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ABSTRACT

Destructive seismic events continue to demonstrate the importance of mitigating these
hazards to building structures. To protect buildings from such extreme dynamic
events, structural control has been considered one of the most effective strategies.

Structural control strategies can be divided into four classes: passive, active, semi-
active, and hybrid control. Because passive control systems are well understood and
require no external power source, they have been accepted widely by the engineering
community. However, these passive systems have the limitation of not being able to
adapt to varying conditions. While active systems are able to do that, they require a
significant amount of power to generate large control forces. Moreover, the stability
of active systems is not ensured.

The focus of this report is the improvement and the validation of semi-active
control strategies, especially with MR dampers, for building protection from severe
earthquakes. To make semi-active control strategies more practical, further studies
on both the numerical and experimental aspects of the problem are conducted.

In the numerical studies, new algorithms for semi-active control are proposed.
First, the nature of control forces produced by active control systems is investigated.
The relationship between force-displacement hysteresis loops produced by the LQR
and the LQG algorithms is explored. Then, new simple algorithms are proposed,
which can produce versatile hysteresis loops. Moreover, the proposed algorithms do
not require a model of the target structure to be implemented, which is a significant
advantage.

In the experimental studies, the effectiveness of semi-active control strategies are
shown through real-time hybrid simulation (RTHS) in which a MR damper is tested
physically. In this report, smart outrigger damping systems for high-rise buildings
and smart base isolation systems are investigated. The accuracy of the RTHS em-
ploying the model-based compensator for MDOF structures with a semi-active device
is discussed as well.

The research presented in this report contributes the improvement and prevalence
of semi-active control strategies in building structures to mitigate seismic damage.
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Chapter 1

INTRODUCTION

1.1 Motivation

Severe earthquakes have caused serious damage to buildings all over the world, re-
sulting in tremendous human suffering and great economic loss. Structural control
is one of the feasible options to enhance structural performance against such seismic
events (Housner et al., 1997). To date, various methods of structural control have
been studied by many researchers and engineers, and some of them have been ap-
plied successfully to real buildings. However, due to the stability, cost effectiveness,
reliability, power requirements, etc., structural control strategies have yet to be fully
accepted by the building engineering community.

Structural control systems can be placed into four basic categories: passive, ac-
tive, semi-active, and hybrid. Passive systems, including base isolation, viscoelastic
dampers, and tuned mass dampers, are well understood and are accepted widely by
the engineering community as a means for mitigating the effect of strong earthquakes.
However, these passive device methods have the limitation of not being able to adapt
to structural change and to varying usage patterns and loading conditions. While
active systems have the ability to adapt to various operating conditions, they require
large power sources to impart forces to the structure, and may fail during seismic
events. Another concern of active systems is that the stability of the system is not
guaranteed.

Semi-active control devices have received a great deal of attention in recent years
as a means to address drawbacks of passive and active systems. They offer the adapt-
ability to structural changes and to various usage patterns and loading conditions,
and they do not require large power sources to control devices. In fact, many can op-
erate on battery power, which is critical during seismic events. Moreover, in contrast
to active control systems, semi-active control systems do not have the potential to
destabilize the structural system (in the bounded input/bounded output sense).

One of the promising devices for semi-active control systems is the magnetorheo-
logical (MR) damper (Carlson and Spencer, 1996), which is filled with magnetorhe-
ological fluid and controlled by a magnetic field. This magnetic field allows the
damping characteristics to be continuously controlled by varying the input ampli-
tude. The advantage of MR dampers is that they contain no moving parts other than
the piston, which makes them very reliable. Moreover, MR fluid is not sensitive to
impurities such as are commonly encountered during manufacturing and usage, and
little particle/carrier fluid separation takes place in modern MR fluid under common
flow conditions. So the future of application of MR dampers into civil structures
appears to be quite bright. Nonetheless, to make semi-active systems employing MR
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dampers more implementable, further studies are still needed.

1.2 Semi-active control algorithms

Developing more effective semi-active control algorithms is an important step toward
practical use. Although various semi-active control algorithms have been proposed,
applying these algorithms in real civil structures needs a relatively accurate model of
the structure. However, obtaining accurate parameter values for full-scale structures
may not be practical. And the structure may change with time, resulting in the
need to continuously update the model. Thus, developing effective simple algorithms
which do not require the structural model or a large number of sensors is desirable
for practical use.

Moreover, to ensure appropriate seismic performance of structures, the earth-
quake input energy absorption capability of control devices described by hysteresis
loops plays a key role. However, in semi-active control, because only the properties
of the devices are controlled, the nature of desired hysteresis loops is difficult to as-
certain. For example, MR dampers, for which only input current can be controlled,
cannot produce force such that the force and velocity have the same direction. There-
fore, semi-active control algorithms which can realize specific hysteresis loops are also
desirable in the field of seismic response control.

Thus, proposing model-free algorithms which can realize a variety of control force
properties is demanded in the field of semi-active control.

1.3 Experimental verification of semi-active

control strategies

Second, experimental verification for semi-actively controlled structures is necessary.
However, experimental studies at large scale have been limited. Because creating
the mathematical model of a MR damper is challenging due to its highly nonlin-
ear response, physical experiments are vital to verify the effectiveness of semi-active
methods employing MR dampers. Although shaking table testing provides a direct
approach to evaluate the dynamic structural response of civil structures subjected to
earthquake loads, even if large facilities such as the E-Defense table in Japan or the
shaking table at the University of California at San Diego are available, tests for large
civil structures such as high-rise buildings are impractical due to limitations on the
size, payload capacity, and cost.

Hybrid simulation is a powerful, cost-effective method for testing structural sys-
tems. Through substructuring, the well-understood components of the structure are
modeled numerically, while the components of interest are tested physically. Then,
by coupling numerical simulation and experimental testing, the complete response
of a structure is obtained. When the rate-dependent behavior of the physical spec-
imen is important (e.g., MR damper), real-time hybrid simulation (RTHS) must be
employed. In RTHS, computation, communication, and actuator limitations cause
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delays and lags which lead to inaccuracies and potential instabilities. The higher
modes are affected more by these effects, reducing accuracy of the simulation, poten-
tially leading to instability of the RTHS. Thus, research on RTHS has been limited
to simple structures; e.g., SDOF and 2DOF.

To compensate for these time delays and lags, as well as control-structure interac-
tion (CSI) between the actuator and the specimen (Dyke et al., 1995), model-based
actuator-control approaches have been proposed (Carrion and Spencer, 2007; Phillips
and Spencer, 2012). However, applications of this method to MDOF structures, which
include high frequency components, are still limited. To show the effectiveness of the
model-based compensator for RTHS, further studies on MDOF structures should be
implemented.

One of the structural control methods to show its effectiveness is smart outrigger
damping systems employing semi-actively controlled MR dampers. The effectiveness
of this method has been verified through numerical simulations (Chang et al., 2013),
however experimental validations have not conducted yet.

Smart base isolation systems are another class of structural control systems that
need further experimental validation. They are composed of a base isolation system
combined with semi-actively controlled MR dampers. Passive base isolation is one
common type of structural control system, increasing the structure’s flexibility to
mitigate the effect of potentially dangerous seismic ground motions. However, large
base displacements resulting from the increased flexibility of the passive isolation
system can potentially exceed the allowable limit of structural designs under severe
seismic excitations. Smart base isolation systems are a potential alternative means
to address the drawbacks of passive and active isolation systems.

1.4 Overview

This report focuses on the development and experimental verification of semi-active
control strategies for earthquake response reduction of buildings. To show that semi-
active control is a structural control strategy comparable to active control or even
better in a sense, theoretical and experimental studies are conducted. This section
provides a description of the contents of each chapter of this report.

Chapter 2 contains a detailed review of the previous studies related to this report.
First of all, various types of structural control strategies, especially outrigger damping
and base isolation systems, are reviewed. Second, literature about hysteresis loops
produced by structural control forces are introduced. Third, studies on RTHS with
a focus on compensators are summarized. The issues and difficulties to overcome are
addressed briefly, as well.

Chapter 3 provides technical background necessary for this report that might
be unfamiliar to researchers and engineers in civil engineering. The basics of modern
control theory focusing on linear quadratic regulator (LQR), Kalman filter, and linear
quadratic Gaussian (LQG) control theories are presented. Also, a servo-hydraulic
model used in this report is presented. Two types of model-based compensators
for the dynamics of the servo-hydraulic system, such as bumpless feedforward and
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feedforward-feedback compensation, are developed as well.
Chapter 4 builds the MR damper model used for numerical simulation and de-

scribes the experimental setup for RTHS. The servo-hydraulic model is created and
the two model-based compensators discussed in Chapter 3 are designed for RTHS, as
well.

Chapter 5 investigates the nature of the hysteresis loops produced by active control
forces. The behavior of the hysteresis force-displacement loops produced by the LQR
full-state feedback and the LQG-based acceleration feedback strategies is considered
through numerical simulation studies on scaled one-story and three-story buildings.
By comparing the results obtained from these two algorithms, the accuracy of the
acceleration feedback is explored as well.

Chapter 6 describes algorithms for semi-active control strategies. First, the LQG-
based clipped-optimal control, one of the widely accepted algorithms, is reviewed
briefly. Then, new simple algorithms are presented, which do not require a structure
model and enable versatile control force properties. Subsequently, hysteresis loops and
seismic performance produced by these algorithms are compared through numerical
simulation on a scaled three-story building model.

Chapter 7 verifies the effectiveness of the model-based RTHS compensator for a
semi-actively controlled MR damper installed in a MDOF structure. For the MDOF
structure, a high-rise building model with an outrigger damping system is employed
which is analyzed numerically, while the MR damper is tested physically. The effect
of the compensation errors in RTHS is examined. Also, seismic performance of the
smart outrigger damping system employing MR dampers is explored.

Chapter 8 extends the application of the semi-active control framework into hybrid
base isolation systems. The six-story base isolation building model in the Smart
Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-
Champaign is employed to verify the effectiveness of the smart base isolation system,
in which MR dampers are installed to a passive base isolation system; this is shown
through numerical simulation and RTHS. Finally, the seismic performance is discussed
by comparing it with the active base isolation case.

Chapter 9 summarizes the research presented in this report and provides recom-
mendations and possible directions for future work on structural control technologies
for seismic protection of buildings.
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Chapter 2

LITERATURE REVIEW

This chapter provides a literature review of various types of structural control methods
focusing on outrigger damping and base isolation systems. A brief review of the
behavior of the force-displacement hysteresis loops produced by structural control
strategies, as well as RTHS techniques, is also included.

2.1 Structural control

The purpose of the structural control in civil structures is to reduce structural vibra-
tion produced by external forces, such as earthquake and wind, by various means such
as modifying stiffness, mass, damping, or shape. Structural control systems employed
in civil engineering fall into four basic categories, i.e., passive, active, semi-active, and
hybrid control. This section describes various structural control methods in each cate-
gory studied by many researchers to this date, focusing on outrigger damping systems
and base isolation systems.

Passive systems employ supplemental devices, which respond to the motion of
the structure, to dissipate vibratory energy triggered by strong earthquakes and high
winds in the structural system without external power sources. These systems are
simple to understand and are accepted by the engineering community as a means for
mitigating the effects of severe dynamic loadings. A variety of passive control mech-
anisms have been suggested by many researchers and engineers, including metallic
yield dampers (Whittaker et al., 1991), viscous dampers (Constantinou et al., 1993;
Reinhorn et al., 1995), tuned mass damper (Den Hartog, 1956; Villaverde, 1994), and
base isolation (Kelly et al., 1987; Kelly, 1997). However, because these passive de-
vices cannot adapt to structural changes and to varying usage patterns and loading
conditions, there exist limitations.

Active control systems operate by using external energy supplied by actuators to
impart forces on the structure. The appropriate control action is determined based
on measurements of the structural responses. The concept of the strategy in civil
structures was first suggested by Yao (1972). Yang (1975) applied modern control
theory to control the vibration of civil engineering structures under random loadings.
Active control techniques are generally able to achieve higher control performance,
as compared to passive control techniques (Soong and Costantinou, 1995).

The first full-scale application of an actively controlled building, the Kyobashi
Center building (Figure 2.1), was achieved in 1989 in Japan by the Kajima Corpora-
tion (Kobori, 1990, 1996). Subsequently, active control strategies have been applied
to many buildings and bridges, particularly in Asia. To date, many studies related to
active control methods have been performed, and significant progress has been made
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Figure 2.1: Kyobashi Center building with AMD installation

toward protecting civil structures from severe environmental loads using these ad-
vances including the active bracing system (Reinhorn et al., 1989), the active tuned
mass damper/driver (Abdel-Rohman and Leipholz, 1983; Chang and Soong, 1980)
and the active aerodynamic appendage mechanism (Soong and Skinner, 1981; Abdel-
Rohman, 1984).

Various control algorithms for active systems have been considered. Output feed-
back strategies using absolute acceleration measurements were developed by Spencer
et al. (1994); Suhardjo et al. (1992). Control algorithms which account for the force
and stroke limitations of control actuators have been investigated (Tamura et al.,
1994). Nonlinear control algorithms have also been considered in an effort to increase
the effectiveness of these active systems (Gattulli et al., 1994). Other types of control
algorithms that have been suggested for active control systems include fuzzy control
(Chameau et al., 1991; Furuta et al., 1994), neural-based control (Casciati et al., 1993;
Shoureshi et al., 1994), and sliding mode control (Yang et al., 1994).

Although many successful experiments and implementations proved the active
control technology as a practical technique, some potential risks still exist in their
real-time implementation; for example, the external energy injected by the active con-
trol devices might destabilize the system if the measurements of structural responses
have been perturbed, the control laws are developed from a system model that mis-
represents the true behavior of systems, the interaction between the structure and the
control devices has been exclusively considered in the development of control laws,
and so on. These details involved in the structural implementation of active control
techniques continue to be an area of research interest.

Semi-active control devices have received a great deal of attention in recent years
because they offer the adaptability of active control devices without requiring the
associated large power sources. In fact, many can operate on battery power, which is
critical during seismic events when the main power source to the structure may fail.
According to presently accepted definitions, a semi-active control device is one that
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cannot increase the mechanical energy in the controlled system (i.e., including both
the structure and the device), but has properties which can be dynamically varied to
optimally reduce the responses of a structural system. Therefore, in contrast to active
control devices, semi-active control devices do not have the potential to destabilize
the structural system (in the bounded input/bounded output sense). Preliminary
studies indicate that appropriately implemented semi-active systems perform signifi-
cantly better than passive devices and have the potential to achieve, or even surpass,
the performance of fully active systems, thus allowing for the possibility of effective
response reduction during a wide array of dynamic loading conditions.

To date, various semi-active devices have been proposed. Variable-orifice dampers
to control the motion of bridges experiencing seismic motion was first discussed by
Feng and Shinozuka (1990). Variable damping is achieved by altering the resistance
to flow of a conventional hydraulic fluid. Akbay and Aktan (1990, 1991) and Kannan
et al. (1995) proposed variable friction devices which consists of a friction shaft which
is rigidly connected to the structural bracing. The force at the frictional interface
was adjusted to allow controlled slippage. Lou et al. (1994) proposed a semi-active
device based on a passive tuned sloshing damper (TSD), in which the length of the
sloshing tank could be altered to change the properties of the device. Haroun et al.
(1994) presented a semi-active device based on a tuned liquid column damper (TLCD)
with a variable-orifice. Controllable fluids such as electrorheological (ER) fluids and
magnetorheological (MR) fluids were discovered in the late 1940s (Winslow, 1947,
1949; Rabinow, 1948). Prior to MR fluid dampers, a number of ER fluid dampers
were developed, modeled, and tested for civil engineering applications (Ehrgott and
Masri, 1994; Gavin et al., 1994a,b; Gordaninejad et al., 1994; Makris et al., 1995,
1996; McClamroch and Gavin, 1995). The recently developed MR fluids appear to be
an attractive alternative to ER fluids for use in controllable fluid dampers (Carlson,
1994; Carlson and Weiss, 1994; Carlson et al., 1996; Spencer et al., 1997; Dyke et al.,
1996c).

Because all of these semi-active devices are intrinsically nonlinear, one of the
main challenges is to develop control strategies that can optimally reduce structural
responses. Various nonlinear control strategies have been developed to take advantage
of the particular characteristics of the semi-active devices, including bang-bang con-
trol (McClamroch and Gavin, 1995), clipped-optimal control (Patten et al., 1994a,b;
Dyke et al., 1996c), bistate control (Patten et al., 1994a,b), fuzzy control meth-
ods (Sun and Goto, 1994), and adaptive nonlinear control (Kamagata and Kobori,
1994), pseudo-negative stiffness algorithm (Iemura and Pradono, 2002, 2005), Lya-
punov based control (Jansen and Dyke, 2000; Wang and Gordaninejad, 2002), sliding
model control (Luo et al., 2000; Moon et al., 2003), backstepping control (Ikhouane
et al., 1997; Luo et al., 2006), quantitative feedback theory (Zapateiro et al., 2008),
and mixed H2/H∞ control (Yang et al., 2003, 2004b; Karimi et al., 2009).

Hybrid control strategies have been investigated by many researchers to exploit
their potential to increase the overall reliability and efficiency of the controlled struc-
ture (Soong and Reinhorn, 1993). A hybrid control system is typically defined as one
which employs a combination of two or more passive, active, or semi-active devices.
Because multiple control devices are operating, hybrid control systems can alleviate
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some of the restrictions and limitations that exist when each system is acting alone.
Thus, higher levels of performance may be achievable.

The hybrid mass damper (HMD) is the most common control device employed
in full-scale civil engineering applications. The HMD is a combination of a tuned
mass damper (TMD) and an active control actuator. Tanida et al. (1991) developed
an arch-shaped HMD that has been employed in a variety of applications, including
bridge tower construction, building response reduction and ship roll stabilization.
Another class of hybrid control systems which has been investigated by a number
of researchers is found in the active or semi-active base isolation system (Inaudy
and Kelly, 1990; Spencer et al., 2000), consisting of a passive base isolation system
combined with actuators or semi-active devices to supplement the effects of the base
isolation system. The details of these systems are discussed in the section 2.1.2.

2.1.1 Outrigger damping system

The number of high-rise buildings in urban areas around the world has dramatically
increased in the past two decades, spurred by the development of new materials and
technologies. However, this achievement also generates new problems; specifically,
how these buildings can be protected from strong winds and severe earthquakes.
To protect these tall buildings from such severe loadings, researchers and engineers
have considered various passive structural control strategies, such as viscous dampers,
viscoelastic dampers, and tuned mass dampers (Kareem et al., 1999; Spencer and
Nagarajaiah, 2003). However, interstory drifts of a size that is sufficient to dissipate
large amounts of input energy are generally not available in high-rise buildings. To
solve this problem, numerous response amplification systems have been proposed, e.g.
toggle braces (Constantinou et al., 2001), scissor-jacks (Sigaher and Constantinou,
2003), gear-type systems (Berton and Bolander, 2005), and the mega brace (Taylor,
2003).

Smith and Salim (1981); Charles (2006); Smith and Willford (2007) have proposed
outrigger damping systems as an alternative response amplification method. This sys-
tem employs vertical viscous dampers installed between outrigger walls and perimeter
columns in a frame-core-tube structure to enhance structural dynamic performance.
Willford et al. (2008) reported on a real-world implementation in a high-rise building
in the Philippines. While successful, this approach is a passive system, which is un-
able to adapt to structural changes, varying usage patterns, and loading conditions.
In the outrigger damping system, Wang et al. (2010) and Chang et al. (2013) pre-
sented numerical examples of semi-actively controlled outrigger systems employing
MR dampers, achieving superior performance over the corresponding passive system.

2.1.2 Base isolation system

A base isolation system falls into passive systems. The concept of seismic base iso-
lation is to isolate the structure and its contents from potentially dangerous ground
motion, especially within the frequency range where the building is most affected by
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inserting low stiffness devices such as lead-rubber bearings, friction-pendulum bear-
ings, or high damping rubber bearings between the structure and ground. The goal
is to reduce interstory drifts and absolute accelerations to avoid damage by absorbing
earthquake energy with these devices. However, the unacceptable base displacement
responses in passive base isolation systems have been reported. Thus, the extra damp-
ing devices and controllable devices are encouraged to reduce the base displacements.

To achieve this demand, active base isolation, where a passive isolation system
combined with active control devices, such as hydraulic actuators, has been proposed.
The combination shares the advantages of the reductions in passive isolation systems,
i.e., absolute floor accelerations, interstory drifts, and base shears, as well as the
reductions in base displacements from the contributions of the actuators (Inaudy and
Kelly, 1990).

Many numerical studies were conducted by applying different control algorithms
such as the classic linear quadratic regulation (LQR) control algorithm and the Lya-
punov control algorithm (Inaudy and Kelly, 1990; Pu and Kelly, 1991; Loh and Chao,
1996; Yang et al., 1992; Loh and Ma, 1996; Fur et al., 1996). Different active control
devices, such as active tuned mass dampers or active vibration absorbers (different
from hydraulic actuators), were also considered (Loh and Chao, 1996; Lee-Glauser
et al., 1997). Some researchers focused on the numerical analysis of different isolation
bearings, such as rubber bearings or sliding bearings (Yang et al., 1995; Feng, 1993).

The effectiveness of active base isolation systems was verified experimentally as
well. Yang et al. (1996) employed the sliding mode control algorithm to control a slid-
ing base-isolated, three-story building through shake table testing. Riley et al. (1998)
developed a nonlinear controller to experimentally implement a hydraulic actuator
for controlling a three-story, base-isolated building. Nishimura and Kojima (1998)
considered a building-like structure incorporated with an isolator and an actuator
for verification of active base isolation. Although these experiments only considered
the in-plane motions of structures under unidirectional excitations, these provided
evidence of the applicability and feasibility of active base isolation systems. Chang
and Spencer (2012) developed active isolation strategies for multi-story buildings sub-
jected to bi-directional earthquake loadings and verified the efficacy experimentally.

Smart base isolation is another class of hybrid base isolation system (Spencer et al.,
2000; Yoshioka et al., 2002). Smart base isolation is composed of a passive base iso-
lation system combined with control structures with semi-active control devices, e.g.,
variable orifice dampers (Wongprasert and Symans, 2005); semi-active independently
variable dampers (SAIVD) (Nagarajaiah and Narasimhan, 2007), electrorheological
dampers (Makris, 1997); and magnetorheological (MR) dampers (Ramallo et al.,
1999, 2002; Nagarajaiah and Narasimhan, 2006; Narasimhan et al., 2008; Wang and
Dyke, 2013). This combination shares the advantages of semi-active control such as
adaptivity to excitations, low-power requirements, and stability, while still performing
comparably to actively controlled isolation systems.

Many numerical studies of smart base isolation systems employing MR dampers
have been investigated. Ramallo et al. (2002) studied an isolated building with lam-
inated rubber bearings. The results demonstrated acceptable control performance in
the reductions of the accelerations and displacements. Nagarajaiah and Narasimhan
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(2006) shows the effectiveness of a three-dimensional smart base-isolated building with
linear and frictional isolation system. Narasimhan et al. (2008) considered the nonlin-
earities in lead-rubber-bearing (LRB). Chang et al. (2008) applied a scheduled control
strategy to a nonlinear control problem of a smart base-isolated building. Wang and
Dyke (2013) presented the advantages of applying a modal linear quadratic Gaussian
(LQG) approach for base isolation systems. These numerical studies have demon-
strated the applicability of smart base isolation systems employing MR dampers.

To show the efficacy of smart base isolation systems employing MR dampers,
some experimental studies using a shaking table have been conducted. Yoshioka et al.
(2002) verified a smart base isolation system employing laminated rubber bearings of
a single-story small-scale building. Sahasrabudhe and Nagarajaiah (2005) applied the
Lyapunov-based control algorithm to a scaled two-story smart base isolation system.
Lin et al. (2007) employed fuzzy logic control by applying smart base isolation with
four high damping rubber bearings and a 300 kN MR damper. Moreover, Shook
et al. (2007) considered a single-story building installed with bi-directional sliding
bearings and planar MR dampers (e.g., MR dampers were placed in two directions)
under bi-directional excitations. In these studies, most structures are scaled and may
misrepresent the performance of controlled structures.

These results proved that the combination of this smart base isolation system can
effectively reduce the base displacements as well as interstory drifts. These numerical
studies have demonstrated the applicability of semi-active base isolation systems,
although a simulation might not sufficiently represent the true control performance
in a practical implementation. Therefore, the experimental studies of these systems
are needed. Also, since most numerical studies were investigated under unidirectional
excitations, the efficacy of multi-axial semi-active base isolation should be shown.

2.2 Hysteresis loops produced by structural

control force

In the field of earthquake engineering, energy absorbing-devices are added to struc-
tures to dissipate input energy effectively. The input energy absorption capability
of these devices plays a key role in mitigating earthquake damage. Therefore, 1)
elucidating the relationship between the property of control forces and the structural
responses and 2) developing structural control devices and appropriate algorithms for
them which enable intended control forces are desirable.

The effectiveness of negative stiffness was found in skyhook control proposed by
Karnopp et al. (1974). In the ideal condition of the skyhook system, a structure is
connected to a virtual fixed point in the sky through a dashpot. In practical use, the
skyhook damper is realized by active or semi-active controllers.

The negative stiffness produced by active control force using linear quadratic regu-
lator (LQR) was investigated by Iemura and Pradono (2005) on a cable-stayed bridge
model. They showed that the LQR control algorithm produced hysteresis loops with
negative stiffness and reduced the displacements and base shear to earthquake exci-

10



tations.
Iemura and Pradono (2009) showed that the semi-actively controlled skyhook

damper produces a damping force proportional to the absolute velocity of the mass,
and negative stiffness appears in the hysteresis loops. Iemura and Pradono (2002,
2005) proposed an algorithm for semi-actively controlled viscous dampers to produce
negative stiffness and showed the seismic performance on a cable-stayed bridge. The
possibility of producing negative stiffness by MR dampers were shown in Iemura et al.
(2006); Weber and Boston (2011); Wu et al. (2013) as well.

Recently, passive methods to produce negative stiffness damping have been re-
ported as well. Negative stiffness friction damper is proposed by Iemura and Pradono
(2009); Iemura et al. (2008, 2010), which is quite similar to an ordinary friction pendu-
lum support, but the inverted curve is introduced. Since the vertical weight induced
on the unstable convex slide plate accelerates the horizontal deformation due to the
gravitational effect, the force is negatively proportional to the deformation. The
dynamic behavior of the proposed negative stiffness damper was assessed by using
the large-scale shaking table at the Disaster Prevention Research Institute (DPRI)
of Kyoto University, Japan. An adaptive negative stiffness device is proposed and
developed by Nagarajaiah et al. (2010). In this device, adaptive negative stiffness
behavior is realized by possessing predesigned variations of stiffness as a function of
structural displacement amplitude. The effectiveness of the proposed mechanism in
elastic and inelastic structural systems was demonstrated through simulation for peri-
odic and random input ground motions. Viti et al. (2006) produced negative stiffness
passively through a new retrofitting procedure which weakened the strength of the
structure and added supplemental damping devices. The proposed method reduced
both accelerations and ductility demand on a five-story hospital building.

2.3 Semi-active control algorithms

Semi-active control has been proposed as an alternative method for active control
(Housner et al., 1997). Like active control, semi-active control offers the adaptability
to structural changes and to various usage patterns and loading conditions. More-
over, semi-active control devices such as the variable-orifice damper, variable-friction
damper, electrorheological (ER) damper, and magnetorheological (MR) damper re-
quire little power, because the energy is used to modify only the device’s properties
(e.g., stiffness and damping). The effectiveness of semi-active control has been shown
through numerous numerical simulations and experiments (Dyke et al., 1996d,c;
Spencer et al., 1997; McClamroch et al., 1994; McClamroch and Gavin, 1995; Leit-
mann, 1994; Jansen and Dyke, 2000; Wang and Gordaninejad, 2002; Luo et al., 2000,
2003; Moon et al., 2003; Ikhouane et al., 1997; Zapateiro et al., 2009; Luo et al., 2004;
Zapateiro et al., 2008).

Various algorithms have been proposed for semi-active control devices to miti-
gate seismic damage; e.g., linear quadratic Gaussian (LQG)-based clipped-optimal
control (Dyke et al., 1996d,c; Spencer et al., 1997), bang-bang control McClamroch
et al. (1994); McClamroch and Gavin (1995), control based on Lyapunov stability
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Figure 2.2: E-Defense, Miki, Hyogo, Japan

theory (Leitmann, 1994; Jansen and Dyke, 2000; Wang and Gordaninejad, 2002),
sliding mode control (Luo et al., 2000, 2003; Moon et al., 2003), backstepping con-
trol (Ikhouane et al., 1997; Zapateiro et al., 2009), and quantitative feedback theory
(QFT) (Luo et al., 2004; Zapateiro et al., 2008). To apply these algorithms for real
civil structures, a relatively accurate model is needed. However, obtaining accurate
parameter values for full-scale structures may not be practical. Moreover, the struc-
ture may change with time, resulting in the need to continuously update the model.
Thus, developing effective simple algorithms which do not require the structural model
or a large number of sensors is desirable for practical use.

2.4 Real-time hybrid simulation

Shaking table testing provides a direct approach to evaluate the dynamic structural
response of civil structures subjected to earthquake loads. However, shaking table
studies at large scale have been limited so far. This is because, even if large facilities
such as the E-Defense table in Japan (Figure 2.2) or the shaking table at the Uni-
versity of California at San Diego are available, tests for large civil structures such as
high-rise buildings are impractical due to limitations on the size, payload capacity,
and cost.

As an alternative method, hybrid simulation was first proposed by Hakuno et al.
(1969) to test a single degree of freedom model subjected to seismic loads. The
equations of motion were solved using an analog computer while an electromagnetic
actuator was used to excites the physical specimen in real-time. Hardware limita-
tions also compromised the accuracy of the experiment by adding a phase lag that
was recognized but uncompensated. Hybrid simulation was established in its cur-
rent recognizable form through the introduction of discrete time systems and digital
controllers (Takanashi et al., 1974, 1975). Employing a digital controller to solve
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the equations of motion, the real-time loading constraint could be relaxed to a ramp
and hold procedure over an extended time scale. Typical quasi-static testing equip-
ment could be used while numerical integration could be performed at a slower rate
appropriate for the computers.

As rate-dependent structural control devices such as base isolation bearings and
fluid dampers have been developed, the demand of expanding hybrid simulation
to include a more rigorously verified real-time framework has been increased. The
first modern real-time hybrid simulation using digital computers was conducted by
Nakashima et al. (1992) on a SDOF system. In this study, a digital servo-mechanism
between the computer performing the numerical integration and the servo-controller
was introduced to seek accurate velocity control. This digital servomechanism oper-
ated as a ramp generator between numerical integration time steps and also included
a feedback loop to improve the displacement performance at substeps of the numerical
integration.

Horiuchi et al. (1996) studied the effect of time delay on RTHS in detail and
proposed the polynomial extrapolation delay compensation scheme. In this study, a
super real-time controller (Umekita et al., 1995) using parallel computing and a special
programming language was employed to calculate the equations motions within the
required time step. Separating the tasks of signal generation and response analysis
was proposed by Nakashima and Masaoka (1999), allowing RTHS to be performed on
commercially available processors. Many studies have been reported to enhance the
performance of RTHS since these pioneering studies.

Carrion and Spencer (2007) presented another approach for time delay/lag com-
pensation using model-based response prediction. Verification experiments showed
that model-based compensation allowed testing systems with natural frequencies as
high as 13 Hz for linear response and 15 Hz for inelastic response. Experimental
results using a structure with the MR damper verified that the approach and test-
ing system presented were capable of testing rate-dependent devices. Phillips and
Spencer (2012) improved the model-based actuator control by combining a feedback
controller with a feedforward controller. The effectiveness of the proposed method
was shown on a single-actuator system and multi-actuator system.

2.5 Summary

The references on the development of various types of structural control strategies
to reduce damage on buildings from earthquakes are provided in this chapter. This
chapter reviews the literature on hysteresis loops produced by control forces and
RTHS method to verify the efficacies of these methods as well. Huge efforts have been
made by many researchers and engineers to improve structural control technologies in
buildings. However, further development is still required to realize their full potential.
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Chapter 3

BACKGROUND

Some background in modern control theory is provided in this chapter to lay the
groundwork for subsequent active and semi-active controller designs. A linearized
model of the servo-hydraulic actuator system, time delays and lags of real-time hybrid
simulation (RTHS), and model-based compensations for RTHS are also described in
this chapter.

3.1 Modern control theory

Whereas classical control theory focuses on frequency domain analysis employing
transfer function approaches, modern control theory is based on time domain analy-
sis expressed by first-order differential equations utilizing state space representation.
This section presents necessary basic knowledge on liner time-invariant system (LTI)
to understand this report.

3.1.1 LTI state space model

If the dynamic systems are LTI, the state-space model can be written as

ẋ = Ax + Bu (3.1)

y = Cx + Du (3.2)

where x is the state space vector in Rn, y and u are the output and input of the system
evolving in Rp and Rm, respectively, and A, B, C, D are matrices of appropriate
dimensions. The block diagram of Eqs. (3.1) and (3.2) is shown in Figure 3.1. If
both the input and the output are scalar, then the system is referred as single input-
single output (SISO); if either a control or output are of dimension higher than one,
then the system is multi input-multi output (MIMO).

Assume that an initial condition x0 is given at t = 0. Taking Laplace transforms

Plant

yu x = Ax + Bu

y = Cx + Du

Figure 3.1: LTI system
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in Eqs. (3.1) and (3.2) gives the transformed equations:

sX− x0 = AX(s) + BU(s) (3.3)

Y(s) = CX(s) + DU(s) (3.4)

Solving for X(s) gives
X(s) = Φ(s)x0 + Φ(s)BU(s) (3.5)

where
Φ(s) = [sI−A]−1. (3.6)

This is converted into the time domain by taking inverse Laplace transforms. Define

φ(t) = L−1{Φ(s)} = L−1{[sI−A]−1} (3.7)

where the inverse Laplace transform of Φ(s) is calculated term by term. Using con-
volution, Eq. (3.5) can be inverted to give

x(t) = φ(t)x0 +

∫ t

0

φ(t− τ)Bu(τ)dτ (3.8)

As for the output, assuming for simplicity that x0 = 0 and substituting Eq. (3.5)
into Eq. (3.4) gives

Y(s) = CΦ(s)BU(s) + DU(s) (3.9)

Therefore the transfer function is a p × m matrix-valued function of s which takes
the form

G(s) = CΦ(s)B + D (3.10)

Taking the inverse Laplace transform of the transfer function yields the impulse re-
sponse

g(t) = L−1{G(s)} = Cφ(t)B + Dδ(t) (3.11)

where δ(t) is Dirac delta function defined as

δ(t) =

{
+∞ t = 0

0 t 6= 0
(3.12)

∫ ∞
−∞

δ(t)dt = 1 (3.13)

Thus, the output is given for zero initial conditions by

y(t) = g ∗ u(t) =

∫ t

0

g(t− τ)u(τ)dτ =

∫ t

0

Cφ(t− τ)Bu(τ)dτ + Du(t) (3.14)

where ∗ represents convolution integral.
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Figure 3.2: State feedback

3.1.2 State feedback

Assuming that all of the states are available, the simplest controller is given by the
state feedback control law

u = −Kx (3.15)

where K is a n×m matrix. Substituting this input u into Eq. (3.1) gives rise to the
closed-loop system written as

ẋ = Ax−BKx = (A−BK)x (3.16)

The block diagram of this closed-loop system is shown in Figure 3.2.
To determine whether or not x(t) → 0 as t → ∞ from any initial condition, the

eigenvalues of the closed-loop matrix (A − BK) must be considered. If and only if
(A,B) is a controllable pair, the eigenvalues of (A−BK) can be placed arbitrarily,
respecting complex conjugate constraints.

3.1.3 Observers

The state feedback approach can be generalized to the situation where only partial
measurements of the state are available. In this case, the state, x, should be estimated
from the input-output measurements online.

To mimic the behavior of the system given by Eq. (3.1), the estimated system
given as

˙̂x = Ax̂ + Bu (3.17)

should be considered, where x̂ is the estimated state for the state x. Defining the
error between the real state and the estimated state as

e = x− x̂ (3.18)

from Eqs. (3.1) and (3.17), the error equation is given by

ė = ẋ− ˙̂x

= Ax + Bu−Ax̂−Bu

= Ae

(3.19)
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Thus
e = eAte(0) (3.20)

However, if the open-loop system is unstable, the error will not converge to zero and
may diverge to infinity for some initial conditions.

Hence, to control the error, the observer considered is defined as

˙̂x = Ax̂ + Bu + L(y − ŷ), (3.21)

where
ŷ = Cx̂ + Du (3.22)

For any fixed n× p matrix L, from Eqs. (3.1) and (3.21), the error will be

ė = ẋ− ˙̂x

= Ax + Bu−Ax̂−Bu− L(Cx−Cx̂)

= (A− LC)e

(3.23)

Thus
e = e(A−LC)te(0) (3.24)

To ensure that e → 0 as t → ∞, the eigenvalues of the matrix (A − LC) must be
computed. Since

eig(A− LC) = eig(A∗ −C∗L∗) (3.25)

the eigenvalues of (A− LC) can be placed arbitrarily, provided that the matrix pair
(A∗,C∗) is controllable. Based on duality, this is simply observability of the pair
(A,C). Thus, the observer poles can be placed arbitrarily if and only if (A,C) is
observable.

The state space form of the observer is given by

˙̂x = AOx̂ + BO

[
u
y

]
(3.26)

yO = COx̂ + DO

[
u
y

]
(3.27)

where
AO = (A− LC) (3.28)

BO =
[
B− LD L

]
(3.29)

CO = I (3.30)

DO = 0 (3.31)

The block diagram of the observer is depicted in Figure 3.3.
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Figure 3.3: Observer

3.1.4 Linear quadratic regulator (LQR)

One of the effective and widely used methods for determining the state feedback gain
matrix K in Eq. (3.15) is LQR algorithm, which minimizes a defined cost function.
For a continuous time linear system described by Eq. (3.1), assuming that x(t)→ 0
as t→∞, the cost function is defined as

J(u) =

∫ ∞
0

(xTQx + uTRu)dt (3.32)

where Q is positive semidefinite (Q � 0) and R is strictly positive definite (R � 0).
This is called the infinite-horizon problem.

The optimal cost Jmin which is the minimum value of J will be

Jmin(x0) = xT0 PLQRx0 (3.33)

and the feedback control law u that minimizes the value of J is given by

u = −KLQRx (3.34)

where KLQR is given by
KLQR = R−1BTPLQR (3.35)

and P is found by solving the continuous time algebraic Riccati equation (ARE)
(Liberzon, 2012)

ATPLQR + PLQRA−PLQRBR−1BTPLQR + Q = 0 (3.36)

3.1.5 Kalman filter

The Kalman filter (Kalman, 1960), also known as linear quadratic estimation (LQE),
is an algorithm to design an optimal observer by measuring the available data. The
observer designed by the Kalman filter minimizes the spread of the estimate-error
probability density in the process. The Kalman filter was first introduced for discrete
time processes by Kalman (1960), and later extended for the continuous time version
by Kalman and Bucy (1961), which is called the Kalman-Bucy filter. In this subsec-
tion, the derivation of the Kalman-Bucy filter for the time-invariant system case is
presented.
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Consider the linear time-invariant dynamic system expressed as

ẋ = Ax + Bu + Ew (3.37)

y = Cx + Du + v (3.38)

Suppose that the expected values of the initial state and covariance are

E[x(0)] = x̂0 (3.39)

E{[x(0)− x̂0][x(0)− x̂0]
T} = PKal,0 (3.40)

The disturbance input, w, is a white, zero-mean Gaussian random process such that

E[w(t)] = 0 (3.41)

E[w(t)wT (t)] = W(t)δ(t− τ) (3.42)

which is specified by its spectral density matrix W(t), and the measurement error,
v, is a white, zero-mean Gaussian random process such that

E[v(t)] = 0 (3.43)

E[v(t)vT (t)] = V(t)δ(t− τ) (3.44)

with the measurement uncertainty expressed by its spectral density matrix V(t). It
is assumed that the disturbance input and measurement are uncorrelated.

In the Kalman-Busy filter, the optimal values of x̂(t) and the covariance ma-
trix, PKal, can be computed as follows. First, the covariance estimate, PKal, can be
calculated by solving the following ARE:

APKal + PKalA
T + EWET −PKalC

TV−1CPKal = 0 (3.45)

The optimal filter gain equation is given using the obtained PKal by

LKal = PKalC
TV−1 (3.46)

Then, the state estimate is found by integrating

˙̂x = Ax̂ + Bu + LKal(y −Cx̂−Du) (3.47)

x̂(0) = x0 (3.48)

Note that the Kalman-Bucy filter problem is the mathematical dual of the LQR
problem.

3.1.6 Linear quadratic Gaussian (LQG)

To implement the LQR control, the full state information must be available. So, for
the case of the absence of the complete state data or the presence of uncertainties,
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the LQG controller can be employed instead.
The LQG controller is simply the combination of the Kalman filter with the LQR

controller. Consider the linear time-invariant dynamic system given by Eqs. (3.37)
and (3.38). Given this system, the cost function of the LQG problem is defined as

J(u) = lim
τ→∞

E

[∫ τ

0

(xTQx + uTRu)dt

]
(3.49)

where Q is positive semidefinite (Q � 0), and R is positive definite (R � 0) as in
the case of the LQR. The objective is to find the control input u(t) which depends
on the past measurements y(t′), 0 ≤ t′ < t.

The LQG controller that solves the LQG control problem is formulated by the
following equations:

˙̂x = Ax̂ + Bu + LLQG(y −Cx̂−Du) (3.50)

u = −KLQGx̂ (3.51)

Because the LQG controller can separate into the Kalman filter and the LQR prob-
lems, the matrix gains LLQG and KLQG can be designed independently by solving the
AREs given by Eqs. (3.36) and (3.45), respectively (Stengel, 1986). Hence, by Eqs.
(3.35) and (3.46), each gain is given as

LLQG = LKal = R−1BTPLQR (3.52)

KLQG = KLQR = PKalC
TV−1 (3.53)

Therefore the state-space form of the LQG controller can be expressed as

˙̂x = ALQGx̂ + BLQGy (3.54)

yLQG = CLQGx̂ + DLQGy (3.55)

where
ALQG = A−BKLQR − LKalC + LKalDKLQR (3.56)

BLQG = LKal (3.57)

CLQG = −KLQR (3.58)

DLQG = 0 (3.59)

The block diagram of the LQG controller is depicted in Figure 3.4.

3.2 Servo-hydraulic system model

This section presents a model of a servo-hydraulic system.The servo-hydraulic system
is an assemblage of mechanical and electrical components used to excite a specimen,
typically to a prescribed displacement as shown in Figure 3.5. Individual component
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Figure 3.5: Block diagram model of the servo-hydraulic system

models can be assembled to create a dynamic model for the complete servo-hydraulic
system. Components with nonlinear behavior will be represented by linear models
with respect to an operating point such that the complete system model is also linear.
The resulting linear model allows use of techniques such as Laplace transforms and
frequency domain methods to understand the system behavior.

3.2.1 Valve flow

The flow characteristics of the servo-valve are given by (Merritt, 1967)

QL = Cdwxv

√
1

ρ

(
Ps −

xv
|xv|

pL

)
(3.60)

where pL is the pressure drop across the load, QL is the controlled flow through the
load, xv is the valve displacement from the neutral position, Ps is the system supply
pressure, w is the opening ore area gradient of the valve orifices, Cd is the coefficient of
discharge of the valve orifices, and ρ is the fluid density. The nonlinear flow equation
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can be linearized with respect to an operating point (i.e., QL = pL = xv = 0) as :

QL = K ′qxv −K ′cpL (3.61)

where K ′q is the valve flow gain, K ′c is the valve flow-pressure gain.

3.2.2 Actuator

The fundamental equations that govern the behavior of a hydraulic actuator are the
continuity equation and the equilibrium or force balance. The continuity equation is
given by the following relationship (Merritt, 1967)

QL = Aactẋ+ C1pL +
Vt
4βe

ṗL (3.62)

where C1 is the total leakage coefficient of the actuator piston, Vt is the total volume
of fluid under compression in both actuator chambers, βe is the effective bulk models
of the system, and Aact is the area of the actuator piston. Laplace transform of Eq.
(3.62) can be written as

pL(s)

QL − Aactx(s)s
=

1

C1 +
Vt

4βe
s

(3.63)

The force generated by the actuator piston, f , is given by

f = AactpL (3.64)

3.2.3 Specimen

The specimen is excited by the actuator. The equation of motion of the specimen
(SDOF) is given by

mEẍ+ cEẋ+ kEx+ Fs = f (3.65)

where mE, cE, and kE represent the mass, damping, and stiffness values of the spec-
imen and attachments (which may include the piston rod, load cell, clevis, etc.). Fs

represents the force on the piston due to seal friction, x represents the displacement
of the specimen, and a dot indicates differentiation with respect to time. Low-friction
seals are used in modern actuators; therefore, the frictions force can be viewed as
negligible. Thus, the equation of motion can be rewritten as the following transfer
function

Gxf (s) =
1

mEs2 + cEs+ kE
(3.66)
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3.2.4 Servo-controller

Some type of control is needed to stabilize the system (Dyke et al., 1995), because
hydraulic actuators are inherently unstable. With displacement feedback, the error
signal ec is defined by the difference between the command u and measured displace-
ment x as

ec = u− x (3.67)

To eliminate the error, servo-controllers often use the Proportional-Integral-Derivative
(PID) control given by

ic = Kpropec +Kint

∫
ecdt+Kder

dec
dt

(3.68)

where ic is the electrical command signal to the servo-valve, and Kprop, Kint, and
Kdere are proportional, integral, and derivative gains, respectively. For real-time ap-
plications, proportional gain alone is generally adequate, avoiding the lag introduced
by integral control and sensitivity to noise of derivative control. Thus, the resulting
control law is given by

ic = Kpropec (3.69)

3.2.5 Servo-valve

The servo-valve provides an interface between the electrical and mechanical compo-
nents of the system. The servo-valve receives an electrical signal from the servo-
controller which moves the position of the valve spool, controlling the flow of oil into
the actuator.

For low frequencies, the servo-valve dynamics have been approximated by a con-
stant (Merritt, 1967; Dyke et al., 1995; Zhao et al., 2006), as given by

xv = kvic (3.70)

where kv is the valve gain. In the Laplace domain, Eq. (3.70) can be written as

Gv =
xv(s)

ic(s)
= kv (3.71)

If a constant gain is inadequate over the frequency range of interest, a first-order
model including a time lag may be used. This transfer function is expressed as

Gv =
kv

s+ τv
(3.72)

where τv is the servo-valve time constant.
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Figure 3.6: Block diagram model of the servo-hydraulic system

3.2.6 Combined model

The servo-hydraulic model can be obtained by combining the mathematical models
of the controller, servo-valve, actuator, and specimen derived in 3.2.1 through 3.2.5.
The block diagram of the combined model is shown in Figure 3.6.

The transfer function, Gxu(s), from the command displacement (input), u, to the
measured displacement (output), x, is obtained, in the case of constant servo-valve
dynamics (Eq. (3.71)), as

Gxu(s) =
Kp

KqAact

Kc

D3s3 +D2s2 +D1s+D0

(3.73)

where
Kq = K ′qkv (3.74)

is the servo-valve gain,
Kc = K ′cC1 (3.75)

is the total flow-pressure coefficient, and

D3 =
Vt

4βeKc

mE (3.76)

D2 = mE +
Vt

4βeKc

cE (3.77)

D1 = cE +
Vt

4βeKc

kE +
A2

act

Kc

(3.78)

D0 = kE +Kp

KqAact

Kc

(3.79)
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The transfer function given by Eq. (3.73) has three poles and no zeros.
In the case where a first-order model for the servo-valve dynamics (Eq. (3.72)) is

used, the transfer function can be expressed as

Gxu(s) =
Kp

KqAact

Kc

D4s4 +D3s3 +D2s2 +D1s+D0

(3.80)

where

D4 =
Vt

4βeKc

mEτv (3.81)

D3 =
Vt

4βeKc

mE +mEτv +
Vt

4βeKc

cEτv (3.82)

D2 = mE +
Vt

4βeKc

cE +
A2

act

Kc

τv + cEτv +
Vt

4βeKc

kEτv (3.83)

D1 = cE +
Vt

4βeKc

kE +
A2

act

Kc

+ kEτv (3.84)

D0 = kE +KP
KqAact

Kc

(3.85)

The transfer function given by Eq. (3.80) has four poles and no zeros.

3.3 Real-time hybrid simulation

RTHS is a variation of the hybrid simulation test method in which the imposed
displacement and response analysis are conducted in real time. This is very power-
ful strategy when the test specimen includes rate-dependent components. However,
since RTHS is conducted in real time, the dynamics of the experimental system and
specimen affects the results.

3.3.1 Types of delays

In RTHS, there are inevitable experimental errors due to time delays and time lags.
These are an intrinsic part of experimental testing and mitigation of their effects is
an essential part of RTHS. Time delays and time lags are defined as follows.

Time delay

Time delays are generally caused by the communication of data, A/D and D/A data
conversion, and computation time. The transfer function for a pure time delay τ
is given by exp(−τs). So time delays have linear phases and constant magnitudes.
These delays can be reduced by using faster hardware, smaller numerical integration
time steps, and more efficient software.
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Time lag

Time lags are a result of the physical dynamics and limitations of the servo-hydraulic
actuators, i.e., control-structure-interaction (CSI). Therefore, time lags vary with
both the frequency of excitation and specimen conditions (Dyke et al., 1995). Thus,
assuming a single time delay is not adequate over a wide frequency range to compen-
sate the errors caused by time lags.

3.3.2 Experimental errors

The most significant experimental error in RTHS is poor phase tracking of the desired
displacement. For a simple illustration, let the total time delays and time lags be
approximated as s single time delay Td. As shown in Figure 3.7(a), the measured
displacement, x, is delayed from the desired displacement, d, by Td. Because of this
delay, the force measured and fed back from the experiment does not correspond to
the desired displacement (it is measured before the actuator has reached its target
position), however, the algorithm assumes that the measured force corresponds to the
desired displacement. If the specimen is linear-elastic, the resulting response, as seen
by the algorithm, is a counter-clockwise hysteresis loop, instead of the straight line
corresponding to the linear behavior, as shown schematically in Figure 3.7(b). This
counterclockwise loop leads to additional energy into the structure. Horiuchi et al.
(1996) demonstrated that for a SDOF system, the increase in the total system energy
caused by the time delay/lag is equivalent to introducing negative damping into the
system. This equivalent damping is given by

ceq = −kTd (3.86)

where k is the stiffness of the system. This artificial negative damping becomes
large when either the stiffness of the system or the time delay/lag is large. When
this negative damping exceeds the structural damping, the system becomes unstable.
Instability almost invariably occurs in practice due to the low levels of damping
associated with structural frames and the large time delays/lags associated with large
hydraulic actuators (Darby et al., 2001). Therefore, introducing compensation for
time delays/lags is essential in RTHS.

The effects of the time delays/lags have been traditionally treated together by
determining a total delay that includes all of these effects. However, because the time
lags vary with frequency, this approximation is valid only over the limited frequency
range used for the approximation. If the conditions change significantly during the
test (e.g., natural frequency of the test structure due to changes in specimen stiff-
ness), this method is not satisfactory because the system might become unstable
(Blakeborough et al., 2001). Additionally, when the response of the test structure in-
cludes significant contributions at different frequencies (e.g., MDOF), approximating
the time lag with a single time delay may cause critical problems. While, the model-
based compensators proposed in Carrion and Spencer (2007); Phillips and Spencer
(2012) considers the effects of time lags for the wide frequency range. The details of
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Figure 3.7: Effects of time delay/lag; (a) Displacement history, (b) Force-deformation
curve

the model-based approach is described in the next section.

3.4 Model-based compensators for RTHS

To compensate time delays and lags caused by RTHS, a model-based actuator con-
troller is designed. To achieve accurate displacements being imposed to specimens,
RTHS needs an additional control scheme for compensating the inherent dynam-
ics. As mentioned in Carrion and Spencer (2007); Phillips and Spencer (2012), a
model-based approach performs well for RTHS by extending the applicable frequency
range, eliminating the lag in the loop, and enabling small damping used in the test
structure. In the model-based approach, the servo-hydraulic system is modeled by lin-
earization over the actuator with the specimen as described in Section 3.2. Through
a system identification technique, this model is refined to be capable of capturing
the command-to-displacement relationship. Based on this identified model, a model-
based controller is designed to compensate the unexpected dynamics in RTHS. A
scheme of the compensated system is shown in Figure 3.8, in which the desired dis-
placement, d, goes through the compensator, then the command displacement, u, is
obtained such that the measured displacement of the specimen, x, becomes the same
as the desired displacement, d.

3.4.1 Feedforward compensator employing backward
difference method

The feedforward controller is designed to cancel the modeled dynamic of the servo-
hydraulic system. Placed in series with the servo-hydraulic system, the inverse of
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the servo-hydraulic system model will serve as the feedforward controller, which is
expressed as

GFF(s) =
1

Gxu

(s) (3.87)

Three-pole model

For the case that the three-pole model for the servo-hydraulic system, which is given
by Eq. (3.73), is used, from Eq. (3.87), the feedforward controller can be written as

GFF(s) = a0 + a1s+ a2s
2 + a3s

3 (3.88)

where the coefficients a0 through a3 can be determined by expanding Eq. (3.87).
Since the output of the feedforward controller is expressed as

UFF(s) = GFF(s)D(s) (3.89)

in the Laplace domain, the time domain expression is given by

uFF(t) = a0d(t) + a1d
(1)(t) + a2d

(1)(t) + a3d
(3)(t) (3.90)

where d(n) represents the nth derivative of d with respect to time. In discrete time,
Eq. (3.90) can be written as

uFF,i = a0di + a1d
(1)
i + a2d

(2)
i + a3d

(3)
i (3.91)

Thus, the feedforward controller for the three-pole model servo-hydraulic system
requires the calculation of displacement, velocity, acceleration, and jerk (derivative
of the acceleration) at time step i; however, most numerical integration schemes are
only explicit in displacement. In this report, backward difference method is used to
calculate the necessary higher-order derivatives. Note that this method is proposed
simply to estimate the higher-order derivatives at the required time step and can be
selected independently from the numerical integration scheme.

The derivatives up to the fourth order calculated using the BDM are given by

d
(1)
i =

1

2∆t
(3di − 4di−1 + di−2) (3.92)
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d
(2)
i =

1

∆t2
(2di − 5di−1 + 4di−2 − di−3) (3.93)

d
(3)
i =

1

2∆t3
(5di − 18di−1 + 24di−2 − 14di−3 + 3di−4) (3.94)

where the derivatives are second order accurate. Substituting Eqs. (3.92) through
(3.94) into Eq. (3.4.1) yields

uFF,i = b0di + b1di−1 + b2di−2 + b3di−3 + b4di−4 (3.95)

where

b0 = a0 +
3a1
2∆t

+
2a2
∆t2

+
5a3

2∆t3
(3.96)

b1 =
−2a1
∆t

+
−5a2
∆t2

+
−9a3
∆t3

(3.97)

b2 =
a1

2∆t
+

4a2
∆t2

+
12a3
∆t3

(3.98)

b3 =
−a2
∆t2

+
−7a3
∆t3

(3.99)

b4 =
3a3

2∆t3
(3.100)

Since the transfer function of the feedforward controller in discrete time is defined as

GFF(z) =
UFF(z)

D(z)
, (3.101)

the transfer function of the feedforward compensator is expressed as

GFF(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3 + b4z

−4 (3.102)

Four-pole model

In a similar way, the feedforward controller employing BDM for the four-pole model
servo-hydraulic system is derived. The feedforward controller in s-domain is given as

GFF(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 (3.103)

where the coefficients a0 through a4 can be determined by expanding Eq. (3.87). By
Eq. (3.89), the output of the feedforward controller is given in continuous time by

uFF(t) = a0d(t) + a1d
(1)(t) + a2d

(1)(t) + a3d
(3)(t) + a4d

(4)(t) (3.104)

and, in discrete time, by

uFF,i = a0di + a1d
(1)
i + a2d

(2)
i + a3d

(3)
i + a4d

(4)
i (3.105)

Therefore, when the four-pole model is used, jounce (derivative of the jerk) must
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be calculated in addition to displacement, velocity, acceleration, and jerk at time step
i. The jounce obtained from BDM is given by

d
(4)
i =

1

∆t4
(3di − 14di−1 + 26di−2 − 24di−3 + 11di−4 − 2di−5) (3.106)

Substituting Eqs. (3.92), (3.93), (3.94), and (3.106) into gives

uFF,i = b0di + b1di−1 + b2di−2 + b3di−3 + b4di−4 + b5di−5 (3.107)

where

b0 = a0 +
3a1
2∆t

+
2a2
∆t2

+
5a3

2∆t3
+

3a4
∆t4

(3.108)

b1 =
−2a1
∆t

+
−5a2
∆t2

+
−9a3
∆t3

+
−14a4

∆t4
(3.109)

b2 =
a1

2∆t
+

4a2
∆t2

+
12a3
∆t3

+
26a4
∆t4

(3.110)

b3 =
−a2
∆t2

+
−7a3
∆t3

+
−24a4

∆t4
(3.111)

b4 =
3a3

2∆t3
+

11a4
∆t4

(3.112)

b5 =
−2a4
∆t4

(3.113)

Hence, the feedforward controller employing BDM for the four-pole model is given as

GFF(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3 + b4z

−4 + b5z
−5 (3.114)

3.4.2 Bumpless feedforward compensator

A bumpless transfer algorithm was developed by Carrion and Spencer (2007) to pro-
vide a smooth transition between GFF,0(s) and GFF,imax(s) when the current varies
during the experiments. Figure 3.9 shows a schematic block diagram of the mod-
ified feedforward term, GFF(s). Through the feedforward controller, the command
displacement, u, is obtained from the desired displacement, d, taking into account
changing model dynamics. The feedforward controller is given by the following equa-
tions in the Laplace domain:

U(s) = Ua(s) + Ub(s)W (s) (3.115)

where
Ua(s) = GFF,a(s)D(s) (3.116)

Ub(s) = GFF,b(s)D(s) (3.117)

W (s) = Gt(s)Id(s) (3.118)

30



GFF,a(s)
ua

w

d

id

+

GFF,b(s)

Gt(s)

GFF(s)

×

ub

uFF

Figure 3.9: Block diagram of bumpless feedforward controller

and the two transfer functions, GFF,a(s) and GFF,b(s), are given by

GFF,a(s) = GFF,0(s) (3.119)

GFF,b(s) = GFF,imax(s)−GFF,0(s) (3.120)

The transfer function, Gt(s), is used to model the dynamics of the actuator associated
with the change in the current of the MR damper. This transfer function provides a
smooth transition between the two transfer functions, GFF,a(s), GFF,b(s), and is given
by

Gt(s) =

1

imax

τts+ 1
(3.121)

where τt is the time constant of the transfer filter. As the time constant becomes
small, the transition becomes faster, approaching a simple switching algorithm, while
for large values of the time constant, the transition is slower and smoother.

3.4.3 Feedforward-feedback compensator

The model-based compensation approach employing a feedforward and feedback link
in RTHS is shown in Figure 3.10. In this approach, the feedback controller is added
to complement the feedforward controller, providing robustness in the presence of
changing specimen conditions, modeling errors, and disturbances. For the proposed
model-based feedback controller, LQG control is applied to bring the deviation states
to zero and thus reduce the tracking error. The derivations of both controllers are
given in Phillips and Spencer (2012).

To design the feedback controller, the transfer function Gxu(s) given in Eqs. (3.73)
and (3.80) is expressed in state-space form:

żs = Aszs + Bsu (3.122)

x = Cszs (3.123)
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where zs is the state vector. The tracking error between the desired displacement d
and measured displacement x is given by

e = d− x (3.124)

The command, u, should be chosen such that the tracking error is minimized. If
perfect tracking, i.e., x = d, is achieved by only the feedforward controller, uFF, the
ideal system is described as

ż = Aszi + BsuFF (3.125)

d = Cszi (3.126)

where zi is an ideal state. Deviations of the state from the ideal system with respect
to the original system is defined as

zd = zs − zi (3.127)

and assume that deviation of the control is provided by a feedback controller, i.e.,

uFB = u− uFF (3.128)

Then, considering disturbance to the system, wf , and the measurement noise, vf , the
state-space representation of the deviation system is

żd = Aszd + BsuFB + Eswf (3.129)

−e = Cszd + vf (3.130)

where Es is a matrix that describes how the disturbance enters the system.
To improve the LQG controller’s performance and robustness in the frequency

range of interest, the disturbance, wf , is assumed to be Gaussian white-noise, w,
passed through a second-order shaping filter, i.e.,

żf = Afzf + Efw (3.131)

wf = Cfzf (3.132)
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where

Af =

[
0 1
−ω2

f −2ηfωf

]
(3.133)

Ef =

[
0
1

]
(3.134)

Cf =
[
ω2
f 2ξfηfωf

]
(3.135)

and zf is the state vector the shaping filter, żf is its time derivative, and the parameters
ξf , ωf , and ηf control the peak, bandwidth, and roll-off of the disturbance, respectively.
The deviation system can be rewritten as an augmented system that includes the
dynamics of the shaping filter. Defining the state

zFB =

[
zTf
zTd

]
, (3.136)

this augmented system is given by

żFB = AFBzFB + BFBuFB + EFBw (3.137)

−e = CFBzFB + vf (3.138)

where

AFB =

[
Af 0

EsCf As

]
(3.139)

BFB =

[
0
Bs

]
(3.140)

EFB =

[
Ef

0

]
(3.141)

CFB =
[
0 Cs

]
(3.142)

and the measurement noise vector, vf , is assumed to be comprised of independent
Gaussian white noises.

The control uFB can be obtained using LQR design assuming full state feedback
and output weighting as follows

JFB =

∫ ∞
0

{QFB(−e)2 +RFB(uFB)2}dt (3.143)

uFB = −KFBzFB (3.144)

where KFB is the optimal state feedback gain matrix, JFB is the cost function mini-
mized by LQR design, QFB is the weighting matrix on the system outputs, and RFB

is the weighting matrix on the system inputs.
The augmented system states za can be estimated using a Kalman filter

˙̂zFB = AFBẑFB + BFBuFB + LFB(−e−CFBẑFB) (3.145)
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where ẑFB represents the estimated states and LFB is the optimal observer gain matrix.
The control law in Eq. (3.144) is then written in terms of the estimated states

and included in the estimator

˙̂zFB = (AFB − LFBCFB −BFBKFB)ẑFB + LFB(−e) (3.146)

uFB = −KFBẑFB (3.147)

3.5 Summary

This chapter provided the background on modern control theory that is essential to
the development of the proposed research. In addition, the servo-hydraulic system
model, the effects of time delays/lags in RTHS, and the model-based compensators
for RTHS used in this report were described.
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Chapter 4

MODELING AND EXPERIMENTAL SETUP

This chapter provides a model of the MR damper used throughout this report. Based
on the background presented in Chapter 3, a model of the servo-hydraulic system and
compensators for the system are designed for RTHS as well in this chapter.

4.1 MR damper modeling

The MR damper employed in this study is an RD-1005 MR fluid damper manu-
factured by the Lord Corporation (Cary, NC, USA) and shown in Figure 4.1. The
damper is 8.5 inch long in its extended position, and the main cylinder is 1.5 inch
in diameter. The damper has a stroke of ±1.0 inch and can generate forces up to
about 500 lbf. The main cylinder of the damper accommodates the piston, the elec-
tromagnet, an accumulator, and 50 ml of MR fluid. The magnetic field produced in
the device is generated by a small electromagnet in the piston head (Spencer et al.,
1997). Input current commands are supplied to the damper using an RD-1002 Won-
derbox from the Lord Corporation, which uses a modulated pulse-width amplifier to
generate a current in the MR damper circuit that is proportional to the applied volt-
age. The maximum input current of the system imax is 2.0 A. By selecting the input
current, the characteristics of the damper may be changed in real-time to vary the
forces exerted by the damper. The power required by the MR damper is very small
(less than 10 watts), and the system, damper and the current driver, has a response
time of typically less than 10 msec (Spencer et al., 1997).

In this report, the MR damper is modeled by the phenomenological model (Spencer
et al., 1997) as shown in Figure 4.2 in which the damper force is a function of the
damper displacement and velocity. The MR damper force fMR is given by

fMR = αz + c0(ẋ− ẏ) + k0(x− y) + k1x (4.1)

where x is the displacement of the MR damper, y is an internal displacement as
illustrated in Figure 4.2, and z is an evolutionary variable (Wen, 1976) governed by

ż = −γ|ẋ− ẏ|z|z|n−1 − β(ẋ− ẏ)|z|n + A(ẋ− ẏ). (4.2)

And k0, k1, c0, c1, α, β, γ, A, and n are parameters for the MR damper model.
Since MR dampers are driven by currents, α, c0, c1, β and γ are current dependent
variables given by

α = αa + (αb − αa) tanh(αcic) (4.3)

c0 = c0a + (c0b − c0a) tanh(c0cic) (4.4)
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(a)

(b)

Figure 4.1: Small-scale MR damper

c1 = c1a + (c1b − c1a) tanh(c1cic) (4.5)

β = βa + (βb − βa) tanh(βcic) (4.6)

γ = γa + (γb − γa) tanh(γcic) (4.7)

where ic is the input current to the MR damper model after a first order filter which
is designed to account for the time that the MR fluid takes to reach rheological
equilibrium (Carrion and Spencer, 2007):

i̇c = −η(ic − id) (4.8)

where id is the desired current applied to the current driver and η is a parameter
obtained experimentally.

To obtain the parameters of the MR damper, the damper is experimentally sub-
jected to a 1 Hz sine wave with 1.02 cm (0.4 in) amplitude and constant current
of 0 A, 0.5 A, 1.0 A, 1.5 A, and 2.0 A. Then, the parameters are fit using nonlin-
ear least squares parameter estimation to match the experimental response of the
damper. To decide the parameters, importance are placed especially on 0 A and 2.0
A cases because 0 A (passive-off) and 2.0 A (passive-on) modes are used mainly in
this report. Table 4.1 provides the parameters obtained from MATLAB (MATLAB,
2013) optimization toolbox. The comparisons between the experimental data and
analytical data by the created model are shown in Figures 4.3 through 4.7 for each
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Figure 4.2: Mechanical model of the MR damper

Table 4.1: Parameters for the MR damper model

c0a 8.129 lbf·sec/in c0b 37.082 lbf·sec/in c0c 1.192 /A
k0 0.012 lbf/in k1 0.007 lbf/in x0 0 in
c1a 406.314 lbf·sec/in c1b 786.564 lbf·sec/in c1c 0.315 /A
αa 18.361 lbf/in αb 100.617 lbf/in αc 0.551 /A

γa, βa 145.710 /in2 γb, βb 17.600 /in2 γc, βc 2.120 /A
A 167.073 n 2 η 50 /sec

input current.

4.2 RTHS setup

RTHS consists of a computational model and physical specimen (the MR damper in
this report) in a loop, with an appropriate loading unit and testing equipment. A
schematic configuration for RTHS in this study is shown in Figure 4.8(a). Testing
hardware in the RTHS includes a digital signal processor (DSP) running numerical
integration for the structure and generating the command signals, a small-scale MR
damper that is driven by a servo-hydraulic actuator, which is controlled by a servo-
controller, and Analog-to-Digital (A/D) and Digital-to- Analog (D/A) converters for
signal processing. Sensors include a linear variable displacement transducer (LVDT)
for displacement measurements and a load cell for measuring the MR damper force.

In Figure 4.8(a), u is the commanded displacement, fMR is the MR damper force
measured by the load cell, x is the displacement measured by the LVDT and i is the
control current sent to the hydraulic actuator. A detailed description of this RTHS
implementation can be found in Carrion and Spencer (2007). Figure 4.8(b) shows a
photograph of the experimental setup for RTHS. The experiments are conducted at
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Figure 4.3: MR damper force with 0 A to 0.4 in, 1.0 Hz sine wave
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Figure 4.4: MR damper force with 0.5 A to 0.4 in, 1.0 Hz sine wave
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Figure 4.5: MR damper force with 1.0 A to 0.4 in, 1.0 Hz sine waver
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Figure 4.6: MR damper force with 1.5 A to 0.4 in, 1.0 Hz sine wave
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Figure 4.7: MR damper force with 2.0 A to 0.4 in, 1.0 Hz sine wave

the Smart Structures Technology Laboratory (SSTL), University of Illinois at Urbana-
Champaign (http://sstl.cee.illinois.edu/).

4.3 Servo-hydraulic system modeling

As developed in Section 3.2, the entire physical system can be modeled by a transfer
function Gxu(s), whose input u is the commanded displacement and output x is the
piston displacement which is measured by the LVDT. Due to the feedback interaction,
the transfer function Gxu(s) depends on input current of the MR damper. Because the
input current to the MR damper can change during the RTHS, the servo-hydraulic
dynamics must be investigated at multiple current levels. To obtain the transfer
functions for the 0 A case (Gxu,0A(s)) and 2.0 A case (Gxu,2A(s)), system identifications
are performed with band limited white noise (BLWN) of frequency range of 0 to 50
Hz using the software MFDID developed by Kim et al. (2005). Frequency responses
obtained in the experiments are shown in Fgiure 4.9. In this report, a four poles and
no zeros model given by Eq. (3.80) is used for each case. These transfer functions
are obtained as

Gxu,0A(s) =
4.162× 109

s4 + 5.673× 102s3 + 2.784× 105s2 + 5.625s× 107s+ 4.151× 109
(4.9)
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Figure 4.8: Real-time hybrid simulation; (a) Schematic diagram of the RTHS loop,
(b) Photograph of the experimental setup

Gxu,2A(s) =
3.281× 109

s4 + 5.371× 102s3 + 2.642× 105s2 + 4.602s× 107s+ 3.259× 109

(4.10)
These transfer functions are compared with experimental results in Figures 4.10 and
4.11. As can be seen, both cases show a good agreement between the experimen-
tal data and proposed model. These two transfer functions are used to design the
bumpless feedforward controller in the next section.

The results are also averaged to create a third transfer function appropriate for
when the MR damper conditions are unknown or changing, which is given by

Gxu,avg(s) =
3.689× 109

s4 + 5.420× 102s3 + 2.712× 105s2 + 5.080s× 107s+ 3.670× 109

(4.11)
The comparison with the experimental results can be found in Figure 4.12. This
transfer function is used to design the feedforward-feedback compensator in the next
section.
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Figure 4.9: Frequency response from the experiments

4.4 Model-based compensator design for RTHS

In this section, two model-based compensators, i.e., bumpless feedforward and feedforward-
feedback compensators, are designed based on the methods presented in Section 3.4.
The transfer functions of the servo-hydraulic system obtained in Section 4.3 are ap-
plied. To design the feedforward controllers for both compensators, the BDM, whose
accuracy has been proven in Phillips and Spencer (2012), is used. The sampling time
∆t used in this research is 5.0× 10−4 sec.

4.4.1 Bumpless feedforward compensator

The bumpless feedforward compensator is designed here. By using the BDM intro-
duced in Subsection 3.4.1, GFF,0A and GFF,2A in discrete time are calculated from
Eqs. (4.9) and (4.10), respectively, as

GFF,0A(z) =
5∑

k=0

bk,0Az
−k (4.12)
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Figure 4.10: Comparison between the experimental data and obtained model for 0 A
case

where

b0,0A = 1.484× 104, b1,0A = −6.503× 104, b2,0A = 1.141× 105,

b3,0A = −1.002× 105, b4,0A = 4.393× 104, b5,0A = −7.689× 103.
(4.13)

and

GFF,2A(z) =
5∑

k=0

bk,2Az
−k (4.14)

where

b0,2A = 3.756× 103, b1,2A = −1.670× 104, b2,2A = 2.969× 104,

b3,2A = −2.637× 104, b4,2A = 1.169× 104, b5,2A = −2.065× 103.
(4.15)

Also, in this report, τt Eq. (3.121) is taken as 0.0048 sec (Carrion and Spencer,
2007).

This bumpless feedforward compensator compensator is employed for the RTHS
in Chapter 7.
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Figure 4.11: Comparison between the experimental data and obtained model for 2.0
A case

4.4.2 Feedforward-feedback compensator

In the feedforward-feedback compensator, the feedforward controller GFF is designed
based on the Gxu,avg(s) given by Eq. (4.11). Employing the BDM yields

GFF(z) =
5∑

k=0

bkz
−k (4.16)

where

b0 = 1.658× 104, b1 = −7.282× 104, b2 = 1.281× 105,

b3 = −1.126× 105, b4 = 4.947× 104, b5 = −8.675× 103.
(4.17)

To design the feedback controller, the transfer function given by Eq. (4.11) is
transformed into a state-space form expressed as Eqs. (3.122) and (3.123). The
parameters for the shaping filter given by Eqs. (3.131) and (3.132) are determined
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Figure 4.12: Comparison between the experimental data and obtained model for
averaged case

by trial and error as

ξf = 0.7, ωf = 20× 2π, ηf = 0. (4.18)

Then, the parameters for the state-space form of the LQG feedback controller,
AFB, BFB, CFB, and DFB, are calculated, in discrete time, as

AFB =


0.881 1 0 0 0 0
−0.006 0.881 0.129 0.190 −0.166 −0.117

0 0 0.934 1 0 0
0 0 −0.004 0.934 −0.038 −0.027
0 0 0 0 0.921 1
0 0 0 0 −0.036 0.921

 , BFB =


0

0.250
0

0.057
0

0.051

 ,
CFB =

[
0.023 −0.484 0 0 0 0

]
, DFB = 0.

(4.19)

respectively. This feedback-feedforward compensator is employed for the RTHS in
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Chapter 8.

4.5 Summary

This chapter provided the MR damper model used for numerical simulations in this
report. The experimental setup for RTHS was presented and the servo-hydraulic
system was identified. Also, the compensators based on the servo-hydraulic system
were designed and their effectiveness was shown here. These compensators will be
used for the RTHS verification studies later in this report.
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Chapter 5

HYSTERESIS LOOPS PRODUCED BY ACTIVE

CONTROL FORCES

Active control methods have been applied to numerous civil structures in recent years.
A significant amount of the research on active control methods has been based on full-
state feedback using the linear quadratic regulator (LQR) control algorithm; because
measurement of the full state (i.e., the displacements and velocities of all DOFs)
is difficult, such algorithms are impractical in full-scale implementations. Output
feedback strategies based on measured acceleration at a limited number of points have
been proposed and validated. However, a thorough understanding of the dissipative
nature of the associated control forces and the way in which these forces protect the
structure have been elusive. Also, to unravel the relationship between the properties
of active control forces and the responses will be helpful in designing and developing
semi-active controllers.

This chapter considers the hysteric behavior of the control forces produced by the
widely employed linear quadratic Gaussian (LQG)-based acceleration feedback con-
trol strategies. Numerical simulation studies on one-story and three-story buildings
with active bracing are carried out.

5.1 Active control in acceleration feedback:

Problem formulation

Consider a structural system, excited by a one-dimensional earthquake loading, with
an equation of motion given by

Msẍ + Csẋ + Ksx = Gsf −MsLsẍg (5.1)

where f is the vector of control forces, ẍg is the ground acceleration, Ms, Cs, and Ks

are the mass, linear damping and stiffness matrices of the structure, respectively, and
Gs and Ls are the influence coefficient vectors of the control force and structural mass,
respectively. x is the displacement vector, which is composed of the displacement of
each floor relative to the ground. An over dot represents the time derivative.

A state-space representation of the equation of motion can be written as

ż = Az + Bf + Eẍg (5.2)

ym = Cmz + Dmf + Fmẍg + v (5.3)

ye = Cez + Def + Feẍg (5.4)
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where z is the state variable of the story displacements and velocities relative to the
base, that is,

z =
[
xT ẋT

]T
(5.5)

ym is the vector corresponding to the measured outputs including absolute accelera-
tions, v is an observation noise vector, ye is the vector corresponding to the regulated
outputs that are used for evaluation of the system. The matrices A, B, and E are
given as

A =

[
0 I

−M−1
s Ks −M−1

s Cs

]
(5.6)

B =

[
0

M−1
s Gs

]
(5.7)

E =

[
0
−Ls

]
(5.8)

And Cm, Ce, Dm, De, Fm, and Fe are appropriately chosen matrices corresponding
to the associated output vectors. Acceleration feedback control strategies for the
structure described in Eqs. (5.2), (5.3), and (5.4) can be derived based on LQG
methods. For the control design, the absolute acceleration of the ground, ẍg, is taken
to be a stationary filtered white noise, and an infinite horizon performance index is
chosen that weights the regulated output vector, ye; that is,

J = lim
τ→∞

1

τ
E

[∫ ∞
0

{
(Cez + Def)T Q (Cez + Def) + fTRf

}
dt

]
(5.9)

where Q and R are called weighting matrices. Further, the observation noise is
assumed to be an identically distributed, statistically independent Gaussian white
noise process. The separation principle is invoked to allow the control and estimation
problems to be considered independently. The resulting controller is of the form
(Stengel, 1994; Skelton, 1988)

f = −Kẑ (5.10)

where ẑ is the estimated state vector obtained from the Kalman filter, and K is the
full state feedback gain matrix for the deterministic regulator problem given by

K = R̃−1(Ñ + BTP) (5.11)

P is the solution of the algebraic Riccati equation given by

PÃ + ÃP−PBR−1BTP + Q̃ = 0 (5.12)

and
Q̃ = CT

e QCe − ÑR̃−1ÑT (5.13)

R̃ = R + De
TQDe (5.14)

Ã = A−BR̃−1ÑT (5.15)
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The Kalman filter optimal estimator is given by

˙̂z = Aẑ + Bf + L(ym −Cmẑ−Dmf − Fmẍg) (5.16)

L = (SCm +WEFT
m)R˜−1 (5.17)

where S is the solution of the algebraic Ricatti equation given by

SA˜ + A˜ TS− SG˜S + H˜ = 0 (5.18)

and
A˜ = AT −CmR˜−1(WFmE) (5.19)

G˜ = CT
mR˜−1Cm (5.20)

H˜ = WEET −W 2EFmR˜−1FmET (5.21)

R˜ = V +WFmFT
m (5.22)

where W and V are magnitude of the constant two-sided spectral densities for the
white noises used in the LQG control design. The controller given in Eq. (5.10)
has been shown to be effective in protecting structural systems from seismic loading
(Dyke et al., 1996b).

5.2 Hysteresis control force loops by numerical

simulations

To investigate the nature of the energy dissipation capabilities of acceleration feed-
back control strategies clearly, first, a one-story building model shown in Figure 5.1(a)
is considered. Subsequently, the three-story model shown in Figure 5.1(b) is inves-
tigated to determine if the trends found in the one-story model are also seen in
multi-DOFs structures. The three-story building model was previously investigated
by Dyke et al. (1995, 1996a). Because the actuator is installed between the first floor
and the ground, its displacement is equal to the displacement of the first floor of
the structure relative to the ground. Here, xi, ẋi, ẍai and di represent relative dis-
placement, relative velocity, absolute accelerations of ith floor, and inter-story drift
between ith and (i − 1)th floor (i.e., xi − xi−1), respectively. f is the force in the
actuator installed between the ground and the first floor.

The models are subjected to 1940 El Centro NS and 1995 JMA Kobe NS earth-
quake records using numerical simulation. To satisfy scaling laws, the earthquakes
must be reproduced at five times the recorded rate. The time histories of the employed
earthquake records are shown in Figure 5.2.

To explore how the weighting matrices affect the natural frequency, the damping
ratio, and the hysteresis loops produced by the LQG controller, various values of the
weighting matrices Q and R in Eq. (5.9) are employed. The earthquake input energy
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Figure 5.1: Schematic diagram; (a) One-story building model, (b) three-story building
model

is defined as (Chopra, 2007)

Ei = −
∫ t

0

ẋTMsLsẍgdτ (5.23)

and investigated for each case. The LQR controller is applied as well by assuming that
all state vectors are measurable and compared with the analogous LQG controller.

5.2.1 One-story building model

For the one-story structure as shown in Figure 5.1(a), the parameters given in Eq.
(5.1) are

Ms = Ms = 98.3 (kg), Cs = Cs = 125 (N·sec/m), Ks = Ks = 5.16× 105 (N/m),

f = f, Gs = Gs = −1, Ls = Ls = 1. (5.24)

The state vector z in Eqs. (5.2), (5.3), (5.4), and (5.5) is then

z =
[
x1 ẋ1

]T
(5.25)

Also, the measurement vector ym in Eq. (5.3) and the evaluation vector ye in Eq.
(6.4) are defined by

ym =
[
x1 ẍa1

]T
(5.26)

ye =
[
x1 ẍa1

]T
(5.27)
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Figure 5.2: Earthquake records; (a) 1940 El Centro NS, (b) 1995 JMA Kobe NS

respectively. Therefore, in this case, the matrices Cm, Ce, Dm, De, Em, and Ee can
be written as

Cm = Ce =

[
1 0
−Ks

Ms
− Cs

Ms

]
, Dm = De =

[
0
Gs

Ms

]
, Fm = Fe = 02×1 (5.28)

Hence, the weighting matrices Q and R in Eq. (5.9) should be a 2 × 2 matrix
and a scalar, R, respectively. Here, the weighting matrix Q is set as follows: all of
the elements of the displacement weighting matrix Qd are zero, except for Qd11 = 1,
and all of the elements of the acceleration weighting matrix Qa are zero, except for
Qa22 = 1. We assume that power spectral densities W and V are 5 × 104 and I2×2,
respectively. These values are determined by trial and error so that the LQG shows
good performance compared to the LQR controller. Calculations to determine K in
Eq. (5.11) and L in Eq. (5.17) are performed using the control toolbox in MATLAB
(2013).

Figures 5.3 and 5.4 show how natural frequencies and damping ratios are affected
by changing the value of R in the case of both displacement and acceleration weight-
ings, respectively. From the separation theorem, the poles (i.e., natural frequencies
and damping ratios) obtained by the LQG are the sum of the poles from the LQR and
the Kalman filter. From Figure 5.3, the actuator controlled by displacement weighted
LQR and LQG results in the natural frequency of the building model increasing as
the control authority increases (i.e., R decreases), which means that the controller
added positive stiffness to the structure. In contrast, Figure 5.4 shows that accelera-
tion weighting leads to smaller natural frequency as the control authority is increased
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Figure 5.3: Natural frequency and damping ratio of the one-story building model for
displacement weighting; (a) Q = Qd, R = 10−10, (b) Q = Qd, R = 10−12
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Figure 5.4: Natural frequency and damping ratio of the one-story building model for
acceleration weighting; (c) Q = Qa, R = 10−3, (d) Q = Qa, R = 10−5

(i.e., R decreases), which indicates that the controller adds a negative stiffness on the
structure. Figures 5.3 and 5.4 also show that the damping ratios become larger as
the control force increases in both cases.

Figures 5.5 and 5.6 show hysteresis loops of the actuator produced by the LQG
and the LQR controllers when 1940 El Centro NS and 1995 JMA Kobe NS are input,
respectively. Here, four cases are considered for the LQG and the LQR controllers: (a)
Q = Qd, R = 10−10 (displacement weighting with small control force); (b) Q = Qd,
R = 10−12 (displacement weighting with large control force): (c) Q = Qa, R =
10−3 (acceleration weighting with small control force); and (d) Q = Qa, R = 10−5

(acceleration weighting with large control force). Peak values of relative displacement,
absolute acceleration, and actuator force are summarized in Tables 5.1 and 5.2. Plots
of energy input to the structure by the earthquake, that is, Eq. (5.23), for the four
cases are shown in Figures 5.7 and 5.8.

The results shown in Figures 5.3 and 5.4 are confirmed in Figures 5.5 and 5.6,
where the hysteresis loops of the actuators controlled by the LQG and the LQR
are seen to produce both positive and negative stiffness, depending on the weighting
matrices employed. Moreover, the LQG and the LQR produced quite similar hys-
teresis loops, as well as earthquake input energy (see Figures 5.7 and 5.8), although
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Figure 5.5: Hysteresis control force loops for the one-story model produced by LQR
and LQG to 1940 El Centro NS; (a) Q = Qd, R = 10−10, (b) Q = Qd, R = 10−12,
(c) Q = Qa, R = 10−3, (d) Q = Qa, R = 10−5
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Figure 5.6: Hysteresis control force loops for the one-story model produced by LQR
and LQG to 1995 Kobe NS; (a) Q = Qd, R = 10−10, (b) Q = Qd, R = 10−12, (c)
Q = Qa, R = 10−3, (d) Q = Qa, R = 10−5
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Figure 5.7: Earthquake input energy of a one-story model by LQG and LQR to 1940
El Centro NS; (a) Q = Qd, R = 10−10, (b) Q = Qd, R = 10−12, (c) Q = Qa,
R = 10−3, (d) Q = Qa, R = 10−5
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Figure 5.8: Earthquake input energy of a one-story model by LQG and LQR to 1995
JMA Kobe NS; (a) Q = Qd, R = 10−10, (b) Q = Qd, R = 10−12, (c) Q = Qa,
R = 10−3, (d) Q = Qa, R = 10−5
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Table 5.1: Peak values for the one-story model to 1940 El Centro NS; (a) Q = Qd,
R = 10−10, (b) Q = Qd, R = 10−12, (c) Q = Qa, R = 10−3, (d) Q = Qa, R = 10−5

(a) (b) (c) (d)
Parameter Uncontrolled LQG LQR LQG LQR LQG LQR LQG LQR
x1 (cm) 0.173 0.099 0.098 0.032 0.029 0.099 0.097 0.102 0.097
ẍa1 (m/s2) 9.098 5.389 5.310 3.798 3.728 4.995 4.957 3.404 3.333
f (N) N/A 93.3 93.7 274.1 261.4 152.5 152.6 422.6 408.3

Table 5.2: Peak values for the one-story model to 1995 JMA Kobe NS; (a) Q = Qd,
R = 10−10, (b) Q = Qd, R = 10−12, (c) Q = Qa, R = 10−3, (d) Q = Qa, R = 10−5

(a) (b) (c) (d)
Parameter Uncontrolled LQG LQR LQG LQR LQG LQR LQG LQR
x1 (cm) 0.641 0.332 0.327 0.078 0.070 0.291 0.285 0.352 0.336
ẍa1 (m/s2) 33.674 17.819 17.687 8.885 8.758 14.758 14.599 8.977 8.796
f (N) N/A 241.4 241.2 529.1 523.1 336.2 329.2 1404.8 1350.7

the LQR controller showed slightly better performance. Finally, Tables 5.1 and 5.2
confirms that the displacement responses were reduced by the controller using dis-
placement weighting, and the acceleration responses were reduced by the controllers
using acceleration weighting.

The next section investigates active control of a three-story model to see if the
trends found in the one-story controlled structure are also found in multi-DOF struc-
tures.

5.2.2 Three-story building model

For the three-story structure as shown in Figure 5.1(b), the parameters for the equa-
tion of motion given in Eq. (5.1) are

Ms =

98.3 0 0
0 98.3 0
0 0 98.3

 (kg), Cs =

175 −50 0
−50 100 −50

0 −50 50

 (N·sec/m),

Ks = 105

 12.0 −6.84 0
−6.84 13.7 −6.84

0 −6.84 6.84

 (N/m), f = f, Gs =

−1
0
0

 , Ls =

1
1
1


(5.29)
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The state vector z in Eqs. (5.2), (5.3), (5.4), and (5.5) is then

z =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]T
(5.30)

Also, the measurement vector ym in Eq. (5.3) and the evaluation vector ye in Eq.
(5.4) are defined by

ym =
[
x1 ẍa1 ẍa2 ẍa3

]T
(5.31)

ye =
[
x1 d2 d3 ẍa1 ẍa2 ẍa3

]T
(5.32)

Therefore, the matrices Cm, Ce, Dm, De, Em, and Ee become

Cm =

[
1 0 0 01×3
−M−1

s Ks −M−1
s Cs

]
, Ce =

[
∆ 03×3

−M−1
s Ks −M−1

s Cs

]
,

∆ =

 1 0 0
−1 1 0
0 −1 1

 , Dm =

[
0

M−1
s Gs

]
, De =

[
03×1

M−1
s Gs

]
,

Fm = 04×1, Fe = 06×1

(5.33)

Hence, the weighting matrices Q and R in Eq. (5.9) should be a 6×6 matrix and
a scalar R, respectively. Here, two cases are considered. The first case weights the
second and third inter-story drifts equally, whereas the weighting on the first floor
relative displacement is taken as a control design parameter α; that is

Qd = diag
([
α 1 1 0 0 0

])
(5.34)

The second case places equal weighting on the acceleration of each floor of the struc-
ture; that is,

Qa = diag(
[
0 0 0 1 1 1

]
) (5.35)

The power spectral densities of the disturbance W and the measurement noise vector
V are chosen to be 5×104 and I4×4, respectively, so as to achieve comparable control
performance with the LQR controller.

Figure 5.9 shows contours of the natural frequencies and damping ratios of first,
second, and third modes for the displacement weighted LQR/LQG controllers as a
function of R and α. The natural frequencies of the uncontrolled model for three
modes are 34.2 rad/sec, 99.3 rad/sec, and 148.5 rad/sec, and noted in this figure by
a heavier line weight. As can be seen here, the natural frequency of the first mode
increases as a increases, regardless of the value of R. This result indicates that the
controller can produce both positive and negative stiffness contributions to the first
mode. Additionally, Fig. 5.9 shows that the natural frequencies of the second and
third modes are not substantially affected by α, and that the damping ratio increases
generally as the control force gets larger, as was the case of the one-story building
model.

Figure 5.10 shows the natural frequencies and damping ratios of the first, sec-
ond, and third modes as a function of R for acceleration weighting. For this case,

56



2530

35 40

45

50

Uncontrolled (34.2)

(a) (b)

(c) (d)

R

α

Natural freq. (rad/s) for 1st mode

10
�14

10
�12

10
�10

10
�2

10
�1

10
0

10
1

0.60.5
0.4

0.3

0.2

0.2
0.1

(a) (b)

(c) (d)

R

α

Damping ratio for 1st mode

10
�14

10
�12

10
�10

10
�2

10
�1

10
0

10
1

130

120
110100

(a) (b)

(c) (d)

R

α

Natural freq. (rad/s) for 2nd mode

10
�14

10
�12

10
�10

10
�2

10
�1

10
0

10
1

0.2

0.2

0.3

0.1

(a) (b)

(c) (d)

R

α

Damping ratio for 2nd mode

10
�14

10
�12

10
�10

10
�2

10
�1

10
0

10
1

400

350

300
250

200150

Uncontrolled (148.5)

(a) (b)

(c) (d)

R

α

Natural freq. (rad/s) for 3rd mode

10
�14

10
�12

10
�10

10
�2

10
�1

10
0

10
1

0.6
0.5

0.4
0.3

0.2
0.1

(a) (b)

(c) (d)

R

α

Damping ratio for 3rd mode

10
�14

10
�12

10
�10

10
�2

10
�1

10
0

10
1

Figure 5.9: Natural frequency and damping ratio of the three-story building model
for displacement weighting; (a) Q = Qd(α = 1), R = 10−10, (b) Q = Qd(α = 1),
R = 10−12, (c) Q = Qd(α = 0.01), R = 10−10.5, (d) Q = Qd(α = 0.01), R = 10−13.5

the natural frequencies of all modes decrease as the control force increases (i.e., R
decreases); additionally, the damping ratio of the first mode increases as the control
force is increased, which is again similar to the one-story model.

Six specific cases are considered for more investigation: (a) Q = Qd(α = 1),
R = 10−10 (equal inter-story displacement weighting, with small control force); (b)
Q = Qd(α = 1), R = 10−12 (equal inter-story displacement weighting, with large
control force); (c) Q = Qd(α = 0.01), R = 10−10.5 (inter-story displacement weighting
mainly on the second and third stories, with small control force); (d) Q = Qd(α =
0.01), R = 10−13.5 (inter-story displacement weighting mainly on the second and
third stories, with large control force); (e) Q = Qa, R = 10−3.5 (equal acceleration
weighting, with small control force); and (f) Q = Qa, R = 10−5.5 (equal acceleration
weighting, with large control force). These controllers are marked with an x in Figs.
5.9 and 5.10. Figure 5.9 shows that controller (a) produces positive stiffness in all
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Figure 5.10: Natural frequency and damping ratio of the three-story building model
for acceleration weighting; (c) Q = Qa, R = 10−3.5, (d) Q = Qa, R = 10−5.5

modes, controller (b) produces positive stiffness in the first and second modes and
negative stiffness in third mode, and controllers (c), and (d) produce negative stiffness
in first mode and positive stiffness in second and third modes. Figure 5.10 shows that
controllers (e) and (f) produce negative stiffness in all three modes.

The hysteresis loops (i.e., control force versus displacement) for these six cases
are shown in Figs. 5.11 and 5.12 for the structure subjected by the NS components
of the 1940 El Centro and the 1995 JMA Kobe earthquakes. The dominance of
the first mode in the response is seen in Figs. 5.11 and 5.12, that is, controllers
(b) and (d) produce positive and negative stiffness, respectively. We can also see
that controller (f) has negative stiffness as in the case of one-story building model.
Thus, the LQR/LQG can produce both positive and negative stiffness, depending on
the control weightings chosen. Moreover, the LQR and LQG hysteresis loops and
earthquake input energies are nearly identical.

Peak values of relative displacement, inter-story drift, and absolute acceleration
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Figure 5.11: Hysteresis control force loops of the three-story model produced by LQR
and LQG to 1940 El Centro NS; (a) Q = Qd(α = 1), R = 10−10, (b) Q = Qd(α = 1),
R = 10−12, (c) Q = Qd(α = 0.01), R = 10−10.5, (d) Q = Qd(α = 0.01), R = 10−13.5,
(e) Q = Qa, R = 10−3.5, (f) Q = Qa, R = 10−5.5
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Figure 5.12: Hysteresis control force loops of the three-story model produced by LQR
and LQG to 1995 JMA Kobe NS; (a) Q = Qd(α = 1), R = 10−10, (b) Q = Qd(α = 1),
R = 10−12, (c) Q = Qd(α = 0.01), R = 10−10.5, (d) Q = Qd(α = 0.01), R = 10−13.5,
(e) Q = Qa, R = 10−3.5, (f) Q = Qa, R = 10−5.5
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for each floor, along with actuator force, are summarized in Tables 5.3 and 5.4. When
the control force is small (i.e., controllers (a), (c), and (e)), the controller has little
impact on the responses. However, when the control force is large, the nature of
the controllers is clearer; here, controllers (d) and (f) reduce absolute acceleration
for each floor more than controller (b). Again, the LQG controller has comparable
performance to its LQR counterpart.
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The plots of earthquake energy input to the structure as given by Eq. (5.23) are
shown in Figures 5.13 and 5.14 for cases (a)–(h). For both earthquakes, controller (b)
shows the best performance. However, considering the peak actuator forces given in
Tables 5.3 and 5.4, controllers producing negative stiffness (i.e., controllers (d) and
(h)) are more effective at limiting the input earthquake energy than the controllers
controllers (b) and (f).

5.3 Summary

This chapter investigated the nature of the hysteric behavior of the control forces
produced by the widely employed LQG-based acceleration feedback control strategy.
Numerical simulation studies carried out on one-story and three-story buildings with
active bracing show that the LQG-based algorithms are quite versatile and can pro-
duce controllers with a variety of behaviors depending upon the control objectives
chosen. Additionally, the numerical results demonstrated that the presented LQG-
based acceleration feedback control had performance comparable to the LQR in the
presented SDOF and 3DOF building models.
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Figure 5.13: Earthquake input energy of the three-story model by LQG and LQR to
1940 El Centro NS; (a) Q = Qd(α = 1), R = 10−10, (b) Q = Qd(α = 1), R = 10−12,
(c) Q = Qd(α = 0.01), R = 10−10.5, (d) Q = Qd(α = 0.01), R = 10−13.5, (e) Q = Qa,
R = 10−3.5, (f) Q = Qa, R = 10−5.5
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Figure 5.14: Earthquake input energy of the three-story model by LQG and LQR to
1995 JMA Kobe NS;(a) Q = Qd(α = 1), R = 10−10, (b) Q = Qd(α = 1), R = 10−12,
(c) Q = Qd(α = 0.01), R = 10−10.5, (d) Q = Qd(α = 0.01), R = 10−13.5, (e) Q = Qa,
R = 10−3.5, (f) Q = Qa, R = 10−5.5
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Chapter 6

SEMI-ACTIVE CONTROL ALGORITHMS

In this chapter, new model-free algorithms realizing versatile hysteresis loops are pro-
posed. As an example of semi-active control devices, MR dampers, which are one
of the widely accepted, are employed. First, the formulation of the problem is pro-
vided, including the equation of motion and the associated state-space representation.
Then, the algorithms for the proposed controllers are described. Through numerical
simulation of a scaled three-story building, the hysteresis loops produced by the pro-
posed algorithms are investigated. In parallel, the hysteresis loops produced by the
widely employed LQG-based clipped-optimal control and Lyapunov stability-based
control are introduced and compared. Subsequently, control performance obtained
from numerical studies are presented. Conclusions obtained from this study then
follow.

6.1 Problem formulation

Consider a structural system, excited by a one-dimensional earthquake loading, with
an equation of motion given by

Msẍ + Csẋ + Ksx = Gsf −MsLsẍg (6.1)

where f is the vector of control forces, ẍg is the ground acceleration, Ms, Cs, and
Ks are the mass, linear damping and stiffness matrices of the structure, respectively,
and Gs and Ls are the influence coefficient vectors of the control force and structural
mass, respectively. If so, x is the displacement vector, which is composed of the
displacement of each floor relative to the ground. An over dot represents the time
derivative.

The state-space representation of the equation of motion can be written as

ż = Az + Bf + Eẍg (6.2)

ym = Cmz + Dmf + Fmẍg + v (6.3)

ye = Cez + Def + Feẍg (6.4)

where z is the state vector of the story displacements and velocities relative to the
base; that is,

z =
[
xT ẋT

]T
(6.5)

ym is the vector corresponding to the measured outputs, v is an observation noise
vector, ye is the vector corresponding to the regulated outputs that are used for
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evaluation of the system. The matrices A, B, and E are given as

A =

[
0 I

−M−1
s Ks −M−1

s Cs

]
, B =

[
0

−M−1
s Gs

]
, E =

[
0
−L−1s

]
(6.6)

and Cm, Ce, Dm, De, Fm, and Fe are appropriately chosen matrices corresponding
to the associated output vectors.

The vector of control force is defined as

f =
[
fMR,1 fMR,2 · · · fMR,n

]T
(6.7)

where fMR,j, j = 1, 2, · · ·n is the jth measured MR damper output force.

6.2 LQG-based clipped-optimal control

The LQG based clipped-optimal control method for MR dampers (Dyke et al., 1996c,d;
Spencer et al., 1997) is explained briefly. By reconsidering Eq. (6.2), the cost function
of the LQG control can be written as

J = lim
t→∞

1

t
E

[∫ t

0

(
yTe Qye + fTc Rfc

)
dt

]
(6.8)

where Q and R are the weighting parameters; fc is a control force vector defined as

fc =
[
fc,1 fc,2 · · · fc,n

]T
(6.9)

where fc,j, j = 1, 2, · · ·n is the jth calculated control force. E[·] means the expected
value of the quantity in brackets and t represents the time. By minimizing Eq. (6.8),
the control force is a function of the structural states. In the LQG control, the Kalman
filter estimates (Dyke et al., 1996c) the state based on the measured responses such
that

˙̂z = Aẑ + Bfc + L (ym −Cmẑ−Dmfc − Fmẍg) (6.10)

fc = −Kcẑ (6.11)

where L is the Kalman gain; Kc is the optimal control gain found by minimizing Eq.
(6.8); and ẑ is the estimated state by the Kalman filter. The clipped-optimal control
algorithms are used to convert the optimal control force of Eq. (6.11) to a desired
command current for the MR damper. The desired command current is given by

id,j = imaxH {(fc,j − fMR,j) fMR,j} (6.12)

where H{·} is the Heaviside function, id,j is the desired input current to the jth MR
damper; imax is the maximum input current, fc,j is the jth optimal control force
generated by Eq. (6.11) and fMR,j is the actual force generated by the jth MR
damper. The clipped-optimal controller logic is illustrated in Figure 6.1.
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fMR,j

fc,j

Figure 6.1: Graphical representation of clipped-optimal control algorithm

6.3 Lyapunov stability-based control

Leitmann (1994) applied Lyapunov’s direct method for the design of a semi-active
controller. In this approach, a Lyapunov function is defined as (Khalil, 2002)

V (z) =
1

2
‖z‖2p (6.13)

where ‖z‖p is p-norm of the state z defined by

‖z‖p =
[
zTPz

]1/2
(6.14)

and P is real, symmetric, positive definite matrix. In the case of linear system, to
ensure V̇ is negative, the matrix P is found by solving the Lyapunov equation

ATP + PA = −Qp (6.15)

for a given positive semidefinite matrix Qp. Then, the derivative of the Lyapunov
function for a solution of Eq. (6.2) is

V̇ = −1

2
zTQpz + zTPBf + zTPEẍg (6.16)

The only term that can be directly affected by a change in the control current is the
middle term zTPBf that contains the force vector f . Thus, the input current to the
jth MR damper which will minimize V̇ is

id,j = imaxH((−zT )PBjfMR,j) (6.17)

where H(·) is Heaviside step function; fMR,j is the measured force produced by the jth
MR damper; and Bj is the jth column of the B matrix in Eq. (6.2). To implement
this algorithm, the estimated state by the Kalman filter, ẑ, can be used instead of z.
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6.4 Model-free algorithms for semi-active control

In this section, new simple algorithms for use with MR dampers which do not require
the structure model are introduced. Two model-free algorithms which can produce
positive and pseudo-negative stiffness hysteresis loops are proposed herein. Let dj,
ḋj, and d̈a,j be the displacement, velocity, and absolute acceleration of the piston
of the jth MR damper. Figure 6.2 (a) and (b) depict the schematic illustrations of
displacement-force hysteresis loops for the cases of id,j = imax and id,j = 0, respec-
tively.

6.4.1 Proposed simple algorithm 1

The first proposed algorithm controls the desired input current based on the sign of
the product of the displacement and velocity of the MR damper. As shown in Figure
6.2(c), to produce pseudo-negative stiffness, the desired input current is maximum
when the direction of the displacement of the MR damper is different from that of
the velocity and 0 when the displacement and velocity of the MR damper have the
same direction. Thus, the input current determined by

id,j = imaxH(−dj ḋj) (6.18)

can yield pseudo-negative stiffness by the MR damper.
Positive stiffness can be realized by changing the sign in Eq. (6.18); i.e.,

id,j = imaxH(dj ḋj) (6.19)

In Eq. (6.19), imax input is applied when the directions of displacement and velocity
are the same, otherwise it is 0. This is shown in Figure 6.2(d) schematically. To
implement this algorithm, only sensors to measure the displacement and velocity of
the devices are needed. In this report, the algorithms given by Eqs. (6.18) and (6.19)
are named simple controller 1N and simple controller 1P, respectively.

6.4.2 Proposed simple algorithm 2

Another algorithm is obtained by measuring the displacement and the output force
of the MR damper. Pseudo-negative stiffness can be obtained when the desired input
current is controlled as

id,j = imaxH(djfMR,j) (6.20)

as shown in Figure 6.2(c). In Eq. (6.20), the input current is the maximum when the
displacement and output MR damper force have the same direction; otherwise it is
0.

As shown in Figure 6.2(d), positive stiffness can be produced by controlling the
input current by

id,j = imaxH(−djfMR,j) (6.21)
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Figure 6.2: Schematic illustration of MR damper force; (a) id,j = imax, (b) id,j = 0,
(c) Pseudo-negative stiffness, (d) Positive stiffness

In Eq. (6.20), the input current is maximum when the direction of the displacement
and output MR damper force are different; otherwise it is 0.

6.5 Numerical simulation of the three-story

building model

To investigate the nature of the energy dissipation capabilities of the semi-active
controllers described in the previous section through numerical studies, a building
and MR damper model are presented in this section. Also, the two LQG-based
clipped-optimal controllers, i.e., acceleration and displacement weighting, and the
Lyapunov stability-based controller are designed.

6.5.1 Building model

The building model used in this study is a scaled three-story building model as shown
in Figure 6.3 schematically. As can be seen, one MR damper is installed between
the ground and the first floor. This model was previously investigated by Dyke et al.
(1995, 1996a) and in Section 5.2.2. The parameter values for this model is summarized
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Shaking table

MR damper
x1

x2

x3

xg

Figure 6.3: Three-story building model wtih a MR damper

as

Ms =

98.3 0 0
0 98.3 0
0 0 98.3

 (kg), Cs =

175 −50 0
−50 100 −50

0 −50 50

 (N·sec/m),

Ks = 105

 12.0 −6.84 0
−6.84 13.7 −6.84

0 −6.84 6.84

 (N/m), f = fMR, Gs =

−1
0
0

 , Ls =

1
1
1


(6.22)

The state vector z in Eqs. (6.2), (6.3), (6.4), (6.5) is then

z =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]T
(6.23)

In this study, assume that only the first floor displacement and velocity, and the abso-
lute accelerations of each floor are measured, since collecting interstory displacements
and velocities is not practical in the real world. Then, the measurement vector ym in
Eq. (6.3) is given by

ym =
[
x1 ẋ1 ẍa,1 ẍa,2 ẍa,3

]T
(6.24)

and the evaluation vector ye in Eq. (6.4) are defined by

ye =
[
x1 x2 x3 ẍa,1 ẍa,2 ẍa,3

]T
(6.25)

where xj, ẋj, and ẍj represent relative displacement, relative velocity, and absolute
acceleration of the jth floor, respectively. Therefore, the matrices Cm, Ce, Dm, De,
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Em, and Ee become

Cm =

 1 0 0 01×3
0 1 0 01×3
−M−1

s Ks −M−1
s Cs

 , Ce =

[
I3×3 03×3

−M−1
s Ks −M−1

s Cs

]
,

Dm =

 0
0

M−1
s Gs

 , De =

[
03×1

M−1
s Gs

]
, Fm = 05×1, Fe = 06×1 (6.26)

where I is an identity matrix. Since the MR damper is installed between the ground
and the first floor in this model, the displacement, velocity, and absolute acceleration
of the piston of the MR damper are defined as

d = x1, ḋ = ẋ1 (6.27)

6.5.2 Controller design

The two LQG-based controllers and the Lyapunov stability-based controller are de-
signed here. However, the proposed simple controllers do not need to be designed.
The parameter values to design the controllers are as follows:

LQG-based controller with acceleration weighting

The parameter values in Eq. (6.8) are determined as

Q = diag
[
0 0 0 0 0 1

]
(6.28)

R = 10−5 (6.29)

Further, to design the Kalman filter, the power spectral densities of the disturbance
W and the measurement noise vector V are chosen to be 50 and I5×5, respectively,

LQG-based controller with inter-story drift weighting

The parameter values in Eq. (6.8) are determined as

Q =


0 0 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (6.30)

R = 10−12 (6.31)

The Kalman filter is designed by using the same values as the case of acceleration
weighted controller.
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LQG-based controller with relative displacement weighting

The parameter values in Eq. (6.8) are determined as

Q = diag
[
0 0 1 0 0 0

]
(6.32)

R = 10−12 (6.33)

The Kalman filter is designed by using the same values as the case of acceleration
weighted controller.

Lyapunov stability-based controller

The matrix P in Eq. (6.15) used here is given by

P =


6114.959 4020.990 1347.485 1.097 1.925 1.374
4020.990 6479.310 5037.158 −1.394 −1.067 −0.741
1347.485 5037.158 10171.078 0.298 −0.029 −0.029

1.097 −1.394 0.298 2.189 2.961 3.155
1.925 −1.067 −0.029 2.961 4.616 5.340
1.374 −0.741 −0.029 3.155 5.340 6.802

 (6.34)

This is calculated by the lyap command within MATLAB (2013) using a positive
definite matrix Q. Q is determined by TTT, where T is created by rand command
within MATLAB (2013).

6.6 Results

In this section, hysteresis force-displacement loops and seismic performance obtained
from the semi-actively controlled MR damper are shown. The three story building
model is subjected to five earthquake records using numerical simulation. The earth-
quakes used in this study are El Centro (1994, Northridge Earthquake, El Centro
record, fault-parallel), Ji-ji (1999, station TCU 068, North-South component), Kobe
(1995, JMA station, East-West component), Newhall (1994, Northridge Earthquake,
Newhall county, fault-parallel), and Sylmar (1994, Northridge Earthquake, Sylmar
station, fault-parallel) (Narasimhan et al., 2008). To satisfy scaling laws, the earth-
quakes must be reproduced at five times the recorded rate. The time histories of the
employed earthquake records are shown in Figure 6.4.

Figures 6.5 through 6.13 depict hysteresis loops produced by the passive-off mode,
the passive-on mode, the LQG-based clipped-optimal control with acceleration weight-
ing, the LQG-based clipped-optimal control with displacement weighting, the Lya-
punov stability-based control, the simple control 1N, the simple control 1P, the simple
control 2N, and the simple control 2P, respectively, when subjected to the five scaled
earthquake records. As can be seen, for the five earthquake records, pseudo-negative
stiffness is obtained from the LQG-based clipped-optimal control with acceleration
weighting, the Lyapunov stability-based control, the simple control 1N, and the sim-
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Figure 6.4: Scaled earthquake records

ple control 2N, while, positive stiffness is found in the LQG-based clipped-optimal
control with displacement weighting, the simple control 1P, and the simple control
2P. These results show that the proposed algorithms can produce various types of
hysteresis control force loops as expected.

Tables 6.1 through 6.5 summarize the peak and RMS values of response rela-
tive displacements and absolute accelerations of each floor for the semi-active con-
trollers including the LQG-based clipped-optimal control with acceleration weighting,
the LQG-based clipped-optimal control with displacement weighting, the Lyapunov
stability-based control, the simple control 1N, the simple control 1P, the simple control
2N, the simple control 2N. In addition to these semi-active controllers, uncontrolled
(i.e., no MR damper), passive-off (the input current to the MR damper is 0), and
passive-on (the input current to the MR damper is 2.0 A) cases are included in these
tables for comparisons. Figures 6.15 and 6.16 compare the ratios to the uncontrolled
case of the peak and RMS relative displacements of the third floor for each controller.
The RMS value of n data {p1, p2, · · · pn} is defined as

pRMS =

√∑n
k=1 p

2
k

n
(6.35)

The comparisons of the absolute acceleration of the third floor can be found in Figures
6.17 and 6.18. As can be seen in these tables and figures, in general, the semi-active
controllers producing pseudo-negative stiffness, i.e., the LQG-based clipped-optimal
control with acceleration weighting, the simple control 1N, and the simple control 2N
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Figure 6.5: Hysteresis loops produced by the passive-off control
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Figure 6.6: Hysteresis loops produced by the passive-on control
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Figure 6.7: Hysteresis loops produced by the LQG-based clipped-optimal control with
acceleration weighting
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Figure 6.8: Hysteresis loops produced by the LQG-based clipped-optimal control with
inter-story drift weighting
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Figure 6.9: Hysteresis loops produced by the LQG-based clipped-optimal control with
relative displacement weighting
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Figure 6.10: Hysteresis loops produced by the Lyapunov stability-based control
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Figure 6.11: Hysteresis loops produced by the simple control 1N by Eq. (6.18)
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Figure 6.12: Hysteresis loops produced by the simple control 1P by Eq. (6.19)
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Figure 6.13: Hysteresis loops produced by the simple control 2N by Eq. (6.20)
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Figure 6.14: Hysteresis loops produced by the simple control 2P by Eq. (6.21)
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Table 6.1: Comparisons of peak and RMS values to El Centro earthquake

Displacement (mm) Acceleration (g) Force (N)
Controller x1 x2 x3 xa,1 xa,2 xa,3 fMR

P
ea

k

Uncontrolled 3.372 5.199 6.073 5.242 6.660 7.498 N/A
Passive-off 1.775 2.821 3.459 2.759 3.870 4.453 148.2
Passive-on 0.616 1.831 2.492 2.673 4.303 4.753 850.1
LQG w/ A. 1.272 1.946 2.481 3.569 5.213 4.925 597.1

LQG w/ I.D. 1.474 2.338 2.758 3.300 5.528 4.651 421.3
LQG w/ R.D. 0.647 1.858 2.493 2.766 4.723 4.834 823.8

Laypunov 0.666 1.874 2.533 2.998 4.870 4.829 826.9
Simple control 1N 0.947 1.634 2.315 4.324 4.371 5.497 811.2
Simple control 1P 0.907 2.224 2.840 4.840 5.842 5.677 723.8
Simple control 2N 1.181 1.843 2.380 3.526 4.368 5.390 830.2
Simple control 2P 0.705 1.928 2.513 2.904 4.617 4.807 782.4

R
M

S

Uncontrolled 1.375 2.177 2.618 1.835 2.571 3.141 N/A
Passive-off 0.367 0.604 0.739 0.715 0.840 1.043 58.4
Passive-on 0.124 0.474 0.690 0.626 1.196 1.583 225.8
LQG w/ A. 0.213 0.388 0.503 0.828 0.999 1.078 128.7

LQG w/ I.D. 0.251 0.424 0.531 0.807 0.890 0.983 103.0
LQG w/ R.D. 0.132 0.473 0.683 0.679 1.239 1.572 217.8

Laypunov 0.136 0.459 0.656 0.735 1.301 1.542 206.9
Simple control 1N 0.181 0.384 0.523 0.761 1.019 1.177 166.2
Simple control 1P 0.173 0.489 0.681 0.796 1.260 1.493 189.5
Simple control 2N 0.222 0.411 0.544 0.784 1.026 1.169 168.5
Simple control 2P 0.136 0.482 0.692 0.666 1.211 1.562 216.2

show better performance in reducing both response displacements and accelerations,
although some exceptions can be found. In particular, negative stiffness is effective
at reducing response acceleration. Evaluating the results given in the tables and
figures, the proposed two algorithms producing pseudo-negative stiffness, i.e., the
simple control 1N and the simple control 2N show performance comparable to the
LQG-based clipped-optimal controller, or even better results for some cases.
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Table 6.2: Comparisons of peak and RMS values to Ji-ji earthquake

Displacement (mm) Acceleration (g) Force (N)
Controller x1 x2 x3 xa,1 xa,2 xa,3 fMR

P
ea

k

Uncontrolled 5.010 7.957 9.593 6.913 9.449 12.070 N/A
Passive-off 3.562 5.552 6.588 6.505 7.220 8.316 208.2
Passive-on 1.099 2.473 3.228 4.736 6.308 6.327 1011.5
LQG w/ A. 2.459 3.594 4.479 7.064 6.033 6.868 964.7

LQG w/ I.D. 2.861 4.448 5.594 5.635 7.302 7.986 744.7
LQG w/ R.D. 1.139 2.514 3.290 4.742 5.841 5.906 992.4

Laypunov 1.191 2.389 3.201 4.478 6.241 5.776 964.8
Simple control 1N 1.598 2.348 2.896 5.470 6.334 6.536 1008.7
Simple control 1P 1.795 3.583 4.700 6.626 7.957 8.679 893.2
Simple control 2N 1.722 2.490 2.880 5.608 5.668 6.841 951.5
Simple control 2P 1.703 3.347 4.247 6.703 7.858 7.803 953.6

R
M

S

Uncontrolled 2.149 3.397 4.077 2.733 3.984 4.784 N/A
Passive-off 0.838 1.328 1.594 1.287 1.629 1.926 78.2
Passive-on 0.301 0.713 0.971 0.918 1.472 1.910 298.8
LQG w/ A. 0.584 0.876 1.050 1.259 1.325 1.532 200.5

LQG w/ I.D. 0.664 1.005 1.197 1.333 1.380 1.588 162.6
LQG w/ R.D. 0.328 0.728 0.978 0.961 1.446 1.859 282.4

Laypunov 0.340 0.724 0.966 0.968 1.450 1.822 279.4
Simple control 1N 0.470 0.755 0.943 1.055 1.353 1.577 269.0
Simple control 1P 0.408 0.845 1.099 1.283 1.657 1.955 241.5
Simple control 2N 0.474 0.767 0.958 1.061 1.370 1.608 263.5
Simple control 2P 0.369 0.778 1.022 1.152 1.588 1.888 252.0
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Table 6.3: Comparisons of peak and RMS values to Kobe earthquake

Displacement (mm) Acceleration (g) Force (kN)
Controller x1 x2 x3 xa,1 xa,2 xa,3 fMR

P
ea

k

Uncontrolled 13.289 21.227 25.658 19.278 24.467 30.858 N/A
Passive-off 8.941 14.422 17.527 11.006 17.177 21.651 491.7
Passive-on 4.601 8.292 9.940 8.940 17.000 14.907 1759.7
LQG w/ A. 5.457 8.539 10.283 10.705 12.402 16.162 1561.2

LQG w/ I.D. 6.342 10.031 11.791 9.740 15.317 13.711 1383.0
LQG w/ R.D. 4.772 8.595 10.373 8.751 17.131 14.913 1729.0

Laypunov 4.822 8.729 10.603 7.665 16.147 14.806 1745.0
Simple control 1N 5.142 8.208 9.944 9.493 11.684 14.969 1599.9
Simple control 1P 5.859 10.573 13.414 14.243 20.075 22.324 1650.4
Simple control 2N 5.335 8.490 10.306 9.760 11.754 15.859 1588.3
Simple control 2P 5.567 9.970 12.413 13.586 20.337 20.696 1654.7

R
M

S

Uncontrolled 6.930 10.994 13.215 8.173 12.852 15.473 N/A
Passive-off 2.117 3.376 4.069 2.660 4.010 4.884 137.3
Passive-on 0.580 1.154 1.523 1.312 2.152 2.818 392.7
LQG w/ A. 0.749 1.212 1.498 1.539 1.941 2.363 285.4

LQG w/ I.D. 0.971 1.519 1.840 1.718 2.063 2.537 251.6
LQG w/ R.D. 0.603 1.199 1.574 1.299 2.182 2.839 381.6

Laypunov 0.618 1.210 1.582 1.291 2.177 2.815 373.5
Simple control 1N 0.682 1.146 1.442 1.332 1.900 2.365 324.0
Simple control 1P 0.913 1.634 2.054 2.123 2.669 3.265 307.7
Simple control 2N 0.717 1.199 1.501 1.358 1.948 2.419 320.1
Simple control 2P 0.813 1.463 1.852 1.916 2.489 3.057 326.6
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Table 6.4: Comparisons of peak and RMS values to Newhall earthquake

Displacement (mm) Acceleration (g) Force (kN)
Controller x1 x2 x3 xa,1 xa,2 xa,3 fMR

P
ea

k

Uncontrolled 3.702 4.797 6.494 13.663 8.932 13.959 N/A
Passive-off 2.453 3.830 4.402 8.550 7.348 8.462 220.9
Passive-on 1.045 2.611 3.682 8.398 11.303 13.866 1095.4
LQG w/ A. 1.598 2.600 3.136 8.615 9.984 10.241 909.4

LQG w/ I.D. 1.923 2.936 3.309 7.003 9.140 8.650 699.4
LQG w/ R.D. 1.067 2.817 3.930 8.204 10.190 13.629 1081.6

Laypunov 1.091 2.860 4.035 8.638 10.036 12.868 1071.8
Simple control 1N 1.482 2.463 2.978 9.429 9.073 10.700 1039.0
Simple control 1P 1.882 3.845 4.844 7.691 9.526 10.568 963.6
Simple control 2N 1.414 2.363 3.134 7.501 8.655 10.361 1057.2
Simple control 2P 1.405 3.169 4.102 8.055 10.014 12.218 959.4

R
M

S

Uncontrolled 1.276 1.930 2.340 4.230 2.642 4.216 N/A
Passive-off 0.604 0.974 1.188 1.296 1.314 1.729 69.8
Passive-on 0.196 0.620 0.886 1.036 1.693 2.072 284.7
LQG w/ A. 0.307 0.518 0.658 1.169 1.374 1.453 168.4

LQG w/ I.D. 0.376 0.607 0.749 1.084 1.172 1.326 132.2
LQG w/ R.D. 0.214 0.626 0.886 1.057 1.640 2.024 273.9

Laypunov 0.223 0.613 0.857 1.079 1.654 1.962 256.2
Simple control 1N 0.278 0.523 0.693 1.117 1.450 1.586 216.1
Simple control 1P 0.345 0.746 0.990 1.211 1.574 1.923 221.1
Simple control 2N 0.299 0.540 0.709 1.103 1.338 1.547 211.2
Simple control 2P 0.252 0.635 0.875 1.137 1.584 1.908 243.7
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Table 6.5: Comparisons of peak and RMS values to Sylmar earthquake

Displacement (mm) Acceleration (g) Force (kN)
Controller x1 x2 x3 xa,1 xa,2 xa,3 fMR

P
ea

k

Uncontrolled 8.128 12.445 14.470 12.816 16.097 17.079 N/A
Passive-off 5.325 8.371 9.948 7.535 10.549 11.145 285.5
Passive-on 1.668 3.761 5.521 5.958 8.338 13.856 1118.9
LQG w/ A. 3.161 4.708 5.163 6.996 8.952 9.658 939.0

LQG w/ I.D. 3.481 5.339 6.239 6.620 9.448 8.188 809.8
LQG w/ R.D. 1.651 3.737 5.485 5.645 8.347 13.772 1097.9

Laypunov 1.715 3.758 5.420 5.731 7.791 13.179 1032.9
Simple control 1N 2.492 3.759 4.534 7.114 6.662 10.658 1148.9
Simple control 1P 2.736 5.325 6.920 8.897 10.091 11.747 1037.4
Simple control 2N 2.496 3.698 4.805 6.812 6.957 10.157 1095.8
Simple control 2P 2.207 4.415 5.535 7.769 9.689 13.067 1068.5

R
M

S

Uncontrolled 3.750 5.948 7.151 4.662 6.979 8.475 N/A
Passive-off 1.180 1.891 2.285 1.577 2.284 2.822 93.9
Passive-on 0.240 0.688 0.975 0.894 1.593 2.132 298.6
LQG w/ A. 0.479 0.736 0.901 1.170 1.220 1.494 185.7

LQG w/ I.D. 0.562 0.880 1.069 1.097 1.251 1.532 155.8
LQG w/ R.D. 0.248 0.690 0.973 0.866 1.532 2.082 288.6

Laypunov 0.266 0.693 0.965 0.877 1.462 2.004 275.0
Simple control 1N 0.404 0.682 0.875 1.048 1.317 1.655 244.3
Simple control 1P 0.485 0.938 1.209 1.412 1.764 2.163 220.8
Simple control 2N 0.418 0.706 0.901 1.025 1.328 1.652 235.2
Simple control 2P 0.377 0.800 1.064 1.248 1.742 2.120 251.2
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Figure 6.19 shows the earthquake input energies into the building model for
three semi-active controllers producing pseudo-negative stiffness, i.e., the LQG-based
clipped-optimal control with acceleration weighting, the simple control 1N, and the
simple control 2N. The earthquake input energy Ei is defined as (Chopra, 2007)

Ei = −
∫ t

0

ẋTMsLsẍgdτ (6.36)

As can be seen in the figure, the simple controls 1N and 2N can reduce input earth-
quake energy more than the LQG-based clipped-optimal control applied to El Centro,
Ji-ji, and Kobe earthquake records. Even for Newhall and Sylmar records, the energy
absorption capabilities of the proposed two simple controllers are comparable to the
LQG-based clipped-optimal control case.

6.7 Summary

This chapter proposed two new model-free semi-active control algorithms for control-
lable dampers. One of the algorithms needs only the directions of the displacement
and the velocity of the damper to decide the property of the damper. The other
needs the directions of only the displacement and the output force of the damper.
Thus, the structure model and a number of sensors are not required to implement the
proposed algorithms. Moreover, this research showed that the proposed controllers
can produce versatile hysteresis control force loops through numerical simulations on
the scaled three-story building model with a MR damper. Also, the effectiveness of
hysteresis loops having negative stiffness was verified. Additionally, the numerical
results showed that the proposed two algorithms producing pseudo-negative stiffness
had performance comparable to the LQG-based clipped-optimal controllers, which
need the accurate structure model and more sensors.
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Figure 6.19: Comparisons of earthquake input energy
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Chapter 7

RTHS FOR SEMI-ACTIVE CONTROL ON A

MDOF STRUCTURE

To show the effectiveness of semi-active control strategies, experimental verification
is necessary. However, due to the limitation of cost and facilities, it is not practical
to carry out shaking table testing for full-scale structures. To provide experimental
verification, RTHS is an alternative method where the semi-active control devices can
be experimentally tested, while the remaining components in the structural system
are simultaneously tested through numerical simulation.

Time delays/lags are critical issues in RTHS, so introducing compensation for
them is essential. However, RTHS becomes more challenging for MDOF structures
because MDOF structures include significant contributions at different frequencies
which can not be compensated by assuming a constant time delay. The focus of
this chapter is to show the accuracy of the model-based compensator for RTHS on a
MDOF structure using a smart outrigger damping system.

Smart outrigger damping systems have been proposed as a novel energy dissipa-
tion system to protect high-rise buildings from severe earthquakes and strong winds.
In these damping systems, devices such as MR dampers are installed vertically be-
tween the outrigger and perimeter columns to achieve large and adaptable energy
dissipation. In this chapter, to complement the high performance shown in previous
theoretical studies, this control approach is experimentally verified as well.

7.1 Smart outrigger damping system

In this section, the models for both the high-rise building and the MR damper are
presented. Also, the semi-active control algorithm selected for the system is illus-
trated. In RTHS, a physical MR damper is used, while in numerical simulation, the
MR damper model created in Section 4.1 is used.

7.1.1 Problem formulation

Smart outrigger damping systems are an attractive method to achieve sufficient dis-
placement for damping devices on high-rise buildings. According to Yang et al.
(2004a), a high-rise building can be modeled as a cantilevered beam in which the
structural deformations are derived from the behavior of the core. For a high-rise
building with outrigger damping, the control devices (e.g., viscous dampers or MR
dampers) are located between the outrigger walls and the perimeter columns. Assum-
ing that the perimeter columns are axially very stiff and that the outrigger behaves
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as a rigid body, then the high-rise building with damped outriggers can be modeled
as shown in Figure 7.1. As can be seen, the forces from the control devices result
in moments being applied to the core through the rigid outrigger. In essence, the
damped outrigger acts as a point rotational damping device. The moment applied to
the core by the outrigger system fm can be written as

fm = ndoef (7.1)

where f is the force from a single control device; nd is the number of control devices;
oe is the distance from the control devices to the center of the core (see Figure 7.1).
The equation of motion can be written as

Mü + Cu̇ + Ku = Λfm −MΓẍg (7.2)

where M, C, K are the structural mass, damping, stiffness matrices, respectively; u
is the structural deformation vector; Λ is an influence vector that applies the damper
restoring force to the appropriate rotational degrees of freedom (DOF); Γ is a vector
with entries equal to unity for translational DOFs and zero for others; and ẍg is the
ground acceleration. The state-space form of Eq. (7.2) is given by

ẋ = Ax + Bfm + Eẍg (7.3)

y = Cyx + Dyfm + Fyẍg + v (7.4)

z = Czx + Dzfm + Fzẍg (7.5)

Figure 7.1: Mechanism of outrigger systems
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where y presents the measured structural responses including the relative displace-
ments, the relative velocities, and the absolute floor accelerations; v is the measure-
ment noise; and z corresponds to the regulated structural responses. A, B, Cy,
Cz, Dy, Dz, E, Fy, and Fz are appropriately chosen matrices corresponding to the
associated state-space equations.

7.1.2 Building model

The building used in this study is the St. Francis Shangri-La Place in the Philippines
(Willford et al., 2008; Infanti et al., 2008; Chang et al., 2013). This 60-story building
has a height of 210 m and has 12 perimeter columns which are 20 m from the building
centerline. The concrete core is assumed to be 12 m × 12 m with 0.5 m thickness. The
total mass of the building is 30,000 tons and the outrigger system installed consists
of 16 viscous dampers, 8 of which control the response in each of the two orthogonal
directions.

To create the model for evaluation, a vertical cantilever beam model based on the
Bernoulli-Euler beam theory is applied. A finite element model is developed so that
every story has one translational and one rotational degree of freedoms. Therefore,
the total number of degrees-of-freedom should be 120 (60 in translation and 60 in
rotation). Hence, the reduced structural deformation vector up to mth mode, ured,m,
can be represented by

ured,m(t) =
m∑
i=1

φiqi(t) = Φmqm(t) (7.6)

where
Φm =

[
φ1 φ2 · · · φm

]
(7.7)

is the mode shape matrix up to the mth mode and

qm =
[
q1 q2 · · · qm

]
(7.8)

is the modal coordinate vector up to the mth mode. In this study, m = 10 for
the evaluation model (i.e., to perform the response calculations) and m = 5 for the
control design model (i.e., to design the semi-active controllers). The first 10 natural
frequencies are 0.18 Hz, 1.15 Hz, 3.14 Hz, 6.00 Hz, 9.61 Hz, 13.84 Hz, 18.56 Hz, 23.66
Hz, 29.06 Hz, and 34.66 Hz, respectively. Damping of 2 % is assumed in each mode.

The 42nd floor is selected as the optimal location of the outrigger and dampers in
this study based on the numerical study of Chang et al. (2013). In this study, to as-
sume that the MR dampers installed on the opposite sides behave anti-symmetrically,
the displacement of the MR dampers are calculated only from the rotation of the 42nd
floor; i.e. the horizontal translation effect to the displacement of the MR dampers is ig-
nored. The magnitudes of the transfer functions for the reduced building model from
input earthquake acceleration to the displacement and acceleration of the damper
are shown in Figure 7.2. As can be seen, high-frequency content due to high-mode
responses affects the acceleration significantly.
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Figure 7.2: Transfer functions from input acceleration to the damper; (a) Displace-
ment, (b) Acceleration

Note that the estimated damping after the MR dampers are installed to the 42nd
floor are, from the first mode, 4.74 %, 4.77 %, 2.00 %, 3.72 %, 4.03 %, 2.05 %, 3.32
%, 4.09 %, 2.17 %, and 2.89 %, respectively. These values are calculated by assuming
viscous dampers which have the same level damping as the passive on mode MR
dampers.

7.1.3 Semi-active control designs

To facilitate semi-active control using MR dampers, control methods that translate
the required control force into an input current command are typically used. Dyke
et al. (1996c) proposed a LQG-based clipped-optimal control method which had been
experimentally verified using MR dampers and will be selected for this study. In
this control method, the outrigger system employs the LQG/H2 control algorithm to
calculate the optimal control force. By reconsidering Eq. (7.5), the cost function of
the LQG/H2 control can be written by

J = lim
t→∞

1

t
E

[∫ t

0

(
zTQz +Rfm,c

2
)
dt

]
(7.9)

where Q and R are the weighting parameters, fm,c is a control moment, E[·] means the
expected value of the quantity in brackets and t represents the time. By minimizing
Eq. (7.9), the control force is a function of the structural states. In the LQG/H2

control, the Kalman filter estimates (Nagarajaiah and Narasimhan, 2006) the state
based on the measured responses such that

˙̂x = Ax̂ + Bfm,c + L (y −Cyx̂−Dyfm,c) (7.10)

fm,c = −Kcx̂ (7.11)
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where L is the Kalman gain, Kc is the optimal control gain found by minimizing Eq.
(7.9), and x̂ is the estimated state by the Kalman filter. The clipped-optimal control
algorithms are used to convert the optimal control force of Eq. (7.11) to a command
voltage for the MR damper. The desired input is given by

id = VmaxH {(fm,c − fm,MR) fm,MR} (7.12)

where H{·} is the Heaviside function, id is the input voltage to a MR damper; Vmax is
the maximum input voltage, fm,c is the desired optimal control moment generated by
Eq. (7.11) and fm,MR is the actual damping moment generated by the MR damper
force and Eq. (7.1). The clipped-optimal controller logic is illustrated in Figure 6.1.

Four LQG-based clipped-optimal control strategies are created through different
LQG designs and evaluated in this study. Controller #1 focuses on minimizing the
relative translational displacements to the ground at the 10th, 20th, 30th, 40th, 50th,
and 60th floors in Eq. (7.9), while controller #2 focuses on minimizing the transla-
tional absolute floor accelerations at the same locations. In addition, controllers #3
and #4 minimize the rotational displacements and accelerations at the same locations,
respectively. For the Kalman filter in Eqs. (7.10) and (7.11), this study assumes that
the absolute translational floor accelerations at the 10th, 20th, 30th, 40th, 50th, and
60th floors are available to estimate the required force. The maximum input current
imax in the clipped-optimal control is 2.0 A based on the MR damper specifications.

7.2 Results

To investigate the seismic performance of the smart outrigger system, the results
obtained from RTHS and numerical simulations are shown. The influence of magni-
tude and time delay errors on the results of RTHS is presented. In this section, two
earthquake records are considered: (1) the north-south component of the El Centro
earthquake in Imperial Valley, CA in 1940 and (2) the north-south component of the
Kobe earthquake in Hyogo-ken Nanbu in 1995 (Yoshida and Dyke, 2004).

In this research, an assumption is made that required capacity of the MR damper
to the target building can be achieved in both simulation and RTHS as follows: The
output force of the MR damper is multiplied by 2500 and the displacement of the MR
damper is scaled such that 1 inch (25.4 mm) in the MR damper corresponds to 0.1 m
in the model of the outrigger damping system. The peak ground accelerations (PGAs)
of input records are normalized to 0.3 g, and 0.5 g for the El Centro earthquake and
0.3 g, 0.5 g, and 0.7 g for the Kobe earthquake. The parameters Q and R of each semi-
active controller are determined based on the simulation results of 0.3 g El Centro
case by trial and error. These values are selected such that the maximum stroke of
the physical MR damper is not exceeded. All numerical simulations are performed
in SIMULINK (2013). For RTHS, models are created in SIMULINK (2013) and
implemented in the DSP using MATLAB (2013)’s Real-Time Workshop.
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Figure 7.3: Schematic block diagram to investigate the RTHS error

7.2.1 Influence of magnitude and time delay errors on
RTHS

First, the need for accurate actuator control is illustrated by investigating the effects
due to magnitude and time delay errors in simulation, as shown in Figure 7.3. The
magnitude and time delay provide quantitative means to simulate the effects of un-
compensated actuator dynamics. In Figure 7.3, rξ,τ is the input signal to the MR
damper, which is affected by a gain ξ and time delay τ (msec). Therefore, r1,0 repre-
sents the case without any modeled actuator dynamics, i.e., the desired signal. The
MR damper model developed in the previous section is used here. The input voltage
into the MR damper model is set at 2.0 A (passive-on). For external forces F , El
Centro and Kobe earthquakes with PGAs of 0.3 g are input.

Figure 7.4 shows the RMS errors when the gain and time delay are changed. The
RMS errors are calculated by

RMS error (%) =

√∑n
k=1(rξ,τ,k − r1,0,k)2∑n

k=1(r1,0,k)
2

× 100 (7.13)

where n is the number of the data points, and rξ,τ,k is the kth data point of rξ,τ . As can
be observed, magnitude and time delay errors considerably detract from accuracy of
RTHS, where the servo-hydraulic system would be the cause of such errors. The Kobe
earthquake contains higher frequency content than El Centro, leading to larger error
in the presence of time delay. The necessity of the feedforward controller to improve
actuator displacement tracking is demonstrated through this parametric numerical
study.

To confirm the performance of the model-based feedforward controller during
RTHS for the MDOF structure, RMS errors between desired displacements and mea-
sured displacements from the LVDT are calculated in the same way as Eq. (7.13)
for each case. The results are summarized in Table 7.1. To minimize the influence
of transducer noise at low signal-to-noise ratios, only data during the strong motion
portion of the RTHS is considered for error calculations (i.e., 3 sec to 35 sec for El
Centro and 6 sec to 13 sec for Kobe). Table 7.1 shows that as inputs become larger,
the ratios of errors to the inputs get smaller.

The time histories of desired displacements, compensated commands, and mea-
sured displacements for passive on cases are compared in Figure 7.5. This figure shows
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Figure 7.4: RMS errors generated by gain and time delay errors; (a) El Centro (0.3
g), (b) Kobe (0.3 g)

Table 7.1: RMS errors for each test (%)

Input Passive LQG #1 LQG #2 LQG #3 LQG #4
El Centro (0.3 g) 1.945 2.196 2.333 2.097 2.009
El Centro (0.5 g) 1.418 1.263 1.342 1.323 1.282

Kobe (0.3 g) 2.423 3.358 2.848 2.646 2.965
Kobe (0.5 g) 1.244 1.846 1.517 1.314 1.569
Kobe (0.7 g) 0.929 1.323 1.057 1.022 1.102

that the feedforward controller makes the compensated commands lead the desired
displacements by more than 20 msec. Also, the power spectral densities of command
inputs are plotted in Figure 7.6 to investigate the influence of high-frequency com-
mands to the servo-hydraulic system due to high-mode responses. As can be seen,
peaks appear around natural frequency of each mode even in the high-frequency
range. Also, this figure shows that Kobe cases need a more effective compensator in
the high-frequency range for RTHS than El Centro cases.

7.2.2 Experimental assessment

For structural control performance evaluation, the structural control design is pri-
marily aimed at reducing relative displacements and base shear forces, which are the
major indicators of the performance of a structure. In addition to the semi-active
control strategies, the outrigger damping system with passive-on mode (i.e., constant
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Figure 7.5: Comparisons between measured and command displacements for passive-
on case; (a) El Centro (0.3 g), (b) Kobe (0.3 g)

current) MR dampers and the performance of the uncontrolled (bare) building are
also considered.

The time histories of the MR damper forces, the relationships between the dis-
placements and the forces, and between the velocities and forces subjected to El Ceon-
tro and Kobe earthquakes whose PGAs are scaled to 0.3 g are depicted in Figures 7.7
through 7.24. Figures 7.7 through 7.11 and Figures 7.16 through 7.20 compares the
MR damper forces obtained from numerical simulation and RTHS produced by the
passive-on, the LQG-based clipped-optimal controllers #1, #2, #3, and #4. These
figures show that the proposed MR damper model created by the phenomenological
model simulates the physical MR damper very well in both passive and semi-active
cases. However, slight discrepancies can be observed. These differences between the
simulation and the experimental results demonstrate the need for RTHS to assess
the performance of advanced damping systems. It should be noted that the expected
properties of the hysteresis loops can not be found in any LQG-based clipped optimal
controllers.
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Figure 7.6: Power spectral densities of command inputs for passive-on cases; (a) El
Centro (0.3 g), (b) Kobe (0.3 g)

For comparison, the numerical simulation results of the MR damper forces pro-
duced by the proposed simple controllers are shown in Figures 7.12 through 7.15 and
Figures 7.21 through 7.24. Contrary to the cases of the LQG-based clipped-optimal
controllers, pseudo-negative stiffness is obtained from the simple control 1N and 2N
while positive stiffness arises from the simple control 1P and 2P, as expected.
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Figure 7.7: MR damper force by the passive-on control to El Centro of 0.3 g PGA
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Figure 7.8: MR damper force by the semi-active control #1 to El Centro of 0.3 g
PGA
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Figure 7.9: MR damper force by the semi-active control #2 to El Centro of 0.3 g
PGA
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Figure 7.10: MR damper force by the semi-active control #3 to El Centro of 0.3 g
PGA
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Figure 7.11: MR damper force by the semi-active control #4 to El Centro of 0.3 g
PGA
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Figure 7.12: MR damper force by the simple control 1N to El Centro of 0.3 g PGA
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Figure 7.13: MR damper force by the simple control 1P to El Centro of 0.3 g PGA
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Figure 7.14: MR damper force by the simple control 2N to El Centro of 0.3 g PGA
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Figure 7.15: MR damper force by the simple control 2P to El Centro of 0.3 g PGA
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Figure 7.16: MR damper force by the passive-on control to Kobe of 0.3 g PGA
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Figure 7.17: MR damper force by the semi-active control #1 to Kobe of 0.3 g PGA
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Figure 7.18: MR damper force by the semi-active control #2 to Kobe of 0.3 g PGA
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Figure 7.19: MR damper force by the semi-active control #3 to Kobe of 0.3 g PGA
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Figure 7.20: MR damper force by the semi-active control #4 to Kobe of 0.3 g PGA
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Figure 7.21: MR damper force by the simple control 1N to Kobe of 0.3 g PGA
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Figure 7.22: MR damper force by the the simple control 1P to Kobe of 0.3 g PGA
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Figure 7.23: MR damper force by the simple control 2N to Kobe of 0.3 g PGA
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Figure 7.24: MR damper force by the the simple control 2P to Kobe of 0.3 g PGA
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Table 7.2: Displacements to 0.3 g PGA El Centro earthquake

Controller
20th 40th 60th

Sim. RTHS Sim. RTHS Sim. RTHS
P

ea
k

(m
)

Bare 0.195 0.644 1.174
Passive-on 0.090 0.083 0.268 0.240 0.470 0.410

LQG-based C.O. #1 0.099 0.089 0.278 0.264 0.501 0.477
LQG-based C.O. #2 0.090 0.081 0.268 0.236 0.469 0.409
LQG-based C.O. #3 0.093 0.090 0.274 0.268 0.481 0.471
LQG-based C.O. #4 0.099 0.094 0.282 0.276 0.498 0.485

Simple control 1N 0.112 0.335 0.605
Simple control 1P 0.109 0.352 0.641
Simple control 2N 0.112 0.335 0.605
Simple control 2P 0.109 0.352 0.641

R
M

S
(×

10
−
3

m
)

Bare 2.061 6.754 12.369
Passove-on 0.776 0.606 2.521 1.944 4.625 3.558

LQG-based C.O. #1 0.847 0.716 2.720 2.271 4.976 4.145
LQG-based C.O. #2 0.790 0.609 2.564 1.949 4.698 3.563
LQG-based C.O. #3 0.830 0.728 2.695 2.340 4.932 4.260
LQG-based C.O. #4 0.874 0.785 2.849 2.552 5.227 4.682

Simple control 1N 1.048 3.454 6.388
Simple control 1P 1.116 3.601 6.540
Simple control 2N 1.049 3.456 6.392
Simple control 2P 1.115 3.597 6.534

In Tables 7.2 through 7.6, the peak and RMS displacements relative to the ground
at 20th, 40th, and 60th floors for the passive-on mode MR dampers, the four LQG-
based clipped-control cases, and the four proposed simple controllers are compared
with the case of bare (uncontrolled) buildings. Scaled El Centro earthquakes whose
PGAs are 0.3 g and 0.5 g and scaled Kobe earthquakes whose PGAs are 0.3 g, 0.5
g, and 0.7 g are used as input excitations here. The values for passive-on mode and
LQG-based clipped-optimal control cases are obtained from numerical simulation and
RTHS , while, the values for bare and proposed simple control cases are calculated
from numerical simulation alone. As can be seen, MR dampers controlled both pas-
sively and semi-actively work well to reduce response in both peak and RMS displace-
ments subjected to both El Centro and Kobe earthquakes. Especially, for El Centro
cases, huge reductions can be found. The smaller reduction for Kobe cases might be
because the LQG-based clipped-optimal controller parameters were designed based
on the El Centro input. Simulations and RTHSs have good agreement in both peak
and RMS displacements for both earthquake inputs. Also, unfortunately, the simple
controllers cannot reduce the displacements as much as the LQG-base clipped-optimal
controllers.

For the base shear forces, Figures 7.25 through 7.29 compares the control perfor-
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Table 7.3: Displacements to 0.5 g PGA El Centro earthquake

Controller
20th 40th 60th

Sim. RTHS Sim. RTHS Sim. RTHS
P

ea
k

(m
)

Bare 0.325 1.074 1.957
Passive-on 0.183 0.171 0.523 0.497 0.934 0.880

LQG-based C.O. #1 0.190 0.180 0.555 0.509 1.004 0.916
LQG-based C.O. #2 0.183 0.168 0.518 0.493 0.926 0.870
LQG-based C.O. #3 0.191 0.183 0.567 0.523 1.034 0.955
LQG-based C.O. #4 0.194 0.188 0.566 0.524 1.024 0.934

Simple control 1N 0.211 0.657 1.217
Simple control 1P 0.230 0.728 1.315
Simple control 2N 0.211 0.658 1.218
Simple control 2P 0.230 0.728 1.315

R
M

S
(×

10
−
3

m
)

Bare 3.435 11.257 20.617
Passive-on 1.630 1.454 5.316 4.719 9.749 8.641

LQG-based C.O. #1 1.735 1.535 5.611 4.936 10.267 9.021
LQG-based C.O. #2 1.648 1.415 5.363 4.583 9.825 8.391
LQG-based C.O. #3 1.791 1.667 5.839 5.421 10.683 9.903
LQG-based C.O. #4 1.793 1.669 5.861 5.452 10.751 10.002

Simple control 1N 2.180 7.186 13.248
Simple control 1P 2.297 7.456 13.578
Simple control 2N 2.181 7.189 13.253
Simple control 2P 2.297 7.457 13.581

mance among the passive-on mode MR dampers and semi-active control strategies
in the smart outrigger system. In these figures, all values are normalized based on
the base shear of the bare (uncontrolled) building case. Though simulations, in gen-
eral, show slightly larger base shears than RTHS in the both peak and RMS senses,
these differences are quite small. This might be due to the the difference of the MR
damper force between the numerical model and the physical specimen. And another
reason is the acceleration sensitivity to the high-frequency components, as well as
non-ideal experimental conditions such as high-frequency noise. As can be observed,
LQG-based clipped-optimal controllers #2 and #3 perform the best in both peak and
RMS senses, however compared to the passive-on mode cases, significant improvement
cannot be achieved for both earthquakes. Also, sufficient reduction of base shear force
cannot be found in all the proposed simple controllers.

7.3 Summary

This study shows that MR dampers can be employed effectively in outrigger damping
systems using passive-on mode and semi-active controllers. The MR damper’s restor-
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Table 7.4: Displacements to 0.3 g PGA Kobe earthquake

Controller
20th 40th 60th

Sim. RTHS Sim. RTHS Sim. RTHS
P

ea
k

(m
)

Bare 0.114 0.160 0.308
Passive-on 0.082 0.080 0.131 0.132 0.243 0.243

LQG-based C.O. #1 0.099 0.099 0.140 0.148 0.270 0.273
LQG-based C.O. #2 0.082 0.078 0.131 0.128 0.242 0.236
LQG-based C.O. #3 0.083 0.079 0.132 0.133 0.245 0.242
LQG-based C.O. #4 0.083 0.078 0.131 0.126 0.246 0.236

Simple control 1N 0.090 0.151 0.249
Simple control 1P 0.101 0.148 0.287
Simple control 2N 0.090 0.151 0.249
Simple control 2P 0.101 0.148 0.286

R
M

S
(×

10
−
3

m
)

Bare 0.429 0.686 1.362
Passive-on 0.248 0.237 0.501 0.515 0.975 0.987

LQG-based C.O. #1 0.309 0.304 0.524 0.529 1.038 1.038
LQG-based C.O. #2 0.249 0.230 0.499 0.490 0.972 0.944
LQG-based C.O. #3 0.251 0.236 0.506 0.514 0.984 0.981
LQG-based C.O. #4 0.252 0.234 0.519 0.501 1.008 0.966

Simple control 1N 0.307 0.538 1.076
Simple control 1P 0.308 0.597 1.146
Simple control 2N 0.307 0.539 1.077
Simple control 2P 0.307 0.596 1.144

ing force can be simulated quite well by the proposed MR damper model for the two
earthquake records; however, differences are still present. In particular, discrepancies
between simulations and RTHSs were found in the base shear. Moreover, the phys-
ical specimen contains no modeling errors, while it is subject to experimental error
such as magnitude and time delay. The numerical model provides a good verification
tool for RTHS, however is subject to numerical errors, is only valid within the range
of behavior for which the model is calibrated, and cannot fully represent the com-
plex specimen behavior. Thus, the importance of combining RTHS with numerical
simulation to ensure accurate results is demonstrated.

The effectiveness of semi-active control applied to the outrigger damping system
of a high-rise building is also shown for scaled El Centro and Kobe earthquakes. In
both simulation and RTHS, LQG-based clipped-optimal controller (e.g., controller
#2 which minimizes the translational floor accelerations and #3 which minimizes
rotational displacements) provided the best control performance considering both
relative displacements and base shear. However, the passive-on mode and LQG-
based clipped-optimal cases gave similar results, especially in base shear. Also, to
improve the reliability of the smart outrigger damping system for high-rise buildings,
different earthquakes should be considered as well as wind excitation.
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Table 7.5: Displacements to 0.5 g PGA Kobe earthquake

Controller
20th 40th 60th

Sim. RTHS Sim. RTHS Sim. RTHS
P

ea
k

(m
)

Bare 0.190 0.266 0.514
Passive-on 0.155 0.152 0.227 0.230 0.442 0.436

LQG-based C.O. #1 0.170 0.172 0.237 0.247 0.464 0.470
LQG-based C.O. #2 0.154 0.151 0.227 0.226 0.435 0.424
LQG-based C.O. #3 0.155 0.153 0.228 0.235 0.439 0.440
LQG-based C.O. #4 0.155 0.153 0.227 0.230 0.442 0.441

Simple control 1N 0.162 0.253 0.440
Simple control 1P 0.175 0.250 0.494
Simple control 2N 0.162 0.253 0.440
Simple control 2P 0.175 0.249 0.492

R
M

S
(×

10
−
3

m
)

Bare 0.715 1.143 2.270
Passive-on 0.478 0.461 0.905 0.911 1.770 1.770

LQG-based C.O. #1 0.546 0.544 0.899 0.910 1.788 1.797
LQG-based C.O. #2 0.476 0.450 0.887 0.854 1.739 1.667
LQG-based C.O. #3 0.478 0.466 0.902 0.936 1.765 1.805
LQG-based C.O. #4 0.482 0.467 0.917 0.917 1.790 1.780

Simple control 1N 0.556 0.938 1.877
Simple control 1P 0.562 1.024 1.984
Simple control 2N 0.556 0.937 1.877
Simple control 2P 0.560 1.022 1.980

The following general conclusions can be drawn with regard to the RTHS frame-
work employed in this research: a) RTHS worked when all modes of the structure
were lightly damped, demonstrating the robustness of the actuator controller with-
out the need for adding numerical damping; b) the actuator control strategy used
in this study demonstrated stable and accurate results in MDOF structural systems;
c) RTHS can be employed for validation of structural control algorithms; d) RTHS
provides an effective means for assessing the system performance of rate-dependent
components in complex structures.
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Table 7.6: Displacements to 0.7 g PGA Kobe earthquake

Controller
20th 40th 60th

Sim. RTHS Sim. RTHS Sim. RTHS

P
ea

k
(m

)

Bare 0.265 0.373 0.719
Passive-on 0.226 0.228 0.325 0.334 0.634 0.645

LQG-based C.O. #1 0.243 0.247 0.335 0.348 0.661 0.671
LQG-based C.O. #2 0.225 0.224 0.325 0.326 0.629 0.625
LQG-based C.O. #3 0.226 0.229 0.327 0.338 0.634 0.648
LQG-based C.O. #4 0.226 0.227 0.326 0.332 0.638 0.646

Simple control 1N 0.234 0.355 0.633
Simple control 1P 0.250 0.350 0.699
Simple control 2N 0.234 0.355 0.633
Simple control 2P 0.250 0.350 0.698

R
M

S
(×

10
−
3

m
)

Bare 1.001 1.601 3.179
Passive-on 0.715 0.711 1.293 1.331 2.541 2.595

LQG-based C.O. #1 0.793 0.792 1.290 1.301 2.570 2.579
LQG-based C.O. #2 0.717 0.693 1.286 1.253 2.530 2.459
LQG-based C.O. #3 0.715 0.716 1.286 1.350 2.528 2.624
LQG-based C.O. #4 0.722 0.712 1.313 1.329 2.575 2.591

Simple control 1N 0.807 1.318 2.648
Simple control 1P 0.824 1.470 2.857
Simple control 2N 0.808 1.318 2.647
Simple control 2P 0.823 1.468 2.853
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Figure 7.25: Base shear to 0.3 g PGA El Centro earthquake
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Figure 7.26: Base shear to 0.5 g PGA El Centro earthquake
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Figure 7.27: Base shear to 0.3 g PGA Kobe earthquake
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Figure 7.28: Base shear to 0.5 g PGA Kobe earthquake
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Figure 7.29: Base shear to 0.7 g PGA Kobe earthquake
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Chapter 8

VERIFICATION OF SMART BASE ISOLATION

SYSTEMS

Traditional passive base isolation systems provide an effective means to mitigate
the responses of seismically-excited structures. A challenge for these systems can
be found in accommodating the large base displacements during severe earthquakes.
Recently, active base isolation systems, combining actively controlled actuators with
passive isolation bearings, have been shown experimentally to produce reduced base
displacements, while maintaining similar responses of the superstructure obtained by
the passive base isolation systems. The active control devices employed in hybrid
isolation systems are typically driven by an external power source, which may not
be available during severe seismic events. Another class of isolation systems is smart
base isolation, in which semi-active control devices are employed in place of their
active counterparts. This control strategy has been proven to be effective against a
wide range of seismic excitation, yet limited efforts to experimentally validate smart
base isolation systems have been seen. In this study, the focus is to experimentally
investigate and verify a smart base isolation system employing a MR damper through
RTHS.

In this chapter, the MR damper is physically tested, while the isolated build-
ing is concurrently simulated numerically. A model-based compensation strategy is
employed to carry out high-precision RTHS. Performance of the semi-active control
strategies is evaluated using RTHS, and the efficacy of a smart base isolation system
is demonstrated. This smart base isolation system is found to reduce base displace-
ments and floor accelerations in a manner comparable with the active isolation system,
without the need for large external power sources.

8.1 Base-isolated building model: Problem

formulation

In this section, the base-isolated building model considered in this study is presented.
In RTHS, the MR damper is physically implemented, while the building model is
numerically simulated.

Consider the base-isolated six-story scale-building model shown in Figure 8.1,
which was developed at the Smart Structures Technology Laboratory (SSTL), Uni-
versity of Illinois at Urbana-Champaign (http://sstl.cee.illinois.edu/). The
building is comprised of 45 inch × 28 inch × 1 inch steel plates for floors each weigh-
ing 360 lbs. Each floor consists of six 100 ksi steel columns to support the plates. The
isolation bearings used in this system are ball-and-cone type bearings from WorkSafe
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Figure 8.1: Photograph of the six-story base-isolated building model

Technologies (Valencia, CA, USA). More details regarding this building can be found
in Chang and Spencer (2012).

In this research, only the strong direction is considered, with a single MR damper
located at the isolation layer as shown in Figure 8.2. The stiffness associated with the
columns on each floor are obtained from system identification as 7287 lbf/inch, 4018
lbf/inch, 5475 lbf/inch, 5475 lbf/inch, 2803 lbf/inch, and 1546 lbf/inch, respectively,
starting from the lowest floor. The stiffness associated with the isolation bearings is
as 264 lbf/inch. The unisolated modes for the superstructure are assumed to have 2
% of critical damping. Once mounted on the isolation bearing, the damping of each
mode of the isolated building becomes 5.806 %, 2.023 %, 1.789 %, 1.920 %, 1.964 %,
2.088 %, and 2.092 %, respectively. The natural frequencies of the isolated building
are 0.966 Hz, 4.681 Hz, 8.038 Hz, 11.778 Hz, 16.015 Hz, 21.063 Hz, and 22.940 Hz.

The equation of motion of the building model can be written as

Mbüb + Cbu̇b + Kbub = ΛbfMR −MbΓbẍg (8.1)

where Mb, Cb, Kb are the structural mass, damping, stiffness matrices, respectively;
fMR is the control force produced by the MR damper; ub is the structural deformation
vector; Λb and Γb are the influence coefficient vectors of the MR damper and inertial
forces, respectively, and ẍg is the ground acceleration.

Defining the state as

xp =
[
uT
b u̇T

b

]T
, (8.2)

the state-space form of Eq. (8.1) is given by

ẋp = Apxp + BpfMR + Epẍg (8.3)

116



MR damper

Six-stroy building

Bearing

Figure 8.2: Schematic illustration of analysis model

yp = Cypxp + DypfMR + Fypẍg + vp (8.4)

zp = Czpxp + DzpfMR + Fzpẍg (8.5)

where yp presents the measured structural responses; vp is the measurement noise;
zp corresponds to the regulated structural responses. Ap, Bp, Cyp, Czp, Dyp, Dzp,
Ep, Fyp, and Fzp are appropriately chosen matrices corresponding to the associated
state-space equations.

8.2 Results

In this section, the hysteresis force-displacement loops and seismic performance ob-
tained from numerical studies and RTHS are shown. For the RTHS, the small-scale
MR damper shown in Figure 4.1 is used, and for the numerical simulation, the MR
damper model created in Section 4.1 is used. To adjust the capacity of the MR
damper to the target building, the displacement of the MR damper is scaled such
that 1 inch in the physical MR damper corresponds to 10 inches in the numerical
model of the smart base-isolated building. The output force of the MR damper is not
scaled (i.e., 1 lbf in the physical system is 1 lbf in the numerical model).

8.2.1 Numerical simulation

The results obtained from numerical simulation are shown here. The earthquakes used
in this study are El Centro (1994, Northridge Earthquake, El Centro record, fault-
parallel), Ji-ji (1999, station TCU 068, North-South component), Kobe (1995, JMA
station, East-West component), Newhall (1994, Northridge Earthquake, Newhall
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county, fault-parallel), and Sylmar (1994, Northridge Earthquake, Sylmar station,
fault-parallel) (Narasimhan et al., 2008). The PGAs of these earthquakes are scaled
to 0.2 g and 0.5 g.

To compare the performance of a variety of semi-active controllers, three LQG-
based clipped-optimal controllers are designed and the simple algorithms proposed
in Section 6.4 are applied as well. The three LQG-based clipped-optimal controllers
including acceleration weighting, inter-story drift weighting, and relative displacement
weighting are designed. For the Kalman filter in Eqs. (7.10) and (7.11), this study
assumes that the absolute floor accelerations at the base and 1st through 6th floors
are available to estimate the required force. In addition to these two semi-active
controllers, three passive systems are also considered: (i) an uncontrolled passive
base-isolated building, (ii) a base-isolated building with an MR damper in passive-off
mode (i.e., the input current is 0), and (iii) a base-isolated building with an MR
damper in passive-on mode (i.e., the input current is 2.0 A). For the uncontrolled
passive base isolation case, simulation studies are carried out.

Figures 8.3 to 8.9 show the hystetetic force-displacement loops obtained from
the semi-active controllers to 0.2 g PGA earthquakes. As expected, pseudo-negative
stiffness can be found by the LQG-based clipped-optimal control with acceleration
weighting, the LQG-based clipped-optimal control with inter-story drift weighting,
the simple control 1N, and the simple control 2N while, the LQG-based clipped-
optimal control with relative displacement weighting, the simple control 1P, and the
simple control 2P produced positive stiffness. The hysteresis loops subjected to 0.5
g PGA earthquakes are depicted in Figures 8.10 to 8.16. As can be seen in Figures
8.10 and 8.11, clear pseudo-negative stiffness cannot be found in the hysteresis loops
produced by the LQG-based clipped optimal controllers with acceleration weighting
and inter-story drift weighting, while the other controllers still show the expected
properties.

The responses of the base displacement and the absolute accelerations of the base
through 6th floor are summarized in Tables 8.1 through 8.5. Figures 8.17 through
8.28 compare the ratios of the peak and RMS responses based on the uncontrolled
case (i.e., the passive base isolation). As can be seen, generally, the controllers pro-
ducing pseudo-negative stiffness shows better performance than the positive stiffness
controllers. However, the proposed simple algorithms cannot show comparable per-
formance with the LQG-based clipped optimal controllers, especially in the response
accelerations of the upper floor. These results show that it is difficult for the proposed
simple algorithms to control complicated structures.
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Figure 8.3: Hysteresis loops produced by the LQG-based clipped-optimal control with
acceleration weighting to 0.2 g PGA earthquakes
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Figure 8.4: Hysteresis loops produced by the LQG-based clipped-optimal control with
inter-story drift weighting
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Figure 8.5: Hysteresis loops produced by the LQG-based clipped-optimal control with
relative displacement weighting to 0.2 g PGA earthquakes
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Figure 8.6: Hysteresis loops produced by the simple control 1N by Eq. (6.18) to 0.2
g PGA earthquakes
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Figure 8.7: Hysteresis loops produced by the simple control 1P by Eq. (6.19) to 0.2
g PGA earthquakes
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Figure 8.8: Hysteresis loops produced by the simple control 2N by Eq. (6.20) to 0.2
g PGA earthquakes
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Figure 8.9: Hysteresis loops produced by the simple control 2P by Eq. (6.21) to 0.2
g PGA earthquakes
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Figure 8.10: Hysteresis loops produced by the LQG-based clipped-optimal control
with acceleration weighting to 0.5 g PGA earthquakes
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Figure 8.11: Hysteresis loops produced by the LQG-based clipped-optimal control
with inter-story drift weighting
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Figure 8.12: Hysteresis loops produced by the LQG-based clipped-optimal control
with relative displacement weighting to 0.5 g PGA earthquakes

123



−10 −5 0 5
−400

−200

0

200

400

Displacement (in.)

M
R

D
 f

o
rc

e 
(l

b
f)

El Centro

−10 0 10
−400

−200

0

200

400

Displacement (in.)

M
R

D
 f

o
rc

e 
(l

b
f)

Ji−ji

−10 0 10
−400

−200

0

200

400

Displacement (in.)

M
R

D
 f

o
rc

e 
(l

b
f)

Kobe

−4 −2 0 2
−400

−200

0

200

400

Displacement (in.)

M
R

D
 f

o
rc

e 
(l

b
f)

Newhall

−5 0 5
−400

−200

0

200

400

Displacement (in.)

M
R

D
 f

o
rc

e 
(l

b
f)

Sylmar

Figure 8.13: Hysteresis loops produced by the simple control 1N by Eq. (6.18) to 0.5
g PGA earthquakes
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Figure 8.14: Hysteresis loops produced by the simple control 1P by Eq. (6.19) to 0.5
g PGA earthquakes
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Figure 8.15: Hysteresis loops produced by the simple control 2N by Eq. (6.20) to 0.5
g PGA earthquakes
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Figure 8.16: Hysteresis loops produced by the simple control 2P by Eq. (6.21) to 0.5
g PGA earthquakes
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Table 8.1: Peak and RMS values to the scaled El Centro earthquakes

Controller
Disp. (in.) Acceleration (g)

Base Base 1 2 3 4 5 6

0.
2

g
P

G
A

P
ea

k
Uncontrolled 2.616 0.293 0.298 0.298 0.291 0.282 0.292 0.337
Passive-off 2.395 0.279 0.279 0.280 0.275 0.268 0.274 0.305
Passive-on 1.218 0.266 0.274 0.272 0.233 0.219 0.256 0.395
LQG w/ A. 1.592 0.234 0.237 0.221 0.197 0.207 0.224 0.286

LQG w/ I.D. 1.632 0.216 0.217 0.211 0.187 0.207 0.231 0.260
LQG w/ R.D. 1.570 0.321 0.355 0.350 0.379 0.338 0.415 0.558

Simple control 1N 1.676 0.353 0.344 0.304 0.310 0.349 0.343 0.440
Simple control 1P 1.758 0.417 0.347 0.483 0.468 0.400 0.457 0.555
Simple control 2N 1.701 0.318 0.331 0.311 0.292 0.357 0.370 0.437
Simple control 2P 1.742 0.427 0.378 0.478 0.474 0.384 0.468 0.570

R
M

S

Uncontrolled 0.673 0.067 0.068 0.070 0.072 0.073 0.076 0.080
Passive-off 0.561 0.058 0.059 0.060 0.062 0.063 0.065 0.070
Passive-on 0.227 0.044 0.045 0.045 0.046 0.047 0.054 0.070
LQG w/ A. 0.358 0.042 0.042 0.042 0.043 0.045 0.049 0.057

LQG w/ I.D. 0.369 0.042 0.042 0.043 0.044 0.045 0.048 0.055
LQG w/ R.D. 0.286 0.066 0.064 0.062 0.064 0.067 0.073 0.091

Simple control 1N 0.340 0.079 0.074 0.070 0.068 0.073 0.081 0.102
Simple control 1P 0.322 0.075 0.072 0.071 0.070 0.075 0.083 0.103
Simple control 2N 0.343 0.075 0.069 0.062 0.062 0.067 0.075 0.101
Simple control 2P 0.320 0.074 0.072 0.069 0.070 0.073 0.081 0.103

0.
5

g
P

G
A

P
ea

k

Uncontrolled 6.539 0.732 0.745 0.744 0.728 0.705 0.729 0.843
Passive-off 6.172 0.713 0.706 0.694 0.688 0.677 0.712 0.768
Passive-on 4.671 0.771 0.771 0.741 0.701 0.694 0.829 0.930
LQG w/ A. 4.906 0.679 0.697 0.675 0.609 0.676 0.679 0.756

LQG w/ I.D. 4.863 0.650 0.687 0.674 0.577 0.651 0.666 0.727
LQG w/ R.D. 5.323 0.904 0.941 0.861 0.855 0.829 0.910 1.049

Simple control 1N 5.457 0.847 0.856 0.798 0.677 0.738 0.866 1.164
Simple control 1P 5.415 0.851 0.865 0.879 0.941 0.883 0.911 1.046
Simple control 2N 5.482 0.836 0.841 0.784 0.712 0.731 0.877 1.151
Simple control 2P 5.391 0.876 0.848 0.902 0.938 0.898 0.980 1.099

R
M

S

Uncontrolled 1.682 0.166 0.170 0.176 0.179 0.183 0.189 0.201
Passive-off 1.518 0.152 0.155 0.160 0.164 0.167 0.173 0.182
Passive-on 0.858 0.129 0.128 0.123 0.123 0.126 0.139 0.185
LQG w/ A. 0.995 0.112 0.112 0.112 0.115 0.119 0.125 0.143

LQG w/ I.D. 1.006 0.110 0.111 0.112 0.115 0.119 0.125 0.139
LQG w/ R.D. 1.026 0.163 0.161 0.156 0.160 0.164 0.179 0.217

Simple control 1N 1.134 0.156 0.151 0.141 0.144 0.152 0.158 0.203
Simple control 1P 1.077 0.172 0.167 0.164 0.166 0.172 0.188 0.227
Simple control 2N 1.138 0.153 0.147 0.138 0.141 0.148 0.156 0.199
Simple control 2P 1.073 0.174 0.168 0.166 0.167 0.174 0.191 0.230
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Table 8.2: Peak and RMS values to the scaled Ji-ji earthquakes

Controller
Disp. (in.) Acceleration (g)

Base Base 1 2 3 4 5 6

0.
2

g
P

G
A

P
ea

k
Uncontrolled 2.909 0.295 0.300 0.306 0.311 0.316 0.333 0.352
Passive-off 2.848 0.301 0.305 0.298 0.317 0.332 0.344 0.374
Passive-on 1.445 0.271 0.237 0.269 0.289 0.278 0.311 0.342
LQG w/ A. 2.021 0.292 0.304 0.294 0.244 0.261 0.291 0.353

LQG w/ I.D. 2.103 0.293 0.309 0.283 0.259 0.272 0.302 0.333
LQG w/ R.D. 1.935 0.376 0.341 0.439 0.353 0.393 0.376 0.435

Simple control 1N 2.427 0.414 0.406 0.423 0.413 0.397 0.449 0.486
Simple control 1P 2.152 0.400 0.412 0.428 0.429 0.414 0.420 0.537
Simple control 2N 2.451 0.430 0.406 0.414 0.383 0.393 0.404 0.474
Simple control 2P 2.142 0.369 0.367 0.444 0.417 0.423 0.416 0.551

R
M

S

Uncontrolled 1.016 0.099 0.102 0.106 0.108 0.110 0.112 0.114
Passive-off 0.855 0.086 0.088 0.090 0.092 0.094 0.096 0.100
Passive-on 0.393 0.052 0.053 0.054 0.055 0.057 0.058 0.062
LQG w/ A. 0.585 0.060 0.060 0.060 0.062 0.063 0.066 0.072

LQG w/ I.D. 0.602 0.061 0.061 0.062 0.063 0.064 0.066 0.072
LQG w/ R.D. 0.431 0.068 0.068 0.070 0.069 0.072 0.074 0.083

Simple control 1N 0.617 0.074 0.072 0.073 0.073 0.077 0.081 0.088
Simple control 1P 0.460 0.074 0.074 0.074 0.076 0.077 0.080 0.091
Simple control 2N 0.618 0.072 0.070 0.070 0.071 0.075 0.077 0.087
Simple control 2P 0.459 0.073 0.073 0.073 0.074 0.076 0.079 0.091

0.
5

g
P

G
A

P
ea

k

Uncontrolled 7.272 0.738 0.750 0.765 0.777 0.791 0.832 0.880
Passive-off 7.182 0.714 0.743 0.736 0.772 0.814 0.838 0.931
Passive-on 6.135 0.886 0.900 0.829 0.841 0.970 0.929 1.051
LQG w/ A. 6.144 0.838 0.836 0.830 0.758 0.739 0.780 0.972

LQG w/ I.D. 6.150 0.800 0.812 0.815 0.771 0.742 0.774 0.942
LQG w/ R.D. 6.160 0.843 0.863 0.907 0.954 0.913 0.958 1.159

Simple control 1N 7.083 1.010 0.843 0.976 0.906 0.976 0.979 0.938
Simple control 1P 6.432 0.911 0.860 0.916 0.965 0.974 0.866 1.006
Simple control 2N 7.103 0.931 0.849 0.984 0.908 0.970 0.972 1.011
Simple control 2P 6.426 0.922 0.868 0.919 0.981 1.022 0.917 1.063

R
M

S

Uncontrolled 2.540 0.249 0.255 0.264 0.270 0.274 0.280 0.286
Passive-off 2.296 0.227 0.232 0.240 0.245 0.249 0.255 0.261
Passive-on 1.362 0.159 0.160 0.160 0.164 0.167 0.172 0.188
LQG w/ A. 1.571 0.163 0.164 0.166 0.170 0.172 0.177 0.189

LQG w/ I.D. 1.580 0.163 0.164 0.167 0.170 0.172 0.177 0.188
LQG w/ R.D. 1.446 0.192 0.190 0.191 0.194 0.197 0.211 0.232

Simple control 1N 1.810 0.192 0.190 0.192 0.195 0.202 0.206 0.222
Simple control 1P 1.517 0.197 0.196 0.199 0.203 0.205 0.221 0.235
Simple control 2N 1.812 0.190 0.189 0.192 0.193 0.201 0.204 0.222
Simple control 2P 1.514 0.199 0.196 0.199 0.204 0.206 0.225 0.238
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Table 8.3: Peak and RMS values to the scaled Kobe earthquakes

Controller
Disp. (in.) Acceleration (g)

Base Base 1 2 3 4 5 6

0.
2

g
P

G
A

P
ea

k
Uncontrolled 3.275 0.320 0.331 0.344 0.351 0.355 0.361 0.372
Passive-off 3.178 0.337 0.342 0.352 0.353 0.364 0.355 0.375
Passive-on 1.875 0.291 0.283 0.255 0.283 0.321 0.381 0.397
LQG w/ A. 1.778 0.215 0.245 0.269 0.247 0.236 0.264 0.303

LQG w/ I.D. 1.802 0.253 0.257 0.262 0.249 0.281 0.260 0.287
LQG w/ R.D. 2.615 0.366 0.442 0.434 0.407 0.395 0.529 0.546

Simple control 1N 2.033 0.433 0.495 0.300 0.473 0.475 0.365 0.563
Simple control 1P 2.814 0.489 0.463 0.482 0.501 0.617 0.514 0.678
Simple control 2N 2.053 0.412 0.445 0.267 0.427 0.487 0.367 0.566
Simple control 2P 2.793 0.518 0.434 0.516 0.553 0.612 0.510 0.685

R
M

S

Uncontrolled 0.918 0.088 0.091 0.095 0.098 0.100 0.103 0.106
Passive-off 0.731 0.071 0.073 0.077 0.079 0.081 0.083 0.086
Passive-on 0.248 0.036 0.037 0.039 0.042 0.044 0.047 0.054
LQG w/ A. 0.298 0.034 0.034 0.036 0.037 0.039 0.041 0.046

LQG w/ I.D. 0.310 0.035 0.036 0.037 0.038 0.040 0.042 0.046
LQG w/ R.D. 0.363 0.059 0.060 0.062 0.063 0.066 0.069 0.079

Simple control 1N 0.322 0.062 0.059 0.052 0.060 0.062 0.063 0.075
Simple control 1P 0.415 0.071 0.069 0.070 0.073 0.078 0.080 0.092
Simple control 2N 0.325 0.059 0.055 0.048 0.055 0.059 0.062 0.075
Simple control 2P 0.411 0.070 0.068 0.068 0.073 0.076 0.079 0.092

0.
5

g
P

G
A

P
ea

k

Uncontrolled 8.187 0.799 0.826 0.861 0.878 0.889 0.902 0.929
Passive-off 7.994 0.806 0.837 0.869 0.879 0.885 0.878 0.895
Passive-on 6.407 0.860 0.817 0.810 0.879 1.007 1.031 1.104
LQG w/ A. 6.009 0.741 0.866 0.765 0.820 0.842 0.915 0.955

LQG w/ I.D. 5.995 0.744 0.877 0.775 0.841 0.866 0.944 0.959
LQG w/ R.D. 7.549 0.953 1.104 1.141 1.048 1.079 1.120 1.155

Simple control 1N 6.441 0.874 0.903 0.862 0.976 0.991 0.928 1.205
Simple control 1P 7.814 1.088 1.021 1.153 1.091 1.133 1.162 1.333
Simple control 2N 6.478 0.888 0.873 0.817 0.932 0.967 0.889 1.214
Simple control 2P 7.774 1.112 1.031 1.160 1.056 1.176 1.170 1.319

R
M

S

Uncontrolled 2.294 0.220 0.227 0.238 0.245 0.250 0.257 0.265
Passive-off 1.990 0.191 0.198 0.207 0.213 0.218 0.225 0.231
Passive-on 0.999 0.121 0.120 0.123 0.127 0.134 0.140 0.158
LQG w/ A. 0.994 0.105 0.108 0.111 0.117 0.120 0.124 0.132

LQG w/ I.D. 1.001 0.105 0.108 0.112 0.117 0.120 0.124 0.132
LQG w/ R.D. 1.331 0.162 0.165 0.171 0.176 0.180 0.189 0.204

Simple control 1N 1.189 0.144 0.140 0.134 0.144 0.149 0.154 0.179
Simple control 1P 1.443 0.184 0.180 0.187 0.194 0.207 0.208 0.226
Simple control 2N 1.197 0.142 0.139 0.132 0.142 0.147 0.153 0.179
Simple control 2P 1.434 0.183 0.180 0.185 0.195 0.206 0.207 0.226

128



Table 8.4: Peak and RMS values to the scaled Newhall earthquakes

Controller
Disp. (in.) Acceleration (g)

Base Base 1 2 3 4 5 6

0.
2

g
P

G
A

P
ea

k
Uncontrolled 1.321 0.129 0.131 0.136 0.141 0.145 0.162 0.185
Passive-off 1.066 0.115 0.111 0.114 0.122 0.128 0.148 0.173
Passive-on 0.509 0.147 0.131 0.104 0.113 0.122 0.173 0.250
LQG w/ A. 0.896 0.127 0.106 0.108 0.103 0.109 0.121 0.185

LQG w/ I.D. 0.890 0.144 0.122 0.115 0.104 0.109 0.122 0.175
LQG w/ R.D. 0.512 0.241 0.222 0.253 0.235 0.281 0.246 0.303

Simple control 1N 0.861 0.232 0.178 0.200 0.215 0.252 0.219 0.302
Simple control 1P 0.607 0.258 0.245 0.240 0.230 0.282 0.233 0.323
Simple control 2N 0.861 0.198 0.182 0.202 0.208 0.220 0.189 0.255
Simple control 2P 0.604 0.229 0.237 0.233 0.244 0.274 0.231 0.320

R
M

S

Uncontrolled 0.285 0.028 0.028 0.030 0.030 0.031 0.032 0.034
Passive-off 0.210 0.022 0.022 0.023 0.024 0.025 0.026 0.028
Passive-on 0.079 0.018 0.018 0.019 0.021 0.023 0.027 0.033
LQG w/ A. 0.140 0.019 0.019 0.018 0.019 0.021 0.023 0.028

LQG w/ I.D. 0.145 0.019 0.019 0.019 0.020 0.021 0.023 0.027
LQG w/ R.D. 0.092 0.031 0.030 0.029 0.030 0.033 0.035 0.043

Simple control 1N 0.127 0.034 0.033 0.031 0.033 0.034 0.037 0.044
Simple control 1P 0.108 0.038 0.037 0.037 0.037 0.039 0.042 0.051
Simple control 2N 0.127 0.029 0.029 0.025 0.027 0.029 0.029 0.042
Simple control 2P 0.107 0.037 0.036 0.035 0.035 0.037 0.040 0.050

0.
5

g
P

G
A

P
ea

k

Uncontrolled 3.303 0.321 0.327 0.341 0.353 0.362 0.404 0.464
Passive-off 2.815 0.272 0.278 0.308 0.312 0.329 0.385 0.423
Passive-on 1.622 0.399 0.327 0.249 0.290 0.332 0.411 0.512
LQG w/ A. 2.294 0.354 0.309 0.247 0.261 0.332 0.362 0.437

LQG w/ I.D. 2.264 0.368 0.312 0.246 0.270 0.311 0.353 0.426
LQG w/ R.D. 1.911 0.449 0.395 0.396 0.402 0.538 0.498 0.567

Simple control 1N 2.239 0.396 0.432 0.276 0.348 0.375 0.315 0.474
Simple control 1P 2.089 0.407 0.388 0.458 0.414 0.449 0.508 0.694
Simple control 2N 2.238 0.417 0.408 0.309 0.376 0.366 0.359 0.472
Simple control 2P 2.081 0.409 0.402 0.430 0.422 0.448 0.532 0.708

R
M

S

Uncontrolled 0.713 0.069 0.071 0.074 0.076 0.078 0.081 0.084
Passive-off 0.604 0.060 0.061 0.064 0.066 0.067 0.070 0.074
Passive-on 0.260 0.047 0.047 0.046 0.050 0.053 0.058 0.072
LQG w/ A. 0.374 0.044 0.044 0.044 0.046 0.049 0.053 0.062

LQG w/ I.D. 0.380 0.044 0.044 0.044 0.046 0.049 0.053 0.061
LQG w/ R.D. 0.317 0.072 0.067 0.073 0.070 0.079 0.085 0.095

Simple control 1N 0.388 0.063 0.062 0.053 0.062 0.062 0.064 0.081
Simple control 1P 0.361 0.080 0.076 0.077 0.077 0.076 0.094 0.109
Simple control 2N 0.390 0.061 0.058 0.053 0.058 0.061 0.063 0.081
Simple control 2P 0.357 0.078 0.075 0.074 0.076 0.076 0.091 0.108
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Table 8.5: Peak and RMS values to the scaled sylmar earthquakes

Controller
Disp. (in.) Acceleration (g)

Base Base 1 2 3 4 5 6

0.
2

g
P

G
A

P
ea

k
Uncontrolled 1.633 0.155 0.159 0.167 0.175 0.181 0.192 0.217
Passive-off 1.697 0.171 0.171 0.178 0.192 0.200 0.227 0.269
Passive-on 1.033 0.219 0.212 0.180 0.190 0.192 0.203 0.246
LQG w/ A. 1.531 0.191 0.162 0.176 0.197 0.197 0.220 0.240

LQG w/ I.D. 1.589 0.195 0.193 0.189 0.186 0.197 0.225 0.208
LQG w/ R.D. 1.277 0.389 0.318 0.325 0.318 0.297 0.330 0.459

Simple control 1N 1.597 0.310 0.333 0.237 0.328 0.322 0.255 0.429
Simple control 1P 1.414 0.343 0.341 0.403 0.320 0.336 0.388 0.541
Simple control 2N 1.610 0.264 0.287 0.274 0.319 0.332 0.292 0.393
Simple control 2P 1.400 0.338 0.358 0.340 0.337 0.312 0.385 0.544

R
M

S

Uncontrolled 0.370 0.036 0.037 0.038 0.040 0.040 0.042 0.043
Passive-off 0.327 0.033 0.034 0.035 0.036 0.037 0.039 0.041
Passive-on 0.151 0.025 0.026 0.027 0.028 0.029 0.032 0.037
LQG w/ A. 0.233 0.026 0.026 0.026 0.027 0.028 0.030 0.034

LQG w/ I.D. 0.238 0.026 0.026 0.027 0.028 0.028 0.030 0.033
LQG w/ R.D. 0.176 0.041 0.041 0.039 0.042 0.044 0.045 0.055

Simple control 1N 0.233 0.040 0.039 0.037 0.039 0.038 0.045 0.050
Simple control 1P 0.202 0.050 0.049 0.047 0.048 0.049 0.056 0.068
Simple control 2N 0.234 0.037 0.035 0.036 0.034 0.037 0.042 0.049
Simple control 2P 0.199 0.049 0.048 0.045 0.047 0.047 0.054 0.067

0.
5

g
P

G
A

P
ea

k

Uncontrolled 4.082 0.387 0.397 0.418 0.436 0.453 0.480 0.543
Passive-off 4.150 0.406 0.414 0.440 0.464 0.465 0.497 0.602
Passive-on 3.883 0.512 0.513 0.524 0.520 0.526 0.583 0.605
LQG w/ A. 4.281 0.538 0.523 0.528 0.525 0.532 0.497 0.631

LQG w/ I.D. 4.234 0.471 0.493 0.520 0.521 0.534 0.500 0.557
LQG w/ R.D. 4.439 0.674 0.637 0.744 0.704 0.724 0.711 0.852

Simple control 1N 4.602 0.621 0.577 0.665 0.733 0.713 0.673 0.751
Simple control 1P 4.679 0.778 0.812 0.832 0.755 0.691 0.802 0.928
Simple control 2N 4.600 0.571 0.582 0.641 0.727 0.663 0.713 0.747
Simple control 2P 4.646 0.811 0.785 0.769 0.719 0.773 0.777 0.962

R
M

S

Uncontrolled 0.926 0.089 0.092 0.096 0.099 0.101 0.104 0.108
Passive-off 0.859 0.084 0.087 0.090 0.093 0.095 0.098 0.103
Passive-on 0.547 0.073 0.073 0.073 0.075 0.077 0.084 0.098
LQG w/ A. 0.645 0.068 0.069 0.070 0.073 0.075 0.078 0.087

LQG w/ I.D. 0.640 0.066 0.067 0.069 0.072 0.074 0.077 0.083
LQG w/ R.D. 0.695 0.102 0.102 0.101 0.106 0.110 0.115 0.131

Simple control 1N 0.704 0.096 0.089 0.084 0.093 0.098 0.104 0.116
Simple control 1P 0.755 0.118 0.115 0.115 0.118 0.125 0.128 0.151
Simple control 2N 0.704 0.093 0.086 0.081 0.089 0.094 0.101 0.115
Simple control 2P 0.747 0.116 0.113 0.110 0.115 0.122 0.125 0.151

130



E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
17

:
C

om
p
ar

is
on

s
of

th
e

p
ea

k
re

sp
on

se
d
is

p
la

ce
m

en
ts

of
th

e
b
as

e
to

0.
2

g
P

G
A

ea
rt

h
q
u
ak

es

E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
18

:
C

om
p
ar

is
on

s
of

th
e

R
M

S
re

sp
on

se
d
is

p
la

ce
m

en
ts

of
th

e
b
as

e
to

0.
2

g
P

G
A

ea
rt

h
q
u
ak

es

131



E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
19

:
C

om
p
ar

is
on

s
of

th
e

p
ea

k
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
b
as

e
to

0.
2

g
P

G
A

ea
rt

h
q
u
ak

es

E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
20

:
C

om
p
ar

is
on

s
of

th
e

R
M

S
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
b
as

e
to

0.
2

g
P

G
A

ea
rt

h
q
u
ak

es

132



E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
21

:
C

om
p
ar

is
on

s
of

th
e

p
ea

k
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
6t

h
fl
o
or

to
0.

2
g

P
G

A
ea

rt
h
q
u
ak

es

E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
22

:
C

om
p
ar

is
on

s
of

th
e

R
M

S
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
6t

h
fl
o
or

to
0.

2
g

P
G

A
ea

rt
h
q
u
ak

es

133



E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
23

:
C

om
p
ar

is
on

s
of

th
e

p
ea

k
re

sp
on

se
d
is

p
la

ce
m

en
ts

of
th

e
b
as

e
to

0.
5

g
P

G
A

ea
rt

h
q
u
ak

es

E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
24

:
C

om
p
ar

is
on

s
of

th
e

R
M

S
re

sp
on

se
d
is

p
la

ce
m

en
ts

of
th

e
b
as

e
to

0.
5

g
P

G
A

ea
rt

h
q
u
ak

es

134



E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
25

:
C

om
p
ar

is
on

s
of

th
e

p
ea

k
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
b
as

e
to

0.
5

g
P

G
A

ea
rt

h
q
u
ak

es

E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
26

:
C

om
p
ar

is
on

s
of

th
e

R
M

S
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
b
as

e
to

0.
5

g
P

G
A

ea
rt

h
q
u
ak

es

135



E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
27

:
C

om
p
ar

is
on

s
of

th
e

p
ea

k
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
6t

h
fl
o
or

to
0.

5
g

P
G

A
ea

rt
h
q
u
ak

es

E
l 

C
en

tr
o

Ji
ji

K
o
b
e

N
ew

h
al

l
S

y
lm

ar
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Ratio to uncontrolled (%)

P
.

o
ff

P
.

o
n

L
Q

G
 (

A
.)

L
Q

G
 (

I.
D

.)

L
Q

G
 (

R
.D

.)

S
.C

. 
1
N

S
.C

. 
1
P

S
.C

. 
2
N

S
.C

. 
2
P

F
ig

u
re

8.
28

:
C

om
p
ar

is
on

s
of

th
e

R
M

S
re

sp
on

se
ac

ce
le

ra
ti

on
s

of
th

e
6t

h
fl
o
or

to
0.

5
g

P
G

A
ea

rt
h
q
u
ak

es

136



8.2.2 RTHS

The effectiveness of the smart base isolation system employing the MR damper is
shown using RTHS. To compensate for time delays/lags, the feedforward-feedback
compensator designed in Subsection 4.4.2 is employed. As input earthquakes, Kobe
(1995, JMA station) and El Centro (1940, Imperial Valley) are considered. The Kobe
record is scaled so that its peak ground acceleration (PGA) is 0.2 g and 0.5 g and the
PGA of the El Centro record is scaled to 0.5 g.

The two semi-active control strategies, the LQG-based clipped-optimal control
with acceleration weighting and the LQG-based clipped-optimal control with inter-
story drift weighting, whose effectiveness were shown by the numerical simulations
are applied. In addition to these two semi-active controllers, the passive-off mode and
the passive-on mode cases are carried out.

The hystetetic force-displacement loops produced by the LQG-based clipped-
optimal control with acceleration weighting and inter-story drift weighting subjected
to the three scaled earthquakes are depicted in Figures 8.29, 8.30, and 8.31, respec-
tively. These hysteresis loops produced by the physical MR damper agrees with the
ones obtained by numerical simulation very well. As can be seen, the physical MR
damper produces clear pseudo-negative stiffness to 0.2 g PGA Kobe earthquake, while
for the amplified earthquakes to 0.5g PGA, distinct properties of pseudo-negative
stiffness are gone.

Tables 8.6 through 8.8 summarize the peak and root mean square (RMS) values
of the response base displacements relative to the ground and absolute accelerations
at each floor for all cases. Figures 8.32 thorough 8.34 compare the normalized peak
and RMS values based on the uncontrolled passive base isolation cases obtained from
simulations. As can be seen in the tables and figures, the base isolation system with a
passive-on mode or semi-actively controlled MR damper reduce both peak and RMS
response and base displacement successfully compared to the uncontrolled passive
base isolation and passive-off mode MR damper cases. In terms of response acceler-
ation, the risk of increasing peak acceleration can be found when the MR damper in
passive-on mode is applied. While the two semi-active controllers can reduce not only
base displacement but also floor accelerations, the reductions in acceleration are not
as large as in base displacement. Thus, considering both base displacement and floor
accelerations, the two designed semi-active controllers show better response reduction
performance than the three passive systems; the performance of the two semi-active
controllers are quite similar.

An active base isolation study employing the same base-isolated building model
was conducted by Chang and Spencer (2012). The active control system was able
to reduce the base displacement substantially, but this increased performance came
at the expense of a small increase in floor accelerations. In contrast, the semi-active
controllers show reductions in both floor accelerations, especially at higher floors, and
base displacements. Considering that a semi-actively controlled system uses several
orders of magnitude less power than the actively controlled system, the MR damper
can be an attractive alternative for improved base isolation system performance.
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Figure 8.29: Hysteresis loops produced by the physical MR damper to 0.2 g PGA
Kobe earthquake
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Figure 8.30: Hysteresis loops produced by the physical MR damper to 0.5 g PGA
Kobe earthquake
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Figure 8.31: Hysteresis loops produced by the physical MR damper to 0.5 g PGA El
Centro earthquake
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Table 8.6: Comparisons of peak and RMS values to 0.2 g Kobe earthquake

Disp. (in.) Acceleration (g)
Base Base 1 2 3 4 5 6

P
ea

k

Isolation (Sim.) 3.275 0.320 0.331 0.344 0.351 0.355 0.361 0.372
Passive-off 3.055 0.313 0.320 0.331 0.338 0.340 0.345 0.365
Passive-on 1.865 0.319 0.312 0.330 0.348 0.357 0.349 0.421
LQG w/ A. 1.775 0.266 0.226 0.271 0.294 0.246 0.256 0.309

LQG w/ I.D. 1.818 0.248 0.242 0.289 0.326 0.262 0.249 0.315

R
M

S

Isolation (Sim.) 0.918 0.088 0.091 0.095 0.098 0.100 0.103 0.106
Passive-off 0.621 0.061 0.063 0.066 0.067 0.069 0.071 0.074
Passive-on 0.237 0.052 0.052 0.046 0.049 0.054 0.056 0.064
LQG w/ A. 0.270 0.036 0.036 0.036 0.037 0.039 0.040 0.045

LQG w/ I.D. 0.281 0.036 0.037 0.036 0.038 0.039 0.042 0.046

Table 8.7: Comparisons of peak and RMS values to 0.5 g Kobe earthquake

Disp. (in.) Acceleration (g)
Base Base 1 2 3 4 5 6

P
ea

k

Isolation (Sim.) 8.187 0.799 0.826 0.861 0.878 0.889 0.902 0.929
Passive-off 7.724 0.775 0.799 0.831 0.849 0.854 0.858 0.892
Passive-on 6.298 0.795 0.756 0.760 0.841 0.937 1.001 1.044
LQG w/ A. 5.846 0.649 0.715 0.729 0.745 0.804 0.853 0.873

LQG w/ I.D. 5.855 0.663 0.686 0.726 0.751 0.800 0.865 0.879

R
M

S

Isolation (Sim.) 2.294 0.220 0.227 0.238 0.245 0.250 0.257 0.265
Passive-off 1.692 0.163 0.168 0.177 0.182 0.186 0.192 0.197
Passive-on 0.892 0.112 0.114 0.114 0.119 0.124 0.129 0.144
LQG w/ A. 0.888 0.094 0.097 0.100 0.104 0.108 0.112 0.119

LQG w/ I.D. 0.897 0.095 0.097 0.101 0.104 0.108 0.112 0.119

Table 8.8: Comparisons of peak and RMS values to 0.5 g El Centro earthquake

Disp. (in.) Acceleration (g)
Base Base 1 2 3 4 5 6

P
ea

k

Isolation (Sim.) 6.539 0.732 0.745 0.744 0.728 0.705 0.729 0.843
Passive-off 5.955 0.657 0.666 0.670 0.657 0.643 0.678 0.742
Passive-on 4.467 0.643 0.685 0.675 0.662 0.603 0.672 0.835
LQG w/ A. 4.713 0.613 0.593 0.594 0.574 0.637 0.629 0.678

LQG w/ I.D. 4.692 0.582 0.586 0.585 0.570 0.617 0.632 0.632

R
M

S

Isolation (Sim.) 1.682 0.166 0.170 0.176 0.179 0.183 0.189 0.201
Passive-off 1.322 0.131 0.134 0.139 0.143 0.145 0.150 0.156
Passive-on 0.763 0.115 0.117 0.114 0.115 0.118 0.127 0.154
LQG w/ A. 0.893 0.102 0.103 0.101 0.105 0.109 0.113 0.126

LQG w/ I.D. 0.903 0.101 0.102 0.102 0.105 0.108 0.112 0.123
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Figure 8.32: Reduction to 0.2 g Kobe earthquake; (a) Peak base displacement, (b)
Peak base acceleration, (c) Peak 6th floor acceleration, (d) RMS base displacements,
(e) RMS base acceleration, (f) RMS 6th floor acceleration

8.3 Summary

This chapter employs numerical simulation and RTHS to investigate a class of isola-
tion systems that use semi-active control devices (i.e., smart base isolation). A six-
story building was considered. The isolation system consisted of linear, low-damping
isolators, combined with a magnetorheological (MR) fluid damper. In RTHS, the
smart isolated building was substructured, such that the building was modeled com-
putationally, whereas the MR damper was tested physically. This smart base isolation
system is found to reduce base displacements and floor accelerations better than the
passive counterparts. Improvements were also demonstrated over the active isolation
system, without the need for large external power sources.

The versatility of the hysteresis loops produced by the LQG-based clipped-optimal
controllers and the proposed simple controllers was shown through numerical simu-
lation and RTHS, as well. However, in seismic performance, the proposed simple
controllers were not comparable to the LQG-based clipped-optimal controllers, espe-
cially in the upper floors.
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Figure 8.33: Reduction to 0.5 g Kobe earthquake; (a) Peak base displacement, (b)
Peak base acceleration, (c) Peak 6th floor acceleration, (d) RMS base displacements,
(e) RMS base acceleration, (f) RMS 6th floor acceleration
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Figure 8.34: Reduction to 0.5 g El Centro earthquake; (a) Peak base displacement, (b)
Peak base acceleration, (c) Peak 6th floor acceleration, (d) RMS base displacements,
(e) RMS base acceleration, (f) RMS 6th floor acceleration
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Chapter 9

CONCLUSIONS AND FUTURE STUDIES

9.1 Conclusions

In this report, the possibility of semi-active control strategies have been explored, and
their effectiveness has been verified experimentally for seismically excited buildings.
The properties of the hysteretic force-displacement loops produced by semi-actively
controlled MR dampers and their seismic performance were investigated.

A review of literature in the area of structural control technologies was first pre-
sented with a focus on outrigger damping systems and hybrid base-isolation systems.
Literature related to real-time hybrid simulation was reviewed as well. Also, ba-
sic background on modern control theories which are necessary to design active and
semi-active controllers was introduced, and the servo-hydraulic system model, the
MR damper model, and the model-based compensators for RTHS were developed.

The nature of the hysteretic behavior of the active control forces produced by
the widely employed LQG-based acceleration feedback control strategies was inves-
tigated, revealing the relationship between the properties of the control forces and
the response. Numerical simulation studies carried out on one-story and three-story
buildings with active bracing show that the LQG-based algorithms are quite versatile
and can produce controllers with a variety of behaviors. The effectiveness of nega-
tive stiffness control force was shown through numerical studies. Additionally, the
numerical results demonstrated that the presented LQG-based acceleration feedback
control had performance comparable to the LQR in the presented SDOF and 3DOF
building models.

Following the hysteretic behavior of the active control forces and the seismic re-
sponses, hysteresis loops produced by the semi-actively controlled MR damper were
investigated. Two new model-free semi-active control algorithms for controllable
dampers were proposed. One of the algorithms needs only the directions of the dis-
placement and the velocity of the damper to decide the input current to the damper.
The other one needs the directions of only the displacement and the output force of
the damper. Thus, the structure model and a number of sensors are not required
to implement the proposed algorithms. Moreover, this research demonstrated that
the proposed controllers can produce versatile hysteresis control force loops through
numerical simulations on the scaled three-story building model with the MR damper.
Also, the effectiveness of hysteresis loops having pseudo-negative stiffness was veri-
fied. Additionally, the numerical results showed that the proposed two algorithms
producing pseudo-negative stiffness had performance comparable to the LQG-based
clipped-optimal controllers, which need the accurate structure model and more sen-
sors.
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To show the effectiveness of the semi-active strategies on complicated structures
experimentally, the efficacy of the model-based compensator for RTHS on a MDOF
structure was verified through a high-rise building model with an outrigger damping
system. Through this research, the following general conclusions were drawn: a)
RTHS worked when all modes of the structure were lightly damped, demonstrating the
robustness of the actuator controller without the need for adding numerical damping;
b) the actuator control strategy used in this study demonstrated stable and accurate
results in MDOF structural systems; c) RTHS can be employed for validation of
structural control algorithms; d) RTHS provides an effective means for assessing the
system performance of rate-dependent components in complex structures.

Also, this study showed that MR dampers can be employed effectively in outrig-
ger damping systems using passive-on mode and semi-active controllers. The MR
damper’s restoring force can be simulated quite well by the proposed MR damper
model for the two earthquake records; however, differences are still present. In par-
ticular, discrepancies between simulations and RTHSs were found in the base shear.
Moreover, the physical specimen contains no modeling errors, while it is subject to
experimental error such as magnitude and time delay. The numerical model provides
a good verification tool for RTHS; however it is subject to numerical errors, is only
valid within the range of behavior for which the model is calibrated, and cannot fully
represent the complex specimen behavior. Thus, the importance of combining RTHS
with numerical simulation to ensure accurate results was demonstrated.

A class of isolation systems that use semi-active control devices (i.e., smart base
isolation) was investigated through numerical simulation and RTHS as well. In this
study, a base-isolated six-story building was considered. The isolation system con-
sisted of linear, low-damping isolators, combined with a MR damper. In RTHS, the
smart isolated building was substructured, such that the building was modeled com-
putationally, whereas the MR damper was tested physically. This smart base isolation
system is found to reduce base displacements and floor accelerations better than the
passive counterparts. Improvements were also demonstrated over the active isolation
system, without the need for large external power sources.

On the base-isolated six-story building model, the versatility of the hysteresis
loops produced by the LQG-based clipped-optimal controllers and the proposed sim-
ple controllers was shown through numerical simulation and RTHS, as well. However,
in seismic performance, the proposed simple controllers were not comparable to the
LQG-based clipped-optimal controllers, especially in the upper floors. This result im-
plies that the proposed simple controllers are not suitable for complicated structures.

In conclusion, this report provided the hysteresis behavior and the seismic perfor-
mance of semi-active control strategies on buildings and showed the strong potential
for practical use to mitigate seismic damage. However, some disappointing results
were also observed.
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Figure 9.1: Mechanism of ball screw (Nakamura et al., 2013)

9.2 Future studies

This report investigated many aspects related to semi-active control strategies in
building structures subjected to earthquake loadings. Some recommendations for
future studies still exist, which will be detailed below.

• The effectiveness of the negative stiffness was shown in this report. However, its
seismic performance depended on excitation inputs to a large extent. Therefore,
the magnitudes and dominant frequencies of the input earthquakes should be
taken into account as well as the limitation of control devices.

• Generally, it is not easy to develop a mathematical model for nonlinear struc-
tures. Thus, the proposed simple semi-active control algorithms have an ad-
vantage when systems with strong nonlinearity are considered because they
does not require the model of the structure. The seismic performance and the
hysteresis loops on nonlinear structures should be explored for future studies.

• Various types of inertial mass dampers, which can realize a large effective mass
by rotatory inertia effect of a small mass, has been proposed (Ikago et al., 2012;
Nakamura et al., 2013). In these inertial mass dampers, translational displace-
ment is converted to rotational angle through the ball screw as illustrated in
Figure 9.1. Due to inertia force, the natural frequency of the structure can be
reduced, resulting in producing negative stiffness. The application of this device
is an intriguing research topic.

• Semi-active control is promising, however, as shown in this report, the advan-
tage in reducing seismic responses cannot be found for some cases. While, active
control needs large amount of external power source to impart control force to
a structure, which is highly susceptible to destabilization and blackouts dur-
ing earthquakes. To address this flaw, self-powered control has been proposed
(Scruggs, 2004), in which energy harvesting technique is combined with active
control. The mechanism of a self-powered control device is shown in Figure
9.2, schematically, where mechanical power is converted to electric power by an
electric motor. Then this generated energy can be used to control the structure
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Figure 9.2: Mechanism of regenerative force actuation (Scruggs, 2004)

or stored for future events. Putting this technology to practical use is strongly
desired.

• Recently, renewable energy has been getting attention all over the world. In
addition to earthquake-induced vibration, energy harvesting techniques in tall
buildings subjected to strong winds have been investigated by Ni et al. (2011);
Tang and Zuo (2012). Ni et al. (2011) reported that a tuned mass damper
(TMD) system with energy harvesting mechanism installed in the 76-story
benchmark building (Samali et al., 2004) generated almost 100 kW by wind-
excited vibration. Thus, the possibility of utilizing vibration energy in civil
structures should be explored

• In both the inertial mass damper and the electric motor to generate power,
translational displacement is converted to rotational angle by employing the
same mechanism. Therefore, developing a device combining the electric mo-
tor with the inertial mass damper is considered feasible technology. Then,
algorithms to minimize vibration responses and maximize power generation ef-
ficiency should be proposed. And, experimental verification is needed as well.
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