
c© 2015 Zuguang Gao

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


THE PERIODIC BEHAVIOR OF A THRESHOLD MODEL ON
DIRECTED GRAPHS

BY

ZUGUANG GAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical Engineering

in the College of Engineering of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Tamer Başar



ABSTRACT

This thesis investigates a discrete-time deterministic binary threshold model

over a directed graph. At each time step, each agent updates the value it

holds to the value held by the majority of its incoming neighbors at the last

time step. It has been proved in the literature that if the underlying graph is

undirected, then for any initial condition, the solution of the threshold model

will enter into a periodic solution with the period being no larger than two.

Examples can be generated to show that in the cases when the underlying

graph is directed, even though the solution will still be periodic, the period

of the solution exhibits richer possibilities. This thesis computes the periods

of all possible periodic solutions of the model over a certain class of directed

graphs, including a single directed cycle and a composition of two directed

cycles. It is shown that in the case when the graph is a single directed cycle,

all possible periods are divisors of the size of the cycle (i.e., the number of

edges). It is also shown that in the case when the graph is a composition

of two directed cycles, all possible periods are common divisors of the sizes

of the two cycles. The analysis used in this thesis is generalizable to more

complex graphs.
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CHAPTER 1

INTRODUCTION

Coordination between agents and their neighbors is commonly seen in many

different types of networks. For example, in social networks, people benefit

from conformity to behaviors of their peers. In economic networks, firms

have higher productivity if they use technology standards that are widely

accepted in industry. With the rapid development of new technologies and

online services, such coordinations are becoming easier, and interactions are

becoming increasingly popular [1]. Such increasing coordination in a highly

connected world can lead to a cascading behavior [2]. As one set of decision

makers often influence the reactions of others [3], the decision of some agents

can be adopted by their neighbors and from these neighbors to the rest of the

network. The linear threshold model introduced by Granovetter in [4] is one

of the most commonly used models for analyzing such cascading behavior,

and the model is widely used to explain a variety of aggregate level behaviors,

such as dynamics of opinions, diffusion of innovations, propagation of rumors

and diseases, voting, spread of riots and strikes, etc.

For the discrete-time binary linear threshold model, we consider a network

where each agent only has access to the information of a subset of other

agents in the network, which we refer to as its neighbors. At the beginning,

a set of agents in the network try to initiate an action which might be a

demonstration. At each time step, each agent decides whether to engage in

the collective action or not based on his threshold and the fraction of his

neighbors who have joined the collective action at the last time step. The

agent engages in the collective action if and only if the fraction is above the

threshold.
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1.1 Literature Review

The topic studied in this thesis is related to a considerable body of work in

the literature on linear threshold models. The linear threshold model was

initially proposed in [4] and [5], and was later developed in [6–15]. In [10],

Morris studied the single-switch version and investigated whether there is

a finite set of initial adopters such that the behavior diffuses to the entire

network, and the result is applicable to the multi-switch version of the dy-

namics as well. In [12], a method is introduced to change the behavior of a

fixed number of agents so that the spread of the behavior in the network is

maximized. In [13], Watts studied conditions under which the behavior can

spread to a positive fraction of the network. In [14], Lelarge determined the

limits of behavior spreading in sparse and dense networks. In [15], a set of

new technologies for analyzing the failure probabilities of nodes in arbitrary

graphs were developed.

1.2 Contributions

As in [10], we assume that the thresholds of all agents in the network are

fixed and equal. For simplicity, we use the majority threshold. Previous

work [2] has investigated the period of the networks when the underlying

graphs are undirected, which in fact assumed that the interactions between

agents are always bidirectional. This assumption may well be justified in

some situations when all agents have access to information of all their neigh-

bors. However, it is restrictive in some other settings when agents have

biased information on their neighbors, i.e., they only have access to some of

their neighbors’ information. In such cases, the interaction between agents

will not be bidirectional. Accordingly in this thesis, we study the period of

the networks when the underlying graphs are directed. Using the majority

threshold model, we find that when the underlying graph is a cycle, the pe-

riod can only be a divisor of the number of agents and when the underlying

graph has two cycles, the period must be a common divisor of the sizes of

these two cycles. The techniques developed for these two specific groups of

directed graphs are expected to be useful for the analysis of directed graphs

consisting of a higher number of cycles.

2



1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we first provide

some useful definitions and a description of the model; then we list some

propositions on the characteristics of general directed graph in this model.

In Chapter 3, we describe and prove the nature of the period for a cycle.

In Chapter 4, we characterize the period for directed graphs which have two

cycles. We first analyze the special case when there is an equal number of

agents in both cycles. Then we analyze the case when the sizes of the two

cycles are different, where we adopt an equivalent one-cycle model to aid

the analysis. Chapter 5 concludes our work and provides some directions for

future research.
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CHAPTER 2

PROBLEM FORMULATION

2.1 Preliminaries

Following [16], we define a digraph to be an ordered pair G = (V,E) where

V is a finite set of nodes and E is a set of ordered pairs of distinct nodes.

Elements of E are called edges. If e = uv is an edge, we say e joins u to v;

we also say that u is adjacent to v and that v is adjacent from u. The set

of nodes adjacent from u is denoted by f(u) and the set of nodes adjacent

to u by f−1(u). We call |f−1(u)| the indegree din(u) and |f(u)| the outdegree

dout(u). The degree of u is din(u) + dout(u).

A semiwalk is a sequence of nodes and edges u0e0u1e1...en−1un such that for

each ei either ei = uiui+1 or ei = ui+1ui; a semiwalk is spanning if it contains

all the nodes of G, and closed if u0 = un. If all the nodes (and hence all the

edges) of a semiwalk are distinct, we have a semipath. A semiwalk for which

u0 = un but all other nodes are distinct is a semicycle. A walk from u0 to un

(a u0−un walk) is a semiwalk u0e0...en−1un in which, for each i, ei = uiui+1;

path and cycle are defined analogously. It is clear that any u0 − un walk

contains a u0 − un path. If G has a symmetric pair (uv) and W is a walk

containing either uv or vu we will say that W contains (uv).

2.2 The Model

Given a digraph G = (V,E), each node vi in V chooses its value ai from the

set {B,W}, where B and W are the only two choices a node can make, and

each node must choose one of them as its value at each time step. At time

step t + 1, each node vi updates its value based on the choices of f−1(vi) at

time step t. The rule, which is applied to all nodes in G, is summarized as
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follows:

Value Updates Rule: If at time step t, more than half of the elements in

f−1(vi) have B as their values, vi will choose B at t + 1. In other cases, vi

will choose W at t+ 1.

We define the set a(t) to be the collection of values of the nodes in V at

time t. The union of all possible a is defined as A. A system is defined by the

underlying digraph and the value updates rule. We further define a periodic

solution to the system to be a sequence a(t), a(t + 1), ... where ∃ p ∈ Z+

such that a(t) = a(t + p). We say a(t) is in a periodic solution if ∃ p such

that a(t) = a(t + p). By convention, we let p be the least positive integer

for a(t) = a(t+ p) to hold, then p is the period of this periodic solution. We

also say a
′
(t) and a

′′
(t) are in the same periodic solution if ∃ k ≥ 0 such that

a
′′
(t) = a

′
(t+ k).

Proposition 1. If at time t1, a(t1) is in a periodic solution of period p, then

for each t > t1, a(t) is in the same periodic solution of period p.

Proof. For any t > t1, suppose t−t1 = to. Based on the definition of periodic

solution, we know that a(t1) = a(t1 + p). We now prove that a(t1 + to) =

a(t1 + to + p). We prove by induction on to.

Base: to = 1. Based on the Value Updates Rule, the only information

needed for each vi to make its choice (on having B or W as its value) on

the next time step is the values of f−1(vi), which is a subset of a(t1). Since

a(t1) = a(t1 + p), the values of f−1(vi) at time t1 and t1 + p are the same,

which lead to the same choices of vi at time t1 + 1 and t1 + p + 1. This is

valid for every vi ∈ V , so a(t1 + 1) = a(tk + 1 + p).

Induction: Suppose that a(t1 + to) = a(t1 + to + p) for to = 1, 2, ...,m− 1;

we need to show that a(t1 + to) = a(t1 + to + p) holds for to = m. Following

an argument similar to that for the base case, since a(t1 + m − 1) = a(t1 +

p+m− 1), the values of f−1(vi) at time t1 +m− 1 and t1 + p+m− 1 will be

the same, which lead to the same choices of vi at time t1 +m and t1 + p+m.

This is valid for every vi ∈ V , so a(t1 +m) = a(t1 +m+ p).

Remark 1. From the proof of Proposition 1, we know that for any to ∈ Z+

a(t1 + to) = a(t1 + to + p) (2.1)
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Corollary 1. By setting to = np where n ∈ Z+ in Eq.(2.1), we have a(t1 +

np) = a(t1 + (n+ 1)p). Since this is true for all n ∈ Z+, we thus have

a(t1) = a(t1 + np) (2.2)

Proposition 2. For any a(0), the digraph will always be in a periodic solu-

tion after a finite number of time steps.

Proof. Since V is a finite set and each vi ∈ V has only two values to choose

from, a has 2|V | possibilities, in other words, |A| = 2|V |. So a(2|V |) is guar-

anteed to repeat a(to) for some to where 0 ≤ to ≤ 2|V | − 1. When t = to,

there is a positive integer p = 2|V |− to such that a(t) = a(t+ p), which is the

definition of periodic solutions.

Proposition 3. If a(t) is in a periodic solution of period p at time t
′
, then

a(t
′
), a(t

′
+ 1), ..., a(t

′
+ p− 1) are pairwise distinct.

Proof. We prove by contradiction. Since p is defined to be the smallest

positive integer such that a(t) = a(t + p), we know that a(t) 6= a(t
′
) for

t
′
< t < t

′
+ p. Suppose that to the contrary there exists a(t1) = a(t2) where

t
′
< t1 < t2 < t

′
+ p. Then starting from t2, the sequence between a(t1) and

a(t2) will be repeated. Since a(t
′
) 6= a(t) for t1 ≤ t ≤ t2, it is impossible to

reach a(t
′
+ p) = a(t

′
). This completes the proof.
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CHAPTER 3

ONE-CYCLE CASE

In this chapter, we consider a digraph which is a cycle. Suppose that there

are n nodes, v1, v2, ..., vn, in this digraph and each node has an indegree of

1 and an outdegree of 1. More specifically, f(vi) = vi+1 for 1 ≤ i < n and

f(vn) = v1. An example of one-cycle digraph is shown in Figure 3.1. In this

one-cycle case, each node vi at time t + 1 has the same value as f−1(vi) at

time t, where 1 ≤ i ≤ n. In other words, the values on the n nodes simply

shift along the cycle as time progresses, and the number of nodes that have

W as their values remains constant. We now investigate the period of such

digraphs.

1

2

3

4

5

Figure 3.1: One-cycle digraph

Lemma 1. For all a(0), a digraph which is a cycle is in periodic solution

from the beginning at t = 0.

Proof. For any vi ∈ V , the value of vi at t = 0 will be passed back to vi at

time t = n since the digraph has only one cycle with n nodes on this cycle.

Since this is true for all nodes, we have a(0) = a(n), which means the digraph

7



is in periodic solution at t = 0. Following Proposition 1, the digraph is in

periodic solution for all t ≥ 0.

Remark 2. The proof of Lemma 1 also indicates that the period of such a

digraph must be smaller than or equal to n.

Lemma 2. Let a(t) be in a periodic solution of period p. Let N be an integer

such that a(t) = a(t+N). Then, N = kp for k ∈ Z+.

Proof. Since p is the period of this periodic solution, a(t) = a(t+p). Because

of Proposition 3, a(t), a(t + 1), ..., a(t + p − 1) are pairwise distinct. By

definition, N ≥ p. Suppose that to the contrary p is not a divisor of N , and

let r be its remainder; then 0 < r < p and N = kp + r for k ≥ 0. But

a(t + r) = a(t + r + p) = ... = a(t + kp + r) = a(t + N) = a(t), where

a(t+ r) = a(t) leads to a contradiction.

Lemma 3. Suppose that p is a divisor of n. Then, there exists an initial

condition a(0) such that a(0) (and thus a(t) for t ≥ 0) is in a periodic solution

of period p.

Proof. We prove by construction. More specifically, we assign the initial val-

ues of each node ai(0). The assignment method can be described as follows.

Initial Value Assignment for One-Cycle Case: We assign amp(0) = W
where m ∈ Z+ and 1 ≤ m ≤ n/p. All other nodes are assigned B as initial

choice. Formally, for 1 ≤ i ≤ n and m ∈ Z+,

ai(0) =

W if i = mp

B if i 6= mp

With these assignments, the nodes vmp that have W at t = 0 will not

choose W again until after p time steps when the value held by f−p(vmp) at

t = 0 is passed to vmp. This is true for every valid m. In other words, this

is true for all nodes that had W initially. The nodes that had B at t = 0

will also have B at t = p because, as stated before, the number of nodes

that have W is a constant. So p is the smallest positive integer such that

a(t) = a(t+ p), which means that p is the period of this digraph.

Theorem 1. In a digraph G = (V,E) which is a single cycle and |V | = n,

p ∈ Z+ can be a period of G if and only if p is a divisor of n.

8



Proof. This result follows from Lemma 2 and Lemma 3, where Lemma 2

serves as the necessary condition and Lemma 3 serves as the sufficient con-

dition.

9



CHAPTER 4

TWO-CYCLE CASE

In this chapter, we consider a digraph G = (V,E) consisting of two cycles

while the two cycles share a walk. We use ui, 1 ≤ i ≤ n1, to denote the

nodes in one cycle and vi, 1 ≤ i ≤ n2 to denote the nodes in the other

cycle, where i ∈ Z+. ui, vi ∈ V . As in the one-cycle case, f(ui) = ui+1 for

1 ≤ i ≤ n1 and f(un1) = u1, f(vi) = vi+1 for 1 ≤ i ≤ n2 and f(vn2) = v1.

We let the two cycles share a walk which has w points, i.e. ui and vi refer

to the same node for 1 ≤ i ≤ w. In this digraph, node vw (or equivalently,

uw) has an outdegree of 2 and indegree of 1; node v1 (or equivalently, u1) has

an indegree of 2 and outdegree of 1. All other nodes have indegree of 1 and

outdegree of 1. We also denote by au,i the value held by player ui and by

av,i the value held by player vi. Following the Value Updates Rule described

earlier, au,(w+1)(t+ 1) = av,(w+1)(t+ 1) = aw(t) and

a1(t+ 1) =

W if (au,n1(t) = W or av,n2(t) = W)

B if (au,n1(t) = B and av,n2(t) = B)

Henceforth, we will only track W’s since there are only two choices and

W has priority over B. We see that if vw has W at some time, both uw+1

and vw+1 will have W at the next time step. If any of un1 or vn2 has W,

then v1 will have W at the next time step. We investigate the period of such

digraphs in this chapter.

4.1 Two Cycles of Same Length

We first consider a special case when n1 = n2. An example of this type of

digraph is given in Figure 4.1, where n1 = n2 = 6.

Lemma 4. When the length’s of the two cycles are equal, denoted by n1,

then, for all initial values a(0), we have au,i(t) = av,i(t) for any 1 ≤ i ≤ n1,

10



W

B

Figure 4.1: Two cycles of same length

t > n1.

Proof. In the two-cycle model, vi = ui for 1 ≤ i ≤ w, so au,i(t) = av,i(t)

holds for 1 ≤ i ≤ w at all time steps. We suppose that to the contrary at

time to, there exists a j such that au,j(to) 6= av,j(to), where w < j ≤ n1 and

to > n1. For w < j ≤ n1, din(uj) = 1 and din(vj) = 1, so

au,j(to) = au,j−1(to − 1) = ... = au,w+1(to − (j − w − 1)) (4.1)

and

av,j(to) = av,j−1(to − 1) = ... = av,w+1(to − (j − w − 1)) (4.2)

If we extend the above equations to one earlier time step, we will have

au,j(to) = au,w(to− (j−w)) and av,j(to) = av,w(to− (j−w)). Since au,j(to) 6=
av,j(to), it follows that au,w(to − (j − w)) 6= av,w(to − (j − w)). This leads to

a contradiction.

Theorem 2. In a digraph G = (V,E) which has two cycles which share a

walk u1 − uw, if both cycles have n1 nodes, then, p ∈ Z+ can be a period of

G if and only if p is a divisor of n1.

Proof. Following Lemma 4, we know that when t > n1, we must have

au,n1(t) = av,n1(t), which means that v1, the only node that has din = 2,

11



will hold the value at time t+ 1 the same as those held by both un1 and vn1

at time t. When looking at one cycle, it behaves as in the one-cycle case and

the existence of the other cycle has no effect on it. So both cycles can now be

viewed as the one-cycle case discussed in Chapter 3. The result of Theorem 1

can be adapted here. Here we also have au(t) = av(t) so the periods of both

cycles must be the same p, and the period of the combined digraph remains

to be p.

4.2 Two Cycles of Different Length

Without loss of generality, we assume n1 > n2. An example of this type of

digraphs is given in Figure 4.2, where n1 = 10 and n2 = 6.

𝑢1

𝑢𝑛1

𝑣𝑛2

Figure 4.2: Two cycles of different length

4.2.1 Special Initial Values

We first look at the digraphs which have only one W at t = 0. An example

of this type of digraph is given in Figure 4.3, where the values shown in

the graph are held by the nodes at t = 0. We define any W to appear in

this digraph to be a descendant of this original W. We now investigate the

periodicity of such digraphs.

12



W

B

𝑢1

𝑢𝑛1

𝑣𝑛2

BB

B

B

B

B

B

B B

B

B

B

Figure 4.3: Special initial values

4.2.1.1 One-Cycle Equivalent Model

It will be shown later that two-cycle digraphs with only one W at the begin-

ning are equivalent to the model to be introduced in this subsection. Here

we consider an equivalent model described as follows.

In a digraph G = (V,E) that is a cycle, |V | = n, at t = 0, we let a node vi

have W, and all other nodes have B. An example of this is given in Figure

4.4. As described in Chapter 1, this W will rotate around the cycle as time

progresses. Suppose that at time t = no, 1 ≤ no < n, no ∈ Z+, when vi+no is

holding this W, we force vi to change its value from B to W. Now there are

two W’s in this digraph. We continue to force the change (let vi have W) after

every no time steps until no new W’s are added to the graph. At some time

t = kn, all nodes which have W can form a set {vi, v(i+no) mod n, v(i+2no) mod n,

..., v(i+kno) mod n}. For convenience, we use [m] to refer m mod n.

Lemma 5. For any two positive integers no, n, suppose α = no/gcd(no, n)

and β = n/gcd(no, n); then α and β are coprime numbers.

Proof. We prove by contradiction. Suppose that to the contrary gcd(α, β) =

c > 1; then suppose γ1 = α/c and γ2 = β/c, so we have p = α · gcd(p, n) =

γ1c · gcd(no, n) and n = β · gcd(no, n) = γ2c · gcd(no, n). Now we have a

common divisor of no and n, c · gcd(no, n), which is greater than gcd(no, n).

This leads to contradiction and completes the proof.

13



W

B

𝑢1

𝑢𝑛1

B

B

B

B

B B

B

B

Figure 4.4: One-cycle equivalent

Lemma 6. In a digraph G = (V,E) that consists of a single cycle with

|V | = n, let 1 ≤ i ≤ n, no < n and no ∈ Z+, k ∈ Z+. Then, letting a set of

nodes {vi, v[i+no], v[i+2no], ..., v[i+kno]} to have value W is equivalent to letting

a set of nodes {vi, v[i+gcd(no,n)], v[i+2·gcd(no,n)], ..., v[i+k·gcd(no,n)]} to have value

W.

Proof. Since there are only n nodes in V , both sets are finite. For all i,

i+no = i+ no

gcd(no,n)
·gcd(no, n), so every node in the first set has an equivalent

representation in the second set. We now prove that for any i, there must

be some ko such that v[i+kono] = v[i+gcd(no,n)], which means every node in the

second set has an equivalent representation in the first set.

Suppose that as we reach v[i+kono], we have already gone through the cycle

(passing vi) r times, i.e. bkono

n
c = r. Then we need to prove that [i+ kono] =

[i+ gcd(no, n)], which is equivalent to [kono] = [gcd(no, n)]. [gcd(no, n)] < n,

so [gcd(no, n)] = gcd(no, n). Our target becomes

ko · no − r · n = gcd(no, n) (4.3)

Suppose no

gcd(no,n)
= α and n

gcd(no,n)
= β, then Eq.(4.3) can be written as

koα · gcd(no, n)− rβ · gcd(no, n) = gcd(no, n) (4.4)
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W𝑣1

𝑣𝑛

B

B

B

B

B

W

W

W

W

Figure 4.5: Graph for lemma 6

which is

ko · α− r · β = 1 (4.5)

We know that α and β are coprime integers because of Lemma 5. Following

Bézout’s Lemma [17], integers ko, r must exist such that Eq. (4.5) holds.

An example of Lemma 6 is given in Figure 4.5. This figure shows the case

when n = 10 and no = 4. It is clear that {vi, v[i+no], v[i+2no], ..., v[i+kno]} and

{vi, v[i+gcd(no,n)], v[i+2·gcd(no,n)], ..., v[i+k·gcd(no,n)]} actually refer to the same set

of nodes.

Lemma 7. In a digraph G = (V,E) that consists of a single cycle, let 1 ≤
i ≤ n, no < n and no ∈ Z+, k ∈ Z+. Then, there is no positive integer

d < gcd(p, n) such that v[i+kono] = v[i+d].

Proof. We prove by contradiction. Suppose that to the contrary d exists.

Following the same argument as in Lemma 6, we have

ko · α− r · β = do (4.6)

where do = d
gcd(no,n)

/∈ Z. Since ko, α, r, β are all integers, Eq. (4.6) cannot

be true.
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4.2.1.2 In Two-Cycle Case

Back to the two-cycle case, in a digraph G = (V,E) which has two cycles

sharing a walk u1 − uw, one cycle has n1 nodes (denoted by u1, ...,un1) and

the other cycle has n2 nodes (denoted by v1, ..., vn2), where n1 > n2. We

define the distance of two nodes ui and uj to be the time it takes for ui to

pass its value to uj.

Lemma 8. Let a′(0) be an initial collection of the values held by the nodes

in the graph where only one node in the graph has W initially (all others

holding B’s). Then, once the digraph enters periodic solution, W’s will be

evenly distributed over the graph, with a distance of gcd(n1, n2) between two

nearest W’s.

W𝑢1

𝑢𝑛1

𝑣𝑛2

W

W

W

W

W

W

Figure 4.6: Evenly distribution in periodic solution

Proof. We first look at the initial values. Suppose node ui (or vi) is holding

W at t = 0, and the distance between ui (vi) and vw is to. Then this W will

be passed to vw after to time steps. So we let a′′(0) be the collection of values

where aw(0) = W and others having B. Since a′′(0) = a′(to), they are in the

same periodic solution.

Now we investigate the periodic solution reached from a′′(0). Following

our Value Updates Rule, a′′u,w+t(t) = a′′v,w+t(t) = W for t < n2 − w. So
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a′′1(n2 − w) = a′′u,n2
(n2 − w) = W. For cycle u1 − un1 , this means that a

new W is added at u1 at time t = n2 − w when the original W is held by

node un2 , and the distance between un2 and u1 is n1 − n2. Following the

same argument, this newly added W will also generate another W at time

t = 2n2 − w and the distance between these two W’s is also n1 − n2. Note

that the original W is also adding a W after every n2 time steps but after

it first adds, the added W at later time steps will take place at the same W
it added the first time, so it will have no impact at later time steps. This

pattern is repeated and new W’s are added to cycle u1− un1 with a distance

of n1−n2 between the last added W and the newly added W, until the newly

added W is to be held by a node that will have W without this adding. From

then on, we will say that no new W is to be added to the cycle and the cycle

will perform as we discussed in Chapter 3.

From the discussion above, we find that when just looking at one cycle

u1− un1 , the cycle performs the same way as we discussed in section 4.2.1.1.

From Lemma 6 and Lemma 7, we know that after the digraph (and thus the

cycle) enters a periodic solution, the distance between two nearest W’s will

be gcd(n1 − n2, n1) = gcd(n1, n2).

With similar argument, on cycle v1 − vn2 , instead of adding a W ahead

of the last added W, the newly added W at v1 will be located behind the

last added W, with a distance of n1 − n2. From Lemma 6 and Lemma 7, we

know that after the digraph (and thus the cycle) enters a periodic solution,

the distance between two nearest W’s will be gcd(n1 − n2, n1) = gcd(n1, n2).

With the two cycles combined, we know that when the digraph is in peri-

odic solution, W’s are to be evenly distributed over the graph, with a distance

of gcd(n1, n2) between two nearest W’s.

An example of Lemma 8 is given in Figure 4.6, where n1 = 10 and n2 = 6.

4.2.2 Generalized Initial Values

Theorem 3. In a digraph G = (V,E) that consists of two cycles with a

shared walk, if there are n1 nodes in one cycle and n2 nodes in the other

cycle, p ∈ Z+ can be a period of G if and only if p is a common divisor of n1

and n2.
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Proof. The proof is divided into two parts.

(i) Sufficient Condition

We prove the sufficient condition, i.e. if p is a common divisor of n1 and

n2, p can be a period of G, by construction. More specifically, we assign the

initial values of each node a(0). The assignment method can be described as

follows.

Value Assignment Method for Two Cycles : We assign au,m1p(0) = W where

m1 ∈ Z+ and 1 ≤ m1 ≤ n1/p. We also assign av,m2p(0) = W where m2 ∈
Z+ and 1 ≤ m2 ≤ n2/p. All other nodes are assigned B as initial choice.

Formally, for 1 ≤ i ≤ n and m1,m2 ∈ Z+,

au,i(0) =

W if i = m1p

B if i 6= m1p
av,i(0) =

W if i = m2p

B if i 6= m2p

With these assignments, the node um1p which had W at t = 0 will not

have W again until after p time steps when the action played by f−p(vm1p)

at t = 0 is passed to vmp, and the node vm2p which had W at t = 0 will not

have W again until after p time steps when the action played by f−p(vm2p) at

t = 0 is passed to vm2p. This is true for every valid m1,m2. In other words,

this is true for all nodes that played W initially. The nodes that played B at

t = 0 will also play B at t = p. So p is the smallest positive integer such that

a(t) = a(t+ p), which means p is the period of this digraph.

(ii) Necessary Condition

Lemma 8 has shown that p = gcd(n1, n2) if a(0) has only one W, and

in periodic solution, a set of W’s are evenly distributed over the digraph,

with a distance of gcd(n1, n2) in between. We look at the repeating sequence

of values in periodic solution. There are a number of (gcd(n1, n2) − 1) B’s

following each W.

W,B,B, ...;W,B,B, ... (4.7)

In the generalized case, if there is more than one W in the initial values, the

rest of the W’s will have a similar effect on the graph as the first one, with

a time delay of the distance between them. An example of this is given in

Figure 4.7. Increasing one more W in the initial values will lead to more

W’s being added in the periodic solution, but these newly added W’s are

also evenly distributed with a distance of gcd(n1, n2) in between. So for
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Figure 4.7: Superposition of two initial values

generalized initial values, in the periodic solution, some of the B’s in the

sequence (4.7) will be replaced by W’s, and if one B is replaced with W, the

B sitting gcd(n1, n2) away from the replaced node will also be replaced by

W. Thus the maximum possible period is gcd(n1, n2) and we only need to

look at one walk with values of

W,B,B, ... (4.8)

In order to form a new period which is smaller than gcd(n1, n2), the newly

added W’s must divide the sequence (4.8) into a number of repeating se-

quences. In other words, the period of the digraph can only be gcd(n1,n2)
m

if

there are (m − 1) W’s added to sequence (4.8) so that it can be written as

m shorter sequences W,B, ..., where m ∈ Z+ and m ≤ gcd(n1, n2).

From the above argument, we know that the period p of the two-cycle

digraph must be a divisor of gcd(n1, n2), which means it must be a common

divisor of n1 and n2.
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CHAPTER 5

CONCLUSION

In this thesis, we have studied the periodic behavior of deterministic discrete-

time majority threshold models on directed graphs. We have shown that

under the Value Updates Rule, the period of the digraph which is a cycle

must be a divisor of the length of the cycle, and each divisor can be a period

of this graph. For digraphs which have two cycles sharing a set of nodes, the

period must be a common divisor of the lengths of these two cycles, and each

common divisor can be a period of this graph.

For future work, we will adopt the techniques that we have developed

for two-cycle graphs to investigate the period for n-cycle digraphs. Another

possible direction is to extend the choice set from two values to a higher

number of values. Besides the digraphs consisting of cycles, we will also

investigate other types such as star graphs and complete graphs.
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