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ABSTRACT

Auctions of licenses for electromagnetic spectrum conducted by the Federal

Communications Commission (FCC) often involve the simultaneous sale of

hundreds of licenses for wireless bandwidth in different geographic regions

and in different spectral bands. The auctions can involve hundreds of bid-

ding rounds over several weeks. A nontrivial open problem is to design an

auction format that allows bidder flexibility, maximizes social welfare, and

withstands legal scrutiny. We consider a recently introduced promising auc-

tion format called core projection auctions. It is based on a projection of a

Vickrey price vector onto the core. The auction consists of two processes:

winner determination process and payment determination process. The auc-

tion aims to make it easy for bidders to determine their bids by giving them

little strategic advantage by having their bids deviate from their true valua-

tion of the spectrum. This thesis explores properties of such a core projection

mechanism with an emphasis on numerically analyzing the marginal incen-

tive for bidders to bid untruthfully. By implementing solvers and running

simulations, we conjecture that in general, the payment for a winner increases

no faster than the corresponding bidding price.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Combinatorial Auction

Bidders in an auction might have a desire for a bundle of items instead of

a single item. For instance, customers usually buy complementary goods at

the same time, such as toothbrush and toothpaste. In the case of a gov-

ernment radio spectral auction, companies tend to buy the licenses for the

same bandwidth in neighboring areas to make the most use of the licenses. A

combinatorial auction gives bidders freedom to bid for bundles of items. Mo-

tivated by the auctions of licenses for electromagnetic spectrum conducted

by the Federal Communications Commission (FCC), we consider a combina-

torial auction (also called ‘package auction’) mechanism: the core projection

auction.

In a general combinatorial auction, bidders submit bidding prices for ar-

bitrary bundles of items and then a core projection auction mechanism is

applied to determine a winner set by maximizing the sum of bidding prices

of winners subject to avoiding any overlapping of the bundles of the winners.

The winner determination process is as complex as the weighted set-packing

problem and thus is NP-hard [1]. However, dynamic programming is enough

to solve such a problem of small scale. Once we determine the winner sets,

the question of payment determination naturally rises. Combining core pro-

jection auction as an appropriate generalization of a second-price auction

and a Vickrey auction mechanism, we will consider quadratic core projection

payment rules for the payment determination process.

This thesis explores key features of this specific mechanism and focuses on a

numerical analysis of the marginal incentive for bidders to bid untruthfully.
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The principle application we have in mind is government sale of the radio fre-

quency spectrum. Recently, core projection auctions have been proposed for

dynamically allocating heterogeneous virtual machines in cloud computing

[2].

1.2 Why Core-selecting Auctions?

Though a first-price auction is more intuitive and familiar, a second-price

auction has its unique advantages compared with a first-price auction. The

well-known facts about a second-price auction of a single item are as follows

[3]:

1. Individual rationality: each bidder has a nonnegative payoff. In other

words, losers do not pay and winners will not pay more than their

bidding prices.

2. Efficiency: the highest-valued coalition wins.

3. Dominant strategy incentive compatibility: the best strategy for each

bidder is to give a truthful bid.

4. The core property: there is no blocking feasible coalition. Namely,

there is no feasible set of the bidders that can beat the winning set.

For combinatorial auctions, it is well known that a Vickrey auction satisfies

the first three properties but does not necessarily satisfy the core property.

The core projection mechanism treats properties 1, 2 and 4 as constraints and

aims to minimize the deviation from property 3. This mechanism generates

prices as a natural generalization of the second price for a single-item auction.

The payment rules minimize the incentives for bidders as a whole to bid

untruthfully. It is shown in [4] that for a bidder interacting with disjoint

groups of other bidders in a star network setting, the price paid by a winner

increases no faster than the bidding price. In the mathematical world, it

simply means that the derivative of a winner’s payment with respect to the

winner’s bidding price is not greater than 1. Inspired by the result in a

star network setting and numerical simulation tests, we conjecture that the

conclusion holds in general.
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1.3 Overview of Thesis Organization

In Chapter 2, we define the core projection auction based on projection

of a Vickrey price vector onto the core. Initially, we assume that bidders

have only one single bid competing for one bundle (i.e. they are single-

minded) in the default setting, but we will also consider the case in which

bidders can have multiple bids. We also present modifications required for

the case of multiple bids per bidder instead of one single bid per bidder.

In Chapter 3, simulation results and interesting examples are given to help

readers better understand the core projection mechanism. In Chapter 4,

we will give general propositions about the core projection mechanism and

corresponding mathematical proofs. Finally, a summary of the thesis and

possible future work are given in Chapter 5.
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CHAPTER 2

THE CORE PROJECTION AUCTION

We will first describe the core projection auction mechanism for the case of

single-minded bidders - for which each bidder submits only one bid. Bids are

submitted through some process. One option is sealed bids, in which all bids

are submitted simultaneously in sealed envelopes. However, in a government

spectral auction, bids are typically submitted in a process entailing multiple

rounds of bidding. Our work does not focus on how the bids are collected.

Rather, we assume that the bids have somehow been collected.

2.1 Winner Determination for Single-minded Bidder

Consider a combinatorial auction with n bidders indexed by N and m single

items indexed by M . Bidder i will give the bid (i, Si, bi), such that bi is the

bidding price for a bundle of items Si, with Si ⊆ M . In this mechanism,

we assume that every bidder is single-minded and thus only has one single

bid. When all the bids are submitted, the first question would be how to

determine the winner set.

A coalition C is simply a subset of N . A coalition is said to be feasible

if Si∩Sj = ∅ for all i, j ∈ C and i 6= j. Let C denote the set of all the feasible

coalitions. Let W denote the winner set, and thus W is a feasible coalition.

To determine the winner set, we just maximize the sum of bidding prices of

the winners subject to avoiding selling any single item to different winners:

W = argmax
C∈C

∑
i∈C

bi (2.1)

I implemented a solver using a version of dynamic programming for the

winner determination process in Python and pseudo code is presented in
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Algorithm 1.

Algorithm 1 Pseudo code for winner determination process using dynamic
programming

INPUT: Bids in the format of (i, Si, bi) with 1 ≤ i ≤ n
OUTPUT: Winner set W
function conflict(i, j)

if Si ∩ Sj = ∅ then
conflict(i, j) = 0

else
conflict(i, j) = 1

end if
return conflict

end function

Initialize b(C) =

{
−1 if C 6= ∅
0 if C = ∅

for i ∈ {1, 2, 3, ..., n} do
for coalition C ⊂ {1, 2, ..., i− 1} do

if ∀k ∈ C, conflict(k, i) = 0 then
b(C ∪ {i}) = b(C) + bi

end if
end for

end for
W = argmax

C
b(C)

2.2 Payment Determination for Single-minded Bidder

After we determine the winner set, we need to figure out how much each

winner should pay for items. As mentioned in Section 1.1, we will employ

quadratic core projection payment rules that minimize the deviation from the

Vickrey price vector. We will show readers how to define the minimization

problem step by step.

2.2.1 Vickrey price

First, we will introduce the definition of Vickrey price. The Vickrey price for

winner j is simply the least bidding price for winner j to still win the auction

in the winner determination process for other bidders’ bidding prices fixed.
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Let v denote the Vickrey price vector for the winner set W , then the Vickrey

price for Winner j is given by

vj =

{
max

C∈C:j /∈C

∑
i∈C

bi

}
−
∑
i∈W/j

bi (2.2)

2.2.2 Generate the core

Let p denote a vector of payment prices for bidder set N and pi be the

payment for Bidder i. If Bidder i is not a winner, then pi = 0. Otherwise,

Bidder i should not pay more than his/her bidding price. Thus, the prices

satisfy the following constraints:

pi

≤ bi if i ∈ W

= 0 else
(2.3)

In addition, payments for winners should beat any other feasible coalition C

in terms of their bidding prices, indicated as follows:∑
i∈W

pi ≥
∑

i∈C\W

bi +
∑

i∈C∩W

pi (2.4)

If we arrange the terms in Equation (2.4), we can cancel some terms and get

a new equation: ∑
i∈W\C

pi ≥
∑

i∈C\W

bi (2.5)

If we put Equation (2.3) and Equation (2.5) in matrix form, we get the

following complete core formulation.

p ≤ b

Ap ≥ β

Each row of A corresponds to a feasible coalition C. For each feasible

coalition C, we have

AC,i =

1 if i ∈ W\C

0 else
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βC =
∑

i∈C\W

bi

2.2.3 Projection of Vickrey price onto the core

Finally, quadratic payment rules require minimizing the Euclidean distance

between the payment vector p and the Vickrey price vector v. In other words,

we will project the Vickrey price vector onto the core, and the projection will

result in the final payment vector.

p = argmin
x
||x− v||2 subject to x ≤ b, Ax ≥ β (2.6)

I implemented a solver for payment determination process using the method

of multipliers described in [5] in Python and pseudo code is provided in

Algorithm 2.

Algorithm 2 Pseudo code for payment determination process using the
method of multipliers

INPUT: b,v, A, β . Check Equation (2.6)
OUTPUT: payment vector p

Initialize c0, µ0, ε, α and judge
Define f(x) = ||x− v||2, g(x) =

[
b− x β − Ax

]ᵀ
x0 = argmin

x
Lc0(x, µ

0) = f(x) + 1
2c0

r∑
j=1

{(max{0, µ0
j + c0gj(x)})2 − (µ0

j)
2}

while judge > ε do
ck+1 = ckα
µk+1 = max{0, µkj + ckgj(x

k)}

Lck+1(x, µk+1) = f(x)+ 1
2ck+1

r∑
j=1

{(max{0, µk+1
j +ck+1gj(x)})2−(µk+1

j )2}

xk+1 = argmin
x

Lck+1(x, µk+1)

judge = ||xk+1 − xk||2
k ← k + 1

end while
p = xk+1

return p
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2.3 Modifications for Multiple Bids per Bidder

Multiple bids per bidder are typically allowed in an auction. Still, a bidder is

allowed at most one winning bid by convention in order for bidders to com-

municate their preferences accurately. Specifically, every possible preference

that bidders can declare when multiple winning bids are allowed can also be

expressed if we only allow at most one winning bid per bidder. For instance,

assume that there are three items indexed by {A,B,C} in one auction. Sup-

pose a bidder wants to get either a bundle {A,B} or a single item {C}, but

does not want to purchase all three items at the same time. In the context

of one winning bid per bidder, the bidder just needs to give these two bids

respectively in order to express his/her preference. However, it would be im-

possible to express the bidder’s preference if multiple winning bids per bidder

are allowed. If the bidder later changes his/her preference and is happy to

buy all three items, all he/she needs to do is to add one more bid bidding

for the bundle {A,B,C}.

If one bidder can have multiple bids, then we have to make some modifi-

cations to the case of single-minded bidders discussed before in order for the

core projection mechanism to work.

2.3.1 Winner Determination

For the winner determination process, we add one bidder-specific dummy

good to all the bids of each bidder to guarantee that a bidder will not have

more than one winning bid. Other than this small modification, the winner

determination process is the same as in the previous setting of bidders being

single-minded.

2.3.2 Vickrey Price

While determining the Vickrey price of a given bidder, we should exclude

other bids from that bidder. Otherwise, bidders would need to coordinate

their bids to affect their possible payments, which requires strategy and is

not desired in the auction. To be more specific, they would have an incen-

tive to make their bids less than true values because they would basically be
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bidding against themselves.

Let us declare notations before we go any further. Let Cm denote a set

of bids and Cm be the set of all sets of bids satisfying the following con-

straints: each set Cm in Cm has at most one bid from each bidder and is

feasible, meaning that no two bids in Cm compete for any same item. Let

Bi denote the set of bids of Bidder i and Si be the winning bid’s bundle for

Bidder i. If Bidder i is not a winner, then Si = ∅. Let bi(S) represent the

bidding price for bundle S. Then

vi =

 max
Cm∈Cm,Cm∩Bi=∅

∑
(j,Sj ,bj)∈Cm

bj(Sj)

− ∑
(j,Sj ,bj)∈W :j 6=i

bj(Sj)

2.3.3 Generate the Core

In order to determine payments for winners, we project the Vickrey price vec-

tor onto the core. To generate the core, we specify two types of constraints:

1. All payments should be less than or equal to corresponding bids.

2. There should be no blocking coalition with proposed alternate bids

and payments. This is the same as Equation (2.4), but for each bidder

in Cm, a choice of bid must be specified and losing bids of a winner

should be modified. A winner would not sacrifice his/her own profit

in any other coalition, which means the winner’s payment in any other

coalition should, at least, earn the winner a profit as much as the

winner is awarded in the winning set. Otherwise, the new set that

involves any losing bid of winners will not be taken as a reasonable

blocking coalition. Let Si be a losing bid’s bundle for Bidder i, then

for each Bidder i who has a winning bid’s bundle Si, and for each non-

winning bid’s bundle Si of Bidder i, we should reduce the non-winning

bid’s bidding price from bi(Si) to bi(Si)− (bi(Si)− pi).

If we express the two constraints above in mathematical expressions, the first

constraint should be as follows:

pi ≤ bi(Si) for (i, Si, bi) ∈ W
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Then we define b′i(S) for Bidder i as follows:

b′i(S) =

bi(S)− (bi(Si)− pi) if Si 6= ∅

bi(S) else
(2.7)

Then we just follow the same rules as we do for the case of single-minded

bidders. The mathematical expression satisfying the second constraint is in

the following form:

∑
(i,Si,bi)∈W

pi ≥
∑

(i,Si,bi)∈Cm

b′i(Si) ∀ Cm ∈ Cm

Then we can express these constraints in matrix form and apply the quadratic

payment rules again. In such a way we determine the winner set and corre-

sponding payments by applying appropriate modifications.

10



CHAPTER 3

EXAMPLES AND SIMULATION RESULTS

3.1 An Example with Single-minded Bidders

In order to help readers better understand how the core projection mechanism

works, we walk through a simple example by determining the winners and

their corresponding payments. Consider an auction with five bidders indexed

by N = {1, 2, 3, 4, 5} bidding for items indexed by M = {A,B,C}. Bidder

1, Bidder 2 and Bidder 3 respectively submit the bids ({A}, $8), ({B}, $10),

({C}, $15). Bidder 4 is willing to pay $15 for bundle {A,B} and Bidder 5

gives a bidding price $21 for bundle {B,C}. Table 3.1 and Figure 3.1 are an

illustration of the bids for the auction.

Table 3.1: A simple example with single-minded bidders

Bidder 1 2 3 4 5
Bundle A B C A, B B, C

Bidding price $8 $10 $15 $15 $21

Figure 3.1: A simple example with single-minded bidders

3.1.1 Winner Determination

We can easily see that Bidder 1 and Bidder 2 beat Bidder 4 and Bidder 2 and

Bidder 3 together beat Bidder 5. As a result, the feasible coalition {1, 2, 3}
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beats any other feasible coalition. So winners are Bidder 1, Bidder 2 and

Bidder 3, and thus W = {1, 2, 3}.

3.1.2 Payment Determination

Following the procedures, we will first determine the Vickrey prices for Bidder

1, Bidder 2 and Bidder 3. To determine the Vickrey price v2 for Bidder 2,

we just need to make sure that v2 would satisfy the following conditions:

v2 + b1 ≥ b4 (3.1)

v2 + b3 ≥ b5 (3.2)

Then

v2 = max{b4 − b1, b5 − b3} (3.3)

Finally, we get v1 = 5, v2 = 7, v3 = 11 and thus v =
[
5 7 11

]ᵀ
.

Second, we generate the core in order to do the projection. Basically, we

have two constraints.

1. Bidders should not pay more than their bidding prices.

p ≤ b where b =
[
8 10 15

]ᵀ
2. There is no blocking coalition.

p1 + p2 + p3 ≥ p3 + b4 = p3 + 15

p1 + p2 + p3 ≥ p1 + b5 = p1 + 21

If we write these two equations in matrix form, we get

Ap ≥ β where A =

[
1 1 0

0 1 1

]
and β =

[
15

21

]

Finally, we project the Vickrey price vector v onto the core above by mini-

mizing the Euclidean distance between the payment vector p and the Vickrey
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price vector v as follows:

p = argmin
x
||x− v||2 subject to x ≤ b, Ax ≥ β (3.4)

Solving the minimization problem, we get p =
[
6 9 12

]ᵀ
.

3.2 An Example in the Case of Multiple Bids per

Bidder

The example in Section 3.1 is modified to illustrate how core projection

works when multiple bids per bidder are allowed. Consider an auction

with five bidders indexed by N = {1, 2, 3, 4, 5} bidding for items indexed

by M = {A,B,C}. Bidder 1 submits two bids ({A}, $8) and ({B}, $9). Bid-

der 2 submits two bids ({A}, $7) and ({B}, $10). Bidder 3 submits two bids

({C}, $15) and ({B,C}, $24). Bidder 4 submits one single bid ({A,B}, $15)

and bidder 5 submits only one bid ({B,C}, $21). These bids are displayed

in Table 3.2.

Table 3.2: An example for multiple bids per bidder

Bidder 1 1 2 2 3 3 4 5
Bundle A B A B C B, C A, B B, C

Bidding price $8 $9 $7 $10 $15 $24 $15 $21

3.2.1 Winner Determination

We add one bidder-specific dummy good to each bidder’s bids in order to

avoid more than one winning bid per bidder. After the addition, Bidder 1

has two bids ({1, A}, $8) and ({1, B}, $9). Bidder 2 has two bids ({2, A}, $7)

and ({2, B}, $10). Bidder 3 has two bids ({3, C}, $15) and ({3, B, C}, $24).

Bidder 4 has one single bid ({4, A,B}, $15) and Bidder 5 has only one bid

({5, B, C}, $21). Then we can just proceed as we do in the case of single-

minder bidders and winner sets are {1, 2, 3} and their corresponding bids are

({1, A}, $8), ({2, B}, $10) and ({3, C}, $15).
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3.2.2 Payment Determination

First, let us figure out the Vickrey prices for the winners. To determine

Bidder 1’s Vickrey price, we should exclude Bidder 1’s losing bids. Thus

v1 + 10 + 15 ≥ 24 + 7

v1 + 10 + 15 ≥ 15 + 15

v1 + 10 + 15 ≥ 21 + 7

Similarly, we get v1 = 6, v2 = 9, v3 = 11 and thus v =
[
6 9 11

]ᵀ
.

Second, we generate the core by listing two constraints.

1. Bidders should not pay more than their bidding prices.

p ≤ b where b =
[
8 10 15

]ᵀ
2. There is no blocking coalition. However, we will update all the bids

by Equation (2.7) first and then use the new bids while considering

potential blocking coalitions. Finally, we get

p1 + p2 + p3 ≥ p1 + (24− (15− p3))

p1 + p2 + p3 ≥ p1 + 21

p1 + p2 + p3 ≥ (7− (10− p2)) + (9− (8− p1)) + p3

p1 + p2 + p3 ≥ (7− (10− p2)) + (24− (15− p3))

p1 + p2 + p3 ≥ (7− (10− p2)) + 21

p1 + p2 + p3 ≥ p3 + 15

14



If we write these two equations in matrix form, we get

Ap ≥ β where A =



0 1 0

0 1 1

0 0 0

1 0 0

1 0 1

1 1 0


and β =



9

21

−2

6

18

15


Finally, we project the Vickrey price vector v onto the core above by mini-

mizing the Euclidean distance between the payment vector p and the Vickrey

price vector v as follows:

p = argmin
x
||x− v||2 subject to x ≤ b, Ax ≥ β

Solving the minimization problem, we get p =
[
19
3

28
3

35
3

]ᵀ
.

Compared with the example for single-minded bidders, the modified example

only adds three losing bids respectively submitted by Bidder1, Bidder 2 and

Bidder 3. However, it turns out that both the Vickrey price vector and the

payment vector change.

3.3 Simulations for Auctions with Single-minded

Bidders

We first give definitions for three types of network topologies: chain networks,

star networks, and circle networks. Assume we have n bidders indexed by N

and m single items indexed by M . Bidder i will give the bid (i, Si, bi) such

that bi is the bidding price for a bundle of items Si, with Si ⊆M .

3.3.1 Chain Network

Single-item bidders are those who only bid for one single item rather than a

bundle of items and those bids are called single-item bids. In a chain network,

imagine the items lined up in alphabetic order. Apart from single-item bids,
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each bundle is a consecutive set of two or more items and each item is in

either one or two bundles and no bundle contains another one. Figure 3.2

presents a typical structure of a chain network.

Figure 3.2: Chain network

3.3.2 Star Network

For a star network, all the bids include one specific item except for some

single-item bids. Figure 3.3 gives a typical example of star network.

Figure 3.3: Star network

3.3.3 Circle Network

A circle network is similar to a chain network, but its items are arranged

around a circle with the first item neighboring the last one. Again, each

bundle is a consecutive set of items and each item is in two bundles except

for those single-item bids that are subsets of some multiple-item bundles.

No multiple-item bundle contains another multiple-item bundle. A typical

example is as in Figure 3.4.
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Figure 3.4: Circle network

For the simulations’ setting, we intend to investigate how winners’ payments

change if one of the winners changes his/her bidding price. Importantly, we

focus on the incentive to deviate from truthful bidding for winners. More

specifically, we use the marginal incentive to deviate (MID) inspired by [6]

to measure how a winner’s payment changes per unit increase of the bidder’s

own bid, for the bids of other bidders fixed. The MID for a winning Bidder

i for a particular bid vector is the rate of increase in payment of Bidder i

as the bidding price of Bidder i increases. In these different networks, we

take different examples and the settings are indicated in the following tables.

Accordingly, results are shown in the form of figures as below. For each

plot, the x-axis corresponds to one winner’s bidding price while the y-axis

corresponds to winners’ payments.
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Table 3.3: Chain network

Bidder 1 2 3 4 5 6 7
Bundle A B C D A, B B, C C, D

Bidding price $5 $7-$12 $6 $7 $12 $13 $12

Figure 3.5: Chain network
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Table 3.4: Star network

Bidder 1 2 3 4 5 6 7
Bundle A B C D E A, B A, C

Bidding price $5-$10 $8 $4 $9 $7 $13 $9

Bidder 8 9 10 11 12 13 14
Bundle A, D A, E A B C D E

Bidding price $14 $10 $3 $5 $3 $6 $5

Figure 3.6: Star network
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Table 3.5: Circle network

Bidder 1 2 3 4 5 6 7 8 9 10
Bundle A B C D E F G H A,B,C C,D,E

Bidding price $3-$6 $7 $6 $8 $9 $4 $10 $6 $16 $22

Bidder 11 12 13 14 15 16 17 18 19 20
Bundle E,F,G A,G,H A B C D E F G H

Bidding price $20 $15 $3 $6 $5 $4 $5 $2 $6 $5

Figure 3.7: Circle network

The simulation results match our expectations and coincide with the con-

jecture about MID. One interesting fact that we notice in the simulation

experiments is non-monotonicity of MID. MID of bidder 1 in the star net-

work simulation is an example but not obvious from the figure. The following

example is more obvious and direct. In Figure 3.8, it is clear to see that the

slope of the payment of Bidder 1 (red line) is not monotone.
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Table 3.6: Non-monotonicity of MID

Bidder 1 2 3 4 5 6 7
Bundle A B C A B C A, B, C

Bidding price $5 - $11 $9 $4 $4 $3 $2 $17

Figure 3.8: Non-monotonicity of MID
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CHAPTER 4

GENERAL PROPOSITIONS

This chapter shows some properties of the core projection auction mechanism

and presents some mathematical proofs under the assumption that bidders

are single-minded.

Proposition 4.0.1. If one winner bids more, some other winner can either

pay more or less.

Proof. It suffices to give an example to prove the statement as follows. Bidder

1 bid only for item A, Bidder 2 bids for item B, and Bidder 3 bids for item

C. Bidder 4 bids for a combination of items A and B while bidder 5 bids

for item B and C. In this setting, winners are Bidder 1, 2 and 3. Figure 4.1

gives a Venn digram for the specific bids. Assume Bidder 1 bids more and

thus winners set does not change. However, the payments for Bidder 2 and

Bidder 3 would change.

Figure 4.1: Venn diagram for the example

The original bidding price vector for bidders is b =
[
6 10 15 15 21

]ᵀ
.

Thus the corresponding payment vector is p =
[
16
3

29
3

34
3

]ᵀ
. (Note: only

winners have to pay.) After bidder 1 increases its bidding price from $6 to

$8, the new bidding price vector is b′ =
[
8 10 15 15 21

]ᵀ
. Thus the

corresponding payment vector changes into p′ =
[
6 9 12

]ᵀ
. In this case,

the payment for Bidder 2 decreases from 29
3

to 9 and the payment for Bidder
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3 increases from 34
3

to 12. In conclusion, Bidder 2 pays less and Bidder 3

pays more if Bidder 1 bids more in this case.

Proposition 4.0.2. The payment price for any winner is never less than the

Vickrey price for that winner.

Proof. According to the definition of the Vickrey price of a given winner, it

is the minimum price of the bidder that still wins the auction in the winner

determination process for other bidders’ bidding prices fixed. For winner j,

vj =

{
max

C∈C:j /∈C

∑
i∈C

bi

}
−
∑
i∈W/j

bi

To determine the payment, we solve a quadratic minimization problem:

p = argmin
x
||x− v||2 subject to x ≤ b, Ax ≥ β

Case 1: If v ∈ core, then p∗ = v;

Case 2: If v /∈ core, let p∗ =
[
p1 p2 · · · pn

]ᵀ
and assume that p1 < v1

without loss of generality. Then we can show that ∃ p′ ∈ core such that

||p′ − v||2 < ||p∗ − v||2 as follows. Let p′1 = max {p1, v1} and p′j = pj for

j 6= 1, then ||p′ − v||2 ≤ ||p∗ − v||2 with equality only when p1 = v1. Since

p∗ ∈ core by definition and core is upward closed, we know that p′ ∈ core as

well. Then it illustrates p∗ is not the optimal solution in this case and it is

impossible to have pi < vi.

All in all, the payments of winners can never be smaller than the correspond-

ing Vickrey prices in any case.

Proposition 4.0.3. If one winner bids more, other winners’ Vickrey prices

can only decrease or stay the same.

Proof. Assume winner k raises the bidding price from bk to b′k = bk+δ. First

of all, winner set W does not change at all. Before winner k increases his/her

bidding price, by the definition of the Vickrey price for winner j, we have

vj =

{
max

C∈C:j /∈C

∑
i∈C

bi

}
−
∑
i∈W/j

bi

23



After winner k raises the bidding price, we have

vj = max


{

max
C∈C:j /∈C,k∈C

∑
i∈C

bi

}
+ δ −

∑
i∈W/j

bi + δ

 ,

{
max

C∈C:j,k/∈C

∑
i∈C

bi

}
−

∑
i∈W/j

bi + δ


So

dvj
dbi

= {0,−1}

Plots of vj versus bi look like either Figure 4.2 or Figure 4.3.

Figure 4.2: Case 1:
dvj
dbi

Figure 4.3: Case 2:
dvj
dbi
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Theorem 4.0.4. Let

S = {x : Ax ≤ β} ⊂ Rn

v(t) = a + bt

x(t) = ΠS(v(t))

For any x ∈ S, let C(x) = set of constraints that {i :
∑
j

aijxij = βj} ⊂ [m].

Suppose x1 = ΠS(v1),x2 = ΠS(v2) and C(x1) = C(x2), then for 0 ≤ λ ≤ 1,

ΠS(vλ) = xλ where vλ = (1− λ)v1 + λv2 and xλ = (1− λ)x1 + λx2

Note that dimensions are as follows: A : m× n;x,v, a,b : n× 1; β : m× 1.

Proof. According to KKT conditions for the optimization problem defining

ΠS(v) = x, there exists a vector of Lagrange Multipliers µ such that

µ ≥ 0, µ ∈ Rm (4.1)

µT (Ax− β) = 0 (4.2)

Ax− β ≤ 0 (4.3)

x = v − ATµ (4.4)

Starting with the KKT conditions for v1 and v2, we show that the KKT

conditions for vλ are satisfied. It’s easy to verify Equation (4.1), Equation

(4.3) and Equation (4.4) by taking µλ = (1−λ)µ1+λµ2. Since we assume that

C(x1) = C(x2) and xλ = (1− λ)x1 + λx2, we have C(xλ) = C(x1) = C(x2).

As µλ is a linear combination of µ1 and µ2, we know that µλ ≥ 0 holds as

well. For i /∈ C(xλ) = C(x1) = C(x2), we have µ1(i) = µ2(i) = 0. Thus for

i /∈ C(xλ) = C(x1) = C(x2), it is true that µλ(i) = 0. In such a way we veirfy

the complementary slackness for µλ and thus Equation (4.2) is verified. In

summary, the KKT conditions for vλ are satisfied and thus ΠS(vλ) = xλ.

Lemma 4.0.5. In general, one winner’s bidding price and the corresponding

payment price are piecewise linear in change for other bidders’ bidding prices

fixed.
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Proof. Theorem 4.0.4 obviously implies that a single winner’s payment is

piecewise linear in his/her own bidding price for other bidders’ bidding prices

fixed. A geometric explanation is as follows. We can divide the constraint

set into different parts where either the payment is linear to the bidding price

or payments will be fixed however the bidding price changes between those

linear regions. Thus in a nutshell, one winner’s payment is in piecewise linear

in the bidding price for other bids fixed.
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CHAPTER 5

CONCLUSION

By investigating the simulation results, we believe that the following conjec-

tures are true in general.

1. MID ≤ 1

2. If one winner’s Vickrey price decreases due to an increase in another

bidder’s bidding price, that winner’s payment will decrease as well.

3. In general, all the winners’ payments and one winner’s bidding price

are piecewise linear in change for other winners’ bidding prices fixed.

For future work, one possible direction is to make the most of the connec-

tions between bidding prices, Vickrey prices, and payments. Otherwise, in

the process of turning the payment determination problem into a quadratic

minimization problem, we lose key information concerning the connection.

Another possible way is to extend the star network to a general network by

doing mathematical inductions. Since all of the propositions that we have

in Chapter 4 are based on the assumption that bidders are single-minded,

we can consider those propositions for the case where bidders are allowed to

bid for a bundle of items. In addition, we can introduce the core projection

mechanism into areas of other resource allocation problems.
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