
 
 

    

  

VISUALIZATION OF CONSISTENCY IN A 
DISTRIBUTED KEY-VALUE STORE 

 

By 

David Lauschke 

Senior Thesis in Computer Engineering 

University of Illinois at Urbana-Champaign 

Advisor: Professor Nitin Vaidya 

May 2015 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 
 

Abstract 

A wide variety of consistency models are available to designers of key-value storage systems, such as 

Apache’s Cassandra or Amazon’s Dynamo. Each consistency model has been extensively analyzed for 

advantages and disadvantages as they relate to a system’s availability and consistency properties. Our 

purpose is to create a modular visualization tool, described herein as the visualization authority (VA), 

supported by unique and customizable communication handlers. We have created a prototype of this 

tool for the purpose of easily comparing and contrasting consistency models available to a key-value 

store system such that its designers and administrators can fine-tune the trade-offs between availability 

and consistency to fit their specific needs. 

 

Subject Keywords: Distributed computing, Distributed databases, Availability, Consistency, Visualization 

  



iii 
 

Acknowledgments 

I would like to thank Professor Vaidya and Lewis Tseng for providing me both support and resources as 

we completed our work. 

  



iv 
 

Contents 
 

1. Introduction .............................................................................................................................................. 1 

2. Literature Review ...................................................................................................................................... 2 

2.1 Distributed Systems Review ............................................................................................................ 2 

2.2 Example Implementations of Distributed Systems ......................................................................... 2 

2.3 Security Considerations .................................................................................................................. 5 

2.4 Visualization Related Works ......................................................................................................... 10 

3. Description of Research Results .............................................................................................................. 12 

3.1 Initial Design Thoughts ...................................................................................................................... 12 

3.2 Python-Based Visualization Authority .............................................................................................. 13 

3.2.1 Design and Planning ................................................................................................................... 13 

3.2.2 Current State of Implementation ............................................................................................... 15 

3.2.3 Concluding Thoughts on Python Implementations ................................................................... 17 

3.3 D3-Powered Visualization Authority ................................................................................................. 17 

3.3.1 Design and Planning ................................................................................................................... 17 

3.3.2 Line Series Current State ............................................................................................................ 19 

3.3.3 Node Layout Visualization .......................................................................................................... 21 

4. Conclusion ............................................................................................................................................... 28 

4.1 Future Work ...................................................................................................................................... 28 

References .................................................................................................................................................. 29 

Appendix A: Example Logs .......................................................................................................................... 30 



1 
 

1. Introduction 
In designing and constructing new distributed systems, there are many trade-offs to consider between 

system performance, availability of data, and data consistency guarantees. When we began our research 

for this thesis, we first reviewed some of the fundamental aspects of distributed systems and a few 

popular implementations that perform in-depth analysis on the trade-offs listed above. Initially, our 

work focused more on the security considerations of a distributed peer-to-peer social network, so we 

then refined our literature review to the security considerations of such a system, specifically pertaining 

to request routing, data validity, and unknowingly or purposefully faulty nodes. As our work continued, 

the subject became more focused on the prospect of visualizing consistency in the core element of the 

peer-to-peer social network, the distributed key-store system. Many system operators use theoretical 

statistics as well as network analysis to observe their system’s behavior. However, there are not many 

visual tools to assist in real-time human analysis of how a network’s data evolves over time. So, we 

began creating a visualization scheme for consistency in the system. 

In this thesis, we will first discuss the literature that we reviewed during our work. Next, we will discuss 

the main objectives of the visualization authority (VA) and its communication handlers. We will also 

demonstrate the current state of the work. Finally, we will discuss future work to be carried out by 

current and future members of Professor Vaidya’s research team.  



2 
 

2. Literature Review 
As the focus of this thesis has changed throughout the literature review, we analyze the contents of 

each related work with a few frames of reference – one directed towards the security considerations of 

the distributed peer-to-peer social network, and another towards the visualization of consistency in the 

distributed key-store. To keep the review thorough, included are both frames of reference. 

2.1 Distributed Systems Review 
We first revisited the basics of different consistency schemes with the help of Doug Terry of the 

Microsoft Research team in Silicon Valley. In his paper [1], he uses the game of baseball to describe 

different consistency needs of various users in a distributed system. The research team was able to gain 

a better understanding of the trade-offs when deciding between an existing simple service such as a 

key-value store across Windows Azure, Amazon’s Simple Storage Service, Google’s App Engine or 

Yahoo’s PNUTS. Terry deemed consistency models weaker than eventual consistency as being “less-

than-useful.” Thus, offering stronger consistency usually comes at the sacrifice of high-performance and 

availability. His work underscores the benefit to be gained from an intermediate consistency scheme. 

Terry’s examples seemed to implore developers to understand the consequences of relaxed consistency. 

I realized it was incorrect to assume that eventual consistency was as strong as his consistent prefix 

schema, but this is flawed as with eventual consistency a user can receive an out-of-order sequence of 

writes. As this thesis turned more towards visualization, his statement of “less-than-useful” consistency 

models became more of a hypothesis to prove or disprove. 

2.2 Example Implementations of Distributed Systems 
The first detailed review of an implementation of a key-value store was the study of Amazon’s Dynamo 

by DeCandia et al. [2]. Dynamo was originally created because of the Amazon services that had very high 

reliability requirements and required extreme customization of trade-offs between consistency, 

availability, cost, and performance. Amazon’s platform has strict latency requirements for its services, 

measured at the 99.9th percentile of the distribution. With these tight bounds on their service level 

agreements, Dynamo was a necessity for service developers. In contrast to some of its related peers, 

Dynamo does not consider hostile or untrusted environments. Dynamo was designed to appeal to 

applications that require only key-value access with a high uptime, where not even network partitions 

and server failures can delay reads and writes. 

Dynamo has only two main operations - get() and put(), both of which deal with contexts; and the 

system uses this context to verify the validity of the object supplied to put() requests. Dynamo instance 



3 
 

managers can customize their deployment of Dynamo by specifying values for N (the number of replicas 

it creates for each data item), R (the number of nodes that must participate in a successful read 

operation), and W (the number of nodes that must participate in a successful write operation). Consider 

a traditional quorum system which stores key, k, in nodes A, B, and C. Suppose that A is temporarily 

down during a write with W = 3. Whereas the traditional quorum will fail to write to k, Dynamo will not 

fail. Instead, Dynamo uses the concept of hinted-handoffs, wherein the write meant for A is handed off 

to node D, who stores the write with metadata hinting that the write for A in a local database that is 

periodically scanned. As soon as A recovers, the write is sent to A and D deletes it’s local replica, 

ensuring that the number of replicas never falls below N. 

Through extensive testing, DeCandia et al. have been able to verify their claims as well as their strict 

performance standards - keeping 99.9th percentile latencies below 300 milliseconds for Read and 

Writes, with averages below 20 milliseconds [2]. By monitoring the load distribution, Amazon has 

discovered the most efficient load balancing technique and key partitioning strategy such that they 

could maximize their load efficiency. Over the past two years, many internal Amazon services have used 

Dynamo, receiving successful responses (without timing out) 99.9995% of the time, without any data 

loss. 

While this entire case study on such a reliable system was insightful, there were a few key aspects 

applicable to this work. Dynamo is an “always writeable” data store, which would be appealing in the 

peer-to-peer distributed social network as it would be ideal to allow users to always be able to create 

content on the network and have that content eventually be committed to the storage system. 

However, Dynamo assumes that all nodes in its network are trustworthy, which could not be assumed in 

the social network implementation. In order to meet its latency requirements, Dynamo cannot route 

requests through nodes, and accordingly is characterized as a “zero-hop” DHT: one in which every node 

contains enough routing information to route a request directly to the proper node and replicas. While 

this would be interesting for the performance of the social network, it is not maintainable as the system 

scales due to the amount of routing data that nodes would need to store within their systems. 

Stoica et al. [3] describe Chord as a scalable lookup protocol for distributed peer-to-peer systems with 

high churn rates (the rate at which nodes enter and leave the system). While this is not actually a key-

value store protocol, it accomplishes a large part of that process - given a key, Chord returns a mapping 

onto a member node. The most interesting part about Chord is that unlike much of its related work that 

uses consistent hashing to balance the load of keys across nodes, a node only needs to know routing 



4 
 

information about O(log N) other nodes. Other protocols need to know information about every other 

node in the system, which gets unrealistic when scaled. Chord also resolves lookups in O(log N) 

messages to other nodes, using efficient routing. 

An immediate and direct application of Chord to the peer-to-peer social network Stoica et al. [3] outline 

is its “Time-shared storage” application. It describes Chord as being advantageous when a system has 

intermittently connected nodes that wish to have their data always available. An implementation could 

have a user offer to store others’ data while they are connected, in return for others to store theirs 

while they are disconnected from the service. Also worth noting is the efficient routing scheme, which 

utilizes a finger table at each node to reduce the number of jumps a lookup has to make. Where this 

system is incompatible with the social network implementation, however, is in its assumptions of “high 

probability” concerning its consistent hashing protocol. This phrase is invalidated outside of a benign 

environment. Whenever a random hash has been chosen to select the distribution of the keys across 

nodes, an adversary party could generate a large amount of keys according to the hash function and 

only insert into the system those which correspond to a small amount of nodes in order to put the 

system into an imbalance. Also, nodes who generate a fake outlook of the Chord ring could render some 

data unavailable by never correctly sending the request to the designated node. A possible detection 

scheme for this problem would be to randomly poll ring nodes for a key, and if a node returns a 

different value, then the system could identify some problem with the ring. 

Gladenning et al. [4] elaborate on an alternative to Chord named Scatter. Scatter is a scalable and 

linearizable distributed key-value storage system. Their interest in creating a system like Scatter stems 

from this work’s exact interest - building a “planetary scale” peer-to-peer social network. The 

implementation of the distributed hash table over sets of groups of nodes arranged in a ring was an 

intriguing extension of other related work. The technique of “nested consensus,” in which groups 

execute distributed transactions (such as group splits, merges, migrations of nodes, or repartitions of 

groups) through a two-phase commit scheme, by first replicating the commit internally through the 

Paxos distributed consensus algorithm is an interesting group management strategy. After the 

coordinator (initiating) group receives commits/aborts from each participant group leader, the 

coordinator broadcasts the result of the action, and if it was committed, each participant group 

executes the steps of the transaction. Locks on commits of this type are implemented on the relations of 

the groups - so if adjacent groups are attempting a commit with their opposing groups, these processes 

can simultaneously complete.  



5 
 

Gladenning et al. [4] found that “if average node lifetimes are as short as three minutes…, Scatter is able 

to maintain overall consistency and data availability, serving its read in an average of 1.3 seconds in a 

typical wide area setting.” This seemed like a very applicable aspect of the protocol to the social 

network scheme. The group aspect within the distributed hash table also appeared to be a sound idea 

for having two tiers of operation validation. They describe the node joining protocol, named “latency-

join optimization,” which optimizes new node placement by having the node send no-operation 

commands to k randomly selected groups, estimating the performance of operating in the group. The 

node then selects the group which had the lowest latency to join. The node-join scheme also allows the 

administrator to do a similar check on how many requests the random groups have processed recently. 

Groups essentially perform all of their own organizing techniques in coordination with neighbor groups 

to properly and dynamically adjust the ring. While their work covers Scatter as a system resistant to 

non-malicious network issues, such as churn of member devices, varying computational capabilities of 

nodes, and unreliable network behavior, such attacks like distributed denial of service attacks or 

Byzantine faults are not covered. Their work also raises the question of how different visualization 

schemes may be applied to the visualization authority in order to maximize the operator’s 

understanding of the state of the system. Whereas some systems may rely more heavily on a linear 

series visualization (to be discussed in Chapter 3), a system like this where a quorum must be satisfied 

might find the node layout visualization more useful. 

2.3 Security Considerations 
In this section, we deeply analyze the security vulnerabilities outlined in related works. In most studies, 

the author proposes an attack strategy, and describes mitigation techniques to defend against the 

proposed attacks.  

Wallach [5] surveys some of the standard vulnerabilities to be considered in modern distributed 

systems. These security issues that occur in routing protocols as well as file (data) sharing applications, 

and how incentives, cryptography, and random probing can be used to combat these problems. He 

considers protocols which can be subject to one or more malicious nodes acting alone or as a coalition 

to pull more than a usual amount of data from the system, sniff for traffic in usually censored paths, 

prevent users from accessing data, return false data, or any number of other unknown and wide-ranging 

goals. He describes a situation involving a routing model based on Pastry, which is like Chord described 

earlier by Stoica et al. [3] (nodes arranged in a ring with routing decided by neighbor information 

residing in each node). In Wallach’s scenario, each node is assigned a nodeId which acts to partition the 



6 
 

network into N responsible nodes. In the set of nodes, the fraction of nodes that may be faulty is bound 

by f (0 ≤ f < 1). He models faults using a constrained-collusion Byzantine failure model, that is, multiple 

but not all faulty nodes can be acting in concert. His system assumes that each node has a static IP 

address at which it can be addressed (this excludes dynamically assigned IP addresses, but models can 

be extended to account for this). Nodes in his system communicate over Internet connections, 

communicating directly through network-level communication that is assumed to be encrypted 

between benign nodes. However, malicious parties have control over what is sent on the network-level 

to and from the nodes it controls. This is a common description of adversaries that will be referred to 

later in this section. 

Wallach declares that secure routing guarantees two things: that replicas of data are initially placed on 

legitimate replica roots and that a lookup message reaches a replica if one exists. In the context of the 

model that this paper describes, secure routing requires solving three problems: securely assigning 

nodeIds to nodes, securely maintaining the routing tables, and securely forwarding messages. The 

simplest design to secure nodeId assignment is centralizing the nodeId authority, but as this opens up 

the possibility of single points of failure, this thesis considers a decentralized solution. The problem with 

decentralization lies in the possibility that an attacker can rejoin the network until it has somehow 

gained an advantage over the nodeId assignment scheme. Even if secure nodeId assignment is 

established and malicious parties could only control fN nodes, there is still a probability of f that a 

legitimate node routes a request through a malicious node which therefore could not reach its proper 

replica. Wallach describes a relatively high probability solution to prevent locality-based attacks where a 

malicious party would route requests near a controlled node to get more entries in that node’s routing 

table. Constrained routing sends messages to replicas through all of the neighbors of the source node. 

Since the nodeIds are random, this should be a geographically diverse set of nodes, and if those nodes 

all route the message towards its replica, the probability of the message reaching its replica is increased 

to 99.9%, as long as f ≤ 30%. 

Wallach goes on to discuss creating mechanisms that actively reduce the proportion of malicious nodes. 

Every peer-to-peer system must be able to recover a failed node, but this process should be evocable 

when nodes are identified as running maliciously. He suggests a system should have a way that a benign 

node can accuse another of malicious acts. It should also be possible, if the node is innocent, that it can 

prove its authenticity or, if the node is malicious, the other nodes can be convinced to eject the faulty 



7 
 

node. He identifies the main issue with devising such a scheme is differentiating normal Internet fabric 

behavior (dropped packets, etc.) from maliciously ignored messages. 

Wallach continued to outline the concept of “fair sharing” for each instance of his system to maintain - 

both in terms of data storage and bandwidth. This work’s peer-to-peer social network would want to 

ensure that one node, because of allowances it would have to make on the various computational ability 

of client systems, is neither lying that its storage is full when it has free space, nor is ignoring requests it 

has promised to hold. Wallach proposes offering storage incentives as an interesting solution to this 

problem: require a node to store some amount of data before the rest of the system will store that 

amount for said node. An alternative is the idea of data quotas to guarantee correct sharing of system 

resources. Wallach’s random quota auditing scheme is a distributed audit policy that each node has to 

participate in, in which responsible nodes randomly request data checks to verify that replica nodes are 

correctly storing their data. 

Sit and Morris [6] look at the security of distributed hash tables when their algorithms are executed 

incorrectly; more specifically in the presence of misbehaving nodes. This introductory paragraph gives 

one of the more realistic and applicable descriptions of an unsecured distributed system: 

Peer-to-peer systems present an interesting security problem as there is no central 

system to protect. Instead, the nodes must work together to ensure correct and secure 

behavior. Unfortunately, deployment on an open network, such as the Internet, implies 

that there will be malicious nodes in the system. These nodes will try and disrupt the 

system or subvert it to their advantage. Peer-to-peer systems must be designed to 

operate correctly even in these situations. 

Sit and Morris begin by outlining a general distributed hash table protocol. Routing in this protocol is 

finding the shortest defined distance between a node and a key and the closest node is classified as the 

responsible node. By constructing a system of invariants in this protocol as well as the storage system 

layered on top of it, Sit and Morris describe how innocent nodes can use the framework to identify 

malicious behavior and broadcast an error in protocol throughout the system in order to fix it. 

Next, Sit and Morris model their adversary in terms of its abilities inside their system, helping to form 

more concrete definitions of the possibilities of attacks and defenses. They stress that detection is the 

first line of defense, but after that detection happens, they emphasize the need for a careful course of 



8 
 

action. Verifying they are only removing malicious and not benign nodes is the main tone of their 

detection scheme.  

Sit and Morris then go on to describe various attack schemes, including incorrect routing routines and 

updates, partitions, inconsistent behavior, and denial of service. Again, they stress the need verifiability 

in the protocols a system uses to assign keys to nodes, to update routing tables in the distributed hash 

table, to add nodes to the system, to distribute data across replica nodes, and to rebalance the system 

upon node entrances and exits. One verification scheme they propose is the addition of randomness to 

audit node behavior, similar to Wallach’s random quota auditing scheme [5 pp. 52-53]. 

Sit and Morris provided many different attack scenarios for this thesis to consider, as well as strategies 

for preventing these attacks and resolving them. In approaching the security of the peer-to-peer social 

network, the adversary must be solidly modeled such that its behavior in the system can be realistically 

bound. By building out attack plans and making protocols to detect, prevent, and correct those attacks, 

the network can actively counter its adversaries. 

In the last paper this work reviews on the topic of security, Castro et al. [7] delve deeper into the 

specifics of securing the routing protocol of a system. They examine the issues associated to open peer-

to-peer systems without pre-existing trust relationships, because many modern algorithms fail with a 

small fraction of malicious nodes. They describe and evaluate techniques to ensure secure routing 

similarly to other authors: secure assignment of node identifiers, secure routing table updates, and 

secure message forwarding. The techniques presented by Castro et al. are not all directly applicable the 

peer-to-peer social network of this work, but maintain secure routing in situations of 25% maliciously 

participating nodes. They consider structured overlays as a whole, but fully focus on a Pastry 

implementation. The overlay model that they describe at a high level is very similar to Wallach’s model 

[5], with nodes assigned nodeIds, responsible nodes declared “roots” of keys, routing tables maintained 

by each nodes, and replicas of keys assigned randomly across the nodeId space.  

After modeling the behavior of their adversary similar to that of Wallach [5], Castro et al. go on to define 

secure routing as a primitive that “ensures that when a non-faulty node sends a message to a key k, the 

message reaches all non-faulty members in the set of replica roots … with very high probability.” Once 

secure routing is achieved, they claim that by adding other existing security techniques such as self-

certifying data or a Byzantine fault tolerant algorithm the network can maintain a safely replicated state.  



9 
 

Castro et al. name an attack on their secure nodeId assignment protocol a “Sybil” attack, where an 

adversary builds a large amount of nodes such that they control an unfair proportion of the nodeId 

space. This thesis disregards their centralized solution to this attack, but considers their solution to 

increase the cost of such an attack by requiring computational resource consumption for a new assigned 

nodeId to slow down aggregation of nodeIds. By also setting an expiration date on nodeIds, they argue 

that an adversary would have a more difficult time building a coalition of rogue nodes. However, this 

would also put a tax on this work’s social network’s users, as they would also have to update their 

nodeIds. 

Castro et al. describe how attackers can utilize routing table maintenance messages to bias routing 

towards malicious nodes, increasing the probability that messages will get intercepted. In one attack 

scheme, they consider a node that can intercept probing messages to exploit proximity. However, they 

describe a defense through ensuring that nodes only receive communication directed toward their IP 

address. They claim that Chord has an advantage in routing schemes due to the constraints put on 

nodes’ routing table entries: entries need to be the closest nodeIds to some point in the id space. 

Therefore, they argue Chord’s disadvantage in exploiting proximity to improve performance is an 

advantage against adversaries attempting to exploit proximity to mount an attack. 

Regarding secure message forwarding, Castro et al. begin by defining the probability of a node failing on 

h hops as (1 - f)h-1, where f is the fraction of faulty nodes. Their solution to secure message forwarding is 

a failure test based on the replica concentration of the destination node during a query. After this 

relatively inexpensive failure test is performed, if the test returns an answer designating that the node 

was reached, the query is finished. If it does not, then an expensive redundant routing method is 

employed to attain a high probability of message delivery. They describe this method as the routing of 

messages via different neighbors and using nodeIds and random nonces to ensure that messages are 

correctly received. 

Lastly, Castro et al. revisit some of the additional security schemes to overlay on secure routing in order 

to ensure completely secure data delivery. Self-certifying data can be used to check that an efficient 

routing method has returned the correct result, and if the data does not check out upon delivery, the 

more expensive redundant routing method outlined above may be employed. Another situation 

employs a Byzantine-fault-tolerant replication algorithm for each replica group to ensure linearizability 

for reads and writes while only using the expensive routing technique if the algorithm does not come to 

an appropriate consensus. 



10 
 

2.4 Visualization Related Works 
This thesis explores some of the modern difficulties in measuring consistency and the strategies 

associated with determining consistency in a distributed system. As much of the visualization work was 

centered on the implementation and prototyping of the visualization authority, the research and 

reading was mostly focused to the technical documents associated with the tools utilized to complete 

the prototype. However, this work reviews some concepts dealing with the measurement of the 

weakness of a consistency model. 

As storage systems across modern distributed systems become more stressed with growing user bases, 

many developers have shied away from centralized databases to more available distributed databases. 

As we knew from our initial readings, this comes at a sacrifice to consistency. Golab et al. [8] analyze the 

argument that anomalies caused by relaxing consistency standards are tolerable given the appropriate 

safeguards paired with their relatively rarity. Services like Amazon’s Dynamo have shown, as we 

discovered, that this relaxation seems to be acceptable when implemented correctly. 

Golab et al. go on to describe strategies to observe and describe the behaviors of such relaxed 

consistency models. Here they define the terms fresh and stale data – stale data stemming from 

weakened consistency standards. Staleness in this case can be defined in two separate ways – as version 

staleness, in which a piece of data returned from a read is the kth oldest value; and as time staleness, 

where a piece of data returned is time t behind the most recent value. Thus from these two staleness 

concepts, we can work backward from the ACID-like linearizability, and move towards Lamport’s 

definition of atomicity. If a system is k-atomic where k = 1, then it is linearizable. This work measures 

this version staleness of weakened consistency with the visualization authority. 

Golab et al. [9] also created a more advanced model in which they define a new, client-centric 

measurement for consistency that they call Γ (Gamma). This metric was inspired by the Δ metric, which 

is another moniker for the aforementioned time staleness measure. This measurement is based off the 

Lamport definition of “happened-before” and “concurrent.” Given operations op and op’, op happened-

before op’ iff end(op) < start(op’). If neither op happened-before op’ nor op’ happened-before op, then 

the two operations are concurrent. Given a linearizability infringement, or that an operation produced a 

stale value, the Δ metric is defined as the difference between start(operation that returned the stale 

value) - end(operation that wrote the next freshest value), which we will denote Y. If we were to move 

the operation that returned the stale value Y time units in the past, the operations would be 

linearizable. 



11 
 

Golab et al. note that this does not take into account the possibility that the write operations were out 

of order due to clock-skew between the machines. This introduces a new possibility that instead of Y, 

the operations could be out of order such that shifting the end of the stale write forward past the start 

of the fresh write or, conversely, shifting the start of the fresh write backwards before the end of the 

stale write. We will denote this value X. They then go on to argue by Occam’s razor that any stale value 

that we encounter in consistency analysis is more likely due to that which moves the given operation 

least, or by the quantity Min(X, Y). If the minimum distance still yields a stale read, then the 

linearizability has been compromised. However, if the reorder happens, the authors deem the 

operations Γ-atomic. 

Through this research, it is evident that there are many ways to quantify the linearizability and 

consistency of models that take liberties to weaken the consistency of data in order to achieve greater 

availability. The remaining work was developing the visualization authority to understand more. 

  



12 
 

3. Description of Research Results 
Over this chapter, this thesis will discuss our workflow as it pertained to designing and constructing the 

visualization authority (VA) and a simple communication handler. Next, the two methods used to 

complete the prototype will be evaluated. Finally, the thesis will discuss future work that remains for 

Professor Vaidya’s research team. 

3.1 Initial Design Thoughts 
First and foremost the VA needed to be scalable and modular. As many distributed systems have 

massive amounts of clients or nodes, and each keeps tracks of millions of keys and values, this was 

extremely important. A minimal interface, something that was easy to understand so that the user could 

actually benefit from using the tool, was also a major concern. The visualization authority was to be 

implementation-independent with regard to the observed system. So, the VA was initially completely 

abstracted from the key-value store. The work in this thesis began by processing communication data 

from logs (dead analysis), and has left real-time communications (live analysis) for future work. 

The idea of a visualization authority was born from our research into the security considerations in a 

peer-to-peer distributed system. In order to guard against various attacks, some systems may 

implement a certification authority so that nodes that enter the system can be trusted to adhere to the 

system’s protocol. The drawback of a central authority in these cases is that it presents a single point of 

failure for the system; if the authority is offline – no new nodes can join the system. However, in the 

case of the VA, the single point of failure is acceptable since it is not pivotal to the function of the 

distributed key-store. 

In order to process the data that the VA would receive, we devised a communication protocol that the 

VA would expect to receive. Keeping the modular design in mind, the idea of communication handlers 

was developed. These handlers would be selected during configuration of the VA, and would be 

responsible for serving pieces of data to the VA, one piece at a time. A base handler class has been 

created that has an unimplemented function get_one that is to be overridden by child classes. These 

child classes should be written by the operator of the VA given her communication needs. This function 

would be designed to return the latest piece of data seen by the handler, whether that be the next in-

order TCP communication, a UDP packet, or a system log line. The VA would utilize the overridden 

function to receive in-order data for the system. 

Once the visualization authority receives this piece of data, the purpose is to display the state of the 



13 
 

system given this update. In the linear series example, this includes coloring “get” requests according to 

how fresh the data is, that is, determining the value of k if this is the kth value we have seen. A three-

color scheme was devised, such that the values denoted with k = 1 would be colored green, those with k 

= 2 yellow, and k >= 3 red.  

3.2 Python-Based Visualization Authority 
The initial project language was Python, because of my familiarity with the language. After searching for 

different graphics libraries, pygtk was selected. Pygtk is an easy-to-use, Python based graphics library. 

Over the beginning majority of this work, this design choice was tested and issues with this choice were 

discovered. 

3.2.1 Design and Planning 
The first VA implementation is the linear series development of a system. An example drawing the 

design was based upon is shown in Figure 1. 

 

Figure 1 Example of two processes reading and writing variables in a distributed key-store. [10] 

This VA has the frame of reference of an observer picking up client requests sent to storage nodes and 

the respective responses. This work continued by exploring pygtk and determining the data that would 

be necessary to draw a picture like Figure 1 in real time.  

Pygtk has an object called a DrawingArea that was deemed most appropriate for drawing lines and 

points similar to those pictured in Figure 1. The pygtk library contains many objects which are event-

oriented in that each has a set of events whose handlers can be bound to user-defined functions. An 

example of this functionality utilized in this work is the binding of the “area-expose” event, which is 

called every time the window is first displayed, to the function that drew the client names on the 

DrawingArea. 



14 
 

The pygtk coordinate system is setup such that (0, 0) is at the top left corner of the DrawingArea. The Y 

axis grows vertically downward while the X axis grows horizontally to the right. Each object drawn on 

the screen needs an (X, Y) coordinate, and that anchor becomes the top left corner of the given object. 

The area of those objects is then dictated by other properties such as height and width, or radius. Some 

objects, for example lines, need two sets, (X1, Y1) and (X2, Y2), in order to specify a beginning and 

ending point.  

Text writing in pygtk was another challenge. In order to write text to the DrawingArea, the VA must 

create a pangolayout object for the target DrawingArea. Each time text was to be written to the screen, 

the VA would set the text attribute of the pangolayout to the text to be written. Then, it would 

determine the height and width of the layout by calling the get_size() method provided by the 

pangolayout object. Dividing by the SCALE constant provided by the pygtk library, the VA could 

programmatically center the text at the (X, Y) point at which the text was to be drawn.  

With the knowledge of the methods to draw the objects to the screen, pseudo code was created to 

model the window update method. Figure 2 shows the process that we devised to correctly display the 

visualization. 

 

 

Considering the data necessary to make an accurate visual representation of the data given this process, 

a data structure to hold the state of the key space was created. The constructed hierarchy to manage 

the data associated with each key is displayed in Figure 3. 

1. Call get_one() to get next piece of data, validate data 
2. Calculate the difference between the last timestamp and current, draw difference to screen 
3. Identify the request as the initial request or the response to the request 

 Initial request: 
4.   Mark the process as currently in a request to change line weight 
5.   Start the request for the client, adding the appropriate data to the store 

 Response to the request: 
6.   Mark the process as no longer in a request to change line weight back 
7. End the request for the client, freeing unnecessary data and updating the  

 store to correctly reflect the most recent state of the keys 
8. Draw lines and points given the new classification of the clients 
9. Repeat from 1. until all data processed 

 
Figure 2 Pseudo code for update process 



15 
 

 

Figure 3 Hierarchy of key data to be used for visualization. "[value]" under "requests_outstanding" is optional depending 
upon whether the request is a "put" or "get." 

After some research on holding dictionaries of dictionaries like this in Python, and what alternatives 

there might be in order to efficiently use memory, the prototype simply employed the basic dictionary 

object, nested three times. Initially this seemed taxing on memory usage, but since each class in python 

is effectively implemented as a dictionary-like object itself, creating a custom class to hold the data is 

actually more inefficient. 

3.2.2 Current State of Implementation 
Figure 4 shows the current state of the code with a good example log file created for the purpose of 

testing the prototype. The GET(x) that returns x=t1 for client 2 is marked as yellow, given that the most 

recent value for x that the system has seen is “t2” rather than “t1.” All other GETs return the most 

recent data, and are therefore marked green. 

key 

requests_outstanding 

client_id 

request_type 

[value] 

current_state 

value 

timestamp 

previous_state 

value 

timestamp 



16 
 

 

Figure 4 Example of a log with an acceptable amount of fresh data 

Figure 5 shows an example of a log with a likely unacceptable amount of stale-ness in data responses. 

The GET(x) for client 1 returns the second-most-recent value of x, “t1,” rather than “t2,” as does the 

GET(x) for client 2. Client 5 then makes a GET(x) request after client 4 has updated x and received an 

acknowledgement again, but the response that client 5 receives is still the “t1” value, which is more 

than the second-most-recent value, and is therefore marked red. This also happens with the last request 

from client 0.  Clients 1 and 4 then make GET requests on y, which return old values of “t1” after client 0 

PUTs y=“t4”. 



17 
 

 

Figure 5 Example of a log with an unacceptable amount of stale data 

3.2.3 Concluding Thoughts on Python Implementations 
While pygtk was initially a promising candidate for a visualization tool, the interface is clunky and clearly 

built originally for the C programming language, which gave rise to some complications in Python. It is 

visible in the pictures that rewriting text created a blurring effect. Upon resizing the screen for more 

communication, all existing drawings are erased, leading to the requirement that all writing events be 

cached. This would not be manageable as the system scales. Whenever the VA was demonstrated to the 

ECE Undergraduate Symposium, the presenter had to constantly keep the mouse moving - otherwise 

the drawing would not update correctly. Considering all the difficulties in dealing with pygtk, another 

solution was devised. 

3.3 D3-Powered Visualization Authority 
The next graphics library the VA utilized was D3, or Data-Driven-Documents, a free JavaScript library 

whose purpose is focusing on data to drive visualization using HTML, SVG, and CSS. The primary 

language behind the design of this prototype would be JavaScript, with many elements of HTML and CSS 

as well. 

3.3.1 Design and Planning 
The initial design of the D3 line series VA was extremely similar to that of the pygtk line series VA. 



18 
 

However, this was a new graphics library to become familiar with. First, analysis on how the VA should 

draw items to the screen was performed. Tutorials [11-12] were utilized to help understand the 

different visualization tools made available by the library.  

The main starting point discovered was for the VA to create a scalable vector graphic (SVG) HTML 

element. The SVG is a graphic that allows the VA to append various common shapes with certain 

attributes such that it can size, color, align, transform, etc., the shapes as desired. One specific 

advantage over pygtk immediately identified was the ability to append a unique “id” or group “class” to 

each element, allowing the VA to easily select and modify or eliminate certain elements by caching only 

this value where necessary. 

One of the library’s greatest strengths is its ability to handle and process data, but as of yet the VA does 

not take advantage of this asset. From work thus far, it appears that D3 works well with static data, not 

data that is gradually processed as it is currently. With each new communication that the VA receives 

from its handler, it needs to assess which shapes to draw to the screen and where they should be 

drawn. This thesis has left a new exploitation of the data capabilities of D3 in the configuration of the VA 

for future work.  

The one change made to the data storage structure for the line series VA in this implementation was to 

add to the dictionary the x and y values of the end of the stale request point, as seen in Figure 6. 



19 
 

 

Figure 6 Revised data store 

As D3 is a JavaScript library, the VA was executed in the Chrome web browser. D3 supplies a few native 

data file parsers, including a comma-separated-value parser. This allows a great amount of flexibility in 

the communication handlers, as this is an easy format to comply too. For the specific “dead-analysis” 

prototype, logs may be hosted anywhere, as long as the Access-Control-Allow-Origin header is included 

in the HTTP response to the request for the log. D3 submits an XMLHttpRequest to the target that it is 

supplied, therefore unless the cross-origin-request policy of the browser rejects the request, the data 

will be delivered to the VA. This thesis has left the extension of this request functionality as future work 

with other modes of communicating with the VA. 

3.3.2 Line Series Current State 
In Figures 7 and 8 the current state of the line series implementation is shown, first with a good (k = 2) 

log example in Figure 7 and bad (k >= 3) log example in Figure 8, both similar to those in the Python 

implementation for direct comparison. 

key 

requests_outstanding 

client_id 

request_type 

[value] 

current_state 

value 

timestamp 

previous_state 

value 

timestamp 

p_x 

p_y 



20 
 

 

Figure 7 Example of a good Line Series log in the D3 implementation. 

 

Figure 8 Example of a bad Line Series log in the D3 implementation. 

The marked difference here is the addition of the back-trace functionality available with the 

modification of the data store design. Unlike the original pygtk implementation, it is clear where stale 

values are being sourced from. This thesis argues the graphics in general look much cleaner and 

centered, thanks to the advantages from simple but effective CSS attributes such as “text-align.” 

Another difference pictured in Figure 9 is the ability for the new implementation to dynamically add 

clients to the window as the communications from the system proceed. As the VA receives messages 

with new client names, it will automatically add additional space for them. 



21 
 

    

Figure 9 Illustration of the dynamic addition of new clients as communications develop. 

A more subtle difference in the two implementations is that due to the ability to select elements on the 

screen by identifiers or by groups, the VA can remove old and unnecessary data efficiently; freeing up 

memory to continue accepting communications. Also, none of the existing shapes get lost as a 

consequence of resizing the SVG element, unlike in pygtk. 

3.3.3 Node Layout Visualization 
Given the ability to effectively accomplish the goals of the line series visualization, the work to develop 

the node layout visualization authority that had been infeasible with pygtk began. The most notable 

difference between the two VAs is the change in perspective: the line series depicts the development of 

the data store as the clients push and retrieve data to the nodes. The node layout, however, depicts the 

progression of the data storage nodes themselves: how data propagates through the replicas 

responsible for a key, and how nodes discover new keys through read or write requests they receive and 

subsequently send to the responsible group. Since this is an entirely new visualization, this section is 

broken into two parts: one detailing the design steps considered, and the other detailing the current 

functionality of this visualization. 

3.3.3.1 Node Layout Design Considerations 
The initial vision of the node layout VA allowed the user to identify each node and the current state of 

the keys that node has seen versus the state of the keys in the system as a whole. After seeing the 

dynamic addition of clients work so well, dynamic client detection was also implemented with this VA. 

Continuing down this path, as not all the keys in a system would be known before they arrived to the VA 

in the communications, it must dynamically resize the key display as well. Considering these initial 

objectives, the data structures the node layout would require were determined. 

First, the VA would require another key state store similar to that in the line series VA, so this 



22 
 

implementation borrowed some of the same methods from the previous VA. Unlike the line series VA, 

there was no reason to keep track of requests beginning and ending. The VA also needed a similar 

additional store for each node to hold their current key dictionary, in order to determine the state of 

each nodes’ keys. The node layout also introduced the need for multiple constants to draw the “node 

boxes” – the containers for each nodes’ data – and the “key boxes” – the boxes to hold the key name 

and color for each key in each node. These constants include the width, height, and various paddings for 

the node name and spacing outside the key boxes. 

A design scheme for arranging our nodes and keys had to be determined, as well as the VA’s behavior as 

more were detected. The node layout VA implements an approach that attempts to keep the layout as 

square as possible; then preferring a wide view when not square. It then arranges the node boxes and 

key boxes to take up the maximum amount of space less the padding discussed in the previous 

paragraph. 

In order to make the dynamic addition work, the VA would need to erase and redraw nodes any time 

the blocks resized. By utilizing the unique and group identifiers, the VA was able to efficiently 

accomplish this task. Whenever a resizing is needed, the VA first calculates the new drawing constants 

given the new number of nodes/keys, then removes all affected blocks and those blocks according to 

the newly set constants.  

3.3.3.2 Node Layout Current State 
As the strength of this visualization lies primarily in the ability for the system to develop over time, in 

Figures 10-17 this thesis provides a storyboard of events in both good and bad log examples. 



23 
 

 

Figure 10 First stage of a good example log after a few messages have arrived. 

Figure 10 shows the makings of a good (k = 1) log. There are four nodes in the system, three of which 

have notified the visualization authority that they are storing keys (n0, n1, n3). Those nodes who are 

aware of keys have the most recently updated values.  

 

Figure 11 Second stage of a good example log 

In Figure 11, the second stage progresses with a few stale values (still k = 2) but nothing concerning yet. 

Notice that n3 has notified the authority of a few keys, and that a new node, n4 has joined the node 

pool. Also of note is the functionality of the resizing that happened in this stage, moving from a perfect 



24 
 

square of four member nodes to five. The visualization authority has resized both the node and key 

boxes accordingly. 

 

Figure 12 Third stage of a good example log 

Figure 12 shows the third node stage in which a k = 2 behavior is still observed. The VA has resized the 

key boxes to account for the new keys that the system has identified.  

 

Figure 13 Final stage of a good example log 



25 
 

In Figure 13 the final stage after communication has ended and the resting state of the node 

visualization is pictured. This situation can be categorized as k = 2. There are only two values in n3 and 

n0 which had not received the correct replicas for (or were not in charge of in the first place).  

 

Figure 14 Stage one of an example bad log 

A contrast to the good example log is given through Figures 14-17, the first stage of which is pictured in 

Figure 14. Here n0 has missed at least two key updates on k1, as well as one on k2. Immediately this can 

be recognized as a k >= 3 situation. 

 



26 
 

 

Figure 15 Second stage of an example bad log 

Figure 15 shows the second stage and more issues, as both n0 and n3 have missed at least two updates 

on two keys. 

 

Figure 16 Third stage of an example bad log 

Figure 16 depicts the third stage of the bad log example, in which n0 and n3 have still yet to be repaired. 

Both n2 and n4 both have stale values. 



27 
 

 

Figure 17 Final stage of an example bad log 

Figure 17 shows the steady state of the bad example. It is clear that n0 and n3 were never repaired, n2 

has multiple old values, and scattered nodes have stale values. Samples of both line series and node 

layout logs can be found in Appendix A. 

  



28 
 

4. Conclusion 
Throughout this work, we have evaluated existing problems in distributed systems, focusing at last on 

the visualization of data consistency in a specific subset of those systems. We have also explored 

modern data visualization tools and implemented them in practice to produce a modular prototype to 

be expanded upon by future researchers. 

4.1 Future Work 
As outlined before, one major strength of our chosen visualization library is data processing. Currently, 

the visualization authority is not leveraging that functionality, but work should be done to accommodate 

this in the future.  

The next step is to construct a communication handler to proceed the log stage, one which can actually 

visualize TCP/UDP communications in real time in our distributed system. The XMLHttpRequest tools 

seem to be the most promising path towards this goal. The handler should be set up to respond to these 

HTTP requests with appropriate header and the next piece of data. The difficulty in this task lies in 

ordering the data in the correct manner, such that the next piece of data returned is the most recent 

communication following that just processed.  

One further project would be to assimilate the alternative weakened-consistency measures outlined in 

the research on current consistency evaluation work. It may be more helpful to provide Δ or Γ metrics in 

order to provide a full evaluation of each different consistency measure when appropriate. 

The last large project identified thus far specifically concerns the line series visualization. Ideally, the VA 

should continue to receive data without running into memory or space constraints, so utilizing the class 

identifier method, the VA should implement a garbage-removal-like-scheme in which data too old to be 

pertinent is removed and other data is displayed instead.  

Past these projects, minor graphics improvements such as transitions between communications and 

dynamic text sizing could be beneficial to the end user of the visualization tool. 

  



29 
 

References 
[1] D. Terry, "Replicated data consistency explained through baseball," Commun. ACM, vol. 56, no. 12, 

pp. 82-89, 2013. 

[2] G. DeCandia et al., "Dynamo: Amazon's highly available key-value store," ACM SIGOPS Operating 
Syst. Rev., vol. 41, no. 6, 2007.  

[3] I. Stoica et al., "Chord: a scalable peer-to-peer lookup protocol for internet applications," IEEE/ACM 
Trans. Netw., vol. 11, pp. 17-32, Feb, 2013. 

[4] L. Gladenning et al., "Scalable consistency in Scatter," Proc. 23rd ACM Symp. on Operating Syst. 
Principles, ACM, 2011. 

[5] D. S. Wallach, "A survey of peer-to-peer security issues," Software Security—Theories and Syst., 
Springer Berlin Heidelberg, pp. 42-57, 2013. 

[6] E. Sit and R. Morris, "Security considerations for peer-to-peer distributed hash tables," Peer-to-Peer 
Syst., Springer Berlin Heidelberg, pp. 261-269, 2002.  

[7] M. Castro et al., "Secure routing for structured peer-to-peer overlay networks," ACM SIGOPS 
Operating Syst. Rev., vol. 36, pp. 299-314, 2007.  

[8] W. Golab et al., "Eventually consistent: not what you were expecting?" Commun. ACM, vol. 57, no. 
3, pp. 38-44, 2014.  

[9] W. Golab et al., "Client-centric benchmarking of eventual consistency for cloud storage systems," 
IEEE 34th Int. Conf. Distributed Comput. Syst., pp. 493-502, 2014.  

 [10] J. Welch, “Distributed shared memory,” class notes for CSCE 668, Dept. Comput. Sci. and Eng., 
Texas A & M Univ., 2015.  

 [11] L. Francl. (2011, August). “D3 for Mere Mortals” [Online]. Available: http://www.recursion.org/d3-
for-mere-mortals/ 

 [12] S. Murray. (2012, December, 30). “D3 – Scott Murray – alignedleft” [Online]. Available: 
http://alignedleft.com/tutorials/d3 

 

 

 

  

http://www.recursion.org/d3-for-mere-mortals/
http://www.recursion.org/d3-for-mere-mortals/
http://alignedleft.com/tutorials/d3


30 
 

Appendix A: Example Logs 
line_good_log.csv 

Client,Request,Key,Timestamp,Action,Value 
0,put,x,1,req,t1 
3,put,x,5,req,t2 
1,get,x,19,req, 
0,put,x,24,resp,t1 
1,get,x,39,resp,t1 
2,get,x,41,req, 
3,put,x,54,resp,t2 
2,get,x,56,resp,t1 
4,put,x,68,req,t3 
2,put,y,75,req,t1 
3,get,x,84,req, 
4,put,x,96,resp,t3 
2,put,y,109,resp,t1 
3,get,x,117,resp,t3 
0,get,y,132,req, 
0,get,y,159,resp,t1 
4,get,y,164,req, 
1,get,x,171,req, 
1,get,x,179,resp,t3 
4,get,y,184,resp,t1 
 

line_bad_log.csv: 

Client,Request,Key,Timestamp,Action,Value 
0,put,x,1,req,t1 
3,put,x,15,req,t2 
1,get,x,19,req, 
0,put,x,24,resp,t1 
3,put,x,39,resp,t2 
1,get,x,41,resp,t1 
4,put,x,54,req,t3 
2,get,x,56,req, 
2,get,x,68,resp,t1 
2,put,y,75,req,t1 
5,get,x,84,req, 
4,put,x,96,resp,t3 
2,put,y,109,resp,t1 
5,get,x,117,resp,t1 
0,put,y,132,req,t4 
0,put,y,159,resp,t4 
4,get,y,170,req, 
4,get,y,176,resp,t1 
1,get,y,184,req, 
0,get,x,190,req, 
1,get,y,197,resp,t1 
0,get,x,204,resp,t1 



31 
 

node_good_log.csv: 

Node,Key,Value 
0,k1,val1 
0,k2,val1 
1,k2,val1 
3,k1,val1 
3,k3,val2 
2,k1,val2 
0,k1,val2 
1,k2,val2 
4,k4,val1 
4,k5,val1 
3,k5,val1 
2,k4,val1 
2,k6,val1 
2,k7,val1 
1,k6,val1 
0,k6,val1 
3,k7,val1 
4,k7,val1 
 

node_good_log.csv: 

Node,Key,Value 
0,k1,val1 
0,k2,val2 
1,k2,val3 
3,k1,val3 
3,k3,val2 
2,k1,val2 
0,k1,val4 
1,k2,val4 
4,k4,val1 
4,k5,val1 
3,k5,val2 
2,k4,val2 
2,k6,val1 
2,k7,val1 
1,k6,val2 
0,k6,val3 
3,k7,val2 
4,k7,val3 
 


	1. Introduction
	2. Literature Review
	2.1 Distributed Systems Review
	2.2 Example Implementations of Distributed Systems
	2.3 Security Considerations
	2.4 Visualization Related Works

	3. Description of Research Results
	3.1 Initial Design Thoughts
	3.2 Python-Based Visualization Authority
	3.2.1 Design and Planning
	3.2.2 Current State of Implementation
	3.2.3 Concluding Thoughts on Python Implementations

	3.3 D3-Powered Visualization Authority
	3.3.1 Design and Planning
	3.3.2 Line Series Current State
	3.3.3 Node Layout Visualization
	3.3.3.1 Node Layout Design Considerations
	3.3.3.2 Node Layout Current State



	4. Conclusion
	4.1 Future Work

	References
	Appendix A: Example Logs

