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Abstract 

' ' . . ' . ' ( 

Upcoming cosmological observations (South Pole Telescope, Atacama Cosmol~ 

ogy Telescope, Baryon Oscillation Spectroscopic Survey, and Planck) will allow 

for accurately. probing structures and their growth, some into highly nonlin­

ear regimes. .These observations, in combination with already very accurate 

measurements of the expansion rate of the universe, will not only constrain cos­

mological parameters to a percent level, but will also answer what is the theory . 

of gravity on the largest scales. In order to obtain theoretical predictions for 

different measurables (like the distribution of masses, spatial· correlations), large 

numerical simulations have to be carried out. In this context, their main goal is 

to quantify how are such measurables affected by a change of cosmological pa­

rameters. The promised high accuracy of observations make the simul.ation task 

very demanding, as the theoretical predictions have to be at least as accurate 

as the observations. ) . 

In this thesis, we study the formation and evolution of dark matter halos 
I 

in ACDM models.o~er a wide range of cosmologicalepochs, from redshift z=20 

to the present. First, we focus on the halo mass function, likely a key probe of 

cosmological growth of structure. By performing a large suite ( 60. simulations) 

of nested-box N-body simulations with careful convergence and error controls, 

we determine the mass function and its evolution with excellent statistical and 
I 

systematic errors, reaching a few percent over most of the considered redshift 

and mass range. Our results are consistent with a 'universal' form for the mass 

function, and are
1
in a good agreement with the Warren et al. analytic fit. Next, 

we. study the· structure of halos and ra~ificatidn of different halo mass defini­

tions. This analysis is important for connecting structure formation theory with . . 

observations, and also impacts the widely used approaches of assigning visible 

galaxies to dark matter halos - the halo occupancy distribution models. We find 

that the vast majority of halos (80-85%) appear as isolated objects, allowing for 

an accurate mapping between the two main mass definitions (friends~of-friends 

· and spherical overdensity). Based on results from Monte Carfo realizations of 

.ideal Navarro-Frenk-White halos and N-body simulations we \)rovide a mass 

mapping formula. Furthermore, investigation of non-isolated, bridged halos, 

reveals that the fraction of these -halos and their satellite mass distribution is 

cosmology dependent, and can be expressed in a cosmology universal form. 1 

Third, we turn to the spatial distribution of. halos, which serves as a 'biased' 

mass tracer. While this bias is scale dependent, at large distances it asymptotes 

ii 



to a constant value. We show that commonly used, heuristic approach to re­

lating the mass function to the bias (peak-background split) clearly fails at the 

a~curacy we are interested in (::;10%). Using ~udarge set of simulations we pro-

' vide universal formula for halo bias as a function· of mass. ·This formula fit well 

not only our data, put the current st~te of the art simulation data (Millenium 

simulation). 
Finally, we present the results of a comparison between 10 different cos-

mology codes. These include virtually all major codes used today, and more 

importantly, they completely cover the range ofnumerical algorithms used in 

cosmological N-body simulations. For the mass function, the matter power spec­

trum, arid halo profiles - the most important statistics for this thesis - codes 

agree at less then 10% over wide dynamic ranges. This robustness gives us 

additional confidence in our numerical results. 
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} Introduction 

Cosmology studies the Universe as a system, how it formed, how it evolved and 

its future course. Likely one of the oldest human endeavors, modern cosmology 

grew from ideas before recorded history. The first reasonings of what would be 

denoted today as 'physical cosmology' date from the early nineteenth century. 

In 1823, German astronomer Heinrich Olbers argued that the universe must be 

finite because the night sky is dark. He reasoned that if the universe is infinite, 

eternal, and static with stars throughout, then for any particular direction, the 

line-of-sight would eventually end on the surface of a star. Of course, finitness 

of the universe is incompatible with Newton's theory of gravity, as its always 

attractive forces would have caused the entire universe to collapse onto itself. 

Step by step, the reasoning lead to the model of the universe in expanding 

space, homogeneous and isotropic on very large scales. The universe had its 

time of birth called the Big Bang. At all times, cosmology modeling is guided 

by the principle of Occam's razor, and the requirement for robustness of the 

initial conditions. The Big Bang, or standard model is currently the simplest 

physical formulation of cosmology which accounts for all known observations. 

Fundamentally, the confidence in the Big Bang model comes from four crucial 

observations: The universe is expanding according to the Hubble law, such that 

the further an object is from us, the larger recession velocity it has. Following 

the cosmological principle, any observer in the universe should make the same 

observation, leading to the model of expanding space. Since the universe is 

expanding, it had to be smaller and hotter in the past than it is today. This 

leads to the second fundamental observation - a thermal sea of photons with 

virtually perfect blackbody spectrum at T ~ 2.7°K filling space isotropically. 

Third, we observe that the universe has a certain abundance of atomic elements; 

ratio of light elements H, D,3 He,4 He,7 Li to hydrogen cannot be explained by 

stellar fusion, but is easily understood from primordial nucleosynthesis. 

Finally, and this is the focus of this thesis, we can observe that structure 

forms in a certain way, such that smaller mass objects existed in the past, while 

the most massive structures are still forming. Also, we can observe that objects 

are not uniformly distributed throughout the space, but that they form certain 

patterns. By analysing statistical properties of the large-scale structure one can 

thus infer cosmological parameters. 

The thesis can be divided into four parts: 

Part I: Theoretical background and current critical observational campaings 
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are described in Chapter 1. Chapter 2 provides a review of important 

aspects of linear theory describing the first phase of structure formation. 

Also, it provides some analytical extensions into non-linearity. 

Part II: Nonlinear evolution is discussed in Sections 3-5. Each section focuses 

on one statistical description of dark matter objects (halos) in N-body 

simulations: Chap. 3 contains results for the distribution of masses; in 

Chap. 4 the structure of halos is analyzed, and cosmological implications 

are discussed. Finally, Chap. 5 investigates the spatial distributions of 

halos, described via correlation functions. 

Part III: As virtually all results in this thesis are obtained via computer sim­

ulations, Chapter 6 analyzes the accuracy and systematical errors in dif­

ferent numerical algorithms. While some important convergence tests are 

already covered in Chap. 3, here results from an extensive code comparison 

are presented, where 10 different codes, implementing different algorithms, 

are compared against each other. 

Part IV: Finally, the thesis closes with an outlook on future developments in 

Chapter 7. 

1.1 Canvas 

In order to describe the dynamics of the universe, one first has to define a space­

time manifold in which all the events will take place, similarly as a painter would 

first fix his canvas and only then start drifting colors. Observations show that the 

universe expands, so the space-time description has to take that into account; 

it is also assumed that on very large scales the universe appears homogeneous 

and isotropic, meaning there is no special point nor a preferred direction. In 

such a universe, the distance between two space-time points ( ds) is given by 

the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, which in spherical 

coordinates (r, (}, ¢) can be written in the following form: 

ds2 = dt2 
- a(t) 2 + r 2d(J2 + r 2 sin2 Bd¢2 

( 
d~ ) 

1 - ,.;,r2 
(1.1) 

Here, ,.;, describes the curvature, and is set by initial conditions, while a(t) is the 

time-dependent scale factor. The metric leaves the choice of normalization free, 

and is usually normalized by setting the scale factor today to unity (a( now) = 1). 

Instead of time, cosmologists prefer a directly observable quantity - redshift 

(z), defined as a relative difference between the observed and emitted wavelength 

coming from some object: 

Aobserved - Aemitted 
Z= 

Aemitted 
(1.2) 
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Redshift (or blueshift) may also arise from a relative motion of emitter and ob­

server, as a Doppler shift. However, this kind of shift quickly becomes negligible 

as the distance between emitter and observer increases, and is dominated by the 

'cosmological redshift' - the effect of wavelengths being stretched in the empty 

space as a consequence of space itself being expanded. In fact, in the Sloan 

Digital Sky Survey Release III, out of more than half million galaxies whose 

redshifts have been determined, fewer than a hundred exhibit blueshift, the rest 

being redshifted. Such a cosmological redshift (hereon simply redshift) relates 

to the scale factor as: 
a now 

l+z=-----
awhen emitted 

(1.3) 

With the normalization convention adopted here, now can therefore be anno­

tated as a = 1, or z = 0. 

1.1.1 Comoving Coordinates 

According to general relativity one may use any desired coordinate system to 

formulate the laws of physics. Nevertheless, some choices are simpler than 

others, and the FLRW metric (eq. 1.1) has coordinates carefully chosen to 

make the symmetries of the space-time obvious. It is furthermore convenient 

to introduce comoving coordinates where space itself is static. The relation 

between comoving and physical coordinates is self-evident from equation (1.1): 

r 

r = a(t) ' (1.4) 

with tilde denoting the physical distance. Comoving frames are thus moving 

along with the Hubble flow as the universe expands. The velocity an object has 

relative to its comoving frame is called proper velocity, and is usually small for 

most cosmological considerations: 

. r a u a 
r = - - r- = - - r- . 

a a a a 
(1.5) 

On the right-hand side, the first term (f = u) is the proper velocity, while the 

second one is the Hubble flow. The motion relative to the background universe 

is v = ar. 
Equations of motion in comoving coordinates read: 

dr v 
dt a 

dv 1 a 
- = --V'cI> - -v, 
dt a a 

(1.6) 

where the source for the gravitational potential cI> is the fluctuating part of the 

mass density: 

V'2<I> = 4JrGa2 [p(r, t) - Pb(t)] (l. 7) 
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1.1.2 Friedmann Equations 

The relativistic analogs of Newton's law of gravity - Einstein's field equations, 

connect the mass-energy content in the universe to the geometry of the space­

time; the 10 coupled, nonlinear, hyperbolic-elliptic partial differential equations 

in tensor form look deceptively simple: 

87rG 
Gµv = - 4-Tµv · 

c 
(1.8) 

The Einstein tensor (Gµv) describing geometry can be computed for the case 

of the FLRW metric, and it has two nontrivial components. The stress-energy 

tensor (Tµv) for an ideal fluid of density p and pressure p is 

Tµv = dia [p(t), -p(t)/c2
, -p(t)/c2

, -p(t)/c2J (1.9) 

Using this, the ten field equations can be reduced to the two Friedmann equa­

tions 1 [9]: 

~ = _ 47rG (P + 3p) ' 
a 3 c2 

(~)
2 

= 87rG p- r;,c2 . 
a 3 a 2 

Combining these equations, one obtains the conservation of energy: 

pc2 + 3~(pc2 + p) = 0 . 
a 

(1.10) 

(1.11) 

(1.12) 

The Friedmann equations, together with the equation of state p = p(p) 

can be used to determine the three functions of interest: a(t), p(t), and p(t). 

Differentiating equation (1.11) and substituting into equation (1.10) we get 

(1.13) 

This is the first law of thermodynamics for an expanding space d(pa3 ) = -pda3 , 

and can be conveniently written as: 

(1.14) 

For an ideal fluid, the equation of state takes the form p = wp, where p is 

a function of density and other state variables (like temperature). Equation 

(1.14) has to be satisfied separately for each component i that contributes to 

the total energy density of the universe (including a cosmological constant, or 

a homogeneous scalar field). In the case that the equation of state parameter 

does not evolve in time, wi = pif Pi = const., the density of each species will 

1Some authors call both equations written here as 'Friedmann', while some refer by that 
name to only eq. (1.10). 
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evolve as: 
Pi ex: a-3(1+wi) . (1.15) 

Knowing the values for w's is the heart of cosmology; no conclusions are 

possible, nor results derivable before assuming a certain equation of state. For 

ordinary matter we have laboratory experiments which, in the tested ranges of 

energy, confirm that matter we know indeed behaves as an ideal fluid. If non­

relativistic, then w = 0, while for relativistic matter and radiation, w = 1/3. 

Some undetected forms of matter may also exist, for example, large scale scalar 

field(s), which also allow for p = wp equation of state, and w = 1 (when kinetic 

energy dominated), or w = -1 (potential energy dominated). In general, this 

points to an important question: if observations do not match the model, is it 

because the model is flawed, or because of the existence of some yet undetected 

form of matter-energy? The answer is not always clear. 

A very important quantity which appears in the Friedmann equation is 

a 
H(a) = - , 

a 
(1.16) 

the time-dependant Hubble parameter. Its value today (Ho) is the Hubble 

constant, one of the most important numbers in cosmology. It indicates the 

rate at which the universe is expanding, and is often expressed through the 

dimensionless parameter h, such that Ho = lOOh kms- 1 Mpc- 1 . In addition, 

cosmologists often use the deceleration parameter: 

a 
q(a) = --2, 

aH 
(1.17) 

and there were even some suggestions to reduce cosmology to "a search for two 

numbers" - Ho and qo [10]. 

1.2 Content 

The overall geometry of the universe depends on the total matter-energy con­

tent, as we can see from equation (1.8). While there is a continuum of mean den­

sities which will lead to negative ('open' universe) or positive ('closed' universe) 

curvature, there is one special value which results in an exactly fiat universe: 

3H2 

Pc= --0 ~ 1.88 x 10-29h2 gcm-3 . 
87rG 

(1.18) 

This is called the critical density, and commonly different contributions to the 

energy density are represented in terms of it: 

(1.19) 
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The above corresponds to relative amounts of matter, radiation, cosmological 

constant, and curvature. Hereafter, when the above cosmological parameters 

are not explicitly written as a function of time, we refer to their values at the 

present time, e.g. nm:= nm(Z = 0). 

Each component listed in equation (1.19) evolves differently as the universe 

increases in size (following eq. (1.15)), and the Friedmann equation (eq. (1.11)) 

can be rewritten as 

(1.20) 

to directly show the time scaling. We can see that in the general case, the 

universe will evolve through phases when different components dominate, as 

they decay differently in time. We can also infer a few possible scenarios: if 

nA < 0 the universe will always recolapse. It will happen either because the 

cosmological constant will reverse the expansion once it becomes the dominant 

component, or because the amounts of matter or radiation were sufficiently 

high to stop the expansion themselves. If, on the other hand, the cosmological 

constant is positive, the universe will always expand unless there is enough 

matter or radiation to reverse the expansion before the cosmological constant 

prevails. 

1.2.1 Current Data 

Understanding the composition of the energy-density in the universe, as well as 

the relative amounts of different components, is crucial for understanding the 

history of the universe. It provides us with knowledge about the expansion rate 

(eq. (1.20)), which in turn determines the age of the universe, distance-redshift 

relation, statistical properties of the large scale structure, to name a few. In 

principle, any of the many cosmological probes (§1.3) can be used to constrain 

to some extent all cosmological parameters. Nevertheless, some observations 

naturally measure certain parameters with excellent accuracy, and those can be 

used ~s priors in the analysis of other observations. 

Table 1.1 shows the parameters of the current 'standard' model. While 

the exact numbers differ from study to study, and are also sensitive to what 

parameters were fixed as priors, and which kept open, all the studies agree 

on the essence of the current model, often called the 'concordance' model to 

emphasize its robustness against different observations. In short, observations 

strongly favor a flat universe n = 1, but only a few percent of the total content 

is in forms of matter and energy previously known. The rest is in forms neither 
experimentally detected nor theoretically predicted - cosmology provided the 

first indications for the existence of dark matter and dark energy. 

There are excellent reviews on poss1'ble dark matter candMates /11
1 

12)/ here 

we will just mention one important dynamical categorization scheme - 'hot 1 vs 

'cold' dark matter. A dark matter candidate is called 'hot} J~r1·t . . 
1 JS movmg at 

tJ 



Table 1.1: Cosmological parameter values from Tegmark et al. (2006) [1]. 

Parameter ACDM model Flat model 

n 1.003 ± 0.010 1 (fixed) 
QA 0.757 ± 0.021 0.757 ± 0.020 

nm 0.246 ± 0.028 0.243 ± 0.020 

nb 0.042 ± 0.002 0.042 ± 0.002 

as 0.747 ± 0.046 0.733 ± 0.048 

ns 0.952 ± 0.017 0.950 ± 0.016 

ho 0.72 ± 0.05 0.72 ± 0.03 

qo -0.64 ± 0.03 -0.57 ± 0.1 

w -1 (fixed) -0.94 ± 0.1 

To (K) 2.725 ± 0.001 2.725 ± 0.001 

to (Gyr) 13.9 ± 0.6 13.8 ± 0.2 

relativistic speeds, that is, if most of its energy is kinetic energy. Similarly, it is 

'cold' if it is moving non-relativistically, with its rest mass mdmc
2 dominating 

its energy budget. This categorization has important ramifications for structure 

formation, as inhomogeneities in the universe will evolve completely differently 

in the two scenarios. If dark matter is hot, it will erase perturbations on small 

scales via free-streaming processes, and structures will form through a top­

down process, where most massive structures form first, and then fragment into 

smaller objects. On the other hand, in the cold dark matter (CDM) case, the 

smallest structures are the first to gravitationally collapse, and progressively 

larger structures form through mergers of smaller objects. While observations 

of large-scale structure exclude cosmologies where most of the dark matter is 

relativistic, it is still viable that a small fraction is 'warm'. The work here will 

consider only the CDM scenario, and it should be emphasised that the mass 

scaies considered here are not affected by the possible presence of warm dark 

matter. 

1.2.2 Dark Energy 

In 1998, cosmic acceleration was discovered [13, 14], and since then the question 

what drives it remains one of the most striking problems in physics. Since 

all known forms of matter and radiation (as well as those still unknown but 

anticipated - dark matter) can only decelerate the expansion of the universe, a 

new and radical solution is required. All possible solutions are currently dubbed 

dark energy, even though the origin of acceleration might not necessarily be a 

contributor to the total energy density of the universe. The simplest model, and 

the one to which the current observations converge, is a cosmological constant, 

first introduced almost a century ago by Albert Einstein [15]. Originally, its 

sole purpose was to make the universe static, which was aesthetically pleasing 

in the years before the discovery of Hubble's law in 1929 (and even before the 

7 



discovery of galaxies which happened in 1924). 

Assuming the universe consists only of pressureless matter (dark matter) 

and dark energy in the form of a cosmological constant, we can rewrite the 

Friedmann equation (1.10) as: 

ii 4nG A 
~=--3-Pm+3, 

which gives us the effective force law 

GM A 
f=--+-a. 

a2 3 

(1.21) 

(1.22) 

We see that the cosmological constant enters as a 'repulsive gravity', and its 

intensity increases with distance. Clearly, if dominant, the A term leads to an 

accelerated expansion of the universe. 

The above considerations can be generalized to dark energy, for the moment 

defined via w =/:- -1. Analyzing the Friedmann equation further, we can define 

the condition for acceleration (again, assuming pressureless matter and Om + 
n.t\ = 1) as: 

(1.23) 

which leads to 

(1.24) 

For the approximate ·value Om = 1/3 (table 1.1) cosmic acceleration requires 

w::; -1/2, violating the strong energy condition (w ~ -1/3). Of course, it is 

also possible for any value of nm, to find n.t\ which will exactly result in a= 0 

and ii = 0 - a static solution - which is why Einstein introduced A in the first 

place. 

One important issue, making theorists feel uncomfortable about dark en­

ergy is the fine tuning problem. If we ask when did the transition between 

deceleration and acceleration occur (ii = 0), we find the condition: 

( ) -3w ( ) n.t\ 1 + Zeq = - 1 + 3w Om . (1.25) 

For the measured values of the cosmological parameters (see table 1.1) this leads 

to Zeq :::: 0. 7 - fairly close to today. Having in mind that both matter and radia­

tion density are rapidly decreasing in time (see eq. (1.15)), the initial condition 

for PA/ Pm at the epoch when inflation ends has to be tuned to parts in ""' 10-81 

in order to become close to unity today. Moreover, the fact that acceleration is 

a relatively recent phenomenon is confirmed by supernova observations which 

favor Zeq :::: 0.5 [16]. Note also that the coincidence problem cannot be avoided 

with w =/:- -1, but only if the equation of state parameter is time-dependant 

w = w(z). 

Finally, the most bizarre possibility should be mentioned - dark energy vi-
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olating even the weak energy condition ( w ;::: -1 ). Due to Caldwell [17] this 

option is named phantom energy. Equation (1.15) shows that the dark energy 

density will grow to infinity for the case of phantom energy. Also, if we write 

the evolution of the Hubble parameter for the case of interest (flat universe, 

negligible radiation): 

(1.26) 

we immediately see that the case w < -1 leads to an infinite expansion rate, 

achieved in a finite time. At that point, our notion of space-time fails. 

In summary, there is not yet a clear idea what dark energy might be, and it's 

not even clear if it is really a form of energy or something else. Currently 'dark 

energy' is just another way to state that the expansion of the universe accel­

erates. An excellent review on dark energy candidates is written by Weinberg 

[18]. 

1.3 Measurables 

It is of course, possible to develop numerous thoeries about the content and 

structure of the universe. In the end, we have to use observations to constrain -

and rule out - competing theoretical models. All cosmological tests can roughly 

be reduced to effective measurements of two quantities: the expansion history 

- H(z) (eq. 1.16), and the linear growth factor - D+(z) (which will be defined 

later in §2). Therefore, the methods in the first category probe the homogeneous 

universe, while the second group characterizes how inhomogeneities evolve. 

1.3.1 Expansion History Probes 

The most prominent and accurate H(z) probe nowadays is obtained from ob­

servations of type Ia supernovae [19, 20, 13, 14, 21]. By measuring the incoming 

flux :F from a source of known intrinsic luminosity L, one can infer the lumi­

nosity distance dL to the object. This distance bears a cosmology dependence: 

dL(z) = f;rJ; = (1 + z)r(z) , (1.27) 

where r(z) is,the comoving distance to an object at redshift z, 

r(z) = r dz' 11 
da 

lo H(z') = l/(l+z) a2 H(a) 
(K = 0) , 

r(z) = IKl-1/2x [1"'1112 r ~] lo H(z') 
(1.28) 
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and where x(x) = sin(x) for;;,> 0 and sinh(x) for;;,< 0. In particular, for a 

flat universe and constant w (see eq. 1.20): 

1 1z dz' r(z) = -
Ho o Jnm(l + z')3 + OA(l + z') 3CHw) + Or(l + z') 4 

(1.29) 

As a result, measurements of supernova magnitudes can be efficiently used to 

constrain cosmological parameters. 

Similarly to the luminosity distance, if we know the transverse physical size 

D of an object, or physical phenomena, the angle subtending D at some redshift 

z is: 
D 

B = dA(z) . 

Here, dA(z) is the angular diameter distance 

dL(z) r dz' 
dA(z) = (1 + z) 2 ex }

0 
H(z') 

(1.30) 

(1.31) 

(following equations (1.27) and (1.28)). Measuring angular diameter distance to 

a 'standard ruler', thus provides the same leverage over cosmology as standard 

candles. 

Perturbations that exist in the early universe excite sound waves in the 

photon-baryon fluid [22, 23], called 'baryon acoustic oscillations' (BAO). The 

most prominent first peak defines a standard ruler whose length is equal to the 

distance sound can travel before baryons decouple from photons. This sound 

horizon scale is 

l oo Cs 

s = zd. H ( z) dz . (1.32) 

As the cosmic microwave background (CMB) as well as the Big Bang nucle­

osynthesis, constrains the baryon to photon ratio to great precision, the sound 

speed is also known and given by [24, 25]: 

(1.33) 

Moreover, measurements of the peaks in the CMB angular power spectrum con­

strain the physical scale of the sound horizon to a high precision. For example, 

WMAP 5 year data suggests= 146.8±1.8Mpc [26]. Looking at the distribution 

of luminous red galaxies in the Sloan Digital Sky Survey, Eisenstein et al. [27] 

were able to detect the BAO peak, whose height is consistent with the universe 

containing 30% of matter and 70% dark energy. 

1.3.2 Growth of Structure 

Cosmological probes described above (SN Ia, BAO) measure expansion of the 

universe, and they find that the expansion is accelerating. The reason for the 
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acceleration might be due to the existence of dark energy, or might indicate that 

our understanding of gravity on very large scales is incomplete 2
. Measurements 

of the expansion rate alone cannot provide the answer to this, but in combination 

with measurements of the growth of structure, the degeneracy can be broken. 

Weak lensing [28, 29, 30, 31], for example, is sensitive to both the geometry of 

the universe and the growth of structure. 

For any theory of gravity, one can determine the relation between the growth 

rate and the expansion rate (§2.2.1). Independent measurements of both can 

then confirm or reject the theory. The most promising path to measuring the 

growth factor is via the most massive gravitationally collapsed structures in the 

universe - clusters of galaxies. As they require billions of years to assemble, 

they are strongly influenced by the cosmic expansion history, but are also very 

sensitive to the amount of matter Om, and the amplitude of density fluctua­

tions a8 • Thus, their statistical measures - their mass distribution and spatial 

correlations - can be powerfull probes of cosmology. Moreover, as clusters form 

in the epoch when dark energy is dominant, they are exponentially sensitive to 

the effects of the recently observed acceleration of the Universe. 

This thesis presents theoretical and numerical results on statistics of very 

rare overdense structures which correspond to clusters at the current epoch. It 

is said 'correspond' rather than 'they are', as here are analyzed dark matter 

only structures. While the dark matter is indeed the dominant component (see 

table 1.1) that gravitationally clusters, its evolution is different from that of 

baryons. It does not radiate energy, and thus once virialized, dark matter halos 

cannot contract further. Baryons do cool on the other hand, and therefore at 

smaller and smaller scales the results from dark matter only simulations will be 

more and more inaccurate. For that reason, we focus in this thesis on the very 

large structures. Still, the clear downside is that connecting this theoretical 

framework to the observations is not always straightforward, as in general, dark 

matter structures are not directly observable. The most important methods for 

measuring growth of structure via galaxy clusters are the mass function, as well 

as the amplitude and the shape of the power spectrum. 

The Mass Function 

The distribution of masses in the universe is termed the mass function and con­

stitutes one of the most important probes of cosmology. At low redshifts, z ::; 2, 

the mass function at cluster scales (high-mass end) is exponentially sensitive to 

variations in cosmological parameters, such as the matter content of the Uni­

verse Om, the dark energy content along with its equation-of-state parameter, 

w [32], and the normalization of the primordial fluctuation power spectrum, 

2Historically, it would not be the fist time that measurements lead to an alteration of the 
current theory of gravity. After successfuly predicting that Uranus's orbit is altered by an 
invisible planet (Neptune), Le Verrier interpreted variations in Mercury's orbit as caused by 
a dark planet Vulcan. The planet was never found, but in 1915 Einstein extended Neewton's 
gravity, which accurately accounted for Mercury's perihelion shift. 
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as. This is especially interesting today, as several observational campaigns are 

starting to map clusters (Planck [33], Atacama Cosmology Telescope [34], South 

Pole Telescope [35]). 

In this thesis we investigate the halo mass function - the number density of 

dark matter halos. We provide accurate predictions for the mass function from 

numerical simulations, covering 7 orders of magnitude in mass, and a wide range 

of redshifts (z E [20 - O]). While the mass function at high redshifts naturally 

does not include clusters, it does include very rare density peaks, which at a 

given epoch are dynamically analogous to clusters of galaxies today. Since it is 

difficult to imagine baryonic process which would disrupt an object with mass 

M:;:::: 1014M0 , the number density of halos is an excellent approximation to the 

number density of clusters. The major problem which arises on the intersection 

between theory and observations is defining and measuring masses. Chapter 

4 addresses some of the issues, and determines relations between some of the 

commonly used mass definitions. 

The Power Spectrum 

The power spectrum P(k), or its Fourier space analog, the two-point correlation 

function e(r), is one of the main measures of large-scale structure. The ampli­

tude of the power spectrum cannot be predicted by theory, and is empirically 

determined. Commonly, the normalization is set by as - the root mean square 

of density fluctuations in 8h-1Mpc spheres 3 . The mass corresponding to that 

scale is "' 5 x 1014 M0 , which is the mass of a rich galaxy cluster. Roughly, 

as "' 1, and thus stands (again very roughly) in between nonlinear, smaller 

scales, and linear scales, larger than 8 h-1 Mpc. Here, esspecially in Chapter 4 

we will analyze how statistical properties of dark matter halos change with as, 

and we will present a new way to measure it, using statistics of merging objects. 

The second interesting property is the shape of the power spectrum. As it is 

possible to make theoretical predictions on what it should be, its measurements 

can provide insight in both the early universe, and the subsequent evolution of 

perturbations. Inflation, the most promising theory for the creation of density 

fluctuations (see §2.1) fixes the shape of the 'primordial' power spectrum. Its 

evolution can be predicted for any cosmology of interest, and is usually given 

through the transfer function T(k, t), such that 

P(k, t) = T(k, t) 2 Pin(k) . (1.34) 

The effects of evolution are thus scale-dependent, and two important scales will 

be imprinted on the final power spectrum: the sound horizon size at decoupling 

which provides a standard ruler (§1.3.1), and the horizon size at matter radi­

ation equality. The density fluctuations on scales smaller than the horizon are 

suppressed when the radiation is dominant, while those larger than the horizon 

3 For a more precise definition of u, see §2.3.1. 
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grow linearly (§2.1). As a result the power spectrum will have a global maxi­

mum at k = 27r / Req, and this value will strongly depend on the matter content 

in the universe, as higher values for Om result in an earlier epoch of equality. 

A practical problem is that the matter power spectrum is not directly ob­

servable. As one can only observe spatial correlation for a certain class of objects 

(clusters, galaxies, hydrogen clouds ... ) knowing how such objects are 'biased' 

with respect to the overall matter is crucial. It turns out that more massive 

objects are more biased, meaning that their power spectrum is more amplified 

[36, 37]. In Chapter 5 the mass dependence of the bias is analyzed, and an 

accurate analytical fit is given. As before, the results are obtained from dark 

matter simulations, thus they cannot be directly used for statistics of galactic 

objects, as (not yet understood) galaxy formation highly depends on baryonic 

processes. However, the most massive dark matter structures must resemble 

clusters very closely, and this is particularly important in the light of upcom­

ing surveys such as NORAS2 and REFLEX2 which together will map "' 1800 
clusters in the local universe. 
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2 Formation of Structure 

2.1 Evolution of Structure 

The most promising theory of the early universe is inflation [38]. Apart from 

solving the flatness, horizon and relics problems, it provides a mechanism for 

producing initial density fluctuations. These fluctuations will serve as seeds for 

future structures, and effectively they provide initial conditions for any structure 

formation research. 

During inflation, the quantum fluctuations in the inflaton field ¢ are expo­

nentially stretched due to the rapid expansion. The proper wavelength of the 

fluctuations are stretched out of the Hubble-horizon scale at the time, H- 1 . 

Once outside the horizon, the characteristic r.m.s. amplitude of these fluctua­

tions is aq, « H/(27r). As causal physics cannot affect perturbations outside 

the horizon, they become 'frozen', and simply linearly grow in time. Differ­

ent inflation models result in different perturbation spectra [39], and in general 

have to be calculated numerically [40]. Still, most inflation models result in the 

following perturbation spectrum: 

IJ(k)I ex k1
-' , (2.1) 

where € is the tilt. The spectrum is therefore expected to be very close to 

the scale-invariant (or Harrison-Zel'dovich) power spectrum - P(k) ex k1 . The 

amplitude of the perturbations depends on the inflaton potential at the time 

when the scale crossed the Hubble radius during inflation. Due to the unknown 

nature of the potential, inflation does not make accurate predictions of the 

normalization of the above amplitudes. 

As a result, inflation defines initial conditions for the standard big-bang 

model. These initial conditions result in a universe which is flat, homogeneous, 

and isotropic on large scales, and also imprints the perturbations on the metric 

which produce all the observable structure. After inflation (followed by reheat­

ing), the standard scenario of gravitationally driven growth of structures starts. 

As the universe decelerates, at some point the fluctuations re-enter the Hubble 

horizon, and seed gravitational instabilities in the universe. As perturbations 

of virtually any scale will be larger than the horizon at early enough times, its 

evolution has to be, at least initially, described by general relativity. 

In the linearised approximation, perturbations of the metric are assumed to 
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be small hijhii « 1, and Einstein's equations can be linearized to 

(2.2) 

The main difficulty in this approach is that, depending on the choice of co­

ordinates (gauge) OTcx,(3 can be arbitrarily large, and even generate additional 

quantities, which would be absent for different gauge choice. In general, if all the 

quantities (and the coordinate system) are well motivated, and physically inter­

pretable, the gauge artifacts will be present; if on the other hand, a convenient 

transformation of physical variables is used, Einstein's equations can be writ­

ten in gauge invariant form [41]. The problem there is that those transformed 

quantities usually do not have a good physical interpretation. 

The linearized treatment is developed in several works [42, 43, 44]; here, only 

some important results will be noted. The amplitude of perturbations larger 

than the horizon will always grow, and the growth will be more rapid in the 

epoch when radiation dominates (before matter-radiation equality, teq time): 

(op) ex: { a
2

; t < teq 

p a; t > teq 
(2.3) 

Modes which are inside the horizon can grow, but but can also be supressed 

either due to pressure forces, or because of the expansion of the universe. In 

the radiation dominated phase, the expansion timescale is shorter than the 

gravitational collapse timescale; thus no perturbations on scales smaller than 

the horizon can grow. After the matter-radiation equality epoch, when matter 

becomes the dominant component, fluctuations in dark matter resume growth. 

Thus, dark matter perturbations inside the horizon evolve as: 

(op) ex: { canst.; t < teq 

P DM a; t > teq 
(2.4) 

For baryons the evolution is somewhat more complicated as they interact by 

pressure forces as well. The epoch of baryon-radiation equality is a~ 1/(4 x 

l04Dbh2 ), which is for Dbh2 > 0.026 earlier than the decoupling epoch. Thus, 

for the case of interest, even after teq for baryons, they will still interact with 

photons via Thomson scattering. Due to the large sound speed in the photon­

baryon fluid - rv 1/3 speed of light - the pressure will provide support against 

the collapse. Thus the evolution will look similar as in the dark matter sector, 

but with a time offset: 

canst.; t < tdecoupling 

a; t > tdecoupling 
(2.5) 

As the perturbations in dark matter resume growth before the baryons, they 

will form potential wells. Once baryons decouple, and lose pressure support, 
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they will quickly be driven inside those potential wells. As a result, right after 

decoupling baryon inhomogeneities will rapidly grow until their perturbations 

become the same as for the dark matter. From there on, their growth will be 

indistinguishable from the dark matter growth, as long as we consider scales 

much larger than Jeans scale for baryons. This will be discussed later in more 

detail. When the length scale of the perturbations is much smaller than the 

Horizon scale AH ::= 2ct, then a Newtonian treatment of the subject is valid, as 

relativistic effects due to the curvature of space-time are negligible. 

2.2 Linear Evolution 

When treating dynamics in the Newtonian limit, matter can be approximated 

as a collection of identical particles of mass m, moving in the gravitational 

potential cI>. In classical mechanics, a complete description of such a system is 

given through the number of particles residing in a small volume d3r centered 

on r, whose velocities are confined to d3u, around u: 

(2.6) 

where J(r, u, t) is the phase-space density. Evolution of the system is described 

by the Boltzmann equation: 

of+ f\7 f - V'cI> {)~ = Of I 
{)t Or {)t coll 

(2.7) 

In the limit where the gravitational potential can be considered smooth, 

that is, when the mean free path of a particle is very long (compared to the 

characteristic scale of the problem), the collisional term on the right-hand side 

of equation (2.7) can be neglected. We are interested in solving the Boltzmann 

equation in comoving coordinates where: 

(2.8) 

This collisionless Boltzmann, or Vlasov, equation has to be solved self-consistently 

together with the Poisson equation: 

\72cI>(r, t) = 4?TGa2 p(r, t), (2.9) 

where 

p(r, t) = J J (r, v, t)d3v . (2.10) 

The analysis of the Vlasov equation can be performed by taking its moments1 

[45, 46]. The N-th moment is obtained by multiplying the Vlasov equation by 

vN -l, and integration over velocity space. The first two moments of the Vlasov 

1 f itself cannot be obtained through observations, but it is possible to measure its moments. 
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equation are analogous to the continuity and Euler equations in ordinary fluids, 

but where the velocity dispersion plays the role of effective pressure. However, 

taking moments alone cannot close the system, as every N-th moment will 

introduce a new variable. In fluid dynamics, the equation of state is used for 

closure, describing material properties through the relation between p and p 

(and possibly other thermodynamical quantities). With collisionless fluids, one 

is forced to either truncate in some way this regression, or to use some knowlegde 

of the aij for the particular case under consideration. 

In the case when the mean free path of a particle is short, matter can be 

described as an ideal fluid. The description of the ideal fluid consists of mass and 

momentum conservation equations [47]. The continuity equation in comoving 

coordinates is [ 45]: 
ap 1 -a + 3Hp + -"il(pv) = o, 

t a 
(2.11) 

while the Euler equation is: 

av 1 1 1 - + - (v · "\l) v + Hv = --"\lp- -"\l<I>. 
at a ap a 

(2.12) 

The density contrast at a given point can be defined as: 

J(r, t) = p(r, t) - Pb(t) 
Pb(t) ' 

(2.13) 

where Pb includes matter only, as it is the only component of matter-energy 

which clusters, and therefore Pb <X a-3 . Furthermore, we can write the pressure 

as p = p0 + Jp, and if the pressure is a function of density alone, then: 

"Vp = P(Pb) + c;pb6 , (2.14) 

where c8 is the speed of sound: c; = dp/dp. Moreover, v can also be considered 

a perturbation, as v = vo + Jv, but we can always choose an inertial reference 

frame where v 0 = 0. Similarly, <I> is already a perturbed potential (see equation 

(1.7)). Substituting these into equations (2.11) and (2.12), and considering small 

perturbations where 6 · v and v2 terms can be dropped, we find the following 

system of equations: 
aJ 1 - + -"\lv = 0 
at a 

av 1 1 - + Hv + -"Vp + -"\l<I> = 0, 
at apb a 

(2.15) 

as /lb = -3H Pb· We can take the time derivative of the first equation, and 

multiply it by -a; also take the divergence of the second equation. After adding 

the two we obtain one equation for the density perturbations: 

a26 aJ 1 2 1 2 
-a 2 + 2H-a = -2-"il P + 2"\l <I>. t t a Pb a 

(2.16) 
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Velocity was completely eliminated via \Iv = -ali. Writing the Poisson equation 

as 

\12<1> = 4nGpba25 , (2.17) 

we end with 
825 85 1 2 
~ + 2H ~ = - 2-\l p + 4nGpb5 . 
ut ut a Pb 

(2.18) 

First, we try to find a stable solution where the pressure gradient can stop 

the runaway gravitational collapse. The pressure gradient is 

dp 2 
\Ip= dp \Ip= C8 pb\15, (2.19) 

resulting in 
825 · 85 c2 

~ + 2H~ = ~\12 5 + 4nGpb5. 
ut ut a 

(2.20) 

As none of the coefficients with 5 or its derivatives depends on r, we can try to 

find the solution in the form of plane waves: 

5 = A(t) exp(ik · r) . (2.21) 

Substituted into eq. (2.20), it shows us how the amplitudes of different k modes 

evolve: 
.. . [ c2k2] 

Ak + 2H Ak = 4nGpb - ~2 Ak (2.22) 

This is the standard equation for the fluid instability, except for the second 

term on the left-hand side, called 'Hubble drag', which acts as a friction term. 

The gravitational source term vanishes for the wavenumber 

kJ = (4nGpb)1;2 
c~ ' 

(2.23) 

which defines the Jeans wavelength AJ = 2na/kJ. Wavelengths shorter than 

this will oscillate, as pressure can provide support against gravity. Neglecting 

the Hubble drag for a moment, the solution for the amplitudes become A ex 

exp (-iwt), resulting in a dispersion relation: 

w 2 = -w} + k2 c; . (2.24) 

Modes of wavelengths larger than the Jeans wavelength, will be unstable: in 

standard fluid dynamics they exponentially grow, but in the expanding universe 

Hubble drag slows them down into power-law behaviour as will be demonstrated 

in the following section. 
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2.2.1 Linear Growth Factor 

In the limit of very long wavelengths, AJ « >.., equation (2.22) becomes the 

same as for a pressureless fluid. The linear growth factor for that case can be 
calculated from 

J + 2H8 = 47rGpb5. (2.25) 

By using the chain rule, it is straightforward to switch from time as independent 

variable, to the scale factor: 

.r = a5 - . a5 
u - at - a aa , 

and similarly 

.. a (· a5) . 2 a2
5 ( . . aH) a5 5 = at a aa = a aa2 + Ha+ aa8a aa . 

The term in brackets in the above equation comes from 

.. aa a (H ) H. . aH 
a = at = at a = a + aa aa . 

Equation (2.25) thus reads: 

2 a
2
5 ( . . aH) a5 ,. 

a aa2 + 3Ha + aa8a aa = 47rGpbu . 

It can further be transformed into 

a
2
5 + (~ + alnH) a5 _ 30mHS 5 

aa2 a aa aa - 2a5H 2 ' 

as smoothly distributed components do not cluster and Pb is simply: 

3H6 
Pb( a)= Om(a) 87rG , 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

and Om(a) = Oma-3
. Currently, the observations point to the cosmology where 

0 ~ Om + OA, where OA might be the cosmological constant, but also an 

arbitrary form of dark energy. In general, equation (2.30) cannot be solved 

analytically, as dark energy has an undetermined equation of state parameter 

w, which might also be time-dependent. 

One interesting case is Om = 0 = 1, as matter was dominating the den­

sity content throughout a significant fraction of the cosmic history. There, the 

Hubble parameter is simply H = H 00;(2a-312 , and eq. (2.30) becomes: 

a2
5 + ~ a5 _ ~5 = 0 . 

aa2 2a aa 2a2 (2.32) 

The density contrast 5 is the sum of two solutions to this equation, one that 
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Figure 2.1: Linear growth factors for four different cosmologies - CDM, ACDM, 
and two CDM + dark enery with constant w, as a function of redshift (a = 
(1 + z)- 1

). 

grows in time, and one that decays: 

J = A(r)D+ + B(r)D_ 

D+ ex a , D_ ex Hex a-312 • (2.33) 

The more interesting solution is naturally the growing one, D+, as it drives 
gravitational instabillity over time. 

Another interesting solution is when dark energy is the cosmological con­

stant, that is, w = -1, and H =Ho (nma- 3 +nA) 112. The decaying mode is 

again D _ ex H, but the growing mode differs. The easiest way to find a growing 

mode is to look for a solution of the form D+ = uH, and equation (2.30) as a 
function of u is [48]: 

a2u 3 (~ alnH) au_ !':12+ + !':\ !':\ -0. ua a ua ua (2.34) 

This equation can be reduced to first order in u', and solved by simple integration 
as: 

au 
[)ex (aH)-3 

a ' (2.35) 
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Figure 2.2: Linear growth rate in general relativity (black, solid for n = nm, 
dashed for n =nm+ nA), and in braneworld gravity (red), where the late time 
acceleration emerges from the gravity sector rather than from the matter-energy 
content. 

giving a growth factor 

5,..., H la da' Hm_ 
3

, 
D+(a) = -2-Ho 0 [a'H(a')/Ho] (2.36) 

where the proportionality constant in front of the integral is obtained by re­

quiring that for a « 1 the growth factor should be the same as for a matter 
dominated universe. 

When w =I- -1, one has to numericaly solve equations (2.30) and (1.26) 

for desired values of nm and w 2
• Examples of linear growth factors for four 

different flat cosmologies are presented in the figure 2.1: matter dominated, 

matter + cosmological constant, matter +dark energy with two different w's. 

As expected, dark energy, which effectively enters as repulsive gravity, slows 
down the formation of structures. 

For many studies (peculiar velocity field, redshift distortions ... ) it is conve­
nient to introduce the linear growth rate 

dlnD 
f = dlna · (2.37) 

If gravity is described by general relativity, f is, in the matter dominated 
2
It is convenient to first reduce the second order equation (2.30) into two first order differ­

ential equations. 
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universe, well fitted by [45] f ~ 0~60 . A cosmological constant does not change 

this relation significantly [49]: 

f ~ n°·60 + ~n (1 + ~n ) m 70 A 2 m (2.38) 

and for all practical purposes depends on the matter content only. Even more 

convenient is that in alternative theories of gravity, the growth rate still preserves 

its functional dependence, but with a different exponent. In braneworld gravity 

[50] for example, the linear growth rate is given by f ~ 0~68 [51, 52, 53]. 
Figure 2.2 shows the difference between these two theories. Also, we see that 

the difference between CDM and ACDM is very small in general relativity. 

2.3 Spectrum of Perturbations 

The disadvantage of treating perturbations in real space is that if we divide it 

into small volumes, their evolution will not be independent as gravity will move 

matter from one volume element into another. It is therefore more convenient 

to analyze the evolution of structure in Fourier space. Considering a volume V, 

with length Lon a side - which is much greater than the 'homogeneity' scale -

we can expand the perturbation field as: 

o(r) = :L o(k)eik·r = :L o*(k)e-ik·r . (2.39) 
k k 

The components of the wavevector k are kx = 27rnx/ L, ky = 27rny/ L, kz 

27rnz/ L, where nx, ny, nz are integer numbers. The fourier components o(k) 

are 

o(k) = ~ J o(r)e-ik·rd3r. (2.40) 

As o(r) has to be real, o*(k) = o(-k). If the density field on different locations is 

uncorrelated (or weakly correlated), then the integral in equation (2.40) becomes 

a sum over a large number of random variables. According to the central limit 

theorem, the probability distribution of o(k) is then Gaussian: 

o (k) ex exp ( - :: ) · (2.41) 

As the mean value of perturbations (o) = 0 by definition, the variance a 2 is: 

a2 = (02) = ~ :L o2(k) , 
k 

(2.42) 

and it has to be a function of k = lkl only because of the isotropy of the universe. 
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In the continuum limit (V _____, oo) it becomes 

00 2 11 3 112 a = (
2

7r) 3 P(k)d k = 
2

7T2 k P(k)dk. 
0 

(2.43) 

In the case of a Gaussian random field, the power spectrum 

P(k) = (o(k)o*(k)) = o2 (k) (2.44) 

contains the complete statistical characterisation of the perturbation field. As 

the Gaussian random field is ergodic, the ensemble average in k space is equal 

to the spatial average in real space, thus 

a2 = ( c:Y) (2.45) 

This definition of variance accounts for perturbations on all scales, and can 

diverge for certain forms of P(k). 

2.3.1 Mass Variance 

Variance can also be considered on a given scale R, which on average contains 

a mass: 

(M) ex: PbR3 
. (2.46) 

As o is a Gaussian variable, then all its linear combinations (like M) will also 

have a Gaussian distribution. The mass variance is thus: 

a 2(R) = ((M - (M))2) 
(M)2 

(2.47) 

Expanding the density in Fourier series as in equation (2.40) the variance 

becomes [24, 41]: 

a 2 (R) = ~2 (1 l~o(k)eik·r;;;o(k')eik'·r'drdr') = 

~' (f,; b(k)b'(k') j e"' dr j e-ik' •' dr') ~ 

~2 (L o(k)o*(k')e[i(k-k'J·rclJ(r - re)I'(r' - re)) , (2.48) 
k,k' 

where re is the center of the volume V, and I= J exp [ik · (r - re)]d(r - re)· 

As the first exponent is a delta function, the whole sum is: 

a2(R) = L(lo(k)l2) [ ~ 1 eik-(r-rc)d(r - re)] 2 = L(lo(k)l2)J2 = 
k k 
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2_ ~=>52 (k)W2 (k; R) . 
v k 

(2.49) 

W is a Fourier transform of a filter ('window') function used for smoothing 

the density field in real space. Clearly, the particular choice of filter will deter­

mine the proportionality constant in eq. (2.46). The continuum case for a(R) 

is straightforward: 

00 

a 2 (R) = ~ J k2 P(k)W2 (k; R)dk. 
2n 

0 

(2.50) 

Comparing it to equation (2.43), we see that a 2 (R) < a 2 • While for the variance 

all modes are summed, in the mass variance case modes with wavelenghts much 

smaller than R will not be important as the window function will average them 

out. If the power spectrum falls off with decreasing k, the modes on scales much 

larger than R will also contribute very little. 

2.4 Extensions of Linear Theory 

In the linear regime each Fourier mode 8 (k, t) evolves independently preserving 

statistical properties of the modes, like the power spectrum. As inhomogeneities 

grow further, non-linear features - most importantly mode to mode coupling -

develop [54], and there is no full analytical theory describing this regime. 

In the following the most often used non-linear approximations will be dis­

cussed, which involve extrapolations of the linear properties of the density field 

(well) into the non-linear regime. While these models do not attempt to cor­

rectly account for the dynamical evolution of clustering, but rather are based 

on phenomenological approaches, often a simple intuition, they still provide 

interesting insights into the properties of the non-linear mass distribution. A 

detailed review of non-linear approximation methods for the gravitational col­

lapse is given by Sahni and Coles [55]. 

2.4.1 Zel'dovich Approximation 

The Zel'dovich appro;_imation [56] considers perturbations to fluid element's 

(particle) trajectories, rather than perturbations at fixed point in space. There­

fore, this represents going from the Eulerian treatment, discussed in §2.1 and 

§2.2, to a Lagrangian formalism. There, one considers the change in the final 

(Eulerian) coordinate r from its initial (Lagrangian) position q: 

r=q+l!I(q,t). (2.51) 
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The displacement term can be perturbatively expanded as 

lJI = \Jf(O) + lJI(l) + ... (2.52) 

The Zel'dovich approximation consists of truncating the above expansion at 

linear order 
lJI ~ lJI(o) = D+(t)s(q) = D+(t)\7<I>(q) . (2.53) 

Thus, the motion of each fluid element is determined by the linear growth rate, 

and the spatial perturbations s(q), which can be expressed as the gradient of 

the gravitational potential. A simple substitution: T = D+(t), v = -s(q), leads 

to r( q, T) = q +TV - a transformation from Lagrangian to Eulerian coordinates 

for the case when no forces are present. We see that Zel'dovich approximation 

does not account for the dynamics of gravitational collapse, but rather treats 

motion in a ballistic way. Also, it assumes a velocity field of potential type 

v = -\7<I>(q), which is not very restrictive as (possible) initial rotations in the 

fluid would be damped by the expansion of the universe. 

As long as the trajectories of different fluid elements do not cross, the relation 

r = q + D+(t)\7<I>(q) (2.54) 

provides a unique mapping between Eulerian and Lagrangian space. Applying 

mass conservation, the relation among densities in two systems has to be: 

Po 
p(q, t) = l'Dijl ' 

where 'Dij is the tensor of deformation: 

'Dij ori = Oij + D+ ovi = 
oq1 oq1 

1 - D+.A1(q) 0 0 

0 

0 

1- D+.A2(q) 0 

0 1- D+.A3(q) 

(2.55) 

(2.56) 

whose eigenvalues are Ai, and in the general case, each can be positive or nega­

tive. The probability of a coincidence .A1 = .A2 = A3, or even only two eigenvalues 

being exactly the same is effectively zero. 

For a Gaussian random field in a n = Om = 1 universe, the set of eigenvalues 

>-1 > .A2 > .A3 will have the probability distribution ([57], english translation in 

[58]): 

53 
· 27 (-3lf + 15!2/2) P(.A1, .A2, .A3) = 6 VS exp 2 (.A1 - .A2)(.A2 - .A3)(.A1 - .A3) , 

87rain 5 ain 
(2.57) 

25 



where Ii = .:\1 + .:\2 + A3 and 12 = .:\1.:\2 + .:\2.:\3 + .:\1.:\3 are the invariants3 of 

the deformation tensor vij) and O"in is the variance of the initial density field. 

The probability of only one eigenvalue being positive is 42%, and this leads to 

a one dimensional collapse, into two dimensional pancakes. The same is the 

probability of having only one negative eigenvalue, resulting in a collapse along 

two axis into one dimensional filaments, typically forming at intersections of 

pancakes. In 8% of cases all Ai will be positive, and collapse will occure in 

all three directions resulting in clumps (strictly speaking a point) at filament 

crossings. Note that in all these cases, the initial collapse is one dimensional 

forming disk structures [59]; at later stages however, all three eigenvalues are 

important (Eq. (2.55)). Finally, the remaining 8% of cases, when all eigenvalues 

are negative, corresponds to formation of expanding voids. 

From equations (2.55) and (2.57) one can obtain the probability distribution 

function (PDF) for the density contrast 6 (see [60]): 

P(o, z) 
9. 53/2 

-----x 
47r(l + 6)3 N 8 a 4 

00 

(2.58) 

x J (s-3) 2 6s _E_i_ ~ 5_ 
e-~(1 + e-;;2)(e-~:r + e-~ - e-~)ds, 

3(1+8)-1/3 

where N 8 is the mean number of streams in the flow (Ns = 1 means there are no 

shell crossings), and a is the variance of the density field at redshift z according 

to linear theory, a(z) = D+(z)uin, and 

(
1 [2 1 54 ] ) f3n(s) = sv'5 2 +cos 3(n - l)7r + 3 arccos( (l + o)s3 - 1) (2.59) 

At very early times, when the variance is small, u « 1, the density distribution 

remains Gaussian as expected from linear theory: 

P(p) = - 1-exp [ (p- p)
2

] 
V2ifa 2a2 

(2.60) 

As evolution proceeds, the density contrast in some regions grows to very high 

values, while on the other side, has to be bounded by p ~ 0 ==> 6 ~ -1 

requirement. Thus, the density PDF will at later times become non-Gaussian 

(for a detailed discussion of density PDFs, see [61]). Figure 2.3 shows P(o) 

at the current epoch, z = 0, and it is interesting to note that the Zel'dovich 

approximation successfully describes the statistics of the density field even much 

beyond the validity of linear theory, o « 1. 

It has to be emphasised that the picture of structure evolution leading to pan­

cakes, filaments, clumps, and voids, is in a remarkable agreement with simula­

tions (and after all, with the real universe). When perturbations are small, both 

Zel'dovich approximation and standard Eulerian linear theory (§2.2) will agree 

3Third invariant being Is= >..1>..2>..3. 
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Figure 2.3: Probability distribution function of density contrasts in an n = 
nm = 1 universe, measured in spheres of R=lO Mpc/h (corresponding to den­
sity RMS u=0.74). The red dotted line shows the Zel'dovich approximation 
(analogous to starting an N-body simulation at Zi = 0). Blue and black lines 
are for Zi = 5, and Zi ----+ oo. The data points are from an N-body simulation. 
[Figure from Valageas (2002) [5].] 

and provide virtually exact results. However, extrapolation of the linearized 

Euler equations into the non-linear regime will lead to meaningless results, for 

example regions with negative densities, while the Zel'dovich approximation still 

maintains finite errors even when extrapolated to p ----+ oo. 

These regions of infinite densities (caustics) form when trajectories of ( colli­

sionless, zero temperature) particless cross; in Zel'dovich approximation, it will 

happen instantaneously, followed by subsequent decrease of density as particle 

ballistically drift away from multi-strem regions. Fourier space analysis [62] 

shows that caustics form not because of extreme growth of wave amplitudes, 

but because of coordination of phases. As in reality, gravity will keep parti­

cles close to a pancake region, it is only the formation of caustics when the 

Zel'dovich approximation becomes meaningless. Many extensions of Zel'dovich 

theory have been made, in an attempt to extend the analytical approach further 

(e.g. truncated Zel'dovich approximation, adhesion model), but they will not be 

reviewed here (see [55]). 

Finally, due to its lagrangian nature, as well as for its straightforward im­

plementation, the Zel'dovich approximation bec·ame a common approach for 

27 



setting up initial conditions in cosmological N-body simulations. 

2.4.2 The Spherical Collapse Model 

We have seen that perturbations in Lagrangian formalism can be extrapolated 

much further than op/ Pb « 1 with results being at least qualitatively correct. 

However, the Zel'dovich approximation (§2.4.1) cannot produce virialized stru­

cures - which are most interesting, as they are observationally more accessible 

than pancakes, filaments or voids. Another simple and very popular model of 

gravitational instability in the nonlinear regime is the spherical collapse model. 

There, one considers an isolated and homogeneous spherical density perturba­

tion embeded in a homogeneous expanding background. The effects of neigh­

bouring density perturbations and tidal forces on the evolution of the considered 

perturbation are ignored. 

These simplifying assumptions make analytical considerations possible, and 

despite its simplicity, the model has been widely used not only to explain proper­

ties of a single virialized object, but also for statistical properties of an ensemble 

of gravitationally collapsed structures. As it was pointed out that the proba­

bility of uniform collapse in all three directions is effectively zero (§2.4.1), the 

success of spherical collapse might seem strange. Arguably, the explanation is 

that caustics (on a certain mass scale) form before the first objects (of similar 

masses); thus the Zel'dovich approximation is an excellent ansatz for initial col­

lapse of matter up to the first crossing of particle trajectories, at which point 

other contraction eigenvalues become as important. An alternative way to think 

about this problem is to note that within a filament, many virialized objects 

will form. 

According to Birkhoff's theorem (the relativistic analog to Gauss's law), an 

isolated spherical perturbation evolves as a homogeneous FLRW universe of 

its own [63, 64], whose line element is given by eq. (1.1), and whose evolution 

is determined by Friedmann equations (1.10) & (1.11). If the total energy 

density of the fluctuation (!:11
) is greater than that of the background universe 

(!:1), it is an overdensity, which in this idealized scenario is the progenitor of a 

galaxy, group, or cluster. On the other hand, if !:11 < n, it is an underdensity 

which corresponds to a (idealized, spherical) void. Clearly, the evolution of the 

spherical density perturbation will crucially depend upon the value -of !:11
• 

Let us consider a spherical overdensity of radius R with an initial overdensity 

oi and mass 
47r 3 ( ) M = 3 R Pb 1 + oi , (2.61) 

Note that, since other perturbations do not interfere with this one, the above 

mass is conserved, but the overdensity will of course change. Furthermore, the 

total energy will be conserved as well: 

E=~R,2_GM 2 R = const. (2.62) 
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Assuming that initially the difference between the spherical perturbation and 

the background universe is infinitely small, the expansion rates of the perturba­

tion and the universe will be the same: Hpert = Huniv =Hi. Furthermore, we 

can consider perturbation with no peculiar velocity; the radius of any shell Ri 
then evolves as Ri = HiRi. 

The kinetic and potential energies per unit mass are therefore 

K = ~H2R2 
i 2 i i 

GM= -KS2i(I + <\)' Ui=- Ri (2.63) 

where the density parameter ni is the ratio of the mean mass density to the 

density in an nm= n =I universe with the same Hubble constant at ti: 

n. _ 87rG 
i -3 --pbHi. (2.64) 

As a result we get the total energy: 

E =Ki+ ui =Kini [n; 1 
- (I+ Oi)] (2.65) 

Assuming different shells do not cross, the requirement for the collapse is E < 0. 

In a universe consisting only of pressureless matter, the Hubble parameter is: 

H(z) = Ho [nm(l + z) 3 + (1 - nm)(I + z) 2] 
112 = 

Ho(I + z)(I + nmz) 1/ 2 , (2.66) 

thus the density evolves as ni = nm(z) = nm(I + z)/(I + nmz). With that, the 
condition for collapse becomes: 

1-nm 
Oi(z) > ,... m(I + z (2.67) 

In an open universe nm < 1, the density perturbation must exceed some value 

oi > n; 1 
- 1 in order to prevent eternal expansion; in the case of a closed or 

fiat universe, even infinitesimal departure from the mean density will result in 
a collapsed structure at some redshift. 

The time evolution of a spherical shell is identical to that of a spatially open 
or closed universe: 

when E < 0, and 

R 

t 

A(I - cosB) 

B( (} - sin B) 

R = A(coshB - I) 
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t = B(sinh f3 - B) (2.69) 

for the E > 0 case. Combining the eqations for Randt we get A3 = GMB2 • 

As a result, an overdense spherical shell will expand, but with a slower rate 

than the background universe, increasing its density contrast. At a turn-around 

time tta, it will reach its biggest size Rta, and starts collapsing. At the moment 

of turn-around, the shell is instantaneously at rest, and from conservation of 
energy we have: 

wherefrom 

E = KS2i [Di1 
- (1+8i)] GM 

Rta 

Ri KiDi(l + 8i) ' 
Rta 

1+8i 
Rta = Ri 8i - (Di1 - 1) 

(2.70) 

(2.71) 

Clearly, R = 0 occurs when f3 = 7r (equations 2.68), and one can use that to 

find A and B: A= Rta/2, B = tta/7r. In terms of initial perturbation quantities 
these coefficients are 

A 

B 

(
Ri) 1+8i 
2 8i-(Di1 -1) 

1+8i 

2HDi/2[8i - (Di1 - 1)]3/2 (2.72) 

For a fiat univ~rse, useful approximations are A~ Ri/(28i) and B ~ 3ti8;312 /4. 

At early times, when f3 « 1, equations 2.68 can be solved by expanding in 
B: 

From here f3 is 

resulting in R: 

R 

Rta 

t:a = ~ ( ~
3 

- 1~
5

0 + " · ) · (2.73) 

e2 = (67rt) 2/3 [1 + __!_ (67rt) 2/3 - .. ·] 
tta 30 tta (2.74) 

f32 f34 
4- 48 + ... 

~ (67rt) 2/3 [1 - __!_ (67rt) 2/3 + .. · l 
4 tta 20 tta (2.75) 

Keeping only the dominant terms we find that the overdensity in the linear, 
f3 « 1, regime evolves as: 

h = ~ (67rt) 2/3 
20 -tta 
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Table 2.1: Linear theory and exact overdensities b at various stages in the 
spherical collapse model. 

8 bL b 
8 ____, o bL CX: 82 b ex: 82 

7r 0.341 0.466 
~ 0.568 1.01 3 
7r 1.063 4.6 

27r 1.686 00 

Coming back to the full evolution: the density in a shell is 

3M 
p(t) = 47rA3(1 - cos8)3 ' (2.77) 

while the background in the case of a fiat, matter dominated universe evolves 
as: 

1 1 
p(t) = 67rGt2 = 6KGB2 (8 - sin8) 2 (2. 78) 

Combining the above equations we get the change of overdensities 

b(8) = ~ (8 - sin8)2 
2 (1 - cos 8)3 -

1 
' (2.79) 

and similarly for underdense regions: 

b(8) = ~ (8 - sinh8)2 
2 ( cosh 8 - 1 )3 - 1 . (2.80) 

Again the linear limit for small 8 is: 

lim b(8) ~ 38
2 ~ 2_ (67rt)

2
/3 

B->O 20 20 -tta 
(2.81) 

With these formulae, we can find overdensities at some interesting times, and 

Table 2.4.2 shows a comparison of exact and extrapolated linear overdensities. 

At the turnaround, b(8 = 7r) ~ 4.6, and is thus clearly in the nonlinear regime. 

The extrapolated linear density contrasts would be bL(7r) ~ 1.063. At 8 = 27r, 

all the mass will collapse to a point and b(27r) ____, oo. The collapse treshold in 

linear theory is bL(27r) = be ~ 1.686. This value actually changes only little 

if we include dark energy; while the calculations for that case have to be done 

numerically, an excellent fit is given by [65]: 

)2/3 ) 
3(127r (1 +a log 0,DE ' be= ~~ (2.82) 

where a= 0.353w4 + l.044w31.128w2 + 0.555w + 0.131. 

In reality, beoll ____, oo will never be achieved since the exact spherical collapse 
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where particles do not have any velocity dispersion, is quite a crude approx­

imation. As the overdensity is contracting, dynamical relaxation and shocks 

will force the system into virial equilibrium at a finite density. Therefore, the 

maximum density an object will reach can be estimated using the virial theorem 

and the fact that at R = Rta all the energy in the system is potential: 

U(R = Rvir) = 2E = 2U(R = Rta), (2.83) 

since U =-GM/ R we get Rvir = Rta/2 and Pvir = 8Pta [66]. The mean density 

of an object at turnaround is Pta =Ota+ 1 ~ 5.6pb(tta)· Since Pb(t) = (67rGt2)-1 

and with tvir '.'.::::' tcoll '.'.::::' 2tta we finally get Pvir '.'.::::' 8 X 5.6 X 4pb(tvir) or since 

Pvir = (1 + z) 3 po 

flvir = Pvir ~ 180(1 + Zvir )3 , 
Pb 

(2.84) 

where Zvir is the virialization redshift. Equation (2.84) permits us to relate the 

virialised density of a collapsed object to the epoch of its formation: Zvir '.'.::::' 
O.l8(p/ Po) 1! 3 - 1. 

While Oc carries only a small dependence on cosmology, that is not the case 

with llvir· For the family of fiat cosmologies (Om + OA = 1), which is of most 

interest, llvir can be approximated with 1 % accuracy [67] to be: 

,6. . ~ 1871"2 + 82x(z) - 39x2(z) 
vir ~ Om(z) ' (2.85) 

where x(z) = Om(z) - 1. For example, for some fiducial value of Om = 0.3, 

llvir ~ 337. Similarly, for the case of more general dark energy models, in the 

range of -1 :::::; w:::::; -0.3, the fit is [65]: 

llvir ~ 1871"2 [1 + eb(z)] ' (2.86) 

where 8(z) = 1/0m(z) - 1. 

Similarity Solution 

An interesting extension of the spherical collapse model is the case where the 

energy of a perturbation is a function of mass 

E =Ea (:Ji-<< 0. (2.87) 

Turnaround radius and time are [68]: 

Rta = _GM = GMo ( M) i+< 
E -Ea Mo 

fRI: (-E)-3/2(M)~ 
tta = ~ y WM = 7rGM T Mo (2.88) 

32 

, 



The density profile of a virialized object is 

M p(r) ex: - ex: r-9</(1+3<) 
r3 

(2.89) 

An interesting case would be E = 1, resulting in an energy of the shell 

equal to the one due to a point mass, E ex: M-1/ 3 , and the density profile 

p ex: r- 914 • Another is E = 2/3, resulting in an isothermal sphere, with energy 

being independant of M, and density p ex: R-2 • 
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3 Mass Function 

As discussed in the previous chapters, a broad suite of astrophysical and cos­

mological observations provides compelling evidence for the existence ,of dark 

matter. Although its ultimate nature is unknown, the large-scale dynamics of 

dark matter is essentially that of a self-gravitating collisionless fluid. In an ex­

panding universe, gravitational instability leads to the formation and growth 

of structure in the dark matter distribution. The existence of localized, highly 

overdense dark matter clumps, or halos, is a key prediction of cosmological 

nonlinear gravitational collapse. At low redshifts, the mass function is an im­

portant probe of cosmological parameters, orthogonal to the geometrical probes 

(see §1.3.2). At higher redshifts, the halo mass function is important in probing 

quasar abundance and formation sites [69], as well as the reionization history of 

the Universe [70]. 

Many recently suggested reionization scenarios are based on the assumption 

that the mass function is given reliably by modified Press-Schechter type fits 

(Press & Schechter 1974 [71], hereafter PS; Bond et al. 1991 [72]). However, 

the theoretical basis of this approach is at best heuristic and careful numerical 

studies are required in order to obtain accurate results. Two examples serve to 

illustrate this statement. Reed et al. in 2003 [3] reported a discrepancy with 

the Sheth-Tormen fit (Sheth & Tormen 1999 [37], hereafter ST) of rv50% at a 

redshift of z = 15 (the different fitting formulae and their origin will be explained 

in §3.1). In addition, Heitmann et al. [73] show that the Press-Schechter form 

can be severely incorrect at high redshifts: at z 2: 10, the predicted mass 

function sinks below the numerical results by an order of magnitude at the upper 

end of the relevant mass scale. Consequently, incorrect, or at best imprecise, 

predictions for the reionization history can result from the failure of fitting 

formulae. 

The halo formation is a complicated nonlinear gravitational process, and the 

current theoretical understanding of the mass, spatial distribution, and inner 

profiles of halos remains at a relatively crude level. Numerical simulations are 

therefore crucial as drivers of theoretical progress, having been instrumental in 

obtaining important results such as the Navarro-Frenk-White (NFW) profile [74] 

for dark matter halos and an (approximate) universal form for the mass function 

(Jenkins et al. 2001 [75], hereafter Jenkins). In order to better understand the 

evolution of the mass function at high redshifts, a number of numerical studies 

have been carried out. High-redshift simulations, however, suffer from their own 
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set of systematic issues, and simulation results can be at considerable variance 

with each other, differing on occasion by as much as an order of magnitude! 

Motivated by all of these reasons, we carry out a numerical investigation 

of the evolution of the mass function with the aim of attaining good control 

over both statistical and, more importantly, possible systematic errors in N­

body simulations. We first pay attention to simulation criteria for obtaining 

accurate mass functions with the aim of reducing systematic effects. Our two 

most significant points are that simulations must be started early enough to 

obtain accurate results and that the box sizes must be large enough to suppress 

finite-volume artifacts. As in most recent work following that of Jenkins, we de­

fine halo masses using a friends-of-friends (FOF) halo finder with linking length 

b = 0.2. This choice introduces systematic issues of its own (e.g., connection to 

spherical overdensity mass as a function of redshift), which we touch on as rele­

vant below. While not quantitatively significant in the context of this chapter, 

the choice of halo definition will be discussed in details in Chapter 4 (see also 

[4]). 

The more detailed analysis presented here enable studying the mass function 

at statistical and systematic accuracies reaching a few percent over most of 

our redshift range, a substantial improvement over previous works. At this 

level we find discrepancies with the 'universal' fit of Jenkins at low redshifts 

(z < 5), but it must be kept in mind that the universality of the original fit 

was only meant to be at the ±20% level. Moreover, in a recent work Reed and 

collaborators [4] have reported the violation of universality at high redshifts (up 

to z = 30). To fit the mass function they have incorporated an additional free 

parameter, the effective spectral index neff, with the aim of understanding and 

taking into account the extra redshift dependence missing from conventional 

mass-function-fitting formulae. Our simulation results are consistent with the 

trends found by Reed et al. [4] at low redshifts (z ~ 5), but at higher redshifts 

we do not observe a statistically significant violation of the universal form of 

the mass function. 

On the other hand, results from some previous simulations have reported 

good agreement with the Press-Schechter mass function at high redshifts. Since 

the Press-Schechter fit has been found significantly discrepant with low-redshift 

results (z < 5), this would imply a strong disagreement with extending the 

well-validated low-redshift notion of (approximate) mass function universality 

to high z. Our conclusion is that the simulations on which these findings were 

based violated one or more of the criteria to be discussed below. 

As simulations are perforce restricted to finite volumes, the obtained mass 

function clearly cannot represent that of an infinite box. Not only is sampling a 

key issue, but also the fact that simulations with periodic boundary conditions 

have no fluctuations on scales larger than the box size. To ·minimize and test 

for these effects we were conservative in our choices of box size and the mass 

range probed in each individual box. We also used nested-volume simulations 
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to directly test for finite-volume effects. Because we used multiple boxes and 

averaged mass function results over the box ensemble, extended Press-Schechter 

theory can be used to correct for residual finite volume-effects [36, 76]. Details 

on this are given in §3.4.3. 

The chapter is organized as follows. In §3.1 we give a brief overview of 

the mass function and popular fitting formulae, discussing as well previous nu­

merical work on the halo mass function at high redshifts. In §3.2 we give a 

short description of the N-body code MC2 (Mesh-based Cosmology Code) and 

a summary of the performed simulations. In §3.3 we derive and discuss some 

simple criteria for the starting redshift and consider systematic errors related 

to the numerical evolution such as mass and force resolution and time stepping. 

These considerations in turn specify the input parameters for the simulations 

in order to span the desired mass and redshift range for our investigation. In 

§3.4 we present results for the mass function at different redshifts as well as the 

halo growth function, which describes the number of halos of a given mass as a 

function of redshift. Here we also discuss the importance of post-processing cor­

rections such as FOF particle sampling compensation and finite-volume effects. 

We discuss the results and implications in §3.5. 

3.1 Definitions and Previous Work 

The mass function describes the number density of halos of a given mass. In 

order to determine the mass function in simulations one has to first identify the 

halos and then define their mass. No precise theoretical basis exists for these 

operations. Nevertheless, depending on the situation at hand, the observational 

and numerical communities have adopted a few 'standard' ways of defining halos 

and their associated masses. For a recent review of these issues with regard to 

observations, see, e.g., Ref. [77], but for a more theoretically oriented review, 

see, Ref. [78], and Chapter 4. 

3.1.1 Halo Mass 

The detailed analysis of mass definition choice, as well as cosmologically in­

teresting consequences are discussed in Chapter 4; here we will provide just 

a brief overview. There are basically two ways to find halos in a simulation. 

One, the overdensity method, is based on identifying overdense regions above a 

certain threshold. The threshold can be set with respect to the critical density 

Pc = 3H2 /87rG (or the background density Pb = rlmPc)· The mass Mt:. of a 

halo identified this way is defined as the mass enclosed in a sphere of radius 

rt:. whose mean density is b..Pc· Common values for b.. range from 100 to 500 

(or even higher). For clusters of galaxies observations [77], higher values for b.. 

are easier to work with. Properties of clusters are easier to observe in higher 

density regions and these regions are more relaxed than the outer parts which 
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are subject to the effects of inflow and incomplete mixing. The disadvantage of 

defining a halo in this manner is that sphericity of halos is implied, an assump­

tion which may be easily violated, e.g., in the case of halos that formed in a 

recent merger event or halos at high redshifts. At higher redshifts, the nonlinear 

mass scale M* decreases rapidly, and the ratio of the considered halo mass Mhalo 

to M* can become large. This translates into producing large-scale structures 

roughly analogous to supercluster structures today. While these structures are 

gravitationally bound, they are often not virialized, nor spherical. Even the 

much smaller structures (which are considered here) are not virialized at high 

redshifts, and therefore, assumptions about sphericity are most likely violated. 

Hence the spherical overdensity method does not suggest itself as an obvious 

way to identify halos at high redshift. 

The other method, the FOF algorithm, is based on finding neighbors of 

particles and neighbors of neighbors as defined by a given separation distance 

(see, e.g., [79, 80]). The FOF algorithm leads to halos with arbitrary shapes 

since no prior symmetry assumptions have been made. The halo mass is defined 

simply as the sum of particles which are members of the halo. While this 

definition is easy to apply to simulations, the connection to observations is 

difficult to establish directly. (Chapter 4 analyses this, also see [78]). 

It is important to keep in mind that the definition of a halo is essentially the 

adoption of some sort of convention for the halo boundary. In reality, a sharp 

distinction between the particles in a halo and particles in the simulation 'field' 

does not exist. Jenkins showed that the choice of a FOF finder with a linking 

length b = 0.2 to define halo masses provides the best fit for a universal form 

of the mass function. This choice has since been adopted by many numerical 

practitioners as a standard convention. A useful discussion of the various halo 

definitions can be found in ref. [81]. 

In the following we use the FOF algorithm with a fixed linking length of 

b = 0.2 to identify halos and determine their masses. Also, we correct masses to 

account for the finite number of particles; as recently pointed out by Warren et 

al. ([8], hereafter Warren) FOF masses suffer from a systematic problem when 

halos are sampled by relatively small numbers of particles. Although halos 

can be robustly identified with as few as 20 particles, if a given halo has too 

few particles, its FOF mass turns out to be systematically too high. Exact 

compensation for this effect is described in §3.4.2. 

3.1.2 Defining the Mass Function 

The exact definition of the mass function, e.g., integrated versus differential form 

or count versus number density, varies widely in the literature. To characterize 

different fits, Jenkins introduced the scaled differential mass function f(cr, z) as 
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a fraction of the total mass per ln a- 1 that belongs to halos: 

_ dp/ Pb M dn(M, z) 
f(a, z) = dlna- 1 = Pb(z) dln[a- 1 (M, z)]" (3.1) 

Here n(M, z) is the number density of halos with mass M, Pb(z) is the back­

ground density at redshift z, and a(M, z) is the variance of the linear density 

field. As pointed out by Jenkins, this definition of the mass function has the 

advantage that to a good accuracy it does not explicitly depend on redshift, 

power spectrum, or cosmology; all of these are encapsulated in a( M, z). For the 

most part, we will display the mass function 

dn 
F(M,z),= dlogM 

as a function of log M itself. [In §3.4 we include results for f (a, z).] 

(3.2) 

To compute a(M, z), the power spectrum P(k) is smoothed with a spherical 

top-hat filter function of radius R, which on average encloses a mass M (R = 

[3M I 47rpb(Z )]113): 

a2 (M, z) = d;;~) fo 00 

k2 P(k)W2 (k, M)dk, 

where W(k, M) is the top-hat filter: 

W(r) 

W(k) = 

{ 

47r~3, r < R 
0, r > R 

3 
(kR)3 [sin(kR) - kRcos(kR)]. 

(3.3) 

(3.4) 

(3.5) 

The redshift dependence enters only through the growth factor d(z), normalized 

so that d(O) = 1: 

a(M, z) = a(M, O)d(z). (3.6) 

In the approximation of negligible difference in the CDM and baryon peculiar 

velocities, the growth function in a ACDM universe is given by (see §2.2.1) 

D+(a) 
d(a) = D+(a = 1)' (3.7) 

where we consider d as a function of the cosmological scale factor a = 1 / (1 + z), 

and 
+ 50m H(a) t da' 

D (a)= -2- Ho }
0 

[a'H(a')/Ho]3 (3.8) 

with H(a)/Ho = [Om/a3 + (1 - Om)] 112 . In particular, for z » 1, when matter 

dominates the cosmological constant, D+(a) '.::::'.a. 

Even in linear theory, equation (3.8) is only an approximation because 

baryons began their gravitational collapse with velocities different from those of 
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CDM particles. Until recombination at z rv 1100, well into the matter era with 

non-negligible growth of CDM inhomogeneities, the baryons were held against 

collapse by the pressure of the CMB photons [82]. While thereafter the rela­

tive baryon-CDM velocity decayed as 1/a, the residual velocity difference was 

sufficient to affect the growth function d( z) at z = 50 by more than 1 % and at 

z = 10 by about 0.2% [83, 84]. 

3.1.3 Fitting Functions 

Over the last three decades several different fitting forms for the mass func­

tion have been suggested. The mass function is not only a sensitive measure 

of cosmological parameters by itself but also a key ingredient in analytic and 

semianalytic modeling of the dark matter distribution, as well as of several as­

pects of the formation, evolution, and distribution of galaxies. Therefore, if a 

reliable and accurate fit for the mass function applicable to a wide range of 

cosmologies and redshifts were to exist, it would be of obvious utility. In this 

section we briefly review the common fitting functions and compare them at 

different redshifts. 

The first analytic model for the mass function was developed by PS. Their 

theory accounts for a spherical overdense region in an otherwise smooth back­

ground density field, which then evolves as a Friedmann universe with a posi­

tive curvature. Initially, the overdensity expands, but at a slower rate than the 

background universe (thus enhancing the density contrast), until it reaches the 

'turnaround' density, after which collapse begins. Although from a purely grav­

itational standpoint this collapse ends with a singularity, it is assumed that in 

reality - due to the spherical symmetry not being exact - the overdense region 

will virialize. For an Einstein-de Sitter universe, the density of such an overdense 

region at the virialization redshift is z ~ 180pc(z). At this point, the density 

contrast from the linear theory of perturbation growth [o(x,z) = d(z)o(x,O)] 
would be oc(z) ~ 1.686 in an Einstein-de Sitter cosmology. For Slm < 1, the 

value of the threshold parameter Oc can vary [85], but the dependence on cos­

mology has little quantitative significance [75]. Thus, throughout this work we 

adopt Oc = 1.686. 

Following the above reasoning and with the assumption that the initial den­

sity perturbations are described by a homogeneous and isotropic Gaussian ran­

dom field, the PS mass function is specified by 

f2 oc ( o~ ) fps(u) = V :;-;;:- exp - 2u2 . (3.9) 

The PS approach assumes that all mass is inside halos, as enforced by the 

constraint 

j
+oo 

_

00 

fps(u) dlnu- 1 =1. (3.10) 
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Table 3.1: Mass Function Fits for f(a). Shown are examples of commonly used 
fitting functions. ST used a= 0.707 and p = 0.3, while [2] suggest that a= 0.75 
leads to a better fit. The Warren fit represents by far the largest uniform set 
of simulations based on multiple boxes with the same cosmology run with the 
same code. We use it as a reference standard throughout this work. [3] suggest 
an empirical adjustement of the ST fit, which is slightly modified in [4]. For 
the latter, G1(a) and G2(a) are given by eqs. (3.16) and (3.17), respectively, 
c = 1.08, ca= 0.764, and A= 0.3222. 

Reference Fitting Function f (a) Fit range 

ST (2001) 0.3222 2a ~ exp [-~ J [ 1 + ( a2 ) J 
11' a 2a all unspecified 

Jenkins 0.315exp [-llna-1 +0.6113·8] z=0-5 

Reed (2003) fsT(a) exp { -0.7 / [a(cosh(2a))5]} z = 0 -15 

Warren 0.7234 (a-1.625 + 0.2538) exp [- i.~i82 J z=O 

Reed (2007) Afij. [1 + (~f +0.6G1(a) +0.4G2(a)J z = 0 - 30 
8 r ca82 0.03 ( 8 ) 0.6-x=ex - - = a p ~ (neff+3) 2 a 

While as a first rough approximation the PS mass function agrees with simula­

tions at z = 0 reasonably well, it overpredicts the number of low-mass halos and 

underpredicts the number of massive halos at the current epoch. Furthermore, 

it is significantly in error at high redshifts (see, e.g., [86, 73], but also §3.4.4). 

After PS, several suggestions were made in order to improve the mass func­

tion fit. These suggestions were based on· more refined dynamical modeling, 

direct fitting to simulations, or a combination of the two. 

Using empirical arguments ST proposed an improved mass function fit of 

the form: 

f! o ( ao2 ) [ ( a2 ) P] fsT(a)=A ~exp __ c 1+ - , 
a 2a2 ao; 

(3.11) 

with A = 0.3222, a = 0.707 and p = 0.3. (Sheth & Tormen later suggest 

a = 0.75 as an improved value [2].) Note that for values A = 0.5, a = 1 and 

p = 0 above equation becomes the PS formula. Sheth et al. [87] rederived this 

fit theoretically by extending the PS approach to an elliptical collapse model. 

In this model, the collapse of a region depends not only on its initial overdensity 

but also on the surrounding shear field. The dependence is chosen such that 

it recovers the Zel'dovich approximation [56] in the linear regime. A halo is 

considered virialized when the third axis collapses (see also ref. [88] for an earlier, 

different approach to the same idea). 

Jenkins combined high resolution simulations for four different CDM cos­

mologies ( TCDM, SCDM, ACDM, and OCDM) spanning a mass range of over 

3 orders of magnitude ( rv (1012 -1015) h-1 M 8 ), and including several redshifts 

between z = 5 and 0. Independent of the underlying cosmology, the following 
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Figure 3.1: Ratio of the Jenkins, PS, and ST mass function fits with respect to 
the Warren fit for five different redshifts over a range of halo masses. Top to 
bottom: Redshifts z = 0, 5, 10, 15, and 20. Note that the ranges of the axes 
are different in the different panels. Jenkins fit is not shown below masses of 
1011h-1 M0 at z = 0, since it is not valid for such low masses at that redshift. 

fit provided a good representation of their numerical results (within ±20%): 

!Jenkins(a) = 0.315 exp (-I lna- 1 + 0.611 3
·
8
). (3.12) 

The above formula is very close to the Sheth-Tormen fit, leading to some im­

provement at the high-mass end. The disadvantage is that it cannot be simply 

extrapolated beyond the range of the fit, since it was tuned to a specific mass 

range of their simulations. 

By performing 16 nested-volume dark matter simulations, Warren was able 

to obtain significant halo statistics spanning a mass range of 5 orders of magni­

tude (rv (1010 -1015) h- 1 M0 ). Because this represents by far the largest uniform 

set of simulations-based on multiple boxes with the same cosmology run with 

the same code-we use it as a reference standard throughout this work. Using a 

functional form similar to ST, Warren determined the best mass function fit to 
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be 

( -1.625 ) ( 1.1982) fwarren(cr) = 0.7234 er + 0.2538 exp -~ . (3.13) 

For a quantitative comparison of the different fits at different redshifts, we show 

the ratio of the PS, Jenkins, and ST fits with respect to the Warren fit in 

Figure 3.1. We do not show the Jenkins fit below 1011 h-1 M0 at z = 0 since it 

diverges in this regime. The original ST fit, the Jenkins fit, and the Warren fit all 

give similar predictions. The discrepancy between PS and the other fits becomes 

more severe for higher masses at high redshifts. PS dramatically underpredicts 

halos in the high-mass range at high redshifts (assuming that the other fits 

lead to reasonable results in this regime). For low-mass halos the disagreement 

becomes less severe. For z = 0 the Warren fit agrees, especially in the low-mass 

range below 1013 h-1 M 0 , to better than 5% with the ST fit. At the high-mass 

end the difference increases up to 20%. The Jenkins fit leads to similar results 

over the considered mass range. At higher redshifts and intermediate-mass 

ranges around 109 h-1 M0 , the Warren and ST fit disagree by roughly a factor 

of 2. 
Several other groups have suggested modifications of the ST fit. In §3.4 

we compare our results with two of them. In 2003 Reed et al. [3] suggested 

an empirical adjustment to the ST fit by multiplying it with an exponential 

function, leading to 

!Reedo3(cr) = fsT(cr) exp {-0.7 / [cr(cosh(2cr))5]}, (3.14) 

valid over the range -1.7:::; ln cr-1 :::; 0.9. This adjustment leads to a suppression 

of the ST fit at large cr-1. In 2007 the adjustment to the ST fit is slightly 

modified again [4], leading to the following new fit: 

fReed07(cr) = 

be [ cab~ 0.03 
x-;; exp - 2cr2 - (neff + 3)2 (3.15) 

= [ ln(cr-1 - 0.4)
2

] 
exp - 2(0.6)2 ' 

(3.16) 

[ 
ln(cr-1 - 0.75)2] 

exp - 2(0.2)2 ' 
(3.17) 

with c = 1.08, ca = 0.764, and A = 0.3222. The adjustment has very similar 

effects to that of 2003 [3], as we show in §3.4. Reed et al. (2007) [4] also note 

that the_ (small) suppression of the mass function relative to ST as a function of 

redshift seen in simulations can be treated by adding an extra parameter, the 

power spectral slope at the scale of the halo radius, neff (formally defined by 

equation (3.42) below). We return to this issue when we discuss our numerical 

results in §5. Most commonly used fitting functions are summarized in Table 3.1. 
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Although fitting functions may be a useful way to approximately encapsu­

late results from simulations, meaningful comparisons to observations require 

overcoming many hurdles, e.g., an operational understanding of the definition of 

halo mass, how it relates to various observations, and error control in N-body 

codes [89, 90, 91]. Here, our focus is first on identifying possible systematic 

problems in the N-body simulations themselves and how they can be avoided 

and controlled. 

3.1.4 Halo Growth Function 

A useful way to study the statistical evolution of halo masses in simulations is 

to transform the mass function into the halo growth function, n(M1 , M2, z) = 
J~2 FdlogM [73], which measures the mass-binned number density of halos 

as a function of redshift. The halo growth function, plotted versus redshift in 

Figure 3.2, shows at a glance how many halos in a particular mass bin and box 

volume are expected to exist at a certain redshift. This helps set the required 

mass and force resolution in a simulation which aims to capture halos at high 

redshifts. For a given simulation volume, the halo growth function directly 

predicts the formation time of the first halos in a given mass range. 

In order to derive this quantity approximately, we first convert an accurate 

mass function fit (we use the Warren fit here) into a function of redshift z. As 

will be shown in the following sections, mass function fits work reliably enough 

out to at least z = 20, and can therefore be used to estimate the halo growth 

function. Figure 3.2 shows the evolution of eight different mass bins, covering 

the mass range investigated here, as a function of redshift z. As expected from 

the paradigm of hierarchical structure formation in a ACDM cosmology, small 

halos form much earlier than larger ones. An interesting feature in the lower 

mass bins is that they have a maximum at different redshifts. The number of 

the smallest halos grows until a redshift of z = 2 and then declines when halos 

start merging and forming much more massive halos. This feature is reflected 

in a crossing of the mass functions at different redshifts for small halos. 

3.1.5 Mass Function at High Redshift: Previous Work 

Most of the effort to characterize, fit, and evaluate the mass function from 

simulations has been focused on or near the current cosmological epoch, z '"'"'0. 

This is mainly for two reasons: (1) so far most observational constraints have 

been derived from low-redshift objects (z < 1); (2) the accurate numerical 

evaluation of the mass function at high redshifts is a nontrivial task. 

The increasing reach of telescopes on the ground and in space, such as the 

upcoming James Webb Space Telescope, allows us to study the Universe at 

higher and higher redshifts. Recent discoveries include 970 galaxies at redshifts 

between z = 1.5 and z = 5 from the VIMOS VLT Deep Survey [92], and the 

recent observation of a galaxy at z = 6.5 [93]. The epoch of reionization (EOR) is 
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Figure 3.2: Halo growth function based on the Warren mass function fit for 
different mass bins. The curves for the lower mass bins have a maximum at 
z > 0 which reflects a crossover of the mass functions at different redshifts. 

of central importance to the formation of cosmic structure. Although our current 

observational knowledge of the EOR is rather limited, future 21 cm experiments 

have the potential for revolutionizing the field. Proposed low-frequency radio 

telescopes include LOFAR (Low Frequency Array) 1 , the Mileura Wide Field 

Array (MWA) [94] 2 , and the next-generation SKA (Square Kilometer Array) 3 . 

The observational progress is an important driver for high-redshift mass function 

studies. 

Theoretical studies of the mass function at high redshifts are challenging 

due to the small masses of the halos at early times. In order to capture these 

small-mass halos, high mass and force resolution are both required. For the large 

simulation volumes typical in cosmological studies, this necessitates a very large 

number of particles, as well as very high force resolution. Such simulations are 

very costly, and only a very limited number can be performed, disallowing ex­

ploration of a wide range of possible simulation parameters. Alternatively, many 

smaller volume simulation boxes, each with moderate particle loading, can be 

employed. This leads automatically to high force and mass resolution in grid 

codes (such as particle-mesh [PM]) and also reduces the costs for achieving suf­

ficient resolution for particle codes (such as tree codes) or hybrid codes (such as 

1See http://www.lofar.org 
2 See http://haystack.mit.edu/arrays/MWA/ 
3 See http://www.skatelescope.org 
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TreePM). The disadvantages of this strategy are the limited statistics in individ­

ual realizations (because fewer halos form in a smaller box) and the unreliability 

of simulations below an intermediate redshift at which the largest mode in the 

box is still (accurately) linear. In addition, results from small boxes may be bi­

ased, since they only focus on a small region and volume. Therefore, one must 

show that the simulations are free from finite-volume artifacts, e.g. missing tidal 

forces, and run a sufficient number of statistically independent simulations to 

reduce the sample variance. Both strategies, employing large volume or multi­

ple small-volume simulations, have been followed in the past in order to obtain 

results at high redshifts. In the following we provide a detailed discussion on 

previous findings as organized by simulation volume. 

Small-Volume Simulations 

Small-box simulations of side rv 1 h-1 M pc have been performed by several 

groups. Using a treecode with softening length 0.4h- 1kpc, and a lh- 1Mpc 

box with 1283 particles, Jang-Condell & Hernquist [95] evolved their simulation 

from Zin = 100 to z = 10. With a halo finder that combined overdensity crite­

ria with an FOF algorithm, the mass function was determined over the range 

105·5 - 108·1 h-1 M 0 , keeping halos with as few as eight particles. At z = 10 

they found 'remarkably close agreement' with the PS fit but. did not quantify 

the agreement explicitly. 

In a series of papers, Yoshida et al. ran simulations with similar box sizes 

as above, most including the effects of gas dynamics. The simulations were 

performed with the TreePM/smoothed particle hydrodynamics code GADGET­

II [96] and followed the evolution of 2x 3243 particles (3243 in the case of dark 

matter only), covering a halo mass range of 105-107·5M 0 . All simulations were 

started at Zin = 100 from 'glass' initial conditions [97, 98], in contrast to the 

grid-based initial conditions used here. The focus of their first paper [99] was 

the origin of primordial star-forming clouds. As part of that investigation, a 

dark-matter-only simulation in a 1.6 h-1 Mpc box was carried out. The halo 

density results for z = 20 to 32 lay systematically below the PS prediction, with 

the discrepancy being worse at high redshifts. The authors argued that this low 

abundance of halos was (possibly) due to finite-box-size effects. In the second 

paper [100], the mass function at z = 20 for a warm dark matter model was 

compared with CDM, with the simulation set up being very similar to their 

previous work [99], a 1 Mpc box started at z = 100. The results obtained were 

also similar; at z = 20 the CDM mass function was in good agreement with the 

PS fit. In a third paper, [101], a running spectral index was considered. Here 

results for a standard CDM mass function for a 1 Mpc box were given, this 

time at z = 17 and 22. Consistent with their previous results, they found good 

agreement with PS at these redshifts. (The FOF linking length used in the last 

paper was b = 0.2, while in the first two papers b = 0.164 was chosen. This 
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did not appear to make much of a difference, however.) These papers do not 

quantitatively compare the numerical mass function to the PS fit. (In contrast 

to these findings, a recent 1 Mpc box GADGET-II simulation with Zin "' 120 

has been performed by Maio and collaborators [102] who find good agreement 

with the Warren fit as extrapolated by linear theory - in clear disagreement 

with PS.) 

A similar strategy was followed by Cen et al. [103] who investigated dark 

matter halos in a mass range of 106·5 to 109 h- 1 M 0 , using a TreePM code [104, 

105]. The box size was taken to be 4 h-1 M pc, the softening length was set at 

0.14 h-1kpc, 5123 particles were used, and the simulations had a starting redshift 

of Zin = 53. Halos were identified using the overdensity scheme DENMAX [106]. 

Among other quantities, they studied the mass function between z = 11 and 

6 and found that the PS function 'provides a good fit' but without explicit 

quantification. 

Overall, these small-box simulations, run with different codes and different 

halo finders, all found a 'depressed' mass function (see Fig. 3.1), consistent with 

PS and deviating very significantly from the predictions of the more modern 

fitting forms. In contrast, other simulations also using small boxes have come 

to quite different conclusions. For example, in Reed et al. [4], a large suite of 

different box sizes and simulations was used to cover the mass range between 

105 and 1011.5 h- 1 M 0 at high redshift. The smallest boxes considered in this 

study were 1 h-1Mpc on a side. The authors studied the halo mass function 

at redshifts out to z = 30, implementing a correction scheme to account for 

finite-box effects, as discussed in more detail below. Overall, their conclusion is 

that PS underestimates the mass function considerably (by at least a factor of 

5 at high redshift and high masses), and ST overpredicts the halo abundance at 

high redshift. 

Large-Volume Simulations 

The large-box strategy is exemplified by a recent dark matter simulation with 

the GADGET-II code [86]. The evolution of21603 particles in a 500 h-1Mpc box 

was followed from Zin = 127 until z = 0. The softening length was 5 h- 1 kpc. The 

high mass and force resolution was sufficient to study the mass function reliably 

down to a redshift of z = 10, covering a mass range of 1010 to 1016 h-1 M 0 , 

with halos being identified by a standard FOF algorithm with b = 0.2. The 

results are consistent with the Jenkins fit, even though the mass function points 

at redshifts z = 1.5, 3.06, and 5.72 are slightly higher than the Jenkins fit and 

slightly lower for z = 10. No residuals were shown nor quantitative statements 

made. 

Recently, two groups independently investigated cosmic reionization, provid­

ing mass function results at high redshift as part of this work. Iliev et al. [107] 

ran a PM simulation with PMFAST [108] in a 100 h- 1 Mpc box with 16243 par-
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ticles on a 32483 mesh. They present results for the mass function at redshifts 

between z = 6 and 18.5, using a spherical overdensity halo finder. At lower 

redshifts they find good agreement with ST, and at high redshift (z > 10) the 

results are closer to PS (because of their limited mass range, a more quantitative 

statement is difficult to make). Zahn et al. [109] ran a 10243 particle simulation 

(dark matter only) in a 65.6 h-1Mpc box with GADGET-II and analyzed the 

FOF, b = 0.2 mass function out to z = 20. Between z = 6 and 14 they found 

good agreement with ST in the mass range of 109 to 1012 M 0 . At z = 20 they 

found that the simulation results were below ST but above PS, in relatively 

good agreement with the findings of [73] and [4]. 

Medium Volume Simulations 

In 2003 paper, Reed et al. [3] chose a compromise between the large- and small­

box strategies by picking a 50 h-1 Mpc box sampled with 4323 particles. The 

tree code PKDGRAV was used to evolve the simulation from different starting 

redshifts between Zin = 139 and 69 until z = 0. The smallest halo contained 

75 particles, leading to a mass range of roughly 1010 to 1014·5 h- 1 M 0 . Good 

agreement (better than 10%) was found with the ST fit up to z ~ 10. For 

higher redshifts, the ST fit overpredicted the number of halos, up to 50% at 

z = 15. At this high redshift, statistics were lacking, and the resolution was 

not sufficient to resolve very small halos. A more recent 50 h - l M pc simulation 

with PMFAST with Zin= 60 has been carried out by Trac & Cen [110] using a 

spherical overdensity definition of halo mass. In this work, the mass function, 

in the redshift range 6 < z < 15, is found to be in very good agreement with 

PS, in gross contradiction with the results of most of the other simulations 

mentioned above. (This contradiction has recently been resolved by rerunning 

their simulation with Zin= 300 and identifying halos with ab= 0.2 FOF finder.) 

Previous Work: Summary 

In summary, there is considerable variation in the high-redshift (z > 10) mass 

function as found by different groups, independent of box size and simulation 

algorithm. Broadly speaking, the results fall into two classes: either consistent 

with linear theory scaling of a universal form (Jenkins, Reed, ST, or Warren) 

at low redshift [3, 4, 86, 73, 102, 109] or more consistent with the PS fit [95, 99, 

100, 101, 103, 107, 110]. 

Our aim here is to determine the evolution of the mass function accurately, 

at the few percent level, and at the same time understand and characterize many 

of the numerical and physical factors that control the error in the mass function, 

and bring rise to discrepancies in reported results between different groups. In 

this work is analyzed a large suite of N-body simulations with varying box sizes 

between 4 and 256 h-1 Mpc, including many realizations of the small boxes, to 

study the mass function at redshifts up to z = 20 and to cover a large mass range 
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Table 3.2: Summary of the Performed Runs. The smallest halos we consider 
contain 40 particles. All simulations have 2563 particles, evolved on 10243 grid. 

Box Size Resolution Particle Mass 
No. of Realizations (h- 1Mpc) (h- 1kpc) Zin Zfinal (h-1 M0) 

256 250 100 0 8.35 x 1010 5 
128 125 200 0 1.04 x 1010 5 
64 62.5 200 0 1.31 x 109 5 
32 31.25 150 5 1.63 x 108 5 
16 15.63 200 5 2.04 x 107 5 
8 7.81 250 10 2.55 x 106 20 
4 3.91 500 10 3.19 x 105 15 

between 107 and 1013·5 h-1 M0 . The number of small-box realizations is large 

in order to improve the statistics at high redshifts. Our results categorically 

rule out the PS fit as being more accurate than any of the more modern forms 

at any redshift up to z = 20, the discrepancy increasing with redshift. 

3.2 The Code and the Simulations 

All simulations in this work are carried out with the parallel PM code MC2 . 

This code solves the Vlasov-Poisson equations for an expanding universe. It uses 

standard mass deposition and force interpolation methods allowing periodic or 

open boundary conditions with second-order (global) symplectic time stepping 

and fast fourier transform based Poisson solves. Particles are deposited on the 

grid using the cloud-in-cell method. Code is presented in more details in the 

Appendix A. The overall computational scheme has proven to be accurate 

and efficient: relatively large time steps are possible with exceptional energy 

conservation being achieved. Finally, MC2 has been extensively tested against 

state-of-the-art cosmological simulation codes (see chapter 6). 

We use the following cosmology for all simulations: 

f2 = 1.0, f2coM = 0.253, f2b = 0.048, 

as = 0.9, Ho = 70 km s- 1 Mpc- 1
, n = 1, (3.18) 

in concordance with cosmic microwave background and large scale structure ob­

servations [111] (the third-year Wilkinson Microwave Anisotropy Probe obser­

vations suggest a lower value of as; [112]). The transfer functions are generated 

with CMBFXST [113]. We summarize the different runs, including their force 

and mass resolution, in Table 3.2. As mentioned earlier, we identify halos with 

a standard FOF halo finder with a linking length of b = 0.2. Despite several 

shortcomings of the FOF halo finder, e.g., the tendency to link up two halos 

which are close to each other [114, 115] or statistical biases [8], the FOF algo­

rithm itself is well defined and very fast. As discussed in §3.1.1, we adopt the 
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correction for sampling bias given by Warren when presenting our results. 

3.3 Initial Conditions and Time Evolution 

In a near-ideal simulation with very high mass and force resolution, the first 

halos would form very early. By z = 50, a redshift commonly used to start 

cosmological simulations, a large number of small halos would already be present 

(see, e.g. ref. [116] for a discussion of the first generation of star-forming halos). 

In a more realistic situation, however, the initial conditions at z = 50 have of 

course no halos, the particles having moved only the relatively small distance 

assigned by the initial Zel'dovich step. Only after the particles have traveled 

a sufficient distance and come close together can they interact locally to form 

the first halos. In the following we estimate the redshift when the Zel'dovich 

grid distortion equals the interparticle spacing, leading to the most conservative 

estimate for the redshift of possible first halo formation. From this estimate, we 

derive the necessary criterion for the starting redshift for a given box size and 

particle number. 

3.3.1 Initial Redshift 

In order to capture halos at high redshifts, we have found that it is very im­

portant to start the simulation sufficiently early. We consider two criteria for 

setting the starting redshift: (I) ensuring the linearity of all the modes in the 

box used to sample the initial matter power spectrum, and (2) restricting the 

initial particle move to prevent interparticle crossing and to keep the particle 

grid distortion relatively small. The first criterion is commonly used to identify 

the starting redshift in simulations. However, as shown below, it fails to pro­

vide sufficient accuracy of the mass functions, accuracy which can be obtained 

when a second (much more restrictive) control is applied. Furthermore, it is im­

portant to allow a sufficient number of expansion factors between the starting 

redshift Zin and the highest redshift of physical significance. This is needed to 

make sure that artifacts from the Zel'dovich approximation are negligible and 

that the memory of the artificial particle distribution imposed at Zin (grid or 

glass) is lost by the time any halo physics is to be extracted from the simulation 

results. 

Although not studied here, it is important to note that high-redshift starts 

do require the correct treatment of baryons as noted in §3.1.2. In addition, 

redshift starts that are too high can lead to force errors for a variety of reasons, 

e.g., interpolation systematics, round-off, and correlated errors in tree codes. 

Initial Perturbation Amplitude 

The initial redshift in simulations is often determined from the requirement 

that all mode amplitudes in the box below the particle Nyquist wavenumber 
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Table 3.3: Initial Redshift Estimates from the Linearity of L~.2(kNy ). The num­
ber of particles is 2563 , the same in all simulations. 

Box Size kNy T(z = 0, kNy) (h-1Mpc) (hMpc- 1 ) 
Zin 

126 6.3 0.0002 33 
32 25 l.7·10-5 45 
16 50 4.8·10-6 50 
8 100 l.3·10-6 55 

characterized by kNy /2 with kNy = 2w / b..p, where b..P is the mean interparticle 

spacing, be sufficiently linear. The smaller the box size chosen (keeping the 

number of particles fixed), the larger the largest k-value. Therefore, in order 

to ensure that the smallest initial mode in the box is well in the linear regime, 

the starting redshift must increase as the box size decreases. In the following 

we give an estimate based on this criterion for the initial redshift for different 

simulation boxes. We (conservatively) require the dimensionless power spectrum 

b..2 = k3 P(k)/2w2 to be smaller than 0.01 at the initial redshift. The initial 

power spectrum is given by 

B kn+3T 2 (kNy, z = 0) 

2w2 (Zin + 1)2 (3.19) 

where B is the normalization of the primordial power spectrum (see ref. [117] 
for a fitting function for B including COBE results) and T(k) is the transfer 

function. We assume the spectral index to be n = 1, which is sufficient to obtain 

an estimate for the initial redshift. For a ACDM universe the normalization is 

roughly B ,...., 3.4 x 106 (h-1 Mpc) 4 . Therefore, Zin is simply determined by 

(3.20) 

We present some estimates for different box sizes in Table 3.3. For the smaller 

boxes ( < 8 h-1 Mpc), the estimates for the initial redshifts are at around Zin = 
50. 

It is clear that this criterion simply sets a minimal requirement for Zin and 

neglects the fact that the initial particle move should be small enough to main­

tain the dynamical accuracy of perturbation theory (linear or higher order) used 

to set the initial conditions. Also, this criterion certainly does not tell us that 

if, e.g., Zin = 50, then we may already trust the mass function at, say, z = 30. 

An example of this is provided by the results of Reed et al. [3], who find that 

their high-redshift results between z = 7 and 15 have not converge if they start 

their simulations at Zin = 69. (A value of Zin = 139 was claimed to be sufficient 

in their case.) 

We now consider another criterion - ostensibly similar in spirit - that par-
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ticles should not move more than a certain fraction of the interparticle spacing 

in the initialization step. This second criterion demands much higher redshift 

starts. 

First Crossing Time 

In cosmological simulations, initial conditions are most often generated using 

the Zel'dovich approximation [56]. Initially each particle is placed on a uniform 

grid or in a glass configuration and is then given a displacement determined by 

the relation 

x = q - d(z)\i'<I>, (3.21) 

according to the discussion in §2 .4 .1, where the gradient of the potential <I> is 

independent of the redshift z. The Zel'dovich approximation holds in the mildly 

nonlinear regime, as long as particle trajectories do not cross each other (no 

caustics have formed). Studying the magnitude of IV'<I>I allows us to estimate 

two important redshift values: first, the initial redshift Zin at which the particles 

should not have moved on average more than a fraction of the interparticle 

spacing .6.p = Lbox/np, where Lbox is the physical box size and np the number 

of particles in the simulation; second, the redshift at which particles first move 

more than the interparticle spacing, Zcross, i.e., at which they have traveled on 

average a distance greater than .6.p. 

For a given realization qf the power spectrum, the magnitude of IV' ¢1 depends 

on two parameters: the physical box size and the interparticle spacing. Together 

these parameters determine the range of scales under consideration. The smaller 

the box, the smaller the scales; therefore, IV'<I>I increases and both Zin and 

Zcross increase. Increasing the resolution has the same effect. In Figure 3.3 

we show the probability distribution function for l\7¢1 for three different box 

sizes, 8, 32, and 126 h- 1Mpc, representing values studied by other groups, as 

well as in this chapter. To make the comparison between the different box sizes 

more straightforward, we have scaled IV'<I>I with respect to the interparticle 

spacing .6.p. All curves are drawn from simulations with 2563 particles on a 

2563 grid, in accordance with the set up of our initial conditions. The behavior 

of the probability function follows our expectations: the smaller the box, or the 

higher the force resolution, the larger the initial displacements of the particles 

on average. From the mean and maximum values of such a distribution we can 

determine appropriate values for Zin and Zcross· For our estimates we assume 

d(z) ~ 1/(1 +z), which is valid for high redshifts. The maximum and rms initial 

displacements of the particles can then be easily calculated: 

s~ax 
m 

s~ms 
m 

max(IV'<I>I/ .6.p) 
1 +Zin 

rms(IV'<I>I/ .6.p) 
1 +Zin 
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Figure 3.3: Probability distribution of IV¢1 in units of the interparticle spacing 
.6.p- All curves shown are drawn from 2563 particle simulations from an initial 
density grid of 2563 zones. The physical box sizes are 126 h- 1 Mpc (black line), 
32 h-1Mpc (red line), and 8 h-1Mpc (green line). As expected, (IV¢1) increases 
with decreasing box size (which is equivalent to increasing force resolution). 
Therefore, Zin and Zcross are higher for the smaller boxes. 

The very first 'grid crossing' of a particle occurs when b"h:ax = 1; on average the 

particles have moved more than one particle spacing when b"fg18 = l. This leads 

to the following estimates: 

first 
Zcross max(V<I>/.6.p)-1, 

rms(V<I>/.6.p)-1. 

(3.24) 

(3.25) 

We show these two redshifts in Figure 3.4 for 10 different box sizes ranging 

from 1 to 512 h- 1Mpc and for 2563 and 1283 particles. The left panel shows the 

average redshift of the first crossing as a function of box size (which corresponds 

to the maximum in Fig. 3.3). The right panel shows the redshift where the first 

'grid crossing' occurs (corresponding to the right tail in Fig. 3.3). To estimate 

the scatter in the results, we have generated five different realizations for each 

box. As expected, the small boxes show much more scatter. The average redshift 

of the first crossing in the 1 h- 1 Mpc box varies between z = 63 and 83, while 

there is almost no scatter in the 512 h-1Mpc box. Since IV<I>I/ .6.p is independent 

of redshift in the Zel'dovich approximation, a simple scaling determines the 

appropriate initial redshift from these plots. For example, if a particle should 
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Figure 3.4: Average redshift of first crossing (left panel) and highest redshift of 
first crossing (right panel) as a function of box size. The initial conditions (five 
different realizations) are shown for boxes between 1 and 512 h- 1 Mpc with 1283 

and 2563 particles. For each initial condition, z~;~;s and z~~~s are shown by the 
crosses. The solid lines show the average from the five realizations. As expected, 
scatter from the different realizations is larger for smaller boxes. These plots 
provide estimates of the required initial redshift for a simulation since IV' <I> I/ 6.P 
is z-independent in the Zel'dovich approximation. 

not have moved more than 0.36.p on average at the initial redshift, the average 

redshift of first crossing has to be multiplied by a factor 1/0.3 = 3.3. For an 

8h-1Mpc box this leads to a minimum starting redshift of z = 230, while for a 

126 h-1 Mpc box this suggests a starting redshift of Zin = 50. The 1283 particle 

curve can be scaled to the 2563 particle curve by multiplying by a factor of 2. 

Curves for different particle loadings can be obtained similarly. 

3.3.2 Transients and Mixing 

The Zel'dovich approximation matches the exact density and velocity fields to 

linear order in Lagrangian perturbation theory. Therefore, there is in principle 

an error arising from the resulting discrepancy with the density and velocity 

fields given by the exact growing mode initialized in the far past. 

This error is linear in the number of expansion factors between Zin and the 

redshift of interest Zphys· It has been explored in the context of simulation error 

by [5] and by [118]. Depending on the quantity being calculated, the number of 

expansion factors between Zin and Zphys required to limit the error to some given 

value may or may not be easy to estimate. For example, unlike quantities such 

as the skewness of the density field, there is no analytical result for how this 

error impacts the determination of the mass function. Neither does there exist 

any independent means of validating the result aside from convergence studies. 

Nevertheless, it is clear that to be conservative, one should aim for a factor of 

"' 20 in expansion factor in order to anticipate errors at the several percent level, 
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a rule of thumb that has been followed by many N-body practitioners (and often 

violated by others!). This rule of thumb gives redshift starts that are roughly 

in agreement with the estimates in the previous subsection. Convergence tests 

done for our simulations show that the suppression in the mass function is very 

small (less than 1 %) for simulations whose evolution covers a factor of 15 in 

the expansion factor and can be up to 20% for simulations that evolved by only 

5 expansion factors. However, due to modest particle loads, we were unable 

to distinguish between the error induced by too few expansion factors and the 

breakdown of the Zel'dovich approximation. 

Another possible problem, independent of the accuracy of the Zel'dovich 

approximation, is the initial particle distribution itself. Whether based on a 

grid or a glass, the small-distance (k > kNy) mass distribution is clearly not 

sampled at all by the initial condition. Therefore, unlike the situation that would 

arise if a fully dynamically correct initial condition were given, some time must 

elapse before the correct small-separation statistics can be established in the 

simulation. Thus, all other things being equal, for the correct mass function to 

exist in the box, one must run the simulation forward by an amount sufficiently 

greater than the time taken to establish the correct small-scale power on first­

halo scales while erasing memory on these scales of the initial conditions. If this 

is not done, structure formation will be suppressed, leading to a lowering of the 

halo mass function. 

Because there is no fully satisfactory way to calculate Zin in order to compute 

the mass function at a given accuracy, we subjected every simulation box to 

convergence tests in the mass function while varying Zin· The results shown 

here are all converged to the sub-percent level in the mass function. In the 

follofing is given an example of one such convergence test. 

Initial Redshift Convergence Study 

As mentioned above, we have tested and validated our estimates for the initial 

redshift for all the boxes used in the simulation suite via convergence studies. 

Here, we show results for an 8 h-1 Mpc box with initial redshifts Zin = 50, 150, 

and 250 in Figure 3.5, where the mass functions at z = 10 are displayed. For 

the lowest initial redshift, Zin = 50, the average initial particle movement is 

1.87.6.p, while some particles travel as much as 5.03.6.p. This clearly violates the 

requirement that the initial particle grid distortion be kept sufficiently below 

1 grid cell. The starting redshift Zin = 150 leads to an average displacement 

of 0.63.6.p and a maximum displacement of 1.71.6.p, and therefore just barely 

fulfills the requirements. For Zin = 250 we find an average displacement in this 

particular realization of 0.37.6.p and a maximum displacement of 1.00.6.p. 

The bottom plot in each of the three panels of Figure 3.5 shows the ratio 

of the mass functions with respect to the Warren fit. In the middle and right 

panels the ratio for the largest halo is outside the displayed range. The mass 
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Figure 3.5: Dependence of the mass function on the initial redshift. The results 
are at Z = 10 from three 8h-1Mpc box simulations with Zin= 50 (left), Zin= 

150 (middle), and at Zin = 250 (right). The mass function in the left panel is 
systematically lower than the other two by roughly 15%. Poisson error bars are 
shown. 

function from the simulation started at Zin = 50 (left panel) is noticeably lower, 

,...., 15%, than for the other two simulations. The mass functions from the two 

higher redshift starts are in good agreement, showing that the choice for average 

grid distortion of approximately 0.3~p is conservative, and that one can safely 

use (0.5-0.6)~p· The general conclusion illustrated by Figure 3.5 is that if a 

simulation is start.ed too late, halos are found to be missing over the entire mass 

range. With the late start, there is less time to form bound objects. Also, some 

particles that are still streaming towards a halo do not have enough time to join 

it. Both of these artifacts lead to an overall downshift of the mass function. 

To summarize, requiring a limit on initial displacements sets the starting 

redshift much higher than simply demanding that all modes in the box stay 

linear. Indeed, the commonly used latter criterion (with 5rms ,...., 0.1) is not 

adequate for computing the halo mass function at high redshifts. One must 

verify that the chosen Zin sets an early enough start as shown here. Implications 

this has on the results from other groups with will be commented in §3.5. 

3.3.3 Force and Mass Resolution 

We now take up an investigation of the mass and force resolution requirements. 

The first useful piece of information is the size of the simulation box: from 

Figure 3.2 we can easily translate the number density into when the first halo 

is expected to appear in a box of volume V. For example, a horizontal line 

at n = 10-6 would tell us at what redshift we would expect on average to 

find 1 halo of a certain mass in a (100 h- 1 Mpc)3 box. The first halo of mass 

1011 - 1012 h-1 M 0 will appear at z ~ 15.5, and the first cluster-like object of 

mass 1014 - 1015 h-1 M 0 at z ~ 2. Of course, these statements only hold if . 
the mass and force resolution are sufficient to resolve these halos. The mass 

of a particle in a simulation, and hence the halo mass, is determined by three 

parameters: the matter content of the Universe nm, including baryons and dark 
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matter, the physical box size Lbox, and the number of simulation particles n~: 

(3.26) 

The required force resolution to resolve the chosen smallest halos can be 

estimated very simply. Suppose we aim to resolve a virialized halo with comov­

ing radius rt:. at a given redshift z, where .6. is the overdensity parameter with 

respect to the critical density Pc· The comoving radius rt:. is given by 

[
Sl(z)] 1/3 ( 1 M ) 1/3 

rt:.= 9.51x10-
5 Slm .6. h- 1~0 h-

1
Mpc, (3.27) 

where Sl(z) = Slm(l+z)3/[S1m(l+z)3 +S1A] and the halo mass Mt::..c = mpartnh, 

where nh is the number of particles in the halo. We measure the force resolution 

in terms of 
Jf = Lbox. 

ng 
(3.28) 

In the case of a grid code, ng is literally the number of grid points per linear 

dimension; for any other code, ng stands for the number of 'effective softening 

lengths' per linear dimension. To resolve halos of mass Mt::..c, a minimal require­

ment is that the code resolution be smaller than the radius of the halo we wish 

to resolve: 

(3.29) 

Note that this minimal resolution requirement is aimed only at capturing halos 

of a certain mass, not at resolving their interior profile. Next, inserting the 

expression for the particle mass ( eq. 3.26) and the comoving radius ( eq. 3.27) into 

the requirement (eq. 3.29) and employing the relation between the interparticle 

spacing .6.p and the box size .6.p = Lbox/np, the resolution requirement reads 

(3.30) 

We now illustrate the use of this simple relation with an example. Let .6. = 200 

and consider a ACDM cosmology with Slm = 0.3. Then for PM codes for which 

8£/ .6.p = np/ng, we have the following conclusions. If the number of mesh 

points is the same as the number of particles (np = ng), halos with less than 

2500 particles cannot be accurately resolved. If the number of mesh points is 

increased to 8 times the particle number (np = l/2ng), commonly used for 

cosmological simulations with PM codes, the smallest halo reliably resolved has 

roughly 300 particles, and if the resolution is increased to a ratio of 1 particle 

per 64 grid cells, which we use in the main PM simulations in this work, halos 

with roughly 40 particles can be resolved. It has been shown [90] that this ratio 

(1:64) does not cause collisional effects and that it leads to consistent results in 

comparison to high-resolution codes. Note that increasing the resolution beyond 
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Figure 3.6: Convergence of the mass function as a function of force resolution. 
All results are shown at z = 0, for 2563 particles and a 126 h- 1Mpc box with 
Poisson error bars. The resolution varies between 2563 (left), 5123 (middle), 
and 10243 grid points (right). The vertical line denotes the predicted theoretical 
resolution limit: halos on the right of the line should not be lost. The resolution 
limit is 2500 particles per halo for the 2563 grid, 300 particles per halo for the 
5123 grid, and 40 particles per halo for the 10243 grid. 

this point will not help, since it is unreliable to sample halos with too few 

particles. Note also that a similar conclusion holds for any simulation algorithm 

and not just for PM codes. 

In Figure 3.6 we show results from a resolution convergence test at z = 0. 

We run 2563 particles in a 126 h- 1Mpc box with three different resolutions: 0.5, 

0.25, and 0.125 h-1Mpc. The vertical line in each figure shows the mass below 

which the resolution is insufficient to capture all halos following condition (3.30). 

In all three cases, the agreement with the theoretical prediction is excellent. 

3.3.4 Time Stepping 

Next, we consider the question of time-step size and estimate the minimal num­

ber of time steps required to resolve the halos of interest. We begin with a rough 

estimate of the characteristic particle velocities in halos. For massive halos, the 

halo mass M20o and its velocity dispersion are connected by the approximate 

relation [119]: 
1015 h-1 M0 ( O"v )3 

M20o ~ Hf Ho 1080km/s (3.31) 

There is even more accurate expression [120], but the above is more than suf­

ficient for our purposes. At high redshift, OA can be neglected, and we can 

express the velocity dispersion as a function of redshift: 

(3.32) 

In a time Jt, the characteristic scale length ol is given by ol ~ O"vc5t or 

ot ~ !!:._ = 100 ol /km ( M200 )-
1

/
3 

s. 
O'v Vf"+Z h-l M0 

(3.33) 

57 



- Warren et al. 
X 5 time steps 
X 50 time steps 
X 125 time steps 
X 250 time steps 

- Warren et al. 
5 time steps 

X 8 time steps 
X 1 00 time steps 
X 300 time steps 

-4 -s ........... ~~~~ ......... ~~ ...................... ~ ........... 
~1~ ~1~ 
"::! 1.0 1:-----..---c&-lr---il--t-------:1 "::! 1.0 1---~ ...... '-'=-...... .......,. ........ ~.....__,_ .. _ _. 

~ 0.8 ~ 0.8 

9 10 11 12 13 11 12 13 14 15 16 
lag(M (.lle/h]) lag(M (Jie/h]) 

Figure 3.7: Left panel: One of the 32h-1Mpc box realizations run with 250, 
125, 50 and 5 time steps between Zin = 150 and Zfinal = 5. The mass function is 
shown at the final redshift z = 5. Data points for all runs except the one with 
five time steps are so close that they are difficult to distinguish. Right panel: 
A 126 h-1 Mpc box with 300, 100, 8, and 5 time steps between Zin = 50 and 
Zfinal = 0. The agreement for the very large halos for 100 and 300 time steps is 
essentially perfect. Poisson error bars are shown. 

Expressed in terms of the scale factor, equation (3.33) reads: 

4 u 200 J:l ( M )-1/3 
oa ~ 10 h-1 Mpc h-1 M0 (3.34) 

We are interested in the situation where ol is actually the force resolution, Of. In 

a single time step, the distance moved should be small compared to Of; i.e., the 

actual time step should be smaller than oa estimated from the above equation 

when ol is replaced on the right-hand side with Of. Let us consider a concrete 

example for the case of a PM code where Of = Lbox/ng as explained earlier. 

For a 'medium' box size of Lbox = 256h-1Mpc and a grid size of ng = 1024, 

or = 0.25 h- 1Mpc. For a given box, the highest mass halos present have the 

largest av and give the tightest constraints on the time step. For the chosen 

box size, a good candidate halo mass scale is M200 ""' 1015 h- 1 M 0 (this could 

easily be less, but it does not change the result much). In this case, 

oa ~ 0.025. (3.35) 

If, for illustration, we start a simulation at z = 50 and evolve it down to z = 0, 

this translates to roughly 40 time steps. It has to be stressed that this estimate 

is aimed only at avoiding disruption of the halos themselves, and is certainly 

not sufficient to resolve the inner structure of the halo. 

In Figure 3.7 we show two tests of the time step criterion. The left panel 

shows the result from a 32 h- 1Mpc box at redshift z = 5. The simulation starts 
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at Zin = 150 and is evolved with 50, 125, and 250 time steps down to z = 5. 

Following the argument above for this box size, one would expect all three 

choices to be acceptable, and the excellent agreement across these runs testifies 

that this is indeed the case. We also carried out a run with only five time steps, 

which yields a clearly lower (,...., 20%) mass function than the others, but not as 

much as one would probably expect from such an imprecise simulation. 

The right panel shows the results from a 126 h-1 Mpc box at z = 0. This 

simulation was started at zin = 50 and run to z = 0 with 5, 8, 100, and 300 

time steps. Again, as we would predict, the agreement is very good for the 

last two simulations, and the convergence is very fast, confirming our estimate 

that only 0(10) time steps is enough to get the correct halo mass function. 

Overall, the halo mass function appears to be a very robust measure, not very 

sensitive to the number of time steps. Nevertheless, we used a conservatively 

large number of time steps: 500 for the simulations stopping at z = 0 and 300 

for those stopping at z = 10. 

In the previous subsections we have discussed and tested different error con­

trol criteria for obtaining the correct simulated mass function at all redshifts. 

These criteria are (1) a sufficiently early starting redshift to guarantee the accu­

racy of the Zel'dovich approximation at that redshift and provide enough time 

for the halos to form; (2) sufficient force and mass resolution to resolve the halos 

of interest at any given redshift; and (3) sufficient numbers of time steps. Vio­

lating any of these criteria always leads to a suppression of the mass function. 

Most significantly, these tests show that a late start (i.e., starting redshift too 

low) leads to a suppression over the entire mass range under consideration, and 

is a likely explanation of the low mass function results in the literature. As 

intuitively expected, insufficient force resolution leads to a suppression of the 

mass function at the low-mass end, while errors associated with time stepping 

are clearly subdominant and should not be an issue in the vast majority of 

simulations. 

3.4 Results and Interpretation 

In this section we present the results from our simulation suite. We describe how 

the data are obtained as well as the post-processing corrections applied. The 

latter include compensation for FOF halo mass bias induced by finite (particle 

number) sampling, and the (small) systematic suppression of the mass function 

induced by the finite volume of the simulation boxes. 

3.4.1 Binning of Simulation Data 

Before venturing into the simulation results, we first describe how they were 

obtained and reported from individual simulations. We used narrow mass bins 

while conservatively keeping the statistical shot noise of the binned points no 
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worse than some given value. Bin widths ~log M were chosen such that the 

bins contain an equal number of halos Nh. The worst-case situation occurs at 

z = 20 for the 8h-1Mpc box, which has Nh = 80; the 4h- 1Mpc box at the 

same redshift has Nh = 400. At z = 15 we have Nh = 150, 1600, and 3000 

for box sizes 16, 8, and 4 h- 1 Mpc, respectively. At z = 10 the smallest value 

Nh = 450 is for the 32 h- 1Mpc box, while at z = 5 and 0 we essentially always 

have Nh > 10000. 

With a mass function decreasing monotonically with M, this binning strat­

egy results in bin widths increasing monotonically with M. The increasing bin 

size may cause a systematic deviation - growing towards larger masses - from 

an underlying 'true' continuous mass function. The data points for the binned 

mass function give the average number of halos per volume in a bin, 

F = Nh/(V~logM), (3.36) 

plotted versus an average halo mass, averaged by the number of halos in the 

bin: 

(3.37) 

Assuming that the true mass function dn / d log M has some analytic form F ( M), 

a systematic deviation due to the binning prescription 

P-F(M) 
Ebin = F(M) 

can be evaluated by computing P and M as 

- fc..Mdn 
F = ~logM' 

(3.38) 

(3.39) 

where dn = F(M) dlogM and the integrations are over a mass range [M, M + 
~M]. For the leading-order term of the Taylor expansion of Ebin(~M), we find 

. ,...., F" - 2(F')2 
IF (~M)2 

tbm - 24F , (3.40) 

where the primes denote a;aM. A characteristic magnitude of this Ebin for a 

general P(M) is (~M/M)2 /24. However, in our case, where the relevant scales 

k » keq rv O.OlhMpc- 1
, Ebin has a much stronger suppression, as explained 

below. 

We know that the mass function is close to the universal form, 

F(M) = Pb f(O') dln (J-

1 

M dlogM 
(3.41) 
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(see, eq. 3.1). Note that fork» keq, cr- 1 (M) is a slowly varying function, i.e., 

dlog a-- 1 

dlogM 
neff + 3 

6 
(3.42) 

is much smaller than unity, and the derivative d log 0--
1 

/ d log M also changes 

slowly with M. Then, despite the steepness of F(cr) at small CT, the factor 

f(o-) dlncr- 1 /dlogM in equation (3.41) depends weakly on M. Therefore, the 

mass function F(M) is close to being inversely proportional to M. In the 

limit of exact inverse proportionality, F ex M- 1
, equation (3.40) tells us that 

Ebin ~ 0. This effective cancellation of the two terms on the right-hand side of 

equation (3.40) makes the binning error negligible to the accuracy of our F(M) 

reconstruction whenever a bin width 6. log M does not exceed 0.5. To confirm 

the absence of any systematic offsets due to the binning, we binned the data 

into log M intervals 5 times narrower and wider, with no apparent change in 

the inferred F(M) dependence. 
It should be remarked that the situation could be quite different with another 

binning choice. For example, if the binned masses M were chosen at the centers 

of the corresponding log M intervals, log M = [log M + log( M + 6.M)] /2, the 

systematic binning deviation 

(~enter) ,.._, F" + F' /M (6.M)2 
Ebrn - 24F 

(3.43) 

would have no special cancellation for the studied type of mass function. A 

corresponding binning error would be about 2 orders of magnitude larger than 

that of equations (3.36) and (3.37). 
The statistical error bars used are Poisson errors, following the improved 

definition of Heinrich [121]: 

(3.44) 

At large values of Nh, these error bars asymptote to the familiar form VNh· 
At smaller values of Nh - which are of minor concern here - equation 3.44 has 

several advantages over the standard Poisson error definition, some being (1) 

it is nonzero for Nh = O; (2) the lower edge of the error bar does not go all 

the way to zero when Nh = l; (3) the asymmetry of the error bars reflects the 

asymmetry of the Poisson distribution. 

Finally, as noted earlier and discussed in the next section, all the results 

shown in the following include a correction for the sampling bias of FOF halos 

according to equation (3.45). This mass correction brings down the low-mass 

end of the mass function. 
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3.4.2 FOF Mass Correction 

The mass of a halo as determined by the FOF algorithm displays a systematic 

bias with the number of particles used to sample the halo. Too few particles 

lead to an increase in the estimated halo mass. By systematically subsampling 

a large halo population from N-body simulations (at z = 0), Warren determined 

an empirical correction for this undersampling bias. For a halo with nh particles, 

his correction factor for the FOF mass is given by 

(3.45) 

We have carried out an independent exercise to check the systematic bias of the 

FOF halo mass as a function of particle number based on Monte Carlo sampling 

of an NFW halo mass profile with varying concentration and particle number, 

as well as by direct checks against simulations (e.g., Fig. 3.8); our results are 

broadly consistent with equation (3.45). Details are presented in the chapter 4. 

The effect of the FOF sampling correction can be quickly gauged by consid­

ering a few examples: for a halo with 50 particles, the mass reduction is almost 

10%, for a halo with 500 particles, it is ,..__, 2.4%, and for a well-sampled halo 

with 5000 particles, it is only 0.6%. As a cautionary remark, this correction 

formula does not represent a general recipe but can depend on variables such 

as the halo concentration. Since the conditions under which different simula­

tions are carried out can differ widely, corrections of this type should be checked 

for applicability on a case-by-case basis. Note also that the correction for the 

mass function itself depends on how halos move across mass bins once the FOF 

correction is taken into account. 

The choice of the mass function range in a given simulation box always 

involves a compromise: too wide a dynamic range leads to poor statistics at the 

high-mass end and possible volume-dependent systematic errors, and too narrow 

a range leads to possible undersampling biases. Our choice here reflects the 

desire to keep good statistical control over each mass bin at the expense of wide 

mass coverage, compensating for this by using multiple box sizes. Therefore, 

in our case it is important to demonstrate control over the FOF mass bias. 

An example of this is shown in Figure 3.8, where results from four box sizes 

demonstrate the successful application of the Warren correction to simulation 

results at z = 10. 

3.4.3 Simulation Mass and Growth Function 

The complete set of simulations, summarized in Table 3.2, allows us to study 

the mass function spanning the redshift range from z = 20 to 0. The mass range 

covers dwarf to massive galaxy halos at z = 0 (cluster scales are best covered 

by bigger boxes as in Warren and chapter 4), and at higher redshifts goes down 

to 107 h-1 M 0 , the mass scale above which gas in halos can cool via atomic line 
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Figure 3.8: FOF mass correction for halos in 4 (dark blue), 8 (black), 16 (light 
blue), and 32 (yellow) h-1 Mpc boxes. To show the effect clearly, we plot the 
ratio of our data to the Warren fit. Crosses show the uncorrected mass function 
and squares the mass function after correction, following eq. (3.45). Note the 
smooth behavior of the corrected mass function as opposed to the mass-function 
jumps across box sizes for the uncorrected data. 

cooling [122]. 

3.4.4 Time Evolution of the Mass Function 

Halo mass functions from the multiple-box simulations are shown in Figure 3.9, 

with results being reported at five different redshifts with no volume corrections 

applied. The combination of box sizes is necessary because larger boxes do not 

have the mass resolution to resolve very small halos at early redshifts, while 

smaller boxes cannot be run to low redshifts. The bottom plot of each panel 

shows the ratio of the numerically obtained mass function, and various other 

fits, to the Warren fit as scaled by linear theory (for volume-corrected results, 

see Fig. 3.11). Displaying the ratio has the advantage over showing relative 

residuals that large discrepancies (more than 100%) appear more clearly. For 

all redshifts, the agreement with the Warren fit is at the 20% level. The ST fit 

matches the simulations for small masses very well but overpredicts the number 

of halos at large masses. This overprediction becomes worse at higher redshifts. 

For example, at z = 15 ST overpredicts halos of 109 h- 1 M 0 by a factor of 

2. Agreement with both Reed et al. fits is also good, within the 10% level. 

Discussion focused around the question of universality is given in §3.4.7. The 

PS fit in general is not satisfactory over a larger mass range at any redshift. 

It crosses the other fits at different redshifts for different masses. Away from 

this crossing region, however, the disagreement can be as large as an order of 

magnitude, e.g. for z = 20 over the entire mass range we consider here. 

63 



' i, 

' 

-o~ 

-1.0 
z=O 

~ ~ z=5 
~ -1.5 ~ 
8. 8. 
2. ~ -1 
;-2.0 

" r ! 16 Mpc/h box 1-2.5 "? -2 32 Mpc/h box 

j 
x 64 Mpc/h box 

r 128 Mpc/h box 

-3.0 -3 

-3.5 -· 1.05 1.1 
.2 .. & 1.00 0 1.0 -x 0: 

0.95 0.9 

1M 11.0 11~ 12.0 12.5 13.0 13.5 10 11 12 
log(M (M./h]) IOCJ(M (M•/h]) 

z=10 

i 
z=15 

'f 
~ 

0 8. 
~ 0 ~ 
"' g. -1 8' -1 

~~ 
~ -2 

x -4 Mpc/h box ~ 4 Mpc/h box x 8 Mpc/h box 
x 16 Mpc/h box 

~ -2 8 Mpc/h box 

x 32 Mpc/h box r 16 Mpc/h box 

-3 -3 

~-

1.1 

It I 
9 10 11 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

IOCJ(M (M./h]) IOCJ(M (M•/h]) 

~ 0.5 z=20 
~ 
~ 0.0 

" r -o.5 _ Warren et cl. 

~ x "4 Mpc/h box Press-Schechter 

j-1.0 x 8 Mpc/h box 
-
- Sheth-Tormen 

-1~ 
_ Jenkins et ol, 

Reed et ol. 2003 

- Reed et ol. 2007 

II 
I 

7.0 7.2 7.• 7.6 7.8 8.0 8.2 8.• 
log(M (M./h]) 

Figure 3.9: Mass function at five different redshifts (z = 0, 5, 10, 15, and 20; top 
to bottom) compared to different fitting formulae. Note that the mass ranges 
are different at different redshifts. The simulation results have been corrected 
for FOF bias following Warren but not for finite-volume effects (for these, see 
Fig. 12). The bottom panel shows the ratio with respect to the Warren fit. Our 
simulations agree with the Warren fit at the 10% level for redshifts smaller than 
10, although there is a systematic offset of 5% at z = 0, where our numerical 
results are higher than the fit. At higher redshifts, the agreement is still very 
good (at the 20% level) and becomes very close once finite-volume corrections 
are applied (Fig. 3.11). PS is a bad fit at all redshifts, and especially at high 
redshifts, where the difference between PS and the simulation results is an order 
of magnitude. 
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Figure 3.10: Halo gr~wth function for an 8 h- 1 Mpc box started from three 
different redshifts. The blue data points results from the z = 50 start, the 
turquoise data points from the z = 150 start, and orange from the z = 250 
start, which is the redshift satisfying our starting criteria. The two fits shown 
are the Warren fit (solid line) and the PS fit (dashed line). Three different mass 
bins are shown. It is interesting to note that the late start seems to follow the 
PS fit at high redshift. 

3.4.5 Halo Growth Function 

As discussed in §3.1.4 the halo growth function (the number density of halos 

in mass bins as a function of redshift) offers an alternative avenue to study the 

time evolution of the mass function. Figure 3.10 shows the halo growth function 

for an 8 h-1 Mpc box for three different starting redshifts, Zin = 50, 150, and 

250 (these are the same simulations as in Fig. 3.5). The results are displayed at 

three redshifts, z = 20, 15, and 10 and for three mass bins, 108 
- 109 h- 1 Mc:>i 

109 - 1010 h-1 M 0 , and 1010 - 1011 h-1 M 0 . 

Assuming that the Warren fit scales at least approximately to high redshifts, 

the first halos in the lowest mass bin are predicted to form at Zform '"" 25 (see 

Fig. 3.5). We have found that if Zform is not sufficiently far removed from Zin, 

formation of the first halos is significantly delayed/suppressed. In turn, this 

leads to suppressions of the halo growth function and the mass function at high 

redshifts. As shown in Figure 3.10, the suppression can be quite severe at high 

redshifts: the simulation result at z = 20 from the late start at Zin = 50 is 

an order of magnitude lower than that from Zin = 250. At lower redshifts, the 

discrepancy decreases, and results from late-start simulations begin to catch 

up with the results from earlier starts. Coincidentally, the suppression due to 

the late start at Zin = 50 is rather close to the PS prediction which is very 

significantly below the Warren fit in the mass and redshift range of interest (see 

Fig. 3.10). 
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3.4.6 Finite-Volume Corrections 

The finite size of simulation boxes can compromise results for the mass function 

in multiple ways. It is important to keep in mind that finite-volume boxes cannot 

be run to lower than some redshift, ZfinaJ, the stopping point being determined 

by when nonlinear scales approach close enough to the box size. Approaching 

too near this point delays the ride-up of nonlinear power towards the low-k end, 

with a possible suppression of the mass function. 

As a consequence of this delay, the evolution (incorrectly) appears more 

linear at large scales than it actually should, as compared to the P(k) obtained 

in a much bigger box. Therefore, verifying linear evolution of the lowest k-mode 

is by itself not sufficient to establish that the box volume chosen was sufficiently 

large. For all of our overlapping-volume simulations we have checked that the 

power spectra were consistent across boxes up to the lowest redshift from which 

results have been reported (Table 3.2 lists the stopping redshifts). 

Aside from testing for numerical convergence, it is important to show that 

finite-volume effects are also under control, especially any suppression of the 

mass function with decreasing box size (due to lack of large-scale power on 

scales greater than the box size). Several heuristic analyses of this effect have 

appeared in the literature. Rather than rely solely on the unknown accuracy of 

these results, however, here are also numerically investigated possible systematic 

differences in the mass function with box size. 

Over the redshifts and mass ranges probed in each of our simulation boxes, 

we find no direct evidence for an error caused by finite volume (at more than 

the ,.., 20% level), as can be seen in Figure 3.9. This is not to say that there are 

no finite-volume effects (the very high-mass tail in a given box must be biased 

low simply from sampling considerations) but that their relative amplitude is 

small. Below we discuss how to correct the mass function for finite box size. 

Volume Corrections from Universality 

Let us first assume that mass function universality holds strictly, in other words, 

that for any initial condition the number of halos can be described by a certain 

scaled mass function (eq. 3.1) in which o-(M) is the variance of the top-hat­

smoothed linear density field. In the case of infinite simulation volume, o-(M) 

is determined by equation (3.3), and the mass function F(M) of equation (3.2) 

is 
dn Pb dlno-- 1 

F(M) = dlogM = Mf(o-) dlogM . (3.46) 

In an ensemble of finite-volume boxes, however, one necessarily measures a 

different quantity: 

F'(M')= dn' =_E_!>__f(o-')dlno-
1

-

1 

dlogM' M' dlogM' 
(3.47) 
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Here a'(M') is determined by the (discrete) power spectrum of the simulation 

ensemble, although if universality holds as assumed, f in equations (3.46) and 

(3.47) is the same function. 

Since we are, in general, interested in the mass function which corresponds to 

an infinite volume, we can then correct the data obtained from our simulations 

as follows: for each box size we can define a function M'(M) such that 

a(M) =: a'(M'(M)). 

Using equations (3.46) - (3.48), we determine F(M) as 

F(M) = F'(M') d~~M). 

Thus, the corrected number of halos in each bin is calculated as 

M' 
dn = dn' M . 

(3.48) 

(3.49) 

(3.50) 

The universality must eventually break down for sufficiently small boxes or 

high accuracy because the nonlinear coupling of modes is more complicated 

than that described by the smoothed variance. This violation can be partly 

corrected for by modifying the functional form of a'(M'). Therefore, we also 

explore other choices of a'(M') which may better represent the mass function 

in the box. To address this question we provide a short summary of the Press­

Schechter approach. 

Motivation from Isotropic Collapse 

We first consider the idealized case of a random isotropic perturbation of pres­

sureless matter and assume that the primordial overdensity at the center of this 

perturbation has a Gaussian probability distribution. The probability of local 

matter collap~e at the center is then fully determined by the local variance of the 

primordial overdensity a 2 • Consequently, for the isotropic case the contribution 

of Fourier modes of various scales to the collapse probability is fully quantified 

by their contribution to a 2 • 

To see this, consider the evolution of matter density Ploc at the center of the 

spherically symmetric density perturbation. For transparency of argument, let 

us focus on the evolution during the matter-dominated era; it is straightforward 

to generalize the argument to include a dark energy component Pde(z), homo­

geneous on the length scales of interest, by a substitution Ploc -> Pm, loc + Pde 

in equations (3.51) and (3.53). By Birkhoff's law, the evolution of Ploc and 

the central Hubble flow H1oc = i \7 · v10 c are governed by the closed set of the 

Friedmann and conservation equations, 

Hfoc 
87rGP1oc "' 

3 
- -2-, 

aloe 
(3.51) 
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( ) 

1/3 

;~c (3.52) 

where"' is a constant determined by the initial conditions, p0 is arbitrary (e.g., 

Po = Pblz=o), and t is the proper time. 

The degree of nonlinear collapse at the center can be quantified by a dimen­

sionless parameter 
3H2 

q = 1 _ Joe . 
87rGp1oc 

(3.53) 

First consider early times, when the evolution is linear, and let Ploc = Pb(l + 6). 
Then for the growing perturbation modes during matter domination H1oc = 

H(l - 6/3). Given these initial conditions, which set the initial Ploc and the 

constant"' in equation (3.51), the subsequent evolutions of Ploc, H10 c, and there­

fore q are determined unambiguously. 

During the linear evolution in the matter era q = 56 /3 is small and grows 

proportionally to the cosmological scale factor a. For positive overdensity, non-

linear collapse begins when q becomes of order unity, reaching its maximal value 

q = 1 when H1oc = 0, and decreasing rapidly afterwards. (We can observe the 

latter by rewriting eq. (3.53) as 

3K- -1/3 
q = 8 G 2 ex: PJoc ' 

7r alocPloc 
(3.54) 

having applied eqs. (3.51) and (3.52).) Nonlinear collapse of matter at the 

center of the considered region can be said to occur either when q ----+ 0 or when 

q reaches a critical 'virialization' value qc. 

Now it is easy to argue that in the isotropic case the Press-Schechter ap­

proach gives the true probability of the collapse, P(q > qc, z), for a redshift 

z. Indeed, the evolution of q is set deterministically by the primordial density 

perturbation at the center; for adiabatic initial conditions specifically, it is set 

by the curvature perturbation ( at the center. Since higher values of ( lead to 

earlier collapse, 

P(q > qc, z) = P(( > (c(z)) = ~ erfc [ ~z;] , (3.55) 

where the last equality uses the explicit form of P( () as a Gaussian distribution 

with a variance a2 • 

If the considered isotropic distribution is confined by a (spherical) boundary 

and a at the center is reduced by removal of large-scale power, then equa­

tion (3.55) should accurately describe the corresponding change of the collapse 

probability. In numerical simulations, due to the imposition of periodic bound­

ary conditions, there is no power on scales larger than the box size. In this case 

the variance a should be specified by the analogue of equation (3.3) with the 

integral replaced by a sum over discrete modes. 
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For the mass function (eq. [3.46]), a constant reduction of the variance 0" 2 (M) 

due to the removal of large-scale power leads to a suppression of the mass 

function at the high-mass end and, counterintuitively, a boost at the low-mass 

end. The latter is easily understood as follows: The O"-dependent terms of 
equation (3.46), 

f(O") dlnO"-l 
dlogM 

dp(M)/ Pb 
dlogM ' (3.56) 

give the fraction of the total matter density that belongs to the halos of mass M. 

When the variance is decreased by the box boundaries, this fraction is boosted 

at low masses due to a shift of halo formation to an earlier stage, where a larger 

fraction of matter is bound into low-mass objects. 

Numerical Results and Comparisons 

Following the above intuition, we employ the extended Press-Schechter formal­

ism [72] to correct for the missing fluctuation variance on box scales. This 

formalism, while clearly inadequate at various levels in describing halo forma­

tion in realistic simulations [72, 123, 98], has nevertheless been very successful as 

a central engine in describing the statistics of cosmological structure formation. 

As shown by Mo & White [36] using N-body simulations, the biasing of halos in 

a spherical region with respect to the average mass overdensity in that region is 

very well described by the extended Press-Schechter approach. Barkana & Loeb 

[76] discussed the suppression of the halo mass function in terms of this bias, 

and suggested a prescription for adjusting large-volume mass function fits such 

as Warren or ST to small boxes. Here we do not follow this path but directly 

work with the numerical data by correcting the number of halos in each bin as 
in equation (3.50). 

In the extended Press-Schechter scenario of halo formation, 0"1 on the right­

hand side of equation (3.47) would be approximately connected with O" via 

0'
12 

= 0"
2 

- O"k(box) [72], where O"k(box) is the variance of fluctuations in spheres 

that contain the simulation volume. Since extended Press-Schechter theory is 

derived for spherical regions, while our simulation boxes are cubes, we define 

R(box) as the radius of a sphere enclosing the same volume as in the simulations. 

The action of this correction is shown in Figure 3.11. Finite-volume correc­

tions are subdominant to statistical error at z = 0 and 5. At higher redshifts, the 

corrections produce results that are consistent across box sizes, i.e., that have 

no systematic shape changes or 'jumps' across box boundaries. Moreover, the 

action of the corrections is to bring the simulation results closer to a universal 
behavior. 

For completeness, we mention two other approaches aimed at box-adjusting 

the mass function. The first [101, 124] simply replaces the original mass variance 
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Figure 3.11: Mass function data corrected for finite box volume by the extended 
Press-Schechter prescription of §3.4.6 (squares). We show the results as a ratio 
with respect to the Warren fit and follow the conventions of Fig. 3.9. We also 
display the volume-uncorrected data (crosses). Note that the volume-corrected 
data join smoothly across the box-size boundaries. This box correction brings 
the results very close to universal behavior at high redshifts (see Fig.3.14). 
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Figure 3.12: Mass function corrected for a finite box using the assumption of 
strict universality, as described in §3.4.6 (squares). Again, we show uncorrected 
data as well (crosses), and follow the conventions of Fig. 3.9. This correction 
produces a clear systematic shift in the results across box boundaries. 
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(eq. (3.3)) with 

2 d2(z) loo 2 2 
abox(M, z) = - 2- k P(k)W (k, M)dk, 

27!" 2rr / L 
(3.57) 

the lower cut-off arising from imposing periodic boundary conditions (L is the 

box-size). (For enhanced fidelity with simulations, the integral in eq. [3.57] goes 

to a sum over the simulation box modes.) This approach basically assumes 

that a defined via an infrared cutoff is the appropriate replacement for the 

infinite-volume mass variance. Figure 3.12 shows the effect of this suggested 

correction: At z = 0 and 5 it is not noticeable, but at higher redshifts the 

correction is significant relative to the accuracy with which the binned mass 

function is determined. Furthermore, it exhibits systematic shape changes and 

offsets across boxes, in contrast to the results shown in Figure 3.11. For example, 

at z = 10 the corrected data at the crossover point between the 4 and 8 h- 1 Mpc 

boxes (,...., 108 h-1 M 0 ) have an offset of 5%. We conclude that this approach is 

disfavored by our simulation results. 

An alternative strategy is to estimate the mass variance from each realization 

of P(k) in the individual simulation boxes and to treat every box individually, as 

done in ref. [4]. This has in fact two purposes: to compensate for the realization­

to-realization variation in density fluctuations (which could be a problem for 

small boxes) and also to compensate for an overall suppression in the mass 

function as discussed above. The disadvantage is that each of many realizations 

Iiow has a different a(M) for a given value of M. 

3.4. 7 Mass Function Universality 

Finally, we investigate the universality of the mass function found by Jenkins. 

Approximate universality is expected from the analytic arguments of PS and 

its extended, excursion-set formulation [72]. The universal behavior of halo 

formation persists even in the model of ellipsoidal collapse of ST, in which the 

predicted mass function is no longer of the PS form. On the other hand, the 

universality cannot be exact if the nonlinear interactions of different scales are 

fully accounted for: The nonlinear evolution that leads to the formation of halos 

of mass M must involve multiple degrees of freedom that are described by more 

parameters than the overall variance of the primordial overdensity smoothed 

by a top-hat filter W(r, M). The universality is expected to be violated at 

sufficiently high resolution of the mass function even in the PS-type spherical 

collapse model: It is more reasonable to represent the probability of the collapse 

not by a fraction of particles at the center of spheres enclosing a mass M but by 

any fraction of particles belonging to such spheres [125]. The improved mass­

function derived from this argument deviates somewhat from a universal form 

[126]. 

To investigate the extent our numerical simulations are consistent with uni-
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Figure 3.13: Scaled differential mass function from all simulations, prior to 
applying finite-volume corrections. Fits shown are Warren (red), PS (dark blue), 
ST (black), Jenkins (light blue), and Reed et al. (2003) (yellow). Dashed lines 
denote an extrapolation beyond the original fitting range. The bottom panel 
shows the ratio relative to the Warren fit. The failure of the different redshift 
results to lie on top of each other at small values of /J indicate a possible violation 
of universality. 

versality, we combine our results for f(G, z) as a function of the variance G- 1 

from the entire simulation set in one single curve at various redshifts. This 

curve is expected to be independent of redshift if universality holds. We display 

the results in Figure 3.13 for the raw data and in Figure 3.14 for the same data 

after applying the volume corrections discussed earlier. 

In the raw data of Figure 3.13, the agreement with the various fits is quite 

tight (except for PS) until ln G- 1 > 0.3. Beyond this point, the multiple-redshift 

simulation results do not lie on top of each other; in the absence of any possible 

systematic deviation, this would denote a failure of the universality of the FOF, 

b = 0.2 !llass function at small /J. Note also that beyond this point the ST and 

Jenkins fits have a steeply rising asymptotic behavior (relative to the Warren fit). 

The Reed et al. (2003) fit, meant to be valid over the range -1.7::::; lnG- 1 ::::; 0.9, 

is in better agreement with our results, to the extent that a single fit can be 

overlaid on the data. 

The ostensible violation of universality seen above is small, however, and 

subject to a systematic correction due to the finite simulation volume(s). On 

applying the volume correction, we obtain the results shown in Figure 3.14, the 
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Figure 3.14: Volume-corrected scaled differential mass function following 
Fig.3.13. Note the significantly improved agreement with universal behavior 
(overlapping results beyond lnu- 1 ,...., 0.3). 

key difference being that beyond ln u- 1 > 0.3 the multiple-redshift simulation 

results now lie on top of each other and, within the statistical resolution of 

our simulations, are consistent with universal behavior. Specifically, we do not 

observe the sort of violation reported by Reed et al. [4] at high redshifts. This 

could be due to several factors. Here are used different finite-sampling FOF 

mass correction, as well as the finite-volume corrections. Moreover, the boxes 

we use at high redshifts are significantly larger. We note also that the difference 

between the Warren fit and the z-dependent Reed 2007 fit does not appear to 

be statistically very significant given either our or Reed et al. data. 

3.5 Implications 

We have investigated the halo mass function from N-body simulations over a 

large mass and redshift range. A suite of 60 overlapping-volume simulations 

with box sizes ranging from 4 to 256 h-1Mpc allowed us to cover the halo mass 

range from 107 to 1013
·5 h- 1 M0 and an effective redshift range from z = 0 to 

20. 

In order to reconcile conflicting results for the mass function at high redshifts, 

as well as to investigate the reality of the breakdown of the universality of the 

mass function, we have studied various sources of error in N-body computations 

of the mass function. A set of error control criteria need to be satisfied in order 
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to obtain accurate mass functions. These simple criteria include an estimate 

for the necessary starting redshift, for the required mass and force resolution to 

resolve the halos of interest at a certain mass and redshift, and for the number 

of time steps. 

The criteria for the initial redshift appear to be particularly restrictive. For 

small boxes, commonly used in the study of the formation of the first objects in 

the Universe, significantly higher initial redshifts are required than is the normal 

practice'. A violation of this criterion leads to a strong suppression of the mass 

function, most severe at high redshifts. Recent results by other groups may 

be contaminated due to a violation of this requirement; a careful re-analysis of 

small-box simulations is apparently indicated. 

The force resolution criterion is especially useful for grid codes, PM as well 

as adaptive mesh. The mass function can be obtained reliably from PM codes 

down to small-mass and up to high-mass halos provided the halos are adequately 

resolved. The resolution criterion is also very useful in setting refinement levels 

for adaptive mesh refinement (AMR) codes. As will be shown in chapter 6 the 

mass function from AMR codes is suppressed at the low-mass end if the base 

refinement level is too coarse. 

The results for the required number of time steps to resolve the mass func­

tions is somewhat surprising. The halo mass function appears to be very robust 

with respect to the number of time steps chosen to follow the evolution, even 

though the inner structure of the halos will certainly not be correct. Even a 

small number of time steps is sufficient to obtain a close-to-correct mass func­

tion at z = 0. This considerably simplifies the study of the mass function and 

its evolution. 

Since finite-volume effects can also lead to a suppression of the mass function, 

we have tried to minimize the importance of these effects by avoiding too-small 

box sizes, by using overlapping boxes, and by restricting the mass range investi­

gated in a given box size. In addition, we have found that a box-size correction 

motivated by the extended Press-Schechter formalism for the mass variance ap­

pears to give consistent results when applied to our multiple-box simulation 

ensembles. 

We now briefly comment on results found previously by other groups. Jang­

Condell & Hernquist [95] find good agreement with the PS fit at z = 10 for 

a mass range 4 x 105 - 4 x 108 h- 1 M 0 . The crossover of PS with the more 

accurate fits at z = 10 takes place in exactly this region (see Figs. 3.1 and 3.9). 

Therefore, all fits are very close, and the mass function from a single 1 Mpc box 

at a single redshift as shown in their paper cannot distinguish between them. 

As mentioned earlier in §3.1.5, good agreement with the PS result has been 

reported at high redshifts (some results being even lower than PS) by several 

other groups [99, 100, 101, 103, 110]. The simulations of [103] and [110] were 

started at Zin ,..., 50, substantially below the starting redshift that would be 

suggested by our work. Furthermore, the very large number of particles in 
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the [110] simulation requires a high starting redshift (Fig. 3.4). Therefore, the 

depressed mass function results of these simulations are very consistent with a 

too-low initial redshift. ([110] have recently rerun their simulations with a much 

higher initial redshift - z = 300, and now find results consistent with results 

here.) The initial particle density of the [107] simulations is very close to that of 

our 16 h-1 Mpc box, in which case also a high redshift start is indicated (we used 

Zin = 200). Finally, the initial redshift of the Yoshida et al. papers, Zin = 100, 

for boxes of size,....., 1 h-1Mpc, also appears to be significantly on the low side. 

We have compared our simulation results for the mass function with various 

fitting functions commonly used in the literature. The recently introduced (z = 
0) fit of Warren leads to good agreement (at the 20% level with no volume 

correction, and at the 5% level with volume correction) at all masses and all 

redshifts we considered. Other modern fits, such as Reed et al. (2003, 2007), 

also lie within this range. These fits do not suffer from the overprediction of 

large halos at high redshifts observed for the ST fit. The PS fit performs poorly 

over almost all the considered mass and redshift ranges, at certain points falling 

below the simulations by as much as an order of magnitude. 

The evolution of the mass function can be used to test the (approximate) 

universality of the FOF, b = 0.2 mass function. At low redshifts our data are 

in good agreement with those of [4] (at z = 5), finding a (possible) mild red­

shift dependence (at the 10% level). At higher redshifts, however, we find that 

volume corrections are important to the extent that little statistically signifi­

cant evidence for breakdown of universality remains in our mass function data. 

A full theoretical understanding of this very interesting result remains to be 

elucidated. 

We have made no attempt to provide a fitting function for our data due to 

several reasons. First, the current simulation state of the art has not reached 

the point that one can be confident of percent-level agreement between results 

from different simulations even in regimes that are not statistics-dominated [91]. 

Second, simulations have not sufficiently explored the extent to which universal 

forms for the mass function are indeed applicable as cosmological parameters 

are systematically varied. Third, absent even a compelling phenomenological 

motivation for the choice of fitting functions, there is an inherent arbitrariness 

in the entire procedure. Finally, it is not clear how to connect the FOF mass 

function to observations. In general, tying together mass-observable relations 

requires close coupling of simulations and observational strategies. In studies 

of cosmological parameter estimation, we support working directly with simu­

lations rather than with derived quantities, which would add another layer of 

possible systematic error. Because observations already significantly constrain 

the parametric range, and are a smooth function of the parameters, this ap­

proach is quite viable in practice [127, 128]. 
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4 Structure of Halos 

Dark matter halos occupy a central place in the paradigm of structure formation: 

Gas condensation, resultant star formation, and eventual galaxy formation occur 

within halos. The distribution of halo masses - the halo mass function - and 

its time evolution, are sensitive probes of cosmology, particularly so at low 

redshifts, z < 2, and high masses. This last feature allows cluster observations 

to constrain the dark energy content, nA, and the equation of state parameter, 

w [32]. In addition, phenomenological modeling of the dark matter in terms 

of the halo model (reviewed in ref. [129]) requires knowledge of the halo mass 

distribution and density profiles, as does the halo occupancy distribution (HOD) 

approach to modeling galaxy bias. 

Because accurate theoretical results for the mass function (and other halo 

properties) do not exist, many numerical studies of halos and their properties, 

and of the mass function, have been carried out over widely separated mass and 

redshift ranges. Despite the intuitive simplicity and practical importance of 

the halo paradigm, halo definitions and characterizations have been somewhat 

ad hoc, mostly because of the lack of an adequate theoretical framework. For 

the purposes of this work, there are two crucial results that have been well­

established by the numerical studies. The first is that spherically averaged halo 

profiles are well-described by the two-parameter NFW profile [130, 74] (this 

shape is consistent with observational studies of clusters), and second, that 

a simple 'universal' form for the FOF halo mass function (with link length, 

b = 0.2) holds for standard cold dark matter cosmologies [75]. A detailed 

understanding of both of these numerically established results remains elusive. 

The universality of the FOF mass function has been recently verified to 

the level of ,...., 10% accuracy for essentially all observationally relevant redshifts 

(z < 10) by several simulation efforts [73, 3, 4, 131], as described in chapter 3. 

The result is potentially very useful, because at this level of accuracy there is 

no longer any reason to simulate individual cosmologies, as the universal form 

already covers the parametric region of interest. There is one serious problem, 

however: the universal form of the mass function does not hold for the SO mass 

as defined and used by observers when determining the masses of galaxy groups 

and clusters [78, 77]. Unlike the SO criterion, the FOF method [79, 80] does not 

determine a (spherically-averaged) overdensity structure, but instead defines an 

object bound by some isodensity contour (Fig. 4.1). In principle, isodensity­

based methods can be used in observations, but require significantly more work 
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than the SO approach. 

At this point, one could ask the question whether the SO and FOF masses 

could be mapped to each other if more information regarding halo properties 

were avalilable. Alternatively, one could forsake universality and attack the SO 

mass function problem directly via simulations, [132, 133]. The work here will 

proceed along the first path and investigate whether an effective solution to the 

problem can be found 1. We first show that even for perfect NFW halos, there is 

no simple direct mapping between FOF and SO masses, because of a significant 

dependence on the halo concentration. The mapping depends as well on the 

number of particles sampling a given halo, something that needs to be taken 

into account when interpreting results from simulations. However, we establish 

the useful result that for NFW halos sampled by a given number of particles, a 

two-parameter map utilizing concentration and particle number indeed connects 

the two masses with a small Gaussian scatter, quantified below in §4.2). 

The key question is whether these relationships for idealized NFW halos 

survive when applied to the more realistic case of halos within cosmological 

N-body simulations. We find that this is indeed the case for halos that can 

be considered to be relatively isolated (a notion to be made more concrete in 

§4.2), and not possess significant substructure; i.e., approximately 80 - 853 of 

all halos in the mass-range 1012·5 - 1015·5h- 1 M 0 explored by the simulations. 

This fraction of isolated halos is close to the conclusion of Evrard et al. [134] 

who anlayzed results from a large suite of simulations. For these halos, the two­

parameter map derived above succeeds remarkably well in accurately converting 

the FOF mass function to the corresponding SO mass function, at the "" 53 

level - the current level of descriptive accuracy as limited by the robustness of 

halo definitions and numerical results from simulations (see chapter 3). We show 

that the concentration dependence of the FOF-SO mass relation is significant at 

the current levels of accuracy for the determination of halo masses. Conversion 

between FOF and SO masses will incur significant error if halo concentration is 

not considered. To transform between the FOF and the SO mass function, the 

scatter in concentration must also be considered. The work here has implications 

for observationally determined mass functions, and for HOD and other methods 

of deriving mock galaxy catalogs. 

An additional point is that, in the N-body simulations, there not only exists 

a simple relationship between the halo concentration and the SO (or FOF) mass 

with a (relatively) large scatter, but that the scatter can be very well fit by a 

Gaussian distribution at a given mass. Using this simple concentration-mass 

relation and its Gaussian variance, one may go directly from the FOF mass 

function to the SO mass function or vice-versa. This procedure solves the mass 

function mapping problem for the subset of isolated halos, which comprise the 

bulk of the halo population. It does not, however, enable one to transform from 

1 For an earlier discussion, see [81], who noted that FOF and SO masses are correlated, but 
with a significant scatter. 
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the universal FOF mass function to a chosen SO mass function because of the 

15 - 20% fraction of FOF halos with irregular morphologies, most of which are 

'bridged' halos (density peaks connected by high density filaments or ridges). 

A potential way around this difficulty is to treat explicitly the 'multiplicity' of 

apparently discrete SO halos within FOF halos in the transformation between 

FOF and SO mass functions. 

Based on our runs for two different cosmologies, we have good evidence that 

the fraction of bridged halos rises as a function of mass, and that this fraction is 

also 'universal', i.e., more or less independent of the cosmology when written in 

units of M/M*, where M* is the characteristic halo mass-scale set by matching 

the RMS linear density fluctuation to the threshold density for collapse. We also 

find that the fraction of halos with major satellites as a function of the satellite 

mass fraction (with respect to the main halo) is cosmology dependent. This may 

pave the way for constraining cosmology from clusters of galaxies in a new way, 

essentially independent of the sampling volume, and therefore with enhanced 

immunity against selection effects. At the very least, using the major satellite 

halo fraction should provide a valuable cross-check for cosmological constraints 

derived from the mass function in the conventional manner. 

4.1 Mass Definitions 

The spherical overdensity and friends-of-friends methods are the two main ap­

proaches to defining halos and their associated masses in simulations. SO identi­

fies halos by identifying spherical regions with prescribed spherical overdensities 

.6.: 
( 4.1) 

where Pc is the critical density 2 . An often-used value for the overdensity is 

.6. = 200, roughly the theoretically predicted value given by the spherical col­

lapse model, l87r2 , for virialized halos in an Einstein-de Sitter universe (section 

§2.4.2). For the currently favored ACDM model (OA = 0.7, nm = 0.3), spher­

ical collapse actually predicts a smaller overdensity at virialization: .6. ~ 100. 

X-ray observers, on the other hand, prefer higher density contrasts, .6. = 500 or 

1000, because strucutures on those scales are much brighter, and more relaxed 

compared to the outer regions. 

The main drawback of the SO mass definition is that it is somewhat artificial, 

enforcing spherical symmetry on all objects, while in reality halos often have an 

irregular structure [81]. For some applications, such an approach may be well 

founded (for example X-ray cluster analysis for relaxed clusters), but may not 

be universally applicable. Furthermore, defining an SO mass can be ambiguous, 

since for two close density peaks, the corresponding SO spheres might overlap, 

2 Again, overdensities are in some wo;ks stated with respect to the background density: 
Pb = OmPc, but we restrict ourselves to defining them with respect to Pc· 
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and one has to decide how to distribute particles between them (or assign them 

to both, breaking mass conservation). 

The FOF algorithm, on the other hand, is not based on the notion of a certain 

overdensity structure, but defines instead an object bound by some isodensity 

contour. The mass of a halo is then simply the sum of all particles inside a 

given contour. By linking particles which are separated at most by the distance 

ll = bn-1!3 (where n is the number density of particles in the simulation, and 

bis the linking length), the FOF method, in effect locates an isodensity surface 
of 

(4.2) 

where k is a constant of order 2 [135]. For b = 0.2, and the concordance ACDM 

cosmology, this leads to Piso = 75Pc· Given their percolation-centric nature FOF 

halos can have complicated shapes and topologies (Fig. 4.1). 

4.2 Mass Mapping from Mock Halos 

In order to address the relation of FOF and SO masses, we first turn to a 

controlled test using idealized 'mock' halos. These are taken to be spherical 

dark matter halos with the NFW density profile: 

p(r) = Ps 2 , 

r/rs (1 + r/rs) 
(4.3) 

where Ps and rs are the core density and scale radius respectively. Instead of 

Ps and r8 , it is often convenient to use physically more transparent quantities: 

the SO mass MA and the concentration c =rs/ RA: 

~Pc c3 

Ps = 3 [ln(l + c) - c/(1 + c)] 

rs = ~ [ 3 MA ] 1/3 . 

c 4 7r ~Pc 

The cumulative mass within a radius r can be calculated as: 

M(r) 1
r 

47rr2 Ps 2dr 
o r/rs (1 + r/rs) 

47rpsr: [ln(l + r/rs) - (r/rs)/(l + r/rs)] 

(4.4) 

( 4.5) 

(4.6) 

While it is still unclear whether the very inner parts of the halos ("' 13 of R200) 

have density profiles steeper than NFW [136, 137, 138, 139, 140], the inner 

asymptotic slope is not of concern here, and does not affect results presented 
here. 

The mock NFW halos are generated in the following way: first we fix the 

SO mass (MA = M200) of a halo and choose the number of particles which 

will reside in it (N200). We then populate the halo with particles according to 
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Figure 4.1: Different halo definitions for the same particle distribution in a sim­
ulation. The green points show all particles in a sphere centered around the 
minimum potential FOF particle and with radius 1.1 times the distance to the 
farthest FOF member (b = 0.2). The black contours are for the two dimen­
sional density field projected onto the z-direction as calculated from all the 
particles. The blue particles show the actual FOF halo members. The red circle 
shows the SO halo centered around the same point as the FOF halo. The box 
spans approximately 3.15h-1 Mpc in x- and y-direction, R200 is approximately 
0.6h-1Mpc. The FOF mass of the halo is 6.70x1013h-1M0 , the SO mass of 
the main halo is 4.91x1013h- 1M0 and the SO mass of the major subclump 
on the right (which belongs to the FOF halo) is 8.50x1012h-1M0 . The small 
subclump on the left (which was neither included in the FOF halo nor in the SO 
halo) is 2.97x1012h-1M0 . This plot demonstrates how closely the FOF halo 
boundary tracks an isodensity contour. 
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Figure 4.2: Distribution of b = 0.2 FOF masses for NFW halos with concentra­
tions c = 3 (left panel), and c = 10 (right panel), sampled with different particle 
numbers: 100 (blue), 1000 (green), 10000 (red). The number of Monte Carlo 
samples are 106 , 105 , and 104 for N200 = 100, 1000, and 10000, respectively. 
The solid curves are Gaussian fits. Note that the two panels have different units 
along both axes. 

the NFW distribution such that we enforce the desired mass to be M200 within 

the radius R200· We then extend the NFW distribution further out - adding 

particles to a 'halo tail'. The choice of 6. = 200 can easily be changed to any 

other desired value such as 6. = 500 or 1000 as more appropriate for cluster 

studies. In any case, for a given NFW profile choice, all overdensity masses are 

immediately fixed, so there is no lack of generality in our specific choice which 

corresponds to an approximate notion of the 'virial mass' [130, 74]. 

Having fixed M200 for all the mock halos, we determine the FOF mass for 

every halo. Because the particles are randomly sampled inside a halo (following 

the NFW density profile), one cannot expect that for every realization of a mock 

halo, the FOF finder will return exactly the same mass. Given a large number 

of mock halos with the same density profile and statistical independence of the 

realizations, the central limit theorem predicts a Gaussian distribution for the 

FOF masses. Indeed, just as expected, a normal distribution gives an excellent 

description for MF0F/M200· Thus, one can not only determine to what SO mass 

,a certain MFoF corresponds (on average), but can also quantify the systematic 

deviation of an FOF halo finder through a standard deviation (Figs. 4.2). The 

Gaussian spread of FOF masses is centered around a mean value that shifts 

systematically with the number of sampling particles, N, as empirically noted 

by Warren et al. [8] (Fig. 4.3). 

Besides this N-dependence, we also wish to examine how MFoF/Mt::.. de­

pends on the underlying profile. We have found that this dependence leads to 

another source of bias for FOF masses relative to SO masses. In Fig. 4.3, we 

show average values of MFoF for a range of particle numbers and concentrations. 

It is clear that one cannot accurately match a given M200 to a corresponding 
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Figure 4.3: Ratio of the (b = 0.2) FOF mass to M20o for NFW mock halos with 
different concentrations and particle number, N, but the same value of M 200 . 

Low concentration halos have up to a factor of two higher FOF mass than M200. 

For high concentration halos, the ratio of the two mass definitions is closer to 
unity, the FOF mass being always higher. 

Mpop without the concentration being specified. Concentration variation from 

c'"" 20 (typical for galaxies) to c'"" 5 (typical for clusters) [141, 142] corresponds 

to systematic FOF mass shifts of '"" 30%, much larger than can be tolerated by 

the accuracy to which the FOF mass function can currently be determined nu­

merically ('"" 5%). For any given N 200 , this concentration dependence follows 

the functional form: 
Mpop a1 a2 
--- = - + - + a3 , 
M200 c 2 c 

(4.7) 

where the coefficients a1, a2, a3, depend on N200 only (Table 4.1). 

Well-sampled halos, with N > 1000, are characterized by a small variance 

in the Mpop/M200 ratio, with a maximum value of 1J '""0.02 - 0.03, depending 

on the concentration. With such a low intrinsic scatter in the mass relation­

ship for a given concentration, the logical next step is to see whether the mean 

Mpop(M200, c) relationship obtained from the mock NFW halos actually ap­

plies to the real halos in N-body simulations. Here, it should be noted that 

actual simulated halos are not expected to be spherical due to the episodic and 

anisotropic nature of mass accretion, and in fact are much better described as 

ellipsoids [143, 144]. Nevertheless, as we are interested in an averaged quan-
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Table 4.1: Best Fit Coefficients. Best fit coefficients for different N 200 , as ob­
tained from the mock halo analysis. For all values of N200, the functional form 
of the fit is given by Eqn. (4.7). 

Coeff. N2oo 
100 600 103 6 x 103 104 105 106 

al -0.3887 -0.3063 -0.2790 -0.2210 -0.1970 -0.1642 -0.1374 
a2 1.6195 1.4130 1.3669 1.2459 1.2157 1.1392 1.0900 
a3 1.0715 1.0313 1.0226 1.0008 0.9960 0.9800 0.9714 

tity, the halo mass, an approach based on idealized halos may well provide an 
adequate description. 

4.3 Mass Mapping in N-Body Simulations 

In order to investigate the validity of the mock halo mass relationships, we use 

results from four cosmological simulations for two flat ACDM cosmologies, each 

simulated with 174 and 512 h-1Mpc boxes. The pre-WMAP, high-0"8 cosmology 

has the following parameters: matter density, nm = 0.3; dark energy density, 

nA = 0.7; fluctuation amplitude, 0"3 = 1.0; Hubble constant h = 0.7 (in units 

of 100 km s-1 Mpc- 1 
); primordial spectral index, n8 = 1; and the Bardeen 

et al. [145] transfer function with "( = Omh. For the WMAP 3 compatible 

cosmology runs, the parameters are: Om= 0.26, nA = 0.74, 0"8 = 0.75, h = 0.71, 

n 8 = 0.938, and a transfer function generated using CMBFAST [113]. We use 

the parallel gravity solver GADGET2 [96] to follow the evolution of 5123 dark 

matter particles starting from a redshift z = 99, high enough to satisfy the initial 

redshift requirements given in the chapter 3. The particle masses are 3.3 x 109 

and 8.3x 1010h-1 M0 for the high-O"s run, and 2.8x109 and 7.2x1010h- 1 M 0 for 

the WMAP 3 cosmology. These masses are small en'ough to comfortably resolve 

groups and clusters to the level required for this study [146, 140, 147]. The 

FOF mass functions from these simulations are in very close agreement with 

the results of previous chapter, well within a few percent. By using cosmologies 

with normalizations that bracket the currently favored cosmologies, we are able 

to show that our results are applicable to any likely cosmology, once (cosmology 

dependent) halo concentrations are specified. 

To carry out a realistic test of the mass relationships, we adopt the following 

procedure: (i) First run an FOF halo finder on the final particle distribution, 

and select all halos with N > 1000. (ii) Define halo centers by identifying 

the local gravitational potential minima. This corresponds closely to the most 

bound particle, as well as the density peak of the halo in most cases [78]. (iii) 

Construct individual SO profiles around these minima, thereby determining 

M200. The halo density is computed in 32 logarithmically equidistant bins, 

and we fit the NFW profile treating both r 8 and Ps as free parameters. As 
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Figure 4.4: Distribution of distances between FOF center of mass, and potential 
minimum for 512 h-1Mpc box (red) and 174 h- 1Mpc box (blue), scaled by R200 . 

Left panel is for High as cosmology, right panel for WMAP 3. 

a consistency check, we use an alternative approach, where M200 is measured 

directly from the mass within a sphere, and NFW is treated as a one-parameter 

function (by fixing Ps such that the enclosed overdensity is 200pc)· No significant 

differences were found between the two approaches. 

The N > 1000 halo particle cut keeps the variance in the mass ratios small 

(Cf. Figs. 4.2-4.3) and also allows stable calculations of the individual halo 

concentrations. For each FOF halo we find its center of mass from all the par­

ticles linked together by the halo finder. On occasion, the FOF finder connects 

apparently distinct halos (bridging); these halos may well be in some stage of 

merging. Since it makes little sense to define an SO profile and an associated 

concentration for very close halos and those undergoing major mergers, we use 

the distance between the center of mass and the potential minima to exclude 

such halos. In figure 4.4 we show the distribution of that distance (d) for all 

halos with N > 1000 from both of the simulation boxes. While most of the halos 

appear to be isolated objects where the difference between the two center defi­

nitions is due to substructure, there are severe outliers, and even objects where 

the FOF center of mass is more than R200 away from the potential minimum! 

To proceed further, we first set aside all halos with d/ R200 > 0.4. Although 

this cut is somewhat arbitrary, the results are relatively insensitive to the partic­

ular choice, as discussed below. Furthermore, the mock halo analysis on regular 

NFW halos shows that, even at low concentrations, one expects approximately 

Mpop/M200 ,....., 1.5 (Cf. Fig. 4.3). Larger values therefore are a signal of a po­

tential merger, as was verified directly by confirming with the simulation results. 

In figure 4.5 where we plot both 'isolated' (blue) and 'bridged' (red) halos, the 

strong correlation between our cut, based on the difference between halo mass 

and potential centers, and the high values of Mpop/M200 (with respect to the 

mock halo expectation) can be easliy verified. 
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Figure 4.5: Left panel: Scatterplot of the ratio of FOF and S0(200) masses 
from the High us simulations as a function of the measured concentration for (i) 
halos passing the criterion d/ R2oo < 0.4 (blue), where dis the distance between 
the center of mass and the potential minima (see discussion in the text), and 
(ii) halos not passing this criterion (red). The solid line shows the mock halo 
prediction for halos with particle number, N200 = 103 , which dominate the 
sample. Right panel: The same for WMAP 3 cosmology. 

Finally, we compare our cutoff with an SO analysis of FOF halos: for each 

halo we find the potential minimum particle and R20o around it, and than 

move to the next particle in the potential hierarchy which resides outside R200 

(if inside, we define it as a piece of substructure rather than a 'satellite halo' 

bridged by the FOF procedure), find R2oo and M200 for the second halo, and 

iterate this procedure until all FOF particles are exhausted. When separate 

SO halos overlap we assign particles in the overlapping region to all SO halos, 

keeping the overdensity idea straightforward, but breaking mass conservation. 

Of course, if one goes down to a few particles, then virtually all FOF halos will 

be resolved into multiple SO objects. But if the threshold of the satellite mass 

is raised to 20% of the main halo mass, most of the FOF halos appear as a 

single SO halo. The two methods: d/R200 > 0.4, and Msatellite/Mmain > 0.2 

correlate extremely well, agreeing in 85-90% of all cases (the agreement is worse 

for larger masses, and better for smaller halo masses). This gives us additional 

confidence that our cutoff criterion separates isolated from bridged halos. 

For the both halo samples, we now apply the MFoF(M200 , c) relationship 

determined by the mock halo results of Fig. 4.3, as encapsulated in the fits 

specified in Table 4.1. From the figure 4.6 we see that by using our recipe we 

are able to sucessfully estimate M200 knowing MFoF for isolated halos. On the 

other hand, for excluded (bridged) halo sample, analysis done on NFW halos 

is clearly not applicable. Note also that these halos show significantly bigger 

scatter in mass estimate. We will return to an analysis of the excluded halos in 

Section 4.4, and for the moment we shell focus on isolated halos. 

The halo exclusion cut eliminates only about 15-20% of all halos, so while 
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Figure 4.6: Scatterplot showing mass estimate (MEsT) for M20o using our mock 
halo recipe, and M200 as measured in simulations. Left panel is showing iso­
lated halo sample, passing d/ R20o < 0.4 criterion, while right panel is for halos 
excluded by the same criterion. 

not statistically very significant, it is certainly not negligible. One of the main 

tests of halo mass mapping is the mass function; the results are shown in the 

figure 4.7, where the measured mass functions are displayed in terms of a ratio 

to a Warren fitting form for the FOF mass function 3 The undernormalization 

of the FOF mass function relative to the fit is simply due to the exclusion 

procedure described above. Note that the FOF and SO mass functions, as 

numerically determined, differ by as much as 20 - 40% depending on the mass 

bin. However, application of the mock halo mass relationship to every individual 

FOF halo correctly reproduces the SO mass function at the 5% level, the current 

(numerical) limiting accuracy of mass function determination. The success of 

this simple mapping idea is a testimony to the accuracy of the NFW description 

for (spherically averaged) realistic halos in simulations, and consistent with the 

overall conclusion [134] that the majority of cluster-scale halos are structurally 
regular. 

Using the expression for the cumulative NFW mass [Eqn. (4.6)], we can 

find the mass for any desired overdensity .6. in terms of M 20o; defining Mc = 

Me:./M200, we have: 

(4.8) 

where A(c) is a prefactor which depends on c only: 

1 
A( c) = -ln...,...(1-+----:-c )---c-/-( 1-+-,-c) (4.9) 

3This ratio is taken only for ease of interpretation, as any other mass function fit would 
have done just as well. 
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Figure 4.7: Right: mapping FOF to SO mass function. Measured mass functions 
normalized to the Warren et al. (2006) fit as an (arbitrary) reference, for High D"s 
(upper panel) and WMAP-3 cosmology (lower panel). Black: FOF halo masses 
with b = 0.2 and bridged halos removed as shown in Fig. 4.5. Red: M200 

masses measured from the simulation for the same set of halos. Blue: The mass 
function for M200 halos using the idealized mock halo prediction (Fig. 4.3 and 
Table. 4.1), the measured FOF masses for each halo as mapped to the predicted 
SO mass. The agreement between measured (red) and predicted (blue) mass 
functions is excellent, better than 53. Left: moving from one SO definition to 
another. Black: M2oo masses measured from the simulation. Red: M100 and 
M 500 masses measured from the simulation using the same halo centers. Blue: 
Idealized NFW predictions for M100 and M500 using the measured M200 mass 
for each halo. Measured and predicted quantities (red vs. blue) are again in 
very good agreement. 

Employing this approach one can easily move from one SO mass function to 

another, and in Fig. 4.7 we show that this mass transformation gives accurate 

results for halos in simulations. Furthermore, this shows that if one is interested 

in any overdensity other than 200 (as considered in our mock halo analysis), our 

best fit for Mpop/M200 [Eqn. (4.7) and Table 4.1] can simply be rescaled for 

any Mt::. using Eqn. (4.8). 

The results shown in the figure 4.7 depend only weakly on the cut imposed 

by a particular value of d/ R200. Choosing a value below d/ R200 = 0.4 such 

as 0.3 is more conservative; one loses more halos (another 53), but the mass 

function mapping results remain excellent. Increasing the cut threshold to 0.5 

adds 5% more halos while the mapping accuracy remains more or less the same. 

Beyond this point the results slowly degrade, as is to be expected. 
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With this important result at the level of individual halos in hand, the 

global mass function can be realized without knowing individual halo concen­

trations, and independent of cosmology, provided one has a form for the (mean) 

concentration-mass relation for SO (or FOF) halos as well as the PDF for the 

scatter in this relation. The latter cannnot be ignored since the scatter in the 

concentration-mass relation is known to be significant [148, 141, 142, 149, 147]. 

In the mass regime typical for clusters, i.e., halo masses above "' 3 x 1014 

h-1 M0 , the variation in concentration with mass is in fact much smaller than 

the concentration scatter for halos of similar mass. While our simulations are 

not well posed to determine concentration-mass realtion (due to the modest 

particle loading), we have carried out a basic analysis to establish the cosmol­

ogy dependence of the concentration-mass relation, c(M200 ), and its associated 

scatter, O"c(M200) [or O"c(MFoF)]. The full analysis is left to a future work, 

but our preliminary research shows strong evidence that c(M) relation and its 

scatter provides all the required information for mapping mass functions. The 

scatter itself is very well described by a Gaussian PDF at each mass bin (for 

both SO and FOF masses) and has little variation over the limited mass range 

relevant for clusters. 

4.4 The Bridged Halos 

We now turn to understanding the FOF halos that cannot be simply mapped 

as individual NFW profiles. Broadly speaking, we find that these halos are 

of two types: (i) Halos with density bridges across major substructures, and 

(ii) halos with complex substructure ('unrelaxed'). Halos of the first type are 

the ones largely excluded by our halo mass and potential centers-based cut 

and correspond mostly to the high mass-ratio region in figure 4.5. While our 

cut is very efficient in terms of identifying bridged halos, there is a very small 

contamination fraction due to chance symmetric bridging which does not lead 

to significant differences between the mass and potential minima. The second 

type of halos corresponds largely to the low concentration/low mass ratio region. 

Representative halo types are shown in Fig. 4.8: typical isolated halo (upper 

panel), bridged halo (middle panel), and complex substructure (lower panel). 

It is clear that the idea of a single concentration or a simple mass ratio 

Mpop/Mso makes little sense for either the bridged halos or the unrelaxed 

halos. For the unrelaxed halos, absent a sub-halo analysis, it is not even clear 

what an appropriate Mso might be. Nevertheless, our exclusion was designed 

mostly to eliminate the bridged halos; our results show that the unrelaxed pop­

ulation is apparently subdominant at least in terms of biasing the mass function 

results. Even so, it is clear that the existence of these types of substructured 

halos has ramifications for the simple HOD program, although the quantitative 

impact needs to be studied. 

The halos that are bridged by the FOF procedure are typically close neigh-
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Figure 4.8: Top panel: A typical isolated FOF halo (FOF-linked particles shown 
as white dots) with NFW concentration, c = 9.0, and MF0F/M200 = 1.15 (pro­
file fit to the right). Green dots are particles within R20o of the corresponding 
SO halo. Middle panel: An example of a bridged halo. The SO halo found at 
the FOF center has concentration c = 8.1 (the NFW profile fit is a good fit), 
however the mass ratio MF0F/M20o = 1.8 is high due to the bridged minor 
halo in the left upper corner. Bottom panel: A halo with major substucture, 
for which the NFW profile is not a good fit. 
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Figure 4.9: Distribution of bridged halos as a function of mass for the high O"s 
and WM AP 3 cosmologies. In both cosmologies, the relative fraction of such 
halos tends to increase with increasing mass. The shaded regions are Poisson 
error bars. 

bors, the majority being partners in the hierarchical process of structure forma­

tion via halo merging [150]. Some of these close neighbors might be 'backsplash 

halos' that have previously been within R200 [151, 152]. In both the high-O"s and 

WMAP 3 cosmologies, we find that the fraction of bridged halos has a tendency 

to increase with increase in mass. This is as expected from the hierarchical 

merging picture since very massive halos are still forming at the current epoch. 

This effect is clearly shown in Fig. 4.9. We have checked that the two different­

sized boxes (for each cosmology) agree well in the region of overlap, supporting 

the argument that numerical effects (finite mass and force resolution) are neg­

ligible for this consideration. (For the two box sizes, the mass resolution differs 

by a factor of approximately 25, and the force resolution by a factor of 3.) 

The overall effect depends on cosmology: the results from the WMAP 3 

simulation are clearly separated from the high O"s cosmology (Fig. 4.9). Since the 

structure grows differently in the two different cosmologies (due to different O"s 

and Om), we can try to parametrize our exclusion as a function of M/M*, where 

M* is the characteristic collapse mass at the current epoch, defined through: 

O"[M*(z)] = 1.686, (4.10) 

where O" is the variance of the linear density fluctuation field P(k), as defined 

in equation (3.3). 
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Figure 4.10: Possible universality of the bridged halo fraction: The same data 
as in Fig. 4.9, but with the inass now scaled by characteristic collapse mass -
M,,;.. 

As shown in Fig. 4.10, with the mass rescaled in terms of M*, the fraction 
' . I • 

of bridged halos agrees for the two cosmologies and may very well be universal. 
. r 

.. This intriguing fact indicates, first, that our method of excising bridged halos 

(the principle, not necessarily the specific choice of d/ R200 > 0.4) is physically 

well-motivated. Second, if the universality is borne out, the bridged halo fraction 

. can be combined with the cosmology independent mock halo analy~is, to yield 

a method for translating the universal FOF mass function to any desired SO 

mass function. Moreover, these results suggest that the bridged halo fraction 

can also provide a separate probe of cosmology, being particularly sensitive to 

the same parameters as the mass function itself (Fig. 4.9). 

An additional way to probe the growth of structure in the Universe using 

clusters, aside· from the mass function, would be to measure the fraction of 

isolated clusters versus those that have (major) satellites. In our simul~tions, 
we. measure the· fraction of multiple SO· dark matter halos in. the mass range 

of interest for clusters: M200 .. 2:: 10i4M 0 /h (see also Ref; [134]). If~ plot this. 

fraetion as a function of f, where f is defined through Msatellite 2:: f Mmain we 

find again that the two cosmologies considered are clearly separated, as shown in 

Fig. 4.11. The advantage of this analysis compared to the mass function' method 

is that it does not require measurements in a controlled volume, and will work 

for a random sample of observed galaxy clusters. Depending on observational 

possibilities [153, 154, 155, 156, 157, 158, 159], this might provide a new way of 
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Figure 4.11: Fraction of the total number of halos in the mass range relevant to 
clusters, (M200 ;::::: 1014M0 /h), as a function of the halo satellite mass fraction. 

characterizing cosmologies using clusters of galaxies, or at least be a valuable 

method to cross-check results from mass function constraints. 

The halo outliers with values of Mpop/M200 > 1.5 are also a possible source 

of systematic bias for certain HOD applications. Given some halo mass bin 

above the fiducial mass cutoff for a given HOD, a bridged halo would be assigned 

a central galaxy with the same probability as an isolated halo. The probability 

of a satellite galaxy in a bridged halo [with the main halo having high mass 

companion(s)] is likely significant!~ higher than in an isolated halo. Therefore, 

applying the same HOD to both halo types would downweight the number of 

satellite galaxies, the precise amount depending on the mass range considered. 

4.5 Conclusions 

This chapter presents)results fro~ an anal;sis of idealized NFW halos and N­

body simulations with the aim of clarifying the connection between FOF and 
!· 

SO halos, focusing mainly on the issue of halo masses and attempting to account 

for some of the unav?idable difficulties in simplifying a multi-scale problem in 

terms of primitive halo concepts. We found that a large fraction of FOF halos 

in N-body simulations (80-85%) are relatively isolated and well-fitted by NFW 

profiles. This allows them to have SO counterparts, albeit the mass mapping is a 

two-paramet~r function Mso = Mso(Mpop,c), inferred from the properties of 

idealized NFW halos (c is the NFW halo concentration). In principle, this mock 

halo technique can be trivially extended to M,::,. with ~ values more directly 
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. useful for cluster analyses (e.g., A = 500, 800, 1000), or indeed to any other 

useful definition of the observable mass. 

·. The rest of the halos, a fraction of 15 - 20%, appear to be dominated mainly 

by bridged halos. These halos consist of apparently localized structures (vi­

sually, or according to the SO halo definition) linked via density ridges into 

a common FOF halo, as discussed in Section 4.4. This degree of bridging is 

roughly consistent with X-ray observation~ of clusters, where in approximately 

10 - 20% of all cases there is a significant second component roughly within 

Rioo, corresponding to the scale length of a b = 0.2 FOF halo (Vikhlinin, pri­

vate communication). We have found that the bridged halo fraction rises as a 

function of mass, and when rescaled by the collapse mass scale M*, also appears 

to be universal. We also find that in the cluster mass regime the fraction of ha­

los with major satellites as function of the satellite's mass fraction is cosmology 

dependent. 

The bridged FOF halo fraction complicates the procedure for transforming 

the global .mass function. Accurate mapping between the global FOF and SO 

mass function must take into account SO multiplicity within FOF halos due to 

the bridging (which should be distinguished from the substructure mass func­

tion). Fortunately, if the bridged halo fraction is universal, then this problem 

can be (approximately) solved by one more iteration of the procedure described 

here. A simple prescription for handling the bridging problem, for example, may 

be the simultaneous use of two different linking lengths as a way of identifying 

substructure in the FOF halo identified with the longer (b = 0.2) linking length. 

Then, with mock halo mappings available for the shorter linking length, one 

would construct a new mass function which should be almost free of bridging 

artifacts to at least the 5% level. 

In this work, systematic and statistical uncertainties were held to ,..., 5%, 

which represents the current state of the art in determining the halo mass func­

tion. The sensitivity of halo masses to simulation parameters such as force and 

mass resolution has not yet been satisfactorily controlled below this level. While 

further improvement is not ruled out, the universality of the FOF mass function 

is not known to be valid at or better than this level either. 

The finite bridged halo fraction points to the existence of some level of bias 

when applying simple HOD schemes for the distribution of galaxies in halos, due 

to the,:xistence of (minor/major) halo substructure. In standard HOD methods, 

halos are often selected, or assumed to be selected, by the FOF algorithm. 

However, this standard method then assumes a spherically-symmetric (usually 

NFW) distribution of satellite galaxies within halos, which.is possibly at· odds 

with a significant fraction of real halos [160, 161]. The fraction of problematic, 

irregular morphology FOF halos is mass-dependent, creating thereby a mass 

dependent source of error. Furthermore, any concentration dependence of the 

fraction of bridged FOF halos makes it difficult to parameterize halo properties 

· purely as a function of halo mass, which is standard within HOD methods. 
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Despite these difficulties, the availability of sufficiently high resolution simu­

lations should yield a completely satisfactory HOD more or less independent of 

the particular halo definition used (FOF or SO), provided that a realistic satel­

lite distribution is implemented. The point is that, even with such a simulation, 

a simplified description of halos such as an NFW profile for populating halos 

with galaxies, would certainly fail for a not insignificant fraction of halos, and 

be a cause of systematic errors. 

. As an alternative to mapping SO mass functions beginning with the uni­

versal form of the FOF mass function, and utilizing the cosmology-dependent 

concentration-mass relation and its scatter, one could instead take the more 

computationally expensive approach of computing SO mass functions from sim­

ulations that sample a range of plausible cosmologies (133]. The additional 

expense of such an approach can be drastically reduced by the use of efficient 

statistical sampling and interpolation techniques that have been successfully 

demonstrated for cosmic microwave background temperature anisotropy and 

for the mass power spectrum [127, 128] . 

. Finally, we remain agnostic as to the value of particular choices of halo 

definitions and masses in cosmological applications. For X-ray observations of 

relaxed clusters, the SO approach appears to be more natural since one fits 

directly to a spherically averaged profile as is observational practice. High­

resolution views of the gas distribution in clusters [158] are hardly consistent 

with spherical symmetry, however, and the physics of the underlying robust­

ness of the mass-observable relations remains to be fully established. Turning 

to other applications such as optical group and cluster and subcluster member 

identification, there may be no option but the use of (some version of) FOF 

techniques. Analagous to our bridged FOF halos, Sunyaev-Zel'dovich obser­

vations are likely to suffer from bridging of closely-neighboring clusters. Mock 

catalogs for ongoing and future cluster observations carried out via the Sunyaev­

Zel'dovich effect have been_built using FOF definitions for clusters (albeit with 

shorter linking lengths than b = 0.2), as the possible systematics from using 

spherical halo definitions are not clear (162]. 
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§ Halo Clustering and Bias 

. ; Dark matter halos form through hierarchical structure formation, a character­

istic feature of cold dark matter cosmology. These halos are not uniformly 

·distributed throughout the universe, but form a filamentary network, or 'the 

cosmic web' [163]. Determination of spatial correlation between halos, as well 

as between mass fluctuations in general, is thus one of the main goals of cosmol­

ogy. One way of measuring statistics of density fluctuations is via weak lensing 

observations.' While these are sensitive to the unbiased distribution of all mat­

ter, they have several limitations: they measure matter in angular projection 

and have large sampling errors on large scales. On small scales, modelling of the 

weak lensing signal is difficult due to non-linear corrections. The alternative to 

this approach is to measure a well defined class of objects (galaxies, clusters of 

galaxies ... ) in redshift space [164, 165]. Of course, in general they will be biased 

tracers of mass, and this bias must depend on the scale over which it is mea­

sured. However, the requirement of homogeneity ensures that on large enough 

scales the bias will asymptote to a constant value. Besides this scale dependence 

of the bias, there is also a mass dependence: more massive, rare density peaks 

cluster more strongly than average density perturbations [36, 37, 166, 7]. 

As bias increases with increasing mass of correlated objects, clustering can 

be used as an additional mass estimate. For example, clusters of galaxies 

present a powerful cosmological probe, especially via their mass function (chap­

ter 3). However, determining masses from observations is a notoriously difficult 

problem, as the scatter in the mass-observable relation is usually significant. 

Two point correlation function measurements can reduce that scatter with self­

calibration techniques [167, 168, 169, 170]. 

5.1 Halo Clustering 

The spectrum of perturbations can be quantified by the two-point correlation 

function e, which represents the probability of finding two overdensities at a 

given separation: 

(5.1) 

where the ensamble average is taken over realizations of the universe. Then the 

probability of finding two object in volumes oVi and 8V2 separated by a distance 

dis 

(5.2) 
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n being the average number of objects per uni-e volume. Analogously, one can 

define correlation functions of higher order, but they will not be completely 

independent, as they are connected by an infinite system of equations obtained 

by taking moments of the Boltzmann equation. This infinite series of equations 

is called Bogolyt'ibov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, and 

can be solved with some condition for closure [171]. 

5.1.1 Calculation of the Two-point Correlation Function 

The two point correlation function can be obtained from simulations by counting 

the number of halo pairs as a function of separation. It is commonly normalized 

to the same quantity calculated for a Poisson random field: 

e(d) = Nhh - 1 . 
.. Npoisson 

(5.3) 

Similarly, one can calculate the matter two point correlation function. 

5.2 Asymptotic Bias 

As in analytical approaches to modeling the halo mass function, the starting 

point in bias analyses is the feasibility to associate peaks in the linear density 

field to dark matter halos which arise from non-linear evolution. Recent, high 

resolution numerical analysis [172] show good correspondance of halos to peaks, 

especially for high-mass halos, although early works in the field claimed exactly 

the opposite [123]. It is further assumed, that on larger scales a linear oias 

relates matter density and halo density field: 

(5.4) 

where b is the asymptotic bias1. Similarly, we can write for power spectra: 

(5.5) 

Although it is assumed that each halo corresponds to a peak, it is clear 

that peaks in general are not motionless, as they will go along large-scale flows. 

Thus, while the Lagrangian overdensity 8L is always the same, the Eulerian 

overdensity will evolve as: 

(5.6) 

where the second term describes the motion of density peaks. On large scales it 

is assumed that peaks simply follow the global flows, in which case the second 

1 In many papers, the bias at large scales is just denoted as bias, but since we will also look 
at its scale dependence, we use the term asymptotic bias to avoid possible confusion. 



term is simply the matter overdensity. This procedure is known as the peak­

background split [36, 37]. From the equation (5.6), we can write the Eulerian 

bias as: 

b( ) = oh(a) = oL +om( a) = 1 b ( ) 
a Om(a) Om(a) + L a · (5.7) 

As the matter fluctuations grow in time, the Lagrangian bias h will decay at 

the same rate. In the region where the background overdensity grows too, the 

treshold density for the collapse will be reduced to Oc - o, and the number of 

halos of mass M will increase by a factor [173]: 

The Lagrangian bias is then 

n(M, z, oc - o) 
n(M,z,oc) 

h = dn/do = _ dn/doc . 
n n 

(5.8) 

As a result, we see that within the above formalis!Jl (assumptions), asymp­

totic bias is directly related to the derivative of the mass function. As mass 

functions are usually defined in the universal form f (u) (§3.1.2) - and are com­

monly just fits to some functional form of u, the number density of halos in a 

mass bin M, M + dM at a redshift z is given by: 

Pb ( 1 du) n(M,z)dM= M -~dM f(u)dM. 

Thus for a Press-Schecheter mass function where 

the (Eulerian) bias has a simple form: 

1 oc 
bps= 1-T + 2. 

Uc U 

(5.9) 

(5.10) 

(5.11) 

This expression was given by Cole and Kaiser in 1989 [173], and rederived by 

Mo and White in 1996 [36]. For the case of very light halos, where u » Oc, the 

second term in the above equation will dominate the third, thus such halos are 

expected to be anti-biased (b < 1). The most massive halos (u « Oc), on the 

other hand, should be biased, and the more massive the halo sample - the more 

the bias. Similarly, for the case where the number density of objects is given by 

the Sheth-Tormen formula the asymptotic bias is [37]: 

(5.12) 

where p = 0.3 and a= 0.707 are obtained by fitting simulation data (see §3.1.3). 
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Clearly, we can derive bias using the peak-background split for any desired mass 

function. For example, we have seen in Chapter 3 that the Warren et al. fit [8] is 

a description of the mass function, good to ""10%. As it is a pure fit to f(a), we 

will have to rewrite it to include De, enabling us to apply the peak-background 

split. Therefore, the number de.nsity of objects reads: 

(5.13) 

Here, a= 1.625, b = 0.2538, and c = 1.1982 (see table 3.1). Using this, we find 

the corresponding bias as: 

2c 1 a a-a 
bw=l+ Dea2 - De(a-a+b) (5.14) 

In the spherical model, the treshold for the collapse - the barrier - is in­

dependent of the mass scale considered, and is De ~ 1.686. The mass function 

(PS) can then be derived by assuming that the overdensity around a given 

point exhibits a Brownian motion random walk as a function of radius (i.e. the 

smoothing scale) [72]. Of course, the collapse occurs when the barrier is first 

crossed. In this formalism, the mass function, and thus halo bias, depends on 

the a(M) relation specifyed by the initial power spectrum, and the shape of the 

barrier. As an improvement of this, Sheth, Mo and Tormen (SMT) considered 

an elliptical collapse moving barrier model. While the barrier shape cannot 

be derived analytically, one can simulate an ensemble of random walk realiza­

tions, record the distribution of first crossings, and fit it by some convenient 

function of a(M). SMT find from their set of simulations, that a good barrier 

approximation is given by 

(5.15) 

the best fit being a= 0.707, b = 0.5, and c = 0.6. The asymtotic bias is then 

related to the random walks which travel far from the origin before crossing the 

barrier. To ensure this, SMT consider a barrier with a high height. The bias is 

then: 

bsMT = 1 + vaL(z) [ vax + vabx1-e - xe + b(1 _x:)(1 - c/2)] , (5.16) 

with x = a[De(z)/a]2. 

5.2.1 Bias Measurements from Simulations 

To calculate halo bias, we turn to the same simulation set used for the mass 

function determination. These 60 simulations are summarized in Table 3.2. Due 

to the modest mass resolution of each simulation (2563 particles in a box), the 
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Figure 5.1: Halo bias as a function of distance for the same mass bin (3.34 x 
1012 

- 2.67 x 1013h-1 M0 ) from three simulations with different box sizes. The 
data are in good agreement, showing that the finite mass and force resolution 
do not affect the bias. la errors between realizations are shown. 

range of masses we can probe in any single simulation is limited. The reliable 

determination of the correlation function requires many more halos per mass 

bin than the calculation of the mass function itself. As the mass function drops 

steaply for high values of 1/a (see Figs. 3.13 and 3.14), at high redshifts we 

commonly have only a narrow mass range for calculating the bias. On the other 

hand, the large ensemble of simulations with 7 different box-sizes and different 

mass resolutions (in physical units) will enable us to probe the bias over a 
"' wider range of masses than it was possible in any study before. Since we have 

many statistically independent realizations of each box-size, we can also keep 

the statistical errors low. 

When calculating the halo bias, the goal is of course, to keep the statistical 

errors as small as possible, but at the same time to have mass bins which 

are contingent across different simulation boxes. The latter will enable better 

control of systematic errors, and l.n particular over errors arising from finite box 

sizes, as well as finite mass and force resolution. The separation of the mass bins 

by a factor of two results in a noisy correlation functions due to small number 

of halos in a bin. For this reason, we separated our bins by a factor of eight2 in 
' mass. 

If the results for the same mass bin agree across diffe.rent box-size simula-
2 The mass resolution increases by a factor of 8 when going to smaller boxes - see Table 

3.2. 
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Figure 5.2: Halo bias for z = O; shown are 4 mass bins, taken from the largest 
available boxes in order to reduce the errorbars. 

tions, we can be confident that they are systematics-free, considering that the 

simulations themselves have being throughly tested for their accuracy (§3.3). 

Figure 5.1 presents one such resolution test; at redshift z = 0 we compare 

the halo bias from 64, 128, and 256h- 1Mpc boxes for a 3.34 x 1012 - 2.67 x 

1013h-1 M 0 mass bin. The errorbars are lu deviations between realizations. 

Naturally, errorbars are decreasing when increasing the box size, as there are 

· more and more halos, but the agreement between different box-sizes is excellent, 

especially in the asymptotic regime ( d > 5h-1 Mpc) that is of most interest here. 

The fact that the halo bias is not affected by the finitness of the simulation do­

main, was also shown in a recent paper by Reed et al. [7], on boxes as small as 

lh-1Mpc. This is due to the fact that the large-scale power is missing equaly 

in both halo and matter correlation functions. Thus, the correlation functions 

themselves show a clear suppresion due to the missing power, but the bias is 

still accurate. Figure 5.1 also shows that the bias can be still trusted at 1/5 of 

the box size; the conservative requirement when calculating correlations is that 

the volume should be at least an order of magnitude larger than the correlation 

length, but this seems to be too conservative for this application. 

Figure 5.2 shows the halo bias from our simulations at redshift z = 0. As 

before, we consider only the data up to one fifth of the box size. As expected, 

at all masses halo bias shows scale dependence: first there is an exclusion zone 

at small distances which comes from the fact that halos have a finite size (as 

opposed to the matter distribution, sampled via particles). Next, there is a 
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region where the bias strongly depends on separation, and clearly depends on 

the halo mass considered, as different bins have very different fall-offs towards 

smaller scales. Hamana et al. [17 4] express the scale dependence of the bias as: 

b(u, z, d) = bsT [1 + bsTu(d, z)]°' , (5.17) 

with a = 0.15. Diaferio et al. [175] find steeper scale dependence: a = 0.35. 

Reed at . al. [7] find· that this functional form fits their· low redshift data well, 

· but becomes increasingly inaccurate at high redshifts. The best fit to their high 
redshift data is: 

b( U, Z, d) = bsMT [ 1 + 0.03b~MTu2 ( d, Z)] . (5.18) 

Note that Reed et al. use the SMT bias foriiiula rather than ST, although 

the two are very close. Finally, Figure 5.2 shows· that, as expected, at large 

distances the halo bias is .scale independent. . Of course, smaller.· mass halos 

reach this regime - which is effectively the homogeneity scale for that mass -

at smaller scales than high mass halos. For this reason, it seems dangerous to 

define the asymptotic bias at some beforehand prescribed distance, as done by 

some groups. For example, Cohn and White [176] take the bias at L5h-1 Mpc 

as an asymptotic value in their z = 10 analysis; Reed et al. show that this leads 

to an overestimation of the bias, as at that scale it did not reach its asymptotic 

value. To avoid this problem, rather than assuming certain scale, we calculate 

the asymptotic bias as the average value of the last 4 bias points, calculated for 
. the largest distances. 

5.3 Results and Discussion 

Figure 5.3 shows the asymptotic bias from our simulations (blue points). We also 

plot halo bias from the Millenium simulation [6], which covers redshifts z=0-5 .. 

As the Millenium simulati.on has rv500 times more particles than our simulations, 

Gao et al. were able to bin their data into much narrower mass bins. Still, we 

see that our data is in very good agreement with the. Millenium simulation, 

showing the usefullness of nested-box simulations. Moreover, the agreement 

gives us additional confidence in our data, as the Millenium simulation covers 

50oh-1Mpc on a side, thus the finite box effects are negligible. 

We consider the Warren-like form of bias to fit our data: 

(5.19) 

with v = oc/ sigma(M), describing how rare a mass bin is (v = 1 are charac­

teristic halos forming at a given epoch). While the bias we calculate does not 

suffer from finite box effects, we apply extended Press-Schecheter box correction 
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(as explained in details in §3A.6) when determining v. The least-square fit to 

our data yields a = 1.09, b = 0.21, and c = .0.42. Figure 5.4 ,shows the ratios 

of several simulation data-sets to this fit. In addition to our and the Millenium 

data, we show here the data from Reed et al. [7], covering redshifts z = 15 - 30. 

We have excluded their z = 10 points (which comprised most of their data). 

Those are most likely to be inaccurate, as for the cosmology they consider a 

lh-1Mpc box is completely non-linear at z = 10. All data sets are in good 

agreement with our bias fit. However, if we consider the mass function which 

would correspond to the above bias: 

f(v) =A (va + b) exp (-cv2
) , (5.20) 

. we see large deviations from the Warren et aL [8] mass fup.ction fit, as shown in 

Figure 5.5. Note that fitting bias leaves the normalization of the mass function, 

A unconstrained; still deviations of ±40% from the Warren et al. fit are ruled 

out by the accurate mass function data (see Chapter 3). This indicates that; 

while peak-background split formalism is qualitatively correct, it fails at the 

level of accuracy needed today. It has to be emphasized that the nature of 

approximations in .that formalism are not rigorous, as they are based on heuristic 

arguments. Thus, the failure in using mass function formula for describing the 
j 

bias should not surprise - it simply indicates halo bias should be determined 
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independently from simulations. 

·~ · Finally, as we show here one example of bias fit and the corresponding mass 

function, we have to stress it is not the only functional form of b(v) (or f(v)) we 

have tested. We experimented with several more functional forms, all ending up 

:with the same result: the best fits to the mass funct!on systematicallydepart 

from our measured bias·, and the best fits to the bias do not fit our mass function 

data. 
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6 Rbbustness of Cosmologit.al 
Simulations 

The last three decades have seen the emergence of cosmology as· 'precision sci­

ence'' moving from order of magnitude estimates, to predictions and measure­

ments at accuracy levels better than 10%. CosmiC microwave background ob­

servations and large galaxy surveys have led this advance in the understanding 

of the origin and evolution of the Universe. Future surveys promise even higher 

accuracy, . at the one perc'ent level, over a considerably wider dynamic range 
. . 

than probed earlier. In order to fully utilize the wealth of upcoming data and 

to address burning questions such as the dynamical nature of dark energy (most 

often parametrized by the equation of state parameter w), theoretical predic-

. tions must· attain at least the same level of accuracy as the observations, even 

higher accuracy being certainly preferable. The highly nonlinear physics at the 

length scales probed, combined with complicated gas physics and astrophysical 

feedback processes at these scales, make this endeavor a daunting task. 

Nature was kind that many of statistical measures, some of them analyzed 

in previous chapters, can be succes~fully modelled with gravity alone. Thus a 

very fist step is to test if numerical codes can reach the desired accuracy for 

gravitational interactions, down to the relevant nonlinear scales. Tests with 

~xact solutions such as pancake collapse [56] are valuable for this task, but as 

shown in Ref. [90] the resclts do not easily translate into statements about the 

accuracy of different sirriulation algorithms in realistic cosmological simulations. 
. / 

Exactly solvable problems are typically highly symmetric and hence somewhat 

artificial. Codes optimized for realistic situations can break down in certain 

tests even if their results appear to converge in physically relevant settings. 

Therefore, in order to evaluate the accuracy of simulation codes, a broad suite 

()f convergence and direct code comparison tests must be carried out. 

The codes used in this comparison project are all well-established, and have 

been key drivers in obtaining numerous scientific results. They are based on 

different algorithms and are employing different methods for error control. The 

code· developers have already carried out careful convergence tests themselves 

and verified to their satisfaction that the codes yield reliable results. But because 

of the multi-scale complexity of the dyna'rnical problem itself, as well as the 

incompleteness of most convergence tests, it is necessary to do much more. 

Therefore, the aim here is to focus on comparing results from a suite of different 

. codes for realistic cosmological simulations. In order to avoid uncertainties from 

statistical sampling, all codes are run with exactly the same initial conditions, 
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and all results are analyzed using the same diagnostic tools. 

The organization is the following: in Section 6.1 are described ten simulation 

codes used for the comparison study. In Section 6.2 simulations carried out for 

this project are presented. Finally,1 comparison results are shown in Section 6.3 

and conclusion in Section 6.4. 

6.1 The Codes 

The ten codes used in this work cover a variety of methods and application are­

nas. The simulation methods employed include parallel particle-in-cell (PIC) 

techniques (the PM codes MC2 and PMM, the PM/ AMR codes Enzc:i and 

FLASH), a hybrid of PIC and direct N-body (the AP3M code Hydra), tree al­

gorithms (the treecodes PKDGRAV and HOT), and hybrid tree-PM algorithms 

(GADGET-2, TPM, and TreePM). 

·• The PIC method models many-body evolution problems by solving the equa­

tions of motion of a set of tracer particles which represent a sampling of the sys­

tem phase space distribution function. A computational grid is used to incre~se 

the efficiency of the self-consistent inter-particle force calculation. To increase 

dynamic range, local force computations (e.g., P3M, tree-PM) and AMR are 

often used. The grid also provides a natural basis for coupling to hydro-solvers. 

Treecodes are based on the idea that the gravitational potential of a far­

away group of particles is accurately given by a low-order multi pole expansion. 

Particles are first arranged in a hierarchical system of groups in a tree struc­

ture. Computing the potential at a point turns into a descent through the 

tree. . Treecodes ·naturally embody an adaptive force resolution scheme with­

out the overhead of a computational grid. Tree-PM is a hybrid algorithm that 

combines a long-range force computation using a grid-based technique, with 

shorter-range force computation handled by a tree algorithm. In the following 

we give a brief description of each code used in this comparison study. 

6.1.1 The Grid Codes 

MC2 

The multi-species Mesh-based Cosmology Code MC2 code suite includes a par­

allel PM solver for application to large scale structure formation problems in 

. cosmology. In part, the code descended from parallel space-charge solvers for 

studying high-current charged-particle beams developed at Los Alamos National 

Laboratory under a DOE Grand Challenge [177, 178]. MC2 solves the Vlasov-
. . I . 

Poisson system of equations for an expanding universe using standard mass de-

position and force interpolation methods allowing for periodic or open boundary 

conditions with second and fourth-order (global) symplectic time-stepping and 

a Fast Fourier Transform (FFT) 'based Poisson solver. The results reported here 

were obtained using Cloud-In-Cell (CIC) deposition/interpolation. The overall 
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computational scheme has proven to be remarkably i1ccurate and efficient: rel­

atively large time-steps are possible with exceptional energy conservation being 

achieved. 

PMM 

' 
Particle-Multi-Mesh (PMM) [179] is an improved PM algorithm that combines 

high mass resolution with moderate spatial resolution while being computa­

tionally fast and memory friendly. The current version utilizes a two-level mesh 

FFT-based gravity solver where the gravitational forces are separated into long­

range and short-range components. The long-range force is computed on the 

root~level, global mesh, 1much like in a PM code. To obtain higher spatial reso­

lution, the domain is decomposed into cubical regions and the short-range force 

is computed on a refinement-level, local mesh. This algorithm achieves a spatial 

resolution of 4 times bett~r than a standard one-level mesh PM code at the 

same c~st in memory. In [179], PMM is shown to achieve very similar accuracy 

to that of MC2 when run with the same minimum grid spacing. 

Enzo 

Enzo1 is a publicly available, extensively tested adaptive mesh refinement (AMR), 

grid-based hybrid code (hydro + N-Body) which was originally written by Greg 

Bryan, and is now maintained by the Laboratory for Computational Astro­

physics at UC San. Diego [180, 181, 89]. The code was originally designed 

to do simulations of cosmological structure formation, but has been modified 

to examine turbulence, galactic star formation, and other topics of interest. 

Enzo uses the Berger & Colella method of block-structured adaptive mesh re­

finement [182]. It couples an adaptive particle-mesh method for solving the 

equations of dark matter dynamics [183, 184] with a hydro solver using the 

piecewise parabolic method (PPM), which has been modified for cold, hyper­

sonic astrophysical flows by the addition of a dual-energy formalism [185, 186]. 

In. addition, the code has physics packages for radiative cooling, a metagalactic 

ultraviolet background, star formation and feedback, primordial gas chemistry, 

and turbulent driving. 

FLASH 

FLASH [187] originated as an AMR hydrodynamics code designed to study 

X-ray bursts, novae~ and Type Ia supernovae as part of the DOE ASCI Al­

liances Program. Block-structured adaptive mesh refinement is provided via 

the PARAMESH library [188]. FLASH uses an oct-tree refinement scheme sim­

ilar to [189] and [190]. Each mesh block contains the same number of zones (163 

for the runs here), and its neighbors must be at the same level of refinement 

or one level higher or lower (mesh consistency criterion). Adjacent refinement 

1 http://lea.ucsd.edu/ codes/ currentcodes/ enzo 
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levels are separated by a factor of two in spatial resolution. The refinement 

criterion used is based upon logarithmic density thresholds. Numerous exten­

sions to FLASH have been developed, including solvers for thermal conduction, 

magnetohydrodynamics, radiative cooling, self-gravity, and particle dynamics. 

In particular, FLASH now includes a multigrid solver for self-gravity and an 

adaptive particle-mesh solver for particle dynamics. Together with the PPM 

hydrodynamics module, these provide the core of FLASH's cosmological sim­

ulation capabilities. FLASH uses a variable time step leapfrog integrator. In 

addition to other time step limiters, the FLASH particle module requires that 

particles travel no more than a fraction of a zone during a time step. 

6.1.2 The Tree Codes 

HOT 

This parallel tree code [191] has been evolving for over a decade on many plat­

forms. The basic algorithm may be divided into several stages (the method 

of error tolerance is described in Ref. [192]). First, particles are domain de­

composed into spatial groups. Second, a distributed tree data structure is con­

structed. In the main stage of the algorithm, this tree is traversed independently 

in each processor, with requests for nonlocal data being generated as needed. 

A Key is assigned to each particle, which is based on Morton ordering. This 

maps the points in 3-dimensional space to a 1-dimensional list, maintaining as 

much spatial locality as possible. The domain decomposition is obtained by 

splitting this list into Np (number of processors) pieces. An efficient mechanism 

for latency-hiding in the tree traversal phase of the algorithm is critical. _To 

avoid stalls during nonlocal data access, effectively explicit 'context switching' 

is done using a software queue to keep track of which computations have been 

put aside waiting for messages to arrive. This code architecture allows HOT to 

perform efficiently on parallel machines with fairly high communication laten­

cies [193]. HOT has a global time stepping scheme. The code was among the 

ones used for the original Santa Barbara Cluster Comparison Project [194] and 

also supports gas dynamics simulations via a smoothed particle hydrodynamics 
(SPH) module [195]. 

PKDGRAV 

The central data structure in PKDGRAV [196, 197] is a tree structure which 

forms the hierarchical representation of the mass distribution. Unlike the more 

traditional oct-tree which is used in the Barnes-Hut algorithm [198] and is imple­

mented in HOT, PKDGRAV uses a k-D tree, which is a binary tree. The root­

cell of this tree represents the entire simulation volume. Other cells represent 

rectangular sub-volumes that contain the mass, center-of-mass, and moments 

up to hexadecapole order of their enclosed regions. PKDGRAV calculates the 
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gravitational accelerations using the well known tree-walking procedure of the 

Barnes-Hut algorithm. Periodic boundary conditions are implemented via the 

Ewald summation technique [199]. PKDGRAV uses adaptive time stepping. It 

runs efficiently on very large parallel computers and has produced some of the 

world's highest resolution simulations of cosmic structures. A hydrodynamics 

extension called GASOLINE exists. 

6.1.3 The Hybrid Codes 

Hydra 

HYDRA [200] is an adaptive P 3M (AP3M) code with additional SPH capability. 

In this work we use HYDRA only in the collisionless mode by switching off 

gas dynamics. The P 3M method combines mesh force calculations with direct 

summation of inter-particle forces on scales of two to three grid spacings. In 

regions of strong clustering, the direct force calculations can become significantly 

expensive. In AP3M, this problem is tackled by utilizing multiple levels of 

subgrids in these high density regions, with direct force computations carried 

out on two to three spacings of the higher-resolution meshes. Two different 

boundary conditions are implemented in HYDRA, periodic and isolated. The 

time step algorithm in the dark matter-only mode is equivalent to a leapfrog 

algorithm. 

GADGET-2 

The N-body/SPH code GADGET-2 [201, 96] employs a tree method [198], to 

calculate gravitational forces. Optionally, the code uses a tree-PM algorithm 

based on an explicit split in Fourier space between long-range and short-range 

forces [202]. This combination provides high performance while still retaining 

the full spatial adaptivity of the tree algorithm, allowing the code to reach high 

spatial resolution throughout a large volume. By default, GADGET-2 expands 

the tree multi poles only to monopole order, in favor of a compact tree storage, 

a cache-optimized tree-walk, and consistent and efficient dynamic tree updates. 

The cell-opening criterion used in the tree walk is based on an estimator for the 

relative force error introduced by a given particle-cell interaction, such that the 

tree force is accurate up to a prescribed maximum relative force error. The latter 

can be lowered arbitrarily, if desired, at the expense of higher calculation times. 

The PM part of GADGET-2 solves Poisson's equation on a mesh with standard 

fast Fourier transforms, based on a CIC mass assignment and a four-point fi­

nite differencing scheme to compute the gravitational forces from the potential. 

The smoothing effects of grid assignment and interpolation are corrected by an 

appropriate deconvolution in Fourier space. The time-stepping of GADGET-2 

uses a leap-frog integrator which is symplectic in case constant timesteps (in the 

log of the expansion factor) are employed for all particles. However, the code 

is normally run in a mode where individual and adaptive timesteps are used to 
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speed up the calculation time. To this end, the timesteps for the short-range 

dynamics are allowed to freely adapt to any power of two subdivision of the long­

range timestep. GADGET-2 is fully parallelized for massively parallel computers 

with distributed memory, based on the MPI standard. The code can also be 

used to simulate hydrodynamical processes using the particle-based smoothed 

particles hydrodynamics (SPH) method (e.g. (203]), in an entropy conserving 

formulation (204], a feature which is however not exercised in the simulations 

considered here. 

TPM 

TPM [104, 105] is a publicly-available hybrid code combining a PM and a tree 

algorithm. The density field is broken down into many isolated high-density 

regions using a density threshold criterion. These contain most of the mass 

in the simulation but only a small fraction of the volume. In these regions, 

the gravitational forces are computed with the tree algorithm while for the 

bulk of the volume the forces are calculated via a PM algorithm, the PM time 

steps being large compared to the time-steps for the tree-algorithm. The PM 

algorithm uses the CIC deposition/interpolation scheme and solves the Poisson 

equation using FFTs.The time integrator in TPM is a standard leap-frog scheme: 

the PM time steps are fixed whereas tree particles have individual time steps, 

half of the PM step or smaller. 

TreePM 

The algorithmic structure of the TreePM code [81] is very similar to GADGET-

2. The particles are integrated using a second-order leap-frog method, with 

position and canonical momentum as the variables. The time step is dynamically 

chosen as a small fraction (depending on the smoothing length) of the local 

free-fall time and particles have individual time steps. The force on any given 

particle is computed in two stages. The long-range component of the force is 

-- computed using the PM method, while the short range component is computed 

from a global tree. A spline softened force law is used. The tree expands forces 

to monopole order only, and cells are opened based upon the more conservative 

of a geometric and relative force error criterion. The PM force is computed by 

direct FFT of the density grid obtained from CIC mass assignment. 

6.2 The Simulations 

A previous code comparison suite (90] considered three cosmological test prob­

lems: the Santa Barbara Cluster (194], and two large-scale structure simulations 

of ACDM models in a 64h-1Mpc box and a 256h-1Mpc box. In the latter two 

cases, the primary target of this previous work was to investigate results in 
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a medium resolution regime, addressing statistical quantities such as the two­

point correlation function, the density fluctuation power spectrum, and the dark 

matter halo mass function. 

In this work we focus further attention on one of these tests, the smaller of 

the ACDM boxes. Due to the small box size, the force resolution of all codes -

including the pure mesh codes - is in principle sufficient to analyze properties 

of individual halos themselves. This allows us to extend the dynamic range 

of the code comparison to higher resolution than studied earlier. In this new 

regime, we expect to see a much broader divergence of results because of the 

more demanding nature of the test. (Even in the previous analysis [90], the 

power spectrum was unexpectedly deviant at the larger wavenumbers consid­

ered.) Our aim is to characterize the discrepancies and attempt to understand 

the underlying causes. 

All codes were given exactly the same particle initial conditions at a redshift 

Zin = 50. The initial linear power spectrum was generated using a fit to the 

transfer function [205], a modification of the BBKS fit [145]. This fit does not 

capture baryon oscillations but takes baryonic suppression into account (these 

details are of only limited relevance for the test). The cosmology underlying 

the simulations is given by OcnM = 0.27, nb = 0.044, nA = 0.686, h = 0.71, 

as = 0.84, and n = 0.99. The simulation was run with 2563 particles, which 

leads to an individual particle mass of mp=l.362·109h- 1M0 . 

While performing a comprehensive code comparison study which involves 

ve'-ry different algorithms - such as grid and particle-based methods in the 

present case - a central and difficult question immediately arises: what is the 

most informative way to compare the codes and learn from the results? The dif­

ficulty is compounded by the fact that codes are often opti]Jlized under different 

criteria and controlling numerical error is a complex multi-parameter problem 

in any case, even for codes that share the same general underlying algorithm. 

As a case in point, let us consider the choice of force resolution for each 

code. (Since the volume and number of particles are fixed, the mass resolu­

. tion is the same for each run.) One option would be to run all codes with 

the same formal force resolution but this, aside from wasting resolution for the 

high-resolution codes, also suffers from the problem that it is not easy to com­

pare resolutions across different algorithms; moreover, time-stepping errors also 

must be folded into these sorts of estimates. Finally, such a comparison would 

be. rather uninteresting, because realistic cosmological simulations are run with 

higher resolutions than would be possible in a conservative test of this type: 

Interesting effects on small scales would be missed. A more uncontrolled, but 

nevertheless useful option is to allow every simulator to run her or his code with 

close to the optimal settings they would also use for a scientific run (given the 

other restrictions imposed by the test problem). In this case, a more realistic 

comparison can be performed in which we can access the robustness of conclu­

sions from cosmological simulations. Here, while our approach adheres more 
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Table 6.1: Softening lengths measured in h-1 kpc. The different smoothing 
kernels have been converted into Plummer softening equivalents by matching 
the potential at the origin. While this procedure is only approximate, it makes 
a comparison of the different force resolutions more meaningful. Mesh codes 
not listed here (PMM, Enzo, Flash) have the same force resolution as MC2 • 

MC2 HOT PKDGRAV Hydra GADGET-2 TPM TreePM 
62.5 7.1 1.6 28.4 7.1 5.1 5.7 

closely to the second strategy, we do try to assess at what length scales one 

should expect a specific code to break down assuming that the resolution of the 

code is accurately estimated by the simulator. 

The nominal resolutions for the different codes for the performed runs are 

as given in Table 6.1. We have converted the different softening kernels into 

Plummer equivalents following the normalization conventions of Ref. [206]. We 

have matched the different softening kernels ¢ at zero and compared them at 

this point. With the n.ormalization conventions in Ref. [206], we find: 

cPP!ummer(O) 
1 

(6.1) ()( 

' € 

</Jspline(O) 
71 

(6.2) ()( --
' 5 € 

¢K3 (0) 
20791 

(6.3) ()( 

512 € ' 

where € is the softening length. The grid resolution of the PM and AMR codes 

is roughly equivalent to the Plummer softening. HOT and Hydra have Plummer 

force kernels implemented, PKDGRAV uses Dehnen's K3 kernel [206] and the 

three tree-pm codes use spline kernels. With the above definitions, it is easy to 

convert the spline and K3 kernels into Plummer via 

€Spline l .4tpJummen 

4.06tPJummen 

(6.4) 

(6.5) 

which we used to standardize the force resolution quotes in Table 6.1. We note 
' , that some of the codes below could have been run at higher resolution, and the 

values below should not be thought of as resolution limits. In fact, the choices of 

these values represent compromises due to run time considerations as well as a 

(loosely) pre-planned scatter to try and determine the effects of force resolution 

on the simulation results. 
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Figure 6.1: Screenshot of the comparative visualization manager in Para View. 
Upper row: results from four different codes, zoomed into a dense region of the 
simulations. Particles are displayed as arrow glyphs, colored with respect to 
their velocity magnitude. Lower row: same region, the particles now displayed 
simply as dots. 

6.3 . Results 

6.3.1 Results for the Full Simulation Box 

As an initial test, a simple view of the simulation output at z = 0 proves 

to be very useful. Para View [207] offers a comparative visualization option 

in· which the results from different simulations can be shown simultaneously . 

. Manipulation on any one output in this mode results in the same manipulation 

for all the others. A screenshot of the comparative visualization manager is 

displayed in Figure 6.1 - a zoom into an arbitrary region of the simulation box 

showing simultaneous results from four different codes. In the upper row a 

subset of the particles is shown as arrow glyphs, colored by velocity magnitude, 

the lower row shows the particles as dots with the same coloring scheme. A 

quick inspection of these snapshots reveals that the code 2 run had a problem 

with the velocities and code 4 had slightly incorrect boundary conditions (the 
whole picture being shifted upward) 2 . 

Figure 6.2 shows a comparison of the final GADGET-2 and Enzo outputs. 

We show a subsample of 20,000 particles, each displayed with vector arrow 

glyphs, sized and colored by their velocity magnitude. The arrow glyphs nicely 

represent the flows in the box to the major mass concentrations. As to be 
2
0f course these initial bugs were fixed before going on to the final results discussed below! 
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Figure 6.2: A subset of the 20,000 particles at z = b from the GADGET-2 

simulation (left) and the Enzo simulation (right). The particles are shown with 
vector arrow glyphs which are sized and colored by their velocity magnitude 
(blue: slowest, red: fastest). 

expected, particles in the field are slow (blue), while the particles in the halos 

have the largest velocities (yellow to red). While the overall appearance of both 

simulations shown is very similar, subtle differences can be seen (e.g., there are 

no small structures in the flow regions in the Enzo simulations), indicating the 

higher resolution employed in the GADGET-2 run. (Five of the biggest halos in 

the simulation will be examined in more detail below, the resolution differences 

becoming significantly more apparent.) 

6.3.2 Dark Matter Halos 

The halo paradigm is central to any large-scale structure analysis; dark mat­

ter in simulations, discretized in the form of heavy collisionless particles, forms 

clearly visible filaments (stripes) and halos (clumps of dark matter) through the 

process of gravitational instability. Figure 6.2 shows these structures clearly for 

the simulations studied in this paper. This picture agrees well with observa­

tions of galaxy rotation curves, and velocity dispersions of galaxies in clusters 

which favor scenarios where luminous, baryonic matter is embedded in massive, 

extended, and close to spherical conglomerates of dark matter. 

As discussed in Chapter 4, the density profiles of dark matter halos are well 

fitted by the Navarro, Frenk, and White [130, 74] profile, Eq. 4.3. Here we are 

interested in the variation of the profiles produced by the different codes, tending 

towards the outer region of the halo. This variation may be significant for 

determining halo masses via the often used FOF algorithm. The mass that the 

halo finder will 'see', strongly depends on the density and density gradient close 

to the virial radius (R200) of a halo. On the other hand, accurately reproducing 

the inner slope of a halo profile is the prime test of the code's force resolution. 
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Table 6.2: Halo 3 data: distance of the center from the mean value for all codes, 
and the mass of the halo from different simulations . 

Code 6.Xc [kpc/h] .6.Yc [kpc/h] .6.Zc [kpc/h] M [1014 M0/h] 
MC:.: -86.23 158.81 -14.68 2.749 
PMM 201.68 33.90 10.24 2.757 
Enzo -21.36 45.16 11.36 2.745 

FLASH -41.66 -22.56 -23.10 2.726 
HOT -30.02 -120.54 43.99 2.720 

PKDGRAV 38.58 52.19 -43.98 2.679 
Hydra 19.91 -28.29 0.77 2.721 

GADGET-2 -27.08 -59.00 -0.70 2.705 
TPM -36.37 -35.09 1.04 2.697 

TreePM -17.45 -24.62 13.63 2.727 

On scales below this resolution limit, particle positions get randomized, resulting 

in a flattened density profile (numerical errors can also lead to a sharpening of 

the profile due to an associated unphysical damping). 

· We first compare the five heaviest halos from the simulations; their masses 

-range betwe~n approximately 2 to 5 · 1014h-1 M 0 , thus each halo is sampled 

with 150,000 or more particles. The individual halci masses (as found by the 

FOF algorithm) are in agreement within 33 for all ten codes. Note that the 

FOF masses found for the grid codes are slightly higher. This is presumably 

due to their lower resolution in this comparison, resulting in less tight halos. 

The FOF halo finder can identify more particles in the fuzzier outskirts of lower 

resolution simulations as belonging to the halo than in the high resolution runs. 

The centers of the halos are defined by the minimum of the local potential of the 

halo~ Here the agreement among the codes is even better than for the masses -

the difference is less than 0.53 of the box size. In Table 6.2 we show the center 

and mass of one of the halos, Halo 3. This halo (also shown in Figure 6.7) has 

the size and mass of a group of galaxies. The dispersion in the mass and position 

of the center is similar for the other halos, whose profiles we investigate next. 

In Figure 6.3 we present the spherically averaged density profiles for the 

five heaviest halos in the simulation. As an arbitrary reference, the black line 

represents the best NFW fit (Equation 4.3) for the TPM data. The fit is shown 

up to the innerJO h-1kpc of each halo. In addition, we show two residual panels 

for each halo profile. The upper panel shows the ratio of all codes with respect 

to GADGET-2, while the lower panel shows only the four grid codes and ratios 

with respect to MC2 • 

The agreement in the outer part of the halos is excellent. As expected, 

the codes exhibit different behaviors on small scales (depending on their force 

resolution and time-stepping), thus the inner parts of halos are not always the 

same. While the high resolution codes successfully track the profile all the way 

in t.o the plotting limits of Figure 6.3, the profiles from the mesh codes depart 
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Figure 6.3: Halo profiles for the five heaviest halos in the simulation. The 
black line shows the best-fit NFW profile to the TPM simulation, mainly 
to guide the eye. In the outer regions all codes agree very well. In the inner 
regions the fall-off of the grid codes is as expected due to resolution limitations. 
The fall-off point can be predicted from the finite force resolution and agrees 
well with the results. The middle panel in each plot shows the ratio of the 
different codes with respect to GADGET-2. The lower panels show only the 
four grid codes and the ratio with respect to MC2 • 
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much earlier (60-100 h- 1kpc), with approximately constant density in the core. 

The onset of the flattening is consistent with the nominal resolution of the grid 

codes, which is given in Table. 6.1. Note that among the mesh codes there is 

no significant difference between the fixed mesh codes which ran at the highest 

resolution throughout the whole simulation volume, and the AMR codes whose 

base mesh spacing is a factor of 4 times lower. 

We now study three of the five halos in more detail, restricting attention to 

particles within a sphere of radius 2 · R200. The profiles of the largest halo, Halo 

1, shown in Figure 6.3, agree well down to R = 0.06h- 1Mpc; at smaller scales 

the finite resolution of.the grid codes becomes apparent. Nevertheless, the grid 

codes and the high-resolution codes among themselves yield very consistent 

results. Figure 6.4 shows the density of Halo 1 for the lower resolution code 

PMM and the higher resolution code TreePM in two-dimensional projection. 

The two-dimensional density field is computed on a 100x100 grid within the 

2 · R200 region, projected onto the z-direction (another projection along the 

x-direction is also shown). The projected density field has been normalized 

by dividing out the mean density in this area. The mean density is very close 

across the different codes, hence the normalization allows for direct comparisons 

of the projected density fields. As mentioned earlier, the positions of the halo 

centers (density peaks) are in remarkably good agreement. Due to its higher 

resolution, the density in the center of the halo from the TreePM run is slightly 

higher (as to be expected from the profiles). In addition, TreePM shows slightly 

more substructure on the outskirts of the halo, displayed by the small "hills". 

Overall, the 'halo is very smooth and well defined, which is reflected in the good 

.agreement of the profiles. The density plots for the four grid codes are very 

similar. The small structures around the halo in the other codes also show only 

very minor variations, thus the PMM and TreePM results can be considered to 

be representative. 

The profiles of Halo 3 show substantially more variation among the different 

codes in the inner region, relative to the other four halos. Studying it in more 

detail, we first investigate a subset of four codes: MC2 , FLASH, GADGET-2, and 

HOT, covering a wide range of force resolutions. In Figure 6.5 we show a zoom 

irito the center of the halo. The particles are shown in white. Superimposed 

on the particle distribution is a 2-dimensional density contour evaluated on 

a 100x100 grid and smoothed with a Gaussian filter, projected along the z­

direction. (The contouring and filtering are intrinsic functions in Para View.) 

The overall appearance.of the halo is remarkably similar between the codes, 

a major feature of the halo being its irregular shape. The left side of the halo 

is elongated and a second major peak has developed on the right, leading o a 

triangular shape in this projection. This irregularity (seen also very clearly in 

figure 6.6) is most likely the reason for the disagreement in the inner part of the 

profiles: The halo has probably undergone a recent merger or is in the process 

of merging. Comparing the lower resolution runs from MC2 and FLASH with 
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Figure 6.4: Projected and normalized two-dimensional density for Halo 1 from 
PMM (left) and 'TheePM (right). 'TheePM has a slightly higher density in the 
inner region of the halo than PMM, as to be expected from the different force 
resolutions. Overall the agreement is very good. 

GADGET-2 and HOT, the effect of force resolution is very apparent, the high 

resolution runs producing significantly more substructure. GADGET-2 shows 

slightly more substructure than HOT, which could be due to the adaptive time 

stepping used in the GADGET-2 run relative to HOT's global time-step. 

Figure 6.7 shows Halo 3 from another four runs. As in Figure 6.4, the two­

dimensional density is shown on a 100x100 grid. The three-dimensional view 

underlines the rather complicated structure of the halo. PMM and Enzo show 

the elongated structure with two maxima, whereas the Hydra and PKDGRAV 

results differ somewhat from the other codes. They have a more well defined 

peak and do not exhibit much of the second structure. 'TheePM and TPM 

(not shown in the figure) are very similar to GADGET-2 and HOT. Overall, 

Halo 3 has much more interesting features than Halo 1, which leads to slight 

discrepancies in the halo profiles among the codes. 

Last, we study Halo 4 from a subset of the codes: MC2 , GADGET-2, PKD­

GRAV, and HOT, covering the grid, tree-PM, and tree codes. The results are 
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Figure 6.5: Two-dimensional contour plot of the projected density for Halo 
3 from MC2

, FLASH, GADGET-2, and HOT (left upper to right lower plot). 
White: particles, black: contour smoothed with a Gaussian Filter. 

shown in Figure 6.8. As before, the lower density of the PM code is due to its re­

stricted resolution. Overall, the agreement is again very satisfying. The centers 

of the halos are in excellent agreement, and all four runs show a smaller struc­

ture on the left of the main halo. The exact details of the smallest structures 

are different which could be due to inaccurate time-stepping and discrepancies 
· in the codes' output redshifts. 

Overall, the comparison of the largest halos in the box is very satisfactory. 

The halo profiles agree on the scales expected from the code resolutions. Differ­

ences of the inner parts can be explained due to very irregular shapes as in Halo 

3. The reader should keep in mind that we did not resimulate the halos with 

higher resolution, and that these halos ere extracted straight out of a cosmo­

logical volume simulation. Therefore, the level of agreement is in accord with 
theoretical expectations. 

120 



~·. 

Figure 6.6: Same as in Figure 6.5: MC2, FLASH, GADGET-2, and HOT. 

6.3.3 Number Density of Halos 

The Mass Function 

As discussed in detail in Chapter 3, the mass function is an important statistic 

in cosmology. We have seen that the numerical study of the mass function 

poses several challenges to the simulation code, especially if one wants to obtain 

reliable results at the few percent accuracy level: the number of particles in a 

halo has to be sufficient in order to prevent systematic biases in determinations 

of the halo mass, the force resolution has to be adequate to capture the halos of 

interest, the simulation has to be started at sufficiently high redshift, and finite 

box corrections might have to be considered if the simulation box is small (see 

also.Refs. [76, 124, 73, 8, 131]). 

In this work we study the mass function at z = 0. We identify halos with a 

friends-of-friends algorithm [80] with linking length of b = 0.2. The smallest halo 

we consider has 10 particles, not because this is physically reasonable (usually 

the minimum number of particles is several times bigger), but because we are 
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Figure 6.7: Two-dimensional densities from Hydra, PKDGRAV, PMM, and 
Enzo for Halo 3. The panel on the top of each graph shows the projected 
density. The color coding is the same for each plot, shown in the result for 
PKDGRAV. 
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Figure 6.8: Two-dimensional density profile of Halo 4 for MC2 , GADGET-2, 

PKDGRAV, and HOT. MC2 shows less substructure and is less dense in the 
inner region. ' 
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Figure 6.9: Mass function at z = 0, simulation results and the Warren fit (red 
line). Lower panel: residuals with respect to the Warren fit. For clarity we only 
show the error bars for one code. The dashed line indicates the threshold for 40 
particles (force resolution limit for the PM codes, according to Equation (3.29)), 
the dotted-dashed line for 2500 particles (force resolution limit for the base grid 
of the AMR codes). 

interested in cross-code comparison. We follow the suggestions by Warren et 

, al. [8] and correct the halo mass for possible undersampling via Eq. 3.45 This 

correction lowers the masses of small mass halos considerably. 

In order for small halos to be resolved, both mass and force resolution must 

be adequate. In Chapter 3, we derived the criterion for the force resolution: 

(6.6) 

This equation predicts that all the non-grid codes have enough force resolution to 

resolve the smallest halos considered, while the two PM codes, MC2 and PMM, 

have sufficient force resolution to resolve halos with more than 40 particles, and 

that the base grid of the two AMR codes restricts them to capturing halos with 

more than 2500 particles. Of course this is only a rough estimate in principle 

since the AMR codes increase their local resolution as a function of density 

threshold, the question is whether the criteria used for this is sufficient to resolve 

halos'starting at 40 particles/halo. 

We have indicated the resolution restrictions in Figure 6.9 by vertical lines 
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(dashed: 40 particles, dashed-dotted: 2500 particles). The predictions are good 

indicators of actual code results. The AMR codes fall off at slightly lower masses 

than given by 2500 particles.· This shows that the resolution which determines 

the smallest halos being captured is dictated by the base grid of the AMR codes 

and not by the highest resolution achieved after refinement. Thus, for the AMR 

codes to achieve good results, significantly more aggressive density thresholding 

appears to be indicated. (Similar results were found in Refs. [90, 89].) As 

predicted, the mass functions of the PM codes start to deviate at around 40 

particles from the other codes. 

Overall the agreement among the codes is very good. For comparison, we 

show the Warren fit [8] in red. Due to limited statistics imposed by the small 

box-size, the purpose here is not to check the accuracy of the fitting function. At 

the high mass end, the scatter is as expected due to the rareness of high-mass 

halos. In the medium mass range between 1012·3 and 1013·4h-1M0 all codes 

agree remarkably well, down to the percent level. In the small halo regime with 

as low as 40 particles, the agreement of the codes - besides the AMR codes as 

explained above - stays at this level. This indicates that the halo mass function 

is a very robust statistic and the simple resolution arguments given above can 

reliably predict the halo mass limits of the individual simulations. 

The comparison yields one surprising result, however: the TPM code sim­

ulation has far fewer halos in the regime below 40 particles per halo than the 

other high resolution codes. This finding was already pointed out in Ref. [90]. 

In order to understand this deficit of halos in more detail we investigate the 

halo count as a function of environment in the following. 

Halo Count and Density 

In the last section we investigated the mass function and discovered a discrep­

ancy of small halos in the two AMR codes and TPM. The hypothesis for the 

halo deficit in the AMR codes is, as discussed above, that the base grid resolu­

tion is too low and allows us only to catch halos with more than 2500 particles 

accurately. The coarse base grid in the initial state of the simulation does not 

allow for small halos to form and these halos cannot be recovered in the end. 

This would imply that the AMR simulations should have a deficit of small halos 

more or less independent of density: small halos should be missing everywhere, 

even in the highest refinement regions. A possible explanation for the missing 

halos in the TPM simulation could be a hand-over problem between the PM and 

the tree code. In this case, the number of small halos in high density regions 

should be correct. A qualitative comparison of three codes (HOT, MC2 , and 

TPM) is shown in Figure 6.10. The red points show halos with 10 particles, the 

white dots are a subset of the simulation particles. It is immediately obvious, 

that the halo counts in different environments, close to the large halo on the 

right, or on in the lower density regions on the left, are different. After this 
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Figure 6.10: Small halos (10 particles) in the HOT, MC2 , and TPM simula­
tion. Red points: halos, white dots: subset of the simulation particles. The 
distribution and number count of the small halos is different in all three codes. 

qualitative result, we have to quantify this finding in order to come to a reliable 

conclusion about the cause for the halo deficits. 

We use the Para View visualization toolkit to implement a routine that cal­

culates the density field on a (variable) grid from the particle distribution via a 

.nearest grid point algorithm. The grid size for the density field is usually set by 
'',~, 

the requirement that the density field be not too noisy. As a first check we com­

pare the density probability distribution function (PDF) for the different codes. 

It is· clear that, if the grid for calculating the density is chosen coarse enough, 

details should be smoothed out and the PDFs for the different codes should be 

in good agreement. In Figure 6.11 we show the PDFs for all codes calculated on 

a 323 grid (upper panel) corresponding to a smoothing scale of 2h-1 M pc and 

a 643 grid (lower panel) corresponding to a smoothing scale of lh-1Mpc. In 
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Figure 6.11: Probablity distribution function of the densities. Upper panel: 
calculation of the density on a 323 grid, lower panel: calculation of the density 
on a 643 grid. 

both cases all codes agree extremely well, as to be expected since the smoothing 

scales are well beyond the code resolutions. We confirmed that this result holds 

also for finer grids, up to 2563 , which corresponds to the lowest resolution in the 

AMR codes Enzo and FLASH. The average number of particles in a grid cell 

Pb on the left panel is 512 particles per cell, in the right panel 64 particles per 

cell. If we look at the density contrast and define voids as regions with a density 

contrast 5Void = -0.8, we find p Void ~ 100 for the left panel and p Void ~ 13 for 

the right panel. In both cases, this threshold is on the right of the maximum of 

the curves - a large fraction of the simulation volume is underdense. 

To cast the results in a more quantitative light, Figure 6.12 displays the 

distribution of halos with respect to density for the two lower mass bins. We 

restrict our investigations to a density threshold of up to 100,000 particles per 

cell. Figure 6.12 shows the results for 10-40 particle (left panel) and 41-2500 

particle halos (right panel). These thresholds were chosen because, as discussed 
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Figure 6.12: Number of halos as a function of density. Left panel: halos with 
10 - 40 particles, right panel: halos with 41 - 2500 particles. The lower panels 
show the residuals with respect to GADGET-2. Both panels show the deficit of 
small halos in Enzo and FLASH over most of the density region - only at very 
high densities do the results catch up. The behavior of the TPM simulation is 
interesting: not only does this simulation have a deficit of small halos but the 
deficit is very significant in medium density regions, in fact falling below the 
two AMR codes. The slight excess of small halos shown in the TreePM run 
vanishes completely if the halo cut is raised to 20 particles per halo and the 
TreePM results are in that case in excellent agreement with GADGET-2. 
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earlier, the force resolution of MC2 and PMM should be sufficient to resolve 

halos with more than 40 particles, while Enzo's and FLASH's base grid set this 

limit to more than 2500 particles. We have verified that the codes indeed agree 

for halos with more than 2500 particles. The lower panels show the residuals 

with respect to GADGET-2. The two AMR codes Enzo and FLASH have a 

deficit for both halo sizes over most of the density region. The small halos are 

mainly missing in the low density regions, and below 5Void there are almost no 

halos. Both codes only catch up with the other codes at around 10,000 particles 

per cell, in agreement with the our previous argument that whether halos are 

resolvable by the AMR codes or not is dictated by the size of the base grid. In 

terms of capturing smaller halos, the refinement only helps in very high density 

regions. 

The result for the TPM simulation is somewhat paradoxical: in the low 

density region the result for the small halos agrees well with the other high­

resolution codes, however, TPM misses a very large number of small halos in 

the region between 200 and 10,000 particles per cell, corresponding to a density 

contrast 8 between 1 and 20. This suggests that the problem of the TPM code 

is not due to the threshold criterion for the tree but perhaps due to a hand­

over problem between the grid and the tree. The two PM codes have slightly 

lower numbers of very small halos, in good agreement with the prediction that 

they only resolve halos with more than 40 particles. The agreement between 

MC2 and PMM itself is excellent. The TreePM code shows a slight excess of 

small halos compared to the other high-resolution codes. This excess vanishes 

completely if the cut for the small halos is chosen to be 20 particles instead of 

10 particles for the smallest allowed halo. This indicates a slightly higher force 

resolution in the TreePM run compared to the other runs. The agreement for 

the medium size halos (left panel) is very good, except for the AMR codes. For 

the me-dium size halos, the TPM code again shows a slight deficit of halos in the 

medium density regime, but far less pronounced than for the small halos. The 

overall agreement of the high-resolution codes is very good, as is to be expected 

from the mass function results. 

6.3.4 The Power Spectrum 

The matter power spectrum is one of the most important statistics for pre­

cision. cosmology. Upcoming weak lensing surveys promise measurements of 

the power spectrum at the one percent accuracy level out to length scales of 

k rv lOhMpc- 1 [208]. This poses a severe theoretical challenge: predicting the 

matter power spectrum at the same level of accuracy. A first step for showing 

that this is possible is to investigate how well the matter power spectrum can be 

·predicted from pure dark matter simulations, baryonic physics being included 

as a second step. It has already been shown that at the length scales of interest, 

hydrodynamic effects can alter the matter power spectrum at up to 10 per-
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Figure 6.13: Power spectrum results and the residuals for the different codes. 
Upper panel: comparison of the different power spectra. Middle panel: residuals 
of all codes with respect to GADGET-2. Lower panel: Residuals of the mesh codes 
with respect to MC2 • 

cent [209, 210, 211, 212]. Here, we concentrate on the first step and determine 

how well a diverse set of N-body codes agree with each other for the prediction 

of the matter power spectrum. In future work we aim to predict the dark matter 

power spectrum at k"' lhMpc-1 at the level of one percent accuracy or better. 

This will include a detailed analysis of the accuracy of the initial conditions as 

well as of the nonlinear evolution, a task beyond the scope of the current paper. 

We determine the matter power spectrum by generating the density field 

from the particles via a Cloud-in-Cell (CIC) routine on a 10243 spatial grid and 

then obtain the density in k-space by applying a 10243 FFT. The square of the 

k-space density yields the power spectrum: P(k) = (l8(k)2 1). The CIC routine 

introduces a filter at small length scale. We compensate for this filtering artifact 

by deconvolving the k-space density with a CIC window function. 
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The results for the different codes are shown in Figure 6.13. Note that the 

box size of 64h-1 Mpc is too small for a realistic cosmological power spectrum 

calculation, as the largest modes in the box no longer evolve linearly. This 

leads to an incorrect onset of the nonlinear turn-over in the power spectrum. 

~evertheless, the comparison of the different codes is very informative. The 

upper panel in Figure 6.13 shows the results for the power spectra themselves. 

The lower resolution of the grid codes is very apparent, their results falling away 

at k ,...., 2hMpc-1. The early deviation of the grid codes is still surprising, as the 

nominal resolution of all codes should have been sufficient to generate agreement 

over a wider k-range. The middle panel shows the residuals of all codes with 

respect to GADGET-2. All codes agree at roughly 1% out to k,....., lhMpc-1 . 

PKDGRAV shows small scatter in the linear regime. This might be caused by 

imprecise periodic boundary conditions, which are not as easy to implement in 

tree codes as they are for grid codes. The high-resolution codes agree to better 

than 5% out to k ,....., lOhMpc- 1. At that point HOT and Hydra lose power, 

while PKDGRAV, TPM, and TreePM show slightly enhanced power compared 

to the GADGET-2 run. The formal force resolutions of the codes would suggest 

· that the different runs (including the grid runs) should agree much better at 

the wavenumbers shown. 

The 10243 FFT used to generate the power spectra is far below the resolution 

of the non-grid codes and at the resolution limit of the AMR and PM codes. 

The discrepancy might be due to several reasons: the number of time steps, 

the accuracy of the force solvers, the accuracy of reaching z = 0 at the end of 

each run, just to suggest a few. A more detailed study of the power spectrum 

including larger simulation boxes is certainly required to obtain the desired 

accuracy for upcoming surveys. In the lower panel we show a comparison of the 

grid codes only, with respect to MC2 • The two pure PM codes, MC2 and PMM 

agree remarkably well over the whole k-range under consideration, the difference 

being below 1 %. The two AMR codes, Flash and Enzo, deviate considerably, 

most likely due to different refinement criteria. It is somewhat surprising that 

Enzo has larger power than the two PM codes, which have the same resolution 

in the whole box that Enzo has only in high density regions. This could be the 

result of an algorithmic artifact in the AMR implementation. 

6.4 Conclusions 

The new era of precision cosmology requires new standards for the reach and ac­

curacy of large cosmological simulations. While previously, qualitative answers 

and quantitative results at the 20% accuracy level were sufficient, we now need 

to robustly predict nonlinear physics at the 1 % accuracy level. This demanding 

task can only be achieved by rigorous code verification and error control. 

The results from the code comparisons are satisfactory and not unexpected, 

but also show that much more work is needed in order to attain the required 
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accuracy for upcoming surveys. The halo mass function is a very stable statistic, 

the agreement over wide ranges of mass being better than 5%. Additionally, 

the low mass cutoff for individual codes can be reliably predicted by a simple 
criterion. 

The internal structure of halos in the outer regions of ,...., R200 also appears to 

be very similar between different simulation codes. Larger differences between 

the codes in the inner region of the halos occur if the halo is not in a relaxed 

state: in this case, time stepping issues might also play an important role (e.g. 

particle orbit phase errors, global time mismatches). For halos with a clear 

single center, the agreement is very good and predictions for the fall-off of the 

profiles from resolution criteria hold as expected. The investigation of the halo 

counts as a function of density revealed an interesting problem with the TPM 

code, the simulation suffering from a large deficit in medium density regimes. 

The AMR codes' showed a large deficit of small halos over almost the entire 

density regime, as the base grid of the AMR simulation set too low a resolution 
limit for the halos. 

The power spectrum measurements revealed definitely more scatter among 

the different codes than expected. The agreement in the nonlinear regime is at 

the 5-10% level, even on moderate spatial scales around k = lOhMpc- 1. This 

disagreement on small scales is connected to differences of the codes in the inner 
regions of the halos. 
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7 Concluding Remarks 

The area of structure formation is already in the mature phase. Pioneering 

works of Zel'dovich and Peebles were followed by several other, milestone, re­

sults, like the discovery of universal halo density profiles [130, 7 4], or the univer­

sality of the halo mass function [75]. As a result, we have excellent qualitative 

understanding of the large-scale structure, and its evolution through the gravi­

tational instability. That theoretical picture is in a remarkable agreement with 

observations. On the other hand, theoretical predictions on most of statistical 

quantities describing the large-scale structure were not very accurate: differ­

ent papers would commonly disagree by 503 or more. Partially, it was more 

,difficult to have very precise results then, than it is now due to the constant 

increase in computer power. Arguably, even more important reason was that 

great accuracy was previously of only academic interest, as precise results could 

not be tested on observations. 

Observational campaigns in the future (some of which have already started), 

will achieve a percent-level accuracy on most of cosmological measurables. In 

order.to utilize their power, theoretical predictions of cosmology dependent sta­

tistical quantities must have at least the same level of precision. For exam­

ple, the distribution of masses - mass function is of particular interest, as its 

high-mass tail is exponentially sensitive to the amplitude of the initial density 

perturbations, the mean matter density, Om, and to the dark energy controlled 

late-time evolution of the density field. While this presents a great potential, 

it cannot become an accurate probe of the cosmological parameters without 

having good theoretical description of what the mass function is, as a function 

of cosmological parameters. However, historically, there has been considerable 

variation in the most interesting, high-mass (low a) part of the mass function as 

obtained by different groups. Today, there is a clear need for the very accurate 

theoretical models describing statistical properties of the large-scale structure. 

For that reason, this thesis contains detailed analyses of the most interesting 

dark matter structures which form through nonlinear gravitational evolution. 

Specifically, we have presented the most accurate results on the halo mass func­

tion and halo bias, covering the largest range of masses and redshifts up to 

date. The main goal in this research was to represent the findings as much as 

possible in cosmology and redshift independent ('universal') forms. For that 

reason; halos are defined and weighted using a percolation motivated friends­

of-friends algorithm, which captures an isodensity contour, with which define 
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halo boundaries. 

First, results published in different papers often differ by much more than 

what is expected from the algorithmic differences in numerical codes. In Chapter 

6 we have demonstrated that the agreement on the halo mass function between 

different codes is as good as is needed today (5-10%), provided the codes evolve 

the exactly same initial conditions, and that outputs are analyzed with the same 

tools. In practice, different groups reported results disagreeing by much more 

than ,.,,,103, the difference increasing with the 'rarity' of objects - equivalent to 

either increasing the mass of considered halos, or by analyzing them at higher 

redshifts. For that reason a significant effort went into the study of accuracy 

requirements in cosmological simulations. Chapter 6 contains comparison of 10 

codes most often used nowadays, while in Chapter 3 we derive several criteria 

which have to be fulfilled to obtain the required accuracy. 

Having the confidence in the accuracy of our results, as well as the ability to 

understand most of the differences in results in the published literature, we have 

turned to statistical quantities of interest. For the FOF mass function of dark 

matter halos, we find the universality at the 10% level. Warren et al. fit [8] holds 

the same level of accuracy. Analysis of the halo correlation function confirms 

that at large scales the halo correlation is simply in a systematic offset from the 

matter correlation function. This offset is quantified via 'bias', which increases 

with halo rarity. Our data, in agreement with results from other groups, show 

that peak-background split theory, commonly used to relate bias to the mass 

function fails at "' 20%. Lacking a theory which enables us to use one formula 

to describe both statistical measures, we provide an accurate analytical fit to 

the halo bias itself. 

Finally, we analyze halos forming in the ACDM cosmogony; we confirm 

that the halo definition leads to important systematic effects. However, while 

previous works assumed that the FOF mass corresponds to a fixed spherical 

overdensity mass (the exact value of 'corresponding' overdensity being varied 

.between!::!,.= 200 and!::!,.= 100), we find that the concentration of the density 

profile plays an important role in mass mapping. Using mock halos, we quan-

tify this concentration effect, and provide a formula for moving from one mass 

definition to another. We confirm that the formula leads to sensible results 

when applied on simulated halos, although a selection has to be applied, as a 

non-negligible fraction of halos is in some stage of merger. The new, interesting 

result arose from this study: the fraction of merging, or at least non-isolated 

halos, bears cosmological dependence, and the fraction seems to be universal. 

This can open new ways to measure growth of structure, or at least can pro­

vide a valuable cross-check to other studies. As with the mass function, the 

most massive structures would be of the biggest interest for this measurement. 

Although fraction of merging clusters as a function of mass is not as sensitive 

to cosmological parameters as the mass function, it is a relative probe, thus 

it would not (directly) suffer from completeness errors. Practical value of this 
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finding has yet to be tested by observations. 

7.1 Future Outlook 

In this thesis we analyze several theoretical aspects of growth of structure. Still, 

it is by no means a final word on that topic. In the following, we present some 

directions for the future works. 

7.1.1 Emulating Halo Statistics 

The work presented in this thesis focuses on universal forms of different halo 

statistics. The reason for this is straightforward: if we have no way of present­

ing the data in cosmology and redshift independent form, then our statistical 

measure will be different for different cosmologies. In principle, that means one 

has to simulate enormous number of cosmologies to make predictions accurate 

enough for comparison with upcoming observations, as the number of cosmo­

logical parameters is relatively large (of order 10). Needless to say, that is not 

very practical. To circumvent this, we have turned to the FOF definition of 

halos, which was shown to be universal at the 20% level by Jenkins et al. [75]; 

in Chapter 3 using more accurate data, we show that the universality of the 

mass function (and thus e.g. bias) holds to even higher level. 

In practice, using this mass definition is very inconvenient for observers for 

many reasons, the main one being that the hydrostatic equilibrium equation 

becomes difficult_ for objects of arbitrary shape. While, as shown in Chapter 

4, there are ways of retaining universality with different mass definitions by re­

ducing the cluster sample, it is yet unknown what the accuracy of this method 

would be. An alternative approach, a natural extension of the work presented 

here, is to completely abandon the idea of universality, assume the definitions 

which are observationally the most convenient, and simulate halo statistics em­

ploying those definitions. As one can only have a finite number of simulations, 

this approach would necessarily involve developing an interpolation scheme to 

probe the parameter space between simulated points. We can call such an in­

terpolating 'device' an emulator, and it has to conform to the following three 

requirements: (i) it must be possible to calibrate it using relatively modest num­

ber of expensive N-body simulations (of order 100, at most), (ii) the accuracy of 

the emulator should be predictable and close to constant over the whole range 

of interest in cosmological parameter space, and finally (iii) the computational 

costs of interpolation have to be negligible to that of the N-body simulation 

itself. 

Recent statistical tests [127, 128] on the matter power spectrum show it is 

possible to build such an emulator. The focus there was on 5 cosmological pa­

rameters (n, h, as, OcnM, and nb), which were kept open in a generous range, 

much larger than allowed nowadays by many observations. The emulator was 
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modeled with Gaussian process, using space-filling Latin hypercube designs for 

'exact' points, obtained with 128 N-body simulations. The resulting accuracy 

of emulation (evaluated by comparing emulation results with independent sim­

ulations outside the training set) was ""5% throughout most of the k range 

[128]. Of course, it is possible to achieve even higher accur~cy, by reducing the 

parameter range considered. The reason for such successful modeling is (apart 

from the fact that cosmological parameters have relatively narrow ranges of in­

terest today) that the response surface (as a function of input parameters) is 

very smooth; presence of any prominent features would radically increase the 

number of required N-body simulations. 

While the success in modeling the matter power spectrum does not guarantee 

that any halo statistics can be modelled with the same accuracy, this is most 

likely the case, as the responce surface seems to be well behaved for the mass 

function as well as the correlation functions. The possibility of knowing those 

statistical measures to a great accuracy for any cosmology of interest is very 

alluring; even though we would still lack 'analytical understanding', its great 

usability makes this work the natural extension of the research presented in this 

thesis. 

7.1.2 Mass-Observable Relations 

As is emphasized throughout the thesis, clusters are a valuable cosmological 

probe, and arguably the most accurate one which will probe the growth of 

structures, as opposed to those probing the cosmic expansion. However, in all 

analyses of galaxy clusters, knowing their masses is essential. While finding 

masses in simulations, for any desired mass definition, is a straightforward pro­

cess, on the observational side it is a notoriously difficult problem. Fortunately, 

cluster masses correlate with many observable quantities, such as temperature, 

X-ray liiminosity, and optical richness [213, 214, 215, 216]. Moreover, proper­

ties of central galaxies in clusters and the intracluster light might also be mass 

proxies [217]. 

Although the scalings exist, neither systematic nor statistical errors in their 

determination are at the desired level at present. For example, when hydrostatic 

equilibrium of clusters is assumed (a standard assumption in observations), the 

resulting mass as determined from X-ray temperature can be underestimated 

by "" 20% [218]. Further, the differences in observational definitions of the 

temperature bring another systematics at "" 50% level [219]. On the statistical 

side, any mass-observable relation exhibits a significant scatter when applied 

on the whole sample of clusters. 

The role of simulation is thus twofold here; on one side simulations can 

be testbeds for testing different observational strategies, and estimating their 

accuracy. On the other side, simulations can provide important insight on how to 

reduce the statistical scatter, possibly by some appropriate selection of clusters, 
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or by measuring some new quantity (e.g. [220]). In both cases, understanding 

physical origins of scatter is crucial. Examining the dynamical state, radiative 

cooling, and heating processes in galaxy clusters is in progress at many research 

institutions, including the University of Illinois. Better understanding of these 

effects will open a new avenue in precision cosmology. 
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A MC2 Code 

MC2 is the code used for producing most of the simulations analyzed in this 

thesis. It solves Vlasov-Poisson system of equations (§2.2), discretized through 

particles. To speed up the force calculation, the code uses the particle-mesh 

(PM) scheme, in which all space dependent variables (e.g. density, potential) 

are calculated on an array of mesh points. The differential operators: gradient 

(V') and laplacian (V'2), are expressed as finite-differences on the same mesh. 

The density at mesh points is obtained by depositing each particle mass on 

the surrounding grid nodes using the Cloud-In-Cell (CIC) method where the 

fraction of the particle mass being deposit on a node depends on the distance 

between a particle and a nodal point. The CIC interpolation kernel is thus: 

{ 1-~ W= h 
0 

lrp-r9 l~h 
lrp-r9 l>h 

(A.1) 

where rp denotes the particles, and r 9 the grid points, while h is the cell width. 

The density on a mesh is then 

1 Np 

p(nx,ny,nz) = L3 LmiW. 
i=l 

The gravitational potential on a mesh can be calculated through 

(A.2) 

(A.3) 

Here <I>(~x, ny, nz) is the potential at a specified mesh point, and G is the Green's 

function, whose Fourier transform, for a lattice discretization, is given by: 

G(k) 3!:lm (. 2 1l"nx . 2 1l"ny . 2 1l"nz)-l = --- sm -- +sm --+sm --
8a L L L ' 

(A.4) 

L being the box-size. To find <I>, the code calculates the discrete Fourier trans­

forms of p, multiplies them with G(k), and takes the inverse Fourier transform 

of ttie product. The gravitational potential at the position of any particular 

particle is then obtained by interpolation from the mesh. 

The main advantage of this method versus direct force summations is the 

existence of very efficient algorithms for calculating Fourier transforms. Also, 

Fourier transforms naturally incorporate periodic boundary conditions used in 
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. cosmological simulations. As a result, PM is a lean and very fast method, but 

with the drawback of having significantly lower force resolution (determined by 

the mesh spacing) than other methods. This does not pose a problem in simula­

tions where dark matter is considered 'hot' since density fluctuation essentially 

do not have power on small scales, but may open many issues in cold dark mat­

ter simulations where strucuture forms 'bottom-up'. In addition, the speed-up 

does not come completely for free - the memory requierments with this method 

are significantly higher than for N 2 solvers, as besides the particle phase-space 

information and mass, density and potential on the grid have to be stored 1 , as 

well as some auxiliary FFT arrays. 

Once forces are calculated, particles can be moved one step in time, and 

the process repeats. The time integration is done via Leapfrog scheme, where 

velocity updates are staggered with respect to position updates, and the offset 

is half of the interval. The integration is therefore: 

Vn+3/2 

rn + Vn+l/20t 

Vn+l/2 - ot'V<P · (A.5) 

The scheme is second order accurate like, for example, midpoint integration, but 

the advantage of the Leapfrog algorithm is that it is a symplectic method. This 

means that the Hamiltonian nature of the equations of motion is preserved, and 

1
brrors (on any integral of motion) are kept bound. 

A.1 Initial Conditions 

To set up initial conditions, the code produces a random realization of the de­

sired density field, characterized by its power spectrum P(k). Initial conditions 

in the code are set using the Zel'dovich [56] approximation: 

r = q - D(a)S(q) 

v = -b(a - .6.a/2)S(q) , (A.6) 

where q is the initial (unperturbed) position of a particle, x is its position at 

some time t, Dis the linear growth function, and S(q) is a displacement vector 

given by the discrete Fourier transform: 

S(q) =A (A.7) 

Here, A is the power spectrum normalization coefficient, while Ck is the complex 

Fourier coefficient, randomly chosen from a Gaussian distribution with the mean 

of zero, and dispersion a 2 = P(k)/k4 • The summation is over all modes which 
1 Actually, one array is enough, since the density can be overwritten by the potential, which 

is often not done as the code becomes much more difficult to read or change. 
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\ 

can exist in a simulation box, determined for small k's by the physical size of the 

box, and for large k's by the number of particles2 • Modes have to be initialized 

enforcing a 'reality' condition: ck = c'.'._k. Thus, cosmological initial conditions 

reproduce one realization of a Gaussian random density field, and the position 

of any single particle (at any time) is meaningful only in a statistical sense. 

2Nyquist wavenumber. 
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