
INVESTIGATION OF UNIFORM BIOMATERIAL-BASED MICROSPHERES 
WITH PRECISELY CONTROLLED SIZE AND SIZE DISTRIBUTION FOR 

DEVELOPMENT OF ADVANCED DRUG DELIVERY SYSTEMS

BY

YOUNG BIN CHOY

B.S., Seoul National University, 1999 
M.S., University of Wisconsin-Madison, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements 
for the degree o f Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



UMI Number: 3242824

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3242824 

Copyright 2007 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



© 2006 by Young Bin Choy. All rights reserved.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C e r t i f i c a t e  o f  C o m m i t t e e  A p p r o v a l

University o f Illinois at Urbana-Champaign 
Graduate College

May 23, 2006 

We hereby recommend that the thesis by:

YOUNG BIN CHOY

Entitled:

INVESTIGATION ON UNIFORM BIOMATERIAL-BASED 
MICROSPHERES WITH PRECISELY CONTROLLED SIZE AND SIZE 

DISTRIBUTION FOR DEVELOPMENT OF 
ADVANCED DRUG DELIVERY SYSTEMS

Be accepted in partial fulfillment o f the requirements fo r  the degree of:

Doctor of Philosophy

Signatures:

Director o f  Research - H ead o f  D epartm ent -

Committee on Final Examination*Wn
Chairpe don- v.

Committee M ember -

Committee M ember - nmittee M ember -

* Required for doctoral degree but not for master’s degree

cvaam
Committee M ember

Committee M ember

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ABSTRACT

Uniform microspheres (MS) of biocompatible polymers were investigated 

for use as advanced drug delivery vehicles. Novel methods of fabricating the 

precision particles (i.e., precision particle fabrication (PPF) techniques) of 

biomaterials were developed utilizing mechanical, hydrodynamic and electric 

forces. A number of biodegradable/biocompatible polymers, such as ethyl cellulose 

(EC), chitosan, starch, and gelatin, were employed to investigate their 

characteristics and suitability as drug carriers. Because the MS size determines the 

drug diffusion and/or the degree of polymer degradation, the drug release kinetics 

could be accurately controlled without uncertainties resulting from uncontrolled 

size distribution.

Monodisperse MS of EC with two different polymer viscosities (4- and 45- 

cp) were fabricated by the PPF method. With use of a surfactant, uniformly 

generated EC solution drops could be successfully separated until dry EC MS were 

obtained by solvent evaporation at room temperature. The drugs encapsulated in 

the EC MS tended to concentrate near the surface depending on their hydrophilicity. 

The more hydrophilic the drug, the more concentration near the surface. The 30- 

and 35-pm MS exhibited more even distribution of the drug than the larger ones, 

possibly due to their fast hardening. The 30- and 35-pm MS of 4 cp EC showed 

almost linear release during the first 24 hrs for both hydrophilic and hydrophobic 

drugs.

To fabricate uniform MS of a hydrophilic polymer (hydrogel) such as 

chitosan, starch, and gelatin, an electric force was utilized to separate the uniformly 

generated drops. Both direct and indirect drop charging were incorporated, 

resulting in coulombic repulsion among the drops. Because no surfactant was 

involved, the method became nontoxic. For chitosan and starch, the dry MS were
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obtained by solvent evaporation at a high temperature (140 ~ 160 °C). However, 

due to their degradation at such high temperature, the gelatin solution drops were 

gelled at a low temperature ( 0 - 4  °C). The solvent was extracted afterwards 

utilizing acetone. Uniform hydrogel MS with three different sizes were 

successfully fabricated regardless of the kinds of hydrogels used.

Gelatin MS (GMS), 60-pm in diameter, were crosslinked using 

glutaraldehyde solutions with different concentrations. An acidic drug was 

introduced to form polyion complex with GMS, thereby prolonging the drug 

release. More sustained drug release was obtained with higher glutaraldehyde 

concentrations. As a result of glutaraldehyde concentration gradient in the MS, 

heterogeneous crosslinking seemed to exist. The amount of complexed drug near 

the surface decreased as the glutaraldehyde concentration increased. In situ study 

of the degradation profiles of the GMS with higher glutaraldehyde concentrations 

revealed faster erosion at the center than near the surface.

Uniform chitosan MS (CMS) were employed for precisely controlled 

delivery of acidic drug, where colon-specific delivery could be realized without 

any additive polymers or toxic process. For strong acidic drug with multiple 

anionic functional groups, the smaller the CMS, the more drugs could be contained 

until the colonic site hence the better candidate for colon-specific delivery. Weak 

acidic drug preferred the larger CMS due to the smaller amount of release at the 

gastric fluid.
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CHAPTER 1 

INTRODUCTION

With rapid advances in biotechnology, a variety of potent and specific 

drugs were discovered, many of which have become available in the market place 

or under regulatory review by the United States Food and Drug Administration [1, 

2], However, when the bolus drug is administered, due to its high potency and/or 

short half-life, frequent dosing is often needed to maintain therapeutic 

concentrations in a patient’s body. To minimize such inconvenience and improve 

the patients’ comfort and compliance, new devices employing biocompatible 

polymers as delivery vehicles have been widely investigated [3]. The drug 

encapsulated in a polymer could be protected from the severe body milieu and 

released in sustained and controlled manners minimizing unwanted side effects.

Microsphere (MS) of biocompatible polymers is one of the most common 

forms of drug delivery vehicle due to its ease of fabrication, simplicity of 

administration to various sites, and possible use in localized and targeted delivery 

[4], Various polymers were utilized in those purposes. Poly (D,L-lactide-co- 

glycolide) (PLG) has been one of the good candidates of biocompatible and 

biodegradable polymers, widely used to formulate drug-loaded MS. The drugs, 

such as protein, vaccine, and antimicrobial agent, were encapsulated in PLG MS 

and exhibited sustained release for days or months by diffusion and PLG 

degradation [5-7], Ethyl cellulose (EC) has been also widely investigated as a 

material for controlled drug release for various administration routes [8-12], For 

example, indomethacin-loaded EC was studied as a rectal delivery vehicle and 

provided more than 5 h of prolonged release [9, 12], EC MS loaded with potassium 

chloride, aspirin, fenoterol HBr, etc. were studied as oral delivery vehicles 

achieving 24 h of continuous release [8, 10, 13].

1
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In addition to such synthetic polymers, natural hydrogels are known to be 

attractive polymers for encapsulation because of their excellent compatibility with 

tissue, ease of manipulation of their swelling level, and good control on their solute 

permeability [14]. For these reasons, the MS of such hydrogels as chitosan, starch, 

and gelatin have been widely investigated. Due to the cationic charge of chitosan, 

chitosan microspheres (CMS) are considered effective for the delivery of proteins 

and, especially, DNA [15, 16]. Positively charged CMS can form a polyion 

complex with a negatively charged protein/DNA thus prolonging their release [17, 

18]. CMS were also used for site-specific delivery: due to their bioadhesiveness, 

the residence time of CMS in the lung and stomach increased, facilitating targeted 

drug delivery [19, 20]. Starch, another natural hydrogel, has been explored as a 

material for drug delivery because it is cheap, inert, biocompatible, and 

biodegradable [21]. MS of various starches were studied as adjuvant in oral 

immunization and as a protein delivery system [22, 23], Gelatin microspheres 

(GMS) have been of great interest because of their excellent biocompatibility and 

degradation to non-toxic products [24], Due to their good bioadhesive properties, 

GMS were suggested as a drug carrier for such administration routes as nasal, 

gastrointestinal, and rectal [25, 26]. GMS are well known as good protein delivery 

vehicles since they can be positively or negatively charged to form a polyion 

complex with an oppositely charged protein, prolonging the protein release [27, 28]. 

Due to these favorable properties, GMS have been widely used as a delivery 

vehicle for growth factors in tissue engineering [29, 30],

Drug release from MS-based delivery systems critically depends on the 

size and size distribution of the MS. The critical determinants in drug release, such 

as the rate of diffusion of the drug and degradation of the polymer matrix, were 

strongly influenced by the surface area-to-volume ratio of the particles. For site- 

specific delivery, the MS size was also known to be a critical factor. The MS less

2
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than 10 pm were reported to be effective for the particle transportation via Peyer’s 

patches [31]. The MS, 10-20 pm in diameter, have been used to specifically target 

the tortuous capillary bed of tumor tissues by chemo-embolization [32]. The MS 

size could also determine the porosity of a scaffold. When embedded in a scaffold, 

the MS were shown to function as both digestive porogen and drug delivery vehicle 

[30], To fabricate the MS of biocompatible polymers, various methods such as 

coacervation [33, 34], aqueous precipitation [35, 36], classic emulsion [24, 30, 37, 

38], and spray drying [39-42], were employed. However, due to a lack of control 

over agitation and an inability to prevent drop agglomeration, none of them 

produced uniform MS. In this study, we utilize the precision particle fabrication 

(PPF) method and fabricate uniform MS of various biocompatible polymers with 

precisely controlled size and size distribution. Concurrent use of mechanical and 

hydrodynamic forces allowed the method to be not so limited by the solution 

viscosity or the nozzle dimension, which provided flexibility in particle size control. 

With the use of electric force, originally introduced in this work, particle 

agglomeration was prevented without recourse to toxic surfactants, making the 

method suitable for biomedical application. Most of all, due to the excellent 

uniformity of the resulting MS, the detailed drug release study could be performed 

without uncertainties caused by wide particle size distribution.

In Chapter 2, we explain the theory and background of the PPF scheme to 

understand its significance and advantages. Chapter 3 describes uniform EC MS 

fabricated by the PPF method and the drug release profiles of the drug-containing 

MS. Chapter 4 outlines new improving features of the PPF apparatus that are 

particularly suited to fabrication of uniform hydrogel MS. In Chapters 5 and 6, we 

examine the drug release from thus-prepared uniform hydrogel MS. Chapter 5 

describes the effect of crosslinking on uniform GMS and their drug release profiles. 

In Chapter 6, we investigate uniform CMS with different crosslinking densities for

3
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oral delivery of the drugs with different ionic charges. Chapter 7 summarizes the 

present work and presents concluding remarks.

4
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CHAPTER 2

PRECISION PARTICLE FABRICATION (PPF) METHOD FOR 
BIOCOMPATIBLE POLYMERS

The PPF scheme was evolved from the previous work by Kim and 

colleagues [43-49], in which precision microspheres (MS) and microcapsules 

comprising frozen hydrogen, silica aerogel, and other materials were fabricated. By 

combining mechanical, hydrodynamic, and electric forces, uniform particles with 

micro- or nanosizes were successfully fabricated relatively free from limitations 

imposed by the viscosity of the source solution, dimension o f the drop-producing 

nozzle, and drop agglomeration.

In this chapter, we describe the PPF methodology specifically responsible 

for manufacturing uniform MS of biocompatible polymers and the apparatus built 

to practice the method. The PPF consists of three techniques: generation of uniform 

solution drops, prevention of agglomeration, and particle hardening.

2.1 Generation of Uniform Solution Drops

To fabricate uniform MS, one needs to first generate uniform polymer- 

solution drops. To achieve this, the polymer solution was pumped through a small 

nozzle forming a jet, which was subsequently broken into uniform droplets by 

precisely controlled mechanical (acoustic) force as shown in Figure 2.1(A). All 

figures and tables appear at the end of each chapter. The drop radius predicted by 

Lord Rayleigh [50, 51] is:

rd ~ @r/ vj / 4 / ) 1/3 (2.1)

where rj is the radius of the undisturbed jet, y, the linear velocity of the jet, and/ the

5
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frequency of the acoustic excitation. Thus, the size o f the droplets produced by this 

method, can be accurately controlled by adjusting the jet velocity and the acoustic 

frequency.

However, with this scheme alone, the smallest drop size achievable is 

about twice the nozzle opening. To further reduce the drop size, therefore, the 

nozzle opening has to be accordingly further reduced, which is not applicable to 

high-viscosity solutions. To overcome this difficulty, a hydrodynamic force 

employing a carrier stream was utilized achieving further reduction in the jet 

thickness. As shown in Figure 2.1(B), the carrier stream, consisting of a solvent 

immiscible with an aqueous hydrogel solution, surrounded the jet and was adjusted 

to move faster than the jet. Consequently, the resulting frictional force accelerated 

the jet and made it thinner. This jet was then broken up into uniform drops much 

smaller than the nozzle opening.

Previously, we fabricated uniform MS of various polymers including PLG, 

polyanhydride, etc. [2, 52-54], Because the polymer solutions in this work were an 

oil-phase, water was utilized as a nonsolvent carrier stream. In contrast, when the 

hydrophilic polymer such as hydrogel is employed, the carrier stream needs to be 

an oil phase.

2.2 Prevention of Agglomeration

To minimize the surface energy, smaller drops tend to agglomerate to form 

larger ones. Because of this tendency, the drops, once generated, need to be 

separated to retain their uniform original size. One way to achieve this separation is 

to use a surfactant and reduce the surface tension force of the drops. In our 

previous work, the drops of oil-soluble polymers were seen not to agglomerate 

when a surfactant, polyvinyl alcohol (PVA) was incorporated [2, 52-54]. However, 

with hydrophilic polymers, various attempts using surfactants failed to prevent the

6
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drops suspended in oil phase from coalescing [55, 56].

To resolve this difficulty, an electric field was employed to charge the 

drops with the same polarity. As is well known, the repulsive force between the two 

point charges with the same polarity and amount of charge is [57]:

F  -  Q 2 / 4 ttsR 2 (2.2)

where F  is the force, Q the amount of charge, e the permittivity of the media, and R 

the distance between two points. We utilized both direct and indirect charging 

methods to prevent the drop coalescence. For direct charging, hydrogel solution 

was connected to a high voltage (Figure 2.2(A)) injecting the charge directly 

through induction. However, it might not be safe for a large-scale system because 

the whole apparatus in contact with the hydrogel solution could also experience 

high electric potential if not heavily insulated. To avoid such a problem, an indirect 

charging method (Figure 2.2(B)) was suggested. A conductive ring at a high 

electric potential was placed on the path of a hydrogel solution jet without contact. 

An electric field formed between the ring and the electrically grounded hydrogel 

solution induced the charge into the drops. By this method, only the ring has a high 

electric potential, thereby resolving the possible safety issue caused by direct 

charging

To successfully spread the drops using an electric force, the selection of the 

collection media is critical. While the drops were separated in the media, discharge 

needed to take place very slowly allowing for the drops to harden without losing 

their uniformity. For fabrication o f oil-soluble polymer MS, the method was not 

applicable. The solution drops were suspended in aqueous media, which were 

highly conductive, rapidly losing their charge before being hardened. In contrast, 

the solution drops of hydrophilic polymers such as hydrogel were collected in non-

7
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conducting oil allowing the drops to maintain their charges.

2.3 Particle Hardening

While separated in the collection media, the drops were subjected to 

hardening to convert them into dried MS. The phase of the collection media was 

selected to be immiscible with the polymer solution so that it helped to achieve 

smooth spherical shape of the MS due to the high surface tension force. In contrast, 

air-dried MS were often reported to exhibit nonuniform and rough morphologies 

due to the low interfacial tension between the air and the polymer solution [39, 40].

In this study, we employed three different hardening methods depending 

on the solvent characteristics and the polymer kinds (Figure 2.3). The solvent with 

high vapor pressure was evaporated at room temperature without any other 

treatment while the drops were suspended in the collection media (Figure 2.3(A)). 

In our previous study, the solvent with high vapor pressure, such as methylene 

chloride (350 mmHg at 20 °C), was evaporated at room temperature to obtain dry 

PLG and/or polyanhydride MS [2, 52-54]. However, for the solvent with low vapor 

pressure such as water (17.54 mmHg at 20 °C), the solvent evaporation was 

facilitated by the collection bath heated above their boiling point (140 ~ 160 °C), as 

shown in Figure 2.3(B). This evaporation method, however, was inapplicable to a 

polymer such as gelatin because o f its degradation at high temperatures. Instead, as 

shown in Figure 2.3(C), a low temperature ( 0 - 4  °C) was used for the collection 

bath to cause gellation of the solution drops. These gelled drops were rigid enough 

not to recombine even after charge disappeared. The resulting suspension was 

mixed with acetone afterwards to extract the solvent (water) and obtain the dried 

MS as previously reported [27],

8
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2.4 Apparatus for Precision Particle Fabrication

The apparatus was designed so as to be specially suited to fabrication of 

uniform biocompatible polymer MS as shown in Figure 2.4. A dual nozzle was 

utilized to generate the solution jet thinner than the nozzle orifice, with help o f the 

carrier stream. A typical size of the nozzle opening utilized in this study was about 

250 pm. The nozzle was attached to an ultrasonic wave launcher to introduce a 

mechanical force (acoustic excitation) into the source jet. The energy and 

frequency of the acoustic wave were managed by the electric power supply. The 

drop generation was monitored on a TV screen via a camera and an optical 

microscope. To measure the size of the drops during generation, the still image was 

obtained by using a stroboscope by synchronizing it with the acoustic wave. The 

resulting drops were collected in the nonsolvent media, which were stirred slowly 

to expedite the solvent evaporation or the drop gellation. All the parameters, such 

as the flow rates of the polymer solution and the carrier stream, the acoustic energy, 

and the frequency, were precisely controlled using a computer interface to improve 

accuracy and reproducibility. Figure 2.5 shows the control panel of the PPF 

apparatus, where all the critical parameters could be controlled remotely.

9
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2.5 Figures

Acoustic excitation

Polymer
Solution

Carrier stream

(A) (B)

Figure 2.1 Generation of uniform solution drops (A) from a single 
nozzle, and (B) a dual nozzle employing a carrier stream.
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High

Voltage

Source

Spreading

drops

Voltage

Source

Spreading

drops

nr
Figure 2.2 Drop separation by an electric force. Two different charging 
methods were employed: (A) direct charging, and (B) indirect charging.
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Stirring at 
room temperature

Stirring at 
an elevated temperature

Stirring at 
low temperature

Cooling bath

Figure 2.3 Schematic illustrations of different hardening methods: (A) 
solvent evaporation at room temperature, (B) solvent evaporation at an 
elevated temperature, and (C) gellation of the polymer solution drops at 
low temperature.
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Stroboscope

Camera Optical

Lens Collection

Bath

Figure 2.4 Simplified schematic of the PPF apparatus for fabrication of 
uniform MS of biocompatible polymers. All the parameters were controlled by 
a computer to improve the reproducibility.
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Figure 2.5 Control panel of computer-based PPF apparatus.
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CHAPTER 3

UNIFORM ETHYL CELLULOSE MICROSPHERES OF
CONTROLLED SIZES AND POLYMER VISCOSITIES AND 

THEIR DRUG RELEASE PROFILES

Monodisperse EC MS were fabricated by the PPF methodology described 

in Chapter 2, which combines mechanical and hydrodynamic forces. Due to the 

excellent uniformity and sphericity of the particles, the drug release profiles 

obtained with the resulting EC MS were free from the uncertainties caused by the 

uncontrolled particle size and morphology. The effect of polymer viscosity was 

examined by employing EC with two distinct viscosities (4- and 45-cp). Piroxicam 

and rhodamine B were used as the model drugs. The drug distribution in the MS 

was examined to see the effect on drug release.

3.1 Purpose

EC, a water-insoluble and pH-independent polymer, has been widely used 

as a material for controlled drug release for various administration routes [8-12, 58, 

59], Several methods of fabricating drug-loaded EC MS, including coacervation 

[11, 33, 34, 60], spray drying [41, 42], and emulsion techniques [13, 37, 38, 60-64], 

have been investigated and the factors affecting the drug release profiles studied. 

The nonsolvents used [37, 60, 61], the amount o f emulsion stabilizer [63], the rate 

of agitation [12, 63, 65], and the molecular weight o f EC [38, 41] were varied to 

examine their respective effects on drug release. However, none of these release 

studies was carried out without the uncertainty stemming from the inability to 

precisely control the size and size distribution of the MS.

It is well known that the shape, size, and size distribution o f drug-loaded 

MS are critical determinants of drug release profiles because the surface area-to-

15

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



volume ratio of the MS strongly affects the rate of drug release and/or polymer 

degradation. For example, MS with distorted spherical shape should show different 

drug release from those with smooth spherical shape, even with the same volume 

due to difference in the surface areas. EC MS obtained from coacervation and spray 

drying exhibited irregular shapes with wide size distributions [34, 41]. Most of the 

MS obtained from the emulsion method exhibited smooth spherical shapes [13, 37, 

38, 60-64] but still wide size distributions. The reported standard deviations of the 

size distributions were 20-50% of the average diameters.

We recently fabricated monodisperse MS of poly(D,L-lactide-co- 

glycolide) (PLG) and a few other polymers for use as drug delivery systems using 

the PPF technique [2, 52-54], Following the basic PPF scheme, drug-loaded EC 

MS with uniform size and precisely controlled size distribution were fabricated in 

this work. Piroxicam, a nonsteroidal anti-inflammatory drug (NSAID), and 

rhodamine B were encapsulated as model drugs. Although the two drugs are similar 

in molecular weight, piroxicam was chosen as a representative for water-insoluble 

drugs (53.3 pg/ml at pH -7 ) and rhodamine for water-soluble drugs (7.8 mg/ml) 

[53]. By fabricating monodisperse EC MS with different sizes from two distinct 

viscosities of EC, we were able to investigate the effects of particle size and 

polymer viscosity on the drug release, without the uncertainties associated with the 

particle size variation. EC stocks with viscosities of 4 cp and 45 cp were used. The 

effects of particle surface morphology and drug distribution on drug release were 

studied. The in vitro drug release studies were performed over 24 h mainly to 

investigate the effectiveness of the EC MS as oral/rectal delivery vehicles.
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3.2 Materials and Experimental Methods

3.2.1 Materials

EC with two different viscosities (48% ethoxy, 4 cp; and 49.3% ethoxy, 45 

cp) were obtained from Aldrich. PVA (88% hydrolyzed) was purchased from 

Polysciences. Rhodamine B chloride was acquired from Sigma. Piroxicam freebase 

was a gift from Dongwha Pharmaceuticals (Korea). HPLC-grade dichloromethane 

(DCM) was purchased from Fisher Scientific.

3.2.2 Microsphere preparation

Uniform EC MS with drug loading were fabricated as described in Chapter 

2 (Figures 2.1, 2.3(A), and 2.4). Briefly, to fabricate the drug-loaded EC MS, EC 

was dissolved in methylene chloride (5% w/v) followed by an initial loading of the 

drugs (piroxicam: 5% w/w and rhodamine: 10% w/w). The resulting EC solution 

was fed into a nozzle structure with a syringe pump to produce a smooth liquid jet 

exiting the nozzle opening. A carrier stream (1% w/v PVA in DI water) surrounding, 

and moving faster than, the jet was introduced, accelerating the jet to a desired 

smaller size below the nozzle opening. An acoustic excitation of controlled 

frequency and amplitude was launched into the jet using a piezoelectric transducer 

(Branson Ultrasonics) controlled by a frequency generator (Klewlett Packard model 

3325A). The jet was broken into a train o f uniform droplets, which were collected 

in a beaker containing a PVA solution and subsequently hardened for 2 ~ 5 h. The 

resulting microspheres were filtered, washed several times with DI water, and 

lyophilized.

3.2.3 Particle size distribution

A Coulter Multisizer 3 (Beckman Coulter, Inc.) equipped with a 200-pm
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aperture was used to determine the size distribution of the resulting EC MS. The 

EC MS were suspended in Isoton electrolyte with a dispersant to prevent 

aggregation. More than 5000 MS were counted for each sample.

3.2.4 Scanning electron microscopy (SEM)

The uniformity and surface morphology of the microspheres were 

examined using a Hitachi S-4700 scanning electron microscope. A droplet of an 

aqueous suspension of EC MS was placed on a small piece of silicon wafer 

attached onto a scanning electron microscope sample holder. The samples were 

dried overnight and sputter-coated with gold to facilitate SEM imaging. The MS 

were imaged at 2-10 kV.

3.2.5 Confocal Microscopy

A small amount of drug-loaded EC MS (~1 mg) was suspended in distilled 

water. A droplet of the resulting suspension was placed on a microscope slide and 

dried overnight. The drug-loaded MS were imaged using a laser scanning confocal 

microscope (Olympus Fluoview FV 300 Laser Scanning Biologic Microscope). 

Krypton and helium/neon lasers were used to excite rhodamine and piroxicam, 

respectively. The midsections of the MS were analyzed to determine the drug 

distribution at the center.

3.2.6 In vitro drug release

A known amount of EC MS loaded with piroxicam or rhodamine (~5 mg) 

was suspended in 1.5 ml of a PBS solution (pH = 7.4) containing 1% Tween 20. 

The suspensions were incubated at 37 °C for 24 h while continuously agitated by 

inversion (~8 rpm). At certain time intervals, the supernatant was sampled and 

the same volume refilled with a fresh buffer solution. Absorbance of the sampled
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supernatant was measured at 350 nm for piroxicam and 550 nm for rhodamine, 

respectively. The amount of drug release at each time interval was cumulatively 

added to the amount measured at the previous time interval and divided by the 

actual loading in the MS, resulting in cumulative percent release. The samples 

prepared with the same amount of blank MS were treated identically, and the 

absorbance values thus obtained were subtracted from all measurements.

3.3 Results

3.3.1 Preparation of drug-loaded microspheres

Uniform EC MS with drug loading were fabricated using the PPF method. 

The model drugs, piroxicam and rhodamine, were encapsulated as the 

representatives of water-insoluble and water-soluble drugs, respectively. For each 

viscosity of EC, three different sizes of MS were fabricated to study the effects of 

particle size and viscosity on drug release. Figure 3.1 shows the pictures of the 

resulting MS with two different viscosities (4 cp and 45 cp) taken by a scanning 

electron microscope (SEM), which provide clear visual evidence o f the uniformity 

of the MS. Piroxicam-loaded MS of 35-, 55-, and 85-pm diameters were fabricated 

using 4-cp EC and 30-, 55-, and 90-pm diameters using 45-cp EC (Table 3.1). 

Rhodamine-loaded MS were fabricated with 30-, 60-, and 105-pm diameter using 

4-cp EC and 20-, 60-, and 90-p.m diameter using 45-cp EC (Table 3.1). All MS 

exhibited much smaller sizes than the nozzle opening (250 pm) used for the 

fabrication in this study, which showed that the carrier stream functioned properly 

reducing the thickness of the EC solution jet. To further prove the uniformity and 

narrow size distribution of the EC MS, four different batches of the MS were 

measured using a Coulter Multisizer. As shown in Figure 3.2, uniform EC MS of 

various sizes were fabricated with more than 90% of the MS within ±3 pm of the
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average diameter.

3.3.2 Drug distribution in the microspheres

The drug distribution inside of the MS is one of the critical factors 

governing drug release. To examine the drug distribution, the mid-section of the 

drug-loaded MS was inspected using confocal fluorescent microscopy. The 

intensity of the emission light corresponded to the relative concentration of the 

drug. Grattard et al. [41] previously examined the distribution of fluorescein- 

labeled protein in spray-dried EC MS and observed uncontrolled distribution 

profiles possibly due to the polydispersity of the EC MS. The monodisperse EC 

MS fabricated in the present work exhibited drug distributions specific to each 

precisely controlled size.

Figure 3.3 shows piroxicam and rhodamine distributions inside the EC MS. 

It appears that rhodamine is more hydrophilic than piroxicam, which, in turn, is 

more hydrophilic than EC. As a result, only the small EC MS (30- and 35-pm) 

exhibited relatively homogeneous piroxicam distributions, where, due to the rapid 

particle hardening, the drug had little time to diffuse outwardly toward the aqueous 

media. Larger MS, therefore, showed higher piroxicam concentrations near the 

particle surface. For rhodamine, possibly due to its hydrophilicity, the high drug 

concentrations near the surface were more notable regardless of the MS size and 

EC viscosities. Still, due to rapid hardening, the 20- and 35-pm MS showed more 

evenly distributed rhodamine.

The above results are consistent with our previous observations with PLG 

MS, which showed that piroxicam in the PLG MS exhibited higher concentrations 

at the center while rhodamine localized at the surface, due to the different affinities 

of the drugs for the polymer and aqueous phase [52]. Piroxicam might be more 

hydrophobic than PLG, causing it to localize toward the center while rhodamine,
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being less hydrophobic (or more hydrophilic) than PLG, may have moved 

outwardly toward the aqueous media during hardening.

3.3.4 In vitro drug release study

Figure 3.4 shows the results from the in vitro drug release experiments, 

which elucidate the effects on the release kinetics of the particle size, viscosity of 

EC, and intraparticle drug distribution. The effects of MS size were dominant in 

piroxicam release, which could be explained by the relationship between the MS 

size and the surface-area-to-volume ratio (Figures 3.4(A) and (B)). The larger the 

MS, the smaller the surface-area-to-volume ratio, reducing the flux of piroxicam 

out o f the particles. For 4-cp EC, however, the release from the 55-pm MS at the 

beginning was faster than that from the 35-pm MS. The drug, highly concentrated 

near the surface as shown in Figure 3.3(B), seemed to cause faster release from the 

55-pm MS [66]. The initial burst of piroxicam from the 55-pm MS of 45-cp EC 

could also be explained by the high drug concentrations at the surface. For the 90- 

pm MS of 45-cp EC, the large size and high polymer viscosity appeared to 

suppress the release during the initial 8 h.

The effect o f polymer viscosity on rhodamine release was quite dramatic. 

As shown in Figures 3.4(C-D), the total percent release during the first 24 h for the 

45-cp MS was below 8% while that for the 4-cp MS was 20 -  60 %. For the 60-pm 

MS, the total release increased from 8 to 40% as the viscosity decreased from 45- 

to 4-cp. For 45-cp MS, 60-pm particles exhibited faster release (~ 8%) than the 

other sizes (< 2%). However, due to the overall slowdown in release, the size effect 

of the 45-cp MS was minimal. On the other hand, the release o f rhodamine from 4- 

cp MS exhibited a stronger dependence on MS size (Figure 3.5(C)). For instance, 

the total percent release during the first 24 h for 105-pm MS was 20% whereas it 

was 60 % for 30-pm MS.
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3.4 Discussion

The size, size distribution, and viscosity of the EC MS strongly influence 

the in vitro drug release profiles. Given a particular drug and carrier polymer, the 

surface area-to-volume ratio (i.e., the particle size) most critically influences the 

intraparticle drug distribution and the diffusive drug release, which, in turn, dictate 

the drug release kinetics. The PPF method provided us the means by which to 

fabricate piroxicam- and rhodamine-loaded uniform EC MS with precisely 

controlled sizes, as shown in Figures 3.1 and 3.2. This, in turn, enabled us to 

elucidate the parameters affecting the drug release without the uncertainties 

resulting from non-uniform particle size.

The effects of MS size and polymer viscosity on the drug release have 

been investigated by many researchers. For instance, the release o f isosorbide 

dinitrate or potassium chloride in EC MS was reported to increase as the MS size 

decreased [10, 63], Arabi et al. [67] showed that higher polymer viscosity retarded 

the allopurinol release more. However, these investigators could not accurately 

control the MS size by varying the surfactant concentration, agitation rate, or sieve 

size and had to settle with wide size distributions. As a result, accurate analysis of 

the effects of MS size and polymer viscosity was not possible. In the present work, 

the uncertainties originating from MS size variation were eliminated using uniform 

EC MS (Figures 3.1 and 3.2) fabricated by the PPF method and a release profile 

specific to each MS size was obtained.

The drug release profiles are influenced by the properties of the MS such 

as the particle size, polymer viscosity, and intraparticle drug distribution. For 

example, due to high EC viscosity, as shown in Figures 3.4(C) and (D), the total 

percent release of rhodamine during the first 24 h was minimal (< 8%) for all MS 

of 45-cp EC while more than 60% of release was obtained with the 30-pm MS of 

4-cp EC. The effects of MS size were also notable in drug release from the MS of
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4-cp EC (Figures 3.4(A) and (C)). That is, the larger the MS, the slower the drug 

diffusion out of the particles. . However, interestingly, the release from the 30- and 

35-pm MS was more sustained than that from the larger MS, 55- and 60-pm in 

diameters, respectively. The drug, highly concentrated near the surface as shown in 

Figure 3.4(B), seemed to be responsible for the fast drug release at the beginning 

from the 55- and 60-pm MS resulting in less sustained drug release than the smaller 

MS [66].

Reduction of initial burst and sustained release of the drug has been widely 

studied for hydrophilic drugs such as proteins and peptides since significant initial 

burst is not only dangerous to the body but also undesirable for a long-term release 

[68]. To realize zero-order release, which is considered the optimal release of 

nonsteroidal anti-inflammatory drugs such as ketoprofen, the reduction o f initial 

burst is necessary [69]. It was reported that the release of fenoterol HBr, a highly 

water-soluble drug, from EC MS exhibited a reduced initial burst with the addition 

of nonsolvent such as petroleum benzene during the microsphere hardening [65]. 

Yamada et al. [69] realized an approximate zero-order release of ketoprofen by 

coating the Eudargit particles with a mixture of carboxymethylethylcellulose and 

EC. However, the size distributions of their microspheres were not precisely 

controlled, thereby still leaving the unresolved issue o f reproducibility due to the 

polydispersity of MS.

The monodisperse EC MS of 30- and 35-pm size, fabricated with the PPF 

method reported herein, exhibited approximate linear release with reduced initial 

bursts. As mentioned above, the fast hardening of the small MS might give rise to 

more even drug distributions and prevent massive dissolution of the drug from the 

surface at the initial stage of the release of both hydrophobic and hydrophilic 

model-drugs. Most importantly, due to the precise control of the size and size 

distribution, the critical parameters governing the drug release, such as the surface-
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area-to-volume ratio and intraparticle drug distribution, could be controlled highly 

consistently and reproducibly for each specific size of the MS.

3.5 Conclusion

We have developed a novel method of fabricating drug-loaded uniform EC 

MS with precisely controlled sizes and size distributions. Both acoustic and 

hydrodynamic forces were used to produce the MS. The effects of the MS size and 

EC viscosity on the drug release kinetics were examined. The size effects were 

quite evident with the piroxicam release. The initial burst of piroxicam from the 55- 

pm MS may be explained by the high drug concentrations at the MS surface. The 

rhodamine release from 4-cp MS varied according to the MS size. The release from 

the 45-cp MS was slow due to the higher viscosity. The 30- and 35-pm MS of the 

lower viscosity showed approximate linear release with a reduced initial burst 

possibly due to the relatively uniform drug distributions. The EC MS prepared by 

the PPF method could realize sustained drug release with high reproducibility.
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3.6 Figures and Table

Figure 3.1 SEM pictures o f drug-loaded uniform EC MS with different sizes 
and EC- viscosities. The drugs loaded and EC viscosities are (A) piroxicam, 
4 cp; (B) piroxicam, 45 cp; (C) rhodamine, 4 cp; and (D) rhodamine, 45 cp. 
The diameters of the MS are, from top to bottom, (A) 35, 55, 80 pm; (B) 30, 
55, 90 pm; (C) 30, 60, 105 pm; and (D) 20, 60, 90 pm. The scale bars are 50 
pm.
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Figure 3.2 Size distributions of four different batches of EC MS 
fabricated with the PPF method.
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Figure 3.3 Confocal laser micrographs o f drug-loaded EC MS with 
different sizes and EC viscosities. The light intensity indicates piroxicam 
and rhodamine distributions. The scale bar is 30 pm. The drugs loaded 
are (A)-(C) piroxicam, (D)-(F) rhodamine, (G)-(I) piroxicam, and (J)-(L) 
rhodamine. The EC viscosities are (A)-(F) 4cp, and (G)-(L) 45 cp. The 
diameters are (A) 35 pm, (B) 55 pm, (C) 80 pm, (D) 30 pm, (E) 55 pm, 
(F) 90 pm, (G) 30 pm, (H) 60 pm, (I) 105 pm, (J) 20 pm, (K) 60 pm, and 
(L) 90 pm.
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viscosities. The drugs and EC viscosities are (A) piroxicam, 4 cp; (B) 
piroxicam, 45 cp; (C) rhodamine, 4 cp; and (D) rhodamine, 45 cp.
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Table 3.1 Average diameters EC microspheres fabricated by the present method

Polymer
Viscosity

Average
Diameter

(pm)

35(±1.5)
4 cp 55(±2.6)

80(±3.0)Piroxicam
30(±2.4)

45 cp 55(±3.0)
90(±2.5)

30(±1.5)
4 cp 60(±1.5)

Rhodamine B
105(±2.3)

20(±1.0)

45 cp 60(±2.0)

90(±2.5)
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CHAPTER 4

A NOVEL ELECTRIC FIELD ASSISTED METHOD FOR FABRICATION 
OF UNIFORM BIODEGRADABLE HYDROGEL MICROSPHERES

A modified PPF method enabling fabrication of uniform biodegradable 

hydrogel microspheres o f precisely controlled size has been developed. Especially, 

with the use of electric force, the method allows surfactant-free and nontoxic 

particle fabrication. Four different hydrogels, including chitosan, starch, and 

gelatins with two distinct polarities, were utilized as the model polymers.

4.1 Hydrogel Microspheres for Controlled Drug Release

Hydrogel MS were widely investigated as drug delivery vehicles due to 

their advantages including tissue compatibility and ease of swelling and, solute 

permeability [14]. The MS using hydrogel polymers such as chitosan and starch 

have been of particular interest for controlled drug release.

Chitosan is a natural cationic hydrogel and has been used as the 

encapsulation materials for biodegradable microspheres [15, 16]. The drugs such as 

prednisolone sodium phosphate, melatonin, and theophylline were encapsulated in 

CMS resulting in prolonged drug release [16, 70-73]. Due to the bioadhesiveness 

of chitosan, CMS were used for site specific delivery [19, 20, 35], Morphine, 

which has low bioavailability administered in simple solution, was loaded in CMS 

and exhibited rapid adsorption to the lung with high bioavailability [19], In 

eradicating Helicobacter pylori, which is etiologically linked to chronic gastritis, 

peptic ulcer disease, and gastric cancer, the CMS containing tetracycline increased 

the residence time in the stomach, thus resulting in high drug efficacy [20, 35].

CMS are also well known as a good protein and/or as DNA delivery 

vehicle because of their cationic charge [15, 17, 18]. Positively charged CMS can
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form a polyion complex with a negatively charged protein thus prolonging the 

release. The plasmid DNAs such as pGL2 and pMK3 showed sustained and high 

protein production using CMS as carrier [17]. The CMS containing transforming 

growth factor-pi (TGF-pl) were incorporated into the tissue scaffold augmenting 

the cell proliferation and production of extracellular matrix [15, 18].

Starch, another natural hydrogel, has been explored for its use as a drug 

delivery vehicle because it is inexpensive, inert, biocompatible, and biodegradable 

[21]. The MS of various starches were studied as adjuvant in oral immunization 

and protein delivery system [22, 23, 74-77]. Polyacryl starch MS were examined as 

a drug delivery system for vaccination and successfully induced mucosal and 

systemic immune responses using antigens such as rotavirus, human serum 

albumin, and diphtheria toxin [22, 23, 74, 77]. The proteins such as bovine serum 

albumin, horseradish peroxidase, and insulin, were encapsulated in poly(acryloyl- 

hydroxyethyl starch) MS and exhibited good stability and prolonged release [75, 

76],

Gelatin microspheres (GMS) have been of great interest in recent years 

because o f its excellent biocompatibility and degradation to non-toxic products 

[24], The administration routes such as nasal, gastrointestinal and rectal ways were 

suggested in conjunction with using GMS as drug carrier due to their good 

mucoadhesive properties [26, 78-80], Carboplatin, an antitumor drug was 

encapsulated in GMS and successfully delivered via the nasal route with very high 

lung-targeting efficiency [56] and calcitonin, which has a low bioavailibility when 

administered via the oral route, also resulted in enhanced nasal adsorption [81]. 

Interleukin-10 (IL-10), an anti-inflammatory cytokine, was delivered via rectal 

routes of female mice and inhibited colonic mucosal inflammation more efficiently 

when GMS were used as delivery vehicles [26],

In addition to bioadhesiveness, GMS are well known as good protein
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delivery vehicles since they can be positively or negatively charged and can form a 

polyion complex with an oppositely charged protein thus prolonging the protein 

release [27, 28]. Proteins complexed with gelatin hydrogel are known to be 

released through the degradation of gelatin. Due to these properties, GMS have 

been widely used as a delivery vehicle for growth factors in tissue engineering [25, 

30, 82-88]. Growth factors are known to contribute to tissue regeneration at 

different stages o f cell proliferation and differentiation [88, 89]. However, due to 

their short half-lives, an appropriate delivery vehicle is needed to maintain 

therapeutically efficacious levels of the growth factors in vivo. Basic fibroblast 

growth factor (bFGF) was impregnated in gelatin sponge or GMS with isoelectric 

point (IEP) of 5.0 (acidic gelatin) and exhibited prolonged vascularization, 

accelerated tissue regeneration and improved therapeutic efficacy o f cardiomyocyte 

transplantation [25, 82, 84, 85]. Adipose or periodontal tissue regeneration was also 

enhanced with bFGF-impregnated GMS [86, 87, 90], Other basic growth factors, 

such as transforming growth factor-pi (TGF-pi) and hepatocyte growth factor 

(HGF), were also encapsulated in acidic GMS and released in a controlled manner, 

demonstrating that it is a promising therapy for the articular cartilage defect and the 

liver cirrhosis [30, 83, 88]. For bone morphogenic protein (BMP), basic gelatin 

(IEP = 9.0) was used as the carrier to form polyionic complex and demonstrated 

enhanced alkaline phosphatase (ALP) activity [29].

4.2 Conventional Fabrication Methods and Their Problems

To fabricate hydrogel MS, various methods, such as aqueous precipitation 

[16, 20, 36], classic emulsion [24, 30], and spray drying [40, 91], were often 

employed. The hydrogel solution drops were formed by agitating, with high- 

pressure air, the suspension or the hydrogel solution resulting in random breakup of 

the droplets. Thus, the resulting MS exhibited wide size distributions, which caused
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possible uncertainties in drug release profiles. Various other approaches with better 

control have also been attempted by using a membrane with uniform pores [92], a 

microreactor [93, 94], and a spinning disk [95]. Although fairly uniform MS were 

obtained with these methods, the difficulties still remained because the drop size 

depended on the solution viscosity, the reactor shape, and the size of pore or disk- 

tooth. For example, to fabricate small MS of a viscous polymer, one might need a 

very high pressure to allow the solution to pass through the small pores o f the 

membrane and/or the micro-reactor. For the same reason, a spinning disk might 

require high rotating velocity to generate strong centrifugal force, which could be 

limited by the capacity of a motor. Occasionally, aqueous hydrogel solution caused 

the wetting on the membrane surface hindering the drop formation at each pore.

4.3 Fabrications and Characterization of Uniform Hydrogel Microspheres

The PPF scheme was suggested as a means to overcome the limitations 

described above. Although the basic PPF scheme worked well, for the following 

reasons the fabrication of hydrogel MS was challenging and required further 

improvement of the method. First, hydrogel materials were dissolved in water to 

make the working polymeric solutions, which were often highly viscous. To 

appropriately introduce the hydrodynamic force, therefore, an oil phase was chosen 

as a carrier stream, which exhibited viscosity comparable to that o f the hydrogel 

solution. Aqueous carrier stream would mix rapidly with hydrogel solution before 

it functioned properly [2, 52-54, 96]. Second, solvent removal from the hydrogel 

solution drops was more demanding than that from the oil-soluble polymer drops 

wherein the solvents were volatile. For instance, methylene chloride used for the 

PLG MS fabrication could be removed efficiently at room temperature without 

employing any extra process [2, 52-54]. Third, various attempts, including the use 

o f surfactants, failed to prevent the drops suspended in oil phase from coalescing
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[55, 56]. Thus, a new approach was required to separate the hydrogel drops and 

avoid their agglomeration. Finally, to be practically useful, the apparatus and the 

processing protocols must be suitable for scale-up production.

In this section, we report on first successful fabrication o f monodisperse 

MS of biodegradable hydrogels and an apparatus enabling it. The hydrogel 

polymers tested included chitosan, hetastarch, and gelatin. Gelatins with two 

different isoelectric points (IEPs = 5 and 9) were used because they are well known 

for delivery of oppositely charged proteins [27, 30],

4.3.1 Materials

Chitosan (75-85% deacetylated) was purchased from Aldrich. Hetastarch 

solution (6% hetastarch in 0.9% sodium chloride injection; Abbott laboratories), 

hetastarch was a gift from Professor Timothy M. Fan of the Department of 

Veterinary Clinical Medicine, and gelatins of two different IEPs (IEPs = 5.0 and 

9.0; Mw = 100 kDa; Nitta Gelatin Co., Osaka, Japan) were a gift from Professor 

Russell D. Jamison of the Department of Materials Science and Engineering. 

Professors Fan and Jamison are with the University of Illinois at Urbana- 

Champaign.

4.3.2 Preparation of uniform hydrogel microspheres

Herein, we report a novel method for fabricating monodisperse MS of 

biodegradable hydrogels. The hydrogel materials used in this work were chitosan, 

hetastarch, and gelatins with IEPs of 5 and 9, respectively. To generate uniform 

hydrogel solution drops, canola oil was chosen as a nontoxic and nonsolvent carrier 

stream material to effectively apply the hydrodynamic force [2, 52-54]. As the 

hydrogel solution was fed through the nozzle, it formed a smooth jet of a size 

smaller than the nozzle opening, which subsequently was broken up into uniform
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droplets by the acoustic excitation as described in Chapter 2 [50, 51]. Figure 4.1 

shows the thus-produced uniform hydrogel drops of 200-, 150-, 100-, and 50-pm in 

diameter using a nozzle with 250-pm opening. All drops exhibited smaller sizes 

than the nozzle orifice.

Once generated, the hydrogel drops were collected in an oil bath and 

subjected to hardening. Unfortunately, to minimize the surface tension energy, 

liquid drops are inclined to recombine and form larger drops unless prevented. 

However, even with the use of surfactants it has been extremely difficult to prevent 

the drops suspended in oil phase from coalescing [55, 56]. In this work, we 

introduced an electric field to charge the drops so that they could repel each other 

and maintain their integrity (Figure 2.2). Due to the coulombic repulsion, the 

charged hydrogel solution drops were prevented from agglomeration during the 

hardening process resulting in uniform dry MS. The fact that this process involved 

no toxic surfactants qualified the method to be particularly attractive for biomedical 

applications such as advanced drug delivery and tissue engineering. Figure 4.2 

shows the effect of charging on the hydrogel solution drops 150-p.m in diameter. As 

the electric field was applied, the drops were repelled due to the coulombic force. 

With more charging, the separation of the drops increased.

While separated in oil, the drops were subjected to hardening to give dried 

hydrogel MS. The oil, utilized as the hardening media, helped the MS to attain 

smooth surface morphology due to its high surface tension force. In general, air- 

dried microparticles exhibit nonspherical and rough morphologies due to the low 

interfacial tension between the air and the hydrogel solution [39, 40, 97]. For the 

chitosan and hetastarch MS, water used as the solvent was boiled off by elevating 

the temperature of the oil bath. This evaporation method, however, was 

inapplicable to gelatin because of its degradation at high temperatures. Therefore, 

gelatin solution drops were gelled by lowing the temperature o f the oil bath to 0 ~
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4 °C, followed by extraction of water using acetone to obtain dried MS [27], The 

gel-drops were rigid enough not to agglomerate even after charge disappeared.

4.3.3 Characterization

The MS were examined using a Hitachi S-4700 scanning electron 

microscope (SEM). A droplet of MS samples suspended in hexane was placed on a 

small piece of silicon wafer attached on top of the SEM sample holder and dried 

overnight with desiccant. The samples were sputter-coated with gold. The MS were 

imaged at 2-10 eV.

4.4 Results and Discussions

Figure 4.3 shows thus-fabricated MS of chitosan, hetastarch, and gelatin. 

Regardless of the materials used, all MS exhibited excellent uniformity and 

sphericity. The average diameters of the CMS (Figure 4.3(Al-3)) were 15 pm, 20 

pm and 28 pm; hetastarch MS (Figure 4.3(Bl-3)) were 17 pm, 30 pm, and 45 pm; 

GMS of IEP = 5 (Figure 4.3(Cl-3)) were 25 pm, 40 pm, and 50 pm; and GMS of 

IEP = 9 (Figure 4.3(Dl-3)) were 20 pm, 30 pm, and 40 pm. The size uniformity 

was further verified with a Coulter Multisizer. Figure 4.4 illustrates the precisely 

controlled size and narrow size distributions for the four different batches of the 

CMS. More than 90% of the MS were fabricated within ±3 pm of the average 

diameter.

To verify that the MS of chitosan and hetastarch were properly formed as 

solid particles through solvent evaporation, their cross-sections were examined. As 

shown in Figure 4.5, the insides of the MS were densely packed regardless of the 

MS sizes, which proved that for both hydrogel polymers, the use o f a high- 

temperature oil bath removed the solvent appropriately. The porosity of the MS 

was known to be a critical factor in determining the drug release profile [7, 98, 99].
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The smooth and dense structures of both CMS and HMS could allow one to tailor 

the drug release with better control.

The GMS, when suspended in water at body temperature, dissolve rapidly, 

thus are not suitable as vehicles for sustained drug delivery. Therefore, crosslinking 

was often carried out to prepare nondissolving GMS (0.125% glutaraldehyde). 

Figure 4.6 shows the dry GMS after crosslinking, which were no longer spherical 

but exhibited rough surfaces (Figures 4.6). Although the IEP = 9.0 GMS exhibited 

smoother surfaces than those of IEP = 5, the dimples were still shown. However, 

the crosslinked GMS after water uptake retained their uniformity and sphericity as 

shown in Figure 4.7, which was meaningful from the perspective of controlled drug 

release because the actual drug release occurred in aqueous environment. The most 

important advantages of the PPF drop generation method described in this work 

would be the flexibility in controlling the drop size and the capability to perform 

large-scale production. The use of carrier stream enabled the PPF to overcome the 

limitations imposed by solution viscosity and nozzle dimension. Therefore, drops 

of different sizes could be generated with a fixed nozzle simply by varying the flow 

rate of the carrier stream and/or the frequency o f acoustic excitation. With a single 

set o f nozzle, the achievable size range was quite wide. By increasing the number 

of nozzles subjected to acoustic excitation, the amount of hydrogel MS produced 

would increase by the same number. Therefore, scale-up could be easily established 

with the present method. Also, the production rate would not change with the 

changing target drop size because, at a fixed flow rate, uniform drops of wide size- 

range could be obtained by varying the frequency of acoustic excitation.

4.5 Conclusion

We have developed a novel method particularly suited to fabricating 

uniform hydrogel MS of precisely controlled size and size distribution. Chitosan,
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hetastarch, and gelatins (IEPs = 5.0 and 9.0) were used as the model hydrogel 

materials. Use of carrier stream in combination with acoustic excitation facilitated 

the fabrication of uniform solution drops so that the solution viscosity and nozzle 

size would no longer limit the uniform MS fabrication of controlled size. By 

applying electric charge, the hydrogel solution drops could be prevented from 

coalescing during the hardening process, requiring no surfactant. In addition, with 

the present method, scaling-up could be easily realized by increasing the number of 

nozzles. Excellent uniformity and smooth spherical shape were exhibited for the 

hydrogel MS fabricated herein, both dry and swollen containing drug solution, 

which may provide accurate control in the drug delivery mediated by hydrogel 

particles. This study demonstrated that the fabrication o f MS could be extended to a 

wide range of hydrogel materials with excellent control in size.

4.6 Figures
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Figure 4.1 Generation of uniform hydrogel solution drops. Four different 
sizes of uniform drops generated by the present method. Drop diameters 
are (A) 200 pm, (B) 150 pm, (C) 100 pm, and (D) 50 pm.
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Figure 4.2 Charging was used to prevent chitosan drop agglomeration via 
coulombic repulsion. The applied electric fields were (A) 0 V/cm, (B) 50 
V/cm, (C) 100 V/cm, and (D) 150 V/cm. The drop diameters are 150 pm.

Figure 4.3 SEM pictures of uniform hydrogel microspheres. The polymers 
used are (A) chitosan, (B) hetastarch, (C) IEP = 5 gelatin, and (D) IEP = 9 
gelatin. The diameters are (A l) 15 pm, (A2) 20 pm, (A3) 28 pm, (B l) 17 pm, 
(B2) 30 pm, (B3) 45 pm, (C l) 25 pm, (C2) 40 pm, (C3) 50 pm, (DI) 20 pm, 
(D2) 30 pm, and (D3) 40 pm. The scale bars are (A) 15 pm and (B-D) 30 pm.
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Figure 4.4 Size distributions o f hydrogel MS (chitosan) prepared by 
PPF method. Four different batches were measured by Coulter 
Multisizer and exhibited narrow size distributions.

Figure 4.5 SEM pictures o f the cross sections of the MS. The polymers used 
were (A)-(C) chitosan and (D)-(F) hetastarch. The diameters are (A) 15 pm, 
(B) 20 pm, (C) 28 pm, (D) 17 pm, (E) 30 pm, and (F) 45 pm. The scale bars 
are (A)-(C) 5 pm and (D)-(F) 10 pm.
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Figure 4.6 SEM pictures of dry GMS after crosslinking. The GMS at dry 
state were shown. The gelatins are IEP = 5.0 from (A) to (C) and IEP = 9.0 
from (D) to (F). The scale bar = 30 pm.
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Figure 4.7 Optical micrographs of uniform GMS after crosslinking. The 
GMS after water-uptake were shown. The gelatins are IEP = 5.0 from (A) to 
(C) and IEP = 9.0 from (D) to (F). The diameters after swollen are (A) 55 
pm, (B) 90 pm, (C) 120 pm, (D) 45 pm, (E) 70 pm, and (F) 80 pm. The scale 
bar =100 pm.
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CHAPTER 5

DRUG RELEASE PROFILES OF UNIFORM GELATIN MICROSPHERES 
UNDER DIFFERENT CROSS-LINKING CONDITIONS

GMS were often crosslinked using glutaraldehyde to form nondissolving 

MS for sustained drug delivery. Due to the diffusion of glutaraldehyde, the 

crosslinking density in the MS could be heterogeneous, influencing their drug 

release kinetics. In this study, uniform GMS were fabricated with the PPF method 

and the effects of crosslinking elucidated without possible uncertainties caused by 

the particle polydispersity.

5.1 Crosslinked Gelatin Microspheres

Cross-linking density is one of the critical parameters affecting the 

degradation of GMS [100, 101], which would consequently determine the drug- 

release profile. Glutaraldehyde has been used as one of the most effective cross- 

linking agents. However, due to its cytotoxicity [102, 103], it is desirable to 

minimize the use of glutaraldehyde in the cross-linking of gelatin. Although less 

toxic agents, such as genipin and D,L-glyceraldehyde, have been used, they were 

not as efficient as glutaraldehyde [24, 104], For practical application of GMS as a 

delivery vehicle, it is important to understand the drug-release profile as a function 

of cross-linking, which, in turn, would allow tailoring of the release profile.

Conventionally, GMS are fabricated by the emulsion method and cross- 

linked in an aqueous solution of glutaraldehyde [27], The cross-linking reaction 

takes place as glutaraldehyde diffuses through the GMS, which may give rise to a 

concentration gradient of glutaraldehyde along the path and lead to heterogeneity 

of the cross-linking density in the GMS. This could be a significant factor affecting 

the drug release profile of GMS. However, to study such phenomenon,
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monodisperse GMS are required so that any uncertainties resulting from size 

nonuniformity of the spheres could be eliminated. For instance, the diffusion of 

glutaraldehyde and drug and the decomposition o f GMS would depend on 

microsphere size. Unfortunately, due to the difficulty in controlling the GMS size, 

such well-defined GMS have not been available to date. As a result, the study on 

drug-release profile o f GMS as a function of cross-linking has been hampered.

In this work, we fabricated uniform-sized GMS of IEP = 9 as described in 

Chapter 4 using glutaraldehyde as the cross-linking agent [105] and studied the 

effect of cross-linking on the drug distribution inside the GMS and the drug-release 

profile. The concentrations of glutaraldehyde used for the cross-linking reaction 

were 0.125 -  0.875 % as summarized in Table 5.1. The in vitro drug-release study 

was performed utilizing trypan blue, an acidic model drug, to effect the formation 

of charge complex. The critical parameters governing the drug release, such as the 

drug distribution in the microspheres and the in situ degradation profile of the MS, 

were examined.

5.2 Experimental

5.2.1 Cross-linking uniform gelatin microspheres

Uniform GMS, 60 pm in diameter, were fabricated as described in Chapter 

4. The resulting GMS were cross-linked using galutaraldehyde. The un-cross- 

linked GMS were first suspended in cold water (0 ~ 4°C) o f different 

glutaraldehyde concentrations (Table 5.1) and cured for 24 h. The resulting GMS 

were filtered, washed with DI water, and agitated in glycine solution to block 

excessive aldehyde groups. After 2 h, the GMS were washed again with DI water 

and lyophilized.
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5.2.2 Drug loading

An acidic model drug (trypan blue) was impregnated into IEP = 9 GMS to 

form polyion complex. Briefly, an aqueous solution containing the drug (0.1% w/v) 

was dropped onto the known amount of GMS (5 pL/mg) and left for 2 h at room 

temperature. The drug solution was completely absorbed by the GMS because the 

volume of the solution was less than that required for the theoretical equilibrium 

swelling o f the GMS.

5.2.3 In vitro drug release study

The in-vitro drug release study was preformed utilzing two distinct release 

media of PBS with and without an enzyme (Collagenase 1A) [30], The enzyme 

concentration used in this work (373 ng/mL) mimicked the synovial fluid of a 

patient with osteoarthritis disease. Drug-loaded GMS were suspended in 1.5 mL of 

the release media and incubated at 37 °C for 18 days with continuous agitation. The 

supernatant was sampled at scheduled time intervals. Optical absorption of the 

sampled supernatant was measured spectrophotometrically.

5.2.4 Observation of intraparticle drug distribution

To examine the drug distribution in the MS, the GMS were loaded with 

acid fluorescent dye (Aexa Fluor 430), and the intensity of the emitted light at the 

cross-sections was observed using the confocal fluorescent microscope (Olympus 

Fluoview FV 300 Laser Scanning Biological Microscope). The initial drug 

distribution was obtained of the GMS 2 h after the drug loading. To examine 

ionically complexed drug distribution, the drug-loaded GMS were suspended in 

phosphate buffered saline (PBS) without enzyme for 15 days to remove the 

nonbonded drug.
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5.2.5 Zeta-potential measurement

Zeta potential is a measure of the charge that develops at the interface 

between a solid surface and its liquid medium. Thus, by measuring the zeta- 

potential of homogeneously cross-linked gelatin particles, the change in the charge 

of gelatin molecules due to cross-linking density could be identified. The gelatin 

solution (5% w/v) was cross-linked under different glutaraldehyde concentrations 

(Table 5.1) at 50 °C for 5 h. The resulting solutions were rapidly cooled down at -  

50 °C and lyophilized. The cross-linked gelatin was ground into small particles and 

suspended in PBS (pH = 7.4) after filtration (5-pm pore). The zeta-potential of the 

suspension was measured five times using Malvern Zetasizer 3000.

5.2.6 In situ degradation study

In situ degradation profiles o f the GMS were examined to study the effect 

o f crosslinking conditions. Differently cross-linked GMS were placed in the 

enzyme-containing PBS solution. At scheduled intervals, the GMS were drawn and 

observed under an optical microscope.

5.3 Results and Discussion

Figure 5.1 shows the SEM and optical microscope images of the GMS 

before and after cross-linking. The GMS before cross-linking exhibited excellent 

uniformity and smooth surface with an average diameter of 60 pm. However, 

regardless of the glutaraldehyde concentrations used, the dry GMS after cross- 

linking exhibited “crumpled” shapes although the size appeared to be alike. 

Because the drug release occurred in an aqueous environment, the integrity of the 

GMS upon water uptake was more important. Thus, the dry crosslinked-GMS were 

suspended in a phosphate buffered saline solution (PBS, pH = 7.4) for one day and 

observed using an optical microscope. As shown in Figure 5.1(C), the wet GMS
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restored the spherical shape and uniformity regardless o f the cross-linking 

conditions, which proved that the control on the size and morphology were still 

viable with the crosslinked GMS. The average diameter of the swollen GMS was 

restored to 100 pm regardless of the cross-linking conditions.

Figure 5.2 shows the in vitro drug release profiles of the drug-loaded GMS 

with and without the enzyme (i.e., collagenase 1A) in the release-media [30, 83], 

The concentration of the enzyme used herein was 373 ng/mL to mimic the synovial 

fluid of the patient with osteoarthritis disease. Without the enzyme, about 40% of 

the drug was released in 3 days, and no significant amounts afterwards. All the 

samples exhibited similar release-profiles regardless of the glutaraldehyde 

concentrations used for the cross-linking. This was not unexpected since the drug 

bound to the gelatin matrix would not be released without the decomposition of the 

gelatin and consequently the drug-release would be a diffusion-controlled process.

In the presence of enzyme, the total release was increased to 100% for all 

the samples (Figure 5.2(B)) due to the degradation of gelatin. The samples, Cl and 

C2, exhibited a 100% total release in 9 and 10 days, respectively, and C3 in 15-18 

days, indicating that the release was retarded as the glutaraldehyde concentration 

increased. Interestingly, no further retardation was observed for the samples C4 and 

C5 in spite of their higher glutaraldehyde concentrations. With the C6 sample, the 

total release seemed to be retarded further, but its release profile was similar to 

those of the samples C3, C4, and C5. This was intriguing since the cross-linked 

gelatin was reported to become more resistant to degradation with higher 

glutaraldehyde concentrations, resulting in prolonged release [29, 100], To 

elucidate the release profile of the cross-linked GMS, it is crucial to understand the 

drug-distribution in the GMS as a function of the glutaraldehyde concentration 

since the heterogeneous cross-linking density in the GMS described previously 

might have caused a nonuniform drug-distribution in the sphere, affecting the
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release profile.

An acidic fluorescent dye, Alexa fluor 430, was used as a model drug to 

study the drug distribution within the GMS using a confocal fluorescent 

microscope. The intraparticle drug distribution was measured before and after 

suspending the drug-loaded GMS in a PBS solution (pH = 7.4) for 15 days to 

ensure the release of the drug that was not bound to the gelatin. No enzyme was 

used to eliminate the effects resulting from the enzymatic degradation of the gelatin. 

Figure 5.3 shows the drug distribution in the GMS after 2 h and 15 days, which 

represent the initial drug distribution and the distribution of the drug complexed to 

the gelatin, respectively.

The initial drug distribution curve of the sample C l, which was concave- 

downward, indicated that the drug was populated more at the center. As the 

glutaraldehyde concentration increased, the amount of the drug near the surface 

increased and the shape of the intraparticle drug distribution curve changed to 

concave-upward for the sample C3. This could be attributed to the facile diffusion 

of the drug during its loading into the GMS center at the lower degrees of cross- 

linking. Interestingly, no significant change was observed for the samples C4 -  C6 

although the glutaraldehyde concentration increased further. On the other hand, the 

relative amount of the drug complexed to the gelatin matrix near the surface 

decreased as the glutaraldehyde concentration increased for the samples Cl -  C6. 

This could be explained by the inhomogeneous cross-linking, i.e., higher cross- 

linking at the GMS surface and lower toward the surface, caused by the 

concentration gradient of the glutaraldehyde along the diffusion path of the GMS.

The basicity of the gelatin would be weakened as its s-amino groups 

reacted with glutaraldehyde during the cross-linking process [106, 107]. 

Consequently, the driving force for the complexation of the acidic drug with the 

basic gelatin would be reduced with higher cross-linking. The effect of the cross-
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linking density on the charge of the basic gelatin was investigated by measuring the 

zeta-potential of the bulk gelatin as a function of cross-linking. To induce 

homogeneous cross-linking, gelatin was cross-linked in an aqueous solution using 

the glutaraldehyde concentrations in Table 5.1 followed by the removal of water. 

Figure 5.4 shows the zeta-potentials of the cross-linked bulk gelatin as a function 

of the glutaraldehyde concentration. The label corresponded to the glutaraldehyde 

concentration used for cross-linking (Table 5.1). The results indicated that the zeta- 

potential o f the gelatin decreased significantly as the cross-linking density 

increased. As a result, the samples with the glutaraldehyde concentration higher 

than 0.325% exhibited negative zeta-potential. This supports the intraparticle drug 

distribution in Figure 5.3. The increase in the glutaraldehyde concentration would 

be more effective near the GMS surface. Therefore, at higher glutaraldehyde 

concentrations, the lowering of the zeta-potential would be more prevalent near the 

surface than the center, reducing the complexation of the drug to gelatin even if the 

initial drug distribution was higher near the surface.

To study the effect o f cross-linking on the GMS degradation, the 

morphology o f the GMS during the enzymatic degradation process was monitored 

using the optical microscopy. It is well known that the gelatin with higher cross- 

linking would be more resistant to the enzymatic degradation. Figure 5.5 shows the 

optical micrographs of the degradation profiles of the GMS cross-linked with 

different amounts of glutaraldehyde. At day 6, the samples C l and C2 eroded into 

fragments while C3-C6 maintained their integrity with some deformation. C3 lost 

its integrity at day 9 and C4-C6 at day 12. It was rather intriguing to observe a 

similar decomposition pattern for the samples C4—C6 regardless of the 

glutaraldehyde concentration used for the cross-linking. While the bulk behavior of 

the samples C4-C6 were similar, the optical images at day 6 revealed interesting 

details of their decomposition pattern: C3 and C4 exhibited cracked surface and C5
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and C6 elongated opening on the surface with significant reduction in size. For 

comparison, the GMS suspended in a PBS solution without enzyme retained their 

integrity without any visual evidence of degradation.

Since the amount of drug complexed to the gelatin would be higher at the 

center and lower at the surface, the decomposition and release of the gelatin from 

inside the sphere would play a critical role in the drug release process of the GMS. 

This may explain the similar drug release profiles for samples C3-C6 regardless of 

the different glutaraldehyde concentrations used for the cross-linking. To explain 

such effect, the net release of the ionically complexed drug was examined. Figure 

5.6 shows the plot of the amount of drug release without enzyme (i.e., the 

diffusional release) subtracted from that with enzyme. Because the drug release by 

diffusion was removed, such plot would represent the release of ionically 

complexed drug solely incorporated with the GMS degradation.

For the first 2 days, the release profiles did not show much difference 

regardless of glutaraldehyde concentrations, which corresponded to the results 

shown in Figure 5.5. The GMS at day 2 did not exhibit discernible difference in 

erosion regardless of glutaraldehyde concentrations. However, at days 3-6, the 

difference became noticeable. Especially at day 6, the differences in the release 

were maximal because of the distinctive decomposition patterns o f the GMS. As 

shown in Figure 5.5, Cl and C2 eroded into fragments while C4-6 still retained the 

integrity of the surface. However, because the center of the GMS eroded into 

fragments, continuous drug release was seen until day 9. Although C4-6 swelled 

back to the original size and spherical shape, the drug release was minimal possibly 

due to the small amount of complexed drug near the surface of the GMS.

One of the factors causing the different decomposition patterns of these 

samples would be the concentration gradient of glutaraldehyde in the microsphere. 

For the samples with high glutaraldehyde concentrations, the increase in
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glutaraldehyde concentration would lead to more cross-linking at the surface, 

which would retard the diffusion o f glutaraldehyde into the center even further. 

Figure 5.5 supports the lower cross-linking density at the center. As a result, the 

decomposition would take place at the center while the surface remained intact, 

resulting in pressure build-up inside the sphere to develop cracks or openings 

depending on the cross-linking density at the GMS surface. The shrinkage of the 

GMS could be due to the release of the decomposed gelatin-matrix through these 

cracks or openings.

The intraparticle drug distribution patterns in Figure 5.3 may provide 

further insight on the decomposition pathways, wherein the curve for the initial 

drug distribution was changed from concave-downward to concave-upward as the 

sample switched from C2 to C3. This, in conjunction with the decrease in the 

amount of complexed drug at the surface, indicated a drastic increase in the cross- 

linking density at the surface, leading to the retarded decomposition o f the GMS 

surface. Therefore, one may envision the decomposition pattern of a GMS based on 

its intraparticle drug distribution and estimate the glutaraldehyde concentration 

needed for a desired drug release profile.

5.4 Conclusion

We investigated the drug release profiles of the GMS cross-linked with 

different glutaraldehyde concentrations. It was found that the effect of the 

glutaraldehyde concentration on the drug release profile was not linear, which was 

significant at its low end but negligible at its high end. The intraparticle drug 

distribution patterns indicated that the population of the complexed drug near the 

GMS surface decreased as the glutaraldehyde concentration increased. The zeta- 

potential measurements revealed that the low drug-gelatin complexation near the 

GMS surface reflected its high cross-linking density. The degree o f cross-linking at
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the surface seemed to be an important factor determining the decomposition pattern 

of the GMS, affecting the drug release profile. At higher glutaraldehyde 

concentrations, the GMS surface would be more cross-linked, leading to more 

resistant to degradation and less drug complexation. Under this situation, the drug- 

release profile would be mostly governed by the decomposition and release of the 

inner mass via the cracks or openings on the surface. Therefore, above the 

threshold value wherein the GMS would follow such decomposition pattern, the 

effect of glutaraldehyde concentration on the drug release profile would be 

negligible. The threshold glutaraldehyde concentration would vary as the GMS size 

varies, however, one may estimate it based on the intraparticle drug distribution 

patterns, which reveal the cross-linking profiles o f the GMS. This study 

elucidated the factors affecting the drug release profile and demonstrated that the 

tailoring of the drug release profile could be realized using the uniform sized GMS.
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5.5 Figures and Table

B

Figure 5.1. SEM and optical micrographs of uniform GMS prepared by the 
PPF method: (A) dry GMS before cross-linking, (B) dry GMS after cross- 
linking, and (C) wet GMS after cross-linking. The scale bars are 50 pm.
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Figure 5.2 In vitro drug release from uniform GMS with different cross- 
linking conditions. The release media used are pH = 7.4 PBS solutions 
(A) with enzyme and (B) without enzyme.
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Figure 5.5 In situ degradation study with uniform GMS prepared under 
different crosslinking conditions. The PBS with enzyme was utilized as the 
suspension media. Each column represents a specific crosslinking condition 
employed for the GMS and each row the time of observation. For 
comparison, the GMS suspended in the media without enzyme were shown 
on the right-most column. The scale bars are 50 pm.
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of the diffusional release subtracted from those of enzymatic release were 
plotted.

Table 5.1 Different glutaraldehyde concentrations utilized to cross-link the uniform 

GMS

Sample
Name

Cl C2 C3 C4 C5 C6

Glutar
aldehyde 

Cone. (%)
0.125 0.250 0.325 0.500 0.625 0.875
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CHAPTER 6

UNIFORM CHITOSAN MICROSPHERES WITH DIFFERENT
CROSSLINKING DENSITIES FOR ORAL DRUG DELIVERY

Uniform CMS with different cross-linking densities were fabricated to 

investigate their suitability as oral delivery vehicles. Drugs with three different 

polarities (base, weak acid, and strong acid) were utilized to examine the effect of 

polyion complex. The drug release profiles were investigated by using media with 

continuously changing pHs to mimic the gastrointestinal fluids.

6.1 Chitosan Microspheres for Oral Drug Delivery

CMS have been widely used as drug-delivery vehicles due to their 

biocompatibility, biodegradability, and bioadhesiveness [108-113]. Especially, the 

CMS with bioadhesiveness were known to increase the residence time at the 

mucosal surfaces in the stomach or intestine, improving the drug adsorption. For 

this reason, various therapeutic agents, such as Vitamin C, theophylline, aspirin, 

and griseofulvin, were encapsulated in the CMS for oral administration, resulting in 

sustained release [109, 114, 115]. The CMS were also investigated for oral immune 

delivery. The antigen encapsulated in CMS was protected from degradation and 

was gradually released enhancing the immune response [108, 116-118].

In addition, the CMS were favored due to their cationic property. An 

anionic drug complexed with CMS was shown to prolong the release. Especially 

for proteins and peptides, the interactions with CMS were reported to improve 

loading capacity, drug stability, and bioactivity [119, 120], Due to such ionic effect, 

the CMS often exhibited pH-dependent release [114, 121], which could be applied 

to various drugs for colon-specific delivery. For viral gene delivery, DNA needed to 

be protected through the gastrointestinal tract until it was delivered to a specific
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colonic site [109], The drug known to have an adverse effect on the stomach 

needed to suppress its release at low pH but be continuously released from the 

small intestine [122], Such control was governed by both ionic interaction between 

chitosan and the drug, and the pH of the release media. Unfortunately, the CMS 

passing through the gastric media often exhibited considerable amount of drug 

release due to their higher swelling and/or dissolution at low pH [109, 123],

6.2 Purpose

Various attempts were made to control the pH-dependent drug release from 

CMS. One approach was to incorporate anionic polymer such as alginate. The MS 

were fabricated with a combined use o f both chitosan and alginate, whose bonding 

strength varied due to the pH [124, 125], Thus, the drug release was determined by 

the mass ratio of the two polymers. Coating the CMS with various polymers, such 

as cellulose acetate butyrate, ethyl cellulose, and Eudragits, was also suggested to 

suppress the burst of drug release in gastric fluid [118, 122, 126, 127]. Because of 

the additional polymer barrier formed on the CMS, the drug by-passed the stomach 

but was released afterwards.

Although such methods could provide better control, there were several 

disadvantages. Firstly, additive polymers could change the cationic property of 

chitosan, thus degenerating the bioadhesiveness, and/or the polymer-drug 

interaction. The weaker polymer-drug interaction might lower drug stability and 

loading capacity. Secondly, the method often required an unfavorable process. To 

coat the CMS with hydrophobic polymers, an organic solvent was needed [118, 

122, 126, 127], which would not be suitable for encapsulation o f proteins, peptides, 

and DNA due to their degradation. Most of all, the size of the MS was not precisely 

controlled resulting in possible uncertainties and poor reproducibility in drug 

release.
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As noted before, drug release from MS-based delivery systems critically 

depends on the size and size distribution of the MS because the surface area-to- 

volume ratio strongly influences the rate of out-diffusion o f the drug and/or 

degradation of the polymer matrix. The MS size was also known to be a critical 

determinant in site-specific delivery. The MS less than 10 pm were reported to be 

effective for the particle transportation via Peyer’s patches [31]. However, the 

methods often employed for fabrication of CMS, such as aqueous precipitation [16, 

35], classic emulsion [124, 128] and spray drying [40, 129], did not produce 

uniform MS due to lack of control over atomization. Membrane with uniform pores 

was utilized to control the size o f chitosan solution drops [113, 130]. Although the 

resulting CMS exhibited a fairly uniform size, the method still depended on pore 

dimension and solution viscosity, which did not provide enough flexibility in size 

control.

In this study, we have fabricated monodisperse CMS for oral delivery 

vehicles as previously reported [105]. Due to the excellent uniformity and narrow 

size distribution, the drug release from the resulting CMS could be accurately 

tailored. In addition, the present method did not involve any organic solvent or 

toxic surfactant, which would be favorable for biomedical applications aimed in 

this work. As stated above, the CMS were known to cause burst release at lower pH 

due to their swelling and dissolution. Thus, the crosslinking agent, glutaraldehyde 

was employed to fabricate acid-resistant CMS [130, 131]. To minimize the adverse 

effect of glutaraldehyde [103], all CMS used in this study were weakly crosslinked 

(Table 6.1). Due to the cationic nature of chitosan, therapeutic agents, such as 

anionic proteins and DNA, could be well encapsulated in and protected by CMS 

while passing through the GI tract. To examine such electric interaction and its 

effect on drug release, model drugs with three different polarities were employed, 

which were toluidine blue (TO; basic), trypan blue (TR; strong acid), and
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diclofenac sodium salt (DS; weak acid). TR represented the drug containing 

multiple anionic functional groups, such as protein. DS is known to cause the 

adverse effect on the gastric cavity but well adsorbed in the colon [132, 133], 

which would be advantageous if  released less at the stomach but continuously near 

the colon.

6.3 Materials and Methods

6.3.1 Materials

Chitosan (75-85% deacetylated) was purchased from Aldrich, and the 

model drugs (TR, TD, and DS) and glutaraldehyde (25% in aqueous solution) from 

Sigma. Glacial acetic acid and acetone with high purity were obtained from Fisher 

Scientific.

6.3.2 Preparation of uniform chitosan microspheres

Uniform CMS were prepared following the method described in Chapter 4. 

Briefly, to fabricate uniform CMS, the chitosan solution (1% w/v) was prepared in 

0.2 M acetic acid solution, which was subsequently crosslinked using 

glutaraldehyde (Table 6.1). A smooth liquid jet of this solution, much thinner than 

the nozzle opening was generated with the use of carrier stream and subsequently 

broken up into uniform droplets using acoustic excitation. To prevent the 

agglomeration, the drops were electrically charged so that coulombic repulsion 

kept them separated. The uniform chitosan-solution drops were suspended in a hot 

oil bath (150 ~ 160 °C) to boil off water. The resulting CMS were collected by 

filtration, washed with acetone to remove the residual oil, and lyophilized.
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6.3.3 Drug loading in chitosan microspheres

The model drugs with different polarities were impregnated in CMS. 

Briefly, the PBS solution (pH = 7.4) containing the drug (TR, 5% w/v; TD, 5%; SD, 

0.5%) was dropped onto the known amount of CMS (1 (il/mg) and cured for 3 h at 

room temperature. The solution volume was less than the theoretical equilibrium 

swelling volume of the CMS resulting in complete absorption.

6.3.4 Characterization

The uniformity and morphology of the dry CMS were observed using a 

Hitachi S-4700 scanning electron microscope. A droplet of CMS suspended in 

hexane was placed on a small piece of silicon wafer attached on top of a scanning 

electron microscope sample holder and dried overnight with desiccant. The 

samples were sputter-coated with gold. The GMS were imaged at 2-10 eV. The 

swollen CMS were observed using an optical microscope. To prepare the 

completely swollen MS, a small amount of CMS (~ 1 mg) was suspended in 1 mL 

of two distinct buffer solutions at pHs = 7.4 and 1.0 and left for 24 h at room 

temperature. To observe the size change due to swelling, more than 50 MS were 

measured for three different cases: dry, wet at pHs = 7.4 and 1.0.

6.3.5 Drug distribution in the microspheres

The midsections of the MS were analyzed to determine the drug distribution 

at the center. To examine the effect of the drug polarity, two different fluorescent 

dyes were employed. Rhodamine B and Eosin Y represented the basic and acidic 

drug, respectively. The drug-loaded CMS were imaged using a laser scanning 

confocal microscope (Olympus Fluoview FV 300 Laser Scanning Biologic 

Microscope).
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6.3.6 In vitro drug release

Drug-loaded CMS were placed in 1.5 mL of the release media, whose pHs 

were gradually increased to mimic the fluid through the gastrointestinal tract. The 

pHs were maintained at 1 for 1 h, 2 for 1 h, 5 for 2 h, 6.8 for 4 h, and 7.4 for 4 h. 

The release media contained the dispersant (0.5% v/v Tween 80) to prevent CMS 

agglomeration. The suspensions of drug-loaded GMS were incubated at 37 °C 

while continuously agitated by inversion (~8 rpm). Absorbance of the sampled 

supernatant was measured spectrophotometrically. The amount of drug release at 

each time interval was summed from the amount measured at the previous time 

interval resulting in cumulative release.

6.4 Results

6.4.1 Differently crosslinked uniform chitosan microspheres

Uniform CMS with different crosslinking densities were fabricated as 

previously described in this dissertation [105], The chitosan was cross-linked 

utilizing glutaraldehyde of different concentrations (Table 6.1) and for each 

crosslinking density, the CMS with three different sizes were made (Table 6.2). 

Figure 6.1 shows the resulting CMS. The average diameters were 24 pm, 28 pm, 

and 35 pm for CO; 23 pm, 29 pm, and 38 pm for C l; and 25 pm, 28 pm, and 38 pm 

for C2. Regardless of the crosslinking density, all MS exhibited excellent 

uniformity (std < 1.33 pm). The rough surface of the MS was known to cause 

initial burst due to the increase in the surface area [40], Thus, it is important to 

obtain the smooth surface morphology. Our method proved to be beneficial 

because it provided the CMS with smooth surfaces regardless o f their size and 

crosslinking density as shown in Figure 6.2.

The CMS after water uptake were examined, from which the drug was
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actually released. Figures 6.3 and 6.4 show the CMS swollen at two different buffer 

solutions of pHs = 7.4 and 1.0, respectively. Due to the water uptake, the diameters 

of the CMS increased during suspension in the aqueous media. Even after the swell, 

the CMS retained excellent uniformity (std < ±1.70) and sphericity, which provided 

further proof that the particle size control, was accurately maintained throughout 

the present drug release study. Figure 6.5 and Table 6.2 show the sizes of the CMS 

in two different states: dry and wet in two different buffer solutions (pHs = 7.4 and 

1.0). Regardless of crosslinking density, the diameter of the CMS increased more at 

pH = 1.0 than at 7.4. Due to the weak crosslinking, the hydrolysis of chitosan 

seemed to be more incorporated at the lower pH resulting in more swelling. 

Therefore, the size differences between each batch of the CMS became as large as 

18 pm while the dry CMS showed 10 pm at most (Table 6.2).

6.4.2 Drug distribution

The drug distribution in the CMS is one of the most critical factors in drug 

release. To examine the effect o f drug-chitosan ionic interaction, fluorescent dyes 

with two distinct polarities were employed as the model drugs, which were 

Rhodamine B (basic) and Eosin Y (acidic). The cross sections of the drug loaded 

CMS were observed using a confocal fluorescent microscope. Figures 6.6 and 6.7 

show the basic and acidic drug distributions in the CMS, respectively. The basic 

drug was homogenously distributed throughout the CMS while the acidic drug was 

more concentrated near the surface regardless of the size and cross-linking density 

of the CMS. In this study, to encapsulate the drug, the drug solution was absorbed 

into the dry CMS. Thus, the drug loading was determined by two competing factors, 

the diffusion of the drug solution into CMS and the ionic interaction between the 

drug and chitosan. The basic drug, which has the same polarity with chitosan, 

seemed to be freely mobile resulting in homogenous distribution mainly caused by
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in-diffusion of the drug solution. However, for the acidic drug, due to the attractive 

force between the drug and chitosan, the drug molecule appeared to complex with 

chitosan at the same time when the drug solution diffused into the CMS. The drug 

complexed at the CMS surface seemed to be unable to diffuse into the center 

resulting in high drug concentration near the surface of the CMS.

6.4.3 In vitro drug release study

An in vitro drug release study was carried out to examine the effect of the 

ionic interaction by employing model drugs with three different polarities (TO, TR, 

and DS). The pHs of the release media were gradually increased to simulate the 

fluids throughout the gastrointestinal tract. Figure 6.8 shows the release profiles of 

the basic drug (TO). Regardless of the size and cross-linking density, the release 

was not sustained possibly due to the electrostatic repulsion between the CMS and 

the drug. Almost 100% release was obtained in 10 min with all CMS.

However, for the strong acidic drug (TR), the effect of the CMS size and 

cross-linking density was clearly visible (Figure 6.9). For non-cross-linked CMS 

(CO), all the release profiles merged into one, possibly due to their high dissolution 

in the release media. However, as the cross-linking density increased, the size 

effect became notable (Figures 6.9(B) and (C)). Interestingly, the release was more 

sustained as the size decreased. Although the small CMS were supposed to exhibit 

faster release due to their large surface area-to-volume ratio, it seemed that for 

strong acidic drug, the ionic interaction played a more important role than drug out- 

diffusion. In this study, the drug was loaded into CMS by absorption o f the drug 

solution prepared at pH = 7.4. The resulting CMS, when suspended in pH = 1 .0  

media, would be more protonated, resulting in stronger cationic charge. Such 

change in ionic property seemed to depend on the size of the CMS. Namely, the 

smaller CMS experienced faster protonation in the media of low pH possibly due to
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their large surface area, resulting in more drug complex. Because the acidic drug 

was more concentrated near the surface as shown in Figure 6.7, such dependency 

on the surface area would be more dominant with strong acid drug. Thus, as shown 

in Figures 6.9(A) and (B), as the size decreased (i.e., more susceptibility to pH), the 

drug was released less. The drug release after 1 h was minimal for all small 

crosslinked CMS (<10%). The effect of cross-linking density, although weak, was 

also noticeable. As the crosslinking density increased, the total percent release 

decreased more, possibly due to the stronger resistance to acid. The total percent 

release during the first 12 h with large CMS decreased from 45.1% to 34.5%, with 

medium CMS from 36.4% to 12.5%, and with small CMS from 10.0% to 7.1%.

For the weak acid drug (DS), the release was more sustained than the basic 

drug and more continuous than the strong acid drug (Figure 6.10). Due to the 

weaker ionic bonding, the release seemed to depend more on the diffusional release, 

which could also explain the minimal influence of the crosslinking density. 

Therefore, although the small CMS might have been protonated more rapidly at 

low pH, the release was still the fastest due to the drug out-diffusion facilitated by 

their large surface area-to-volume ratio. The release profiles exhibited biphasic 

patterns, which consisted of the initial burst and the subsequent continuous release. 

Importantly, the larger the CMS, the less the burst, possibly due to the small 

surface area-to-volume ratio. The small CMS exhibited more than 70% release 

during the first 1 hr while the large CMS showed less than 50% release. After the 

burst release, the release was almost linear for all CMS (~1.25%/hr). Regardless of 

the crosslinking density, the small CMS could obtain the total 100% release during 

12 h.

To further prove complete release of the basic drug and the remainder of the 

strong acidic drug, the color of CMS after 24 h drug release was examined using an 

optical microscope. Figure 6.11 shows that the CMS initially loaded with basic
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drug became transparent proving that there was no drug remaining. However, as 

shown in Figure 6.12, the dark bluish color of strong acidic drug (TR) indicated 

that there was the drug complexed in the CMS even after 24 h release.

6.5 Discussion

The CMS were widely investigated as oral delivery vehicles due to 

excellent biocompatibility, bioadhesiveness and especially cationic property, that is, 

pH-dependent release. Drugs such as antigen, DNA, protein, and/or some anti

inflammatory agents, would be more efficacious if  delivered specifically to the 

colonic site [109, 113, 125]. However, the chitosan alone as the encapsulant was 

known to be undesirable due to its massive hydrolysis at low pH resulting in burst 

release near the stomach [123]. Several attempts incorporating other polymers as 

additives were made to improve the drug release behavior, which, however, could 

be unfavorable due to possible deterioration o f the cationic property of CMS and 

incorporation of undesirable solvent into CMS [118, 122,125, 127, 128].

In this study, we suggest, and investigate, uniform CMS of precise size and 

size distribution as a promising colon-specific delivery vehicle. The CMS were 

crosslinked to make them tolerant to acidic fluid so that they could bybass the 

gastric cavity [131]. However, low glutaraldehyde concentrations were utilized to 

minimize the adverse effect. Instead of introducing other additives, precise control 

over the size and size distribution of the CMS enabled the drug release to be 

tailored accurately. Even after 24 h suspension in the media of both pHs = 7.4 and 

1.0, the uniformity and sphericity of our CMS were well retained (Figures 6.3 and 

6.4). One of the appealing scenarios of colon targeting was that the drug in the 

carrier could be retained as much as possible in the upper gastrointestinal tract but 

released near the colon by the degradation o f the encapsulant polymer [133, 134]. 

Therefore, in this study, we examined the remaining drug after 12 h as the potential
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drug for colon-specific delivery because the pH near the colon would be constant at

7.4 hence no more effect of the pH changes on drug release.

Drugs of three different polarities were employed and their release profiles 

investigated to assess the feasibility of using our uniform CMS for colon specific 

delivery. For the delivery of basic drug (TO), the CMS were shown to be 

unfavorable. Due to the strong repulsion between the drug and chitosan, the free 

drug molecules appeared to be released instantaneously regardless o f the size and 

crosslinking density of the CMS (Figure 6.8). However, for strong acid drug, more 

than 90% of the drug could be retained with the small CMS of weak crosslinking 

density (Cl and C2) even after 12 h suspension in the release media (Figure 6.9). 

The model drug utilized in this study, TR, had multiple anionic functional groups 

(-SO3), which might be able to represent strong anionic proteins, peptides, and 

DNA. Colon-specific delivery of such therapeutic agents were known to be 

beneficial for their systematic absorption [109, 113, 134, 135], However, 

polydisperse CMS might lower the efficiency because, as shown in Figure 6.9, 

larger CMS lost almost half the drug in 1 h. In this sense, small CMS (23-25 pm) 

with C l and C2 were attractive for colon-specific delivery. Precise control over the 

size and size distribution of CMS allowed for maximization o f the amount of drug 

that could potentially be released at the colon, through degradation o f chitosan.

The release of the weak acid drug exhibited the biphasic profiles: an initial 

burst and the subsequent continuous release (Figure 6.11). The model drug, DS, 

was known to cause local side effects if released too much in the stomach, 

prompting the need for colon-specific delivery [122, 123, 125, 133]. All CMS in 

this work exhibited a burst, which could be lowered by increasing the CMS size. 

As shown in Figure 6.10, large CMS (35 -38 pm), regardless of the crosslinking 

density, exhibited less than 50% bursts. Thus, while the small CMS exhibited 100% 

release in 12 h, more than 40% of the drug still remained in the large CMS, which
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was again the potential amount o f the drug that could be released by CMS 

degradation [133, 134]. Unlike with the strong acid drug, the large CMS would be 

favorable for colon-specific delivery of the weak acid drug.

Additional coating on the CMS was suggested as a means to completely 

prevent the DS release at the stomach [118, 122, 127]. However, although almost 

no DS was released at the gastric fluid, the size of CMS was not properly 

controlled thus exhibiting fast release or lack o f control after the coating materials 

disappeared. Use of our uniform CMS as the core would be the promising design 

for colon-specific delivery of DS. The polymers with pH-dependent solubility, such 

as Eudragits, could protect our uniform CMS at the gastric cavity, which would 

subsequently be exposed to both higher pH and colonic enzyme and release the 

drug in a controlled manner due to their precise size and size distribution.

6.6 Conclusion

Uniform CMS with different crosslinking densities were fabricated for use 

as oral delivery vehicles. To study their efficacy for colon-specific delivery, model 

drugs with three different polarities, which were base, strong acid, and weak acid, 

were employed and encapsulated in the CMS. The drug distributions in the CMS 

showed that the basic drug was homogeneously distributed while the acid drug was 

more concentrated near the surface, which proved the charge interaction between 

the drug and chitosan. The basic drug appeared to be not a good candidate for 

colon-specific delivery because o f its fast release. However, for strong acid drugs 

such as anionic proteins or peptides, the small CMS with weak crosslinking could 

be more favorable due to the increased amounts of the drug complexed with the 

CMS, which would be released by degradation of the CMS at the colon. Weak acid 

drug, possibly due to the weak bonding strength, showed continuous release during 

the first 24 h. However, to minimize the burst at the gastric cavity, use of large
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CMS was suggested. The uniform CMS in this study were judged to be promising 

oral delivery vehicles of anionic drugs due to the accurately controlled release 

profiles facilitated by their monodispersity.

6.7 Figures and Tables

Figure 6.1 SEM micrographs of uniform CMS with different crosslinking 
densities. CMS with three different sizes were fabricated for each 
crosslinking condition. The crosslinking conditions utilized were (A 1-3) CO, 
(Bl-3) C l, and (Cl-3) C2. The diameters were (A l) 24 pm, (A2) 28 pm, 
(A3) 35 pm, (B l) 23 pm, (B2) 29 pm, (B3) 38 pm, (C l) 25 pm, (C2) 28 pm, 
and (C3) 38 pm. The scale bars = 20 pm.
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Figure 6.2 Surface morphology of uniform CMS. Regardless of their size 
and cross-linking density, smooth surfaces were observed. The cross-linking 
conditions utilized were (Al-3) CO, (Bl-3) C l, and (Cl-3) C2. The diameters 
were (A l) 24 pm, (A2) 28 pm, (A3) 35 pm, (B l) 23 pm, (B2) 29 pm, (B3) 
38 pm, (C l) 25 pm, (C2) 28 pm, and (C3) 38 pm. The scale bars = 5 pm.
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Figure 6.3 Optical micrographs of the wet CMS swollen in pH = 7.4 buffer 
solution. The cross-linking conditions utilized were (Al-3) CO, (Bl-3) C l, and 
(C l-3) C2. The diameters were shown in Table 6.2. The scale bars = 50 pm.
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Figure 6.4 Optical micrographs of the wet CMS swollen in pH = 1 . 0  buffer 
solution. All CMS swelled more than in pH = 7.4. The cross-linking conditions 
utilized were (Al-3) CO, (Bl-3) C l, and (Cl-3) C2. The diameters were shown 
in Table 6.2. The scale bars = 50 pm.
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Figure 6.5 The sizes of uniform CMS with different crosslinking densities. 
The dry CMS were suspended in the media at pHs = 7.4 and 1.0 for 24 h. 
More than 50 CMS were measured optically.
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Figure 6.6 Distribution of a basic drug in the CMS as observed by confocal 
fluorescent microscope. Rhodamine B was employed as the model drug. The 
crosslinking conditions were (Al-3) CO, (Bl-3) Cl, and (Cl-3) C2. The scale 
bars were 20 pm.
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Figure 6.7 Distribution of an acidic drug in the CMS as observed by 
confocal fluorescent microscope. Eosin Y was employed as the model drug. 
The cross-linking conditions were (Al-3) CO, (Bl-3) Cl, and (Cl-3) C2. The 
scale bars were 20 pm.
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Figure 6.8 Release profiles of a basic drug (toluidine blue) from uniform 
CMS with different cross-linking densities. The cross-linking densities 
were: (A) CO, (B) C l, and (C) C2.

77

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(C)

Cl)
CO
CO
0)
£
CD
>
+iTO
□
E
o

pH = 1.0 1 2.0 1
100

80

60

40
■ C2_small 
▲ C2_medium 
♦  C2_large20

0

0 0.5 1 1.5 2
Time (hr)

Figure 6.8 Continued
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Figure 6.9 Release profiles of a strong acidic drug (trypan blue) from 
uniform CMS with different cross-linking densities. The cross-linking 
densities were (A) CO, (B) Cl, and (C) C2.
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Figure 6.10 Release profiles of a weak acidic drug (diclofenac sodium salt) 
from uniform CMS with different cross-linking densities. The cross-linking 
densities were (A) CO, (B) Cl, and (C) C2.
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Figure 6.11 Optical micrographs of the CMS after 12 h release of a basic 
drug (toluidine blue). All exhibited brownish color and transparency, which 
means a 100% release. The cross-linking conditions utilized were (A) CO, 
(B) Cl, and (C) C2. The scale bars are 50 pm.
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Figure 6.12 Optical micrographs of the CMS after 12 h release of a strong 
acidic dye (trypan blue). All exhibited dark bluish color indicating that there 
was drug remaining in the CMS. The cross-linking conditions utilized were 
(A) CO, (B) C l, and (C) C2. The scale bars are 50 pm.

Table 6.1 The concentrations of glutaraldehyde utilized to cross-link the CMS

Sample name CO C l C2

GA cone. (%) 0 0.0375 0.075

84

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 6.2 Average diameters of chitosan microspheres while dry and wet at both 
pHs = 7.4 and 1.0. More than 50 CMS were measured using an optical microscope

CO chitosan microspheres

Suspension media Small Medium Large

Dry air 24 (±0.43) 28 (±0.49) 35 (±1.33)

pH = 7.4 34 (±0.87) 36 (±0.87) 49 (±0.95)

pH = 1.0 37 (±0.27) 39 (±0.37) 54 (±0.92)

C l chitosan microspheres

Suspension media Small Medium Large

Dry air 23 (±0.51) 29 (±0.46) 38 (±1.07)

pH = 7.4 30 (±0.56) 36 (±0.87) 47 (±1.70)

pH = 1.0 33 (±1.15) 38 (±1.16) 56 (±1.39)

C2 chitosan microspheres

Suspension media Small Medium Large

Dry air 25 (±0.69) 28 (±0.27) 38 (±0.58)

pH = 7.4 31 (±0.73) 37 (±1.28) 47 (±1.11)

pH = 1.0 36 (±0.97) 41 (±1.24) 50 (±1.62)
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CHAPTER 7 

CONCLUSIONS

Drug delivery mediated by biodegradable and/or biocompatible 

microspheres (MS) have been of great interest because of their versatility, ease of 

preparation, and simplicity of administration through various routes. However, the 

conventional methods were only able to produce MS with wide size distributions, 

giving rise to uncertainties in the data interpretation and poor reproducibility of the 

results. Due to the surface-area to volume ratio, the size and size distribution of the 

MS are critical factors in determining the drug diffusion and/or polymer 

degradation, which in turn, influence the drug release. In this thesis work, we have 

developed novel, yet very effective and practical, methods of fabricating uniform 

MS of various biocompatible/biodegradable polymers. These MS were 

subsequently used to study the in-vitro drug release, in an effort to assess their 

utility as advanced drug delivery vehicles.

The basic scheme of the present fabrication method, namely the PPF 

method, originated from the work of my thesis advisor, Professor Kyekyoon 

(Kevin) Kim, which included fabrication of precision microspheres of frozen 

hydrogen and microcapsules of silica aerogel. Previously, the PPF method was 

applied to PLG and polyanhydride in our group and the resulting MS were used for 

the release study. Due to their excellent uniformity and narrow size distribution the 

MS exhibited precisely controlled drug release behaviors. In this work we have 

applied the scheme to different polymers such as ethyl cellulose (EC), chitosan, 

starch, and gelatin, to examine the effectiveness of the PPF method with other 

biomaterials.

The PPF method, extensively utilized and further developed in this study 

for fabrication of uniform MS, employed three different forces: mechanical,
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hydrodynamic, and electric. A combined use of the mechanical and hydrodynamic 

forces enabled the method to be free from usual limitations imposed by the solution 

viscosity and nozzle dimension. A nonsolvent carrier stream flowing faster than the 

polymer solution jet allowed the jet thickness to become smaller than the nozzle 

orifice, while the mechanical force caused break-up of the jet into uniform drops. 

Because EC dissolves in hydrophobic solvent, water was employed for the carrier 

stream. However, hydrogels such as chitosan, starch, and gelatin required the use of 

oil phase as a carrier stream, instead. Upon generation, the uniform drops needed to 

be separated to avoid agglomeration and retain their uniformity. The drop 

agglomeration was successfully prevented by employing a surfactant for EC and an 

electric force for hydrogels. Especially with the use of electric force, the method 

became truly non-toxic and most suitable for biomedical applications. The 

separated drops were subjected to hardening to obtain the dry MS. Depending on 

the kinds of solvent, their evaporation was facilitated either at room temperature or 

at an elevated temperature. Since gelatin degrades at high temperature, it required 

use of a low temperature to form gelled drops, followed by solvent extraction 

afterwards.

Conventional methods, often promoted by others for their effectiveness, 

could not achieve precise control over the MS size due to the restrictions imposed 

by the polymer kinds and reactor dimensions. However, the methods developed in 

this work overcame such limitations due to dynamic applications of various 

techniques employed that are possible with the PPF method. The concurrent use of 

three different techniques, which were the generation of uniform solution drops, 

prevention of agglomeration, and facilitation o f particle hardening, allowed us to 

achieve much more and with more control than any other available methods.

The strategy for selecting a polymer as an encapsulant was determined by 

the administration routes, kinds of drugs, and desirable release profiles. For
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example, EC was a good candidate for oral, buccal, and rectal delivery. Hydrogels 

could very well be appropriate delivery vehicles for hydrophilic therapeutic agents 

such as protein, peptide, and DNA. Thus, the ability to use a variety o f polymers 

proved to be the advantage and versatility of the MS-mediated drug delivery 

systems. In this study, we employed uniform MS of EC, chitosan, and gelatin as 

such delivery vehicles.

For EC, almost linear release could be obtained with small MS (30- and 35- 

pm) of low-viscosity EC. The precise control over the size enabled us to obtain 

more even drug distribution in the MS, by which the initial burst release could be 

substantially suppressed. We also examined the effect of crosslinking on uniform 

gelatin microspheres (GMS). Because GMS dissolved rapidly in aqueous solution, 

cross-linking was often carried out by suspending the non-crosslinked GMS in 

glutaraldehyde solution. Due to glutaraldehyde concentration gradient, 

heterogeneous crosslinking took place in the GMS, which provided the MS surface 

with stronger resistance to degradation but with less drug bonding. As a result, the 

release was not sustained longer with increased crosslinking although the GA 

concentrations increased from a certain value. We found that the size control of 

GMS was essential to optimization of crosslinking conditions, by which the 

cytotoxicity of glutaraldehyde could be minimized but the efficacy of drug delivery 

maximized. The chitosan microspheres (CMS) were also examined for colon- 

specific delivery. Various investigators had previously employed additive polymers 

to achieve colon-specific delivery. However, due to the complexity o f the 

fabrication method and the resulting incorporation of toxic solvent, the approaches 

did not appear to be desirable. In this work, because of the uniformity of the MS 

and the cationic property of chitosan, we were able to demonstrate that the release 

of an acidic drug could be accurately targeted to colonic site without any other 

additives.
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In conclusion, we have developed a novel method particularly suited to 

fabricating uniform biomaterial-based MS o f precisely controlled size and size 

distribution. We have demonstrated that the resulting MS were advantageous in 

achieving precisely controlled drug delivery. Due to its compatibility with a wide 

range of biomedical materials and applications, the present method should also be 

applicable to cell encapsulation, bio-imaging, fabrication of biological sensors, and 

even food engineering. With the proven flexibility and versatility of the PPF 

method and a number of applications demonstrated in this work, it is hopefully 

concluded that the present work may have planted a seed, if in a modest way, for 

the advancement and evolution of biomedical science and technology.
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