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ABSTRACT

We consider the problem of performing sentiment analysis on songs by com-
bining audio and lyrics in a large and varied dataset, using the Million Song
Dataset for audio features and the MusicXMatch dataset for lyric informa-
tion.

The algorithms presented on this thesis utilize ensemble classifiers as a
method of fusing data vectors from different feature spaces. We find that
multimodal classification outperforms using only audio or only lyrics. This
thesis argues that utilizing signals from different spaces can account for inter-
class inconsistencies and leverages class-specific performance. The experi-
mental results show that multimodal classification not only improves overall
classification, but is also more consistent across different classes.

Keywords: Music Information Retrieval; Sentiment Analysis; Multimodal
Classification; Classification Algorithms; Multimodal Fusion
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1

INTRODUCTION

In recent years, music-based services have been trying to make their appli-
cations more user-centered. One way to make sure that the user experience
is foremost is to provide services that match the user’s current emotional
state. This can be implemented by understanding the emotional content of
the songs and playlists that are being played.

Sentiment analysis is the portion of music informational retrieval (MIR)
where an algorithm recognizes the main emotions that a song evokes. Emo-
tions are subjective, so classifying individual songs into distinct groups is a
challenging problem. Most human subjects agree in broad strokes on emo-
tional classifications. However it is not uncommon to find songs where there
is no consensus, leading to inconsistencies in class groupings. As a result,
sentiment analysis is still an open problem that requires the investigation
of alternative methods that employ different modalities to counteract class
inconsistencies. Success in this approach would allow a more robust classifi-
cation algorithm that is better suited for real-world applications.

The motivation behind the presented research is to find a method that
accounts for these inter-class inconsistencies across a large dataset. During
our initial investigation, it became apparent that certain unimodal classifiers
perform well on specific sentiments and fail to accurately classify others.
This research seeks to produce more consistent classification by combining
features and classifiers of different modalities thus improving the reliability
of the overall system.

This thesis will be focusing on the employment of support vector ma-
chines (SVM), Gaussian naive bayes and multinomial naive bayes classifiers
to recognize emotional information. The audio features that will be em-
ployed are based on mel-frequency cepstral coefficients (MFCC), which are
obtained from the response of the song’s windowed spectrogram to a set of
basis functions. A bag-of-words vector is used to represent the lyric portion
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of the song. The modal fusion will be tested through both feature fusion and
classifier fusion.

The dataset used for this thesis is called the Million Song Dataset and
was compiled by Labrosa [1]. This dataset contains a million different songs
summarized by their pitch, loudness, and timbre. The songs are also accom-
panied by much metadata such as artist, release date, and tags. Sentiment
classification was obtained from these tags. If a sentiment was used to de-
scribe a song, it is assumed that the song conveyed that sentiment. The lyric
information was obtained from the MusicXMatch dataset [2], which provides
lyric information unordered in a bag-of-words format. Since there was no
way to obtain semantic information from an unordered bag-of-words repre-
sentation, this research did not focus on the impact of semantics on sentiment
classification.

This report starts with a brief overview of previous work performed on this
topic, followed by a description of the methods and the algorithms developed,
then a section detailing the actual experiments, and a section on results and
analysis. It closes with a section on conclusions and suggestions for future
work.
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2

PREVIOUS WORK

There has been considerable amount of work done in the field of multimodal
sentiment analysis. This Chapter will briefly cover a portion of the rele-
vant research that was considered during the development of the presented
methodologies. The relevant topics that were researched for this thesis were:
audio sentiment analysis, text sentiment analysis, and multimodal classifica-
tion.

Audio Sentiment Analysis

The study of the relationship between emotional content and audio signals
is a very mature field. Researchers have expanded on the success found in
the speech recognition community of using mel-frequency cepstral coefficients
(MFCC) to explore their uses in music modeling [3]. MFCCs are currently a
staple in audio processing and are commonly used in MIR applications such
as genre classification [4], since they are a quantifiable method for comparing
the timbral texture of songs. Timbre has been used with some success to
classify the emotional content of songs [5]; however, class inconsistencies
have proven to be a difficult challenge, causing substantial misclassification
between edge cases. Timbre has also been used to generate songs that evoke
particular emotions [6]. These vectors have been commonly classified using
support vector machines (SVM) and naive Bayes classifiers.

Text Sentiment Analysis

Similarly, the study of the relationship between text and emotional content
is quite developed, with applications ranging from predicting Yelp ratings
based on the sentiment expressed in a given review [7] to extracting the

3



emotional progression of major literary pieces [6]. There are many methods to
represent and extract emotional information from texts. The Yelp experiment
uses statistical word vectors to capture word semantics and emotions as a
probability. Other researchers have represented textual information in a bag-
of-features framework and used naive Bayes, SVMs and maximum entropy
classifiers to recognize positive or negative valances [8].

Researchers have extended text processing methods to better capture emo-
tional subtleties. For example, a word can have different emotional values
depending on its context. Analyzing this information requires the creation
of complex sentiment vectors that encode how meanings change based on
semantics [9]. Similarly, researchers have improved classification accuracy
by preprocessing text [10] and using the cleaned data to capture emotional
subtleties, like the use of negation and modifiers to emotional words [11].

Although there is a great body of research on how to obtain rich sentiment
vectors from text, the goal of this thesis is demonstrate the added advantage
of a multimodal approach. For that end, the lyric vectors were kept simple
to clearly underline the benefit of combining them with audio information.
In addition, it is necessary to point out that obtaining a large enough dataset
of lyrics is difficult due to legal restrictions. As a result, the features used
will be the unordered representation of the lyrics in a bag-of-words vector
provided by the MusicXMatch dataset [2].

Multimodal Classification

Multimodal classification is the task of using feature vectors from different
modalities, for example text and audio, to reach a single classification. There
are two main methods of combining the information from the features of both
modalities: feature fusion and classifier fusion [12].

Feature fusion is the technique that takes signals from different feature
spaces and joins them to train a single multimodal classifier. The stan-
dard fusion method is called "series fusion", which consists of concatenating
the vectors together and training the classifier on the union of both spaces.
Several alternatives have been suggested to maintain the same amount of
expressibility in the fused vector while keeping the resulting vector space as
small as possible. Instead of concatenating the vectors together, it is possible
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to join vectors in parallel [13] by making vectors from the linear combinations
of a real-valued feature with another complex-valued feature. The benefit of
the series fusion over the parallel method is that many diverse features can
be fused together to obtain more robust data. As seen in the research by
Liang et al. [14], genre classification was improved by joining five different
vectors, all resulting from different preprocessing methods for text and audio
vectors.

Classifier fusions train an array of unimodal classifiers and using some
function to consolidate the predictions [15]. This method seamlessly fuses
features from very different spaces. Caridakis et al. [16] combined facial
expressions, body gestures, and speech by having a classifier voting system
where the class with most votes and highest probability was chosen amongst
all the decisions. The final decision-making process can be taken a step fur-
ther by adding an additional classifier that learns from the decisions provided
from the classifier array [17]. The algorithms presented in this research were
largely based on this last approach.

Multimodal classification has been successful in improving the accuracy
of classification [12] [18]. However, some of the previous work either ran
the experiments on highly homogenous datasets, where all the music was in
the same language, belonged to the same genre, or was carefully classified
by a single subject, thus eliminating class inconsistencies. The goal of this
research is to obtain improved classification and reliability for a varied dataset
through ensemble classifiers.
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3

METHOD

Emotions are highly nuanced since there are many experiences that do not fall
neatly within a category. The difference between bittersweet and nostalgic,
for example, is difficult to quantify. In a study of gestures across different
cultures, Ekman et al. [19] concluded that there are six basic emotions,
called the Ekman emotions, which are joy, sadness, anger, fear, disgust, and
surprise. For this research we will focus on classifying songs based on the first
three emotions (joy/happiness, sadness, and anger), mainly because there
are not enough sample songs whose main emotions are the last three (fear,
disgust, and surprise).

Features Used

The audio features used for the experiment are the timbre data in the Million
Song Dataset (MSDS) developed by EchoNest. These features are zero-mean
vectors of length 12, extracted by windowing the spectrogram in constant-
width segments. Although the segment width varies from song to song, it is
typically less than a second long, and it is determined so that the timbre and
harmony are relatively uniform throughout.

The song is broken up into a series of non-overlapping windows Si, where
i is the index of the segment. The images in Figure 3.1 are a visual repre-
sentation of the basis functions gj that were applied to each segment. An
audio feature f is extracted from each segment and has the form of a vector
of length 12, where each element of the vector is defined as:

fj(x) =
∑
p∈Si

gj(p) • x(p), j ∈ {1, 2, ..., 12}. (3.1)

The lyric information was obtained from the musicXmatch database [2]
which provides the songs in a bag-of-words format. This format consists of
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a vector of length 5000 representing a stemmed dictionary where the value
at each element is the frequency of that particular word in the song. Data
is distributed in this form so that it respects artists’ rights over the ordering
of the words while still being able to represent the content.

Figure 3.1: EchoNest’s Basis Functions Used to Generate MFCC-like Vectors.1

Classifiers

As mentioned in Chapter 2, similar problems have been address with a certain
amount of success using naive Bayes and SVMs. For the experiment, the
classifiers selected were the Gaussian naive Bayes, multinomial naive Bayes,
and kernel SVM with histogram intersection as the kernel.

Naive Bayes

The naive Bayes classifier is a statistical classifier that selects the most-likely
class given a particular data point. The classifier builds a statistical model for
each class that follows a given distribution. Under the assumption that each
feature is statistically independent, it computes the conditional probability
for the input vector given each model and returns the model with the highest
posterior probability.

ŷ = argmaxyP (y)Πn
i=1P (xi|y) (3.2)

The distinction between the Gaussian naive Bayes and the multinomial
naive Bayes is the distribution that is assumed for the conditional proba-
bility P (xi|y). The Gaussian naive Bayes classifier, as the name suggests,
assumes that data is normally distributed given the class and that the co-
variance matrices are diagonal. This model is a good starting point when
little information is known about the data.

1http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf
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The multinomial naive Bayes supposes that data follows a multinomial
distribution, which is a generalization of the binomial distribution. The
difference between binomial and multinomial is that in binomial the outcome
of each of the k trials is either "yes" with a probability of p or "no" with a
probability of (1 − p). Under the multinomial distribution, the outcome of
each of the k trials can be one of n different classes such that

∑n
i=1 pi = 1.

Since an event cannot occur a negative number of times, the multinomial
distributions is well suited for problems where the vectors are non-negative
such as for histogram analysis.

Support Vector Machines

Support Vector Machines are classifiers that construct hyperplanes that max-
imize the margin to the labeled data points. The margin is defined to be the
shortest distance from the hyperplane to any of the points. As a result, a
linear SVM finds a function that linearly separates the data points into clus-
ters for classification. Soft SVMs exist that tolerate data that is not linearly
separable by allowing some misclassification.

An SVM can be non-linear if the data points are preprocessed non-linearly
before creating the hyperplane. Non-Linear SVMs rely on functions called
kernels that map data points into a higher dimensional space where the points
can be separated by a single hyperplane.

For the experiments detailed on this paper, we used a non-linear SVM with
a histogram intersection kernel. Histogram intersection is a method that finds
the minimum intersection between two histograms [20], which means that it
is generally a more accurate similarity metric than euclidean distances for
histograms. The histogram intersection kernel is defined as:

kHI(ha, hb) =
d∑

j=1

min(ha(j), hb(j)). (3.3)

Equation 3.3 details the metric used to compare the intersection of two
histograms. The distance of a particular pair of histograms is the sum of
minimum value of each column of the histogram. By computing the distance
between every pair of histograms using this metric, the SVM can easily group
similar data points together.
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Figure 3.2: Series Fusion Figure 3.3: Lyrics Only Partial Ensemble

Figure 3.4: Audio Only Partial Ensemble Figure 3.5: Full Ensemble

Fusion Methods

Using the features and the classifiers detailed above, four different fusion
methods were used for classification: series fusion, two separate partial en-
sembles and full ensemble. These were defined by concatenating the feature
vectors at different levels of the classification. Figure 3.2 shows two raw vec-
tors used to train a multimodal classifier. Figure 3.3 and Figure 3.4 show one
level of pre-classification. An initial classifier is used on either the lyric or
the audio raw vectors, respectively, to create an intermediate vector. This re-
sulting feature is joined with the remaining raw vector to train a multimodal
classifier. Figure 3.5 shows two levels of pre-classification, where both raw
vectors are classified and a multimodal classifier is used on the intermediate
vectors.

It is important to note that out of the classifiers detailed above, only Gaus-
sian naive Bayes is suited to classify negative-valued features. As a result not
all the classifiers can be used for all the vectors. The multinomial naive Bayes
classifier requires that audio segments be normalized to be non-negative to be
fitted to the multinomial distribution. We introduce the following classifier
sets:
A = set of audio classifiers = {Gaussian NB,Multinomial NB}
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L = set of lyric classifiers = {Gaussian NB,Multinomial NB, SVM}
M = set of multimodal classifiers = {Gaussian NB,Multinomial NB, SVM}.
The set A is used for audio features, the set L is used for lyric features, and

the set M is used for multimodal features. In Figures 3.2-3.5, the squares
labeled as ‘Multimodal Classifier’, ‘Audio Classifier’ and ‘Lyric Classifier’
represent a sampled classifier from the corresponding set.

Series Fusion

The series fusion method is the basic approach discussed in Chapter 2. This
method concatenates each raw audio vector with the corresponding raw lyric
vector. As a result each song has hundreds of segments, each of which is a
vector of length 5012. This large dataset can be computationally prohibitive
for certain classifiers. The classifier set for this structure is :

Series =M\ {SVM}.

The reason why SVMs were not included in this test was because the
runtime complexity of training a linear SVM is at worst O(d2n) where d

is the number of dimensions and n is the number of samples [21]. With a
hundred vectors per song where each vector has 5012 dimensions, it becomes
impractical to run this test.

This fusion method involves taking a classifier from the set Series and
training it on the dataset resulting from the concatenation of the audio vec-
tors and bag of words.

Audio Partial Ensemble

The audio partial ensemble methods come from noting that the complexity
of the series fusion method stemmed from the fact that the amount of vectors
for each of the modes was lopsided. Each song has exactly one bag of words
vector of length 5000, while having hundreds of audio segments of length 12.
Audio partial ensemble explores classifying those hundreds of segments into
emotions and representing them as a single classification histogram that can
be combined with the bag of words.
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This method initially classifies all the song’s audio segments and builds
a histogram for each song representing how many of these segments were
classified for each emotion. As a result, the audio data goes from being
represented by hundreds of vectors of length 12, to a single histogram of
length 3 that provides some concrete information of the emotional content
of the song.

The classifier set Audio Partial Ensemble is defined as all the combina-
tions between the Multimodal classifier set and the Audio classifier set. The
resulting set is as follows:

Audio Partial Ensemble = A×M.

For this fusion method, a classifier is taken from A, and is used to build
the emotional histogram from the audio segments. This histogram is then
concatenated to the bag of words to create the multimodal vector, which is
used to train the classifier fromM.

Lyric Partial Ensemble

The lyric partial ensemble configuration is very similar to the audio partial
ensemble, with the modification that the initial classification is performed on
the bag of words vector instead of the audio.

The classifier set Lyric Partial Ensemble is defined as all the combinations
between L andM:

Lyric Partial Ensemble = L ×M.

This fusion method takes a classifier from L and determines the likelihood
that each bag of words belongs to each class, resulting in a vector of length
3. This likelihood vector is concatenated to the MFCC-like vectors from the
audio data to create the multimodal features. A classifier fromM is used to
make the final decision based on this vector.
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Full Ensemble

Taking both partial ensembles to the next logical step, full ensemble performs
an initial classification on both the audio and the lyric vectors independently
and then concatenates the intermediate results into a single multimodal vec-
tor. The audio vectors are converted into the same emotional histogram used
in the audio partial ensemble method. The bag of words, like in lyric partial
ensemble, is used to create a likelihood vector. The emotional histogram and
the bag of words classification are concatenated and used as a single vector
for multimodal classification.

The classifier set for Full Ensemble is defined by all combinations between
the A, L andM sets. The resulting set is defined as follows:

Full Ensemble = A× L×M

This fusion method takes a classifier from A to build an emotional his-
togram of the song and a classifier from L to build a likelihood vector for
the song. These two vectors are concatenated to form the multimodal vector
used to train a classifier fromM.
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4

EXPERIMENT

Given the size of the dataset, it was necessary to perform significant prepro-
cessing for each test to run in a sensible amount of time. The experiments
require that every song has audio vectors, a lyric vector, and a true emo-
tional label. To get the subset of the Million Song Dataset (MSDS) that had
these characteristics, it was necessary to perform two levels of filtering. First
we needed to identify which songs had sentiment labels. From this subset,
we needed to identify which songs were also included in the MusicXMatch
dataset. As a final step, the dataset was truncated so that each class had
the same number of samples to avoid having any misrepresentation.

Song labeling was performed by looking at the mbtags in the metadata
provided by the MSDS. If the tags contained the word ‘happy’ , ‘angry’
or ‘sad’, the corresponding song was considered to be part of that class.
This method resulted in three distinct sets. These sets were cross referenced
with the MusicXMatch dataset to determine which songs contained both an
emotion label and bag of words features. From the intersection of the two
sets, 1000 songs for each sentiment were randomly selected.

The algorithms detailed in Chapter 3 were implemented in Python using
the sklearn toolkit1[22]. A python module was developed to handle sampling
and extracting features and class vectors, training classifiers and creating
the emotional histogram. These functions were built into a single module to
ensure that all the tests ran on the same code, thus avoiding any issues with
accuracy difference due to code conflicts. To streamline the training and test-
ing processes, 100 randomly selected audio segments were sampled for each
song. This allowed the test program to quickly identify where the prediction
for one song ended and the next one started without much overhead.

The module was then used to implement five different programs: series
fusion, partial ensemble, full ensemble, audio and lyrics unimodal. It was
important that each program could take user input to select which classifier
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is to be used for what portion of the algorithm. A script was written around
these programs to try all classifier combinations as described in Chapter 3.

It is important to mention that the audio unimodal benchmark showed that
Gaussian naive Bayes consistently provided better results than the multino-
mial naive Bayes, which allowed us to trim a subset of the combinations
used for the full ensemble tests by requiring audio initial classification to be
done with a Gaussian naive Bayes classifier. As a result, we ran six different
unimodal benchmarks, nine different configurations for full ensemble tests,
eighteen different partial ensemble tests and two series fusions, for a total of
thirty-five different runs.

Each run consisted of training the algorithm four times with different sized
training sets to understand the associated learning curves. The training sets
were comprised of 20, 50, 100 and 500 sample songs for each class. After
training the algorithm, it was tested against a set of 300 different songs which
was also comprised of an equal number of songs for each class. Each run was
repeated thirty times to have many data points for each configuration, to be
able to compare performances more accurately. The confusion matrices were
recorded for further analysis.

1The histogram intersection kernel code was obtained from kuantkid’s branch of the
open source scikit-learn project.
https://github.com/kuantkid/scikit-learn/commit/16c82d8f2fe763df7bfee9bbcc40016fb84affcf
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5

RESULTS

This Chapter will present the results of the experiments detailed in Chapter
4 while providing some insight into what differentiates the fusion algorithms
from the unimodal benchmarks. To do so, two different metrics are used
to compare the algorithms. Average accuracy is the standard method for
comparing classification algorithms. Since one of the goals of this paper is
to improve the reliability of the overall system in diverse datasets, it is not
beneficial to have near perfect accuracy for one class and sub-random choice
for another. This gap is smoothed out while comparing average accuracies,
which is why the algorithms are also compared using intra-class standard
deviation. The intra-class standard deviation is computed by taking the
standard deviation of all class accuracies.

Table 5.1 contains a summary of the accuracies of all the configurations
trained with 500 samples for each class. Each row represents an experiment,
and it is summarized with the average of all the class accuracies, the stan-
dard deviation of the averages and the intra-class stand deviation mentioned
above. The naming convention used to describe each algorithm is as follows:

{Method AudioClassifier - LyricClassifier - MultimodalClassifier}

Where ‘Method’ can be a unimodal configuration (Audio or Lyrics) or a
multimodal configuration ( ‘Full Ensemble’, ‘Audio Partial’, ‘Lyric Partial’
or ‘Series’). AudioClassifier is an element from the set A, LyricClassifier is
an element from the set L, and MultimodalClassifier is an element from the
setM.
It is interesting to notice some trends in Table 5.1. First note that the

average accuracy for fusion algorithms tends to be slightly higher than the
accuracy for the unimodal benchmarks at the top of the table. This is fur-
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Table 5.1: Accuracy Measured in Average Accuracy and Intra-Class StdDev
Using 500 Samples per Class

Average StdDev Intra-Class
StdDev

Average
Rank

Intra-Class
Rank

1 Audio Gaus 53.5600 2.67 24.469 25 24
2 Audio Multi 54.0900 4.11 23.176 24 23
3 Audio SVM 35.0800 6.94 28.028 35 28
4
5 Lyrics Gaus 49.0400 3.13 27.875 26 26
6 Lyrics Multi 56.7100 3.13 16.295 19 19
7 Lyrics SVM 62.300 3.05 8.636 9 6
8
9 Full Gaus-Gaus-Gaus 54.3800 3.47 24.761 23 25
10 Full Gaus-Gaus-Multi 58.0700 2.82 13.418 15 14
11 Full Gaus-Gaus-SVM 57.3300 4.32 13.033 17 12
12 Full Gaus-Multi-Gaus 60.4700 2.92 11.147 10 9
13 Full Gaus-Multi-Multi 57.3300 2.51 13.343 18 13
14 Full Gaus-Multi-SVM 58.7200 2.57 9.840 14 8
15 Full Gaus-SVM-Gaus 63.3900 2.17 6.82 7 1
16 Full Gaus-SVM-Multi 58.8800 2.91 12.935 13 11
17 Full Gaus-SVM-SVM 63.8800 2.77 6.981 4 2
18
19 Partial Audio Gaus-Gaus 48.1100 2.71 29.645 30 34
20 Partial Audio Gaus-Multi 63.7700 2.04 14.356 5 15
21 Partial Audio Gaus-SVM 68.46 2.86 8.09 1 5
22 Partial Audio Multi-Gaus 48.1200 2.94 29.591 29 32
23 Partial Audio Multi-Multi 59.9200 4.22 17.635 12 22
24 Partial Audio Multi-SVM 66.7700 3.93 11.983 2 10
25 Partial Audio SVM-Gaus 48.8800 3.00 28.497 28 30
26 Partial Audio SVM-Multi 60.2400 2.73 16.562 11 20
27 Partial Audio SVM-SVM 65.1700 2.73 9.661 3 7
28
29 Partial Lyric Gaus-Gaus 49.0200 2.70 28.391 27 29
30 Partial Lyric Gaus-Multi 48.0200 2.70 28.011 31 27
31 Partial Lyric Gaus-SVM 38.2800 9.54 31.087 33 35
32 Partial Lyric Multi-Gaus 57.9600 3.04 14.915 16 17
33 Partial Lyric Multi-Multi 56.6200 2.39 14.743 20 16
34 Partial Lyric Multi-SVM 56.4600 3.86 17.249 22 21
35 Partial Lyric SVM-Gaus 62.8600 2.09 7.830 8 3
36 Partial Lyric SVM-Multi 63.600 2.74 7.888 6 4
37 Partial Lyric SVM-SVM 35.9800 7.69 29.197 34 31
38
39 Series Gaus 47.800 2.78 29.643 32 33
40 Series Multi 56.5100 2.46 15.273 21 18
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Figure 5.1: Average Accuracy for Top Algorithms at 500 Samples per Class.
The left side contains the accuracies for the unimodal classifiers. The right side
contains the accuracies for the top multimodal classifiers for each configuration.

ther explored by looking at the standard deviation of these accuracies; the
benchmarks tend to have a higher intra-class standard deviation than the fu-
sion experiments. Algorithms with a low intra-class standard deviation and
a high average accuracy perform the best.

Figure 5.1 contains a representation of all the benchmarks and the top two
algorithms for each configuration. One can quickly see that series methods
do not perform very well. Looking at the other fusion methods, it becomes
apparent that doing an initial classification of either raw audio or the raw
bag of words before fusing the data had drastic benefits. The best unimodal
method is the Lyrics SVM classifier shown in row 7 in Table 5.1. Even
though it was the best unimodal classifier, it still ranked 9th in accuracy. All
algorithms with better ranking are multimodal methods.

Figure 5.1 shows the performance of the top classifiers and the top bench-
marks using 500 training sample per class. It provides a good understanding
of what configurations are most effective. Figure 5.2 contains the learning
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Figure 5.2: Learning Curves for Top Unimodal and Multimodal Classifiers.
Plain lines represent unimodal classifiers. While the lines with circles represent
the multimodal classifiers.

curve of some of the top classifiers for both unimodal and multimodal. Some
of the unimodal classifier perform better at smaller datasets. However once
the dataset reaches 500 samples per class, all the multimodal classifiers sur-
pass the unimodal ones. Figure 5.2 also suggests that the training sizes used
are not enough to overfit the data since the slope for most of the curves is
increasing for all the points displayed. This behavior indicates that a larger
dataset should provide better accuracies for many of these algorithms.

Better Reliability

Both the average and the intra-class variance serve as a good indication of the
reliability of the system. A multi-class classification algorithm could possibly
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have strong average recognition accuracy as a result of performing really well
for one class but poorly for the others. A high average and a high intra-class
variance is highly indicative of this case. However, a high average paired
with a low intra-class variance indicates that the classifier is both reliable
and accurate.

Table 5.2 shows the average confusion matrices for the top two fusion
algorithms and the top three benchmarks. The columns represent the true
label "H", "S", "A" for the classes happy, sad and angry. The rows represent
the algorithm’s prediction "h", "s", "a" for happy, sad and angry.

Table 5.2 is very informative in terms of what classes are harder to recog-
nize. Clearly, happy songs pose a greater challenge than angry songs. This
makes sense because angry words tend to only be present in angry music. For
example words like "wrath" or "rage" are more indicative of emotion than
words like "sunny" or "cheer". The same occurs with the sad classification,
but to a lesser extent.

Consider how the accuracy for angry songs remains relatively constant
throughout all the experiments, but the accuracy for happy songs plummets
in Table 5.2.d and Table 5.2.e. Table 5.2.e shows that the audio-only Gaus-
sian classifier incorrectly selects the angry classification for 56.77% of happy
songs and for 39.03% of sad songs. This behavior is evidence that the angry
class is getting over-classified, since a disproportionate number of songs re-
ceive that classification. Similarly Table 5.2.d assigns happy songs to one of
the three classes with almost equal probability, which suggests the classifier
cannot identify this class as well as others.

These issues are at play in the case of unimodal classifiers, which would
be undesirable for real world applications. As seen in Table 5.2.a and Figure
5.2.b, multimodal classifiers can identify happy songs more accurately with-
out any noticeable loss in angry classification. Both Table 5.2.a and Figure
5.2.b also have a higher accuracy than the best unimodal classifier shown in
Table 5.2.c. Additionally these classifiers do not select a particular class with
random chance like Table 5.2.d, nor in a disproportionate manner like Table
5.2.e.
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(a) Audio Partial Gaussian-SVM

H S A
h 58.93% 15.60 % 16.97%
s 19.93% 73.07 % 9.67%
a 21.13% 11.33 % 73.37%

(b) Audio Partial Mutimodal-SVM

H S A
h 58.70% 19.00 % 17.80%
s 18.70% 67.10 % 7.70%
a 22.60% 13.90 % 74.50

(c) Lyrics SVM

H S A
h 52.83% 19.77 % 17.27%
s 23.13% 63.93 % 12.60%
a 24.03% 16.30 % 70.13%

(d) Lyrics Multinomial

H S A
h 36.93% 13.37 % 7.87%
s 32.23% 59.27 % 18.20%
a 30.83% 27.37 % 73.93

(e) Audio Gaussian

H S A
h 24.23% 7.80 % 7.53%
s 19.00% 53.17 % 9.20%
a 56.77% 39.03 % 83.27

Table 5.2: Confusion Matrices for Top Fusion and Top Benchmarks. Sub-tables
(a) and (b) show that top fusion classifiers are more accurate and reliable than
the top unimodal classifier in sub-table (b). Sub-tables (d) and (e) show the most
prominent issues found in unimodal classifiers. The column ’H’ in sub-tables (d)
shows that the classifier is making random choices to classify the happy class.
The row ’a’ in table (e) shows that the classifier is over-classifying songs as angry.
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6

CONCLUSION

Through the experiments and results presented in this research, we have
reached the conclusion that multimodal classifiers improve both the accu-
racy and the robustness of the sentiment classification. We determined that
some sentiments are harder to identify. It was also demonstrated that the
recognition of these challenging sentiments can be improved greatly through
multimodal classification without having a significant impact on the accuracy
of other classes.

Although many configurations were introduced, the most promising were
the ‘Lyric Partial Ensemble’ and the ‘Audio Partial Ensemble’. These two
groups dominated the ranks of the top ten in both accuracy and intra-class
standard deviation. Based on the comparison metrics, ‘Audio Partial En-
semble’ architecture with an initial Gaussian classifier followed by an SVM
with histogram intersection as a kernel is the strongest classifier explored.
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7

FUTURE WORK

We explored the benefits of combining classification methods in different con-
figurations. The features used for the paper underlined the added benefit of
multimodal classification. Possible future work includes using more complex
features that take into account sentence semantics to capture word modifiers.
Another possible route for improvement on this paper would be to extend
the number of classes used to all six Ekman emotions.
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