m utually  d isjunct intervals /  =

{[*u- *r’i- [* 2 1  • *2 2 ].........[*ni• rn2 ]}• In o u r case the intervals in I  a re  all bounded by n a tu ra l num bers

(indices in th e  p ro g ram  trace). T he intervals represent con tiguous sets of indices th a t  are holes in 

th e  trace.

Interval trees (F ig u re  4.6) a re  represented as a  q u asi-b a lan ced  binary  trees B T  (such as red- 

black trees [IS] or AVL trees [39]) in which each node n  rep resen ts  th e  closed in terval [Aq(n). A.-i(n)]. 

T h e  tree o rdering  corresponds to  th e  order of the  in terva ls in I: thus Aq(n) >  A.'o(/e/t(n)) and 

Ara(n) <  k i ( r i g h t ( n ) ) .  w here l e f t ( n )  an d  r ight{n)  are respectively  th e  left and  righ t children  o f n .

T h e  P a r t i a l  S u m  H ie r a r c h y

We use the in terva l tre e  to  evaluate  th e  num ber of holes betw een  P { x r ) and  r .  T h e re  a re  no holes 

beyond the  cu rren t index  r  (a logical im possibility considering  th e  definition o f a  hole). T h u s we 

are  left w ith  co u n tin g  th e  num ber o f holes a t indices la rg e r th a n  P ( x T). To do th is , we follow 

B ennett and  K ru sk a l’s m ethod  and  associa te  a value s u m ( n )  w ith  each in terval no d e  n . to  hold 

th e  sum  of holes co n ta in ed  in th e  children of n . O ur hole tre e  now  becom es equivalen t to  B en n e tt 

an d  K ruskal's p a r tia l  su m  hierarchy.
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Figure 4.6: A n in terval tree
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h o les(lO l) =  3 + 1934 + 2 +  1 2 =  1951
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2302-2303

change to 25-101

Figure 4.7: U pdating  the tree  o f holes

A slight o p tim iza tion  is to  m ake su m ( n )  hold the  sum  of holes in th e  right subtree of n  instead 

of n  itself. In F igure 4.7 th e  shaded boxes contain  p a r tia l sum s of th e  right su b tree  of their 

nodes, as ind icated  by the  dash ed  arrows. T h is o p tim iza tion  reduces the  num ber o f right subtree 

dereferen tiations w hen the  nex t ta rg e t of the  tree traversal is the  left su b tree  (in F igure 4.7 the 

nodes m arked w ith  (*) will no t need to be dereferenced).

T he counting a lgo rithm  works like this: we traverse th e  in terval tree  from the  roo t tow ards the 

leaf node closest to  index i =  P (x~) .  We carry  a  p artia l su m  along th e  p a th , and  ad d  to  it th e  sum  

o f holes in all su b trees  encoun te red  to the right of th e  p a th  (i.e. having indices larger th a n  i).

U p d a t in g  t h e  I n t e r v a l  T re e

We now ex tend  th e  coun ting  a lg o rith m  to  include the  th ird  com ponen t of th e  LRU s tack  algorithm : 

u p d a te .  We need to  u p d a te  th e  tree  s tru c tu re  as well as th e  p a r tia l s tun  hierarchy resid ing  in it. 

W ith  regard  to  in serting  a  new  hole p  in to  the  in terval tree , th e re  are  several cases to  consider:

•  p m ay be ad jacen t to  a  sing le existing interval [fci, Aro] in  th e  tree . i.e. p  =  k i  — 1  o r p  =  -I-1 .
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In th is  case the  in terva l is ad ju sted  to  include p.

• p  m ay be ad jacent to  tw o intervals [Aq.p — 1] and  [p 1 . A^j. In this case th e  in tervals are 

fused in to  a  single in te rv a l [k\. £3 ] p ro m p tin g  th e  deletion  o f one of th e  nodes an d  th e  po ten tia l 

re -balanc ing  of the  w hole tree.

• p  m ay no t be ad jacen t to  any  intervals in B T .  In th is case a  new node is c rea ted , to  hold the  

in terval [p.pj. A gain, th e  tree  m ay need to  be rebalanced.

T he p artia l sum  hierarchy is u p d a ted  by changing  the  s u m  values of the  nodes on th e  p a th  from 

th e  root to  th e  affected in terval. F igure 4.7 illu s tra te s  the o p e ra tio n  of counting holes an d  inserting  

a  new hole a t location 101 in an  exam ple tree . F igure 4.8 lists th e  algorithm  th a t  perfo rm s this 

operation .

Analysis T h e  algorithm  p resen ted  in F igure 4.7 is based  on a  quasi-balanced b in ary  tree. 

dist{p.  n) is a variant of th e  insertion  o pera tion  for quasi-ba lanced  b inary  trees, which m akes it an 

O(lotj(. \[))  o p era tio n  (th e  n u m b er o f d isjunct hole intervals, an d  th u s nodes in the  tree , is always 

less th an  M -f l) .  T hus th e  to ta l  execution tim e o f the  B inary T ree Hole A lgorithm  is 0( . \ ' l og ( . \ [ ) ) .

4.2.7 Preallocated Tree of Holes

A tree of holes can also be im plem ented  as a  preallocated  fixed tree  {B °. B l . like the

one of B ennett and  Kruskal. U nfo rtu n ate ly  th e  m em ory requ irem en ts for the whole tre e  get quickly 

o u t of hand: for a  program  tra c e  of length  2 3 1  (a  realistic n u m b er for todays program s) we need to 

allocate  1 4- 2 4- 22 -I- ... 4- 23 0  =  23 1  — 1 locations.

T he silver lining is th a t  no t all locations need to  be o f th e  sam e size. E lem ents of B o. for 

instance, need to  hold on ly  one b it: elem ents o f B i  need to  be tw o b its  each, and  so on: the  to ta l 

m em ory requirem ent is |  x (23 0  -I- 2  x 22 9  +  3 x  22 3  +  . . .  +  31 x  2°) =  536.87MB. w hich fits into the 

v irtu a l m em ory  of m ost m o d ern  w orksta tions. Also, th e  a lg o rith m  does not use all o f th is  m em ory 

a t  once, b u t ra th e r  progresses slowly th ro u g h  it as the  tra c e  is analyzed . T his allow s for huge 

portions o f th e  p reallocated  tree  to  reside in v ir tu a l storage.
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function dist (n. p) j
begin j

if (p  j k t y  t(n) -  1 ) /*  con tinue search  left * j  \
if  (/e/f(n) ni l)  !

return s iim (n )-K lis t( /e /£ (n ))  |
else /*  c a n 't  continue left - no nodes left * / j

left(n ) :=  new in terval Cp.p) '
sum (left(n )) :=  0  

return sum( n)
end if j

else if (p >  key-2 (n)  ■+■ 1 ) / *  con tinue search  right */  j

if  (r ight (n )  7= nil)  j
.stunt n) :=  s u m (n )  +  I |
return dist(rt« 7/i£(n)) |

else / *  c a n 't  continue right - no nodes left * / ;
righ t(n ) :=  new interval (p.p)
su m (rig h t(n )) :=  0  ;
return 0  

end if
e ls e  if (p =  k e y i ( n )  — 1 AND p =  key-2 ( l t f t ( n ) )  +  1 ) /*  m erge left node * / |

Are 1/1 (n ) :=  k e y i ( l e f t ( n ) )  \
rem ove_node(/e/£(n)) j
rebalance(n) I
r e t u r n  k e y ^ i n ) — p  +  s u m ( n )  \

e ls e  if (p =  A-eyi(n) — 1) j *  ad d  to  node * j  I
A-eyi(n) :=  p
r e t u r n  A-e(/o(n) — p +  sum(n)  

e ls e  if (p =  keyo(n)  +  1 AND p =  keyi{right (n))  — 1 ) / *  m erge right node * /  i 
keij2 {n) :=  keij2 (right(n))  
rem oveu iode(fe /£ (n )) 
rebalance(n) 
r e t u r n  sum( n) 

e l s e  if (p =  keyoin)  +  1) / *  ad d  to  node */
key-2 {n) := p 
r e t u r n  sum (n) 

e n d  if
e n d

F igure  4.8: In terval tree  u p d a te

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A n a ly s is  S ince th e  tre e  is p reallocated , an d  has N  leaf nodes, tree traversal is now an  0 { l o g ( N ) )  

operation ra th e r  th a n  0 ( l o g ( M ) ) .  which w ould seem  to  m ake th is  algorithm  im practical. Also, th e  

tree needs to  b e  a llo ca ted  before the p rog ram  is run . which m eans th a t th e  u ser has to  guess :V.

However, once N  is ca lib ra ted , th e  a lg o rith m  becom es th e  fastest we tried  so far. ou tperfo rm ing  

B ennett and  K ru sk a l's  by a  factor of up to  2:1. T h e  reason for th is is th a t  on ly  one tree traversal 

is needed per e lem en t, as opposed to  two for B ennett and  K ruskal's  algorithm .

4.2.8 Experimental Evaluation

We selected th e  Perfect B enchm arks [7] as our experim ental base and in stru m en ted  them  w ith a  

source-to-source tra n s la to r  to  generate  a  p rogram  trace. R a th e r  th an  storing  th e  program  trace  we 

hooked up th e  an a ly zer to  th e  in stru m en ted  benchm ark  directly , and  g enerated  the  trace and  th e  

h istogram  on th e  fly.

At first we used th e  naive im p lem en tation  of the  LRU stack  algorithm , an d  experienced a  d rastic  

slowdown. In an  effort to  find b e tte r  im p lem entations of the  LRU algorithm  we experim ented  w ith  

all algorithm s described  in th is chap ter.
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We ra n  our experim ents on  a  270M Hz U ltrasp arc  Solaris m achine. Table 4.4 sum m arizes the  

resu lts we obtained . B enchm arks are  listed  by nam e: th e  to ta l  num ber of references and  the  

m axim um  stack  dep th  are included .

T h e  algo rithm s we m easured are  th e  following:

•  o r i g  is the  runtim e of th e  orig inal non-instrum en ted  benchm ark .

•  n u l  m easures the trace  g en e ra tio n  overhead, bu t the  s tack  processing part is no t im plem ented. 

We m easured "nul" to  find ou t how m uch th e  benchm arks a re  affected by ju s t  generating  the 

trace.

•  B&K an d  p re  are p reallocated  im p lem entations of B en n ett an d  K ruskal’s. and  th e  preallocated 

tree  hole based a lg o rith m ’s, respectively.

•  a v l  an d  r b  are interval tre e  im p lem entations using AV'L an d  red-black trees respectively.

•  mrk is th e  m arkers a lgo rithm . M any of th e  num bers are  m issing  because we had  to  ab o rt runs 

th a t  were taking too long.

We also show (Figure 4.9) th e  increase in execution tim e for all these benchm arks w ith  respect 

to  th e  op tim ized  execution tim e  o f th e  p rogram . T he th ree  b ars  for each benchm ark  in Figure 4.9 

dep ic t, from left to  right, th e  increase in execu tion  tim e by ad d in g  in stru m en ta tio n  to  collect the 

program  trace  on the fly. the  increase in execu tion  tim e of ou r p reallocated  tree a lgorithm , and the  

increase in execution tim e of o u r im p lem en ta tion  of B ennett an d  K ruskal’s algorithm .

We m easured  the relative overhead  of th e  s tack  co m p u ta tio n . F igure 4.10 breaks down the 

to ta l ru n tim e o f each benchm ark  in to  the  tim e  sp en t in th e  o rig in a l benchm ark, in s tru m en ta tio n  

overhead  (i.e. tim e spent g en e ra tin g  the  p rog ram  trace), hash  ta b le  lookup overhead  and  stack 

co m p u ta tio n  overhead.

T h e  in terval tree based a lg o rith m s have b e t te r  theo re tical b o u n d s  th an  th e  p reallocated  tree 

a lgo rithm s. 0 ( N l o g ( M )) versus 0 { N l o g ( N ) ) .  T here are several reasons why th e  preallocated 

a lg o rith m s ten d  to  yield b e tte r  execu tion  tim es in  practice:

•  T h e  in terval tree im p lem en ta tio n  severely stresses th e  m em o ry  bandw id th  o f th e  host pro

cessor. For each elem ent in  th e  p ro g ram  trace  th e  in terv a l tre e  a lgorithm  generates abou t
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3 • lo g (M )  add itional references while traversing  the  in terval tree : in  each tree  node a t least 

one node key is accessed: in ad d itio n  th e  node's p a rtia l sum  is accessed an d  one of the leaves 

is dereferenced.

T h e  value o f M  can  be app rox im ated  w ith  the m easured m ax im um  s tack  dep th , which for 

m ost of o u r algorithm s yields an  AVL tree  height of a ro u n d  20 to  25. resu lting  in up to  75 

e x tra  m em ory  accesses p er elem ent in th e  m em ory trace . In  th e  case of red-black trees the  

uUln'uci' uf re fe re n c e s  is eVcU h ig h e r .

By com parison  the p reallocated  tree  im plem entation  genera tes on ly  lo g (N )  (or 2 • log{ .V ). in 

th e  case o f  K ruskal’s algorithm ) references. In practice we lim ited  N to  231. which m eans 31 

m em ory  references for each tree. In ad d itio n  the p reallocated  tree  is bu ilt such th a t ad jacent 

nodes a t  lower levels tend  to  be c lu stered  into the sam e cache line, resu lting  in good sp a tia l 

locality.

• T h e  in te rva l tree im plem entation  relies on dynam ic m em ory  a llo ca tio n  as th e  interval tree 

sh rinks an d  expands in th e  course of th e  process. We were ab le  to  g a in  up  to  33% in execution 

speed by w riting  o u r own m em ory a llo ca to rs  (this gain is included  in th e  perform ance figures).

T he b e tte r  speed  of the  preallocated  s tra te g y  comes, however, a t  th e  cost of extrem ely  high 

m em ory usage (ab o u t 600 M Bytes of v irtu a l m em ory for th e  p rea llo ca ted  tree) and  a  hard  lim it of 

23 1  references in th e  m em ory trace. For a  few of the benchm arks th is  lim it is exceeded.

T he in terval tree  im plem entation , if slower, has no inherent lim ita tio n  w ith  respect to  th e  trace  

size and  delivers reasonable perform ance. We see it as a  m ore useful too l on th e  whole. T he AVL 

tree is p referab le  to  the  red-black tree, since th e  higher reordering  cost is clearly  am ortized  by the  

lower average tree  height.

In conclusion, th e  preallocated  im p lem en tation  works b e tte r  for p rog ram s w ith  sh o rt traces, bad 

locality an d  large  cores ( th a t is. large M  an d  relatively sm all N  values), w hereas th e  interval tree 

im plem entation  works b e tte r  on long traces  w ith  good locality  an d  sm all cores (larger .V. sm aller 

A/ values).
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4.2.9 Notations

T his section enum era tes an d  explains som e of th e  sym bo ls we used th ro u g h o u t this ch ap te r.

•  N:  num ber o f references in th e  program  trace  u n d e r  consideration.

•  M :  num ber o f d is tin c t m em ory references in th e  p ro g ram  trace. In  effect M  is equal to  the 

size of the  m em ory  used by th e  program  we are  analyzing .

•  t : used as th e  current  index  in the  trace. As such. 0 < r  <  .V. T h e  stack  a lgorithm  

processes th e  p rogram  trace  sequentially : r  alw ays deno tes the cu rren t position  processed by 

the  algorithm .

•  x -: denotes th e  m em ory reference a t index r  in th e  program  trace.

•  P : a  m apping from  m em ory references to  trace  indices. Since P  changes in  tim e, it is norm ally  

indexed w ith  r .  th e  curren t index in the  p rog ram  trace .

•  B : a m apping  from  trace  indices to  booleans. B T(i) is set if a t  m om ent r  th e  location  

referenced a t  position  i in th e  trace  is the la tes t reference to its loca tion .

•  dist (r ):  th e  s tack  d istance  corresponding  to  th e  location  referenced in  position  r  in th e  trace. 

T his is the n um ber we co m p u te  for each elem ent in  th e  trace.

•  holes~(i): th e  num ber o f holes in th e  program  tra c e  between indices i and  r  a t  m om ent r . 

i < r  by definition.

4.3 Summary

In th is chapter we have p resen ted  a  new  m etric  for d a ta  locality  based on  th e  stack  d istances. We 

have shown th a t th e  s tack  d istance  m etric  cap tu res lo ca lity  m ore precisely th a n  the  in ter-reference 

d istance m etric [42]. It is also app licab le  to  any p ro g ram  granularity , as  opposed  to  o th e r  m etrics 

proposed, such as th e  n um ber o f accesses in  th e  in n er-m o st loop [73. 72].

T h e second p a r t o f th e  ch ap te r discussed a  new  a lg o rith m  for s tack  processing. T h e  new 

algorithm , using p rea llo ca ted  trees, im proves over th e  b e s t known s tack  a lg o rith m  [6 ] (w hich also
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uses p rea llo ca ted  d a ta  s tru c tu res) by m ore th a n  30%. If th e  size o f th e  trace  is not know before 

running th e  a lgorithm , the p rea llo ca ted  d a ta  s tru c tu re s  are no t th e  best choice. T herefore we 

propose a n o th e r  scheme, based o n  th e  sam e algorithm , th a t uses AVL trees. T h e  perform ance of 

this schem e is on ly  m arginally w orse th a n  th e  previously best know n algo rithm  using preallocated  

trees, while using  less m em ory for sh o rt traces, and  giving th e  possib ility  to  grow the  d a ta  s tru c tu re s  

its needed for long traces.
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Chapter 5

Polaris Performance Prediction  
Framework

In this chap ter we p resen t the details of o u r im p lem entation  o f the perform ance predic tion  frame

work inside the  Polaris source-to-source re s tru c tu re r (S ection  5.1). We also p rov ide  a description 

of the  interface betw een  th e  perform ance pred ic tion  fram ew ork  in Polaris an d  th e  SvPablo  perfor

m ance visualization to o l (Section 5.2).

5.1 The Polaris Framework

T h e  Polaris p erfo rm ance prediction fram ew ork consists of a  collection of classes th a t  allow easy 

im plem entation of m odels for loop based  com pile-tim e perform ance pred ic tion . Its  m ain use is 

as a  compiler pass th a t  can  be called w henever the  need for perform ance p red ic tio n  d a ta  occurs. 

It also provides s u p p o rt  for profiling in fo rm ation  co llection  an d  perform ance d a ta  reporting and 

visualization.

T he m ain design goals for the perform ance p red ic tion  fram ew ork are:

•  m o d u la r i ty  -  we w ant to  provide a  basis for developing  perform ance e s tim a tio n  modules. 

A m odule can  focus on a specific p a r t  of a co m p u ter system , such as C P U . m emory, or I/O  

system , and  m o d el th a t  part a t  th e  desired level of deta il. In previous ch ap te rs  we have 

presented a lg o rith m s th a t are im plem ented  as th ree  su ch  modules: the  C P U  m odel, and  two 

memory m odels, th e  stack  d istances an d  th e  ind irec t accesses models.

•  c o n s is te n c y  -  th e  fram ework co n ta in s ab s trac t b ase  classes for perform ance estim ators, thus
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g u aran teeing  th a t  w henever a new  m odule is developed it provides the  necessary basic func

tionality . consisten t w ith  th e  rest of th e  system . Since o u r p red ic tion  m odel for a  co m pu ting  

system  consists of several m odels th a t  estim ate  the behavior o f different subsystem s sym boli

cally. th e  sym bolic expressions th a t  represent the perform ance m ust be com patib le w ith  each  

o th er. T h e  base classes ensure th is  property.

•  e a s e  o f  u s e  a n d  m a in t e n a n c e  -  we designed the fram ew ork in such a  way th a t one can  

'‘unplug" a  perform ance e s tim a to r m odule and "plug” a n o th e r one in place very easily, w hile 

m ain ta in ing  the  code readability .

In the  following discussion we assum e th a t  th e  reader is fam iliar w ith  the  Polaris in ternal represen

ta tio n  [26]. Polaris is a  source-to-source re stru c tu re r th a t parses F o rtran  77 an d  o u tp u ts  F o rtran  

w ith  parallel directives for a  large set o f p latform s. For m ore d e ta ils  on Polaris, see [8 ].

In F igure 5.1 we presen t th e  UML d iagram  of the classes con tained  in th e  fram ework, an d  T a

ble 5.1 deta ils  th e  functionality  im plem ented  by the m ethods. T h e  P e r fo rm a n c e E s tim a to r  o b jec t 

is th e  in terface to  the  perfo rm ance p red ic tion  module. T his ob ject can  be in s tan tia ted  e ith er for a 

F o rtran  p rogram  un it (su b ro u tin e  or function), or for a p a rticu la r s ta tem en t in the  program , an d  

to  access it. we have added  th e  g e t . p e r f . e s t i m a t o r  m ethod to  b o th  P rog ram U nit and  S ta te m e n t 

P olaris ob jects. A P e r fo rm a n c e E s tim a to r  ob ject contains a  collection of C o s tE s tim a to r  o b jec ts , 

th a t  is called to  es tim ate  th e  perfo rm ance o f a  block of code. E ach C o s tE s t im a to r  im plem ents 

a  p a rticu la r perform ance p red ic tion  m odel, as discussed in C h ap te r 3. T h e  user registers the  cost 

estim ato rs  corresponding  to  th e  perform ance d a ta  desired before calling  th e  e s t im a te C o s t  m em ber 

function on th e  P e r fo rm a n c e E s tim a to r  ob ject.

For exam ple, if perform ance d a ta  for th e  C PU  execution tim e is needed for a  loop, th e  following 

code estim ates  it:

PerformanceEstimator *pe = loop->get_perf_estim ator(); 

pe->registerCostEstimator(new OpsCostEstimator(loop, pgm)); 

pe->estim ateC ost();
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PerformanceEstimator

initializeO
reset()
finalizeO
estimateCostu
getPrcdictionExpr()
instrument()
genSymboIicCode()
registerCostEstimatorO
unregisterCostEstimatorO

o
CostEstimatorsMap _costEstimators 
Statement * _stmt
ProgramUnit * _pgm

CostEstimator

estimateCostO
instrumentO
getCounterExprt)
**““ **•■ v /

reset()
initializeO
finalizeO
printO
genSymbolicCodeO
loop_pre_instrument()
loop_post_instrument()
routine_pre_instrument()
routine_post_instrument()
addToCost()

OpsCostEstimator S tackM em Estim ator

computeProjectionsO 
parti tionlterationSpaceO 
computeHistogramO

Expression *_costExprs[]

DDgraph * _ddgraph 
StackHistogram _stack 
IterationSpace _itSpace 
Dependences pace List _deps

IndirectAccesses Estimator

getVisitedBytes()
getlndirCountersO
getAccessedBytesQ

EEmap _visitedRefs 
ESmap _indirectAccesses

F ig u re  5.1: Polaris p e rfo rm an ce  prediction fram ew ork
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O bject M ethod Com m ent

Perfo rm anceE stim ato r

in itialize initializes th e  d a ta  s tru c tu re s  for th e  Per
fo rm anceE stim ato r an d  its cost e s tim ato rs

reset resets all th e  cost estim ato rs
finalize frees all th e  allocated  d a ta  s tru c tu re s  in 

th e  P erfo rm anceE stim ato r an d  its cost es
tim a to rs

estim ateC o st estim ates  th e  cost by calling th e  estim ate 
Cost m ethod  on every reg istered  cost esti
m ato r

g e tP red ic tio n E x p r re tu rn s  th e  sym bolic expressions deno ting  
th e  p red ic tion

in s tru m en t places in stru m en ta tio n  in th e  F o rtran  code 
to  eva lua te  the  prediction expressions

genSym bolicC ode generates C-F-f- code to  ev a lu a te  th e  sym 
bolic expressions as described  in Sec
tion  5.2

u n /reg is te rC o s tE s tim a to r reg isters and  unregisters a  cost e s tim a to r 
w ith th is P erfo rm anceE stim ato r ob jec t

C o stE stim ato r

in itialize initializes th e  d a ta  s tru c tu re s  for this 
C o stE stim ato r

reset resets th e  cost estim ato r
finalize frees all th e  allocated  d a ta  s tru c tu re s
nam e re tu rn s  a  unique nam e for th e  cost estim a

to r
estim ateC o st traverses th e  AST and  genera tes cost ex

pressions denoting  perform ance
in s tru m en t places in stru m en ta tio n  in th e  F o rtran  code 

to  eva lua te  the  prediction expressions
g e tC o u n te rE x p r re tu rn s  th e  sym bolic expressions for per

form ance
genSym bolicC ode generates C+-F code to  ev a lu a te  th e  sym 

bolic expressions
loop_*Jnstrum en t used by th e  instrum ent m eth o d  to  p lace in

s tru m en ta tio n  before and  a f te r  es tim ated  
loops

ro u tin e .*  -in strum en t used by th e  instrum ent m eth o d  to  p lace in
s tru m en ta tio n  before and  a f te r  es tim ated  
rou tines

addT oC ost adds th e  cost expressions o f th e  a rgum en t 
to  th is estim ato r. Used to  ag g reg a te  costs 
for block sta tem en ts

Table 5.1: M ethod fu n c tio n a lity  in th e  P o laris perfo rm ance prediction  fram ew ork
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O b jec t M ethod C om m ent

S tackM em E stim ato r
p a rtitio n lte ra tio n S p ace p artitio n s  the  ite ra tio n  space of th e  loop as 

described in Section 3.3.3
com puteP ro jec tions com putes the  dependence spans an d  array  

sections (see Sections 3.3.4 and 3.3.5)
com puteH istogram com putes th e  s tack  histogram , as described  

in Section 3.3.6

Ind irM em E stim ato r

getV isiteclBytes re tu rn s  an expression denoting th e  num ber 
of bytes accessed by a rray  references

getlnclirC ounters re tu rn s  the list of sym bols th a t co rrespond  to
Inrlirorf orrov nrroccp's• --- ---

get AccessedBy t  es re tu rn s  the  sum  o f all the  bytes accessed by 
arrays in a loop

T able 5.2: M ethod func tiona lity  for m em ory cost es tim ato rs

After th e  cost estim ation  is perform ed, the  user can  perform  several tasks, depending  where 

an d  in w hat fo rm at th e  perform ance d a ta  is needed:

•  inside the compi ler  -  if perform ance d a ta  is needed to  guide op tim iza tio n s (or for an y  o th er 

task a t  com pile-tim e), the user can  retrieve th e  perform ance sym bolic expressions using the 

g e tP r e d ic t io n E x p r O  m ethod  on  th e  P e r fo rm a n c e E s tim a to r  o b jec t. This m eth o d  will 

aggregate th e  cost expressions o f all its reg istered  cost es tim ato rs  in to  one expression.

• run-t ime es t imat ion and profiling in format ion collection -  the user can  call the in s t ru m e n t  () 

m ethod to  o b ta in ed  an in stru m en ted  version o f th e  code. T h e  in stru m en ta tio n  consists of 

s ta tem en ts  to  evaluate all th e  cost expressions in each cost e s tim a to r plus sta tem en ts to  collect 

the perfo rm ance da ta . T he perform ance d a ta  is collected using calls to  functions im plem ented  

as a  sep a ra te  lib rary  [13].

•  performance visualization a n d / o r  scalability analysis  -  in case th e  u se r w ants to  sto re th e  sym 

bolic expressions and evaluate  th em  a t a  la te r  tim e using  different d a ta  se ts , the 

genSym bolicC ode 0  m ethod  can  b e  used. T h e  m ethod  will g en e ra te  C + +  code th a t  con

tains th e  sym bolic expressions. A n exam ple of how th is code can  be used for perform ance 

visualization  is presented in Section  5.2.

As we m en tioned  before, the P e r fo rm a n c e E s tim a to r  ob ject can  b e  c rea ted  for a  P ro g ram U n it 

(an  object th a t  rep resen ts a  function o r a  su b ro u tin e  in  Polaris) or for a  s ta tem en t, includ ing  block
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sta tem en ts , such as loop nests or if s ta tem en ts . T h e  P e r fo rm a n c e E s tim a to r  o b jec t takes care of 

aggregating th e  cost expressions for all the  s ta te m e n ts  contained in th e  block.

T hree cost es tim a to rs  are provided, th a t  im plem ent th e  perform ance p red ic tion  m odels discussed 

in C hap ter 3. T h e  OpsCostEstimator im plem ents th e  processor m odel. T h e  StackMemEstimator 

im plem ents th e  S tack  D istances m odel, and  the  IndirectMemEstimator im plem ents th e  Indirect 

Accesses Model.

5.2 Integration with SvPablo

S vPablo  [21] is a  language independent perfo rm ance analysis and  v isualization  system . We have 

used the SvPablo  sy stem  together w ith  Polaris as an  exam ple of th e  in teg ra tio n  betw een perfor

m ance visualization  too ls and  com pilers. S vPab lo  is capable of in stru m en tin g  code, e ither in terac

tively  or au tom atically , com pile, run. collect and  sum m arize  perform ance d a ta  for th e  instrum ented  

sta tem en ts, as well as displaying the  correlation  betw een perform ance d a ta  an d  th e  source code 

in an  easy and  in tu itiv e  user interface. O n th e  o th e r  hand, the  Polaris perfo rm ance prediction 

fram ework can ana lyze an d  ex trac t perform ance in form ation  a t com pile-tim e and  represent this 

inform ation using sym bolic expressions.

T he "m arriage" betw een these two system s provides a  very powerful in teg ra ted  system  for per

form ance tun ing . O ne of th e  m ajor draw backs of ru n n in g  in stru m en ted  code to  collect perform ance 

inform ation is th a t  th e  in stru m en ta tio n  code p e r tu rb s  com piler o p tim iza tio n s an d  cache behavior. 

Having the perfo rm ance inform ation com puted  a t  com pile-tim e an d  sto red  as sym bolic expressions 

m akes the in s tru m en ta tio n  code no longer necessary, therefore, th e re  will be  no p ertu rb a tio n s. 

Also, the perform ance d a ta  is no longer collected for a  unique d a ta  se t. and  th u s, we enable o ther 

analyses, such as sca lab ility  analysis an d  "w hat i p  questions and  answ ers, to  be perform ed on the 

code.

T he key ideas th a t  enable th e  in teg ra tion  are:

1. the a rch itec tu ra l independence o f th e  perfo rm an ce  pred ic tion  m odel im plem ented  in Polaris

2 . the sym bolic rep resen ta tio n  o f th e  perfo rm ance d a ta

3. the language independence and  ex tensib ility  o f SvPablo  d u e  to  its  S D D F  m eta-fo rm at [2]
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represen ta tion  o f perform ance inform ation

C u rren tly  there  are  two m odes in  which Polaris an d  SvPablo  in teract. In th e  first m ode. P o laris 

analyzes th e  code an d  generates an  in stru m en ted  p rogram , such th a t, by runn ing  th e  in s tru m en ted  

p rog ram  th e  sym bolic expressions th a t  represent perfo rm ance d a ta  are evaluated . T h e  perfo rm ance 

d a ta  is sum m arized in an  SD D F file, an d  SvPablo  uses th is  file to  re la te  the perfo rm ance d a ta  to  

th e  source code of th e  program .

T h e  second m ode of in teg ra tion  is m ore involved. In th is scenario. Polaris generates code, 

sep a ra te  from the  analyzed  p rogram , to  sto re th e  sym bolic expressions represen ting  perfo rm ance 

p red ic tion  data . T h e  code can be com piled in a  sep a ra te  lib rary  for la te r use. W e have chosen 

C + 4- as the  language in which to  s to re  the  expressions. SvPablo  will im plem ent th e  user in terface 

p a rt th a t  makes calls to  th e  lib rary  in order to  e s tim a te  th e  perform ance for different m achine 

p aram ete rs  a n d /o r  in p u t d a ta  sets.

T h e  class d iagram  show n in UML n o ta tio n  in F igure 5.2 is th e  in terface to  the  sym bolic expres

sions library. Because of the  sep a ra tio n  of program  d a ta  an d  m achine param eters , th e re  are  two 

class hierarchies in th e  d iagram .

T h e  first hierarchy, based on th e  class D e lp h iM a c h in e D e s c r ip tio n  encapsu la tes a rch itec tu ra l 

specifications. For each p rocesso r/system  configuration, an  SD D F file w ith  th e  m achine specifica

tion  is provided. T his file describes deta ils  such as processor clock frequency, num ber of functional 

un its , repeat ra tes an d  latencies o f operations, issue w id th , etc. It also specifies th e  m em ory  hi

erarchy: how m any levels of cache, th e  param eters  for each cache level, such as: la tency  o f a  h it 

and  a  miss, associativ ity , line size an d  to ta l size. B eing w ritten  in SD D F. it is ex tensib le , to  allow 

for ad d in g  I/O  specifications an d  in terprocessor com m unication . A custom ized parser e x tra c ts  th e  

specifications from th e  SD D F file an d  generates th e  m achine descrip tion  classes.

Tw o o f the  m ethods in th e  m achine descrip tion  class are  g e tO p sC o s ts  ( )  and  g e tC a c h e C o s ts  ( ) .  

An exam ple of th e ir  usage is p resen ted  below. T h e  m e th o d  g e tO p sC o s ts  ( )  takes th e  e s tim a ted  

n u m b er o f operations, and  com bines th e  operations w ith  th e ir  latencies and  rep ea t ra te s  to  give 

an  es tim a ted  execution  tim e. g e tC a c h e C o s ts  ()  takes th e  num ber o f es tim ated  cache m isses for 

each  level in the  m em ory hierarchy, an d  re tu rn s  th e  es tim a ted  tim e spen t accessing th e  m em ory  

hierarchy. Both these m ethods axe used  by th e  second class h ierarchy  to  e x tra c t in fo rm atio n  a b o u t
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D elp h iM ach in eD escrip tio r

getO psC osts()
getC acheC ostsO
getN C acheL evels()
getC acheL ineS  ize()
getC acheSize()
getC acheA ssoc()
getN IntegerU nits()

getN FloatingU nitsO
getN M em oryU nits
getlPC O

<

D e l p h i M D R l O k

•  •  •

D e l p h i M D U l t r a 2 i

•

D e l p h i E v a l P r o g r a m

evalL oopO
getParam s()
getL oopL ist()

D e l p h i E v a l A P P L U

•  •  •

D e l p h i E v a l S W I M

F ig u re  5.2: Polaris perform ance p red ic tio n  in terface to  S vPablo
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th e  m achines.

double eval_CALCl_dolOO(DelphiParamList fcparams, DelphiMachineDescription tond, 
DelphiEvalProgram feevalPgm)

{
double resu lt = 0 .0 ;
DelphiParamList: :const_ iterator  p lter ;
p lte r  = params. find("N "); double n = (* p l t e r ) . second;
p lte r  = params.findC'M"); double m = (* p l t e r ) . second;

double opCosts[29] ; 
forCint i  = 0; i  < 29; i++) 

opCosts[i] = 0 .0;

opCosts[1] = 1+n;
opCosts[2] = 22*m*n;
opCosts[7] = 23*m*n;
opCosts [8] = m*n;
opCosts [18] = 14*m*n;
resu lt  += md.getOpsCosts (opCosts);

in t  nlabels = 27;
double *labels = new double[nlabels]  
double *refs = new double[nlabels]  
double cacheMisses[MAX_CACHE_LEVELS] 
forCint 1 = 0 ;  i  < md.getNCacheLevels( ) ;  i++) { 

cacheMisses[i] = 0 .0 ;
in t  _delphi_cls = md.getCacheLineSize(i); 
la b e l s [0] = 2; r e f s [0 ]  = n /(_ d e lp h i_ c ls /8 ) ;
la b e l s [1] = 0; r e f s [ l ]  = 8+m+m/(_delphi_cls/8)+6/(_delphi_cls/8)+9*n+

n /(_delp h i_c ls /8 )+7*n*m /(_delp h i_c ls /8 ); 
la b e l s [2] = 1; r e f s [2] = -2 -4*n-3 /(_delph i_c ls /8 )+m /(_de lph i_cls /8 )+  

m-4*n*m/(_delphi_cls/8)-n/(_delphi_cls/8)+4*m*n; 
la b e l s [3] = 3; r e f s  [3] = l / ( _ d e lp h i_ c l s /8 ) ;
la b e l s [4] = 5; r e f s [4] = -l+m -n-l/(_delphi_cls/8)+m /(_delphi_cls/8)+m *n

-n *m /(_d elp h i_c ls /8 ); 
la b e l s [5] = l+ l / ( _ d e lp h i_ c l s /8 ) ; r e f s [5] = 4*m*n; 
l a b e l s [6] = 7 ; r e f s  [6] = m*n-(n+n*m/(_delphi_cls/8)); 
l a b e l s [7] = 4 + 4 /(_ d e lp h i_ c ls /8 ) ; r e f s  [7] = 1; 
l a b e l s [8] = 6; r e f s  [8] = m*n-(n+n*m/(_delphi_cls/8)); 
la b e l s [9] = 5 + 5 /(_ d e lp h i_ c ls /8 ) ; r e f s [9] = 1; 
la b e l s [10] = 9 + 9 /(_ d e lp h i_ c ls /8 ) ; r e f s [10] = m+2*m*n;
la b e l s [ l l ]  = 3 + 3 /(_ d e lp h i_ c ls /8 ) ; r e f s [ l l ]  = n;
la b e l s [12] = 6 + 6 /(_ d e lp h i_ c ls /8 ) ; r e f s [12] = l+m*n;
la b e l s [13] = l l + l l / ( _ d e l p h i _ c l s / 8 ) ; r e f s [13] = -1+m;
la b e l s [14] = 8 + 8 /(_ d e lp h i_ c ls /8 ) ; r e f s [14] = m;
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l a b e l s [15] 
l a b e l s [16] 
l a b e l s [17] 
l a b e l s [18] 
l a b e l s [19] 
l a b e l s [20] 
l a b e l s [21] 
l a b e l s [22] 
l a b e l s [23] 
l a b e l s [24]
u K o i c n K i  =

13+13/(_ d e lp h i_ c l s /8 ) ; refs[15] = -l+m-n+m*n.;
15+15/(_ d e lp h i_ c l s /8 ) ; refs[16] = -n+m*n;
16+16/(_ d e lp h i_ c l s /8 ) ; r e f s [17] = - l-n - l/(_d e lp h i_c ls /8 )+ m *n ;  
1 8 + 2 /(_d e lp h i_c ls /8 )+ 17 /(_d e lp h i_c ls /8 ); r e f s [18] = -1+m; 
35+4*m+m/(_delphi_cls/8) ; r e f s [19] = -1+n;
17+17/(_ d e lp h i_ c l s /8 ) ; refs[20] = -l+m-n+m*n; 
26+4*m+m/(_delphi_cls/8); refs[21] = -m+m*n;

re fs  [22] = m*n-l; 
r e fs  [23] = -m+m*n; 
r e f s [24] = -m+m*n;

25+m/(_delphi_cls/8)+4*m  
28+4*m+m/(_delphi_cls/8) 
25+4*m+m/(_delphi_cls/8)

PORI s — •

r e f s [26] = -2*m-l+3*m*n;l a b e l s [26] = 25+4*m+m/(_delphi_cls/8) 
forCint j = 0; j < n labels;  j++) {

i f ( l a b e l s [ j ]  > md.getCacheSize(i) II la b e ls [ j ]  == 0) 
cacheMisses[i] += r e f s [ j ] ;

>
>

d e le te  [] la b e ls ;  delete  [] r e f s ;

r e su lt  += md.getCacheCosts(cacheMisses); 
return r e s u lt ;

T h e o th e r  class hierarchy, based on class D e lp h iE v a lP ro g ram  represents perform ance d a ta  on 

th e  p rogram  side. Polaris is used to  gen e ra te  a  class for each analyzed p rogram . For each loop nest 

in th e  p rogram . Polaris com putes th e  sym bolic expressions deno ting  th e  pred ic ted  perform ance, 

an d  generates a  function th a t can be used  to  com pute th e  p red ic ted  execution  tim e, provided th e  

sym bolic p a ram e te rs  are given ac tu a l values.

Tw o m eth o d s s tan d  out in th e  D e lp h iE v a lP ro g ram  ob jec t. g e tP a ra m s takes a  loop nam e an d  

re tu rn s  th e  list o f sym bolic p aram ete rs  th a t  make up th e  p red ic tion  expressions. T hese p aram eters  

have to  receive values in order ev a lu a te  th e  expressions in a  perform ance figure. T he o th er m eth o d  

is ev a lL o o p . w hich, given a loop nam e, a  list of p aram eters  w ith  the  values filled in. and  a  m achine 

d escrip tion , re tu rn s  the  predicted  execu tion  tim e of th e  loop w ith  th e  specified p aram eters  on a 

given m achine.
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5.3 Summary

In th is  ch a p te r we have presented the  Polaris perform ance p red ic tion  fram ew ork. T he fram ework 

enables access to  com pile-tim e perform ance prediction from  inside the com piler. It also allows th e  

g enera tion  of in stru m en ta tio n  for collecting profiling in fo rm ation . We have also discussed how th e  

fram ew ork helps th e  in tegration  betw een th e  com pile-tim e d a ta  prediction m odule w ith  the  SvPablo  

perform ance v isualization  tool.
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Chapter 6

Experim ental R esults

6.1 Experim ental Setup

To evaluate th e  accu racy  of th e  perform ance p red ic tion  m odels described in C h ap te r 3. we imple

m ented these m odels w ith in  th e  Polaris perform ance prediction fram ework. Since Polaris did not 

have profiling in fo rm atio n  su p p o rt, we have also im plem ented in stru m en ta tio n  passes to  collect 

profiling d a ta , such  as branch frequencies an d  loop bounds.

To conduct th e  experim ents, two o th er in s tru m en ta tio n  passes were added  to  Polaris. One is 

used to collect values for the  hardw are counters. T h e  o th er is used to m easure execution  time. 

B oth these passes can  instrum ent a  selected set o f loop nests, procedures or en tire  program s. If a 

procedure is se lec ted , all th e  loop nests in th e  p rocedure are instrum ented . T he resu lts  are reported  

for the selected p ro g ram  constructs.

To validate th e  com pile-tim e estim ation  o f th e  num ber of cache misses using the  stack  dis

tances model, a  ru n -tim e  version of the stack  d istances algorithm  was im plem ented. C urrently , the 

com pile-tim e version  o f the  algorithm  works on ly  in tra  nest. Therefore, w hen resu lts  are repo rted  

for entire procedures, th e  run-tim e version o f th e  s tack  d istances a lgorithm  was used.

Two system s, b ased  on two different processors, were used to  carry -ou t th e  experim ents. T he 

first system , an  O rig in  200. consists of 4 M IPS R10000 processors running  a t 195 MHz. Each of 

th e  processors is a  su p ersca la r processor capab le  o f issuing 6  in structions per cycle and  executing 

4 of those. In s tru c tio n s  are issued out-of-order an d  re tired  in-order. Each processor has a  32 KB 

2-way set-associative L I d a ta  cache, w ith  a  32 bytes cache block. T h e  L2 cache is 1M B . 2-way 

set-associative w ith  a  128 bytes cache block. T h e  L2 cache is unified, i.e.. contains b o th  in structions
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an d  d a ta . T he com piler used on th is  system  is the  M IP S p ro  7.30 F ortran  com piler. This sy stem  

was also used to collect hardw are coun ters  m easurem ents.

T h e  second system  is a Sun E n te rp rise  server. It h as  4 U ltraSparc I I i processors ru n n in g  a t  

250 M Hz. The U ltraS parc  processor is an  in-order su p ersca la r , capable o f issuing and execu ting  up 

to  4 instructions per cycle. T he caches on this processor a re  as follows: th e  L l cache is a  16 KB 

d irec t m apped d a ta  cache, w ith 32 by tes block size. T h e  L2 cache is a  1 MB d irec t m apped unified 

cache w ith 64 bytes block size. T h e  com piler used on th is  system  is th e  SparcW orks 4.0 F o rtran  

com piler.

In th e  following sections, perfo rm ance prediction o f cache misses and  execution  tim e are  pre

sen ted . We derived th e  sym bolic expressions representing  perform ance d a ta  m easured on th e  Ul

traS p arc . and we su b s titu te d  th e  m achine param eters for b o th  the R10000 an d  the U ltrasparc  to  

o b ta in  the perform ance num bers in these  expressions. T h e  m achine p aram ete rs  were taken  from  

th e  processors' m anual [56. 6 6 ] an d . w hen not available, determ in ed  using m icro-benchm arks.

Tw o types of com parisons are m ade. F irst, for each m em ory  hierarchy m odel, the cache m iss 

estim ations are com pared  against h ardw are  counters values on the R10000 processor. T hen , th e  

m em ory model is com bined w ith th e  C P U  m odel to  p red ic t th e  execution tim e for bo th  the R10000 

an d  th e  U ltraSparc.

6.2 Results

6.2.1 Cache Miss Prediction with the Indirect Accesses Model

To quan tify  the accuracy  of the p red ic tion  m odel using th e  Ind irect Accesses m odel we have chosen 

SpLib [9]. a  public dom ain  im p lem en tation  of several ite ra tiv e  m ethods for solving sparse lin ear 

system s of equations. From  th is package, we have selected  th e  loops nests th a t  take the m ost tim e  

when solving a  sparse linear system  using  th e  stab ilized  b i-conjugate g rad ien t algorithm  w ith  an  

incom plete LU facto rization  p recond itioner. It happens th a t  these loops also sa tisfy  the  requ irem ent 

of hav ing  no I/O  calls. T h e  rou tines in  which the nests a re  located  are:

•  BMUX -  m ultip lies a  sparse m a tr ix  w ith  a  vector u sing  th e  do t p ro d u c t form. T h e  sp arse  

m atrix  is s to red  in com pressed sp arse  row (CSR) fo rm a t:
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F igure  6.1: SpLib -  L I cache miss p red ic tion  for th e  sm all d a ta  set
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•  SCALA -  scales a  sp a rse  m a trix  stored in C SR  to  have ce rta in  properties, such  as scaling each 

colum n so th a t th e  d iag o n a l en try  is 1 .0 :

•  UNSCALA -  unscales a  C S R  m atrix  to  reverse effects of SCALA:

• UNSCALX -  unscales th e  so lu tion  vector a t end  o f co m p u ta tio n s

•  LUSOLT -  perform s a  forw ard then backw ard solve for a  m odified sparse row (M SR) m atrix  

contain ing  a un it Imvpr trian g u la r and an u p p pr  rr ian g u la r m atrix  w ith inverted  diagonal, 

bo th  stored in a  single M SR  d a ta  s tru c tu re . T h e  first loop nest (do l) perfo rm s the  forward 

solve, and the second loop nest (do2 ) perform s th e  backw ard  solve.

We ran  the  benchm ark  using  two d a ta  sets:

•  a sm all data  set -  a  1128 x 1128 sparse m atrix  w ith  13360 non-zero elem ents

•  a large d a ta  set -  a  20284 x 20284 sparse m atrix  w ith  452752 non-zero elem ents

Figures 6.1 and 6.2 show  th e  predicted  num ber of cache m isses, using th e  ind irect accesses 

m odel, com pared to  m easu red  cache misses for the  LI cache on th e  M IPS R10000 processor. T he 

ac tu a l num ber of misses is o b ta in ed  using th e  h ardw are  co u n ters  on this processor. Figure 6.1 

shows th e  results for th e  sm all d a ta  set. while F igure 6 . 2  shows th e  results for th e  large d a ta  set. 

We observe very little  v a ria tio n  w ith  the  increase in th e  d a ta  set size, which shows th a t  th e  m odel 

handles qu ite  well even large  varia tions in the  in p u t d a ta  set.

T h e  average predic tion  e r ro r  for the cache miss es tim a tio n  on th e  L I cache is 10.60% (stan d a rd  

d ev ia tion  11.62%) on th e  sm all d a ta  set. and  9.41% (s ta n d a rd  dev ia tion  11.25%) on th e  large d a ta  

se t. w hich is quite good considering  th a t  we m odel a  fully associative cache, a n d  th e  caches for 

th e  R10000 processor are  tw o way set-associative. T h e  L2 cache miss estim ations are shown in 

F igure 6.3. For the L2 cache we show only th e  large d a ta  se t because the en tire  sm all d a ta  set of 

th e  app lica tion  fits in th e  1 M B cache of th e  processor. A gain, we see a good co rre la tio n  between 

th e  m easured  and p red ic ted  d a ta .  T he average p red ic tion  e rro r for the L2 cache is 12.65%. w ith 

an  18.46% stan d ard  d ev ia tio n .
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6.2.2 Execution Time Prediction with the Indirect Accesses Model

T h e  next set o f figures presen ts th e  execution tim e p red ic tio n  for th e  sam e loops in th e  SpLib 

package. T he figures com pare th e  m easured execution tim e  for each loop w ith  the  p red ic ted  execu

tion  tim e o b ta in ed  by com bining th e  C PU  m odel w ith  th e  Ind irect Accesses m em ory m odel. Each 

b ar for the  p red ic ted  execu tion  tim e shows the  b reakdow n in to  C PU  pred ic ted  tim e an d  m em ory 

p red ic ted  tim e. T h e  m em ory p red ic ted  tim e includes p red ic tio n  for b o th  levels of cache.

'T**.- - c  u ,  ,_________ - i r - -      t ? : ______ - c «- - ~ i
• L v v u  a c t a  u i  i c a t n c a  c u e  ^ t c a c i i i c u  i u i  l w u  p i u L c a a u t - L u i u ^ u c r  e u l u o u i c u i e u a .  i  i g t u c a  o . - t c i  a n u

6.4b show the  p red ic ted  execution  tim e com pared to  th e  m easured  execution  tim e for unop tim ized  

codes on the  M IPS  RIOOOO an d  U ltraS parc  H i processors, respectively. T h e  com pilers used are  the  

F77 M IPSpro 7.30 an d  S parc W orks 4.0. respectively, w ith  th e  defau lt levels of o p tim iza tio n s (i.e.. 

no -O flag was used). We do not app ly  any of the o p tim iza tio n  heuristics described  in Section 3.1 

in our pred iction . T h e  d a ta  set is th e  large d a ta  set desc rib ed  above.

We notice th a t  th e  pred ic tion  is less accura te  on th e  U ltraS p arc  processor th an  on the  RIOOOO 

(th e  average p red ic tion  e rro r is 8.10% for the  RIOOOO an d  28.04% for th e  U ltraS parc). T here  

a re  two reasons for u n d erestim a tin g  th e  perform ance: first, the  caches on th e  U ltraS parc  are  d irect 

m apped , while ou r m odel p red ic ts  misses for fully assoc ia tive  caches. T h e  second reason, is th a t  the 

SparcW orks com piler, w ithou t op tim iza tions enabled, gen era tes a  large am o u n t of red u n d an t code 

(reg ister spills an d  red u n d an t conversions from single to  double precision) th a t  is no t taken  into 

account by our high level language m odel. T he p red ic tio n  accuracy  im proves when op tim iza tions 

a re  tu rned  on.

Figures 6 .5a an d  6.5b show  th e  pred ic ted  execution tim e  re la tive to  the  m easured execution  tim e 

for optim ized codes. T he sam e com pilers are used, th is  tim e w ith  o p tim iza tio n s enabled  by the 

-0 2  flag. T he p red ic tio n  m odel also applies all the  o p tim iza tio n  heuristics discussed in Section  3.1. 

T h e  average p red ic tio n  e rro r is 16.32% for th e  RIOOOO a n d  17.81% for th e  U ltraS parc.
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6.2.3 Cache M iss Prediction with the Stack Distances Model

In this section we p resen t prediction results using  the stack d istan ces models. We co m p are  the cache 

misses obtained using  th e  stack  d istances m odel to  the  num ber o f ac tua l cache m isses o b ta in ed  using 

hardw are counters o n  th e  M IPS RIOOOO processor.

In Figure 6 . 6  we look a t the  pred ic ted  versus m easured num ber of cache m isses for a Jacobi 

re laxation code, show n below:

do j = 2 ,  n-1 

do i  = 2,  n-1

a ( i , j )  = ( a ( i - l , j )  + a ( i + l , j )  + a ( i , j - l )  + a ( i , j+1) ) / 4 . 0  

enddo 

enddo

O n the r-a x is  is th e  problem  size, increasing from 12S x 12S to  2048 x 2048. T h e  prediction is 

q u ite  accurate , on b o th  levels of cache, excep t for the largest size, where th e re  a re  m any conflict 

m isses in the  L I cache. T h e  m iss-prediction com es from th e  fact th a t we m odel a  fully associative 

caches, and the  cache is only 2 -way set-associative. On th e  bigger L2 cache th e  effect does not 

occur until the  m a tr ix  is m uch larger.

In the rem ainder o f th is  section we look a t  loops from th e  SPEC fp95 ben ch m ark  suite.

In Table 6.1 we p resen t a  sum m ary  of th e  num ber of loops analyzed and  e s tim a ted  by Polaris 

for th e  SPEC fp95 benchm arks. For each benchm ark , th e  first two colum ns are  th e  to ta l num ber 

of loops present in  th e  program  and th e  num ber of loops th a t  are “p red ic tab le" , i.e. do not 

con tain  I/O  o p era tio n s. In parenthesis we show th e  percen tage o f the to ta l ex ecu tio n  tim e taken 

by the  m easured loops in  the  colum n. T h e  nex t colum ns show  th e  d is trib u tio n  o f th e  estim ated  

loops based on th e  am o u n t of com pile-tim e inform ation  availab le . "Full" m eans th a t  Polaris was 

able to  com pute th e  d a ta  dependence d is tan ce  vectors for all a rray  references in  th e  loop, and 

all the  d istances a re  co n s tan t, i.e.. these are  loops con tain ing  uniform ly g en e ra ted  dependences. 

"P a rtia l" , rep resen ts th o se  loops for w hich all th e  dependence d istances were co m p u ted , bu t some
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F ig u re  6 .6 : Jacobi -  cache miss p red ic tio n  on  the  RIOOOO

dependences have n o n -co n stan t d istances. For bo th  these  cases we can app ly  the  stack  d is tan ces  

m odel to  predict the  n u m b er of cache m isses. In the second case  we assum e th a t  accesses tak e  place 

a t th e  m inim um  d is tan ce . "N ot available" represents th e  case  in  which Polaris could not co m p u te  

th e  dependence d is tan ces  for all the a r ra y  references d u e  to  lim ita tio n s of th e  O m ega te s t, such  as 

su b scrip ts  of subscrip ts o r non-affine sub scrip ts . “Need profiling" is the  case in which th e  com piler 

needs run-tim e d a ta  d u e  to  unknow n b ran ch  frequencies.
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There are two im p o rta n t conclusions th a t  can  be d raw n  by looking a t  th e  d a ta  in Table 6 . 1 . 

F irst, m ost of th e  loops in this benchm ark  su ite  a re  ana lyzab le by the com piler (86.599c). This 

percentage includes b o th  cases in which th e  stack  d istan ces algorithm  can be app lied . T hese loops 

make-up. on average, a b o u t 74% of the  to ta l execution  tim e  of th e  benchm arks. T h is  shows th a t  our 

m ethod has qu ite  a  w ide range of applicability . Second, m ost of the rem aining loops, need profiling 

inform ation due to  th e  presence of if s ta tem en ts  w ith in  th e  loop body. T he ind irec t accesses m odel 

presented in th is  w ork can  handle these loops.

One o ther o b servation  is related  to  the  dependence d istances com puted by Polaris. It tu rn s  out 

th a t most accesses h ap p e n  a t very sm all d istances, i.e.. one o r two itera tions of the  loop carry ing  

the  dependence. T h a t  m eans th a t our estim ations will no t be affected very m uch when th e  input 

d a ta  size increases.

In Figures 6.7 an d  6 . 8  we show the p red ic ted  cache m isses for loops in th e  SW IM  and  TO M C A TY  

benchm arks. Each figure presents the  pred ic ted  m isses an d  the m easured m isses, again , using 

hardw are counters. O nce more, we note th a t th e  p red ic tio n  is very accu ra te  for the L2 cache 

(average p redic tion  e rro r 3.11% for SW IM  and  3.18% for TO M C A TV ). bu t no t so accu ra te  for 

the  LI cache (average predic tion  erro r 13.73% for SW IM  and  18.62% for T O M C A T V ). T h is is due 

to  the fact th a t  we m odel a fully associative cache, an d  the  relatively sm all L l cache sees m any 

conflict misses on th e  bigger loops, such as C A L C l dolOO an d  CALC2 do200 in SW IM , an d  do60 

and  dolOO in T O M C A T V . Confirm ing th is observation  is th e  fact that the  m odel pred ic ts correctly  

the  num ber o f m isses in  th e  bigger L2 cache.

Since the o th e r benchm arks considered have a  large num ber of loops, we sum m arize th e  cache 

prediction for these benchm arks in F igure 6.9. T h e  b a r for each benchm ark is o b ta in ed  as follows: 

for each loop considered , we estim ate  th e  num ber o f cache misses for each cache level, and  we 

m easure the a c tu a l n u m b er of cache misses using hard w are  counters. T h e  m isses for each loop 

are  m ultiplied by th e  n um ber of executions o f th e  loop in  th e  program , an d  th en  added  to  ob ta in  

th e  to ta l num ber o f p red ic ted  misses an d  th e  to ta l n um ber of actual misses. T hen , the  pred ic ted  

num ber of m isses is d iv id ed  by the  ac tu a l num ber of m isses to  o b ta in  the  p red ic tio n  accuracy. T hus, 

a  value of 1 0 0 % rep resen ts  a  perfect p red iction .

For the  b enchm arks in  F igure 6.9 th e  average p red ic tio n  erro r is 27.41% for th e  L l  cache, w ith
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a s ta n d a rd  dev ia tion  of 19.62%. T h e  L2 cache p red ic tion  has an  average erro r of 17.10%. w ith  a 

s tan d a rd  d ev ia tio n  of 29.49%. If we e lim inate th e  A PSI benchm ark , for which the  m a jo rity  o f the  

loops have a  very sm all n um ber o f misses (few hundreds), therefo re  th e  p red ic tion  error is re la tively  

large, th e  num bers becom e. 27.33% average p red ic tion  e rro r for th e  L l  cache, w ith a  s ta n d a rd  

d ev iation  o f 21.50%. and  6.13% average p red ic tion  e rro r w ith  5.86% s ta n d a rd  deviation for th e  L2 

cache. A gain, th e  m ain  reason behind  th e  relatively  h igh p red ic tio n  erro r for the  L l cache is th a t  

our m odel is for fullv associa tive caches, and  this cache is a  sm all two-wav set associative, therefo re 

there are  conflict misses th a t  a re  not pred ic ted  by our m odel.
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6.2.4 Execution Time Prediction with the Stack Distances Model

In this section we p resen t execution  tim e prediction using  a  com bination  of th e  S tack D istances 

M odel and the  C P U  m odel. Since th e  S tack D istances M odel cu rren tly  hand les loop nests only, 

to  ob ta in  the resu lts  p resen ted  in F igure  6.10 we have used  th e  following procedure: for each loop 

nest we estim ate  th e  num ber of cache misses for b o th  levels of cache using th e  S tack D istances 

Model. Also, for each  nest we e s tim a te  the  C PU  execu tion  tim e using th e  m odel p resen ted  in 

S ec tio n  3.1. T h e  sy m b u lic  p ie d ic t iu n  ex p ressio n s are th e n  ev a lu a ted  u sing  th e  p ru cessor m u d ei for 

bo th  the M IPS RIOOOO and  the  U ltraS p arc  Ili. thus o b ta in in g  a  predicted  execu tion  tim e for each 

nest. We m ultiply th e  p red ic ted  execu tion  tim e w ith  th e  num ber of tim es th a t  th e  loop is executed 

in the  benchm ark to  o b ta in  a  p red ic ted  execution tim e  for th e  benchm ark. T h e  right b a r in each 

group in Figure 6.10 represents th is es tim atio n  for each  of th e  SPEC fp95 benchm arks. T h e  lower 

p a rt of the bar (gray) is th e  C PU  es tm a tio n  and  th e  u p p er part (w hite) represen ts th e  m em ory 

estim ation. T he left b a r in each group  is the  m easured  tim e. Again, to  o b ta in  th e  execution tim e 

for the benchm ark, we m easured each loop nest ind ep en d en tly  and  m ultip lied  its execution tim e 

by the num ber of executions.

For most of th e  benchm arks th e  prediction is q u ite  accu ra te . E xception m akes H Y D R 02D . 

which has a 47% p red ic tio n  error for th e  RIOOOO an d  67% prediction error for th e  U ltraS parc. We 

suspected th a t th e  e rro r comes from  th e  fact th a t  we p red ic t the  cache behav io r for cold caches, 

an d  in this benchm ark  th ere  m ight be in ter-nest reuse. Therefore, we m easured  th e  perform ance 

using the run-tim e s tack  algorithm  for th e  entire p ro g ram . T he predic tion  e rro r d ropped  to 14% 

for the RIOOOO an d  to  55% for th e  U ltraS parc . We a re  cu rren tly  study ing  th e  cause of th e  highe 

prediction erro r on  th e  U ltraS parc.

Including H Y D R 0 2 D . th e  average com pile-tim e p red ic tio n  erro r is 34.67% (s tan d a rd  deviation  

33.49%) for th e  M IPS  RIOOOO. an d  18.83% (s tan d a rd  d ev ia tio n  17.64%) for U ltraS parc.
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6.3 Summary

In this ch a p te r we have p resen ted  experim ental resu lts  to v alidate  ou r processor and  m em ory  

hierarchy m odels. We have looked a t  scientific F o rtran  codes from th e  SPECfp95 benchm arks an d  

SpLib. a sp arse  linear algebra package. T he Indirect Accesses m odel for the m em ory h iera rchy  

works qu ite  well on  the  SpLib codes, w ith an  average prediction e rro r  of less th an  15%. W hen  

com bined w ith  th e  processor m odel, th e  average p red ic tion  erro r over th e  most significant loops in 

the program  w as below 2u%. We consider these errors to  be very reasonab le  for a  s ta tic , a rch itec tu re  

independent perform ance p red ic to r.

The S tack D istances m odel o f th e  m em ory hierarchy  is even m ore precise. The average p red ic

tion error is a b o u t 17% for th e  sm all 2-wav set-associative LI cache o f th e  RIOOOO. an d  a ro u n d  7% 

for the larger L2 cache. W hen com bined  w ith the processor m odel, th e  average prediction e rro r for 

the SPEC fp95 benchm arks is w ith in  35% for the RIOOOO and w ith in  20% for the U ltraS parc .
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Chapter 7

Conclusions and Future Work

We sta rted  th e  w ork presented in th is thesis because we though t we do not have enough knowledge 

abou t the cache b ehav io r of program s, nor precise enough m ethods to  m easure th is  behavior, much 

less to predict it. P red ic ting  program  perform ance is a  difficult task . P red ic ting  perform ance 

a t com pile-tim e is inherently  m ore difficult because of all th e  unknow ns, such as loop bounds, 

branch frequencies, e tc .. th a t have to  be taken  into consideration. In concluding th is work, we 

will not p re ten d  to  have com pletely solved this problem . However, th is work can provide the 

necessary fo u n d a tio n  for perform ance tun ing , from helping a  com piler to  select th e  best sequence 

of op tim izations, to  helping the user visualize perform ance d a ta  and  re la te  it back to  the  source code, 

from enabling sy s tem  evaluation of no t yet available hardw are, to  com parative  system  evaluation  

and  scalability analysis.

Of course, th e  algorithm s an d  tools p resen ted  in th is thesis are not perfect an d  there is m uch 

space for im provem ent. T he bulk of th e  w ork is the  com pile-tim e pred ic tion  m odel. We have shown 

th a t it is possib le to  pred ic t perform ance, in an  arch itectu ra lly  independent way. w ith reasonable 

accuracy. In fac t, w hen we s ta r te d  th is  p ro jec t, we w anted to  p red ic t perform ance w ithin o0%  of 

the  actual execu tion  tim e. It tu rn s  ou t th a t  we do m uch b e tte r  for a  large fraction  of the  benchm ark  

program s, includ ing  th e  ones th a t con ta in  sparse a lgebra rou tines. S till it will be in teresting  to  see 

how well the  m e th o d s  presented here do  w hen they  are em ployed to  drive com piler op tim iza tion . 

A flavor of th is p o ten tia l has been a lread y  show n w hen our m eth o d  was used to  au to m atica lly  m ap 

code for in telligent m em ory arch itec tu res [64]. We would like to  see how th e  m ethod  can  im prove 

com piler o p tim iza tio n s .

A part from  its  uses, there  a re  severed areas in which th e  p red ic tion  m odel can  be im proved.
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especially if we w ant to  use th e  sam e model for p red ic tin g  parallel p rogram  perform ance. A b e tte r 

superscalar processor m odel th a t  takes into consideration  o p era tio n s dependences can  be devel

oped to im prove th e  e s tim a tio n  of sm all loops. O ne could even consider using reg iste r allocation 

and  instruction  schedu ling  h in ts, although th a t would restric t th e  generality  of th e  m odel and  its 

com piler and  m achine independence.

M any o th er im provem ents can be perform ed on th e  cache m odel. C urrently , the  S tack  D istances 

m odel is applied  to  a  loop if all the  d a ta  dependences in the loop have known d a ta  dependence 

d istance vectors. W e could  relax  this restric tion  an d  use a  com bination  of the  Ind irec t Accesses 

m odel and the  S tack  D istances m odel, by estim atin g  th e  foo t-prin t using  the  Indirect Accesses model 

for the references th a t  do  no t have d istance vectors com puted , an d  su b stitu tin g  th is  es tim atio n  for 

the  accessed a rray  sec tion  in th e  Stack D istances m odel. We will lose some of th e  accu racy  given 

by the Stack D istances m odel, bu t we will be ab le  to  analyze m ore loops. T he com bined  model 

will become even m ore im p o rtan t if we w ant to  ap p ly  the S tack  D istances m odel to  es tim ate  the 

num ber of cache m isses across loop nests. As M cK inley and  T em am  have shown in [4(5. 47]. in ter

loop misses c o n s titu te  an  im p o rtan t fraction o f th e  to ta l cache m isses in the S P E C  an d  Perfect 

Benchm arks. A n o th er lim ita tio n  of the S tack D istances m odel is d u e  to  the fact th a t  it estim ates 

fully-associative caches. Since there  are no fully-associative caches im plem ented in real hardw are, 

it would be in te re stin g  to  explore the possibility o f ad ap tin g  the  a lg o rith m  to m odel set-associative 

caches. The stack  a lg o rith m  has already been used to  m odel se t-associative caches, th ere fo re  is ju s t 

a  m atte r of finding an  a p p ro p ria te  represen ta tion  for th e  se t-asso c ia tiv ity  inside th e  com piler.

O ther ex tensions to  be considered are m ultip rocessor ex tensions. In  fact, if th e  d is trib u tio n  of 

th e  array  onto p rocessors is known a t com pile tim e, th e  com pile-tim e algorithm  p resen ted  in this 

thesis can be easily  ex ten d ed  to  m ultiprocessors by in tersec ting  th e  array  section  sp an n ed  by a 

dependence w ith  th e  a rray  section  m apped to  th e  local m em ory o f th e  processor. All th e  accesses 

inside the array  sec tion  m ap p ed  to  the processor are  local accesses, w hile the array  e lem en ts accessed 

outside the in tersec tion  are  rem ote accesses. U sing th e  array  sec tions one can also com pu te  the 

false sharing, w hich is considered  to  be one of th e  factors m aking th e  caches in m ultip rocessors less 

effective th an  in  un iprocessors.

A nother d irec tio n  in  w hich the  Stack D istances m odel could be ex tended  is in teger codes and
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object-o rien ted  program s. In th is  type  of codes th e  bulk o f th e  co m p u ta tio n  is no longer sp en t in 

loops accessing arrays, so a  different parad igm  has to  be used. However, th e  S tack  D istances m odel 

is no t restric ted  to  arrays.

To conclude, we have show n th a t  th e  s tack  processing a lg o rith m s are a  very powerful technique. 

W e used stack d istances to  q u an tify  locality  an d  we have designed an d  im plem ented a com pile-tim e 

a lgo rithm  th a t com putes th e  s tack  h istogram  a t com pile-tim e. W e have used th e  stack  histogram  

to  pred ic t program  perform ance s ta tica lly  w ith  very good accuracy . T he m ost in teresting  feature 

o f ou r stack a lgorithm  is th a t  once th e  h istogram  is co m p u ted , th e  num ber of cache misses can 

be estim ated  for any  cache size. We do not know of any o th e r  m ethod  th a t does not require the 

com plete  set of cache p aram e te rs  to  e s tim a te  misses. We have also presented a  new algorithm  for 

s tack  processing, th a t  is 30% faste r th a n  th e  best know a lg o rith m  on the  su ite  o f program s traced .
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